Science.gov

Sample records for absorption coefficient values

  1. Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2015-03-01

    Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.

  2. Radiometer gives true absorption and emission coefficients

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1977-01-01

    Novel radiometer, unaffected by scattering and polarization, measures true absorption and emmission coefficients for arbitrary mixture of gases and polluting particles. It has potential astronomical, meteorological, and environmental applications, such as determination of radiative heat budget, aerosol relative concentration, and morphology of cloud, haze, and fog formations. Data and temperature can be coupled directly to small computer for online calculation of radiation coefficients.

  3. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  4. Effect of applied mechanical stress on absorption coefficient of compounds

    NASA Astrophysics Data System (ADS)

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-01

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al2O3, CaCO3, ZnO2, SmO2 and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  5. Determination of absorption coefficients of thin films

    SciTech Connect

    Lodenquai, J.F. )

    1994-08-01

    The equations that are usually presented as those used to determine the absorption coefficients of materials in film form based on measurements of transmission and reflection coefficients are fundamentally incorrect. These equations omit a multiplicative factor arising from the complex nature of the refractive indices of the materials. This factor enters explicitly into the relationship between the transmission and reflection coefficients for such materials and is not necessarily close to unity, although in practice this factor can be approximated by unity at least in the infrared through the optical range of wavelengths.

  6. Inversion of instantaneous equivalent absorption coefficient and its application

    SciTech Connect

    Weihua, W. )

    1992-01-01

    Absorption coefficient is an important parameter for reservoir description. The major troubles in extracting absorption coefficient from seismic data are amplitude and waveform distortions; they greatly restrict the inversion which is based on reflection amplitude variation or reflection frequency variation. This paper presents a new method which avoids amplitude and uses waveform variation gradient in wave propagation to make the inversion of absorption coefficient. Apparent absorption coefficient and pseudo absorption coefficient are adopted so as to remove the influence which the waveform distortion due to thin bed tuning brings to absorption coefficient extraction. The final instantaneous equivalent absorption coefficient, a true absorption coefficient which reflects real absorptive character of a seismic medium, can be obtained by subtracting the pseudo absorption coefficient (inversely calculated using maximum entropy) from the apparent absorption coefficient the authors have calculated.

  7. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient. PMID:23914523

  8. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  9. Scattering and absorption coefficients of silica-doped alumina aerogels.

    PubMed

    Fu, Tairan; Tang, Jiaqi; Chen, Kai; Zhang, Fan

    2016-02-01

    Alumina-based aerogels are especially useful in many applications due to their excellent stability at high temperatures. This study experimentally analyzed the radiative properties of silica-doped alumina aerogels through spectral directional-hemispherical measurements for wavelengths of 0.38-25 μm. The silica-doped alumina aerogel samples were prepared with a 1.4∶1 molar ratio of silica to alumina. A two-flux model was used to describe the radiation propagation in a 1D scattering absorbing sample to derive expressions for the normal-hemispherical transmittances and reflectances based on the transport approximation. The normal-hemispherical transmittances and reflectances were measured at various spectral wavelengths and sample thicknesses using the integrating sphere method. The spectral absorption and transport scattering coefficients of silica-doped alumina aerogels were then determined from the measured normal-hemispherical data. The absorption and transport scattering coefficients of silica-doped alumina aerogels are (0.1  cm-1, 36  cm-1) and (0.1  cm-1, 112  cm-1) for wavelengths of 0.38-8.0 μm. The spectral transport scattering coefficient varies in the opposite direction from the spectral absorption coefficient for various wavelengths. The radiative properties for silica and alumina aerogels were quite different for the absorption coefficient for wavelengths of 2.5-8.0 μm and for the transport scattering coefficient for wavelengths of 0.38-2.5 and 3.5-6.0 μm. The measured radiative properties were used to predict the spectral normal-hemispherical reflectance and transmittance of the silica-doped alumina aerogels for various sample thicknesses and wavelengths. The predicted values do not change for the sample thicknesses greater than a critical value. The analysis provides valuable reference data for alumina aerogels for high-temperature applications. PMID:26836071

  10. Linear and nonlinear optical absorption coefficients of spherical dome shells

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  11. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  12. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  13. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  14. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  15. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  16. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  17. Absorption coefficients of a hydrogen plasma for laser radiation

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The formalism for the calculation of the absorption of radiation by a hydrogen plasma at common laboratory conditions is summarized. The hydrogen plasma absorption coefficient for laser radiation has been computed for a wide range of electron densities and temperatures (10,000-40,000 K). The results of this computation are presented in a graphical form that permits a determination of the absorption coefficient for the following laser wavelengths: 0.176, 0.325, 0.337, 0.442, 0.488, 0.515, 0.633, 0.694, 1.06, 1.15, 2.36, 3.39, 5.40 and 10.6 microns. The application of these results and laser radiation absorption measurements to plasma diagnostics is discussed briefly.

  18. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data

    NASA Astrophysics Data System (ADS)

    Li, Xiaoqi; Jiang, Huabei

    2013-02-01

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data—up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  19. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  20. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented. PMID:20935789

  1. A high absorption coefficient DL-MPP imitating owl skin

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Zhao, Zhan; Kong, Deyi; Wu, Shaohua; Du, Lidong; Fang, Zhen

    2012-11-01

    This paper proposes a high absorption coefficient micro-perforated panel (MPP) imitating owl skin structure for acoustic noise reduction. Compared to the traditional micro-perforated panel, this device has two unique characteristics-simulating the owl skin structure, its radius of perforated apertures even can be as small as 55μ, and its material is silicon and fabricated by micro-electrical mechanical system (MEMS) technology; So that its absorption coefficients of acoustic noise for normal incidence sound wave whose frequencies arrange from 1.5 kHz to 6.0 kHz are all above 0.8 which is the owl's hunts sensitivity frequency band. Double leaf MPP fabricated by MEMS technology is an absolutely bionic success in functional-imitation.

  2. Measurements of the optical absorption coefficient of Ar8+ ion implanted silicon layers using the photothermal radiometry and the modulated free carrier absorption methods

    NASA Astrophysics Data System (ADS)

    Chrobak, Ł.; Maliński, M.; Pawlak, M.

    2014-11-01

    This paper presents a method of the measurement of the optical absorption coefficient of the Ar8+ ions implanted layers in the p-type silicon substrate. The absorption coefficient is calculated using a value of the attenuation of amplitudes of a photothermal radiometry (PTR) and/or a modulation free carrier absorption (MFCA) signals and the implanted layer thickness calculated by means of the TRIM program. The proposed method can be used to indicate the amorphization of the ions implanted layers.

  3. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  4. Photoacoustic measurements of black carbon light absorption coefficients in Irbid city, Jordan.

    PubMed

    Hamasha, Khadeejeh M; Arnott, W Patrick

    2010-07-01

    There is a need to recognize air pollution levels by particles, especially in developing countries such as Jordan where data are scarce due to the absence of routine monitoring of ambient air quality. This study aims at studying the air quality in different locations at Irbid, Jordan through the measurement and analysis of the time series of black carbon light absorption coefficients (B (abs)). Black carbon light absorption coefficients were measured with a photoacoustic instrument at a wavelength of 870 nm. The measurements were conducted during July 2007 at six sites in Irbid city, Jordan. Comparisons of black carbon concentrations at various locations were conducted to understand where values tend to be largest. The average value of B (abs) of all sites was 40.4 Mm(-1). The largest value of B (abs) was 61.2 Mm(-1) at Palestine Street which is located at a very crowded street in a highly populated region in the city center. The lowest value was 14.1 Mm(-1) at Thirtieth Street which is located at a main street in an open plain region in the east of the city. The black carbon light absorption coefficients fluctuate above a background level (transported black carbon from the neighboring states), which are almost identical at all sampling sites. The light absorption coefficients will be used as a benchmark in later years as combustion efficiencies and population patterns change. PMID:19479334

  5. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  6. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  7. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  8. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  9. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  10. Photosensitizer absorption coefficient modeling and necrosis prediction during Photodynamic Therapy.

    PubMed

    Salas-García, Irene; Fanjul-Vélez, Félix; Arce-Diego, José Luis

    2012-09-01

    The development of accurate predictive models for Photodynamic Therapy (PDT) has emerged as a valuable tool to adjust the current therapy dosimetry to get an optimal treatment response, and definitely to establish new personal protocols. Several attempts have been made in this way, although the influence of the photosensitizer depletion on the optical parameters has not been taken into account so far. We present a first approach to predict the spatio-temporal variation of the photosensitizer absorption coefficient during PDT applied to dermatological diseases, taking into account the photobleaching of a topical photosensitizer. This permits us to obtain the photons density absorbed by the photosensitizer molecules as the treatment progresses and to determine necrosis maps to estimate the short term therapeutic effects in the target tissue. The model presented also takes into account an inhomogeneous initial photosensitizer distribution, light propagation in biological media and the evolution of the molecular concentrations of different components involved in the photochemical reactions. The obtained results allow to investigate how the photosensitizer depletion during the photochemical reactions affects light absorption by the photosensitizer molecules as the optical radiation propagates through the target tissue, and estimate the necrotic tumor area progression under different treatment conditions. PMID:22704663

  11. Effective infrared absorption coefficient for photothermal radiometric measurements in biological tissues.

    PubMed

    Majaron, Boris; Milanic, Matija

    2008-01-01

    Although photothermal radiometric (PTR) measurements commonly employ broad-band signal acquisition to increase the signal-to-noise ratio, all reported studies apply a fixed infrared (IR) absorption coefficient to simplify the involved signal analysis. In samples with large spectral variation of micro(lambda) in mid-IR, which includes most biological tissues, the selection of the effective IR absorption coefficient value (micro(eff)) can strongly affect the accuracy of the result. We present a novel analytical approach for the determination of optimal micro(eff) from spectral properties of the sample and radiation detector. In extensive numerical simulations of pulsed PTR temperature profiling in human skin using three common IR radiation detectors and several acquisition spectral bands, we demonstrate that our approach produces viable values micro(eff). Two previously used analytical estimations perform much worse in the same comparison. PMID:18182701

  12. Heat/Mass Transfer Coefficients of an Absorber in Absorption Refrigeration System

    NASA Astrophysics Data System (ADS)

    Fujita, Isamu; Hihara, Eiji

    This paper presents a new method to calculate heat and mass transfer coefficients applicable to the vertical tube or plate type absorber of absorption refrigeration system. Conventional method for calculating the coefficients using logarithmic mean temperature/ concentration differences is criticized for its lacking in the theoretical rationality and usually giving untrue values except some limited situations such that temperature of the solution can be assumed to change linearly along the heat transfer surface. The newly introduced method, which is intended to overcome this difficulty, is verified by numerical simulation and is accompanied by an example applied to the experimental results.

  13. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  14. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  15. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  16. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  17. Radionuclide transfer to animal products: revised recommended transfer coefficient values.

    PubMed

    Howard, B J; Beresford, N A; Barnett, C L; Fesenko, S

    2009-03-01

    A compilation has been undertaken of data which can be used to derive animal product transfer coefficients for radionuclides, including an extensive review of Russian language information. The resultant database has been used to provide recommended transfer coefficient values for a range of radionuclides to (i) cow, sheep and goat milk, (ii) meat (muscle) of cattle, sheep, goats, pigs and poultry and (iii) eggs. The values are used in a new IAEA handbook on transfer parameters which replaces that referred to as 'TRS 364'. The paper outlines the approaches and procedures used to identify and collate data, and assumptions used. There are notable differences between the TRS 364 'expected' values and the recommended values in the revised Handbook from the new database. Of the recommended values, three milk values are at least an order of magnitude higher than the TRS 364 values (Cr, Pu (cow) Pu (sheep)) and one milk value is lower (Ni (cow)). For meat, four values (Am, Cd, Sb (beef) I (pork)) are at least an order of magnitude higher than the TRS 364 values and eight values are at least an order of magnitude lower (Ru, Pu (beef), Ru, Sr, Zn (sheep), Ru, Sr (pork), Mn (poultry)). Many data gaps remain. PMID:19200625

  18. Absorption coefficient at 10.6 microm in CdTe modulator crystals.

    PubMed

    Tucker, A W; Birnbaum, M; Montes, H; Fincher, C L

    1982-08-15

    The bulk and surface absorption coefficients of CdTe modulator crystals at 10.6 microm were compared with those of single-crystal KC1 and NaCl which served to calibrate the laser calorimeter. High-resistivity (>10(7) ohm/cm) CdTe crystals exhibited a bulk absorption coefficient of 0.0014 cm(-1). PMID:20396150

  19. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  20. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-07-01

    We derived the absorption coefficient (μ a) and the reduced scattering coefficient (μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  1. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  2. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  3. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  4. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  5. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  6. Pressure-induced absorption coefficients for radiative transfer calculations in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Courtin, Regis

    1988-01-01

    The semiempirical theory of Birnbaum and Cohen (1976) is used to calculate the FIR pressure-induced absorption (PIA) spectra of N2, CH4, N2 + Ar, N2 + CH4, and N2 + H2 under conditions like those in the Titan troposphere. The results are presented graphically and compared with published data from laboratory measurements of PIA in the same gases and mixtures (Dagg et al., 1986; Dore et al., 1986). Good agreement is obtained, with only a slight underestimation of PIA at 300-400/cm in the case of CH4. The absorption coefficients are presented in tables, and it is suggested that the present findings are of value for evaluating the effects of tropospheric clouds on the Titan FIR spectrum and studying the greenhouse effect near the Titan surface.

  7. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    PubMed

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field. PMID:24972796

  8. Theoretical calculations of nonlinear refraction and absorption coefficients of doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2014-12-01

    In this study, we present the first theoretical predictions concerning the nonlinear refractive and absorptive properties of the doped graphene in which the Fermi energy {{E}F} of charge carriers (noninteracting massless Dirac fermions) is controlled by an external gate voltage. We base our study on the original perturbation theory technique developed by Genkin and Mednis (1968 Sov. Phys. JETP 27 609) for calculating the nonlinear-optical (NLO) response coefficients of bulk crystalline semiconductors with partially filled bands. Using a simple tight-binding model for the π-electron energy bands of graphene, we obtain analytic expressions for the nonlinear refractive index {{n}2}(ω ) and the nonlinear absorption coefficient {{α }2}(ω ) of the doped graphene at photon energies above twice the value of the Fermi energy (\\hbar ω \\gt 2{{E}F}). We show that in this spectral region, both the nonlinear refraction ant the nonlinear absorption are determined predominantly by the combined processes which simultaneously involve intraband and interband motion of π-electrons. Our calculations indicate that extremely large negative values of n2 (of the order of -{{10}-6} cm2 W-1) can be achieved in the graphene at a relatively low doping level (of about 1012 cm-2) provided that the excitation frequency slightly exceeds the threshold frequency corresponding to the onset of interband transitions. With a further increase of the radiation frequency, the {{n}2}(ω ) becomes positive and begins to decrease in its absolute magnitude. The peculiar frequency dispersion of n2 and a negative sign of the {{α }2} (absorption bleaching), as predicted by our theory, suggest that the doped graphene is a prospective NLO material to be used in practical optical switching applications.

  9. Spectral variation of the infrared absorption coefficient in pulsed photothermal profiling of biological samples.

    PubMed

    Majaron, Boris; Verkruysse, Wim; Tanenbaum, B Samuel; Milner, Thomas E; Nelson, J Stuart

    2002-06-01

    Pulsed photothermal radiometry can be used for non-invasive depth profiling of optically scattering samples, including biological tissues such as human skin. Computational reconstruction of the laser-induced temperature profile from recorded radiometric signals is sensitive to the value of the tissue absorption coefficient in the infrared detection band (muIR). While assumed constant in reported reconstruction algorithms, muIR of human skin varies by two orders of magnitude in the commonly used 3-5 microm detection band. We analyse the problem of selecting the effective absorption coefficient value to be used with such algorithms. In a numerical simulation of photothermal profiling we demonstrate that results can be markedly impaired, unless the reconstruction algorithm is augmented by accounting for spectral variation muIR(lambda). Alternatively, narrowing the detection band to 4.5-5 microm reduces the spectral variation muIR(lambda) to a level that permits the use of the simpler, unaugmented algorithm. Implementation of the latter approach for depth profiling of port wine stain birthmarks in vivo is presented and discussed. PMID:12108776

  10. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  11. Absorption of laser radiation in a H-He plasma. I - Theoretical calculation of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    The theory for calculating the absorption of laser radiation by hydrogen is outlined for the temperatures and pressures of common laboratory plasmas. Nonhydrogenic corrections for determining the absorption by helium are also included. The coefficients for the absorption of He-Ne laser radiation at the wavelengths of 0.633, 1.15, and 3.39 microns in a H plasma is presented for temperatures in the range from 10,000 to 40,000 K and electron number densities in the range from 10 to the 15th power to 10 to the 18th power per cu cm. The total absorption of a H-He plasma calculated from this theory is compared with the measured absorption. The theoretical composition of the H-He absorption is analyzed with respect to the significant absorption processes, inverse bremsstrahlung, photoionization, resonance excitation, and photodetachment.

  12. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient. PMID:25967770

  13. Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria

    NASA Astrophysics Data System (ADS)

    de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald

    2003-06-01

    We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.

  14. Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient

    NASA Astrophysics Data System (ADS)

    Akhlaghi, Majid; Emami, Farzin; Nozhat, Najmeh

    2014-07-01

    A new efficient binary optimization method based on Teaching-Learning-Based Optimization (TLBO) algorithm is proposed to design an array of plasmonic nano bi-pyramids in order to achieve maximum absorption coefficient spectrum. In binary TLBO, a group of learners consisting of a matrix with binary entries controls the presence ('1') or the absence ('0') of nanoparticles in the array. Simulation results show that absorption coefficient strongly depends on the localized position of plasmonic nanoparticles. Non-periodic structures have more appropriate response in term of absorption coefficient. This approach is useful in optical applications such as solar cells and plasmonic nano antenna.

  15. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  16. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry. PMID:27139871

  17. Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Li, Z.; Nemtchinov, V.; Cherukuri, A.

    1994-01-01

    Spectral absorption-coefficients (cross-sections) kappa(sub nu) (/cm/atm) have been measured in the 7.62, 8.97, and 12.3 micrometer bands of HCFC-22 (CHClF2) and the 10.6 micrometer bands of SF6 employing a high-resolution Fourier-transform spectrometer. Temperature and total pressure have been varied to simulate conditions corresponding to tropospheric and stratospheric layers in the atmosphere. The kappa(sub nu) are compared with values measured by us previously using a tunable diode laser spectrometer and with the appropriate entries in HITRAN and GEISA, two of the databases known to the atmospheric scientist. The measured absolute intensities of the bands are compared with previously published values.

  18. Experimental measurements of the spectral absorption coefficient of pure fused silica optical fibers.

    PubMed

    Moore, Travis J; Jones, Matthew R

    2015-02-20

    Knowledge of the spectral absorption coefficient of fused silica optical fibers is important in modeling heat transfer in the processes and applications in which these fibers are used. An experimental method used to measure the spectral absorption coefficient of optical fibers is presented. Radiative energy from a blackbody radiator set at different temperatures is directed through the optical fibers and into an FTIR spectrometer. Spectral instrument response functions are calculated for different fiber lengths. The ratios of the slopes of the instrument response functions for the different lengths of fibers are used to solve for the spectral absorption coefficient of the fibers. The spectral absorption coefficient of low OH pure fused silica optical fibers is measured between the wavelengths 1.5 and 2.5 μm. PMID:25968202

  19. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. PMID:25241360

  20. Absorption of laser radiation in a H-He plasma. II - Experimental measurement of the absorption coefficient

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Rowley, P. D.; Stallcop, J. R.; Presley, L.

    1974-01-01

    The absorption coefficients of 0.633-, 1.15-, and 3.39-micron laser radiation for a homogeneous H-He plasma have been measured in the temperature range from 12.2 to 21.7 (x 1000 K) and in the electron number density range 0.45 to 6.5 (x 10 to the 17th power per cu cm). Good agreement is found between the experimentally determined total absorption for each of the wavelengths and that calculated from theory. Furthermore, because the 3.39-micron absorption is dominated by inverse bremsstrahlung, while the 0.633-micron absorption is dominated by photoionization and resonance absorption, the experiment indicates a correct assessment by the theory of these individual absorption mechanisms.

  1. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  2. Satellite Retrieval of the Absorption Coefficient of Phytoplankton Phycoerythrin Pigment: Theory and Feasibility Status

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Wright, C. Wayne; Lyon, Paul E.; Swift, Robert N.; Yungel, James K.

    1999-12-01

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual big three inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM) detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the satellite

  3. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds. PMID:11487809

  4. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  5. Continuous wavelet-transform analysis of photoacoustic signal waveform to determine optical absorption coefficient

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.; Ishihara, M.; Tsujita, K.; Hirota, K.; Irisawa, K.; Kitagaki, M.; Fujita, M.; Kikuchi, M.

    2012-02-01

    In photo-acoustic (PA) imaging, valuable medical applications based on optical absorption spectrum such as contrast agent imaging and blood oxygen saturation measurement have been investigated. In these applications, there is an essential requirement to determine optical absorption coefficients accurately. In present, PA signal intensities have been commonly used to determine optical absorption coefficients. This method achieves practical accuracy by combining with radiative transfer analysis. However, time consumption of radiative transfer analysis and effects of signal generation efficiencies were problems of this method. In this research, we propose a new method to determine optical absorption coefficients using continuous wavelet transform (CWT). We used CWT to estimate instantaneous frequencies of PA signals which reflects optical absorption distribution. We validated the effectiveness of CWT in determination of optical absorption coefficients through an experiment. In the experiment, planar shaped samples were illuminated to generate PA signal. The PA signal was measured by our fabricated PA probe in which an optical fiber and a ring shaped P(VDFTrFE) ultrasound sensor were coaxially aligned. Optical properties of samples were adjusted by changing the concentration of dye solution. Tunable Ti:Sapphire laser (690 - 1000 nm) was used as illumination source. As a result, we confirmed strong correlation between optical absorption coefficients of samples and the instantaneous frequency of PA signal obtained by CWT. Advantages of this method were less interference of light transfer and signal generation efficiency.

  6. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  7. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  8. Correlation analysis of optical absorption cross section and rate coefficient measurements in reacting systems

    SciTech Connect

    Hessler, J.P.; Ogren, P.J.

    1992-08-31

    A technique was developed for determining relative importance and correlation between reactions making up a complex kinetic system. This technique was used to investigate measurements of optical absorption cross sections and the correlation between cross sections and measured rate coefficients. It is concluded that (1) species, initial conditions, and temporal regions may be identified where cross sections may be measured without interference from the kinetic behavior of the observed species and (2) experiments designed to measure rate coefficients will always be correlated with the absorption cross section of the observed species. This correlation may reduce the accuracy of rate coefficient measurements.

  9. A reverberation room round robin on the determination of absorption coefficients

    NASA Astrophysics Data System (ADS)

    Kath, U.

    In ten reverberation rooms with very different volumes and different room shapes, the absorption coefficients for mineral fiber mat were measured. The particular feature of this round robin was that the absorption material was much thicker than in other similar experiments and that it was measured not only with an area of 12 sq m on the floor, but also as a complete surface covering of a small wall in order to avoid the edge effect. The decay curves were evaluated in at least two institutions and the absorption coefficients were calculated using the Eyring equation. The absorption coefficients were quite dispersed from one room to another and also from one-third octave band to the adjacent ones. Errors due to change are small, thus one is dealing with systematic errors.

  10. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  11. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    SciTech Connect

    Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  12. An empirical determination of the dust mass absorption coefficient, κd, using the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Clark, Christopher J. R.; Schofield, Simon P.; Gomez, Haley L.; Davies, Jonathan I.

    2016-06-01

    We use the published photometry and spectroscopy of 22 galaxies in the Herschel Reference Survey to determine that the value of the dust mass absorption coefficient κd at a wavelength of 500 μm is kappa _{500} = 0.051^{+0.070}_{-0.026} m^{2 kg^{-1}}. We do so by taking advantage of the fact that the dust-to-metals ratio in the interstellar medium of galaxies appears to be constant. We argue that our value for κd supersedes that of James et al. - who pioneered this approach for determining κd - because we take advantage of superior data, and account for a number of significant systematic effects that they did not consider. We comprehensively incorporate all methodological and observational contributions to establish the uncertainty on our value, which represents a marked improvement on the oft-quoted `order-of-magnitude' uncertainty on κd. We find no evidence that the value of κd differs significantly between galaxies, or that it correlates with any other measured or derived galaxy properties. We note, however, that the availability of data limits our sample to relatively massive (109.7 < M⋆ < 1011.0 M⊙), high metallicity (8.61 < [ 12 + log_{10} fracOH ] < 8.86) galaxies; future work will allow us to investigate a wider range of systems.

  13. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  14. Absorption Spectra and Absorption Coefficients for Methane in the 750-940 nm region obtained by Intracavity Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Cao, H.

    2000-10-01

    Methane spectral features are prominent in the reflected sunlight spectra from the outer planets and some of their major satellites and can provide useful information on the atmospheres of those bodies. Methane bands occurring in the visible to near-IR region are particularly important because for many of these planetary bodies, methane bands occurring in the IR are saturated. Spectral observations of these bodies also are being made at increasingly higher resolution. In order to interpret the planetary spectra, laboratory data for methane obtained at appropriate sample conditions and spectral resolution are required. Since the visible to near-IR spectrum of methane is intrinsically weak, sensitive techniques are required to perform the laboratory measurements. We have employed the intracavity laser spectroscopy (ILS) technique to record methane spectrum in the visible to near-IR region. New results for room temperature methane in the 10,635 - 13,300 cm-1 region and for liquid nitrogen temperature (77 K) methane in the 10,860 - 11,605 cm-1 region will be presented. Spectra throughout the more strongly absorbing sections will be shown. These spectra are acquired at a resolution of 400,000 - 500,000 and are calibrated using iodine reference spectra acquired from an extra-cavity cell at nearly the same time as when the methane data are recorded. From the spectra, absorption coefficients are determined and these are presented as averages over 1 Å and 1 cm-1 intervals. In order to obtain the results, spectra are deconvolved for the instrument function using a Fourier transform technique. The validity of the approach is verified from studies of isolated oxygen lines in the A band occurring around 760 nm. Good agreement is observed between the intensity values determined from the FT deconvolution and integration method and those derived by fitting the observed line profiles to Voigt line-shapes convoluted with the instrument function. The methane results are compared

  15. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  16. How to measure and predict the molar absorption coefficient of a protein.

    PubMed Central

    Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T.

    1995-01-01

    The molar absorption coefficient, epsilon, of a protein is usually based on concentrations measured by dry weight, nitrogen, or amino acid analysis. The studies reported here suggest that the Edelhoch method is the best method for measuring epsilon for a protein. (This method is described by Gill and von Hippel [1989, Anal Biochem 182:319-326] and is based on data from Edelhoch [1967, Biochemistry 6:1948-1954]). The absorbance of a protein at 280 nm depends on the content of Trp, Tyr, and cystine (disulfide bonds). The average epsilon values for these chromophores in a sample of 18 well-characterized proteins have been estimated, and the epsilon values in water, propanol, 6 M guanidine hydrochloride (GdnHCl), and 8 M urea have been measured. For Trp, the average epsilon values for the proteins are less than the epsilon values measured in any of the solvents. For Tyr, the average epsilon values for the proteins are intermediate between those measured in 6 M GdnHCl and those measured in propanol. Based on a sample of 116 measured epsilon values for 80 proteins, the epsilon at 280 nm of a folded protein in water, epsilon (280), can best be predicted with this equation: epsilon (280) (M-1 cm-1) = (#Trp)(5,500) + (#Tyr)(1,490) + (#cystine)(125) These epsilon (280) values are quite reliable for proteins containing Trp residues, and less reliable for proteins that do not. However, the Edelhoch method is convenient and accurate, and the best approach is to measure rather than predict epsilon. PMID:8563639

  17. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  18. Methane Absorption Coefficients in the 750-940 nm region derived from Intracavity Laser Absorption Spectral Measurements

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.

    2002-09-01

    The absorption spectrum of methane has been recorded in the visible to near-IR region using the intracavity laser spectroscopy technique. Spectra are recorded at high spectral resolution for narrow overlapping intervals in the region for room and 77 K temperature methane samples. After spectra are deconvolved for the instrument function, absorption coefficients are derived. These will be presented (750-940 nm for room temperature methane; 850-920 nm for 77 K methane) and compared with results reported by other workers. Future work in this area also will be indicated. Support from NASA's Planetary Atmospheres Program (NAG5-6091 and a Major Equipment Grant) is gratefully acknowledged.

  19. The diagnostic value of biexponential apparent diffusion coefficients in myopathy.

    PubMed

    Ran, Jun; Liu, Yao; Sun, Dong; Morelli, John; Zhang, Ping; Wu, Gang; Sheng, Yuda; Xie, Ruyi; Zhang, Xiaoli; Li, Xiaoming

    2016-07-01

    To investigate the performance of a biexponential signal decay model using DWI in myopathies and to differentiate Polymyositis (PM)/Dermatomyositis (DM), Glycogen Storage Diseases (GSDs) and Muscular Dystrophies (MDs) utilizing diffusion-weighted imaging. 11 healthy volunteers (control group) and 46 patients with myopathy were enrolled in the retrospective study. 27 of 46 patients had PM/DM, 7 patients GSDs and 12 patients MDs. After conventional MR sequences, diffusion weighted imaging with a b-factor ranging from 0 to 1200 s/mm(2) was performed on both thighs. The intra-muscular signal-to-noise ratios (SNRs) on multiple-b DWI images were measured for 7 different muscles and compared among the different groups. The median T2 signal intensity and biexponential apparent diffusion coefficients (ADC), including standard ADC, fast ADC, and slow ADC values, were compared among the different groups. The intra-muscular SNRs were statistically significantly different depending on the b value, and also found among the 4 groups (p < 0.05). The median T2 signal intensity of the normal muscles in control group was statistically significantly lower than that of edematous muscles in the PM/DM, GSDs and MDs groups (p = 0.000), while there were no statistically significant differences among the PM/DM, GSDs, and MDs groups (p > 0.05). The median standard ADC value of the edematous muscles in GSDs was statistically significantly lower than that of normal muscles in the control group (p = 0.000) and the median ADC value of the edematous muscles in PM/DM patients was statistically significantly greater than that of the GSDs (p = 0.000) and MDs groups (p = 0.005). The median slow ADC value of the edematous muscles in MDs patients and PM/DM patients was statistically significantly greater than that of GSDs patients (p < 0.05). Intra-muscular SNR decay curves and biexponential ADC parameters are useful in distinguishing among PM/DM, GSDs, and MDs. PMID:27142711

  20. Measurement of nanofluids absorption coefficient by Moiré deflectometry technique

    NASA Astrophysics Data System (ADS)

    Madanipour, Khosro; Koohian, Ataollah; Shahrabi Farahani, Shahrzad

    2015-05-01

    Nanoparticles exhibit many unique and interesting optical properties which make them very useful in biomedical applications. In order to employ NPs for disease treatment, comprehensive knowledge of their important properties is crucial. One of these parameters is absorption coefficient. In this work, absorption coefficient of a nanofluid (Au nanoparticles in water) is measured by using Moiré deflectometry technique. Two laser beams are used: a comparatively high intensity laser beam as interacting beam and a low intensity as a probe beam. This method is fast, easy and nonscanning, also insensitive to vibrations.

  1. In vivo light fluence correction for determination of tissue absorption coefficient using Multispectral Optoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.

    2016-03-01

    Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.

  2. The average ion model. Computation of the absorption and emission coefficients in hot plasmas

    NASA Astrophysics Data System (ADS)

    Gauthier, Jean-Claude; Geindre, Jean-Paul

    1988-06-01

    A program was developed to evaluate the emission and absorption plasma coefficient variations as a function of the density, temperature and the atomic number of the specimen. The treatment is simplified because of the reduced number of characteristic frequencies which are necessary for the hydrodynamic code. The approach is less efficient when applied to high Z atoms.

  3. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn

    NASA Astrophysics Data System (ADS)

    Wu, J.; Hong, H.; Shang, S.; Dai, M.; Lee, Z.

    2007-05-01

    We examined the temporal and spatial variabilities of phytoplankton absorption coefficients (αphλ)) and their relationships with physical processes in the northern South China Sea from two cruise surveys during spring (May 2001) and late autumn (November 2002). A large river plume induced by heavy precipitation in May stimulated a phytoplankton bloom on the inner shelf, causing significant changes in the surface water in αph values and B/R ratios (αph(440)/αph(675)). This was consistent with the observed one order of magnitude elevation of chlorophyll α and a shift from a pico/nano dominated phytoplankton community to one dominated by micro-algae. At the seasonal level, enhanced vertical mixing due to strengthened northeast monsoon in November has been observed to result in higher surface αph(675) (0.002-0.006 m-1 higher) and less pronounced subsurface maximum on the outer shelf/slope in November as compared that in May. Measurements of αph and B/R ratios from three transects in November revealed a highest surface αph(675) immediately outside the mouth of the Pearl River Estuary, whereas lower αph(675) and higher B/R ratios were featured in the outer shelf/slope waters, demonstrating the respective influence of the Pearl River plume and the oligotrophic nature of South China Sea water. The difference in spectral shapes of phytoplankton absorption (measured by B/R ratios and bathochromic shifts) on these three transects infers that picoprocaryotes are the major component of the phytoplankton community on the outer shelf/slope rather than on the inner shelf. In addition, a regional tuning of the phytoplankton absorption spectral model (Carder et al., 1999) demonstrated a greater spatial variation than seasonal variation in the lead parameter a0(λ). These results suggest that phytoplankton absorption properties in a coastal region such as the northern South China Sea are complex and region-based parameterization is mandatory in order for remote sensing

  4. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  5. Temperature- and pressure-dependent absorption coefficients for CO2 and O2 at 193 nm

    NASA Astrophysics Data System (ADS)

    Hartinger, K. T.; Nord, S.; Monkhouse, P. B.

    Absorption of laser radiation at 193 nm by CO2 and O2 was studied at a series of different temperatures up to 1273 K and pressures up to 1 bar. The spectrum for CO2 was found to be broadband, so that absorption could be fitted to a Beer-Lambert law. On the other hand, the corresponding O2 spectrum is strongly structured and parameterisation requires a more complex relation, depending on both temperature and the product (pressure × absorption path length). In this context, the influence of spectral structure on the resulting spectrally integrated absorption coefficients is discussed. Using the fitting parameters obtained, effective transmissions at 193 nm can be calculated for a wide range of experimental conditions. As an illustration of the practical application of these data, the calculation of effective transmission for a typical industrial flue gas is described.

  6. Re-evaluation of pulsed photothermal radiometric profiling in samples with spectrally varied infrared absorption coefficient.

    PubMed

    Majaron, Boris; Milanic, Matija

    2007-02-21

    Spectral variation of the sample absorption coefficient in mid-infrared (muIR) demands caution in photothermal radiometric measurements, because a constant muIR is regularly assumed in inverse analysis of the acquired signals. Adverse effects of such approximation were recently demonstrated in numerical simulations of pulsed photothermal radiometric (PPTR) temperature profiling in soft biological tissues, utilizing a general-purpose optimization code in the reconstruction process. We present here an original reconstruction code, which combines a conjugate gradient minimization algorithm with non-negativity constraint to the sought temperature vector. For the same test examples as in the former report (hyper-Gaussian temperature profiles, InSb detector with 3-5 microm acquisition band, signal-to-noise ratio SNR=300) we obtain markedly improved reconstruction results, both when using a constant value mueff and when the spectral variation muIR(lambda) is accounted for in the analysis. By comparing the results, we find that the former approach introduces observable artefacts, especially in the superficial part of the profile (z<100 microm). However, the artefacts are much less severe than previously reported and are almost absent in the case of a deeper, single-lobed test profile. We demonstrate that the observed artefacts do not result from sub-optimal selection of mueff, and that they vary with specific realizations of white noise added to the simulated signals. The same holds also for a two-lobed test profile. PMID:17264372

  7. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  8. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  9. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  10. Absorption Coefficients of Particulate Matter off the Southwest Coast of Europe: A Contribution to Validation of the MERIS Sensor

    NASA Astrophysics Data System (ADS)

    Goela, P.; Icely, J.; Cristina, S.; Newton, A.

    2010-12-01

    Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.

  11. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  12. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    NASA Astrophysics Data System (ADS)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  13. Absorption coefficients of GeSn extracted from PIN photodetector response

    NASA Astrophysics Data System (ADS)

    Ye, Kaiheng; Zhang, Wogong; Oehme, Michael; Schmid, Marc; Gollhofer, Martin; Kostecki, Konrad; Widmann, Daniel; Körner, Roman; Kasper, Erich; Schulze, Jörg

    2015-08-01

    In this paper the optical absorption of the GeSn PIN photodetector was investigated. The vertical GeSn PIN photodetectors were fabricated by molecular beam epitaxy (MBE) and dry etching. By means of current density-voltage (J-V) and capacity-voltage (C-V) measurements the photodetector device was characterized. The absorption coefficients of GeSn material were finally extracted from the optical response of PIN structure. With further direct bandgap analysis the influences of device structure was proved negligible.

  14. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  15. Determination of RW3-to-water mass-energy absorption coefficient ratio for absolute dosimetry.

    PubMed

    Seet, Katrina Y T; Hanlon, Peta M; Charles, Paul H

    2011-12-01

    The measurement of absorbed dose to water in a solid-phantom may require a conversion factor because it may not be radiologically equivalent to water. One phantom developed for the use of dosimetry is a solid water, RW3 white-polystyrene material by IBA. This has a lower mass-energy absorption coefficient than water due to high bremsstrahlung yield, which affects the accuracy of absolute dosimetry measurements. In this paper, we demonstrate the calculation of mass-energy absorption coefficient ratios, relative to water, from measurements in plastic water and RW3 with an Elekta Synergy linear accelerator (6 and 10 MV photon beams) as well as Monte Carlo modeling in BEAMnrc and DOSXYZnrc. From this, the solid-phantom-to-water correction factor was determined for plastic water and RW3. PMID:21960410

  16. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    NASA Astrophysics Data System (ADS)

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-02-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab.

  17. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media.

    PubMed

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  18. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  19. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  20. AN INTERCOMPARISON CF THE INTEGRATING PLATE AND THE LASER TRANSMISSION METHODS FOR DETERMINATION OF AEROSOL ABSORPTION COEFFICIENTS

    SciTech Connect

    Sadler, M.; Charlson, R.J.; Rosen, H.; Novakov, T.

    1980-07-01

    The absorption coefficients determined by the integrating plate method and the laser transmission method are found to be comparable and highly correlated. Furthermore, a high correlation is found between these absorption coefficients and the carbon content of the aerosol in urbanized regions.

  1. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  2. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  3. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGESBeta

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  4. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  5. Value of Apparent Diffusion Coefficient Values in Differentiating Malignant and Benign Breast Lesions

    PubMed Central

    Bozkurt Bostan, Tuğba; Koç, Gonca; Sezgin, Gülten; Altay, Canan; Fazıl Gelal, M.; Oyar, Orhan

    2016-01-01

    Background: Magnetic resonance imaging (MRI) has become a diagnostic and problem solving method for the breast examinations in addition to conventional breast examination methods. Diffusion-weighted imaging (DWI) adds valuable information to conventional MRI. Aims: Our aim was to show the impact of apparent diffusion coefficient (ADC) values acquired with DWI to differentiate benign and malignant breast lesions. Study Design: Diagnostic accuracy study. Methods: Forty-six women with 58 breast masses (35 malignant, 23 benign) were examined on a 1.5 T clinical MRI scanner. The morphologic characteristics of the lesions on conventional MRI sequences and contrast uptake pattern were assessed. ADC values of both lesions and normal breast parenchyma were measured. The ADC values obtained were statistically compared with the histopathologic results using Paired Samples t-Test. Results: Multiple lesions were detected in 12 (26%) of the patients, while only one lesion was detected in 34 (74%). Overall, 35 lesions out of 58 were histopathologically proven to be malignant. In the dynamic contrast-enhanced series, 5 of the malignant lesions were type 1, while 8 benign lesions revealed either type 2 or 3 time signal intensity curves (85% sensitivity, 56% spesifity). Mean ADC values were significantly different in malignant vs. benign lesions. (1.04±0.29×10−3 cm2/sec vs. 1.61±0.50×10−3 cm2/sec for the malignant and benign lesions, respectively, p=0.03). A cut-off value of 1.30×10−3 mm2/sec for ADC detected with receiver operating characteristic analysis yielded 89.1% sensitivity and 100% specificity for the differentiation between benign and malignant lesions. Conclusion: ADC values improve the diagnostic accuracy of solid breast lesions when evaluated with the conventional MRI sequences. Therefore, DWI should be incorporated to routine breast MRI protocol. PMID:27308073

  6. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  7. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-12-01

    Absorbing aerosols can significantly modulate short-wave solar radiation in the atmosphere, affecting regional and global climate. The aerosol absorption coefficient (AAC) is an indicator that assesses the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption Ångström exponent (AAE) in the urban area of Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the seven-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which result in consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in the urban area of Nanjing, which is much lower than that in Pearl River Delta and the same as in rural areas (Lin'an) in Yangtze River Delta. The AAC in the urban area of Nanjing shows strong seasonality (diurnal variations); it is high in cold seasons (at rush hour) and low in summer (in the afternoon). It also shows synoptic and quasi-2-week cycles in response to weather systems. Its frequency distribution follows a typical log-normal pattern. The 532 nm AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72 % of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollution. Air masses flowing from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable than from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly occur in summer, likely due to high relative humidity (RH) in the season. AAC increases with increasing AAE at a fixed aerosol loading. The RH

  8. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-06-01

    Absorbing aerosols can significantly modulate shortwave solar radiation in the atmosphere, affecting regional and global climate. Aerosol absorption coefficient (AAC) is an indicator to assess the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption angstrom exponent (AAE) in urban Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the 7-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which show consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in urban Nanjing, which is much lower than that in Pearl River Delta and as the same as that in rural areas (Lin'an) in Yangtze River Delta. The AAC in urban Nanjing shows strong seasonality (diurnal variations), high in cold seasons (at rush hours) and low in summer (in afternoon). It also show synoptic and quasi-two-week cycles in response to weather systems. Its frequency distribution follows a typical lognormal pattern. The 532 nm-AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72% of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollutions. Air masses from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable compared to that from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly appear in summer in response to the relative humidity (RH). AAC increases with increasing AAE at a fixed aerosol loading. The RH-AAC relationship is more complex. Overall, AAC peaks around RH values

  9. Influence of Diffraction Effects on the Result of Measuring the Absorption Coefficient of Ultrasound in Weakly Absorbing Liquids by the Pulse Method

    NASA Astrophysics Data System (ADS)

    Shatsky, A. V.

    2016-08-01

    We consider the problem of the influence of diffraction effects on the result of measuring the absorption coefficient of ultrasound in weakly absorbing liquids by the pulse method. Diffraction attenuation of an ultrasonic signal in a measuring cell using solid-state delay lines is calculated. It is shown that the use of delay lines of the ultrasonic signal leads to a considerable distortion of the measured absorption coefficient in the low-frequency range from the true value and can either overestimate or underestimate the results.

  10. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Andreo, Pedro; Burns, David T.; Salvat, Francesc

    2012-04-01

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for 192Ir and 60Co gamma-ray spectra. The aim of this work was to establish ‘an envelope of uncertainty’ based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µen/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, uc, for the µen/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For 60Co and 192Ir, uc is approximately 0.1%. The Type B uncertainty analysis for the ratios of µen/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µen/ρ)graphite,air and (µen/ρ)graphite,water are 1.5%, and 0.5% for (µen/ρ)water,air, decreasing gradually down to uc = 0.1% for the three µen/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well with those of Hubbell (1977 Rad. Res

  11. Diffusion Coefficients of Water and Leachables in Methacrylate-based Crosslinked Polymers using Absorption Experiments

    PubMed Central

    Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette

    2012-01-01

    The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592

  12. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  13. Spectroscopic method for determination of the absorption coefficient in brain tissue

    NASA Astrophysics Data System (ADS)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  14. Absorption coefficients and band strengths for the 703 nm and 727 bands of methane at 77 K

    SciTech Connect

    O`Brien, J.J.; Singh, K.

    1996-12-31

    The technique of intracavity laser spectroscopy has been used to obtain methane absorption spectra for the vibrational overtone bands that occur around 703 nm and 727 nm. Absorption coefficients for the 690-742 nm range have been obtained for a sample temperature of 77 K at a spectral resolution of <0.02 cm{sup -1}. A new method of data analysis is utilized in obtaining the results. It involves deconvolving the many ILS spectral profiles that comprise the absorption bands and summing the results. Values averaged over 1 cm{sup -1} and 1 {Angstrom} intervals are provided. Band strengths also are obtained. The total intensities of the 703 and 727 nm bands are in reasonable agreement with previous laboratory determinations which were obtained for relatively high pressures of methane at room temperature using lower spectral resolution. The methane bands appear in the reflected sunlight spectra from the outer planets. Results averaged over 1 nm intervals are compared with other laboratory studies and with those derived from observations of the outer planets. The band profiles differ considerably from other laboratory results but are in good accord with the planetary observations. Laboratory spectra of methane at appropriate conditions are required for the proper interpretation of the observational data. Absorption spectra can provide some of the most sensitive diagnostic data on the atmospheres of those bodies.

  15. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  16. A comparison of methods for the measurement of the absorption coefficient in natural waters

    NASA Technical Reports Server (NTRS)

    Pegau, W. Scott; Cleveland, Joan S.; Doss, W.; Kennedy, C. Dan; Maffione, Robert A.; Mueller, James L.; Stone, R.; Trees, Charles C.; Weidemann, Alan D.; Wells, Willard H.

    1995-01-01

    In the spring of 1992 an optical closure experiment was conducted at Lake Pend Orielle, Idaho. A primary objective of the experiment was to compare techniques for the measurement of the spectral absorption coefficent and other inherent optical properties of natural waters. Daily averages of absorption coefficents measured using six methods are compared at wavelengths of 456, 488, and 532 nm. Overall agreement was within 40% at 456 nm and improved with increasing wavelength to 25% at 532 nm. These absorption measurements were distributed over the final 9 days of the experiement, when bio-optical conditions in Lake Pend Oreille (as indexed by the beam attenuation coefficent c(sub p)(660) and chlorophyll a fluorescence profiles) were representative of those observed throughout the experiment. However, profiles of stimulated chlorophyll a fluorescence and beam transmission showed that bio-optical properties in the lake varied strongly on all time and space scales. Therefore environmental variabilty contributed significantly to deviations between daily mean absorption coefficients measured using the different techniques.

  17. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  18. Mesure de coefficients d'absorption de plasmas créés par laser nanoseconde

    NASA Astrophysics Data System (ADS)

    Thais, F.; Chenais-Popovics, C.; Eidmann, K.; Bastiani, S.; Blenski, T.; Gilleron, F.

    2005-06-01

    La mesure des coefficients d'absorption dans les plasmas chauds est particulièrement utile dans le domaine de la fusion par confinement inertiel ainsi que dans divers contextes en astrophysique. Le développement des calculs de physique atomique qui y sont associés repose sur des hypothèses qu'il est nécessaire de vérifier dans la plus large gamme possible de conditions physiques. Nous présentons ici la méthode de mesure et d'analyse employée en nous appuyant sur l'exemple des cibles multicouches nickel/aluminium.

  19. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  20. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  1. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  2. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  3. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  4. Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Galović, S.; Todorović, D. M.; Bialkowski, S. E.

    2015-06-01

    The open-cell photoacoustic signal measured in the transmission configuration for aluminum thin plates with thicknesses of 280 μm, 197 μm, and 112 μm is experimentally and theoretically analyzed, in the 20 Hz-7 kHz modulation frequency range. It is shown that the observed differences between the predictions of the standard thermoelastic model and the experiment data of both the amplitude and phase of the photoacoustic signal can be overcome by considering the aluminum samples coated with a thin layer of black paint as volume-absorber materials. This new approach provides a quite good agreement with the obtained experimental data, in the whole frequency range, and yields an effective absorption coefficient of (16 ± 2) mm-1, for a 280 μm-thick sample. The introduction of the finite absorption coefficient led to the correct ratio between the thermal diffusion and thermoelastic components of the photoacoustic signal. Furthermore, it is found that the "volume-absorber" approach accurately describes the behavior of the amplitude, but not that of the phase recorded for a 112 μm-thick sample, due to its relatively strong thermoelastic bending, which is not considered by this theory. Within the approximation of the small bending, the proposed "volume-absorber" model provides a reliable description of the photoacoustic signal for Al samples thicker than 112 μm, and extends the applicability of the classical "opaque" approach.

  5. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    NASA Astrophysics Data System (ADS)

    Guo, Kangxian; Zhang, Zhongmin; Mou, Sen; Xiao, Bo

    2015-05-01

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity.

  6. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  7. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962

  8. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database). PMID:25090334

  9. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  10. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  11. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid. PMID:26786064

  12. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    NASA Astrophysics Data System (ADS)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  13. Absorption coefficients of selected explosives and related compounds in the range of 0.1-2.8 THz.

    PubMed

    Chen, Jian; Chen, Yunqing; Zhao, Hongwei; Bastiaans, Glenn J; Zhang, X-C

    2007-09-17

    We have investigated the absorption spectra of seventeen explosives and related compounds (ERCs) by using terahertz time-domain spectroscopy in the 0.1-2.8 THz region. Most of these substances show characteristic absorption features in this frequency range. The measured absorption coefficients of these ERCs form a database, which is of great importance for biochemical, defense and security related applications. PMID:19547570

  14. Limitations arising from two-photon absorption of solvent in pulsed-laser thermal lens detection: determination of the two-photon absorption coefficient of ethanol at 266 nm.

    PubMed

    Abbas Ghaleb, Khalil; Georges, Joseph

    2006-01-01

    Two-photon absorption of the solvent under pulsed-laser excitation at 266 nm produces a high background thermal lens signal interfering with the analyte signal. Discrimination of both solvent and analyte signals along with calibration of the photothermal response has allowed the determination of the two-photon absorption coefficient of ethanol. The obtained value, 3.0x10(-10) cm W-1, is close to the literature values obtained from transmittance measurements using picosecond or femtosecond laser pulses. PMID:16454917

  15. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    SciTech Connect

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb{sub 2}O{sub 3}-SbPO{sub 4} were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n{sub 2}, of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n{sub 2} was observed by adding lead oxide to the Sb{sub 2}O{sub 3}-SbPO{sub 4} composition. Large values of n{sub 2}{approx_equal}10{sup -14} cm{sup 2}/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications.

  16. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  17. Geopotential coefficient determination and the gravimetric boundary value problem: A new approach

    NASA Technical Reports Server (NTRS)

    Sjoeberg, Lars E.

    1989-01-01

    New integral formulas to determine geopotential coefficients from terrestrial gravity and satellite altimetry data are given. The formulas are based on the integration of data over the non-spherical surface of the Earth. The effect of the topography to low degrees and orders of coefficients is estimated numerically. Formulas for the solution of the gravimetric boundary value problem are derived.

  18. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup. PMID:16650447

  19. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. PMID:21546674

  20. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  1. Mass-energy absorption coefficient and backscatter factor ratios for kilovoltage x-ray beams

    NASA Astrophysics Data System (ADS)

    Ma, C.-M.; Seuntjens, J. P.

    1999-01-01

    For low-energy (up to 150 kV) x-rays, the ratio of mass-energy absorption coefficients for water to air, , and the backscatter factor B are used in the conversion of air kerma, measured free-in-air, to water kerma on the surface of a water phantom. For clinical radiotherapy, similar conversion factors are needed for the determination of the absorbed dose to biological tissues on (or near) the surface of a human body. We have computed the ratios and B factor ratios for different biological tissues including muscle, soft tissue, lung, skin and bone relative to water. The ratios were obtained by integrating the respective mass-energy absorption coefficients over the in-air primary photon spectra. We have also calculated the ratios at different depths in a water phantom in order to convert the measured in-phantom water kerma to the absorbed dose to various biological tissues. The EGS4/DOSIMETER Monte Carlo code system has been used for the simulation of the energy fluence at different depths in a water phantom irradiated by a kilovoltage x-ray beam of variable beam quality (HVL: 0.1 mm Al-5 mm Cu), field size and source-surface distance (SSD). The same code was also used in the calculation of the B factor ratios, soft tissue to water and bone to water. The results show that the B factor for bone differs from the B factor for water by up to 20% for a 100 kV beam (HVL: 2.65 mm Al) with a 100 field. On the other hand, the difference in the B factor between water and soft tissue is insignificant (well within 1% generally). This means that the B factors for water may be directly used to

  2. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  3. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  4. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The model was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.

  5. Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment

    NASA Astrophysics Data System (ADS)

    Ye, Jun

    2013-05-01

    The paper presents the correlation and correlation coefficient of single-valued neutrosophic sets (SVNSs) based on the extension of the correlation of intuitionistic fuzzy sets and demonstrates that the cosine similarity measure is a special case of the correlation coefficient in SVNS. Then a decision-making method is proposed by the use of the weighted correlation coefficient or the weighted cosine similarity measure of SVNSs, in which the evaluation information for alternatives with respect to criteria is carried out by truth-membership degree, indeterminacy-membership degree, and falsity-membership degree under single-valued neutrosophic environment. We utilize the weighted correlation coefficient or the weighted cosine similarity measure between each alternative and the ideal alternative to rank the alternatives and to determine the best one(s). Finally, an illustrative example demonstrates the application of the proposed decision-making method.

  6. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. I. Homogeneous solids

    NASA Astrophysics Data System (ADS)

    Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Salazar, Agustín

    2011-08-01

    Modulated photothermal radiometry (PTR) has been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector. The amplitude and phase of the PTR voltage is recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we test the ability of modulated PTR to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the PTR signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam, the heat losses, and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, covering the whole range from transparent to opaque, confirm the validity of the method. In Part II of this work, the method is extended to multilayered materials.

  7. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens. PMID:27256895

  8. Determination of the diffusion length and the optical self absorption coefficient using EBIC model

    NASA Astrophysics Data System (ADS)

    Guermazi, S.; Guermazi, H.; Mlik, Y.; El Jani, B.; Grill, C.; Toureille, A.

    2001-10-01

    We have developed a model of calculation of the induced current due to an electron beam. The expression for the electron beam induced current (EBIC) with an extended generation profile is obtained via the resolution of a steady state continuity equation by the Green function method, satisfying appropriated boundary conditions to the physical model. The generation profile takes into account the lateral diffusion, the effect of defects, dislocations and recombination surfaces besides the number of absorbed electrons and that of diffuse electrons as a function of the depth. In the case of a Schottky diode Au/GaAs obtained by metalorganic vapour phase epitaxy (MOVPE) method, the theoretical induced current profile is compared to the experimental one and to theoretical profiles whose analytical expressions are given by van Roosbroeck and Bresse. The minority carriers diffusion length L_n = 2 μm and the optical self-absorption coefficient a=0.034 μm^{-1} can be deduced from the experimental current profile, measured by scanning electron microscopy. The theoretical curve, obtained from the proposed model is in a good agreement with the experimental one for surface recombination velocity 10^6 cm s^{-1} except for distances far from the depletion layer (x_0 > 2.3 μm) where the photocurrent produced by the multiple process of the reabsorbed recombination radiation is preponderant. Our results are in agreement with those obtained by other experimental techniques on the same samples.

  9. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  10. Threshold network of a financial market using the P-value of correlation coefficients

    NASA Astrophysics Data System (ADS)

    Ha, Gyeong-Gyun; Lee, Jae Woo; Nobi, Ashadun

    2015-06-01

    Threshold methods in financial networks are important tools for obtaining important information about the financial state of a market. Previously, absolute thresholds of correlation coefficients have been used; however, they have no relation to the length of time. We assign a threshold value depending on the size of the time window by using the P-value concept of statistics. We construct a threshold network (TN) at the same threshold value for two different time window sizes in the Korean Composite Stock Price Index (KOSPI). We measure network properties, such as the edge density, clustering coefficient, assortativity coefficient, and modularity. We determine that a significant difference exists between the network properties of the two time windows at the same threshold, especially during crises. This implies that the market information depends on the length of the time window when constructing the TN. We apply the same technique to Standard and Poor's 500 (S&P500) and observe similar results.

  11. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  12. Correlation of Apparent Diffusion Coefficient and Fractional Anisotropy Values in the Developing Infant Brain

    PubMed Central

    Provenzale, James M.; Isaacson, Jared; Chen, Steven; Stinnett, Sandra; Liu, Chunlei

    2013-01-01

    OBJECTIVE The purpose of our study was to correlate decrease in apparent diffusion coefficient (ADC) and increase in fractional anisotropy (FA) in various white matter (WM) regions using diffusion tenor imaging (DTI) within the first year of life. MATERIALS AND METHODS We performed DTI on 53 infants and measured FA and ADC within 10 WM regions important in brain development. For each region, we calculated the slope of ADC as a function of FA, the correlation coefficient (r) and correlation of determination (r2). We performed a group analysis of r values and r2 values for six WM regions primarily composed of crossing fibers and four regions primarily having parallel fibers. Upon finding that a strong correlation of FA with age existed, we adjusted for age and calculated partial correlation coefficients. RESULTS Slopes of FA versus ADC ranged from −1.00711 to −1.67592 (p < 0.05); r values ranged from −0.81 to −0.50 and r2 values from 0.25 to 0.66. The four greatest r2 values were within WM regions having large numbers of crossing fibers and the three lowest r2 values were in regions having predominantly parallel fibers. After adjusting for age, slopes ranged from −1.08095 to 0.09612 (p < 0.05 in five cases); partial correlation coefficients ranged from −0.49 to 0.03 and r2 values from 0.31 to 0.79. The highest partial correlation coefficients were then relatively equally distributed between the two types of WM regions. CONCLUSION In various regions, FA and ADC evolved with differing degrees of correlation. We found a strong influence of age on the relationship between FA and ADC. PMID:21098179

  13. Anomalous atmospheric spectral features between 300 and 310 nm interpreted in light or new ozone absorption coefficient measurements

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.; Bass, A. M.

    1982-01-01

    Real structure is revealed, by an analysis of continuous scan data from the solar backscattered UV instrument on Nimbus 7, in the backscattered atmospheric albedo region between 300 and 310 nm where spectral anomalies have been reported in ground-based observation. The spectral anomalies are explainable as structure at the 1-5% level in the ozone absorption coefficient, as measured by Bass and Paur (1981). The new absorption coefficient measurements are judged to approach the 1%-level of accuracy in atmospheric radiation calculation, which should resolve discrepancies between different Dobson wavelength pairs and between different instruments and permit the more accurate analysis of such second-order effects as NO emission, SO2 absorption in polluted atmospheres, and Raman scattering effects.

  14. A technique for estimating time of concentration and storage coefficient values for Illinois streams

    USGS Publications Warehouse

    Graf, Julia B.; Garklavs, George; Oberg, Kevin A.

    1982-01-01

    Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)

  15. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  16. I-scan thermal lens experiment in the pulse regime for measuring two-photon absorption coefficient

    NASA Astrophysics Data System (ADS)

    Rodríguez, L.; Echevarria, L.; Fernandez, A.

    2007-09-01

    We present a new pump-probe mode-mismatched thermal lens method for pulse excitation aimed to the measurement of nonlinear absorption coefficient in optical materials. We develop a theoretical model based on the Fresnel diffraction approximation and their predictions are verified experimentally with samples of Rhodamine 6G and Rhodamine B in ethanol solution. The principal advantage of this technique is that it does not require any mechanical movement during measurement. Below we perform the new type of thermal lens experiment in the pulse regime for the measurement of nonlinear absorption coefficient in transparent samples and we demonstrate the validity of theoretical predictions using an alternative method to the classical thermal lens technique.

  17. Experimental and numerical investigation of the reflection coefficient and the distributions of Wigner's reaction matrix for irregular graphs with absorption.

    PubMed

    Lawniczak, Michał; Hul, Oleh; Bauch, Szymon; Seba, Petr; Sirko, Leszek

    2008-05-01

    We present the results of an experimental and numerical study of the distribution of the reflection coefficient P(R) and the distributions of the imaginary P(v) and the real P(u) parts of the Wigner reaction K matrix for irregular fully connected hexagon networks (graphs) in the presence of strong absorption. In the experiment we used microwave networks, which were built of coaxial cables and attenuators connected by joints. In the numerical calculations experimental networks were described by quantum fully connected hexagon graphs. The presence of absorption introduced by attenuators was modeled by optical potentials. The distribution of the reflection coefficient P(R) and the distributions of the reaction K matrix were obtained from measurements and numerical calculations of the scattering matrix S of the networks and graphs, respectively. We show that the experimental and numerical results are in good agreement with the exact analytic ones obtained within the framework of random matrix theory. PMID:18643145

  18. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  19. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  20. Temperature anomaly of the coefficient of ultrasonic absorption by electrons of hybridized states of cobalt impurities in mercury selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, I. V.; Okulov, V. I.; Gudkov, V. V.; Mayakin, V. Yu.; Sarychev, M. N.; Andriichuk, M. D.; Paranchich, L. D.

    2015-05-01

    The effects of the interaction of ultrasound with donor d electrons of cobalt impurity atoms at low concentrations in mercury selenide crystals have been investigated. The temperature dependences of the electronic contribution to the absorption coefficient at a frequency of 53 MHz in crystals with cobalt concentrations from 1018 to 1020 cm-3 and in the undoped crystal have been observed experimentally. It has been found that crystals with impurities are characterized by an anomalous nonmonotonic temperature dependence of the absorption coefficient of the slow transverse wave in a narrow temperature range near 10 K. A smooth monotonic temperature dependence has been observed for longitudinal and fast transverse waves. Based on the developed theoretical interpretation, it has been established that the anomaly in the temperature dependence of the absorption coefficient of a slow transverse wave is associated with the hybridization of impurity d states in the conduction band of the crystal. A comparison of the theoretical and experimental dependences has made it possible to determine the parameters characterizing the hybridized electronic states.

  1. Mass Absorption Coefficient of Tungsten and Tantalum, 1450 eV to 2350 eV: Experiment, Theory, and Application

    PubMed Central

    Levine, Zachary H.; Grantham, Steven; Tarrio, Charles; Paterson, David J.; McNulty, Ian; Levin, T. M.; Ankudinov, Alexei L.; Rehr, John J.

    2003-01-01

    The mass absorption coefficients of tungsten and tantalum were measured with soft x-ray photons from 1450 eV to 2350 eV using an undulator source. This region includes the M3, M4, and M5 absorption edges. X-ray absorption fine structure was calculated within a real-space multiple scattering formalism; the predicted structure was observed for tungsten and to a lesser degree tantalum as well. Separately, the effects of dynamic screening were observed as shown by an atomic calculation within the relativistic time-dependent local-density approximation. Dynamic screening effects influence the spectra at the 25 % level and are observed for both tungsten and tantalum. We applied these results to characterize spatially-resolved spectra of a tungsten integrated circuit interconnect obtained using a scanning transmission x-ray microscope. The results indicate tungsten fiducial markers were deposited into silica trenches with a depths of 50 % and 60 % of the markers’ heights.

  2. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications. PMID:27045783

  3. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm

    NASA Astrophysics Data System (ADS)

    Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.

    2016-06-01

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  4. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  5. Determination of mass attenuation coefficient by numerical absorption calibration with Monte-Carlo simulations at 59.54 keV

    NASA Astrophysics Data System (ADS)

    Degrelle, D.; Mavon, C.; Groetz, J.-E.

    2016-04-01

    This study presents a numerical method in order to determine the mass attenuation coefficient of a sample with an unknown chemical composition at low energy. It is compared with two experimental methods: a graphic method and a transmission method. The method proposes to realise a numerical absorption calibration curve to process experimental results. Demineralised water with known mass attenuation coefficient (0.2066cm2g-1 at 59.54 keV) is chosen to confirm the method. 0.1964 ± 0.0350cm2g-1 is the average value determined by the numerical method, that is to say less than 5% relative deviation compared to more than 47% for the experimental methods.

  6. Backscattering and absorption coefficients for electrons: Solutions of invariant embedding transport equations using a method of convergence

    SciTech Connect

    Figueroa, C.; Brizuela, H.; Heluani, S. P.

    2014-05-21

    The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types of approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams.

  7. Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica

    SciTech Connect

    Milam, D.

    1998-01-01

    The literature describes more than 30 measurements, at wavelengths between 249 and 1550 nm, of the absolute value of the nonlinear refractive-index coefficient of fused silica. Results of these experiments were assessed and best currently available values were selected for the wavelengths of 351, 527, and 1053 nm. The best values are (3.6{plus_minus}0.64){times}10{sup {minus}16} cm{sup 2}/W at 351 nm, (3.0{plus_minus}0.35){times}10{sup {minus}16} cm{sup 2}/W at 527 nm, and (2.74{plus_minus}0.17){times}10{sup {minus}16} cm{sup 2}/W at 1053 nm. {copyright} 1998 Optical Society of America

  8. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  9. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  10. [Gas Concentration Measurement Based on the Integral Value of Absorptance Spectrum].

    PubMed

    Liu, Hui-jun; Tao, Shao-hua; Yang, Bing-chu; Deng, Hong-gui

    2015-12-01

    The absorptance spectrum of a gas is the basis for the qualitative and quantitative analysis of the gas by the law of the Lambert-Beer. The integral value of the absorptance spectrum is an important parameter to describe the characteristics of the gas absorption. Based on the measured absorptance spectrum of a gas, we collected the required data from the database of HIT-RAN, and chose one of the spectral lines and calculated the integral value of the absorptance spectrum in the frequency domain, and then substituted the integral value into Lambert-Beer's law to obtain the concentration of the detected gas. By calculating the integral value of the absorptance spectrum we can avoid the more complicated calculation of the spectral line function and a series of standard gases for calibration, so the gas concentration measurement will be simpler and faster. We studied the changing trends of the integral values of the absorptance spectrums versus temperature. Since temperature variation would cause the corresponding variation in pressure, we studied the changing trends of the integral values of the absorptance spectrums versus both the pressure not changed with temperature and changed with the temperature variation. Based on the two cases, we found that the integral values of the absorptance spectrums both would firstly increase, then decrease, and finally stabilize with temperature increasing, but the ranges of specific changing trend were different in the two cases. In the experiments, we found that the relative errors of the integrated values of the absorptance spectrum were much higher than 1% and still increased with temperature when we only considered the change of temperature and completely ignored the pressure affected by the temperature variation, and the relative errors of the integrated values of the absorptance spectrum were almost constant at about only 1% when we considered that the pressure were affected by the temperature variation. As the integral value

  11. Characterization of penetration depth as a function of optical fiber separation at various absorption and scatter coefficients for a noninvasive metabolic sensor

    NASA Astrophysics Data System (ADS)

    DeMilo, Charles; Brukilacchio, Thomas; Soller, Babs R.; Soyemi, Olusola

    2004-06-01

    A visible-near IR (500-1,000nm) fiber optic sensor is under development that is intended to non-invasively assess muscle metabolism through the measurement of tissue pH and oxygen partial pressure. These parameters are calculated from the spectra of hemoglobin and myoglobin in muscle. The sensor consists of transmit (illumination) fibers and receive (detection) fibers that are coupled to a spectrometer. Light from the probe must penetrate below the surface of the skin and into a 5-10mm thick layer of muscle. A study was conducted to quantify the relationship between transmit and receive fiber separation and sensor penetration depth below the surface of the skin. A liquid phantom was created to replicate the absorption (μa) and reduced scatter coefficient (μs') profiles typically found in human blood and tissue. The phantom consisted of a solution of Intralipid and India ink in the appropriate concentrations to achieve desired reduced scatter coefficient and absorption profiles. The reduced scatter coefficient of the liquid phantom was achieved to an accuracy of +/-10% compared to previously published data. A fixed illumination fiber and translatable detector fiber were placed in the liquid phantom, and the fiber separation was varied from 3-40mm. Values of μa and μs' varied from 0.03-0.40 cm-1 and 5.0-15.0 cm-1 respectively. Results from the experiment demonstrate a strong correlation between penetration depth and fiber separation. Additionally, it was found that penetration depth was not substantially influenced by absorption and scatter concentration. As signal-to-noise is an important parameter in many non-invasive biomedical applications, the relative signal as a function of fiber separation was determined to follow an exponential relationship.

  12. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  13. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  14. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  15. Whistler Emission and Absorption Coefficients from AN Anisotropic, Multi-Component Plasma Including Dielectric Response

    NASA Astrophysics Data System (ADS)

    Leid, Terrence Vincent

    The emission of electron cyclotron radiation parallel to the magnetic field direction near the fundamental frequency from a fully ionized, multi-component plasma, is investigated for finite (omega)(,p)/(omega)(,c) within the Klimontovich formalism. Each species may have T(,(PARLL)) different from T(,(PERP)) and may possess a loss cone. We use a bi- maxwellian with an analytic loss cone for each component. In addition, the source function for a multi-component plasma is calculated. We find that for a Maxwellian distribution function the emission coefficient is that of a system of shielded charges. It is shown that only in the case of a tenuous Maxwellian plasma is the source function the Rayleigh-Jeans blackbody intensity. For the case of the Maxwellian we present experimental evidence for finite density emission, (omega)('2)(,p)/(omega)('2) >> (beta). We have constructed a computer code that solves the radiative transfer equation. The resulting power spectra are used as an aid in extracting from experimental data the temperature and density of the various components of the TMX-Upgrade end cell plasma. The code compares both the Ellis-Tsakiris scheme for computing the emission coefficient for a multi-component plasma and the finite density multi -component emission coefficient. The Ellis- Tsakiris scheme estimates the emission coefficient by assuming. that each species radiates independently of each other.('1) Results are presented for the case of the TMX -Upgrade tandem mirror device. ('1)R. F. Ellis and G. D. Tsakiris, Nucl. Fusion 23, 1115 (1984).

  16. Value of apparent diffusion coefficient for predicting malignancy of intraductal papillary mucinous neoplasms of the pancreas

    PubMed Central

    Zhang, Lei; Rao, Sheng-Xiang; Xu, Xue-Feng; Wang, Dan-Song; Jin, Da-Yong; Zeng, Meng-Su

    2016-01-01

    PURPOSE We aimed to explore the potential value of the whole tumor apparent diffusion coefficient (ADC) for discriminating between benign and malignant intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. METHODS Forty-two patients underwent 1.5 T magnetic resonance imaging that included diffusion-weighted imaging (DWI, b=0.500 s/mm2). The mean, minimum, and maximum ADC values were measured for the whole tumor. The differences between benign and malignant IPMNs were calculated for the mean ADC, ADC-min, and ADC-max values. Receiver operating characteristics (ROC) analysis was conducted to evaluate their potential diagnostic performance. RESULTS Fifteen of 25 benign IPMNs demonstrated low or iso-signal intensity on DWI with a b value of 500 s/mm2 compared with normal pancreatic parenchyma, whereas all malignant IPMNs demonstrated high signal intensity. The mean value of ADC was significantly higher in benign IPMNs compared with malignant IPMNs (3.39×10−3 mm2/s vs. 2.39×10−3 mm2/s, P < 0.001), with an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI], 0.79–0.98). The ADC-min value of malignant IPMNs was also significantly lower than that of benign IPMNs (1.24×10−3 mm2/s vs. 2.58×10−3 mm2/s, P < 0.001), with an AUC of 0.94 (95% CI, 0.82–0.99). No marked difference was found between benign and malignant IPMNs for the ADC-max value (3.89×10−3 mm2/s vs. 3.78×10−3 mm2/s, P = 0.299). CONCLUSION Lower mean and minimum ADC values of the whole tumor might be potential predictors of malignant IPMNs of the pancreas. PMID:27283593

  17. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Evans, R. D.; Labow, G. J.; Oltmans, S. J.

    2005-05-01

    The Dobson spectrophotometer is the primary standard instrument for ground-based measurements of total column ozone. The accuracy of its data depends on the knowledge of ozone absorption coefficients used for data reduction. We document an error in the calculations that led to the set of absorption coefficients currently recommended by the World Meteorological Organisation (WMO). This error has little effect because an empirical adjustment was applied to the original calculations before the coefficients were adopted by WMO. We provide evidence that this adjustment was physically sound. The coefficients recommended by WMO are applied in the Dobson network without correction for the temperature dependence of the ozone absorption cross sections. On the basis of data measured by Dobson numbers 80 and 82, which were operated by the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory at the South Pole, we find that omission of temperature corrections may lead to systematic errors in Dobson ozone data of up to 4%. The standard Dobson ozone retrieval method further assumes that the ozone layer is located at a fixed height. This approximation leads to errors in air mass calculations, which are particularly relevant at high latitudes where ozone measurements are performed at large solar zenith angles (SZA). At the South Pole, systematic errors caused by this approximation may exceed 2% for SZAs larger than 80°. The bias is largest when the vertical ozone distribution is distorted by the "ozone hole" and may lead to underestimation of total ozone by 4% at SZA = 85° (air mass 9). Dobson measurements at the South Pole were compared with ozone data from a collocated SUV-100 UV spectroradiometer and Version 8 overpass data from NASA's Total Ozone Mapping Spectrometer (TOMS). Uncorrected Dobson ozone values tend to be lower than data from the two other instruments when total ozone is below 170 Dobson units or SZAs are larger than

  18. Mineral Specific IR Molar Absorption Coefficients for Routine Water Determination in Olivine, SiO2 polymorphs and Garnet

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Koch-Mueller, M.; Reichart, P.; Rhede, D.; Thomas, R.

    2007-12-01

    Conventionally applied Infrared (IR) calibrations [1, 2] for quantitative water analyses in solids are established on hydrous minerals and glasses with several wt% water. These calibrations are based on a negative correlation between the IR molar absorption coefficient (ɛ) for water and the mean wavenumber of the corresponding OH pattern. The correlation reflects the dependence of the OH band position on the appropriate O- H...O distances and thereby the magnitude of the dipole momentum which is proportional to the band intensity. However, it has been observed that these calibrations can not be adopted to nominally anhydrous minerals (NAMs) [3].To study the potential dependence of ɛ on structure and chemistry in NAMs we synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite and stishovite with B3++H+=Si4+ and/or Al3++H+=Si4+ substitutions. Experiments were performed with water in excess in piston cylinder and multi-anvil presses. Single crystal IR spectra demonstrate that we successfully managed to seperate generally complex OH patterns as e.g. observed in natural quartz and synthetic coesite. We quantified sample water contents of both natural samples and our run products by applying proton-proton-scattering [4], confocal microRaman spectroscopy [5] and Secondary Ion mass spectrometry. Resulting water concentrations were used to calculate new mineral specific ɛs. For olivine with the mean wavenumber of 3517 cm-1 we determined an ɛ value of 41,000±5,000 lmol-1H2Ocm-2. Quantification of olivine with the mean wavenumber of 3550 cm-1 in contrast resulted in an ɛ value of 47,000±1,000 lmol-1H2Ocm-2. Taking into account previous studies [6, 7] there is evidence to suggest a linear wavenumber dependent correlation for olivine, where ɛ increases with decreasing wavenumber. In case of the SiO2 system it turns out that the magnitude of ɛ within one structure type is independent of the liable OH point defect and

  19. Variations in apparent diffusion coefficient values following chemotherapy in pediatric neuroblastoma

    PubMed Central

    Demir, Senay; Altinkaya, Naime; Kocer, Nazim Emrah; Erbay, Ayse; Oguzkurt, Pelin

    2015-01-01

    PURPOSE In children the assessment of solid tumors’ response to chemotherapy is based primarily on size reduction, which can be unreliable and a late marker, in the presence of necrosis. We aimed to establish whether apparent diffusion coefficient (ADC) values of childhood neuroblastomas show proportional changes in relation to chemotherapy response. METHODS We evaluated 15 pediatric patients with abdominopelvic neuroblastomas, who had undergone MRI before and after chemotherapy. Two radiologists retrospectively analyzed all images by drawing a round uniform region-of-interest in the solid/contrast-enhancing portion of the lesions in consensus. The ADC values from pre- and postchemotherapy images were compared. RESULTS Postchemotherapy ADC values were significantly higher than those obtained before treatment (P < 0.05, for minimum, maximum, and median ADC values). CONCLUSION Our results support diffusion-weighted MRI as a promising noninvasive biomarker of therapeutic responses. To the best of our knowledge, this is the first report to compare diffusion-weighted imaging findings before and after chemotherapy in childhood neuroblastic tumors. PMID:25519453

  20. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  1. Inverse Bremsstrahlung in Astrophysical Plasmas: The Absorption Coefficients and Gaunt Factors

    NASA Astrophysics Data System (ADS)

    Mihajlov, A. A.; Srećković, V. A.; Sakan, N. M.

    2015-12-01

    The electron-ion inverse Bremsstrahlung is considered here as a factor of the influence on the opacity of the different stellar atmospheres and other astrophysical plasmas. It is shown that this process can be successfully described in the frames of cut-off Coulomb potential model within the regions of the electron densities and temperatures. The relevant quantum mechanical method of the calculation of the corresponding spectral coefficient processes is described and discussed. The results obtained for the plasmas with the electron densities from 1014 c m -3 to 2ṡ1019 c m -3 and temperatures from 5ṡ103 K to 3ṡ104 K in the wavelength region 100 nm< λ<3000 nm are presented. Also, these results can be of interest for different laboratory plasmas.

  2. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients.

    PubMed

    Cowin, S C; Hart, R T; Balser, J R; Kohn, D H

    1985-01-01

    In this paper we describe a computational means, based on beam theory, for application of the theory of adaptive elasticity to examples of real bone geometries. The results of the animal experiments were taken from the literature, and each documented the temporal evolution of a change in bone shape after a significant change in the mechanical loading environment of the bone. For each of these studies, we establish preliminary estimates of the in vivo values of the surface remodeling rate coefficients--the key parameters in the theory of surface remodeling. Our preliminary parameter estimates are established by comparison of published animal experimental results with surface remodeling theory predictions generated by the computational method. PMID:4077864

  3. Measurement of the solar heat gain coefficient and U value of windows with insect screens

    SciTech Connect

    Brunger, A.; Dubrous, F.M.; Harrison, S.

    1999-07-01

    Energy ratings are currently being used in a number of countries to assist in the selection of windows and doors based on energy performance. Developed for simple comparison purposes, these rating numbers do not take into account window removable attachments such as insect screens that are, nevertheless, widely used. Research was carried out to assess the effect of insect screens on the heat gains and losses of windows. The work reported in this paper deals with the effect of one screen type on the performance of a base-case, double-glazed window. Using an indoor solar simulator facility, measurements of the window solar heat gain coefficient (SHGC) and U value were made for different screen attachment configurations and climatic conditions. Results with the sample window tested indicate that insect screens placed on the outdoor side can reduce its SHGC by 46% with only a 7% reduction in its U value (0.19 W/m{sup 2}{center_dot}C), and that insect screens placed on the indoor side can reduce its SHGC by 15% while reducing its U value by 14% (0.38 W/m{sup 2}{center_dot}C).

  4. Data Qualification Report For DTN: MO0012RIB00065.002, Parameter Values For Transfer Coefficients

    SciTech Connect

    C.H. Tung

    2001-01-09

    A data-qualification evaluation was conducted on Reference Information Base (RIB) data set MOO0 12RIB00065.002, ''Parameter Values for Transfer Coefficients''. The corroborating data method was used to evaluate the data. This method was selected because it closely matches the literature-review method followed to select parameter values. Five criteria were considered when the corroborating method was used: adequacy of the corroborative literature, sufficiency of value-selection criteria, implementation of the selection criteria, documentation of the process, and whether the analysis was conducted in accordance with applicable quality assurance (QA) procedures. Three criteria were used when a literature review was not conducted: appropriate logic used to select parameters, documentation of the process, and whether the analysis was conducted in accordance with applicable QA procedures. The RIB data item, the associated Analysis and Model Report (AMR), the corroborative literature, and the results of an audit revision O/ICN 0 of the AMR were examined. All calculations and the selection process for all values were repeated and confirmed. The qualification team concluded: (1) A sufficient quantity of corroborative literature was reviewed and no additional literature was identified that should have been considered. (2) The selection criteria were sufficient and resulted in valid parameter values. (3) The process was well defined, adequately documented in the AMR, and correctly followed. (4) The analysis was developed in accordance with applicable QA procedures. No negative findings were documented that resulted in questions about the quality of the data. The qualification team therefore recommends that the qualification status of RIB data set MO0012RIB00065.002 be changed to qualified.

  5. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  6. Absorption coefficients of the methane-nitrogen binary ice system: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Grundy, W. M.; Tegler, S. C.; Bergonio, J. M.

    2015-06-01

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983. Sov. J. Low Temp. Phys. 9, 94-98) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane N2 ‾ :CH4 and methane saturated with nitrogen CH4 ‾ :N2 . No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N2 :CH4) and nitrogen diluted in methane (CH4 :N2) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 μm at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is presented.

  7. What is the correct value for the brain: blood partition coefficient for water

    SciTech Connect

    Herscovitch, P.; Raichle, M.E.

    1984-01-01

    A knowledge of the brain: blood partition coefficient (lambda) for water is usually required for the measurement of cerebral blood flow (CBF) with positron emission tomography (PET) and 0-15 labelled water. The correct calculation of this important parameter from the ratio of brain and blood water contents is reviewed, and the effect of physiological variations in these water contents on lambda is demonstrated. The currently accepted value for whole brain lambda is 0.95-0.96 ml/g, calculated from brain and blood water contents of 77g/100g and 80.5g/100g, respectively. However, this value for lambda is incorrect, because in the calculation the blood water content value was not adjusted for the density of blood. The correct value is 0.91 ml/g. Variations in brain or blood water content affect lambda. Over an hematocrit range of 25% to 55%, lambda varies from 0.86 to 0.93 ml/g, due to a decrease in blood water content. lambda changes with age, and varies regionally in the brain, as brain water content is inversely related to lipid and myelin content. The lambda of the human newborn brain, 1.10 ml/g, is considerably higher than in the adult. Differences in lambda between gray and white matter are well known. However, because of variations in water content, the lambda's of thalamus (0.88 ml/g) and caudate nucleus (0.96 ml/g) are less than that of cerebral cortex (0.99 ml/g), while the lambda of corpus callosum (0.89 ml/g) is greater than that of centrum semiovale (0.83 ml/g). These regional variations in lambda will assume more importance as PET resolution improves. The impact of using an incorrect lambda will depend upon the sensitivity of the particular CBF measurement technique to errors in lambda.

  8. Analyzing total optical absorption coefficient of impurity doped quantum dots in presence of noise with special emphasis on electric field, magnetic field and confinement potential

    NASA Astrophysics Data System (ADS)

    Mandal, Arkajit; Sarkar, Sucharita; Ghosh, Arghya Pratim; Ghosh, Manas

    2015-12-01

    We make an extensive investigation of total optical absorption coefficient (TOAC) of impurity doped quantum dots (QDs) in presence and absence of Gaussian white noise. The TOAC profiles have been monitored against incident photon energy with special emphasis on the roles played by the electric field, magnetic field, and the dot confinement potential. Presence of impurity also influences the TOAC profile. In general, presence of noise causes enhancement of TOAC over that of noise-free condition. However, the interplay between the noise and the quantities like electric field, magnetic field, confinement potential and impurity potential bring about rich subtleties in the TOAC profiles. The said subtleties are often manifested by the alterations in TOAC peak intensity, extent of TOAC peak bleaching, and value of saturation intensity. The findings reveal some technologically relevant aspects of TOAC for the doped QD systems, specially in presence of noise.

  9. Systematic study of Ge1-xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics

    NASA Astrophysics Data System (ADS)

    Tran, Huong; Du, Wei; Ghetmiri, Seyed A.; Mosleh, Aboozar; Sun, Greg; Soref, Richard A.; Margetis, Joe; Tolle, John; Li, Baohua; Naseem, Hameed A.; Yu, Shui-Qing

    2016-03-01

    The absorption coefficient and refractive index of Ge1-xSnx alloys (x from 0% to 10%) were characterized for the wavelength range from 1500 to 2500 nm via spectroscopic ellipsometry at room temperature. By applying physical models to fit the obtained data, two empirical formulae with extracted constants and coefficients were developed: (1) Absorption coefficient. The absorption regarding Urbach tail, indirect and direct bandgap transitions were comprehensively taken into account; (2) refractive index. The Sellmeier coefficients associated with dispersion relationship were extracted. In these formulae, the Sn composition and strain percentage were the input parameters, by inputting which the spectral absorption coefficient and spectral refractive index can be obtained. Since the absorption coefficient is key information to determine the performance of the photodetectors including operation wavelength range, responsivity, and specific detectivity, and the refractive index is very useful for the design of the anti-reflection coating for photodetectors and the layer structure for waveguides, the developed formulae could simplify the optoelectronic device design process due to their parameter-based expressions.

  10. Measurement of mass attenuation coefficients in some Cr, Co and Fe compounds around the absorption edge and the validity of the mixture rule

    NASA Astrophysics Data System (ADS)

    Turgut, U.; Simsek, O.; Büyükkasap, E.

    2007-08-01

    The total mass attenuation coefficients for elements Cr, Co and Fe and compounds CrCl_{2}, CrCl_{3}, Cr_{2}(SO_{4})_{3}K_{2}SO_{4}\\cdot24H_{2}O, CoO, CoCl_{2}, Co(CH_{3}COO)_{2}, FePO_{4}, FeCl_{3}\\cdot6H_{2}O, Fe(SO_{4})_{2}NH_{4}\\cdot12H_{2}O were measured at different energies between 4.508 and 14.142 keV using secondary excitation method. Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr were chosen as secondary exciters. 59.5 keV γ-rays emitted from a ^{241}Am annular source were used to excite a secondary exciter and K_{α}(K-L_{3}, L_{2}) lines emitted by the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. It was observed that mixture rule method is not a suitable method for determination of the mass attenuation coefficients of compounds, especially at an energy that is near the absorption edge. The obtained values were compared with theoretical values.

  11. Octanol/water partition coefficients of phthalate esters: A comparison of measured, estimated, and computed values

    SciTech Connect

    Ellington, J.; Floyd, T.

    1995-12-31

    Reliable octanol/water partition coefficients (K{sub ow}) of nine dialkyl phthalate esters are needed in an ongoing benthic organisms toxicity testing program. The equilibrium distribution of an organic chemical between water and octanol (K{sub ow}) is a physical constant that can be used to calculate both bioaccumulation factors (BAFs) and equilibrium constants for sediment-organic carbon partitioning (K{sub oc}). The log K{sub ow}s reported in the literature for a single chemical often span several orders of magnitude. For example, the reported log K{sub ow}s of bis(2-ethylehxyl) phthalate range from a low of 5.11 to a high of 9.61. The log K{sub ow}s of the dialkyl phthalate esters in this study were expected to range from < 2 (dimethyl) to > 8 (didecyl). The slow-stir method as described by de Bruijn has been shown to avoid emulsion formation and allow measure of K{sub ow}s of chemicals with log K{sub ow} > 6. In addition to measurement by the slow-stir method the K{sub ow}s were also determined by a high performance liquid chromatography (HPLC) estimation method and calculated by a computer based program that was designed to calculate physical/chemical properties (SPARC). The greatest difference between the slow-stir and SPARC K{sub ow} values was 0.19 with the other differences less than 0.1 log units. All the HPLC estimated values were at least 0.7 log units lower than the slow-stir value. For example, the log K{sub ow}s determined for dibutly phthalate by the slow-stir, SPARC, and HPLC methods were 4.50 {+-} 0.03, 4.61, and 4.00, respectively.

  12. The in vitro permeability coefficient and short-term absorption rates for vinyl toluene using human cadaver skin mounted in a static diffusion cell model.

    PubMed

    Fasano, William J; Baer, Kevin N

    2006-01-01

    Vinyl toluene is one of several methylstyrene monomers that provide improved performance in resins for specialty paints, hydrocarbon resins for adhesives, specialty polymers, and unsaturated polyester resins. The purpose of this study was to determine a permeability coefficient (Kp) and short-term absorption rate for vinyl toluene using human cadaver skin mounted in an in vitro static diffusion cell model with an exposure area of 0.64 cm2. For the Kp determination, vinyl toluene was applied at a rate of 100 microL/cm2 to 6 skin replicates representing 4 human subjects. Serial receptor fluid samples were collected at 1, 2, 4, 8, 12, 24, 36, and 48 h postapplication and analyzed for vinyl toluene by HPLC-UV. Based on the slope at steady-state (203.3 microg cm(-2) h(-1) +/- 120.0 microg cm(-2) h(-1)) and the concentration of the applied dose of vinyl toluene, taken as its density (894,600 microg/cm3), the Kp was calculated to be 2.27 x 10(-4) cm/h (+/-1.34 x 10(-4) cm/h). For the short-term absorption experiments, 12 skin replicates representing 3 human subjects were employed. Following 10- and 60-min exposures to a finite dose of vinyl toluene (10 microL/cm2), the respective short-term absorption rates were calculated to be 66.0 (+/-29.9) and 104.2 (+/-63.0) microg cm(-2) h(-1). These data provide industrial hygienists and safety personnel values to estimate the amount of vinyl toluene that may be absorbed via the dermal exposure route, given a variety of exposure scenarios, and the time it takes (skin absorption time) to reach a body burden equal to the Occupational Safety and Health Administrative permissible exposure level (OSHA PEL) or ACGIH TLV. PMID:16455589

  13. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  14. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  15. Iris identification system based on Fourier coefficients and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Somnugpong, Sawet; Phimoltares, Suphakant; Maneeroj, Saranya

    2011-12-01

    Nowadays, both personal identification and classification are very important. In order to identify the person for some security applications, physical or behavior-based characteristics of individuals with high uniqueness might be analyzed. Biometric becomes the mostly used in personal identification purpose. There are many types of biometric information currently used. In this work, iris, one kind of personal characteristics is considered because of its uniqueness and collectable. Recently, the problem of various iris recognition systems is the limitation of space to store the data in a variety of environments. This work proposes the iris recognition system with small-size of feature vector causing a reduction in space complexity term. For this experiment, each iris is presented in terms of frequency domain, and based on neural network classification model. First, Fast Fourier Transform (FFT) is used to compute the Discrete Fourier Coefficients of iris data in frequency domain. Once the iris data was transformed into frequency-domain matrix, Singular Value Decomposition (SVD) is used to reduce a size of the complex matrix to single vector. All of these vectors would be input for neural networks for the classification step. With this approach, the merit of our technique is that size of feature vector is smaller than that of other techniques with the acceptable level of accuracy when compared with other existing techniques.

  16. Comparison of the light absorption coefficient and carbon measures for remote aerosols: An independent analysis of data from the IMPROVE network—I

    NASA Astrophysics Data System (ADS)

    Huffman, H. Dale

    Using the IMPROVE network aerosol data from rural or remote sites across the United States, the ratio of the optically measured light absorption coefficient ( σa) to the elemental carbon measured by Thermal/Optical Reflectance (TOR) analysis consistently indicates an absorption efficiency that is twice the accepted value of 10m 2g -1. Correlations between σa and the TOR carbon strongly suggest that the discrepancy is due to an underevaluation of light-absorbing carbon rather than to an overestimation of σa or a real, higher value of the absorption efficiency. In particular, past doubts about the accuracy and precision of the IMPROVE σa measurement are here shown to be unsupported by the IMPROVE data. The large empirical correction that is applied to this σa measurement, for multiple scattering effects due to filter mass loading, is given a new explanation as the effect of an increasing forward scattering fraction as sample thickness increases. The old explanation of shadowing by overlying particles in the sample is rejected as having just the opposite effect to that needed to explain the correction. The use of a diffuse source rather than a laser beam is indicated as a way to avoid the large empirical correction of σa. Modelling of the light absorption by TOR carbon measurements, at twelve remote sites over a wide portion of the western United States, suggests the following errors in the current interpretation of TOR analysis for these sites: (1) The pyrolysis correction, based upon optical reflectance monitoring, appears to be largely wrong; and (2) The carbon evolving between 450 and 550°C in a pure helium atmosphere, currently interpreted as organic and therefore non-light-absorbing, appears to be as strongly light-absorbing as elemental carbon. However, the present analysis indicates that for a large majority (˜90%) of samples the light-absorbing carbons, as reinterpreted herein, are not only measured accurately by TOR, they are also reasonably well

  17. Normalized-constraint method for minimizing interparameter cross-talk in reconstructed images of spatially heterogeneous scattering and absorption coefficients

    NASA Astrophysics Data System (ADS)

    Pei, Yaling; Graber, Harry L.; Barbour, Randall L.

    2001-06-01

    In this report, we present a method to reduce the cross-talk problem in optical tomography. The method described is an extension of a previously reported perturbation formulation related to relative detector values, and employs a weight matrix scaling technique together with a constrained CGD method for imaging reconstruction. Results from numerical and experimental studies using DC measurement data demonstrate that the approach can effectively isolate absorption and scattering heterogeneities, even for complex combinations of perturbations in optical properties. The derive method is remarkably stable to errors originating from an insufficiently accurate estimate of properties of the reference medium.

  18. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  19. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  20. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media. PMID:25480044

  1. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  2. Simultaneous Measurement of Thermal Diffusivity and Optical Absorption Coefficient of Solids Using PTR and PPE: A Comparison

    NASA Astrophysics Data System (ADS)

    Fuente, R.; Mendioroz, A.; Apiñaniz, E.; Salazar, A.

    2012-11-01

    Modulated photothermal radiometry (PTR) and a modulated photopyroelectric (PPE) technique have been widely used to measure the thermal diffusivity of bulk materials. The method is based on illuminating the sample with a plane light beam and measuring the infrared emission with an infrared detector (PTR) or the electric voltage produced by a pyroelectric sensor in contact with the sample (PPE). The amplitude and phase of both photothermal signals are recorded as a function of the modulation frequency and then fitted to the theoretical model. In this work, we compare the ability of modulated PTR and PPE to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of homogeneous slabs. In order to eliminate the instrumental factor, self-normalization is used, i.e., the ratio of the photothermal signal recorded at the rear and front surfaces. The influence of the multiple reflections of the light beam and the transparency to infrared wavelengths are analyzed. Measurements performed on a wide variety of homogeneous materials, transparent and opaque, good and bad thermal conductors, confirm the validity of the method. The advantages and disadvantages of both techniques are discussed.

  3. K-shell absorption jump factors and jump ratios in elements between Tm ( Z = 69) and Os ( Z = 76) derived from new mass attenuation coefficient measurements

    NASA Astrophysics Data System (ADS)

    Kaya, Necati; Tıraşoğlu, Engin; Apaydın, Gökhan; Aylıkcı, Volkan; Cengiz, Erhan

    2007-08-01

    The K-shell absorption jump factors and jump ratios were derived from new mass attenuation coefficients measured using an energy dispersive X-ray fluorescence (EDXRF) spectrometer for Tm, Yb elements being Tm 2O 3, Yb 2O 3 compounds and pure Lu, Hf, Ta, W, Re and Os. The measurements, in the region 56-77 keV, were done in a transmission geometry utilizing the K α1 , K α2 , K β1 and K β2 X- rays from different secondary source targets (Yb, Ta, Os, W, Re and Ir, etc.) excited by the 123.6 keV γ-photons from an 57Co annular source and detected by an Ultra-LEGe solid state detector with a resolution of 150 eV at 5.9 keV. Experimental results have been compared with theoretically calculated values. The measured values of Tm, Yb, Lu, Hf, Ta, W, Re and Os are reported here for the first time.

  4. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature. PMID:11538441

  5. Broadband Measurement of Black Carbon Absorption and Scattering Coefficients using a Supercontinuum Integrated Photoacoustic and Nephelometer Instrument

    NASA Astrophysics Data System (ADS)

    sharma, N.; Arnold, I. J.; Moosmuller, H.; Arnott, P.; Mazzoleni, C.

    2012-12-01

    the Desert Research Institute, measuring absorption and scattering coefficients of kerosene soot and sodium chloride aerosols. As a reference system we used a commercial three-wavelength photoacoustic-nephelometer instrument (DMT Inc.). Here, we present the results of this laboratory intercomparison.

  6. Intensities and N2 collision-broadening coefficients measured for selected H2O absorption lines between 715 and 732 nm

    NASA Technical Reports Server (NTRS)

    Wilkerson, T. D.; Schwemmer, G.; Gentry, B.; Giver, L. P.

    1979-01-01

    Intensities and N2 collision-broadening coefficients are measured for 62 water vapor absorption lines between 715 and 732 nm potentially applicable to laser remote sensing of atmospheric water vapor. Absolute line strengths and widths were determined from spectra corrected for instrument resolution, air-path absorption and Lorentz and Doppler broadening for pure water vapor and water vapor-nitrogen mixtures in a multipass absorption cell with a base path length of 25 m (White cell). Line strengths are observed to range from 4 x 10 to the -25th to 4 x 10 to the -23rd kayser/molecule per sq cm, and collision broadening coefficients are found to be approximately equal to 0.1 kayser/atm.

  7. Alimentary Tract Absorption (f1 Values) for Radionuclides in Local and Regional Fallout from Nuclear Tests

    PubMed Central

    Ibrahim, Shawki; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold

    2009-01-01

    This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g. local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the ICRP (e.g. iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively. The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout. PMID:20622554

  8. Alimentary tract absorption (f1 values) for radionuclides in local and regional fallout from nuclear tests.

    PubMed

    Ibrahim, Shawki A; Simon, Steven L; Bouville, André; Melo, Dunstana; Beck, Harold L

    2010-08-01

    This paper presents gastrointestinal absorption fractions (f1 values) for estimating internal doses from local and regional fallout radionuclides due to nuclear tests. The choice of f1 values are based on specific circumstances of weapons test conditions and a review of reported f1 values for elements in different physical and chemical states. Special attention is given to fallout from nuclear tests conducted at the Marshall Islands. We make a distinction between the f1 values for intakes of radioactive materials immediately after deposition (acute intakes) and intakes that occur in the course of months and years after deposition, following incorporation into terrestrial and aquatic foodstuffs (chronic intakes). Multiple f1 values for different circumstances where persons are exposed to radioactive fallout (e.g., local vs. regional fallout and coral vs. continental tests) are presented when supportive information is available. In some cases, our selected f1 values are similar to those adopted by the International Commission on Radiological Protection (ICRP) (e.g., iodine and most actinides). However, f1 values for cesium and strontium derived from urine bioassay data of the Marshallese population are notably lower than the generic f1 values recommended by ICRP, particularly for acute intakes from local fallout (0.4 and 0.05 for Cs and Sr, respectively). The f1 values presented here form the first complete set of values relevant to realistic dose assessments for exposure to local or regional radioactive fallout. PMID:20622554

  9. General Boundary-Value Problems for the Heat Conduction Equation with Piecewise-Continuous Coefficients

    NASA Astrophysics Data System (ADS)

    Tatsii, R. M.; Pazen, O. Yu.

    2016-03-01

    A constructive scheme for the construction of a solution of a mixed problem for the heat conduction equation with piecewise-continuous coefficients coordinate-dependent in the final interval is suggested and validated in the present work. The boundary conditions are assumed to be most general. The scheme is based on: the reduction method, the concept of quasi-derivatives, the currently accepted theory of the systems of linear differential equations, the Fourier method, and the modified method of eigenfunctions. The method based on this scheme should be related to direct exact methods of solving mixed problems that do not employ the procedures of constructing Green's functions or integral transformations. Here the theorem of eigenfunction expansion is adapted for the case of coefficients that have discontinuity points of the 1st kind. The results obtained can be used, for example, in investigating the process of heat transfer in a multilayer slab under conditions of ideal thermal contact between the layers. A particular case of piecewise-continuous coefficients is considered. A numerical example of calculation of a temperature field in a real four-layer building slab under boundary conditions of the 3rd kind (conditions of convective heat transfer) that model the phenomenon of fire near one of the external surfaces is given.

  10. Evaluation of Compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra

    PubMed Central

    Ashoor, Mansour; Asgari, Afrouz; Khorshidi, Abdollah; Rezaei, Ali

    2015-01-01

    Purpose: Estimation of Compton attenuation and the photoelectric absorption coefficients were explored at various depths. Methods: A new method was proposed for estimating the depth based on the convolution of two exponential functions, namely convolution of scattering and primary functions (CSPF), which the convolved result will conform to the photopeak region of energy spectrum with the variable energy-window widths (EWWs) and a theory on the scattering cross-section. The triple energy-windows (TEW) and extended triple energy-windows scatter correction (ETEW) methods were used to estimate the scattered and primary photons according to the energy spectra at various depths due to a better performance than the other methods in nuclear medicine. For this purpose, the energy spectra were employed, and a distinct phantom along with a technetium-99 m source was simulated by Monte Carlo method. Results: The simulated results indicate that the EWW, used to calculate the scattered and primary counts in terms of the integral operators on the functions, was proportional to the depth as an exponential function. The depth will be calculated by the combination of either TEW or ETEW and proposed method resulting in the distinct energy-window. The EWWs for primary photons were in good agreement with those of scattered photons at the same as depths. The average errors between these windows for both methods TEW, and ETEW were 7.25% and 6.03% at different depths, respectively. The EWW value for functions of scattered and primary photons was reduced by increasing the depth in the CSPF method. Conclusions: This coefficient may be an index for the scattering cross-section. PMID:26170567

  11. Absorption and scattering cross-section extinction values of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu

    2016-08-01

    We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (<50 nm) the extinction grows as the cube of the diameter for all three wavelengths. For larger particles the extinction determined from absorbance exhibits a sixth order dependence on the diameters for 532 nm and 671 nm. This kind of behavior is typical of scattering processes that should dominate for large particles. For 405 nm the plasmonic resonant absorption dominates over scattering making difficult the observation of the sixth order dependence even for particles larger than 50 nm. The absorption cross-section measured by the photothermal method does not show the sixth order dependence. It depends on the cube of the particle's diameter for all nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.

  12. Absorption and scattering cross-section extinction values of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu

    2016-08-01

    We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (<50 nm) the extinction grows as the cube of the diameter for all three wavelengths. For larger particles the extinction determined from absorbance exhibits a sixth order dependence on the diameters for 532 nm and 671  nm. This kind of behavior is typical of scattering processes that should dominate for large particles. For 405 nm the plasmonic resonant absorption dominates over scattering making difficult the observation of the sixth order dependence even for particles larger than 50 nm. The absorption cross-section measured by the photothermal method does not show the sixth order dependence. It depends on the cube of the particle's diameter for all nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.

  13. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  14. Recommended Partition Coefficient (Kd) Values for Nuclide Partitioning in the Presence of Cellulose Degradation Products

    SciTech Connect

    Serkiz, S.M.

    2001-02-23

    This report documents the data analysis of the results of the described laboratory studies in order to recommend Kd values for use in Performance Assessment modeling of nuclide transport in the presence of CDP.

  15. A neural network-based four-band model for estimating the total absorption coefficients from the global oceanic and coastal waters

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Cui, Tingwei; Quan, Wenting

    2015-01-01

    this study, a neural network-based four-band model (NNFM) for the global oceanic and coastal waters has been developed in order to retrieve the total absorption coefficients a(λ). The applicability of the quasi-analytical algorithm (QAA) and NNFM models is evaluated by five independent data sets. Based on the comparison of a(λ) predicted by these two models with the field measurements taken from the global oceanic and coastal waters, it was found that both the QAA and NNFM models had good performances in deriving a(λ), but that the NNFM model works better than the QAA model. The results of the QAA model-derived a(λ), especially in highly turbid waters with strong backscattering properties of optical activity, was found to be lower than the field measurements. The QAA and NNFM models-derived a(λ) could be obtained from the MODIS data after atmospheric corrections. When compared with the field measurements, the NNFM model decreased by a 0.86-24.15% uncertainty (root-mean-square relative error) of the estimation from the QAA model in deriving a(λ) from the Bohai, Yellow, and East China seas. Finally, the NNFM model was applied to map the global climatological seasonal mean a(443) for the time range of July 2002 to May 2014. As expected, the a(443) value around the coastal regions was always larger than the open ocean around the equator. Viewed on a global scale, the oceans at a high latitude exhibited higher a(443) values than those at a low latitude.

  16. Distribution Coefficients (Kd Values) for Waste Resins Generated from the K and L Disassembly Basin Facilities

    SciTech Connect

    Kaplan, D.I.

    2002-12-02

    The objective of this study was to measure 14C, 129I, and 99Tc Kd values of spent resin generated from the K and L Disassembly Basin Facilities. The scope of the work was to conduct Kd measurements of resins combined in the ratio that they are disposed, 42:58 cation:anion. Because it was not known how these spent resins would be buried, it was necessary to measure the Kd values in such a manner as to simulate both trench and vault disposal. This was accomplished by using an acid-rain simulant (a standard U.S. Environmental Protection Agency protocol) and a cement leachate simulant .

  17. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Pawlak, M.

    2015-01-01

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 1014-1017 cm-3.

  18. Acceptor End-Capped Oligomeric Conjugated Molecules with Broadened Absorption and Enhanced Extinction Coefficients for High-Efficiency Organic Solar Cells.

    PubMed

    Yuan, Liu; Lu, Kun; Xia, Benzheng; Zhang, Jianqi; Wang, Zhen; Wang, Zaiyu; Deng, Dan; Fang, Jin; Zhu, Lingyun; Wei, Zhixiang

    2016-07-01

    Acceptor end-capping of oligomeric conjugated molecules is found to be an effective strategy for simultaneous spectral broadening, extinction coefficient enhancement, and energy level optimization, resulting in profoundly enhanced power conversion efficiencies (of 9.25% and 8.91%) compared to the original oligomers. This strategy is effective in overcoming the absorption disadvantage of oligomers and small molecules due to conjugation limitation. PMID:27172541

  19. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  20. Long-pathlength infrared absorption measurements in the 8- to 14-{mu}m atmospheric window: Self-broadening coefficient data

    SciTech Connect

    Kulp, T.J.; Shinn, J.

    1995-04-01

    The accurate characterization of the latent infrared (IR) absorption in the atmospheric window regions continues to be an area of research interest for the global climate modeling community. In the window between 8 and 14 {mu}m, this absorption can be attributed primarily to water vapor. It consists of (1) weak lines originating from the edge of the water vapor pure rotational band (at low wavenumbers) and the trailing P-branch of the v{sub 2} rovibrational band (at the high-wavenumber boundary of the window); and (2) the water vapor continuum absorption. The goal of our project has been to improve our quantitative and physical understanding of both of these absorption processes. Specifically, our immediate aims are to fill gaps in the experimental radiative transfer databases pertaining to the line parameters (i.e., line intensities and broadening coefficients) and to the self- and foreign-broadened water vapor continuum. To accomplish our goals, we have made long-pathlength absorption measurements using a Fourier transform infrared spectrometer (FTIR) (for the continuum and line measurements, at low resolution) and a tunable diode laser absorption spectrometer (TDLAS) (for the line measurements, at high resolution). These measurements were made on gas samples contained in a 400-m maximum pathlength Horn Pimentel multipass cell designed and constructed for this project.

  1. Exponential Sum Absorption Coefficients of Phosphine from 2750 to 3550/cm for Application to Radiative Transfer Analyses on Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.

    2006-01-01

    PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.

  2. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  3. A linear relationship between the Hall carrier concentration and the effective absorption coefficient measured by means of photothermal radiometry in IR semi-transparent n-type CdMgSe mixed crystals

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.; Firszt, F.; Pelzl, J.; Ludwig, A.; Marasek, A.

    2014-03-01

    In this work we demonstrate the ability to measure the effective infrared absorption coefficient in semiconductors by a photothermal infrared radiometry (PTR) experiment, and its correlation with the Hall carrier concentration. The amplitude and phase of the PTR signal were measured for Cd1-xMgxSe mixed crystals, with the magnesium content varying from x = 0 to x = 0.15. The PTR experiments were performed at room temperature in thermal reflection and transmission configurations using a mercury cadmium telluride infrared detector. The PTR data were analyzed in the frame of the one-dimensional heat transport model for infrared semi-transparent crystals. Based on the variation of the normalized PTR phase and amplitude on the modulation frequency, the thermal diffusivity and the effective infrared absorption coefficient were obtained by fitting the theoretical expression to experimental data and compared with the Hall carrier concentration determined by supplementary Hall experiments. A linear relationship between the effective infrared absorption coefficient and the Hall carrier concentration was found which is explained in the frame of the Drude theory. The uncertainty of the measured slope was 6%. The value of the slope depends on (1) the sample IR absorption spectrum and (2) the spectral range of the infrared detector. It has to be pointed out that this method is suitable for use in an industrial environment for a fast and contactless carrier concentration measurement. This method can be used for the characterization of other semiconductors after a calibration procedure is carried out. In addition, the PTR technique yields information on the thermal properties in the same experiment.

  4. Some new methods of determining and studying the absorptivity of a medium and the generalized angular coefficients of radiation

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Sosnovyy, N. V.

    1975-01-01

    Local and average radiation functions, which represent purely geometric characteristics of the radiating system, are used to determine the absorptivity in a system of bodies separated by an attenuating medium.

  5. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  6. Absorption spectrum analysis based on singular value decomposition for photoisomerization and photodegradation in organic dyes

    NASA Astrophysics Data System (ADS)

    Kawabe, Yutaka; Yoshikawa, Toshio; Chida, Toshifumi; Tada, Kazuhiro; Kawamoto, Masuki; Fujihara, Takashi; Sassa, Takafumi; Tsutsumi, Naoto

    2015-10-01

    In order to analyze the spectra of inseparable chemical mixtures, many mathematical methods have been developed to decompose them into the components relevant to species from series of spectral data obtained under different conditions. We formulated a method based on singular value decomposition (SVD) of linear algebra, and applied it to two example systems of organic dyes, being successful in reproducing absorption spectra assignable to cis/trans azocarbazole dyes from the spectral data after photoisomerization and to monomer/dimer of cyanine dyes from those during photodegaradation process. For the example of photoisomerization, polymer films containing the azocarbazole dyes were prepared, which have showed updatable holographic stereogram for real images with high performance. We made continuous monitoring of absorption spectrum after optical excitation and found that their spectral shapes varied slightly after the excitation and during recovery process, of which fact suggested the contribution from a generated photoisomer. Application of the method was successful to identify two spectral components due to trans and cis forms of azocarbazoles. Temporal evolution of their weight factors suggested important roles of long lifetimed cis states in azocarbazole derivatives. We also applied the method to the photodegradation of cyanine dyes doped in DNA-lipid complexes which have shown efficient and durable optical amplification and/or lasing under optical pumping. The same SVD method was successful in the extraction of two spectral components presumably due to monomer and H-type dimer. During the photodegradation process, absorption magnitude gradually decreased due to decomposition of molecules and their decaying rates strongly depended on the spectral components, suggesting that the long persistency of the dyes in DNA-complex related to weak tendency of aggregate formation.

  7. Predicting liver metastasis of gastrointestinal tract cancer by diffusion-weighted imaging of apparent diffusion coefficient values

    PubMed Central

    Zheng, De-Xian; Meng, Shu-Chun; Liu, Qing-Jun; Li, Chuan-Ting; Shang, Xi-Dan; Zhu, Yu-Seng; Bai, Tian-Jun; Xu, Shi-Ming

    2016-01-01

    AIM: To determine if efficacy of chemotherapy on liver metastasis of gastrointestinal tract cancer can be predicted by apparent diffusion coefficient (ADC) values of diffusion-weighted imaging (DWI). METHODS: In total, 86 patients with liver metastasis of gastrointestinal tract cancer (156 metastatic lesions) diagnosed in our hospital were included in this study. The maximum diameters of these tumors were compared with each other before treatment, 2 wk after treatment, and 12 wk after treatment. Selected patients were classified as the effective group and the ineffective group, depending on the maximum diameter of the tumor after 12 wk of treatment; and the ADC values at different treatment times between the two groups were compared. Spearman rank correlation was used to analyze the relationship between ADC value and tumor diameter. Receiver operating characteristic curve (ROC curve) was used to analyze the ADC values before treatment to predict the patient’s sensitivity and specificity degree of efficacy to the chemotherapy. RESULTS: There was no difference in age between the two groups and in maximum tumor diameter before treatment and 2 wk after treatment. However, after 12 wk of treatment, maximum tumor diameter in the effective group was significantly lower than that in the ineffective group (P < 0.05). Before treatment, ADC values in the ineffective group were significantly higher than those in the effective group (P < 0.05). There was no difference in ADC values between the effective and ineffective groups after 2 and 12 wk of treatment. However, ADC values were significantly higher after 2 and 12 wk of treatment compared to before treatment in the effective group (P < 0.05). Spearman rank correlation analysis showed that ADC value before treatment and the reduced percentage of the maximum tumor diameter after 12 wk of treatment were negatively correlated, while the increase in the percentage of the ADC value 12 wk after treatment and the decrease in the

  8. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  9. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    NASA Astrophysics Data System (ADS)

    Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  10. Assessment of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    PubMed

    Aggarwal, M; Battalora, M; Fisher, P; Hüser, A; Parr-Dobrzanski, R; Soufi, M; Mostert, V; Strupp, C; Whalley, P; Wiemann, C; Billington, R

    2014-04-01

    Dermal absorption is an integral part of non-dietary human safety risk assessments for agrochemicals. Typically, dermal absorption data for agrochemical active substances are generated from the undiluted formulation concentrate and its spray dilutions. European Food Safety Authority (EFSA) guidance, which combines highly conservative default values, very limited opportunities for read-across from existing data and other overly conservative conclusions, was the driver for this assessment. To investigate the reliability of the EFSA guidance, a homogeneous data-set of 190 GLP and OECD guideline compliant in vitro human skin studies, chosen to match the test method preferred by EU data requirements, was evaluated. These studies represented a wide range of active substances, formulation types, and concentrations. In alignment with EFSA guidance on human exposure assessment, a conservative estimate of absorption (95th percentile) was chosen to define defaults, which were also based on the EFSA worst-case assumption that all material in skin, excluding the first two tape strips, is absorbed. The analysis supports dermal absorption defaults of 6% for liquid concentrates, 2% for solid concentrates, and 30% for all spray dilutions, irrespective of the active substance concentration. Relatively high dermal absorption values for organic solvent-based formulations, compared to water-based or solid concentrates, support their use as worst-case surrogate data for read-across to other formulation types. The current review also shows that dermal absorption of sprays does not increase linearly with increasing dilution, and provides a novel, science-based option for extrapolation from existing data. PMID:24491967

  11. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer

    PubMed Central

    Ippolito, Davide; Fior, Davide; Trattenero, Chiara; Ponti, Elena De; Drago, Silvia; Guerra, Luca; Franzesi, Cammillo Talei; Sironi, Sandro

    2015-01-01

    AIM: To assess the clinical diagnostic value of functional imaging, combining quantitative parameters of apparent diffusion coefficient (ADC) and standardized uptake value (SUV)max, before and after chemo-radiation therapy, in prediction of tumor response of patients with rectal cancer, related to tumor regression grade at histology. METHODS: A total of 31 patients with biopsy proven diagnosis of rectal carcinoma were enrolled in our study. All patients underwent a whole body 18FDG positron emission tomography (PET)/computed tomography (CT) scan and a pelvic magnetic resonance (MR) examination including diffusion weighted (DW) imaging for staging (PET1, RM1) and after completion (6.6 wk) of neoadjuvant treatment (PET2, RM2). Subsequently all patients underwent total mesorectal excision and the histological results were compared with imaging findings. The MR scanning, performed on 1.5 T magnet (Philips, Achieva), included T2-weighted multiplanar imaging and in addition DW images with b-value of 0 and 1000 mm²/s. On PET/CT the SUVmax of the rectal lesion were calculated in PET1 and PET2. The percentage decrease of SUVmax (ΔSUV) and ADC (ΔADC) values from baseline to presurgical scan were assessed and correlated with pathologic response classified as tumor regression grade (Mandard’s criteria; TRG1 = complete regression, TRG5 = no regression). RESULTS: After completion of therapy, all the patients were submitted to surgery. According to the Mandard’s criteria, 22 tumors showed complete (TRG1) or subtotal regression (TRG2) and were classified as responders; 9 tumors were classified as non responders (TRG3, 4 and 5). Considering all patients the mean values of SUVmax in PET 1 was higher than the mean value of SUVmax in PET 2 (P < 0.001), whereas the mean ADC values was lower in RM1 than RM2 (P < 0.001), with a ΔSUV and ΔADC respectively of 60.2% and 66.8%. The best predictors for TRG response were SUV2 (threshold of 4.4) and ADC2 (1.29 × 10-3 mm2/s) with high

  12. Assessment of apparent diffusion coefficient values as predictor of aggressiveness in peripheral zone prostate cancer: comparison with Gleason score.

    PubMed

    Anwar, Shayan Sirat Maheen; Anwar Khan, Zahid; Shoaib Hamid, Rana; Haroon, Fahd; Sayani, Raza; Beg, Madiha; Khattak, Yasir Jamil

    2014-01-01

    Purpose. To determine association between apparent diffusion coefficient value on diffusion-weighted imaging and Gleason score in patients with prostate cancer. Methods. This retrospective case series was conducted at Radiology Department of Aga Khan University between June 2009 and June 2011. 28 patients with biopsy-proven prostate cancer were included who underwent ultrasound guided sextant prostate biopsy and MRI. MRI images were analyzed on diagnostic console and regions of interest were drawn. Data were entered and analyzed on SPSS 20.0. ADC values were compared with Gleason score using one-way ANOVA test. Results. In 28 patients, 168 quadrants were biopsied and 106 quadrants were positive for malignancy. 89 lesions with proven malignancy showed diffusion restriction. The mean ADC value for disease with a Gleason score of 6 was 935 mm(2)/s (SD = 248.4 mm(2)/s); Gleason score of 7 was 837 mm(2)/s (SD = 208.5 mm(2)/s); Gleason score of 8 was 614 mm(2)/s (SD = 108 mm(2)/s); and Gleason score of 9 was 571 mm(2)/s (SD = 82 mm(2)/s). Inverse relationship was observed between Gleason score and mean ADC values. Conclusion. DWI and specifically quantitative ADC values may help differentiate between low-risk (Gleason score, 6), intermediate-risk (Gleason score, 7), and high-risk (Gleason score 8 and 9) prostate cancers, indirectly determining the aggressiveness of the disease. PMID:24967293

  13. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    SciTech Connect

    Dakhlaoui, Hassen

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  14. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  15. Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: Electric and magnetic field effects

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rodríguez-Magdaleno, K. A.; Suárez-López, J. R.; Duque, C. A.; Restrepo, R. L.

    2016-04-01

    In this work we present theoretical results for the electronic structure as well as for the absorption coefficient and relative refractive index change for an asymmetric double δ-doped like confining potential in the active region of a Multiple Independent Gate Field Effect Transistor (MIGFET) system. We model the potential profile as a double δ-doped like potential profile between two Schottky (parabolic) potential barriers that are just the main characteristics of the MIGFET configuration. We investigate the effect of external electromagnetic fields in this kind of quantum structures, in particular we applied a homogeneous constant electric field in the growth direction z as well as a homogeneous constant magnetic field in the x-direction. In general we conclude that by applying electromagnetic fields we can modulate the resonant peaks of the absorption coefficient as well as their energy position. Also with such probes it is possible to control the nodes and amplitude of the relative refractive index changes related to resonant intersubband optical transitions.

  16. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  17. Correlation of Coal Calorific Value and Sulphur Content with 57Fe Mössbauer Spectral Absorption

    NASA Astrophysics Data System (ADS)

    Wynter, C. I.; May, L.; Oliver, F. W.; Hall, J. A.; Hoffman, E. J.; Kumar, A.; Christopher, L.

    Coal is the most abundant, most economical and widely distributed fossil fuel in the world today. It is also the principal form of reductant in the iron and steel industry. This study was undertaken to not only add to the growing use of Mössbauer spectroscopy application in industry but also to increase the chemistry and physics knowledge base of coal. Coal is 40 to 80 percent carbon with small amounts of sulphur and iron as pyrite and ferrous sulphate. The environmental concern associated with mining and burning of coal has long been a subject of investigation with emphasis on the sulphur content. We examined five ranks of coal: anthracite, Eastern bituminous, bituminous, sub-bituminous, and lignite. Relationships were investigated between the Calorific Value (CV) of coal and inorganic sulphur content, 57Fe Mössbauer absorption, and ratio of pyrite (FeS2) to FeSO4. Twenty-eight samples of the five different types of coal had CVs ranging from 32,403 to 16,100 kJ/kg and sulphur concentrations ranging from 0.28 to 2.5 percent. CV appeared to be positively correlated with concentrations of sulphur and of iron-sulphur salts, although there appears to be little connection with the distribution of their oxidation states.

  18. Airborne Measurements of Scattering and Absorption Coefficients in the Planetary Boundary Layer above the Po Valley, Italy, during the PEGASOS Campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Weingartner, E.; Gysel, M.; Tillmann, R.; Mentel, T. F.; Decesari, S.; Marinoni, A.; Gobbi, G. P.; Fierli, F.; Cairo, F.; Bucci, S.; Zanatta, M.; Größ, J.; Baltensperger, U.

    2014-12-01

    Aerosol particles influence the Earth's radiation budget by interacting with the incoming sunlight. The chemical composition and size of aerosol particles determine their potential to scatter and absorb radiation as well as their capability to take up water (Zieger et al., 2011). If particles are hygroscopic their optical properties will be altered at enhanced relative humidities (RH) due to the increase in size and change in index of refraction. It is known that RH but also the chemical composition of aerosols change with altitude (Morgan et al., 2010) which makes it very important to investigate optical properties at different heights. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) a set of instruments was installed on a Zeppelin to investigate changes of light scattering and absorption in the planetary boundary layer. In order to obtain the scattering properties, Mie calculations were performed for size distributions recorded with SMPS (scanning mobility particle sizer) and WELAS (optical size spectrometer). The index of refraction and the hygroscopicity of the aerosol particles were measured with the white-light humidified optical particle spectrometer (WHOPS). These measurements further allowed studying the RH-dependence of the optical properties. Moreover, a seven wavelength portable aethalometer was employed to determine the light absorption properties of the aerosol. In this work we will present vertical profiles of scattering and absorption coefficients measured during Zeppelin flights of the PEGASOS campaigns in Italy in 2012. Additionally comparisons with ground based measurements from nephelometers and aethalometers, as well as remote sensing results will be shown. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171.P. Zieger et al., Comparison of ambient aerosol

  19. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  20. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant

    NASA Astrophysics Data System (ADS)

    Wu, Chuandong; Liu, Jiemin; Yan, Luchun; Chen, Haiying; Shao, Huiqi; Meng, Tian

    2015-02-01

    Odor activity value (OAV) has been widely used for the assessment of odor pollution from various sources. However, little attention has been paid to the extreme OAV variation and potential inaccuracies of odor contribution assessment caused by odor interaction effects. The objective of this study is to assess the odor interaction effect for precise assessment of odor contribution. In this paper, samples were collected from a food waste disposal plant, and analyzed by instrumental and olfactory method to conclude odorants' occurrence and OAV. Then odor activity value coefficient (γ) was first proposed to evaluate the type and the level of binary interaction effects based on determination of OAV variation. By multiplying OAV and γ, odor activity factor (OAF) was used to reflect the real OAV. Correlation between the sum of OAF and odor concentration reached 80.0 ± 5.7%, which was 10 times higher than the sum of OAV used before. Results showed that hydrogen sulfide contributed most (annual average 66.4 ± 15.8%) to odor pollution in the waste disposal plant. However, as odor intensity of samples in summer rising, odor contribution of trimethylamine increased to 48.3 ± 3.7% by the strong synergistic interaction effect, while odor contribution of phenol decreased to 0.1 ± 0.02% for the increasing antagonistic interaction effect.

  1. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths.

    PubMed

    Greening, Gage J; Istfan, Raeef; Higgins, Laura M; Balachandran, Kartik; Roblyer, Darren; Pierce, Mark C; Muldoon, Timothy J

    2014-01-01

    Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880 μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol-soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc. PMID:25387084

  2. Mean absorption coefficient of H2O-air-MgCl2/CaCl2/NaCl thermal plasmas

    NASA Astrophysics Data System (ADS)

    Hannachi, R.; Cressault, Y.; Salem, D.; Teulet, Ph; Béji, L.; Ben Lakhdar, Z.

    2012-12-01

    Under the local thermodynamic equilibrium hypothesis, the mean absorption coefficients (MACs) were calculated for H2O-air-MgCl2/CaCl2/NaCl thermal plasmas in a temperature range from 300 to 30 000 K and at atmospheric pressure. The MACs were computed under the hypothesis of isothermal plasmas which allows a good description of the radiation absorbed in cold regions. In this study, we took into account the absorption radiation resulting from the atomic continuum, molecular continuum, atomic lines and some molecular bands. Free-free transitions (bremsstrahlung) and free-bound (electron-ion recombination and electron attachment) or bound-free transitions in terms of absorption were considered for the calculation of atomic continuum. For bound-bound transitions, natural, resonance, van der Waals, Stark and Doppler effects were taken into account for the line broadenings while the escape factors were used to treat the self-absorption of the resonance lines. Molecular continuum was considered for the main molecules (H2, O2, N2, OH, NO, H2O, N2O, NO2, O3, NO3 and N2O5) whereas we studied only diatomic systems O2, N2, NO and N_2^+ for the absorption of molecular bands. The influence of the proportion of MgCl2, CaCl2 or NaCl in a water-air mixture was analysed as the effect of the strong self-absorbed resonance lines of the alkaline salts (Ca, Ca+, Na, Na+, Mg, Mg+, Cl and Cl+). Our results show that a low concentration of alkaline salts (less than 1% in molar proportions) in the plasma increased the MACs at low temperatures (T < 10 000 K) due to the resonance lines mainly localized in the near-UV and visible spectral regions in opposition to hydrogen, oxygen or nitrogen species for which 90% of them exist in ultraviolet. In addition to the atomic and molecular continuum, the absorption radiation of molecular bands is important at low temperatures.

  3. Performance of Apparent Diffusion Coefficient Values and Conventional MRI Features in Differentiating Tumefactive Demyelinating Lesions From Primary Brain Neoplasms

    PubMed Central

    Mabray, Marc C.; Cohen, Benjamin A.; Villanueva-Meyer, Javier E.; Valles, Francisco E.; Barajas, Ramon F.; Rubenstein, James L.; Cha, Soonmee

    2015-01-01

    OBJECTIVE Tumefactive demyelinating lesions (TDLs) remain one of the most common brain lesions to mimic a brain tumor, particularly primary CNS lymphoma (PCNSL) and high-grade gliomas. The purpose of our study was to evaluate the ability of apparent diffusion coefficient (ADC) values and conventional MRI features to differentiate TDLs from PCNSLs and high-grade gliomas. MATERIALS AND METHODS Seventy-five patients (24 patients with TDLs, 28 with PCNSLs, and 23 with high-grade gliomas) with 168 brain lesions (70 TDLs, 68 PCNSLs, and 30 high-grade gliomas) who underwent DWI before surgery or therapy were included in the study. Minimum ADC (ADCmin) and average ADC (ADCavg) values were calculated for each lesion. ANOVA and ROC analyses were performed. ROC analyses were also performed for the presence of incomplete rim enhancement and for the number of lesions. Multiple-variable logistic regression with ROC analysis was then performed to evaluate performance in multiple-variable models. RESULTS ADCmin was statistically significantly higher (p < 0.01) in TDLs (mean, 0.886; 95% CI, 0.802–0.931) than in PCNSLs (0.547; 95% CI, 0.496–0.598) and high-grade gliomas (0.470; 95% CI, 0.385–0.555). (All ADC values in this article are reported in units of × 10−3 mm2/s.) ADCavg was statistically significantly higher (p < 0.01) in TDLs (mean, 1.362; 95% CI, 1.268–1.456) than in PCNSLs (0.990; 95% CI, 0.919–1.061) but not in high-grade gliomas (1.216; 95% CI, 1.074–1.356). Multiple-variable models showed statistically significant individual effects and superior diagnostic performance on ROC analysis. CONCLUSION TDLs can be diagnosed on preoperative MRI with a high degree of specificity; MRI features of incomplete rim enhancement, high ADC values, and a large number of lesions individually increase the probability and diagnostic confidence that a lesion is a TDL. PMID:26496556

  4. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Vodacek, Anthony; Swift, Robert N.; Yungel, James K.; Blough, Neil V.

    1995-10-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed

  5. An inversion model based on salinity and remote sensing reflectance for estimating the phytoplankton absorption coefficient in the Saint Lawrence Estuary

    NASA Astrophysics Data System (ADS)

    Montes-Hugo, Martin; Xie, Huxiang

    2015-10-01

    The inversion of individual inherent optical properties (IOPs) is very challenging in optically complex waters and within the violet spectral range (i.e., 380-450 nm) due to the strong light attenuation caused by chromophoric dissolved organic matter, nonalgal particulates, and phytoplankton. Here we present a technique to better discriminate light absorption contributions due to phytoplankton based on a hybrid model (QAA-hybrid) that combines regional Saint Lawrence System estimates of IOPs derived from a quasi-analytical algorithm (hereafter QAA-SLE) and empirical relationships between salinity and IOPs. Preliminary results in the Saint Lawrence System during May 2000 and April 2001 showed that QAA-hybrid estimates of phytoplankton absorption coefficient at 443 nm have a smaller bias with respect to in situ measurements (root-mean-square deviation, RMSD = 0.156) than those derived from QAA-SLE (RMSD = 0.341). These results were valid for surface waters (i.e., 0-5 m depth) of the lower estuary with a salinity and chlorophyll-a concentration range of 22-28 psu and 2.1-13.8 mg m-3, respectively.

  6. Predictive Value of Carotid Distensibility Coefficient for Cardiovascular Diseases and All-Cause Mortality: A Meta-Analysis

    PubMed Central

    Yuan, Chuang; Wang, Jing; Ying, Michael

    2016-01-01

    Aims The aim of the present study is to determine the pooled predictive value of carotid distensibility coefficient (DC) for cardiovascular (CV) diseases and all-cause mortality. Background Arterial stiffness is associated with future CV events. Aortic pulse wave velocity is a commonly used predictor for CV diseases and all-cause mortality; however, its assessment requires specific devices and is not always applicable in all patients. In addition to the aortic artery, the carotid artery is also susceptible to atherosclerosis, and is highly accessible because of the surficial property. Thus, carotid DC, which indicates the intrinsic local stiffness of the carotid artery and may be determined using ultrasound and magnetic resonance imaging, is of interest for the prediction. However, the role of carotid DC in the prediction of CV diseases and all-cause mortality has not been thoroughly characterized, and the pooled predictive value of carotid DC remains unclear. Methods A meta-analysis, which included 11 longitudinal studies with 20361 subjects, was performed. Results Carotid DC significantly predicted future total CV events, CV mortality and all-cause mortality. The pooled risk ratios (RRs) of CV events, CV mortality and all-cause mortality were 1.19 (1.06–1.35, 95%CI, 9 studies with 18993 subjects), 1.09 (1.01–1.18, 95%CI, 2 studies with 2550 subjects) and 1.65 (1.15–2.37, 95%CI, 6 studies with 3619 subjects), respectively, for the subjects who had the lowest quartile of DC compared with their counterparts who had higher quartiles. For CV events, CV mortality and all-cause mortality, a decrease in DC of 1 SD increased the risk by 13%, 6% and 41% respectively, whereas a decrease in DC of 1 unit increased the risk by 3%, 1% and 6% respectively. Conclusions Carotid DC is a significant predictor of future CV diseases and all-cause mortality, which may facilitate the identification of high-risk patients for the early diagnosis and prompt treatment of CV diseases

  7. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    SciTech Connect

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.

  8. UNDERSTANDING VARIATION IN PARTITION COEFFICIENT KD, VALUES, VOLUME III: AMERICIUM, ARSENIC, CURIUM, IODINE, NEPTUNIUM, RADIUM, AND TECHNETIUM

    EPA Science Inventory

    This report describes the conceptualization, measurement, and use of the partition (or distribution) coefficient, Kd, parameter, and the geochemical aqueous solution and sorbent properties that are most important in controlling adsorption/retardation behavior of selected contamin...

  9. Progress report for the enhancement of Radcalc: Isotope database, gamma absorption fractions, and G(H{sub 2}) values

    SciTech Connect

    Green, J.R.

    1994-09-28

    Radcalc is a spreadsheet currently used to calculate the generation of hydrogen gas in low-level radioactive waste containers for purposes of transportation and packaging. Radcalc is being enlarged and expanded. It will be offered as a Windows compatible software and will include some of the following enhancements: extended radionuclide library, updated gamma absorption fractions for an increased number of packages, inclusion of a G(H{sub 2}) value data base, updated transportation information, thermal and pressure calculation update, testing and benchmarking. This report discusses the progress made on the new Radcalc program. It presents the new radionuclide library, the results of the gamma absorption fractions for the increased number of packages, and an extensive review of G(H{sub 2}) values.

  10. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  11. Quantitative assessment of fat absorption and its diagnostic value in exocrine pancreatic insufficiency.

    PubMed

    Simpson, J W; Doxey, D L

    1983-09-01

    A new method of quantifying fat absorption based on the estimation of serum triglyceride levels is described. When long chain triglyceride (LCT) was fed to normal dogs a significant elevation of serum triglyceride concentration was recorded which was not observed in dogs with exocrine pancreatic insufficiency. When the test was repeated on the dogs with pancreatic insufficiency using the LCT together with lipase the serum triglyceride concentration increased, suggesting the failure in the initial test was caused by a deficiency in pancreatic lipase. Feeding medium chain triglyceride (MCT) did not raise the serum triglyceride levels in normal dogs. PMID:6635347

  12. Recommended Distribution Coefficients, Kd Values, for Special Analysis Risk Calculations Related to Waste Disposal and Tank Closure on the Savannah River Site

    SciTech Connect

    Kaplan, D

    2005-08-31

    The purpose of this document is to provide a technically defensible list of distribution coefficients, or Kd values, for use in performance assessment (PA) and special analysis (SA) calculations on the SRS. Only Kd values for radionuclides that have new information related to them or that have recently been recognized as being important are discussed in this report. Some 150 Kd values are provided in this report for various waste-disposal or tank-closure environments: soil, corrosion in grout, oxidizing grout waste, gravel, clay, and reducing concrete environments. Documentation and justification for the selection of each Kd value is provided.

  13. EXTENSION OF THE INVERSE ADDING-DOUBLING METHOD TO THE MEASUREMENT OF WAVELENGTH-DEPENDENT ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL SAMPLES

    SciTech Connect

    Allegood, M.S.; Baba, J.S.

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.

  14. The Heat Resistance of Microbial Cells Represented by D Values Can be Estimated by the Transition Temperature and the Coefficient of Linear Expansion.

    PubMed

    Nakanishi, Koichi; Kogure, Akinori; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu; Ito, Kiyoshi

    2015-01-01

    We previously developed a method for evaluating the heat resistance of microorganisms by measuring the transition temperature at which the coefficient of linear expansion of a cell changes. Here, we performed heat resistance measurements using a scanning probe microscope with a nano thermal analysis system. The microorganisms studied included six strains of the genus Bacillus or related genera, one strain each of the thermophilic obligate anaerobic bacterial genera Thermoanaerobacter and Moorella, two strains of heat-resistant mold, two strains of non-sporulating bacteria, and one strain of yeast. Both vegetative cells and spores were evaluated. The transition temperature at which the coefficient of linear expansion due to heating changed from a positive value to a negative value correlated strongly with the heat resistance of the microorganism as estimated from the D value. The microorganisms with greater heat resistance exhibited higher transition temperatures. There was also a strong negative correlation between the coefficient of linear expansion and heat resistance in bacteria and yeast, such that microorganisms with greater heat resistance showed lower coefficients of linear expansion. These findings suggest that our method could be useful for evaluating the heat resistance of microorganisms. PMID:26699861

  15. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  16. One-Sample based Single-Valued Estimation of the Interface Profile from Intersubband Integrated Absorption Intensity Data

    NASA Astrophysics Data System (ADS)

    Nhu Thao, Dinh; Thanh Tien, Nguyen; Toan, Huynh Ngoc; Nhat Quang, Doan

    2016-07-01

    We prove the integrated absorption intensity due to intersubband optical transition in a quantum well (QW) to be a function of the correlation length of the interface roughness profile and independent of the roughness amplitude. We then develop a novel way to perform single-valued estimation of the interface roughness profile of QW from experiments conducted merely on one sample. The new method that we propose in this paper would be replicable and more economical than the traditional counterparts, which usually require at least two samples.

  17. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  18. The spectral absorption coefficient at 254 nm as a real-time early warning proxy for detecting faecal pollution events at alpine karst water resources.

    PubMed

    Stadler, H; Klock, E; Skritek, P; Mach, R L; Zerobin, W; Farnleitner, A H

    2010-01-01

    Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005-2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n>800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated. PMID:20962406

  19. Measurements of Sc I gf-values. [absorption spectroscopy using heat pipe oven

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Reeves, E. M.; Tomkins, F. S.

    1976-01-01

    Absolute gf-values were obtained for 98 transitions in neutral scandium by the hook method using an inductively coupled heat-pipe oven. Of the 98 lines, 51 are classified, 33 are unclassified lines that occur in pairs with the lower energy level identified, and 14 are unclassified but are believed to originate from one of the two lower levels of the ground state. The results are compared with semiempirical and other measurement results in the literature.

  20. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  1. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Karki, Kishor; Hugo, Geoffrey D.; Ford, John C.; Olsen, Kathryn M.; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-10-01

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with \\text{TR}≈ 4500 ms, TE  =  74 ms, eight b-values of 0-1000 μs μm-2, pixel size  =  1.98× 1.98 mm2, slice thickness  =  6 mm, interslice gap  =  1.2 mm, 7 axial slices and total acquisition time ≈6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 μs μm-2 from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 μs μm-2 were not significantly different from ADCIVIM values (p>0.05 , paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets—0-1000 50-1000 100-1000 500-1000 and 250 and 800 μs μm-2 were significantly different from the ADCIVIM values. From Rician noise simulation

  2. Absorption coefficient, transition probability, and collision-broadening frequency of dimethylether at He-Xe laser 3.51-micron wavelength

    NASA Technical Reports Server (NTRS)

    Siegman, A. E.; Wang, S. C.

    1970-01-01

    Absorptivity, transition probability and collision broadening frequency of dimethylether at 3.51 micron He-Xe laser wavelength, noting pressure dependence, transition lifetime and saturation intensity

  3. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  4. Development of singlet oxygen absorption capacity (SOAC) assay method. 4. Measurements of the SOAC values for vegetable and fruit extracts.

    PubMed

    Iwasaki, Yuko; Takahashi, Shingo; Aizawa, Koichi; Mukai, Kazuo

    2015-01-01

    Measurements of the second-order rate constants and the singlet oxygen absorption capacity (SOAC) values for the reaction of singlet oxygen ((1)O2) with 23 kinds of food extracts were performed in ethanol/chloroform/D2O (50:50:1, v/v/v) solution at 35 °C. It has been clarified that the SOAC method is useful to evaluate the (1)O2-quenching activity (i.e. the SOAC value) of food extracts having two orders of magnitude different rate constants from 3.18 × 10(4) L g(-1) s(-1) for tomato to 1.55 × 10(2) for green melon. Furthermore, comparison of the observed rate constants for the above food extracts with the calculated ones based on the concentrations of seven kinds of carotenoids included in the food extracts and the rate constants reported for each carotenoids was performed, in order to ascertain the validity of the SOAC assay method developed and to clarify the ratio of the contribution of principal carotenoids to the SOAC value. PMID:25359604

  5. Evidence of concentration dependence of the two-photon absorption cross section: Determining the "true" cross section value

    NASA Astrophysics Data System (ADS)

    Ajami, Aliasghar; Gruber, Peter; Tromayer, Maximilian; Husinsky, Wolfgang; Stampfl, Jürgen; Liska, Robert; Ovsianikov, Aleksandr

    2015-09-01

    The two-photon absorption (2PA) phenomenon is the basis of many unique applications involving suitable chromophores as photoinitiators. Ideally the 2PA cross section should, therefore, be a unique parameter, allowing quantification and comparing 2PA capabilities of different substances. In this report, the most straightforward and widespread method, the Z-scan technique, was used for determining the 2PA cross-section values of three different synthesized photoinitiators and one laser dye as a standard. It is demonstrated that the experimentally obtained values strongly depend on the molar concentration of a measured solution. A tenfold decrease in substance concentration can lead to the doubling of the 2PA cross-section. A similar concentration dependence was confirmed for all three investigated substances. Among the crucial implications of this observed behavior is the questionable possibility to compare the 2PA characteristics of different compounds based on the values reported in the literature. An example of another important consequence of this effect extends i.e. to the calculation of the dose necessary for killing the tumor cells in 2PA-based photodynamic therapy applications. The possible factors responsible for this contra-intuitive behavior are discussed and investigated. Finally, a reliable measurement protocol for comprehensive characterization of 2PA capability of different substances is proposed. Herewith an attempt to establish a standard method, which takes into account the concentration dependence, is made. This method provides means for faultless comparison of different compounds.

  6. A study of the relationship between gender/age and apparent diffusion coefficient values in spleen of healthy adults using diffusion-weighted magnetic resonance imaging

    PubMed Central

    Nazarlou, Ali Kiani; Abdolmohammadi, Jamil

    2015-01-01

    Background: Diffusion-weighted magnetic resonance imaging (DWI) systems are very effective in detecting strokes, and they also have shown significant promise in the detection of fibrosis and cirrhosis of the liver. However, such systems have the disadvantages of poor reproducibility and noise, which can diminish the accuracy of the apparent diffusion coefficients (ADCs) provided by the DWI process. The main aim of this study was to determine the relationship between the age and gender of healthy adults in terms of the ADC values of the spleen measured by DWI. Methods: Sixty-nine subjects selected for this study from people who were referred to the Tabesh Medical Imaging Center in Tabriz, Iran, in 2013. Each subject underwent echo-planar DWI for her or his ADC values of the spleen with b-values of 50, 400, and 800 s/mm2, and the resulting ADC values were evaluated. Results: No significant differences were observed in ADC values of the spleen among the female and male participants or those from various ages (P>0.05). Conclusions: Based on the findings of this study, it was concluded that the effect of age and gender on the spleen’s ADC values can be omitted from the spleen-diagnosis procedure. In other words, the spleen’s ADC values are not related to the age or the gender of healthy adults. PMID:26052412

  7. Coronal Diffusion-weighted Magnetic Resonance Imaging of the Kidney: Agreement with Axial Diffusion-weighted Magnetic Imaging in Terms of Apparent Diffusion Coefficient Values

    PubMed Central

    Wang, Hai-Yi; Wang, Jia; Tang, Ye-Huan; Ye, Hui-Yi; Ma, Lin

    2015-01-01

    Background: Coronal diffusion-weighted magnetic resonance imaging (DW-MRI) and apparent diffusion coefficient (ADC) values have gradually become applied (following conventional axial DW-MRI) in the renal analysis. To explore whether data obtained using coronal DW-MRI are comparable with those derived using axial DW-MRI, this preliminary study sought to assess the agreement in renal ADC values between coronal DW-MRI and axial DW-MRI. Methods: Thirty-four healthy volunteers were enrolled in the study; written consents were obtained. All subjects underwent respiratory-triggered axial and coronal DW-MRI using a 1.5-MR system with b values of 0 and 800 s/mm2. The signal-to-noise ratios (SNRs) of the two DW-MRI sequences were measured and statistically compared using the paired t-test. The extent of agreement of ADC values of the upper pole, mid-pole, and lower pole of the kidney; the mean ADC values of the left kidney and right kidney; and the mean ADC values of the bilateral kidneys were evaluated via calculation of intraclass correlation coefficients (ICCs) or Bland–Altman method between the two DW-MRI sequences. Results: The SNR of coronal DW-MR images was statistically inferior to that of axial DW-MR images (P < 0.001). The ICCs of the ADC values of each region of interest, and the mean ADC values of bilateral kidneys, between the two sequences, were greater than 0.5, and the mean ADCs of the bilateral kidneys demonstrated the highest ICC (0.869; 95% confidence interval: 0.739–0.935). In addition, 94.1% (32/34), 94.1% (32/34), and 97.1% (31/34) of the ADC bias was inside the limits of agreement in terms of the mean ADC values of the left kidneys, right kidneys, and bilateral kidneys when coronal and axial DWI-MRI were compared. Conclusions: ADC values derived using coronal DW-MRI exhibited moderate-to-good agreement to those of axial DW-MRI, rendering the former an additional useful DW-MRI method, and causing the ADC values derived using the two types of DW

  8. Development of singlet oxygen absorption capacity (SOAC) assay method. 2. Measurements of the SOAC values for carotenoids and food extracts.

    PubMed

    Aizawa, Koichi; Iwasaki, Yuko; Ouchi, Aya; Inakuma, Takahiro; Nagaoka, Shin-ichi; Terao, Junji; Mukai, Kazuo

    2011-04-27

    Recently a new assay method that can quantify the singlet oxygen absorption capacity (SOAC) of antioxidants was proposed. In the present work, kinetic study of the reaction of singlet oxygen ((1)O(2)) with carotenoids and vegetable extracts has been performed in ethanol/chloroform/D(2)O (50:50:1, v/v/v) solution at 35 °C. Measurements of the second-order rate constants (k(Q)(S)) and the SOAC values were performed for eight kinds of carotenoids and three kinds of vegetable extracts (red paprika, carrot, and tomato). Furthermore, measurements of the concentrations of the carotenoids included in vegetable extracts were performed, using a HPLC technique. From the results, it has been clarified that the total (1)O(2)-quenching activity (that is, the SOAC value) for vegetable extracts may be explained as the sum of the product {Σ k(Q)(Car-i)(S) [Car-i](i)} of the rate constant (k(Q)(Car-i)(S)) and the concentration ([Car (i)]) of carotenoids included in vegetable extracts. PMID:21395214

  9. Nutritional value of protein hydrolysis products (oligopeptides and free amino acids) as a consequence of absorption and metabolism kinetics

    NASA Technical Reports Server (NTRS)

    Rerat, A.

    1995-01-01

    When pigs were submitted to duodenal infusion of solutions containing a large percentage of small peptides (PEP) or free amino acids with the same pattern (AAL) amino acids appear in the portal blood more rapidly and more uniformly after infusion of PEP then after infusion of AAL, with the notable exception of methionine for which the opposite was true. These differences were lowered when a carbohydrate (maltose dextrin) was present in the solution, but nevertheless remained significant for the first hour after the infusion. The long-term (8-hour) uptake of free amino acids into the liver and the peripheral tissues differed in profile according to the nature of the duodenal infusion. Peripheral uptake was appreciably less well balanced after infusion of free amino acids (deficiency of threonine and phenylalanine) than after infusion of small peptides (deficiency of methionine). Accordingly, in the rat, under conditions of discontinuous enteral nutrition the mixture of small peptides was of greater nutritive value than the mixture of free amino acids. It thus appears that the absorption kinetics which results in important variations in the temporal distribution of free amino acids in the tissues may be at the origin of transitory imbalances in tissue amino acid uptake, and as a result of a lower nutritive value.

  10. WE-G-18C-02: Estimation of Optimal B-Value Set for Obtaining Apparent Diffusion Coefficient Free From Perfusion in Non-Small Cell Lung Cancer

    SciTech Connect

    Karki, K; Hugo, G; Ford, J; Saraiya, S; Weiss, E; Olsen, K; Groves, R

    2014-06-15

    Purpose: Diffusion-weighted MRI (DW-MRI) is increasingly being investigated for radiotherapy planning and response assessment. Selection of a limited number of b-values in DW-MRI is important to keep geometrical variations low and imaging time short. We investigated various b-value sets to determine an optimal set for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in nonsmall cell lung cancer. Methods: Seven patients had 27 DW-MRI scans before and during radiotherapy in a 1.5T scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR=4500ms approximately, TE=74ms, pixel size=1.98X1.98mm{sub 2}, slice thickness=4–6mm and 7 axial slices. Diffusion gradients were applied to all three axes producing traceweighted images with eight b-values of 0–1000μs/μm{sup 2}. Monoexponential model ADC values using various b-value sets were compared to ADCIVIM using all b-values. To compare the relative noise in ADC maps, intra-scan coefficient of variation (CV) of active tumor volumes was computed. Results: ADCIVIM, perfusion coefficient and perfusion fraction for tumor volumes were in the range of 880-1622 μm{sup 2}/s, 8119-33834 μm{sup 2}/s and 0.104–0.349, respectively. ADC values using sets of 250, 800 and 1000; 250, 650 and 1000; and 250–1000μs/μm{sup 2} only were not significantly different from ADCIVIM(p>0.05, paired t-test). Error in ADC values for 0–1000, 50–1000, 100–1000, 250–1000, 500–1000, and three b-value sets- 250, 500 and 1000; 250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2} were 15.0, 9.4, 5.6, 1.4, 11.7, 3.7, 2.0 and 0.2% relative to the reference-standard ADCIVIM, respectively. Mean intrascan CV was 20.2, 20.9, 21.9, 24.9, 32.6, 25.8, 25.4 and 24.8%, respectively, whereas that for ADCIVIM was 23.3%. Conclusion: ADC values of two 3 b-value sets

  11. Assessment of an extended dataset of in vitro human dermal absorption studies on pesticides to determine default values, opportunities for read-across and influence of dilution on absorption.

    PubMed

    Aggarwal, M; Fisher, P; Hüser, A; Kluxen, F M; Parr-Dobrzanski, R; Soufi, M; Strupp, C; Wiemann, C; Billington, R

    2015-06-01

    Dermal absorption is a key parameter in non-dietary human safety assessments for agrochemicals. Conservative default values and other criteria in the EFSA guidance have substantially increased generation of product-specific in vitro data and in some cases, in vivo data. Therefore, data from 190 GLP- and OECD guideline-compliant human in vitro dermal absorption studies were published, suggesting EFSA defaults and criteria should be revised (Aggarwal et al., 2014). This follow-up article presents data from an additional 171 studies and also the combined dataset. Collectively, the data provide consistent and compelling evidence for revision of EFSA's guidance. This assessment covers 152 agrochemicals, 19 formulation types and representative ranges of spray concentrations. The analysis used EFSA's worst-case dermal absorption definition (i.e., an entire skin residue, except for surface layers of stratum corneum, is absorbed). It confirmed previously proposed default values of 6% for liquid and 2% for solid concentrates, irrespective of active substance loading, and 30% for all spray dilutions, irrespective of formulation type. For concentrates, absorption from solvent-based formulations provided reliable read-across for other formulation types, as did water-based products for solid concentrates. The combined dataset confirmed that absorption does not increase linearly beyond a 5-fold increase in dilution. Finally, despite using EFSA's worst-case definition for absorption, a rationale for routinely excluding the entire stratum corneum residue, and ideally the entire epidermal residue in in vitro studies, is presented. PMID:25765508

  12. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  13. Gliding flight: drag and torque of a hawk and a falcon with straight and turned heads, and a lower value for the parasite drag coefficient.

    PubMed

    Tucker, V A

    2000-12-01

    Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously

  14. Tubo-Ovarian Abscess (with/without Pseudotumor Area) Mimicking Ovarian Malignancy: Role of Diffusion-Weighted MR Imaging with Apparent Diffusion Coefficient Values

    PubMed Central

    Wang, Tingting; Li, Wenhua; Wu, Xiangru; Yin, Bing; Chu, Caiting; Ding, Ming; Cui, Yanfen

    2016-01-01

    Objective To assess the added value of diffusion-weighted magnetic resonance imaging (DWI) with apparent diffusion coefficient (ADC) values compared to MRI, for characterizing the tubo-ovarian abscesses (TOA) mimicking ovarian malignancy. Materials and Methods Patients with TOA (or ovarian abscess alone; n = 34) or ovarian malignancy (n = 35) who underwent DWI and MRI were retrospectively reviewed. The signal intensity of cystic and solid component of TOAs and ovarian malignant tumors on DWI and the corresponding ADC values were evaluated, as well as clinical characteristics, morphological features, MRI findings were comparatively analyzed. Receiver operating characteristic (ROC) curve analysis based on logistic regression was applied to identify different imaging characteristics between the two patient groups and assess the predictive value of combination diagnosis with area under the curve (AUC) analysis. Results The mean ADC value of the cystic component in TOA was significantly lower than in malignant tumors (1.04 ± 0 .41 × 10−3 mm2/s vs. 2.42 ± 0.38 × 10−3 mm2/s; p < 0.001). The mean ADC value of the enhanced solid component in 26 TOAs was 1.43 ± 0.16×10−3mm2/s, and 46.2% (12 TOAs; pseudotumor areas) showed significantly higher signal intensity on DW-MRI than in ovarian malignancy (mean ADC value 1.44 ± 0.20×10−3 mm2/s vs.1.18 ± 0.36 × 10−3 mm2/s; p = 0.043). The combination diagnosis of ADC value and dilated tubal structure achieved the best AUC of 0.996. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of MRI vs. DWI with ADC values for predicting TOA were 47.1%, 91.4%, 84.2%, 64%, and 69.6% vs. 100%, 97.1%, 97.1%, 100%, and 98.6%, respectively. Conclusions DW-MRI is superior to MRI in the assessment of TOA mimicking ovarian malignancy, and the ADC values aid in discriminating the pseudotumor area of TOA from the solid portion of ovarian malignancy. PMID:26894926

  15. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  16. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  17. Dual-energy X-ray analysis using synchrotron computed tomography at 35 and 60 keV for the estimation of photon interaction coefficients describing attenuation and energy absorption.

    PubMed

    Midgley, Stewart; Schleich, Nanette

    2015-05-01

    A novel method for dual-energy X-ray analysis (DEXA) is tested using measurements of the X-ray linear attenuation coefficient μ. The key is a mathematical model that describes elemental cross sections using a polynomial in atomic number. The model is combined with the mixture rule to describe μ for materials, using the same polynomial coefficients. Materials are characterized by their electron density Ne and statistical moments Rk describing their distribution of elements, analogous to the concept of effective atomic number. In an experiment with materials of known density and composition, measurements of μ are written as a system of linear simultaneous equations, which is solved for the polynomial coefficients. DEXA itself involves computed tomography (CT) scans at two energies to provide a system of non-linear simultaneous equations that are solved for Ne and the fourth statistical moment R4. Results are presented for phantoms containing dilute salt solutions and for a biological specimen. The experiment identifies 1% systematic errors in the CT measurements, arising from third-harmonic radiation, and 20-30% noise, which is reduced to 3-5% by pre-processing with the median filter and careful choice of reconstruction parameters. DEXA accuracy is quantified for the phantom as the mean absolute differences for Ne and R4: 0.8% and 1.0% for soft tissue and 1.2% and 0.8% for bone-like samples, respectively. The DEXA results for the biological specimen are combined with model coefficients obtained from the tabulations to predict μ and the mass energy absorption coefficient at energies of 10 keV to 20 MeV. PMID:25931101

  18. Comparison of absorption after inhalation and instillation of uranium octoxide.

    PubMed

    Pellow, P G D; Hodgson, S A; Hodgson, A; Rance, E; Ellender, M; Guilmette, R A; Stradling, G N

    2003-01-01

    Values for the absorption parameters were compared after inhalation or intratracheal instillation of 1.5 microm mass median aerodynamic diameter (MMAD) 233U3O8 particles into the lungs of HMT strain rats. The two sets of parameter values were similar, as were the calculated dose coefficients and predicted biokinetics for workers. Hence the inhalation and instillation techniques can probably both be used to generate values of the absorption parameters for U3O8. PMID:14526937

  19. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-05-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  20. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  1. Apparent Diffusion Coefficient Values of the Benign Central Zone of the Prostate: Comparison With Low- and High-Grade Prostate Cancer

    PubMed Central

    Gupta, Rajan T.; Kauffman, Christopher R.; Garcia-Reyes, Kirema; Palmeri, Mark L.; Madden, John F.; Polascik, Thomas J.; Rosenkrantz, Andrew B.

    2016-01-01

    Objective The apparent diffusion Coefficient (ADC) values for benign central zone (CZ) of the prostate were compared with ADC values of benign periphral zone (PZ), benign transition zone (TZ), and prostate cancer, using histopathologic findings from radical prostatectomy as the reference standard. Materials and Methods The study included 27 patients with prostate cancer (mean [± SD] age, 60.0 ± 7.6 years) who had 3-T endorectal coil MRI of the prostate performed before undergoing prostatectomy with whole-mount histopathologic assessment. Mean ADC values were recorded from the ROI within the index tumor and within benign CZ, PZ, and TZ, with the use of histopathologic findings as the reference standard. ADC values of the groups were compared using paired t tests and ROC curve analysis. Results The ADC of benign CZ in the right (1138 ± 123 × 10−6 mm2/s) and left (1166 ± 141 × 10−6 mm2/s) lobes was not significantly different (p = 0.217). However, the ADC of benign CZ (1154 ± 129 × 10−6 mm2/s) was significantly lower (p < 0.001) than the ADCs of benign PZ (1579 ± 197 × 10−6 mm2/s) and benign TZ (1429 ± 180 × 10−6 mm2/s). Although the ADC of index tumors (1042 ± 134 × 10−6 mm2/s) was significantly lower (p = 0.002) than the ADC of benign CZ there was no significant difference (p = 0.225) between benign CZ and tumors with a Gleason score of 6 (1119 ± 87 × 10−6 mm2/s). In 22.2% of patients (6/27), including five patients who had tumors with a Gleason score greater than 6, the ADC was lower in benign CZ than in the index tumor. The AUC of ADC for the differentiation of benign CZ from index tumors was 72.4% (sensitivity, 70.4%; specificity, 51.9%), and the AUC of ADC for differentiation from tumors with a Gleason score greater than 6 was 76.7% (sensitivity, 75.0%; specificity, 65.0%). Conclusion The ADC of benign CZ is lower than the ADC of other zones of the prostate and overlaps with the ADC of prostate cancer tissue, including high

  2. Manganese dioxide causes spurious gold values in flame atomic-absorption readings from HBr-Br2 digestions

    USGS Publications Warehouse

    Campbell, W.L.

    1981-01-01

    False readings, apparently caused by the presence of high concentrations of manganese dioxide, have been observed in our current flame atomic-absorption procedure for the determination of gold. After a hydrobromic acid (HBr)-bromine (Br2) leach, simply heating the sample to boiling to remove excess Br2 prior to extraction with methyl-isobutyl-ketone (MIBK) eliminates these false readings. ?? 1981.

  3. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

    PubMed

    Teplukhin, Alexander; Babikov, Dmitri

    2016-07-28

    Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

  4. Sensitivity of room acoustic parameters to changes in scattering coefficients

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan; Wang, Lily M.

    2001-05-01

    This project uses the room acoustics computer modeling program, ODEON, to investigate the sensitivity of room acoustic parameters to changes in scattering coefficients. Particularly, the study is interested in determining if the results from certain room models are more sensitive to scattering coefficients than from other models, due to their geometry or absorption characteristics. If so, how can one quantify a model's susceptibility to being sensitive to scattering? Various models of three real spaces in Omaha, Nebraska are tested. The predicted reverberation, clarity, and spaciousness parameters are compared at various receiver locations, while the scattering coefficient of all surfaces is varied from 0 to 0.1, 0.3, 0.5, and 0.8. The resulting data are analyzed by frequency according to the (1) average absorption of the room; (2) magnitude variation of absorption within the room; (3) spatial distribution of absorption within the room; and (4) level of model detail. Initial results indicate that parameters studied may show more sensitivity to scattering coefficients in models that have a wider range of absorption values, more disparate distribution of absorption, and lower detail level. Various schemes that include these aspects are proposed for computing a model's sensitivity to changes in scattering.

  5. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  6. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  7. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  8. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  9. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  10. Infrared absorption modeling of VOx microbolometer

    NASA Astrophysics Data System (ADS)

    Aggoun, Mehdi; Jiang, Jianliang; Khan, M. K.

    2015-08-01

    The absorption model plays an important role in the design of the microbolometer structure regarding the determination of the optimum thickness of the structure layers. Moreover, the infrared absorption depends on the wavelength of the radiation and the material properties. In this paper, we presented an Infrared absorption model with absorption coefficient of 96% at maximum absorption wavelength of 9.89μm which is very close to the expected value 10μm. This model was established by using MATLAB so that the simulation of the infrared absorption of the VOx microbolometer could be accomplished. In order to confirm the role of this modeling in the design of the device structure, comparison with other structures is also studied in this paper.

  11. Geometric absorption of electromagnetic angular momentum

    NASA Astrophysics Data System (ADS)

    Konz, C.; Benford, Gregory

    2003-10-01

    Circularly polarized electromagnetic fields carry both energy and angular momentum. We investigate the conditions under which a circularly polarized wave field transfers angular momentum to a perfectly conducting macroscopic object, using exact electromagnetic wave theory in a steady-state calculation. We find that axisymmetric perfect conductors cannot absorb or radiate angular momentum when illuminated. However, any asymmetry allows absorption. A rigorous, steady-state solution of the boundary value problem for the reflection from a perfectly conducting infinite wedge shows that waves convey angular momentum at the edges of asymmetries. Conductors can also radiate angular momentum, so their geometric absorption coefficient for angular momentum can be negative. Such absorption or radiation depends solely on the specific geometry of the conductor. The geometric absorption coefficient can be as high as 0.8, and the coefficient for radiation can be -0.4, larger than typical material absorption coefficients. We apply the results to recent experiments which spun roof-shaped aluminum sheets with polarized microwave beams. Applications of geometric, instead of material, absorption can be quite varied. Though experiments testing these ideas will be simpler at microwavelengths, the ideas work for optical ones as well.

  12. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  13. Simultaneous [18F]FDG-PET/MRI: Correlation of Apparent Diffusion Coefficient (ADC) and Standardized Uptake Value (SUV) in Primary and Recurrent Cervical Cancer

    PubMed Central

    Bremicker, K.; Höckel, M.; Barthel, H.; Kluge, R.; Kahn, T.; Sabri, O.; Stumpp, P.

    2015-01-01

    Objectives Previous non–simultaneous PET/MR studies have shown heterogeneous results about the correlation between standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs). The aim of this study was to investigate correlations in patients with primary and recurrent tumors using a simultaneous PET/MRI system which could lead to a better understanding of tumor biology and might play a role in early response assessment. Methods We included 31 patients with histologically confirmed primary (n = 14) or recurrent cervical cancer (n = 17) who underwent simultaneous whole-body 18F-FDG-PET/MRI comprising DWI. Image analysis was performed by a radiologist and a nuclear physician who identified tumor margins and quantified ADC and SUV. Pearson correlations were calculated to investigate the association between ADC and SUV. Results 92 lesions were detected. We found a significant inverse correlation between SUVmax and ADCmin (r = -0.532, p = 0.05) in primary tumors as well as in primary metastases (r = -0.362, p = 0.05) and between SUVmean and ADCmin (r = -0.403, p = 0.03). In recurrent local tumors we found correlations for SUVmax and ADCmin (r = -0.747, p = 0.002) and SUVmean and ADCmin (r = -0.773, p = 0.001). Associations for recurrent metastases were not significant (p>0.05). Conclusions Our study demonstrates the feasibility of fast and reliable measurement of SUV and ADC with simultaneous PET/MRI. In patients with cervical cancer we found significant inverse correlations for SUV and ADC which could play a major role for further tumor characterization and therapy decisions. PMID:26551527

  14. The emission coefficient of uranium plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.

  15. Development of singlet oxygen absorption capacity (SOAC) assay method. 3. Measurements of the SOAC values for phenolic antioxidants.

    PubMed

    Mukai, Kazuo; Ouchi, Aya; Takahashi, Shingo; Aizawa, Koichi; Inakuma, Takahiro; Terao, Junji; Nagaoka, Shin-ichi

    2012-08-15

    Measurements of the singlet oxygen ((1)O(2)) quenching rates (k(Q) (S)) and the relative singlet oxygen absortpion capacity (SOAC) values were performed for 16 phenolic antioxidants (tocopherol derivatives, ubiquinol-10, caffeic acids, and catechins) and vitamin C in ethanol/chloroform/D(2)O (50:50:1, v/v/v) solution at 35 °C. It has been clarified that the SOAC method is useful to evaluate the (1)O(2)-quenching activity of lipophilic and hydrophilic antioxidants having 5 orders of magnitude different rate constants from 1.38 × 10(10) M(-1) s(-1) for lycopene to 2.71 × 10(5) for ferulic acid. The logarithms of the k(Q) (S) and the SOAC values for phenolic antioxidants were found to correlate well with their peak oxidation potentials (E(p)); the antioxidants that have smaller E(p) values show higher reactivities. In previous works, measurements of the k(Q) (S) values for many phenolic antioxidants were performed in ethanol. Consequently, measurements of the k(Q) (S) and relative SOAC values were performed for eight carotenoids in ethanol to investigate the effect of solvent on the (1)O(2)-quenching rate. The k(Q) (S) values for phenolic antioxidants and carotenoids in ethanol were found to correlate linearly with the k(Q) (S) values in ethanol/chloroform/D(2)O solution with a gradient of 1.79, except for two catechins. As the relative rate constants (k(Q)(AO) (S)/k(Q)(α-Toc) (S)) of antioxidants (AO) are equal to the relative SOAC values, the SOAC values do not depend on the kinds of solvent used, if α-tocopherol is used as a standard compound. In fact, the SOAC values obtained for carotenoids in mixed solvent agreed well with the corresponding ones in ethanol. PMID:22823146

  16. Gold analysis by the gamma absorption technique.

    PubMed

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  17. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested. PMID:17759145

  18. Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+n-dodecane with 0.8-0.1-0.1 mass fraction.

    PubMed

    Bou-Ali, M M; Ahadi, A; Alonso de Mezquia, D; Galand, Q; Gebhardt, M; Khlybov, O; Köhler, W; Larrañaga, M; Legros, J C; Lyubimova, T; Mialdun, A; Ryzhkov, I; Saghir, M Z; Shevtsova, V; Van Vaerenbergh, S

    2015-04-01

    With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions. PMID:25916233

  19. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a).

    PubMed

    González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José

    2015-04-01

    CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under

  20. Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.

    PubMed

    Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K

    1981-02-20

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter. PMID:17740397

  1. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Charlson, R. J.; Radke, L. F.; Domonkos, S. K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10 to the minus 7 per meter at a wavelength of 0.55 micron, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter

  2. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    SciTech Connect

    Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  3. An unsteady-state method for determining overall coefficient of heat transfer (k-value) of insulated bodies at variable external temperatures

    NASA Astrophysics Data System (ADS)

    Gvozdenac, Dušan

    2015-02-01

    A method for determining k-value of insulated bodies at variable external temperatures is proposed, theoretically described and results of experimental verification are presented in this paper. Theoretical analyses include descriptions of both physical and mathematical models and definition of the extrapolation formula. The method is tested in laboratory conditions on a simple model of insulated chamber and compliance with all testing conditions prescribed by Agreement on Transport of Perishables. The advantage of this method in comparison to any other unsteady- or steady-state method is that it enables k-value determination out of the specialized test stations. This further makes it possible to carry out cheaper and more frequent k-value measurements/control in insulated bodies. Also, the proposed method can be used for testing the k-value of stationary insulated chambers which cannot be objectively tested by means of stationary methods.

  4. Determination of the hematocrit of human blood from the spectral values of the coefficients of extinction and small-angle scattering

    NASA Astrophysics Data System (ADS)

    Kugeiko, M. M.; Lisenko, S. A.

    2008-04-01

    An easily automated method for the determination of the hematocrit C V of human blood from the extinction and small-angle scattering coefficients measured at radiation wavelengths of 0.37, 0.76, and 0.98 μm of semiconductor laser sources is proposed. The method does not require the solution of inverse problems and a priori information on the refractive index of erythrocytes. The effects that the measurement errors of the optical characteristics of blood, the dispersion of the refractive index, and the variations in the parameters of the distribution function of erythrocytes have on the determination accuracy of C V are estimated. The possibility of determining C V of whole blood is demonstrated.

  5. X-ray absorption near-edge structure study on the configuration of Cu 2+ /histidine complexes at different pH values

    NASA Astrophysics Data System (ADS)

    Mei-Juan, Yu; Yu, Wang; Wei, Xu

    2016-04-01

    The local configurations around metal ions in metalloproteins are of great significance for understanding their biological functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxyl, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5. Project supported by the National Natural Science Foundation of China (Grant No. 11205186).

  6. Novel zinc(II)phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties

    NASA Astrophysics Data System (ADS)

    Kantar, Cihan; Mavi, Vildan; Baltaş, Nimet; İslamoğlu, Fatih; Şaşmaz, Selami

    2016-10-01

    Azo-containing schiff bases are well known and there are many studies about their various properties in literature. However, phthalocyanines bearing azo-containing schiff bases, their spectral, analytical and biological properties are unknown. Therefore, new zinc (II) phthalocyanines bearing azo-containing schiff base were synthesized and investigated to determine pKa values, absorption, emission, enzyme inhibition and photochemical properties. Emission spectra were reported and large Stokes shift values were determined for all compounds, indicating that all molecules exhibit excited state intramolecular proton transfer. These phthalocyanines were the first examples of phthalocyanine showing excited state intramolecular proton transfer. Singlet oxygen quantum yields of zinc (II) phthalocyanines were determined. pKa values and indicator properties of all compounds were investigated by potentiometry. All compounds were assayed for inhibitory activity against bovine milk xanthine oxidase and acetylcholinesterase enzyme in vitro. Compound 2 showed the high inhibitory effect against xanthine oxidase (IC50 = 0.24 ± 0.01 μM). However, phthalocyanine compounds did not show enzyme inhibitor behavior.

  7. Clinical value of dual-isotope fat absorption test system (FATS) using glycerol (/sup 125/I)trioleate and glycerol (/sup 75/Se)triether

    SciTech Connect

    Lembcke, B.; Loesler, A.C.; Caspary, W.F.; Schuernbrand, P.E.; Emrich, D.; Creutzfeldt, W.

    1986-08-01

    In order to delineate the clinical value of a dual-isotope fat absorption test system (FATS) using glycerol (/sup 75/Se)triether as lipid-phase marker and glycerol (/sup 125/I)trioleate as the test lipid, fecal isotope ratios from single stools (and a 72-hr stool homogenate) were compared to quantitative fecal fat excretion. The study included 11 patients without and 24 patients with steatorrhea. With a figure of 0.8% as the upper limit of normal, the test was a reliable indicator of steatorrhea with 87.5% sensitivity and 81.8% specificity; efficiency was 85.7%. Related to a prevalence of steatorrhea of 45.9% as the mean value of 1269 consecutive 72-hr specimens investigated for steatorrhea during 1978-1982, the positive (negative) predictive value of the FATS is 80.3% (87.2%). With 2% as the upper limit of normal, no false positive results ensued. It is concluded that a two-step interpretation of the FATS (0.8% limit and 2% limit) may be regarded a valid qualitative index for steatorrhea. The FATS isotope ratio using single stools correlated well with FATS ratios in the 72-hr stool homogenates (r = 0.97). FATS therefore allows a convenient estimate of steatorrhea from measuring single stools. As a quantitative measure of fecal fat excretion, the FATS is unreliable.

  8. New trans-stilbene derivatives with large two-photon absorption cross-section and non-linear optical susceptibility values--a theoretical investigation.

    PubMed

    Kundi, Varun; Thankachan, Pompozhi Protasis

    2015-05-14

    A detailed theoretical study of linear and non-linear optical susceptibilities (NLOS), one- and two-photon absorption (OPA and TPA) properties for a series of push-pull trans-stilbene (TSB) derivatives with introduction of different electron donor (D) and acceptor (A) groups on either side of the TSB ring system is presented. The objective of the work is to design new TSB derivatives with large TPA cross-section values and to explore their linear and non-linear optical susceptibilities, OPA and TPA properties. We have used linear and quadratic response theory methods and CAM-B3LYP functional in conjunction with the 6-31+G* basis set for all property calculations. We have explained the results of the first hyperpolarizability and TP transition probability using two-state model (2SM) calculations, the results of which are in excellent agreement with the response theory methods. The TP tensor elements have been analysed to explain the large TP activity of molecules. Orbitals involved in the transition processes have been studied both qualitatively (molecular orbital pictures) and quantitatively (Λ-values) in order to explain the nature of charge transfer in different TSB derivatives. The study reveals that the novel derivatives TSBD-10, TSBD-11, TSBD-12 and TSBD-13 have large non-linear optical susceptibilities and TPA cross-section values, the largest being found for TSBD-13 (5560 G.M.). PMID:25894609

  9. Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs

    NASA Astrophysics Data System (ADS)

    Khoshbin, Fatemeh; Bonakdari, Hossein; Hamed Ashraf Talesh, Seyed; Ebtehaj, Isa; Zaji, Amir Hossein; Azimi, Hamed

    2016-06-01

    In the present article, the adaptive neuro-fuzzy inference system (ANFIS) is employed to model the discharge coefficient in rectangular sharp-crested side weirs. The genetic algorithm (GA) is used for the optimum selection of membership functions, while the singular value decomposition (SVD) method helps in computing the linear parameters of the ANFIS results section (GA/SVD-ANFIS). The effect of each dimensionless parameter on discharge coefficient prediction is examined in five different models to conduct sensitivity analysis by applying the above-mentioned dimensionless parameters. Two different sets of experimental data are utilized to examine the models and obtain the best model. The study results indicate that the model designed through GA/SVD-ANFIS predicts the discharge coefficient with a good level of accuracy (mean absolute percentage error = 3.362 and root mean square error = 0.027). Moreover, comparing this method with existing equations and the multi-layer perceptron-artificial neural network (MLP-ANN) indicates that the GA/SVD-ANFIS method has superior performance in simulating the discharge coefficient of side weirs.

  10. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of

  11. Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Hosseinpour, Parinaz; Soltani-Vala, Ali; Barvestani, Jamal

    2016-06-01

    In this paper, the influence of impurity parameters on the electron energy spectrum and absorption coefficients in a parabolic quantum dot and in the presence of Rashba spin-orbit interaction subjected to a perpendicular magnetic field is studied. The impurity potential is approximated by a Gaussian form. We have shown that in the both cases of a repulsive and attractive Gaussian impurity, the absorption coefficients are strongly affected by the decay length. These coefficients show blue (red) shift as the decay length of repulsive (attractive) impurity is increased. The dependence of the absorption coefficients on the impurity position is also examined for different polarizations. Our results show that the absorption coefficient has local maximum (minimum) for a given value of impurity position for Y-polarized (X-polarized) light.

  12. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  13. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  14. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    SciTech Connect

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-03-15

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH.

  15. Quadrature formulas for Fourier coefficients

    NASA Astrophysics Data System (ADS)

    Bojanov, Borislav; Petrova, Guergana

    2009-09-01

    We consider quadrature formulas of high degree of precision for the computation of the Fourier coefficients in expansions of functions with respect to a system of orthogonal polynomials. In particular, we show the uniqueness of a multiple node formula for the Fourier-Tchebycheff coefficients given by Micchelli and Sharma and construct new Gaussian formulas for the Fourier coefficients of a function, based on the values of the function and its derivatives.

  16. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  17. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  18. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  19. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J.; Berger, Andrew J.; Cerussi, Albert E.; Bevilacqua, Frederic; Jakubowski, Dorota

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  20. Free-free absorption of infrared radiation in collisions of electrons with neutral rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    A relationship between the inverse bremsstrahlung absorption cross section and the electron neutral momentum transfer cross section has been utilized to determine the infrared free-free continuum absorption coefficient for the negative ions of helium, neon, argon, krypton, and xenon. The values of the momentum transfer cross section for this calculation have been obtained from experimental measurements. Analytical expressions for the absorption coefficient have also been developed. From the results of this calculation, it is possible to determine the absorption coefficient per unit electron density per neutral atom for temperatures in the range from 2500 to 25,000 K. The results are compared with those from tabulations of previous calculations and those computed from theoretical values of the phase shifts for the elastic scattering of electrons by neutral atoms.

  1. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  2. Light-induced changes in subband absorption in a-Si:H using photoluminescence absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, S. Q.; Taylor, P. C.; Nitta, S.

    1991-08-01

    We have used the photoluminescence (PL) generated in a thin-film sample of a-Si:H to probe low absorption levels by measuring the absorption of the PL as it travels down the length of the film in a waveguide mode. This technique, which we have called PL absorption spectroscopy of PLAS, allows the measurement of values of the absorption coefficient α down to about 0.1 cm-1. Because this technique probes the top and bottom surfaces of the a-Si:H sample, it is important to separate surface from bulk absorption mechanisms. An improved sample geometry has been employed to facilitate this separation. One sample consisted of an a-Si1-xNix:H/a-Si:H/ a-Si1-xNx:H/NiCr layered structure where the silicon nitride layers served as the cladding layers for the waveguide. In a second sample the a-Si:H layer was interrupted near the middle for two separate, thin (100 Å) layers of a-Si1-xNx:H in order to check for the importance of the absorption at the silicon/silicon nitride interfaces in these PLAS measurements. Changes in the below-gap absorption on light soaking were examined using irradiation from an Ar+ laser (5145 Å, ˜200 mW/cm2 for 5.5 hours at 300 K). The silicon/silicon nitride interface is responsible for an absorption which has a shoulder near 1.2 eV while the bulk a-Si:H absorption exhibits no such shoulder. The metastable, optically-induced increase in the below gap absorption appears to come entirely from the bulk of the a-Si:H. These low temperature PLAS measurements are compared with those obtained at 300 K by photothermal deflection spectroscopy.

  3. Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Herrmann, E.; Bucci, S.; Fierli, F.; Cairo, F.; Gysel, M.; Tillmann, R.; Größ, J.; Gobbi, G. P.; Di Liberto, L.; Di Donfrancesco, G.; Wiedensohler, A.; Weingartner, E.; Virtanen, A.; Mentel, T. F.; Baltensperger, U.

    2015-07-01

    Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50-800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are

  4. Apparatus for measurement of coefficient of friction

    NASA Technical Reports Server (NTRS)

    Slifka, A. J.; Siegwarth, J. D.; Sparks, L. L.; Chaudhuri, Dilip K.

    1990-01-01

    An apparatus designed to measure the coefficient of friction in certain controlled atmospheres is described. The coefficient of friction observed during high-load tests was nearly constant, with an average value of 0.56. This value is in general agreement with that found in the literature and also with the initial friction coefficient value of 0.67 measured during self-mated friction of 440C steel in an oxygen environment.

  5. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  6. Direct determination of absorption anisotropy in colloidal quantum rods

    NASA Astrophysics Data System (ADS)

    Kamal, John Sundar; Gomes, Raquel; Hens, Zeger; Karvar, Masoumeh; Neyts, Kristiaan; Compernolle, Sien; Vanhaecke, Frank

    2012-01-01

    We propose a direct method to determine absorption anisotropy of colloidal quantum rods. In this method, the rods are aligned in solution by using an alternating electric field and we measure simultaneously the resulting average change in absorption. We show that a frequency window for the electric field exists in which the change in absorbance as a function of field strength can be analyzed in terms of the quantum-rod dipole moment and the absorption coefficient for light that is polarized parallel or perpendicular to the long axis of the rod. The approach is verified by measuring the absorbance change of CdSe rods at 400 nm as a function of field strength, where we demonstrate excellent agreement between experiment and theory. This enables us to propose improved values for the CdSe quantum-rod extinction coefficient. Next, we analyze CdSe/CdS dot-in-rods and find that the absorption of the first exciton transition is fully anisotropic, with a vanishing absorption coefficient for light that is polarized perpendicularly to the long axis of the rods.

  7. Petawatt laser absorption bounded

    PubMed Central

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-01-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials. PMID:24938656

  8. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew C.; Wilks, Scott C.; Tabak, Max; Libby, Stephen B.; Baring, Matthew G.

    2014-06-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that f exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  9. Combined effects of scattering and absorption on laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2016-07-01

    Several variables may affect the local contrast values in laser speckle contrast imaging (LSCI), irrespective of relative motion. It has been suggested that the optical properties of the moving fluid and surrounding tissues can affect LSCI values. However, a detailed study of this has yet to be presented. In this work, we examined the combined effects of the reduced scattering and absorption coefficients on LSCI. This study employs fluid phantoms with different optical properties that were developed to mimic whole blood with varying hematocrit levels. These flow phantoms were imaged with an LSCI system developed for this study. The only variable parameter was the optical properties of the flowing fluid. A negative linear relationship was seen between the changes in contrast and changes in reduced scattering coefficient, absorption coefficient, and total attenuation coefficient. The change in contrast observed due to an increase in the scattering coefficient was greater than what was observed with an increase in the absorption coefficient. The results indicate that optical properties affect contrast values and that they should be considered in the interpretation of LSCI data.

  10. Measurement of plasma temperature and density using laser absorption

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.

    1973-01-01

    A laser radiation absorption technique, suitable for temporal measurement of the electron density, the temperature, or a simultaneous determination of both, in an LTE plasma, is discussed. The theoretical calculation of the absorption coefficient for a hydrogen plasma is outlined; some results are presented for visible wavelengths. Measurements of electron density and temperature are presented and shown to be in good agreement with those values obtained by other methods. Finally, the possible use of the argon ion laser for simultaneous electron density and temperature measurement is discussed, and the theoretical curves necessary for its application to hydrogen plasma diagnostics are shown.

  11. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  12. LIII subshell absorption jump ratio and jump factor of tantalum

    NASA Astrophysics Data System (ADS)

    Cengiz, Erhan; Dogan, Muhammet; Koksal, Oguz Kagan

    2013-04-01

    The LIII subshell absorption jump ratio and jump factor of tantalum have been calculated for the first time by the mass attenuation coefficients determined using narrow transmission geometry, primary source (241Am annular radioisotope source) and secondary source targets (Ni, Cu, Zn, Ga, As, Tb, Ho, Er, Tm, Yb, Cu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi). The obtained results have been compared with theoretical values. They are in good agreement with each other.

  13. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  14. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  15. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  16. An evaluation of energy-independent heavy ion transport coefficient approximations.

    PubMed

    Townsend, L W; Wilson, J W

    1988-04-01

    Using a one-dimensional transport theory for laboratory heavy ion propagation, evaluations of typical energy-independent transport coefficient approximations are made by comparing theoretical depth-dose predictions to published experimental values for incident 670 MeV/nucleon 20Ne beams in water. Results are presented for cases where the input nuclear absorption cross sections, or input fragmentation parameters, or both, are fixed. PMID:3350661

  17. Visible absorption spectrum of liquid ethylene

    PubMed Central

    Nelson, Edward T.; Patel, C. Kumar N.

    1981-01-01

    The visible absorption spectrum of liquid ethylene at ≈ 108 K from 5500 Å to 7200 Å was measured by using a pulsed tunable dye laser, immersed-transducer, gated-detection opto-acoustic spectroscopy technique. The absorption features show the strongest band with an absorption coefficient of ≈2 × 10-2 cm-1 and the weakest band with an absorption coefficient of ≈1 × 10-4 cm-1. Proposed assignments of the observed absorption peaks involve combinations of overtones of local and normal modes of vibration of ethylene. PMID:16592978

  18. Determining the Gruneisen coefficient for liquids using the PAZ-scan technique

    NASA Astrophysics Data System (ADS)

    Dantiste, Olivier A.

    Measurement of Gruneisen coefficient is utterly important in developing efficient molecular photoacoustic (PA) contrast agents. It is one of the two parameters that describes how efficient a molecule is in transforming optical energy into sound, the other being absorption coefficient. Using the PAZ-scan technique, the Gruneisen coefficient was obtained for various samples and the values are compared with standard techniques. In a PAZ-scan, the sample is translated through the path of a focused laser beam in small steps while the generated PA signal is recorded. The incident intensity is optimum at the focal point and decreases gradually on either side of the focus. As such, the absorption and the PA signal varies according to the sample properties. Therefore at positions away from the focal point, the incident intensities are weak and the PA signal varies linearly with intensity. A plot of the PA signal versus the intensity is used to obtain the Gruneisen coefficient. Using this technique, the Gruneisen coefficients for crystal violet in two different solvents, food coloring dyes that are dissolved in water were determined. Results show that the linear part of the PAZ-scan can be used to determine the Gruneisen coefficient for liquids.

  19. Changes in scattering and absorption during curing of denta-resin composites: silorane and nanocomposite

    NASA Astrophysics Data System (ADS)

    del Mar Pérez, Maria; Ghinea, Razvan; Ionescu, Ana-Maria; de la Cruz Cardona, Juan

    2011-05-01

    Photocured polymers are widely used in dental applications. The optical properties of the dental composites change during curing; the appearance of the composites also changes. Recently, a new silorane-based composite resin and dental nanocomposite have been introduced. However, research regarding the effect of the silorane monomers or the size filler on appearance after curing of the resin composite is limited. This work aims to examine the optical properties of silorane-based composite and nanocomposite, in terms of scattering and absorption during curing. Six dimethacrylate-based dental resin composite (five universal and one nanocomposite) and one silorane-based dental resin composite (all shades A2 and T) were studied. The curing irradiance was 1100mW/cm2. The spectral reflectance of 1mm thick composite samples against white and black backgrounds were measured both before and after curing, and were converted to scattering and absorption coefficients using the Kubelka-Munk Theory. Both for pre and post-curing dental resin composites, the Albedo coefficient (K/S) shows that absorption prevails over the scattering for short wavelengths while for medium and large wavelengths, the scattering becomes more important, except for the T shade of the nanocomposite. After curing, the scattering and absorption values decreased for both types of materials. Changes in the absorption coefficient values should be caused by changes in the camphorquinone (CQ) absorption, whereas the scattering changes found should be directly attributable to index of refraction changes of the resin during curing.

  20. Constant optimization of oral drug absorption kinetics in the compartment absorption and transit models using particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Prabowo, K.; Sumaryada, T.; Kartono, A.

    2016-01-01

    Simulation of predictive modeling oral drug namely Compartment Absorption and Transit (CAT) using Particle Swarm Optimization (PSO) algorithm has been performed. This research will be carried out optimization of kinetic constant value oral drug use PSO algorithm to obtain the best global transport constant values for CAT equation that can predict drug concentration in plasma. The value of drug absorption rate constant for drug atenolol 25 mg is k10, k12, k21, k13 and k31 with each value is 0.8562, 0.3736, 0.2191, 0.4334 and 1.000 have been obtained thus raising the value of the coefficient of determination of a model CAT. From the experimental data plasma drug concentrations used are Atenolol, the coefficient of determination (R2) obtained from simulations atenolol 25 mg (PSO) was 81.72% and 99.46%. Better correlation between the dependent variable as the drug concentration and explanatory variables such as mass medication, plasma volume, and rate of absorption of the drug has increased in CAT models using PSO algorithm. Based on the results of CAT models fit charts can predict drug concentration in plasma.

  1. Evaluation of the use of partition coefficients and molecular surface properties as predictors of drug absorption: a provisional biopharmaceutical classification of the list of national essential medicines of Pakistan

    PubMed Central

    Shawahna, R.; Rahman, NU.

    2011-01-01

    Background and the purpose of the study Partition coefficients (log D and log P) and molecular surface area (PSA) are potential predictors of the intestinal permeability of drugs. The aim of this investigation was to evaluate and compare these intestinal permeability indicators. Methods Aqueous solubility data were obtained from literature or calculated using ACD/Labs and ALOGPS. Permeability data were predicted based on log P, log D at pH 6.0 (log D6.0), and PSA. Results Metoprolol's log P, log D6.0, and a PSA of <65 Å correctly predicted 55.9%, 50.8% and 54.2% of permeability classes, respectively. Labetalol's log P, log D6.0 and PSA correctly predicted 54.2%, 64.4% and 61% of permeability classes, respectively. Log D6.0 correlated well (81%) with Caco-2 permeability (Papp). Of the list of national essential medicines, 135 orally administered drugs were classified into biopharmaceutical classification system (BCS). Of these, 57 (42.2%), 28 (20.7%), 44 (32.6%), and 6 (4.4%) were class I, II, III and IV respectively. Conclusion Log D6.0 showed better prediction capability than log P. Metoprolol as permeability internal standard was more conservative than labetalol. PMID:22615645

  2. Calculation of dose coefficients for radionuclides produced in a spallation neutron source utilizing NUBASE and the evaluated nuclear structure data file databases.

    PubMed

    Shanahan, J; Eckerman, K; Arndt, A; Gold, C; Patton, P; Rudin, M; Brey, R; Gesell, T; Rusetski, V; Pagava, S

    2006-01-01

    Based on a mercury spallation neutron source target, the UNLV Transmutation Research Program has identified 72 radionuclides with a half-life greater than or equal to a minute as lacking an appropriate reference for a published dose coefficient according to existing radiation safety dose coefficient databases. A method was developed to compare the nuclear data presented in the ENSDF and NUBASE databases for these 72 radionuclides. Due to conflicting or lacking nuclear data in one or more of the databases, internal and external dose coefficient values have been calculated for only 14 radionuclides, which are not currently presented in Federal Guidance Reports Nos. 11, 12, and 13 or Publications 68 and 72 of the International Commission on Radiological Protection. Internal dose coefficient values are reported for inhalation and ingestion of 1 microm and 5 microm AMAD particulates along with the f1 values and absorption types for the adult worker. Internal dose coefficient values are also reported for inhalation and ingestion of 1 microm AMAD particulates as well as the f1 values and absorption types for members of the public. Additionally, external dose coefficient values for air submersion, exposure to contaminated ground surface, and exposure to soil contaminated to an infinite depth are also presented. PMID:16340608

  3. Diffuse reflection coefficient of a stratified sea.

    PubMed

    Haltrin, V I

    1999-02-20

    A differential equation of a Riccati type for the diffuse reflection coefficient of a stratified sea is proposed. For a homogeneous sea with arbitrary inherent optical properties this equation is solved analytically. For an inhomogeneous sea it is solved approximately for any arbitrary stratification. The resulting equation expresses the diffuse reflection coefficient of the sea through vertical profiles of absorption and backscattering coefficients, bottom albedo, and sea depth. The results of calculations with this equation are compared with Monte Carlo computations. It was found that the precision of this approach is in the range of 15%. PMID:18305694

  4. Coefficients for Interrater Agreement.

    ERIC Educational Resources Information Center

    Zegers, Frits E.

    1991-01-01

    The degree of agreement between two raters rating several objects for a single characteristic can be expressed through an association coefficient, such as the Pearson product-moment correlation. How to select an appropriate association coefficient, and the desirable properties and uses of a class of such coefficients--the Euclidean…

  5. Effect of Al mole fraction on decay profile of photoinduced IR absorption and the determination of the critical value of xc for AlxGa1-xAs

    NASA Astrophysics Data System (ADS)

    Wang, Wubao B.; Alfano, Robert R.; Szmyd, David M.; Nozik, Arthur J.

    1992-10-01

    The hot carrier dynamics in the satellite X valley in AlxGa1-xAs was measured by femtosecond pump-probe infrared absorption spectroscopy. The dynamics of the X valley electrons for samples with x = 0.439. The critical value of xc corresponding to the direct-to-indirect band gap transition for AlxGa1-xAs was determined to be 0.412 +/- 0.006.

  6. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Olmo, F. J.; Alados-Arboledas, L.

    Surface measurements of optical and physical aerosol properties were made at an urban site, Granada (Spain) (37.18°N, 3.58°W, 680 m a.s.l), during winter 2005-2006. Measurements included the aerosol scattering, σsca, and backscattering coefficients, σbsca, at three wavelengths (450, 550 and 700 nm) measured at low relative humidity (RH<50%) by an integrating nephelometer, the absorption coefficient at 670 nm, σabs, measured with a multi-angle absorption photometer, and aerosol size distribution in the 0.5-20 μm aerodynamic diameter range registered by an aerodynamic aerosol sizer (APS-3321, TSI). The hourly average of σsca (550 nm) ranged from 2 to 424 M m -1 with an average value of 84±62 M m -1 (±S.D.). The Angstrom exponent presented an average value of 1.8±0.3, suggesting a large fraction of fine particles at the site, an observation confirmed by aerosol size distribution measurements. The hourly average of σabs (670 nm) ranged from 1.7 to 120.5 M m -1 with an average value of 28±20 M m -1. The results indicate that the aerosol absorption coefficient in Granada was relatively large. The largest σsca value was associated with air masses that passed over heavily polluted European areas and local stagnation conditions. High absorbing aerosol level was obtained during dust transport from North Africa probably due to the presence of hematite. Based on the measured scattering and absorption coefficients, a very low average value of the single scattering albedo of 0.66±0.11 at 670 nm was calculated, suggesting that urban aerosols in this region contain a large fraction of absorbing material. A clear diurnal pattern was observed in scattering and absorption coefficients and particle concentrations with two local maxima occurring in early morning and late evening. This behavior can be explained in terms of local conditions that control the particle sources associated with traffic and upward mixing of the aerosol during the daytime development of a

  7. Optical absorption components of light-modulated absorption spectrum of CdS

    NASA Technical Reports Server (NTRS)

    Conway, E. J.; Long, E. R.

    1975-01-01

    The amplitude and decay coefficient of light-induced modulation of absorption (LIMA) was measured as a function of wavelength from 535 to 850 nm for single-crystal CdS. The decay coefficient exhibited a discontinuous resonance at 710 nm which was due to the overlap and cancellation of two opposing absorption changes. A method was developed to separate these opposing absorption changes using the measured decay coefficients. The discrete-level-to-band energy for one absorption change was found to be 1.64 eV. An improved model was developed which contains two associated levels in the band gap separated by 0.32 eV.

  8. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  9. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  10. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  11. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-28

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  12. Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material

    NASA Astrophysics Data System (ADS)

    Groenhuis, R. A. J.; ten Bosch, J. J.

    1981-05-01

    During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.

  13. Photothermal determination of optical coefficients of tissue phantoms using an optical fibre probe.

    PubMed

    Laufer, J G; Beard, P C; Walker, S P; Mills, T N

    2001-10-01

    The absorption and reduced scattering coefficients of turbid tissue phantoms have been determined from photothermal measurements made using an optical fibre probe. The thermal sensor was a thin polymer film positioned at the end of a multimode optical fibre. The film was illuminated by the output of a continuous-wave diode laser and formed the cavity of a low-finesse Fabry-Perot interferometer. Low energy laser pulses, launched into the fibre and passed through the film, produced an abrupt temperature rise in the target tissue, which was placed in contact with the film. The subsequent conduction of heat into the film caused a change in its optical thickness and hence the reflected intensity. The absorption and reduced scattering coefficients of gelatine tissue phantoms of known optical properties were determined from the measurements using a numerical model of photothermal signal generation and maximum a posteriori estimation. The determined optical coefficients were in good agreement with the known values. The results showed that the probe can be used for the determination of optical coefficients provided the thermal coefficients of the target tissue are known with low uncertainty. PMID:11686272

  14. Properties of multilayer optical systems formed by layers with small absorption in inclined falling of radiation

    NASA Astrophysics Data System (ADS)

    Karyaev, Konstantin V.; Zhoga, Eugene V.; Putilin, Eduard S.

    2000-10-01

    Multilayer dielectric systems find wide employment in different fields of science and engineering. Dielectric systems, formed by layers with small absorption, attract particular interest. Value of absorption, as a rule, depends on structure of the system (order and optical thickness of layers), angle of incidence and wavelength of radiation. Experiment shows that there are peaks of absorption on certain angles of incidence and wavelength, but behavior of absorption wasn't studied well. Model of a system, formed by isotropic layers settled on semiinfinite substate proved to be a good approximation for many of real optical systems. We studied pecularities in spectral dependencies of reflection, transmission and absorption coefficients in dependance on the angle of incidence and wavelength of falling radiation with flat wave front. Problem was solved on the basis of Maxwell equations and corresponding boundary conditions.

  15. Stratospheric measurements of continuous absorption near 2400 cm(-1).

    PubMed

    Rinsland, C P; Smith, M A; Russell Iii, J M; Park, J H; Farmer, C B

    1981-12-15

    Solar occultation spectra obtained with a balloon-borne interferometer have been used to study continuous absorption by N(2) and CO(2) near 2400 cm(-1) in the lower stratosphere. Synthetic continuum transmittances, calculated from published coefficients for far-wing absorption by CO(2) lines and for pressure-induced absorption by the fundamental band of N(2), are in fair agreement with the observed stratospheric values. The continuum close to the nu(3) R-branch band head of CO(2) is sensitive to the CO(2) far-wing line shape. Therefore, given highly accurate knowledge of the N(2) continuum from laboratory data, high-resolution stratospheric spectra provide a sensitive means for in situ testing of various air-broadened CO(2) line shapes at low temperatures. PMID:20372347

  16. Temperature dependence of HNO3 absorption in the 11.3-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Valero, F. P. J.; Goorvitch, D.; Boese, R. W.

    1981-01-01

    Laboratory spectra have been obtained for HNO3 with a Michelson-type Fourier transform interferometer using absorption cells with path lengths of 10.3, 25.5, and 49.8 cm at temperatures of 240, 248, 283, and 294 K. The measurements lead to a total band intensity value of 642 plus or minus 5% per sq cm amagat, which is a temperature independent value after the gas density correction has been made. However, the temperature dependence of the spectral absorption coefficients is apparent in the 885 kayser region.

  17. Diffusion coefficients of several aqueous alkanolamine solutions

    SciTech Connect

    Snijder, E.D.; Riele, M.J.M. te; Versteeg, G.F.; Swaaij, W.P.M. van . Dept. of Chemical Engineering)

    1993-07-01

    In absorption processes of acid gases (H[sub 2]S, CO[sub 2], COS) in alkanolamine solutions, diffusion coefficients are used for the calculation of the mass transfer rate. The Taylor dispersion technique was applied for the determination of diffusion coefficients of various systems. Experiments with the system KCl in water showed that the experimental setup provides accurate data. For the alkanolamines monoethanolamine (MEA), diethanolamine (DEA), methyldiethanolamine (MDEA), and di-2-propanolamine (DIPA), correlations for the diffusion coefficient as a function of temperature at different concentrations are given. A single relation for every amine has been derived which correlates the diffusion coefficients as a function of temperature and concentration. The temperature was varied between 298 and 348 K, and the concentration between 0 and 4000-5000 mol/m[sup 3]. Furthermore, a modified Stokes-Einstein relation is presented for the prediction of the diffusion coefficients in the alkanolamines in relation to the viscosity of the solvent and the diffusion coefficient at infinite dilution. The diffusion coefficients at low concentrations are compared with some available relations for the estimation of diffusion coefficients at infinite dilution, and it appears that the agreement is fairly good.

  18. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  19. Drug gastrointestinal absorption in rat: Strain and gender differences.

    PubMed

    Oltra-Noguera, Davinia; Mangas-Sanjuan, Victor; González-Álvarez, Isabel; Colon-Useche, Sarin; González-Álvarez, Marta; Bermejo, Marival

    2015-10-12

    Predictive animal models of intestinal drug absorption are essential tools in drug development to identify compounds with promising biopharmaceutical properties. In situ perfusion absorption studies are routinely used in the preclinical setting to screen drug candidates. The objective of this work is to explore the differences in magnitude and variability on intestinal absorption associated with rat strain and gender. Metoprolol and Verapamil absorption rate coefficients were determined using the in situ closed loop perfusion model in four strains of rats and in both genders. Strains used were Sprague-Dawley, Wistar-Han, Wistar-Unilever, Long-Evans and CD∗IGS. In the case of Metoprolol only CD∗IGS and Wistar Unilever showed differences between males and females. For Verapamil, Wistar Han and Sprague-Dawley strains do not show differences between male and female rats. That means that in these strains permeability data from male and female could be combined. In male rats, which are commonly used for permeability estimation, there were differences for Metoprolol permeability between Sprague-Dawley (with lower permeability values) and the other strains, while for Verapamil Sprague-Dawley and Wistar-Han showed the lower permeability values. In conclusion, the selection of rat's strain and gender for intestinal absorption experiments is a relevant element during study design and data from different strains may not be always comparable. PMID:26225436

  20. On computing Laplace's coefficients and their derivatives.

    NASA Astrophysics Data System (ADS)

    Gerasimov, I. A.; Vinnikov, E. L.

    The algorithm of computing Laplace's coefficients and their derivatives is proposed with application of recurrent relations. The A.G.M.-method is used for the calculation of values L0(0), L0(1). The FORTRAN-program corresponding to the algorithm is given. The precision control was provided with numerical integrating by Simpsons method. The behavior of Laplace's coefficients and their third derivatives whith varying indices K, n for fixed values of the α-parameter is presented graphically.

  1. Research on absorption test methods of Yb-doped double cladding fiber

    NASA Astrophysics Data System (ADS)

    Wang, Pupu; Li, Rundong; Rong, Liang; Ji, Wei; Gao, Yankun; Jiang, Cong; Gu, Shaoyi

    2016-01-01

    Absorption coefficient is a very useful feature for active fiber. In fiber laser system, the length of active fiber is chosen according to absorption coefficient. And the length of fiber can directly influence the feature of fiber laser. Therefore, how to obtain an accurate absorption coefficient is very important. Because fiber exists re-emission in typical absorption band pumped by power. It is difficult to accurately measure absorption coefficient. The absorption coefficients of Yb-doped double cladding fiber at 975 nm measured by several methods were compared. In conclusion, for the fibers with same length pumped by white light, the absorption coefficient is the highest when cutback only once. Meanwhile, when fibers with different length were measured by the same method, the absorption coefficient is inversely proportional to optical fiber length.

  2. Interpretation of Standardized Regression Coefficients in Multiple Regression.

    ERIC Educational Resources Information Center

    Thayer, Jerome D.

    The extent to which standardized regression coefficients (beta values) can be used to determine the importance of a variable in an equation was explored. The beta value and the part correlation coefficient--also called the semi-partial correlation coefficient and reported in squared form as the incremental "r squared"--were compared for variables…

  3. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  4. Petawatt laser absorption bounded

    NASA Astrophysics Data System (ADS)

    Levy, Matthew; Wilks, Scott; Tabak, Max; Libby, Stephen; Baring, Matthew

    2014-10-01

    The interaction of petawatt (1015 W) lasers with solid matter forms the basis for advanced scientific applications such as table-top relativistic particle accelerators, ultrafast charged particle imaging systems and fast ignition inertial confinement fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light f, and even the range of f is unknown. In this presentation, using a relativistic Rankine-Hugoniot-like analysis, we show how to derive the theoretical maximum and minimum of f. These boundaries constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. Close agreement is shown with several dozens of published experimental data points and simulation results, helping to confirm the theory. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  5. Optical properties of human maxillary sinus mucosa and estimation of Methylene Blue diffusion coefficient in the tissue

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Genina, Elina A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.; Chikina, Elena E.; Knyazev, Anatoly B.; Mareev, Oleg V.

    2005-06-01

    The optical properties of human maxillary sinus mucosa were measured in the wavelength range 400-2000 nm. The measurements were carried out using the commercially available spectrophotometer with the integrating sphere. The inverse adding-doubling method has been used to determine the absorption and reduced scattering coefficients from the measurements. Diffusion of Methylene Blue in the mucous tissue has been studied in vitro and value of the diffusion coefficient of Methylene Blue in the tissue has been estimated at 20°C as (4.77+/-2.9)x10-7 cm2/sec.

  6. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    NASA Astrophysics Data System (ADS)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  7. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  8. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar

    NASA Astrophysics Data System (ADS)

    Rosati, Bernadette; Herrmann, Erik; Bucci, Silvia; Fierli, Federico; Cairo, Francesco; Gysel, Martin; Tillmann, Ralf; Größ, Johannes; Gobbi, Gian Paolo; Di Liberto, Luca; Di Donfrancesco, Guido; Wiedensohler, Alfred; Weingartner, Ernest; Virtanen, Annele; Mentel, Thomas F.; Baltensperger, Urs

    2016-04-01

    Vertical profiles of aerosol particle optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ˜ 50 and 800 m above ground. Determined properties included the aerosol particle size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a single wavelength polarization diversity elastic lidar system provided estimates of aerosol extinction coefficients using the Klett method to accomplish the inversion of the signal, for a vertically resolved comparison between in situ and remote-sensing results. Note, however, that the comparison was for the most part done in the altitude range where the overlap function is incomplete and accordingly uncertainties are larger. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20 % was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 and 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ˜ 10:00 LT - local time) before the mixing layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ˜ 12:00 LT) the ML was fully developed, resulting in

  9. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  10. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  11. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  12. FXG mass attenuation coefficient evaluation for radiotherapy routine

    NASA Astrophysics Data System (ADS)

    Moreira, M. V.; de Almeida, A.; Costa, R. T.; Perles, L. A.

    2004-01-01

    The knowledge of a radioactive beam energy or quality is important in radiotherapy once it is correlated with the type, size, and localization of the tumor. One indicative of the radiation quality is the half-value-layer (HVL), the material thickness which reduces the beam intensity to half. The analysis of a treatment beam spectrum can be inferred through its homogeneity coefficient (HC, ratio between the first and the second HVL) that for values >= 0.7 has the indication to be adequate for treatments. Another important indicator of radiation quality is the mass absorption coefficient (cm2/g), related to the photons energies absorbed in a particular exposed material. Once that several materials can be used as radiation detectors for X and γ dosimetry, this work has the purpose to verify the ferrous Xylenol gelatin (FXG) material performance, through its μ/ρ behavior and compare it with the μ/ρ behavior for soft tissue. The X and γ energies where selected, in the energies normally used in radiotherapy and their spectra were evaluated using the HC coefficient. The μ/ρ, for the FXG material, were obtained experimentally and from simulation with X-COM and a developed routine using the GEANT4 Library. From the results from all μ/ρ values obtained for the FXG material, when compared to those from water, one can see similar behaviors, when one considers measurements for energies greater than 78.0 keV. These results indicate that, once the human body is composed with +/-80 % of water, the FXG for the energies used, could also be used as soft tissue simulator.

  13. Absorption measurements of very low quantities of graphite microfibers and nanofibers

    NASA Astrophysics Data System (ADS)

    Boergert, Michael

    2012-10-01

    In order to determine the absorption coefficients of graphite microfibers, a He-Ne laser incorporating a 2-D photoacoustic system was used. In this system particles were deposited through fluid suspension onto polycarbonate filters. One objective was to determine if the absorption coefficient of vapor-grown microfibers as well as of three size distributions of nanofibers could be measured in areal densities as low as a single fiber in a focused beam. Although measuring single vapor-grown microfibers was deemed not possible with this equipment, the mass density limit was approximately 20 ng/cm^2 for a beam of approximately 2100 microns in diameter, giving about 690 pg or several thousand fibers in the beam spot. However, if the beam were fully focused, it would have a diameter of approximately 310 microns, which would correspond to about 15 pg or approximately 100 particles in the beam. The absorption coefficient analysis was then extended to three size distributions of graphite nanotubes. The mass normalized absorption cross sections were determined from measurements of absorption vs. areal mass density on filters. Calibration was done by using the published value for soot.

  14. Spatial variability of absorption properties in Lake Balaton, Hungary

    NASA Astrophysics Data System (ADS)

    Riddick, C. A.; Hunter, P. D.; Tyler, A. N.; Vicente, V. M.; Groom, S.; Horváth, H.; Kovacs, A.; Preston, T.; Presing, M.

    2013-12-01

    In order to improve robustness of current remote sensing algorithms for lake monitoring, it is vital to understand the variability of inherent optical properties (IOPs) within a lake. In this study, absorption coefficients were measured in situ at 38 stations in Lake Balaton, Hungary, using a WET Labs AC-S and AC-9 and compared to concurrent absorption measurements by dual beam spectrophotometry in the laboratory. The spatial variability of bulk and chlorophyll-specific absorption coefficients was examined across 5 basins, demonstrating a gradient in total absorption corresponding to the trophic gradient. Our data suggests that sampling conditions had an impact on particulate absorption, affecting the proportion attributed to non-algal particles (aNAP), phytoplankton (aph) or color dissolved organic matter (aCDOM). The specific absorption of phytoplankton (a*ph) spectra showed a distinct peak in the UV portion of the spectra in Basins 3 and 4 (east), which may be due to the presence of phytoplankton photoprotective pigments to compensate for lower CDOM levels in these basins. In contrast to oceans, particulate attenuation (cp) had a weaker relationship to chlorophyll-a (R2=0.15) than to total suspended matter (R2=0.84), particularly the inorganic fraction. Additionally, the relative contribution of particulate scattering (bp) to attenuation was significantly higher in Lake Balaton (up to 85-99%) than that found in previous lacustrine studies. bp also demonstrated a gradient across the lake, where values increased as the water progressed from phytoplankton-dominated to mineral-dominated. These results provide knowledge of the heterogeneity of the IOPs within Lake Balaton, which is to be considered for the future improvement of bio-optical algorithms for constituent retrieval in inland waters.

  15. Temperature dependence of the radiative recombination coefficient in crystalline silicon from spectral photoluminescence

    SciTech Connect

    Nguyen, Hieu T. Macdonald, Daniel; Baker-Finch, Simeon C.

    2014-03-17

    The radiative recombination coefficient B(T) in crystalline silicon is determined for the temperature range 90–363 K, and in particular from 270 to 350 K with an interval of 10 K, where only sparse data are available at present. The band-band absorption coefficient established recently by Nguyen et al. [J. Appl. Phys. 115, 043710 (2014)] via photoluminescence spectrum measurements is employed to compute the values of B(T) at various temperatures. The results agree very well with literature data from Trupke et al. [J. Appl. Phys. 94, 4930 (2003).] We present a polynomial parameterization describing the temperature dependence of the product of B(T) and the square of the intrinsic carrier density. We also find that B(T) saturates at a near constant value at room temperature and above for silicon samples with relatively low free carrier densities.

  16. Contribution of particulate brown carbon to light absorption in the rural and urban Southeast US

    NASA Astrophysics Data System (ADS)

    Devi, J. Jai; Bergin, Michael H.; Mckenzie, Michael; Schauer, James J.; Weber, Rodney J.

    2016-07-01

    Measurements of wavelength dependent aerosol light absorption coefficients were carried out as part of the Southern Oxidant and Aerosol Study (SOAS) during the summer of 2013 to determine the contribution of light absorbing organic carbon (BrC) to total aerosol light absorption in a rural location (Centreville, AL) and an urban area (Atlanta, GA). The light absorption coefficients in the near UV and visible wavelengths were measured for both ambient air, as well as ambient air heated in a thermal denuder to 200 °C to remove the semi-volatile organic compounds. Atlanta measurements show dominance of semi-volatile brown carbon with an average absorption angstrom exponent (AAE) of 1.4 before heating and about 1.0 after heating. In urban Atlanta, a decrease of about ∼35% in the light absorption coefficient at 370 nm after heating indicates that light absorbing organic compounds are a substantial fraction of the light absorption budget. Furthermore, a considerable increase in the fraction of light absorption by the semi-volatile aerosol occurs during the daytime, likely linked with photochemistry. Measurements at rural Centerville, on the other hand, do not show any major change in AAE with values before and after heating of 0.99 and 0.98, respectively. Overall the results suggest that photochemical aged urban emissions result in the presence of light absorbing BrC, while at rural locations which are dominated by aged aerosol and local biogenic emissions (based on measurements of Angstrom exponents) BrC does not significantly contribute to light absorption.

  17. On the significant enhancement of the continuum-collision induced absorption in H2O+CO2 mixtures

    NASA Astrophysics Data System (ADS)

    Baranov, Yu. I.

    2016-05-01

    The IR spectra of water vapor-carbon dioxide mixtures as well as the spectra of pure gas samples have been recorded using a Fourier-transform infrared spectrometer at a resolution of 0.1 cm-1 in order to explore the effect of colliding CO2 and H2O molecules on their continuum absorptions. The sample temperatures were 294, 311, 325 and 339 K. Measurements have been conducted at several different water vapor partial pressures depending on the cell temperature. Carbon dioxide pressures were kept close to the three values of 103, 207 and 311 kPa (1.02, 2.04 and 3.07 atm). The path length used in the study was 100 m. It was established that, in the region around 1100 cm-1, the continuum absorption coefficient C H2 O + CO2 is about 20 times stronger than the water-nitrogen continuum absorption coefficient CH2O+N2. On the other hand, in the far wing region (2500 cm-1) of the ν3 CO2 fundamental band, the binary absorption coefficient CCO2+H2O appears to be about one order of magnitude stronger than the absorption coefficient CCO2+CO2 in pure carbon dioxide. The continuum interpretation and the main problem of molecular band shape formation are discussed in light of these experimental facts.

  18. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  19. Determination of LIII subshell absorption jump ratio and jump factor of wolfram

    NASA Astrophysics Data System (ADS)

    Cengiz, Erhan; Saritas, Nuriye

    2014-04-01

    The LIII subshell absorption jump ratio and jump factor of wolfram have been measured by two different methods. In the first method the mass attenuation coefficients have been obtained by narrow beam transmission geometry to calculate the LIII subshell absorption jump ratio and jump factor. In the latter these parameters have been derived from the LIII subshell X-ray production and the photoionization cross sections of the LIII subshell and higher subshells determined by Energy Dispersive X-ray Fluorescence technique and narrow beam transmission geometry, respectively. The results obtained by both methods have been compared with theoretical and experimental values. They are in good agreement with each other.

  20. Effect of interdiffusion on nonlinear intraband light absorption in Gaussian-shaped double quantum rings

    NASA Astrophysics Data System (ADS)

    Aziz-Aghchegala, V. L.; Mughnetsyan, V. N.; Kirakosyan, A. A.

    2015-06-01

    The effect of interdiffusion on electronic states and nonlinear light absorption in Gaussian-shaped double quantum rings is studied. The confining potential, electron energy spectrum, wave functions and absorption coefficient are obtained for different values of diffusion parameter. The effect of the variation of Gaussian parameters is considered as well. The selection rules for the intraband transitions in the cases of the light polarization parallel and perpendicular to the quantum rings' axis are obtained. It is shown that the interdiffusion can be used as an effective tool for the purposeful manipulation of the electric and optical properties of the considered structure.

  1. Reverse saturable absorption and nonlinear refraction of ultrathin ZrS3 nanobelts

    NASA Astrophysics Data System (ADS)

    Wu, Jia-Jing; Tao, You-Rong; Wang, Jia-Nan; Wu, Zhong-Yu; Fan, Lei; Wu, Xing-Cai

    2016-05-01

    The nonlinear optical (NLO) properties of a ZrS3 nanobelt were measured with a 6.5 ns pulse laser at 532 nm. Its optical response to the incident light exhibits good optical absorptive and refractive effects, with the nonlinear absorption coefficient β = 4.42 × 10-10 m W-1 and the nonlinear refraction coefficient γ = 5.86 × 10-17 m2 W-1 for the ZrS3 nanobelt in ethanol dispersions at an input energy of 34.25 μJ. In addition, the β values and γ values have dependence on input energy. Results show that the ZrS3 nanobelts have an excellent reverse saturable absorption (RSA) performance in nanosecond pulses, demonstrating that ZrS3 nanobelts are an extraordinarily promising novel optical power limiting material. Meanwhile, compared to the pure ZrS3, graphene oxide (GO) and reduced graphene oxide (RGO), composites (ZrS3/GRO) exhibit an enhanced nonlinear absorption response at the same input energy.The nonlinear optical (NLO) properties of a ZrS3 nanobelt were measured with a 6.5 ns pulse laser at 532 nm. Its optical response to the incident light exhibits good optical absorptive and refractive effects, with the nonlinear absorption coefficient β = 4.42 × 10-10 m W-1 and the nonlinear refraction coefficient γ = 5.86 × 10-17 m2 W-1 for the ZrS3 nanobelt in ethanol dispersions at an input energy of 34.25 μJ. In addition, the β values and γ values have dependence on input energy. Results show that the ZrS3 nanobelts have an excellent reverse saturable absorption (RSA) performance in nanosecond pulses, demonstrating that ZrS3 nanobelts are an extraordinarily promising novel optical power limiting material. Meanwhile, compared to the pure ZrS3, graphene oxide (GO) and reduced graphene oxide (RGO), composites (ZrS3/GRO) exhibit an enhanced nonlinear absorption response at the same input energy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09268j

  2. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  3. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  4. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Steenbergen, E. H.; Synowicki, R. A.; Zhang, Y.-H.; Johnson, S. R.

    2015-02-01

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm-1 as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  5. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    SciTech Connect

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in order to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.

  6. Percutaneous absorption of several chemicals, some pesticides included, in the red-winged blackbird

    USGS Publications Warehouse

    Rogers, J.G., Jr.; Cagan, R.H.; Kare, M.R.

    1974-01-01

    Percutaneous absorption in vivo through the skin of the feet of the red-winged blackbird (Agelaius phoeniceus) has been investigated. Absorption after 18-24 hours exposure to 0.01 M solutions of salicylic acid, caffeine, urea, 2,4-D, dieldrin, diethylstilbesterol, and DDT was measured. Of these, only DDT and diethylstilbesterol were not absorbed to a measurable degree. The solvents ethanol, dimethylsulfoxide (DMSO), and vegetable oil were compared with water in their effects on the absorption ofcaffeine, urea, and salicylic acid. Ethanol, DMSO,and oil each decreased percutaneous absorption of salicylic acid. DMSO increased absorption of caffeine, and ethanol had no effect on it. Neither DMSO nor ethanol affected penetration of urea. Partition coefficients (K) (epidermis/water) were determined for all seven penetrants. Compounds with higher values of K showed lower percutaneous absorption. These findings suggest that K may be useful to predict percutaneous absorption in vivo. It appears unlikely that percutaneous absorption contributes greatly to the body burden of 2,4-D and dieldrin in A. phoeniceus.

  7. Bounding the Bogoliubov coefficients

    SciTech Connect

    Boonserm, Petarpa; Visser, Matt

    2008-11-15

    While over the last century or more considerable effort has been put into the problem of finding approximate solutions for wave equations in general, and quantum mechanical problems in particular, it appears that as yet relatively little work seems to have been put into the complementary problem of establishing rigourous bounds on the exact solutions. We have in mind either bounds on parametric amplification and the related quantum phenomenon of particle production (as encoded in the Bogoliubov coefficients), or bounds on transmission and reflection coefficients. Modifying and streamlining an approach developed by one of the present authors [M. Visser, Phys. Rev. A 59 (1999) 427-438, (arXiv:quant-ph/9901030)], we investigate this question by developing a formal but exact solution for the appropriate second-order linear ODE in terms of a time-ordered exponential of 2x2 matrices, then relating the Bogoliubov coefficients to certain invariants of this matrix. By bounding the matrix in an appropriate manner, we can thereby bound the Bogoliubov coefficients.

  8. An evaluation of energy-independent heavy ion transport coefficient approximations

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1988-01-01

    Utilizing a one-dimensional transport theory for heavy ion propagation, evaluations of typical energy-dependent transport coefficient approximations are made by comparing theoretical depth-dose predictions to published experimental values for incident 670 MeV/nucleon Ne-20 beams in water. Results are presented for cases where the input nuclear absorption cross sections, or input fragmentation parameters, or both, are fixed. The lack of fragment charge and mass concentration resulting from the use of Silberberg-Tsao fragmentation parameters continues to be the main source of disagreement between theory and experiment.

  9. Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers

    SciTech Connect

    Lumeau, Julien; Glebova, Larissa; Glebov, Leonid B.

    2011-10-20

    Volume Bragg gratings (VBGs) in photothermorefractive (PTR) glass are widely used for laser beam control including high-power laser systems. Among them, spectral beam combining based on VBGs is one of the most promising. Achieving 100+ kW of combined laser beams requires the development of PTR glass and VBGs with an extremely low absorption coefficient and therefore methods of its measurement. This paper describes the calorimetric method that was developed for measuring a low absorption coefficient in PTR glass and VBGs. It is based on transmission monitoring of the intrinsic Fabry-Perot interferometer produced by the plane-parallel surfaces of the measured optical elements when heated by high-power laser radiation. An absorption coefficient at 1085 nm as low as 5x10{sup -5} cm{sup -1} is demonstrated in pristine PTR glass while an absorption coefficient as low as 1x10{sup -4} cm{sup -1} is measured in high-efficiency reflecting Bragg gratings with highest purity. The actual level of absorption in PTR glass allows laser beam control at the 10 kW level, while the 100 kW level would require active cooling and/or decreasing the absorption in PTR Bragg gratings to a value similar to that in virgin PTR glass.

  10. Implications of NGA for NEHRP site coefficients

    USGS Publications Warehouse

    Borcherdt, Roger D.

    2012-01-01

    Three proposals are provided to update tables 11.4-1 and 11.4-2 of Minimum Design Loads for Buildings and Other Structures (7-10), by the American Society of Civil Engineers (2010) (ASCE/SEI 7-10), with site coefficients implied directly by NGA (Next Generation Attenuation) ground motion prediction equations (GMPEs). Proposals include a recommendation to use straight-line interpolation to infer site coefficients at intermediate values of ̅vs (average shear velocity). Site coefficients are recommended to ensure consistency with ASCE/SEI 7-10 MCER (Maximum Considered Earthquake) seismic-design maps and simplified site-specific design spectra procedures requiring site classes with associated tabulated site coefficients and a reference site class with unity site coefficients. Recommended site coefficients are confirmed by independent observations of average site amplification coefficients inferred with respect to an average ground condition consistent with that used for the MCER maps. The NGA coefficients recommended for consideration are implied directly by the NGA GMPEs and do not require introduction of additional models.

  11. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  12. Thermal model of solar absorption HVAC systems

    SciTech Connect

    Bergquam, J.B.; Brezner, J.M. |

    1995-11-01

    This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

  13. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    SciTech Connect

    Kumari, Vinay; Kumar, Vinod; Malik, B. P.; Mohan, Devendra; Gaur, Arun

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap to half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.

  14. An environmental and economical solution to sound absorption using straw

    NASA Astrophysics Data System (ADS)

    McGinnes, Courtney; Kleiner, Mendel; Xiang, Ning

    2005-09-01

    The growing attentiveness to using environmentally friendly materials in the building construction industry as a whole has led many architects to research the use of natural materials. Natural fibers, such as straw, are advantageous due to their accessibility, ease of processing, and their ability to be discarded with a lesser environmental impact through biodegradability. While the material focus may have shifted, the need for quality acoustic environments has remained the same. In a set of preliminary studies, the absorption coefficients of sound absorbers using natural fibers have been proven to have comparable values relative to other highly absorptive, nonenvironmentally friendly materials such as mineral wool and fiberglass. The absorption coefficients were evaluated for octave and third-octave frequencies (125 to 4000 Hz) using the impedance tube method with one microphone. While these absorbers may be acoustically effective as well as environmentally friendly, there may be potential concerns in using natural fibers such as their life span, fire rating, and potential health risks, i.e., disposal techniques, allergenic reactions, and insect and fungus infestation.

  15. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-04-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The

  16. Measurement of the x-ray mass attenuation coefficient and the imaginary part of the form factor of silicon using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Chantler, C. T.; Barnea, Z.; Paterson, D.; Cookson, D. J.

    2003-04-01

    We used the x-ray extended-range technique to measure the x-ray mass attenuation coefficients of silicon with an accuracy between 0.27% and 0.5% in the 5 keV-20 keV energy range. Subtraction of the x-ray scattering contribution enabled us to derive the corresponding x-ray photoelectric absorption coefficients and determine the absolute value of the imaginary part of the atomic form factor of silicon. Discrepancies between the experimental values of the mass attenuation coefficients and theoretically calculated values are discussed. New approaches to the theoretical calculation will be required to match the precision and accuracy of the experimental results.

  17. Pioneer 11 observations of trapped particle absorption by Amalthea

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.; Pyle, K. R.; Simpson, J. A.

    1983-01-01

    The discovery of a microsignatury of trapped radiation in the Amalthea orbit as detected by Pioneer 11 in a flyby of Juptier in 1974 is reported and its implications for the radial diffusion coefficient in Jupiter's inner magnetosphere are discussed. A low energy telescope registered the absorption of low-energy protons as a function of the magnetic L shell durig inbound and outbound trajectories. Drift velocities of the 1 MeV particles were calculated. No correspondingly heightened effects were observed from high-energy electrons or heavier nuclei. Further analysis of the 0.5-8.7 MeV protons showed data to be consistent erosion of the particle drift shadows by a diffusion process. A limit was calculated for the highest diffusion coefficient value for the 1 MeV protons at the Amalthea orbit. The results indicate that the diffusion is driven by fluctuating electric or magnetic fields.

  18. Performance analysis of solar powered absorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Abu-Ein, Suleiman Qaseem; Fayyad, Sayel M.; Momani, Waleed; Al-Bousoul, Mamdouh

    2009-12-01

    The present work provides a detailed thermodynamic analysis of a 10 kW solar absorption refrigeration system using ammonia-water mixtures as a working medium. This analysis includes both first law and second law of thermodynamics. The coefficient of performance (COP), exergetic coefficient of performance (ECOP) and the exergy losses (Δ E) through each component of the system at different operating conditions are obtained. The minimum and maximum values of COP and ECOP were found to be at 110 and 200°C generator temperatures respectively. About 40% of the system exergy losses were found to be in the generator. The maximum exergy losses in the absorber occur at generator temperature of 130°C for all evaporator temperatures. A computer simulation model is developed to carry out the calculations and to obtain the results of the present study.

  19. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles.

    PubMed

    Ma, Ji; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    Spectral absorption index was proposed to extract the morphological features of the spectral curves in pork meat samples (longissimus dorsi) under the conditions including fresh, frozen-thawed, heated-dehydrated and brined-dehydrated. Savitzky-Golay (SG) smoothing and multiplicative scatter correction (MSC) were used for calibrating both the spectral reflectance and absorbance values. The absorption values were better than the reflectance values and the calibrated spectra by MSC were better than the raw and SG smoothing corrected spectra in building moisture content predictive models. The optimized partial least square regression (PLSR) model attained good results with the MSC calibrated spectral absorption values based on the spectral absorption index features (R(2)P=0.952, RMSEP=1.396) and the optimal wavelengths selected by regression coefficients (R(2)P=0.966, RMSEP=0.855), respectively. The models proved spectral absorption index was promising in spectral analysis to predict moisture content in pork samples using HSI techniques for the first time. PMID:26617026

  20. Solar cells based on particulate structure of active layer: Investigation of light absorption by an ordered system of spherical submicron silicon particles

    NASA Astrophysics Data System (ADS)

    Miskevich, Alexander A.; Loiko, Valery A.

    2015-12-01

    Enhancement of the performance of photovoltaic cells through increasing light absorption due to optimization of an active layer is considered. The optimization consists in creation of particulate structure of active layer. The ordered monolayers and multilayers of submicron crystalline silicon (c-Si) spherical particles are examined. The quasicrystalline approximation (QCA) and the transfer matrix method (TMM) are used to calculate light absorption in the wavelength range from 0.28 μm to 1.12 μm. The integrated over the terrestial solar spectral irradiance "Global tilt" ASTM G173-03 absorption coefficient is calculated. In the wavelength range of small absorption index of c-Si (0.8-1.12 μm) the integral absorption coefficient of monolayer can be more than 20 times higher than the one of the plane-parallel plate of the equivalent volume of material. In the overall considered range (0.28-1.12 μm) the enhancement factor up to ~1.45 for individual monolayer is observed. Maximum value of the spectral absorption coefficient approaches unity for multilayers consisting of large amount of sparse monolayers of small particles. Multilayers with variable concentration and size of particles in the monolayer sequences are considered. Absorption increasing by such gradient multilayers as compared to the non-gradient ones is illustrated. The considered structures are promising for creation of high efficiency thin-film solar cells.

  1. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  2. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.

  3. Absorption removal of sulfur dioxide by falling water droplets in the presence of inert solid particles

    NASA Astrophysics Data System (ADS)

    Liu, I.-Hung; Chang, Ching-Yuan; Liu, Su-Chin; Chang, I.-Cheng; Shih, Shin-Min

    An experimental analysis of the absorption removal of sulfur dioxide by the free falling water droplets containing the inert solid particles is presented. The wheat flour powder is introduced as the inert solid particles. Tests with and without the flour powder in the water droplets are examined. The mass fluxes and mass transfer coefficients of SO 2 for the cases with and without the flour powder are compared to elucidate the effects of the inert solid particles contained in the water droplets on the gas absorption. The results indicate aignificant difference between the two cases for the concentrations of the flour powder in the absorbent droplets ( Cs) within the ranges of the experimental conditions, namely 0.1 to 10 wt% flour powder in the absorbent droplets. In general, the inert solid particles of the flour powder as the impurities in the water droplets tend to decrease the SO 2 absorption rate for the experimental absorption system under investigation. Various values of Cs cause various levels of the interfacial resistance and affect the gas absorption rate. The interfacial resistance is recognized by introducing an interfacial mass transfer coefficient ks with its reciprocal being proportional to the magnitude of the interfacial resistance. The values of 1/ ks may be computed by the use of the equation 1/ ks=(1/ KOLs-1/ KOL), where KOLs and KOL are the overall liquid-phase mass transfer coefficients with and without the inert solid particles, respectively. The values of ks with Cs of 0.1 to 10 wt% are about 0.295-0.032 cms -1 for absorbing 1000-3000 ppmv SO 2 with the water droplets. This kind of information is useful for the SO 2 removal and the information of acid rain that the impurities of the inert solid particles contaminate the water droplets.

  4. Direct characterization and removal of interfering absorption trends in two-layer turbid media.

    PubMed

    Saager, Rolf B; Berger, Andrew J

    2005-09-01

    We propose a method to isolate absorption trends confined to the lower layer of a two-layer turbid medium, as is desired in near-infrared spectroscopy (NIRS) of cerebral hemodynamics. Several two-layer Monte Carlo simulations of NIRS time series were generated using a physiologically relevant range of optical properties and varying the absorption coefficients due to bottom-layer, top-layer, and/or global fluctuations. Initial results showed that by measuring absorption trends at two source-detector separations and performing a least-squares fit of one to the other, processed signals strongly resemble the simulated bottom-layer absorption properties. Through this approach, it was demonstrated that fitting coefficients can be estimated within less than +/- 2% of the ideal value without any a priori knowledge of the optical properties present in the model. An analytical approximation for the least-squares coefficient provides physical insight into the nature of errors and suggests ways to reduce them. PMID:16211814

  5. Absorption properties of high-latitude Norwegian coastal water: The impact of CDOM and particulate matter

    NASA Astrophysics Data System (ADS)

    Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Sørensen, Kai; Norli, Marit; Stamnes, Knut; Stamnes, Jakob J.

    2016-09-01

    We present data from measurements and analyses of the spectral absorption due to colored dissolved organic matter (CDOM), total suspended matter (TSM), phytoplankton, and non-algal particles (NAP) in high-latitude northern Norwegian coastal water based on samples taken in spring, summer, and autumn. The Chlorophyll-a (Chl-a) concentration was found to vary significantly with season, whereas regardless of season CDOM was found to be the dominant absorber for wavelengths shorter than 600 nm. The absorption spectral slope S350-500 for CDOM varied between 0.011 and 0.022 nm-1 with mean value and standard deviation given by (0.015 ± 0.002) nm-1. The absorption spectral slope was found to be strongly dependent on the wavelength interval used for fitting. On average, S280-500 was found to be 43% higher than S350-500. A linear relationship was found between the base 10 logarithm of the absorption coefficient at 440 nm [log(ag(440))] and S350-500. Regardless of season, phytoplankton were the dominant component of the TSM absorption indicating little influence from land drainage. The mean values of the Chl-a specific absorption coefficient of phytoplankton aph*(λ) at 440 nm and 676 nm were 0.052 m2 mg-1 and 0.023 m2 mg-1, respectively, and aph*(λ) was found to vary with season, being higher in summer and autumn than in spring. The absorption spectral slope SNAP, which is the spectral slope of absorption spectrum for non-algal particles, was lower than that for European coastal water in general. It varied between 0.0048 and 0.022 nm-1 with mean value and standard deviation given by (0.0083-1 ± 0.003) nm-1. Comparisons of absorption coefficients measured in situ using an ac-9 instrument with those measured in the laboratory from water samples show a good agreement.

  6. Measurement of particle optical absorption, imaginary refractive index, mass concentration, and size at First International LAAP Workshop.

    PubMed

    Clarke, A D; Waggoner, A P

    1982-02-01

    The modified integrating plate method was used in conjunction with ancillary equipment to obtain the absorption coefficient, specific absorption, and single-scattering albedo for a variety of generated aerosols. A computer driven multichannel optical particle counter also provided real-time output for particle size distributions. Size segregated sampling was done for appropriate aerosols, and inferences made on values for the complex refractive index. A new technique (paper in preparation) was also used for samples having low values of absorption, and results for these samples are included. These results are considered the most accurate and take precedence over values obtained by the original method (retained for completeness and inter-comparison purposes). PMID:20372469

  7. Transonic Blunt Body Aerodynamic Coefficients Computation

    NASA Astrophysics Data System (ADS)

    Sancho, Jorge; Vargas, M.; Gonzalez, Ezequiel; Rodriguez, Manuel

    2011-05-01

    In the framework of EXPERT (European Experimental Re-entry Test-bed) accurate transonic aerodynamic coefficients are of paramount importance for the correct trajectory assessment and parachute deployment. A combined CFD (Computational Fluid Dynamics) modelling and experimental campaign strategy was selected to obtain accurate coefficients. A preliminary set of coefficients were obtained by CFD Euler inviscid computation. Then experimental campaign was performed at DNW facilities at NLR. A profound review of the CFD modelling was done lighten up by WTT results, aimed to obtain reliable values of the coefficients in the future (specially the pitching moment). Study includes different turbulence modelling and mesh sensitivity analysis. Comparison with the WTT results is explored, and lessons learnt are collected.

  8. Distribution of reflection coefficients in absorbing chaotic microwave cavities.

    PubMed

    Méndez-Sánchez, R A; Kuhl, U; Barth, M; Lewenkopf, C H; Stöckmann, H-J

    2003-10-24

    The distribution of reflection coefficients P(R) for chaotic microwave cavities with time-reversal symmetry is investigated in different absorption and antenna coupling regimes. For all regimes the agreement between experimental distributions and random-matrix theory predictions is very good, provided both the antenna coupling T(a) and the wall absorption strength T(w) are taken into account in an appropriate way. These parameters are determined by independent experimental quantities. PMID:14611349

  9. Enhancement of transdermal absorption by switching iontophoresis.

    PubMed

    Ishikawa, Osamu; Kato, Yoshinori; Onishi, Hiraku; Nagai, Tsuneji; Machida, Yoshiharu

    2002-12-01

    The enhancing effect of switching iontophoresis on transdermal absorption of phthalic acid (PA), benzoic acid (BA), salicylic acid (SA), p-phenylenediamine (PD), aniline (AN) and verapamil (VR) and its mechanism were examined. An electric current with pulsed waveform (4 kHz, 50% duty) was passed through the skin for 2 h at 10 V. Iontophoretic application was carried out with switching at intervals of 5, 10 and 20 min, or without switching. Each drug solution was injected into the donor side of the cell, and phosphate buffer (pH 7.4) was injected into the receiver side. Transport of PA, BA and VR was affected by switching the polarity of electrodes but no effect was observed on that of SA, PD and AN. Cumulative amount permeated and apparent permeability coefficients were apparently high at switching intervals with a short period. The partition coefficient suggested that there was no interrelation between the affinity for skin and the permeability of each drug. The resistance values of PA and glucose were low at intervals of 5 min suggesting the participation of enhanced hydration of the skin. These results suggested that enhancement of skin hydration plays an important role in the enhancing effect of switching iontophoresis on skin permeation. PMID:12433436

  10. Estimation of soil sorption coefficients using QSARs

    SciTech Connect

    Doucette, W.J.

    1994-12-31

    Sorption coefficients quantitatively describe the extent to which an organic chemical distributes itself between an environmental solid and the aqueous phase that it is contact with at equilibrium. Because of the difficulty and expense associated with measuring sorption coefficients, estimated values are often used in place of site specific, experimental values for fate modeling. Most reported methods for estimating the sorption of organic chemicals onto environmental solids are based on observation that for many organic chemicals, and in particular neutral hydrophobic organics, sorption is directly proportional to the quantity of organic matter associated with the solid. Normalizing soil or sediment specific sorption coefficients to the organic carbon content of the sorbent yields a new ``constant``, Koc, that is considered unique property of the organic chemical being sorbed. Values of Koc are then typically estimated from correlations between Koc and various descriptors of hydrophobicity such as octanol/water partition coefficients (Kow), aqueous solubility (S), molecular connectivity indices (MCIs) and retention times or capacity factors generated by reverse phase high performance liquid chromatography (RP-HPLC). Group contribution methods have also been described. While the so-called ``Koc approach`` for estimating sorption coefficients is most appropriate for neutral, hydrophobic organic chemicals on environmental solids containing a significant amount of organic matter, it has been applied to a wide variety of chemical and soil types. This presentation will focus on a discussion of the Koc approach, its applicability and limitations. A comparison of several widely used methods for estimating Koc will be presented.

  11. Rate Coefficients for the OH + (CHO)2 (Glyoxal) Reaction Between 240 and 400 K

    NASA Astrophysics Data System (ADS)

    Feierabend, K. J.; Talukdar, R. K.; Zhu, L.; Ravishankara, A. R.; Burkholder, J. B.

    2006-12-01

    Glyoxal (CHO)2, the simplest dialdehyde, is an end product formed in the atmospheric oxidation of biogenic hydrocarbons, for example, isoprene. As such, glyoxal plays a role in regional air quality and ozone production in certain locations. Glyoxal is lost in the atmosphere via UV photolysis and reaction with OH. However, the currently available rate coefficient data for the OH + glyoxal reaction is limited to a single room- temperature measurement made using the relative rate method. A determination of the rate coefficient temperature dependence is therefore needed for a more complete interpretation of the atmospheric processing of glyoxal. This study reports the rate coefficient for the OH + (CHO)2 reaction measured under pseudo- first-order conditions in OH ([(CHO)2] > 1000 [OH]0). OH radicals were produced using 248 nm pulsed laser photolysis of H2O2 or HNO3 and detected by pulsed laser induced fluorescence. The concentration of glyoxal in the reactor was determined using three independent techniques; gas flow rates as well as in situ UV and IR absorption. The total pressure in the reactor was varied from 40 to 300 Torr (He), and the rate coefficient was found to be independent of pressure over the temperature range studied. The rate coefficient exhibits a negative temperature dependence between 240 and 400 K consistent with the dependence previously observed for many other aldehydes. Our room-temperature rate coefficient is smaller than the relative rate value that is currently recommended for use in atmospheric model calculations. Our measured rate coefficients are discussed with respect to those for other aldehydes. The atmospheric implications of our work will also be discussed.

  12. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  13. Highly sensitive absorption measurements in lithium niobate using whispering gallery resonators

    NASA Astrophysics Data System (ADS)

    Leidinger, Markus; Buse, Karsten; Breunig, Ingo

    2015-02-01

    The absorption coefficient of undoped, congruently grown lithium niobate (LiNbO3) for ordinarily and extraordinarily polarized light is measured in the wavelength range from 390 to 2600 nm using whispering gallery resonators (WGRs). These monolithic cavities guide light by total internal reflection. Their high Q-factor provides several hundred meters of propagation for the coupled light in millimetre size resonators allowing for the measurement of absorption coefficients below 10-2 cm-1, where standard methods such as Fourier-transform or grating spectroscopy meet their limit. In this work the lowest measured value is 10-4 cm-1 at 1700 nm wavelength. Furthermore, the known OH- overtone at 1470 nm wavelength can be resolved clearly.

  14. Parametric analysis of a double-effect steam absorption chiller

    NASA Astrophysics Data System (ADS)

    Mohammed Salih Ahmed, Mojahid Sid Ahmed; Gilani, Syed Ihtsham Ul-Haq

    2012-06-01

    The development in the field of refrigeration and cooling systems based on absorption cycles has attained its own internal dynamic in the last decade. A major obstacle for developing model is the lack of available component specifications. These specifications are commonly proprietary of the chiller's manufacturers and normally the available information is not sufficient. This work presented a double-effect parallel-flow-type steam absorption chiller model based on thermodynamic and energy equations. The chiller studied is 1250 RT (Refrigeration Tons) using lithium bromide -water as working pair. The mathematical equations that govern the operation of the steam absorption chiller are developed, and from the available design data the values of the overall heat transfer coefficient multiplied by the heat exchanger surface area and the characteristics of each component of the absorption chiller at the design point are calculated. For thermo physical and thermodynamic properties for lithium bromide-water solution, set of computationally efficient formulations are used. The model gives the required information about temperature, concentration, and flow rate at each state point of the system. The model calculates the heat load at each component as well as the performance of the system.

  15. Crop coefficient development and application to an evapotranspiration network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop coefficients derived from properly designed, operated, and maintained lysimeters provide the most accurate values throughout the growing season and are critical in the computation of hourly and daily,regionally based, crop evapotranspiration (ET) values. Multi-stage crop coefficients can be der...

  16. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  17. In-vivo absorption properties of algal pigments

    NASA Astrophysics Data System (ADS)

    Bidigare, Robert R.; Ondrusek, Michael E.; Morrow, John H.; Kiefer, Dale A.

    1990-09-01

    Estimates of the in vivo specific absorption coefficients (m2 mg'; 400-750 nm, 2 nm intervals) for the major algal pigment groups (chlorophylls, carotenoids and phycobilins) are presented. "Unpackaged" absorption coefficients were initially obtained by measuring the absorption properties of pure pigment standards spectrophotometrically and "shifting" their absorption maxima to match in vivo positions. Two approaches for estimating the phytoplankton absorption coefficient (spectral reconstruction and spectral decomposition) are compared by linear regression analysis, incorporating concurrent measurements of particulate absorption and pigmentation performed in the Sargasso Sea. Results suggest that "pigment package" effects are minimal for natural assemblages of open-oceanic phytoplankton and that accessory pigments do not always co-vary with chlorophyll a over depth and time.

  18. Imaging of highly turbid media by the absorption method

    NASA Astrophysics Data System (ADS)

    Contini, Daniele; Liszka, Heather; Sassaroli, Angelo; Zaccanti, Giovanni

    1996-05-01

    The results of a study on imaging that is based on the absorption method are presented. This method is based on attenuation measurements carried out in the presence of a sufficiently high absorption coefficient by the use of a continuous-wave source. The benefit of absorption on image quality comes from the strong attenuation of photons traveling along long trajectories. When the absorption coefficient is increased, the received energy decreases, but the mean path length of received photons decreases. The effect of increasing the absorption coefficient is similar to that of decreasing the gating time when the time-gating technique is used. Experimental results showed that the spatial resolution obtained with the absorption technique is similar to that obtained with the time-gating technique. method, spatial resolution, turbid media.

  19. Reverse saturable absorption and nonlinear refraction of ultrathin ZrS3 nanobelts.

    PubMed

    Wu, Jia-Jing; Tao, You-Rong; Wang, Jia-Nan; Wu, Zhong-Yu; Fan, Lei; Wu, Xing-Cai

    2016-05-21

    The nonlinear optical (NLO) properties of a ZrS3 nanobelt were measured with a 6.5 ns pulse laser at 532 nm. Its optical response to the incident light exhibits good optical absorptive and refractive effects, with the nonlinear absorption coefficient β = 4.42 × 10(-10) m W(-1) and the nonlinear refraction coefficient γ = 5.86 × 10(-17) m(2) W(-1) for the ZrS3 nanobelt in ethanol dispersions at an input energy of 34.25 μJ. In addition, the β values and γ values have dependence on input energy. Results show that the ZrS3 nanobelts have an excellent reverse saturable absorption (RSA) performance in nanosecond pulses, demonstrating that ZrS3 nanobelts are an extraordinarily promising novel optical power limiting material. Meanwhile, compared to the pure ZrS3, graphene oxide (GO) and reduced graphene oxide (RGO), composites (ZrS3/GRO) exhibit an enhanced nonlinear absorption response at the same input energy. PMID:27139247

  20. TRACK--A new method for the evaluation of low-level extinction coefficient in optical films.

    PubMed

    Vernhes, R; Martinu, L

    2015-11-01

    We develop a rigorous methodology named TRACK based on the collection of multi-angle spectrophotometric transmission and reflection data in order to assess the extinction coefficient of quasi-transparent optical films. The accuracy of extinction coefficient values obtained by this method is not affected by sample non-idealities (thickness non-uniformity, refractive index inhomogeneities, anisotropy, interfaces, etc.) and therefore a simple two-layer (substrate/film) optical model can be used. The method requires the acquisition of transmission and reflection data at two angles of incidence: 10° and 65° in p polarization. Data acquired at 10° provide information about the film thickness and the refractive index, while data collected at 65° are used for absorption evaluation and extinction coefficient computation. We test this method on three types of samples: (i) a CR-39 plastic substrate coated with a thick protective coating; (ii) the same substrate coated with a thin TiO(2) film; (iii) and a thick Si(3)N(4) film deposited on Gorilla glass that presents thickness non-uniformity and refractive index gradient non-idealities. We also compare absorption and extinction coefficient values obtained at 410 and 550 nm by both TRACK and Laser Induced Deflection techniques in the case of a 1 micron thick TiO(2) coating. Both methods display consistent extinction coefficient values in the 10(-4) and 10(-5) ranges at 410 and 550 nm, respectively, which proves the validity of the methodology and provides an estimate of its accuracy limit. PMID:26561121

  1. Intergrating cavity absorption meter measurements of dissolved substances and suspended particles in ocean water

    NASA Astrophysics Data System (ADS)

    Pope, Robin M.; Weidemann, Alan D.; Fry, Edward S.

    2000-01-01

    We have developed a new device to measure the separate contributions to the spectral absorption coefficient due to a pure liquid, due to the particles suspended in it, and due to the substances dissolved in it. This device, the Integrating Cavity Absorption Meter (ICAM), is essentially independent of scattering effects in the sample. In April 1993, a prototype of the ICAM was field tested on board the research vessel USNS Bartlett. A major part of the cruise track included criss-crossing the area where the Mississippi flows into the Gulf of Mexico at various ranges from the mouth of the river; thus samples were collected from areas of blue, green, and brown/black water. We evaluated 35 seawater samples collected with 5-l Niskin bottles from 22 locations to determine absorption spectra (380-700 nm) of suspended particles and dissolved substances (gelbstoff). Results validate the ICAM as a viable tool for marine optical absorption research. Gelbstoff absorption at 432.5 nm ranged from 0.024 to 0.603 m -1. Over the spectral region 380→560 nm, gelbstoff absorption by each of the samples could be accurately fit to a decaying exponential. The particle absorption spectra are generally characteristic of those of phytoplankton and exhibit a local maximum at 430-440 nm. Absorption values at 432.5 nm ranged from ˜zero to ˜1.0 m -1. Some samples with moderate particulate absorption, however, did not show the characteristic local maximum of phytoplankton in the blue and instead resembled the characteristic decaying exponential of detritus with a shape similar to that observed in the gelbstoff. The ratio of gelbstoff to particulate absorption at 432.5 nm ranged from 0.46 to 152.

  2. Recovering DC coefficients in block-based DCT.

    PubMed

    Uehara, Takeyuki; Safavi-Naini, Reihaneh; Ogunbona, Philip

    2006-11-01

    It is a common approach for JPEG and MPEG encryption systems to provide higher protection for dc coefficients and less protection for ac coefficients. Some authors have employed a cryptographic encryption algorithm for the dc coefficients and left the ac coefficients to techniques based on random permutation lists which are known to be weak against known-plaintext and chosen-ciphertext attacks. In this paper we show that in block-based DCT, it is possible to recover dc coefficients from ac coefficients with reasonable image quality and show the insecurity of image encryption methods which rely on the encryption of dc values using a cryptoalgorithm. The method proposed in this paper combines dc recovery from ac coefficients and the fact that ac coefficients can be recovered using a chosen ciphertext attack. We demonstrate that a method proposed by Tang to encrypt and decrypt MPEG video can be completely broken. PMID:17076416

  3. Middle infrared optoelectronic absorption systems for monitoring physiological glucose solutions

    NASA Astrophysics Data System (ADS)

    Martin, W. Blake

    Tight monitoring of the glucose levels for diabetic individuals is essential to control long-term complications. A definitive diabetes management system has yet to be developed for the diabetic. This research investigates the application of middle infrared absorption frequencies for monitoring glucose levels in biological solutions. Three frequencies were identified using a Fourier transform infrared spectrometer and correlated to changes in glucose concentrations. The 1035 +/- 1 cm-1 frequency was determined to be the best representative frequency. Other biological molecules contributed no significant interference to monitoring glucose absorption. A second frequency at 1193 cm-1 was suggested as a representative background absorption frequency, which could be used for more accurate glucose absorption values. Next, a quantum cascade laser optoelectronic absorption system was designed and developed to monitor glucose. After careful alignment and design, the system was used to monitor physiological glucose concentrations. Correlation at 1036 cm-1 with glucose changes was comparable to the previous results. The use of the background absorption frequency was verified. This frequency essentially acts as a calibrating frequency to adjust in real-time to any changes in the background absorption that may alter the accuracy of the predicted glucose value. An evanescent wave cavity ring-down spectroscopy technique was explored to monitor molecules in a biological solution. Visible light at 425 nm was used to monitor hemoglobin in control urine samples. An adsorption isotherm for hemoglobin was detectable to limit of 5.8 nM. Evanescent wave cavity ring-down spectroscopy would be useful for a glucose solution. Given an equivalent system designed for the middle infrared, the molar extinction coefficient of glucose allows for a detectable limit of 45 mg/dl for a free-floating glucose solution, which is below normal physiological concentrations. The future use of a hydrophobic

  4. Comparison of measured and theoretical inverse bremsstrahlung and photoionization absorption of infrared radiation in a H-He plasma.

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.; Rowley, P. D.; Presley, L. L.

    1972-01-01

    The absorption coefficients of 1.15- and 3.39-micrometer radiation for a homogeneous H-He plasma have been measured in a temperature and electron density range where the major absorption mechanisms are electron-ion inverse bremsstrahlung and neutral-atom photoionization. Measurements were made behind both the incident and reflected shock waves in a driven tube by recording the laser intensity transmitted along the tube diameter as a function of time. The measured values compare well with those obtained from theoretical calculations for a gas in thermodynamic equilibrium.

  5. Determining photon energy absorption parameters for different soil samples.

    PubMed

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-05-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with (137)Cs and (60)Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of (137)Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  6. Determining photon energy absorption parameters for different soil samples

    PubMed Central

    Kucuk, Nil; Tumsavas, Zeynal; Cakir, Merve

    2013-01-01

    The mass attenuation coefficients (μs) for five different soil samples were measured at 661.6, 1173.2 and 1332.5 keV photon energies. The soil samples were separately irradiated with 137Cs and 60Co (370 kBq) radioactive point gamma sources. The measurements were made by performing transmission experiments with a 2″ × 2″ NaI(Tl) scintillation detector, which had an energy resolution of 7% at 0.662 MeV for the gamma-rays from the decay of 137Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μs values for the soil samples. Furthermore, the Zeff and Neff values of the soil samples were computed for the total photon interaction cross-sections using theoretical data over a wide energy region ranging from 1 keV to 15 MeV. The experimental values of the soils were found to be in good agreement with the theoretical values. Sandy loam and sandy clay loam soils demonstrated poor photon energy absorption characteristics. However, clay loam and clay soils had good photon energy absorption characteristics. PMID:23179375

  7. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  8. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  9. Optical absorption and radiative heat transport in olivine at high temperature

    NASA Technical Reports Server (NTRS)

    Shankland, T. J.; Nitsan, U.; Duba, A. G.

    1979-01-01

    Results are presented of measurements of the optical absorption spectra (300-8000 nm) of olivine as a function of temperature (300-1700 K) under conditions of controlled and known oxygen fugacity within the stability field of the samples. The absorption spectra are used to calculate the temperature-dependent radiative transfer coefficient of olivine and to numerically study the accuracy of the method. The present absorption measurements in olivine under oxidizing conditions known to be within the olivine stability field indicate that the effective radiative conductivity K(R) is lower than that obtained in previous studies under different experimental conditions. The lower value of K(R) makes it more likely that some of the earth's internal heat is removed by convection and less likely that thermal models involving conduction and radiation alone will satisfactorily explain thermal conditions in the earth's mantle.

  10. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube.

    NASA Astrophysics Data System (ADS)

    Meyer, Scott Andrew

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 times 10 ^{17} and 9 times 10^{17} cm ^{-3}. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  11. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  12. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  13. Determine scattering coefficient and anisotropy of scattering of murine tissues using reflectance-mode confocal microscopy

    NASA Astrophysics Data System (ADS)

    Samatham, Ravikant; Jacques, Steven L.

    2013-02-01

    Different techniques have been developed to determine the optical properties of turbid media, which include collimated transmission, diffuse reflectance, adding-doubling and goniometry. While goniometry can be used to determine the anisotropy of scattering (g), other techniques are used to measure the absorption coefficient and reduced scattering coefficient (μs(1-g)). But separating scattering coefficient (μs) and anisotropy of scattering from reduced scattering coefficient has been tricky. We developed an algorithm to determine anisotropy of scattering from the depth dependent decay of reflectance-mode confocal scanning laser microscopy (rCSLM) data. This report presents the testing of the algorithm on tissue phantoms with different anisotropies (g = 0.127 to 0.868, at 488 nm wavelength). Tissue phantoms were made from polystyrene microspheres (6 sizes 0.1-0.5 μm dia.) dispersed in both aqueous solutions and agarose gels. Three dimensional images were captured. The rCSLM-signal followed an exponential decay as a function of depth of the focal volume, R(z)ρexp(-μz) where ρ (dimensionless, ρ = 1 for a mirror) is the local reflectivity and μ [cm-1] is the exponential decay constant. The theory was developed to uniquely map the experimentally determined μ and ρ into the optical scattering properties μs and g. The values of μs and g depend on the composition and microstructure of tissues, and allow characterization of a tissue.

  14. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  15. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  16. Seasonal dynamics of light absorption by chromophoric dissolved organic matter (CDOM) in the NW Mediterranean Sea (BOUSSOLE site)

    NASA Astrophysics Data System (ADS)

    Organelli, Emanuele; Bricaud, Annick; Antoine, David; Matsuoka, Atsushi

    2014-09-01

    We analyze a two-year time-series of chromophoric dissolved organic matter (CDOM) light absorption measurements in the upper 400 m of the water column at the BOUSSOLE site in the NW Mediterranean Sea. The seasonal dynamics of the CDOM light absorption coefficients at 440 nm (acdom(440)) is essentially characterized by (i) subsurface maxima forming in spring and progressively reinforcing throughout summer, (ii) impoverishment in the surface layer throughout summer and (iii) vertical homogeneity in winter. Seasonal variations of the spectral dependence of CDOM absorption, as described by the exponential slope value (Scdom), are characterized by highest values in summer and autumn at the surface and low values at the depths of acdom(440) subsurface maxima or just below them. Variations of acdom(440) are likely controlled by microbial digestion of phytoplankton cells, which leads to CDOM production, and by photochemical destruction (photobleaching), which leads to CDOM degradation. Photobleaching is also the main driver of Scdom variations. Consistently with previous observations, acdom(440) for a given chlorophyll a concentration is higher than expected from Case I waters bio-optical models. The total non-water light absorption budget shows that surface waters at the BOUSSOLE site are largely dominated by CDOM during all seasons but the algal bloom in March and April. These results improve the knowledge of CDOM absorption dynamics in the Mediterranean Sea, which is scarcely documented. In addition, they open the way to improved algorithms for the retrieval of CDOM absorption from field or satellite radiometric measurements.

  17. The Corrected Eta-Squared Coefficient: A Value Added Approach.

    ERIC Educational Resources Information Center

    Barnette, J. Jackson; McLean, James E.

    Eta-Squared (ES) is often used as a measure of strength of association of an effect, a measure often associated with effect size. It is also considered the proportion of total variance accounted for by an independent variable. It is simple to compute and interpret. However, it has one critical weakness cited by several authors (C. Huberty, 1994;…

  18. Huge Seebeck coefficients in nonaqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Bonetti, M.; Nakamae, S.; Roger, M.; Guenoun, P.

    2011-03-01

    The Seebeck coefficients of the nonaqueous electrolytes tetrabutylammonium nitrate, tetraoctylphosphonium bromide, and tetradodecylammonium nitrate in 1-octanol, 1-dodecanol, and ethylene-glycol are measured in a temperature range from T = 30 °C to T = 45 °C. The Seebeck coefficient is generally of the order of a few hundreds of microvolts per Kelvin for aqueous solution of inorganic ions. Here we report huge values of 7 mV/K at 0.1 M concentration for tetrabutylammonium nitrate in 1-dodecanol. These striking results open the question of unexpectedly large kosmotrope or "structure making" effects of tetraalkylammonium ions on the structure of alcohols.

  19. Influence of Brown Carbon Aerosols on Absorption Enhancement and Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Shamjad, Puthukkadan; Nand Tripathi, Sachchida; Kant Pathak, Ravi; Hallquist, Mattias

    2015-04-01

    This study presents aerosol mass and optical properties measured during winter-spring months (February-March) of two consecutive years (2013-2014) from Kanpur, India located inside Gangetic Plain. Spectral absorption and scattering coefficients (405, 532 and 781 nm) of both atmospheric and denuded (at 300° C) is measured using a 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Ratio between the atmospheric and denuded absorption is reported as enhancement in absorption (Eabs). Eabs values shows presence of large quantities of Brown Carbon (BrC) aerosols in the location. Diurnal trend of Eabs shows similar patterns at 405 and 532 nm. But at 781 nm Eabs values increased during day time (10:00 to 18:00) while that 405 and 532 nm decreased. Positive Matrix Analysis (PMF) of organic aerosols measured using HR-ToF-AMS shows factors with different trends with total absorption. Semi-volatile factor (SV-OOA) show no correlation with absorption but other factors such as Low-volatile (LV-OOA), Hydrocarbon (HOA) and Biomass burning (BBOA) organic aerosols shows a positive trend. All factors shows good correlation with scattering coefficient. Also a strong dependence of absorption is observed at 405 and 532 nm and a weak dependence at 781 nm is observed during regression analysis with factors and mass loading. We also present direct radiative forcing (DRF) calculated from measured optical properties due to total aerosol loading and only due to BrC. Total and BrC aerosol DRF shows cooling trends at top of atmosphere (TOA) and surface and warming trend in atmosphere. Days with biomass burning events shows increase in magnitude of DRF at atmosphere and surface up to 30 % corresponding to clear days. TOA forcing during biomass burning days shows increase in magnitude indicating change from negative to less negative.

  20. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  1. Partition coefficients of three new anticonvulsants.

    PubMed

    Hernandez-Gallegos, Z; Lehmann, P A

    1990-11-01

    The partition coefficients of three homologous anticonvulsant phenylalkylamides [racemic alpha-hydroxy-alpha-ethyl-alpha-phenylacetamide (HEPA); beta-hydroxy-beta-ethyl-beta-phenylpropionamide (HEPP); and gamma-hydroxy-gamma-ethyl-gamma-phenylbutyramide (HEPB)] were determined by reversed-phase high-performance liquid chromatography (RP-HPLC). The system was calibrated with a series of simple amines and amides, using their published log P values. The log kw values (methanol:water, extrapolated to 100% water) were 1.260 for HEPA, 1.670 for HEPP, and 1.852 for HEPB. From these results, the partition coefficients (log P) were calculated by regression as 1.20, 1.83, and 2.11, respectively. The log P values were essentially equal to those calculated by the Leo-Hansch fragmental method. Since the potency of the three anticonvulsants is approximately the same in a variety of tests, no dependence on lipophilicity could be established. PMID:2292764

  2. Drag Coefficient of Hexadecane Particles

    NASA Astrophysics Data System (ADS)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  3. Method for Calculating the Optical Diffuse Reflection Coefficient for the Ocular Fundus

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2016-07-01

    We have developed a method for calculating the optical diffuse reflection coefficient for the ocular fundus, taking into account multiple scattering of light in its layers (retina, epithelium, choroid) and multiple refl ection of light between layers. The method is based on the formulas for optical "combination" of the layers of the medium, in which the optical parameters of the layers (absorption and scattering coefficients) are replaced by some effective values, different for cases of directional and diffuse illumination of the layer. Coefficients relating the effective optical parameters of the layers and the actual values were established based on the results of a Monte Carlo numerical simulation of radiation transport in the medium. We estimate the uncertainties in retrieval of the structural and morphological parameters for the fundus from its diffuse reflectance spectrum using our method. We show that the simulated spectra correspond to the experimental data and that the estimates of the fundus parameters obtained as a result of solving the inverse problem are reasonable.

  4. Valuing Essays: Essaying Values

    ERIC Educational Resources Information Center

    Badley, Graham

    2010-01-01

    The essay regularly comes under attack. It is criticised for being rigidly linear rather than flexible and reflective. I first challenge this view by examining reasons why the essay should be valued as an important genre. Secondly, I propose that in using the essay form students and academics necessarily exemplify their own critical values. Essays…

  5. Determination of attenuation coefficients, thicknesses and effective atomic numbers for CuInSe 2 semiconductor

    NASA Astrophysics Data System (ADS)

    Çevik, Ugˇur; Baltaş, Hasan; Çelik, Ahmet; Bacaksız, Emin

    2006-06-01

    The X-rays attenuation coefficients for Cu, In and Se in elemental state and the semiconductor CuInSe2 were measured at 15 different energies from 11.9 to 37.3 keV by using the secondary excitation method. Monochromatic photons were obtained using the following secondary targets: Br, Sr, Mo, Cd, Te and Ba. 59.5 keV gamma rays emitted from an annular 241Am radioactive source were used to excite secondary target and X-rays emitted from secondary target were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. A method to determine the thickness of thin film with XRF is described. Additionally, the effect of absorption edges on effective atomic numbers and their variation with photon energy in composite semiconductor sample was discussed. Obtained values were compared with calculated values.

  6. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  7. Measurement of the x-ray mass attenuation coefficients of gold in the 38-50-keV energy range

    SciTech Connect

    Islam, M T; Rae, N A; Glover, J L; Barnea, Z; de Jonge, M D; Tran, C Q; Wang, J; Chantler, C T

    2010-11-12

    We used synchrotron x rays to measure the x-ray mass attenuation coefficients of gold at nine energies from 38 to 50 keV with accuracies of 0.1%. Our results are much more accurate than previous measurements in this energy range. A comparison of our measurements with calculated mass attenuation coefficients shows that our measurements fall almost exactly midway between the XCOM and FFAST calculated theoretical values, which differ from one another in this energy region by about 4%, even though the range includes no absorption edge. The consistency and accuracy of these measurements open the way to investigations of the x-ray attenuation in the region of the L absorption edge of gold.

  8. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  9. Enhancing effect of N-dodecyl-2-pyrrolidone on the percutaneous absorption of 5-fluorouracil derivatives.

    PubMed

    Sato, S; Hirotani, Y; Ogura, N; Sasaki, E; Kitagawa, S

    1998-05-01

    The enhancing effects of N-dodecyl-2-pyrrolidone (NDP) on the percutaneous absorption of doxifluridine (DOX), 5-fluorouracil (5-FU), tegafur (TEG) and carmofur (CAR) were examined using an in vitro penetration technique and rat skin. Phosphate buffered isotonic saline (PBS), propylene glycol (PG) and PG containing 0.4M NDP (PGNDP) were applied as the donor solution. The correlation between the n-octanol/water partition coefficients and the permeability coefficients of DOX, 5-FU and TEG was investigated using both logarithmic plots. It was determined that the permeability coefficients are significantly correlated with their n-octanol/water partition coefficients on PBS. This result suggested that the non-polar stratum corneum lipid lamella in the skin might act as a rate limiting step on the skin penetration of DOX, 5-FU and TEG. The permeability coefficient of DOX, 5-FU and TEG was increased on PGNDP. The enhancing effect of NDP on the permeability coefficient was more effective at higher hydrophilic drugs, the values of the permeability coefficient had almost the same values on PGNDP and the dependency of the permeability coefficient on the n-octanol/water partition coefficient disappeared in the presence of NDP. These results indicated that the enhancing effect of NDP on the percutaneous absorption of DOX, 5-FU and TEG might be closely related to the perturbation of stratum corneum lipid lamella. Since it has been well recognized that CAR is decomposed into 5-FU in neutral and alkaline solution, the decomposition rate of CAR was measured using PBS solution and was found to be very rapid (Kd = 3.17 h-1, t1/2 = 13.1 min). The total concentrations of CAR plus 5-FU in the acceptor compartment were used to determine the permeability coefficient of CAR. The obtained value of the permeability coefficient of CAR on PG was almost the same as that of TEG on PG (CAR: 1.11 x 10(-3) cm/h, TEG: 1.24 x 10(-3) cm/h), while that of CAR on PGNDP was smaller than that of TEG on

  10. Asymptotic coefficients for one-interacting-level Voigt profiles

    NASA Astrophysics Data System (ADS)

    Cope, D.; Lovett, R. J.

    1988-02-01

    The asymptotic behavior of general Voigt profiles with general width and shift functions has been determined by Cope and Lovett (1987). The resulting asymptotic coefficients are functions of the perturber/radiator mass ratio; also, the coefficients for the one-interacting-level (OIL) profiles proposed by Ward et al. (1974) were studied. In this paper, the behavior of the OIL asymptotic coefficients for large mass ratio values is determined, thereby providing a complete picture of OIL asymptotics for all mass ratios.

  11. Transport coefficients for electrons in Hg vapor

    NASA Astrophysics Data System (ADS)

    Dujko, Sasa; White, Ron; Petrovic, Zoran

    2012-06-01

    Transport coefficients and distribution functions are calculated for electrons in Hg vapor under swarm conditions using a multi term theory for solving the Boltzmann equation, over a range of E/N values and temperatures relevant to lamp discharges. It is shown that for higher E/N the electron distribution is non-thermal for all Hg vapor temperatures considered, and that the speed distribution function significantly deviates from a Maxwellian under these conditions. Our work has been motivated, in part, by recent suggestions that highly accurate data for transport coefficients required as input in fluid models of Hg vapor lamp discharges may significantly improve the existing models. Current models of such lamps require a knowledge of the plasma electrical conductivity, which can be calculated from the cross sections for electron scattering in Hg vapor and mobility coefficients presented in this work. The effect of metastable atoms on the swarm parameters is also discussed. The influence of a magnetic field on electron transport coefficients in Hg vapor is investigated over a range of B/N values and angles between the fields.

  12. Oxygen atom loss coefficient of carbon nanowalls

    NASA Astrophysics Data System (ADS)

    Mozetic, Miran; Vesel, Alenka; Stoica, Silviu Daniel; Vizireanu, Sorin; Dinescu, Gheorghe; Zaplotnik, Rok

    2015-04-01

    Extremely high values of atomic oxygen loss coefficient on carbon nanowall (CNW) surface are reported. CNW layers consisting of interconnected individual nanostructures with average length of 1.1 μm, average thickness of 66 nm and surface density of 3 CNW/μm2 were prepared by plasma jet enhanced chemical-vapor deposition using C2H2/H2/Ar gas mixtures. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectrometry (RS) as well as X-ray photoelectron spectroscopy (XPS). The surface loss coefficient was measured at room temperature in a flowing afterglow at different densities of oxygen atoms supplied from inductively coupled radiofrequency O2 plasma. The RF generator operated at 13.56 MHz and different nominal powers up to 900 W corresponding to different O-atom density in the afterglow up to 1.3 × 1021 m-3. CNW and several different samples of known coefficients for heterogeneous surface recombination of neutral oxygen atoms have been placed separately in the afterglow chamber and the O-atom density in their vicinity was measured with calibrated catalytic probes. Comparison of measured results allowed for determination of the loss coefficient for CNWs and the obtained value of 0.59 ± 0.03 makes this material an extremely effective sink for O-atoms.

  13. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.

    PubMed

    Fang, Zhen-Huan; Fu, Xia-Ping; He, Xue-Ming

    2016-06-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μa and the reduced scattering coefficient μs' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μa and μs' of different parts of the kiwifruit were 0.031-0.308 mm(-1) and 0.120-0.946 mm(-1), respectively. The results showed significant differences among the μa and μs' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  14. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system*

    PubMed Central

    Fang, Zhen-huan; Fu, Xia-ping; He, Xue-ming

    2016-01-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μ a and the reduced scattering coefficient μ s' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μ a and μ s' of different parts of the kiwifruit were 0.031–0.308 mm−1 and 0.120–0.946 mm−1, respectively. The results showed significant differences among the μ a and μ s' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  15. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  16. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form-factor of tin over the energy range of 29 keV-60 keV.

    SciTech Connect

    de Jonge, M. D.; Tran, C. Q.; Chantler, C. T.; Barnea, Z.; Dhal, B. P.; Paterson, D.; Kanter, E. P.; Southworth, S. H.; Young, L.; Beno, M. A.; Linton, J. A.; Jennings, G.; Univ. of Melbourne; Australian Synchrotron Project

    2007-01-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler et al., Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60 keV to 0.04-3 % accuracy, and typically in the range 0.1-0.2 %. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f{sub 2} is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2 % persist between calculated and observed values.

  17. Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the nu4 band of (C-12)H4

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Smith, Mary Ann H.; Devi, V. Malathy; Benner, D. Chris

    1989-01-01

    Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the nu4 band of (C-12)H4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J-double-prime = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 + or - 0.017 (2 Sigma). More than 95 percent of the pressure-induced shifts are negative with values ranging from -0.0081 to +0.0055/cm atm. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

  18. A program to compute aquifer-response coefficients

    USGS Publications Warehouse

    Maddock, Thomas

    1974-01-01

    An alternating direction technique is used to solve finite difference equations approximating the flow of water in an aquifer. The solutions produce response coefficients relating pumping from wells to drawdowns within those wells. The product of the response coefficient with the pumping values produces a linear algebraic technological function that can be used for integrating hydrologic phenomena into planning and management models.

  19. Analysis of a heat transfer device for measuring film coefficients

    NASA Technical Reports Server (NTRS)

    Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.

    1975-01-01

    A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.

  20. Biases and Standard Errors of Standardized Regression Coefficients

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Chan, Wai

    2011-01-01

    The paper obtains consistent standard errors (SE) and biases of order O(1/n) for the sample standardized regression coefficients with both random and given predictors. Analytical results indicate that the formulas for SEs given in popular text books are consistent only when the population value of the regression coefficient is zero. The sample…

  1. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  2. The relativistic Doppler broadening of the line absorption profile

    NASA Astrophysics Data System (ADS)

    Kichenassamy, S.; Krikorian, R.; Nikogosian, A.

    1982-06-01

    The classical results of Doppler broadening of the line absorption profile are generalized to a relativistic gas in thermal equilibrium by taking into account the relativistic variance of the volume absorption coefficients of the gas, as derived by L. H. Thomas. This variance produces a small correction, even in the non-relativistic approximation.

  3. RADIONUCLIDE RISK COEFFICIENT UNCERTAINTY REPORT

    EPA Science Inventory

    EPA has published excess cancer risk coefficients for the US population in Federal Guidance Report 13 (FGR 13). FGR 13 gives separate risk coefficients for food ingestion, water ingestion, inhalation, and external exposure for each of over 800 radionuclides. Some information on...

  4. Standardized Discriminant Coefficients: A Rejoinder.

    ERIC Educational Resources Information Center

    Mueller, Ralph O.; Cozad, James B.

    1993-01-01

    Although comments of D.J. Nordlund and R. Nagel are welcomed, their arguments are not sufficient to accept the recommendation of using total variance estimates to standardize canonical discriminant function coefficients. If standardized coefficients are used to help interpret a discriminant analysis, pooled within-group variance estimates should…

  5. Two and four photon absorption and nonlinear refraction in undoped, chromium doped and copper doped ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-12-01

    The ZnS quantum dots (QDs) with Cr and Cu doping were synthesized by chemical co-precipitation method. The nanostructures of the prepared undoped and doped ZnS QDs were characterized by UV-vis spectroscopy, Transmission electron microscopy (TEM) and X-ray diffraction (XRD). The sizes of QDs were found to be within 3-5 nm range. The nonlinear parameters viz. Two photon absorption coefficient (β2), nonlinear refractive index (n2), third order nonlinear susceptibility (χ3) at wavelength 532 nm and Four photon absorption coefficient (β4) at wavelength 1064 nm have been calculated by Z-scan technique using nanosecond Nd:YAG laser in undoped, Cr doped and Cu doped ZnS QDs. Higher values of nonlinear parameters for doped ZnS infer that they are potential material for the development of photonics devices and sensor protection applications.

  6. Gamma ray attenuation coefficient measurement for neutron-absorbent materials

    NASA Astrophysics Data System (ADS)

    Jalali, Majid; Mohammadi, Ali

    2008-05-01

    The compounds Na 2B 4O 7, H 3BO 3, CdCl 2 and NaCl and their solutions attenuate gamma rays in addition to neutron absorption. These compounds are widely used in the shielding of neutron sources, reactor control and neutron converters. Mass attenuation coefficients of gamma related to the four compounds aforementioned, in energies 662, 778.9, 867.38, 964.1, 1085.9, 1173, 1212.9, 1299.1,1332 and 1408 keV, have been determined by the γ rays transmission method in a good geometry setup; also, these coefficients were calculated by MCNP code. A comparison between experiments, simulations and Xcom code has shown that the study has potential application for determining the attenuation coefficient of various compound materials. Experiment and computation show that H 3BO 3 with the lowest average Z has the highest gamma ray attenuation coefficient among the aforementioned compounds.

  7. Light absorption by biomass burning source emissions

    NASA Astrophysics Data System (ADS)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  8. A program for calculating and plotting soft-X-ray optical interaction coefficients for molecules

    NASA Astrophysics Data System (ADS)

    Thomas, M. M.; Davis, J. C.; Jacobsen, C. J.; Perera, R. C. C.

    1990-05-01

    Comprehensive tables for atomic scattering factor components f1 and f2 were compiled by Henke et al. for the extended photon region of 350-10000 eV. Accurate calculations of optical interaction coefficients for absorption, reflection and scattering by material systems (e.g. filters, multi-layers, etc.), which have widespread application, can be based simply upon the atomic scattering factors for the elements comprising the material, except near the absorption threshold energies. These calculations based upon the weighted sum of f1 and f2 for each atomic species present can be very tedious if done by hand. This led us to develop Optical Constants Grapher (OCG), a user-friendly program to perform these calculations on an IBM PC or compatible computer. By entering the chemical formula, density and thickness of up to six molecules, values of f1, f2, mass absorption, transmission efficiencies, attenuation lengths, mirror reflectivities and complex indices of refraction can be calculated and plotted as a function of energy or wavelength. This program and its user's manual are available from the authors.

  9. What Value "Value Added"?

    ERIC Educational Resources Information Center

    Richards, Andrew

    2015-01-01

    Two quantitative measures of school performance are currently used, the average points score (APS) at Key Stage 2 and value-added (VA), which measures the rate of academic improvement between Key Stage 1 and 2. These figures are used by parents and the Office for Standards in Education to make judgements and comparisons. However, simple…

  10. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique

    SciTech Connect

    Chantler, C.T.; Islam, M.T.; Rae, N.A.; Tran, C.Q.; Glover, J.L.; Barnea, Z.

    2012-09-25

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  11. Ultraviolet to near-infrared absorption spectrum of carbon dioxide ice from 0.174 to 1.8 μm

    NASA Astrophysics Data System (ADS)

    Hansen, Gary B.

    2005-11-01

    A laboratory experiment was devised to measure transmission at fine spectral resolution through thick, high-quality samples of CO2 ice over an extended wavelength range. The absorption coefficient throughout the ultraviolet and near-infrared spectral ranges 0.174-1.8 μm (5555-57,470 cm-1 in wave number) is presented here. CO2 ice samples were grown at a temperature of 150 K, typical of the Martian polar caps. The path length of the samples varied from 1.6 to 107.5 mm, allowing the measurement of absorption from <0.1 to 4000 m-1. The experiment used both a grating monochromator (with spectral resolution 0.1-0.3 nm) and a Fourier transform spectrometer (with an effective resolution of <1.0 cm-1). The transmission data for five thicknesses are used to estimate both the scattering losses for each sample and the absorption coefficient at each wavelength. The uncertainty in the most transparent wavelength regions (<10 m-1) is due to scattering extinction. Measurement noise and data scatter produce significant uncertainty only where absorption coefficients exceed 1000 m-1. Between 1.0 and 1.8 μm there are several weak to moderate absorption lines. Only an upper limit to the absorption can be determined in many places; e.g., the absorption from ~0.25 to 1.0 μm is below the detection limit. The estimated visible absorption, ~10-2 m-1, is a factor of 1000 smaller than the values reported by Egan and Spagnolo, which have been used previously to compute albedos of CO2 snow. The new results should be useful for studies of the seasonal polar caps of Mars.

  12. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  13. Absorption refrigeration machine driven by solar heat

    NASA Astrophysics Data System (ADS)

    Keizer, C.; Liem, S. H.

    1980-04-01

    A mathematical model of a single and a two stage solar absorption refrigeration system is developed in which data of collectors and weather data can be implicated. The influence of the generator, the absorber efficiencies, and the cooling temperature on the coefficient of performance (COP) of a single and two stage absorption refrigeration process are investigated. For low generator temperatures the absorber efficiency has more influence on COP than the generator efficiency. Only spectral selective double window and high performance collectors can be used for air cooled solar absorption refrigeration systems at an evaporator temperature of -5 C. It is concluded that a water cooled solar absorption refrigeration system in combination with a solar tapwater installation for household use can be achieved with 6 to 8 square meters high performance collector area.

  14. Determinations of equilibrium segregation, effective segregation and diffusion coefficients for Nd+3 doped in molten YAG

    NASA Astrophysics Data System (ADS)

    Asadian, M.; Saeedi, H.; Yadegari, M.; Shojaee, M.

    2014-06-01

    In this paper, a new mathematical model has been presented to determine the equilibrium segregation (k0) and effective segregation (keff) coefficients for neodymium (Nd) in YAG crystal grown by Czochralski (CZ) method. Determination of diffusion coefficient (DL) of Nd impurity in molten YAG is also investigated. In this model, utilizing Lambert W-function is a new idea to solve the Scheil equation for calculation of effective segregation coefficient. The Nd concentration in the crystal has been measured by optical absorption method to calculate keff. The analyses show that the keff is related to the growth parameters such as crystal growth rate (ug) and crystal rotation rate (ω), ( ug/√{ω}) but it is independent of the Nd concentration in the initial melt (C0). Based on obtained keff and experimental growth data, k0 and DL of Nd in molten YAG have been calculated. For all experiments, the average value of k0=0.216 and DL=1.4×10-6 (cm2/s) are obtained. Our results are corroborated by the theoretical and experimental data from the literature.

  15. Manning's roughness coefficient for Illinois streams

    USGS Publications Warehouse

    Soong, David T.; Prater, Crystal D.; Halfar, Teresa M.; Wobig, Loren A.

    2012-01-01

    Manning's roughness coefficients for 43 natural and constructed streams in Illinois are reported and displayed on a U.S. Geological Survey Web site. At a majority of the sites, discharge and stage were measured, and corresponding Manning's coefficients—the n-values—were determined at more than one river discharge. The n-values discussed in this report are computed from data representing the stream reach studied and, therefore, are reachwise values. Presentation of the resulting n-values takes a visual-comparison approach similar to the previously published Barnes report (1967), in which photographs of channel conditions, description of the site, and the resulting n-values are organized for each site. The Web site where the data can be accessed and are displayed is at URL http://il.water.usgs.gov/proj/nvalues/.

  16. Analysis of frequency dependent pump light absorption

    NASA Astrophysics Data System (ADS)

    Wohlmuth, Matthias; Pflaum, Christoph

    2011-03-01

    Simulations have to accurately model thermal lensing in order to help improving resonator design of diode pumped solid state lasers. To this end, a precise description of the pump light absorption is an important prerequisite. In this paper, we discuss the frequency dependency of the pump light absorption in the laser crystal and its influence on the simulated laser performance. The results show that the pump light absorption has to include the spectral overlap of the emitting pump source and the absorbing laser material. This information can either be used for a fully frequency dependent absorption model or, at least in the shown examples, to compute an effective value for an exponential Beer-Lambert law of absorption. This is particularly significant at pump wavelengths coinciding with a peak of absorption. Consequences for laser stability and performance are analyzed for different pump wavelengths in a Nd:YAG laser.

  17. Absorption of different lead compounds

    PubMed Central

    Barltrop, D.; Meek, F.

    1975-01-01

    A rapid method for the determination of relative absorption of dietary lead by rats is described. The influence of age, weight and dose rate has been determined and using standard conditions the tissue lead content of blood, kidney and femur are significantly correlated with each other and are a function of ingested lead. Eight lead compounds were evaluated using this technique and the findings related to lead acetate as a reference compound. Of the inorganic preparations studied, lead carbonate (basic) and metallic lead showed a twelve-fold difference in absorption, with the remaining compounds giving intermediate values. The absorption of lead from four organic compounds was determined from diets containing 7·5% corn oil added to the standard diet. Lead tallate was absorbed to the same degree as lead acetate, but lesser absorptions resulted from lead octoate, naphthenate and alsynate. The addition of corn oil to a final concentration of 7·5% of the diet enhanced the absorption of lead acetate. PMID:1208290

  18. Conversion coefficients of the isomeric state in {sup 72}Br

    SciTech Connect

    Briz, J. A.; Borge, M. J. G.; Maira, A.; Perea, A.; Tengblad, O.; Agramunt, J.; Algora, A.; Estevez, E.; Nacher, E.; Rubio, B.; Fraile, L. M.; Deo, A.; Farrelly, G.; Gelletly, W.; Podolyak, Z.

    2010-04-26

    In order to determine the Gamow-Teller strength distribution for the N Z nucleus {sup 72}Kr an experiment was performed with a Total Absorption Gamma Spectrometer. To fully accomplish this task it is crucial to determine the multipolarity of the low energy transitions as the spin-parity of the daughter ground state has been debated. This is done by experimental determination of the conversion coefficients. Preliminary results for the multipolarity and conversion coefficients of the transition connecting the isomeric state at 101 keV with the {sup 72}Br ground state are presented.

  19. CO2 Capture by Absorption with Potassium Carbonate

    SciTech Connect

    Gary T. Rochelle; Marcus Hilliard; Eric Chen; Babatunde Oyenekan; Ross Dugas; John McLees; Andrew Sexton; Daniel Ellenberger

    2005-10-26

    The objective of this work is to improve the process for CO{sub 2} capture by alkanolamine absorption/stripping by developing an alternative solvent, aqueous K{sub 2}CO{sub 3} promoted by piperazine. Modeling of stripper performance suggests that vacuum stripping may be an attractive configuration for all solvents. Flexipac 1Y structured packing performs in the absorber as expected. It provides twice as much mass transfer area as IMTP No.40 dumped packing. Independent measurements of CO{sub 2} solubility give a CO{sub 2} loading that is 20% lower than that Cullinane's values with 3.6 m PZ at 100-120 C. The effective mass transfer coefficient (K{sub G}) in the absorber with 5 m K/2.5 m PZ appears to be 0 to 30% greater than that of 30 wt% MEA.

  20. Temperature dependences for N2- and air-broadened Lorentz half-width coefficients of methane transitions around 3.38 μm

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Liu, Qiang; Cao, Zhensong; Chen, Weidong; Vicet, Aurore; Huang, Yinbo; Zhu, Wenyue; Gao, Xiaoming; Rao, Ruizhong

    2016-03-01

    We have measured high-resolution absorption spectra of methane broadened by N2 and air at sample temperatures between 173.0 K and room temperature. The measurements were performed based on direct laser absorption spectroscopy using a tunable diode laser combined with a temperature controlled cryogenically cooled absorption cell. These spectra have been analyzed to determine the pressure-broadened half-width coefficients as well as their temperature dependences for six singlet lines belonging to the ν3 band of methane near 3.38 μm. To our knowledge, the temperature dependence exponents for the pressure-broadened half-width coefficients are reported experimentally for the first time for six transitions of 12CH4 with intensities stronger than 4×10-20 cm-1/(molecule cm-2). The measured half-width coefficients and the temperature dependence exponents of these transitions are compared with the available values reported in the literature and the HITRAN2012 database. Agreements and discrepancies are discussed.

  1. D-xylose absorption

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  2. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity

    NASA Astrophysics Data System (ADS)

    Glückstad, J.; Saffman, M.

    1995-03-01

    We have observed the spontaneous formation of transverse spatial patterns in a thin film of bacteriorhodopsin with a feedback mirror. Bacteriorhodopsin has a mixed absorptive-dispersive nonlinearity at the wavelength used in the experiments (633 nm). Threshold values of the incident intensity for observation of pattern formation are found from a linear stability analysis of a model that describes bacteriorhodopsin as a sluggish saturable nonlinear medium with a complex Kerr coefficient. The calculated threshold intensity is in good agreement with the experimental observations, and the patterns are predicted to be frequency offset from the pump radiation.

  3. Measurements of self-broadening of infrared absorption lines of ozone

    NASA Technical Reports Server (NTRS)

    Smith, M. A. H.; Rinsland, C. P.; Devi, V. M.

    1991-01-01

    Lorentz self-broadening coefficients have been determined for 355 spectral lines belonging to five different infrared vibration-rotation bands of O3 in the spectral region from 4.8 to 17 microns. Six ozone absorption spectra, recorded at room temperature using a Fourier transform spectrometer, were analyzed. The half-width values were obtained through a nonlinear least-squares spectral fitting procedure. The results are compared with previous measurements, and the vibration of the half-widths with vibrational and rotational quantum numbers is examined.

  4. Density Transition Based Self-Focusing of cosh-Gaussian Laser Beam in Plasma with Linear Absorption

    NASA Astrophysics Data System (ADS)

    Niti, Kant; Manzoor, Ahmad Wani

    2015-07-01

    Density transition based self-focusing of cosh-Gaussian laser beam in plasma with linear absorption has been studied. The field distribution in the plasma is expressed in terms of beam width parameter, decentered parameter, and linear absorption coefficient. The differential equation for the beam width parameter is solved by following Wentzel-Kramers-Brillouin (WKB) and paraxial approximation through parabolic wave equation approach. The behaviour of beam width parameter with dimensionless distance of propagation is studied at optimum values of plasma density, decentered parameter and with different absorption levels in the medium. The results reveal that these parameters can affect the self-focusing significantly. Supported by a Financial Grant from CSIR, New Delhi, India, under Project No. 03(1277)/13/EMR-II

  5. Combined heat and mass transfer in absorption processes

    SciTech Connect

    Grossman, G.

    1982-01-01

    The approach to theoretical analysis of the combined heat and mass transfer process taking place in absorption systems is described. The two tranfer phenomena are strongly coupled here. The purpose of the analysis is to relate, quantitatively, the heat and mass transfer coefficients to the physical properties of the working fluids and to the geometry of the system. The preferred configuration is that of a falling film of liquid on a metallic surface which serves to transfer heat from the absorbent in contact with the vapor of the absorbate. The model developed may be solved for laminar, turbulent, or transition flow regimes. The results of the solution describe the development of the thermal and concentration boundary layers and the variation of the temperatures, concentrations, and heat and mass fluxes. These quantities in their normalized, dimensionless form depend on two characteristic parameters of the system: the Lewis number Le and the dimensionless heat of absorption lambda. The length in the direction of flow is normalized with respect to the Peclet number and the film thickness. Heat and mass transfer coefficients for the system were calculated. The Sherwood number for mass transfer from the vapor-liquid interface to the bulk of the film reaches a constant value of 3.63 with fully developed boundary layers for both the adiabatic and constant temperature wall. The Nusselt number for heat transfer from the interface to the bulk reaches under the same conditions values of 3.63 and 2.67 for the adiabatic and constant temperature wall, respectively. The Nusselt number for heat tranfer from the bulk to the wall reaches 1.60.

  6. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  7. Relationship of extinction coefficient, air pollution, and meteorological parameters in an urban area during 2007 to 2009.

    PubMed

    Sabetghadam, Samaneh; Ahmadi-Givi, Farhang

    2014-01-01

    Light extinction, which is the extent of attenuation of light signal for every distance traveled by light in the absence of special weather conditions (e.g., fog and rain), can be expressed as the sum of scattering and absorption effects of aerosols. In this paper, diurnal and seasonal variations of the extinction coefficient are investigated for the urban areas of Tehran from 2007 to 2009. Cases of visibility impairment that were concurrent with reports of fog, mist, precipitation, or relative humidity above 90% are filtered. The mean value and standard deviation of daily extinction are 0.49 and 0.39 km(-1), respectively. The average is much higher than that in many other large cities in the world, indicating the rather poor air quality over Tehran. The extinction coefficient shows obvious diurnal variations in each season, with a peak in the morning that is more pronounced in the wintertime. Also, there is a very slight increasing trend in the annual variations of atmospheric extinction coefficient, which suggests that air quality has regressed since 2007. The horizontal extinction coefficient decreased from January to July in each year and then increased between July and December, with the maximum value in the winter. Diurnal variation of extinction is often associated with small values for low relative humidity (RH), but increases significantly at higher RH. Annual correlation analysis shows that there is a positive correlation between the extinction coefficient and RH, CO, PM10, SO2, and NO2 concentration, while negative correlation exists between the extinction and T, WS, and O3, implying their unfavorable impact on extinction variation. The extinction budget was derived from multiple regression equations using the regression coefficients. On average, 44% of the extinction is from suspended particles, 3% is from air molecules, about 5% is from NO2 absorption, 0.35% is from RH, and approximately 48% is unaccounted for, which may represent errors in the data as

  8. Activity coefficient of aqueous sodium bicarbonate

    SciTech Connect

    Pitzer, Kenneth S.; Peiper, J. Christopher

    1980-09-01

    The determination of the activity coefficient and related properties of sodium bicarbonate presents special problems because of the appreciable vapor pressure of CO2 above such solutions. With the development of reliable equations for the thermodynamic properties of mixed electrolytes, it is possible to determine the parameters for NaHCO3 from cell measurements or NaCl-NaHCO3 mixtures. Literature data are analyzed to illustrate the method and provide interim values, hoever it is noted that further measurements over a wider range of concentrations would yield more definitive results. Lastly, an estimate is also given for the activity coefficient of KHCO3.

  9. Rotational dissipation and the Miesowicz coefficients.

    PubMed

    Simões, M; Yamaguti, K; Palangana, A J

    2009-12-01

    In this work, we will study the relative contribution of each of the two dissipative channels of the Eriksen, Leslie, and Parodi (ELP) approach to the observed values of the Miesowicz viscosity coefficients of the nematic liquid crystals. According to the fundamental equation of the liquid crystal's viscosity dissipative process, TS=-integral d3r(sigma)ijA(ij)+hxN , there are two channels by which the nematic viscous dissipation can occur: or it occurs by means of a shear flow configuration, where A(ij) is the characterizing term, or it occurs by means of a rotational configuration, where N is the characterizing term (these parameters will be defined in the paper). It will be also shown that this relative contribution can be measured by a simple relationship connecting the Miesowicz coefficients, which exhibits a quasitemperature independent behavior, suggesting that it is nearly constant through the entire domain of the nematic phase. PMID:20365179

  10. Solute concentration effect on osmotic reflection coefficient.

    PubMed Central

    Adamski, R P; Anderson, J L

    1983-01-01

    A theory for the effect of concentration on osmotic reflection coefficient, correct to first order, was developed at the molecular level by considering the effect of solute-solute interactions on solute concentration and the fluid stress tensor within a solvent-filled pore. The solvent was modeled as a continuous fluid and potential energies between solute molecules and the pore wall were assumed to be pairwise additive. Although the theory is more general, calculations are presented only for excluded volume effects (hard-sphere for solute, hard-wall for pore). The relationship between the first-order concentration effect and the infinite dilution value of reflection coefficient appears to be geometry independent. The theory is discussed in light of experimental studies of osmotic flow that have recently appeared in the literature. PMID:6626681

  11. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  12. Definition and analysis of the lineshape matching coefficient in diode-pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Shen, Binglin; Pan, Bailiang; Yang, Jing; Qian, Aiqing; Jiao, Jian

    2014-12-01

    For diode-pumped alkali lasers (DPALs), the matching of lineshape between D2 absorption line and pump light greatly affects the properties of laser output; however, there is rare theoretical study on the quantitative description of the lineshape matching coefficient. In this paper, we put forward a formula to describe the lineshape matching coefficient that represents the matching degree between D2 absorption line and pump light. Dependences of the matching coefficient and optical-optical efficiency on the linewidth ratio between D2 absorption line and pump light, and the center frequency shift of pump light caused by mode hopping are calculated and compared with experimental results in literatures. Results show the definition of lineshape matching coefficient can provide an effective way to improve the pump efficiency of DPALs.

  13. Experimental study of the light absorption in sea water by thermal lens spectroscopy

    NASA Astrophysics Data System (ADS)

    Velásquez, A.; Sira, E.; Silva, S.; Cabrera, H.

    2016-01-01

    Thermal lens spectroscopy is well known as highly sensitive technique enabling measurements of low absorption and concentration determination of various compounds. The optical absorption coefficients of doubly distilled water and samples of water from different places of the open Ocean and different coastal regions have been measured at 532.8 nm wavelength using this technique. The method enables sensitive, rapid and reproducible determination of small variations of the absorption coefficient which are related with small trace contaminations in sea water.

  14. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  15. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  16. Factors influencing the stream-aquifer flow exchange coefficient.

    PubMed

    Morel-Seytoux, Hubert J; Mehl, Steffen; Morgado, Kyle

    2014-01-01

    Knowledge of river gain from or loss to a hydraulically connected water table aquifer is crucial in issues of water rights and also when attempting to optimize conjunctive use of surface and ground waters. Typically in groundwater models this exchange flow is related to a difference in head between the river and some point in the aquifer, through a "coefficient." This coefficient has been defined differently as well as the location for the head in the aquifer. This paper proposes a new coefficient, analytically derived, and a specific location for the point where the aquifer head is used in the difference. The dimensionless part of the coefficient is referred to as the SAFE (stream-aquifer flow exchange) dimensionless conductance. The paper investigates the factors that influence the value of this new conductance. Among these factors are (1) the wetted perimeter of the cross-section, (2) the degree of penetration of the cross-section, and (3) the shape of the cross-section. The study shows that these factors just listed are indeed ordered in their respective level of importance. In addition the study verifies that the analytical correct value of the coefficient is matched by finite difference simulation only if the grid system is sufficiently fine. Thus the use of the analytical value of the coefficient is an accurate and efficient alternative to ad hoc estimates for the coefficient typically used in finite difference and finite element methods. PMID:24010703

  17. Two-photon-absorption of frequency converter crystals at 248 nm

    NASA Astrophysics Data System (ADS)

    Divall, M.; Osvay, K.; Kurdi, G.; Divall, E. J.; Klebniczki, J.; Bohus, J.; Péter, Á.; Polgár, K.

    2005-12-01

    The two-photon-absorption coefficient of KDP, BBO, LTB, and CLBO crystals has been determined from the measurement of the intensity dependent transmission through long samples. The intensity of the sub-picosecond KrF excimer laser pulses on the samples was varied from 0.2-80 GW/cm2. The linear absorption of the samples was determined by using a low intensity, long pulse KrF laser. The first-principle simulations to the experimental data show a TPA value of 0.48 cm/GW for KDP, 0.5 cm/GW (o-ray) and 0.34 cm/GW (e-ray) in BBO, 0.22 cm/GW in LTB and 0.53 cm/GW in CLBO.

  18. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  19. Prediction of oral absorption in humans by experimental immobilized artificial membrane chromatography indices and physicochemical descriptors.

    PubMed

    Kotecha, Jignesh; Shah, Shailesh; Rathod, Ishwarsinh; Subbaiah, Gunta

    2008-08-01

    The purpose of the present study was to examine the human oral absorption (HOA) predictability of the experimentally determined immobilized artificial membrane (IAM) chromatography capacity factor (log k'IAM) in conjunction with physicochemical descriptors. Transcellular permeation was modeled based on determination of log k'IAM considering pH partition hypothesis, and the independent variables were polar surface area (PSA) and molecular weight (MW). The correlation between log k'IAM determined at different pH and n-octanol/water partition coefficient (log P) and contribution of polarity (PSA) and size (MW) in the transcellular permeation model were the extension to the previous work. A data set of 37 compounds with partition coefficient values taken from the literature was employed to show importance of ionic interaction in oral absorption prediction. The highest log k'IAM value among screened pH 4.5, 5.5, 6.5 and 7.4 (log k'IAM4.5-7.4) in conjunction with PSA predicted HOA with coefficient of determination (CD) of 0.9001 compare to log k'IAM4.5-7.4 alone with CD of 0.8454 after excluding bretylium from the set of 28 structurally diverse drugs for known reason. PSA helped to avoid over estimation of HOA for amiloride, famotidine and furosemide. The model was tested for its applicability in drug development program and found to predict oral absorption using physically meaningful and structurally related properties making them relatively straightforward for a medicinal chemist to interpret. PMID:18524510

  20. Transport coefficients of heavy baryons

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.