Science.gov

Sample records for absorption coefficients derived

  1. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  2. Absorption coefficient instrument for turbid natural waters.

    PubMed

    Friedman, E; Poole, L; Cherdak, A; Houghton, W

    1980-05-15

    An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  3. Absorption coefficient instrument for turbid natural waters

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-05-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  4. Absorption coefficient instrument for turbid natural waters

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  5. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  6. Absorption Coefficient of Alkaline Earth Halides.

    DTIC Science & Technology

    1980-04-01

    levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...of as can be achieved through improved crystal growing techniques and surface polishing. 2.5. Urbach’s Rule A central question for the development of...high absorption levels , inaccuracies progressively increasing with decreasing absorption level , a natural consequence of decreasing in instrumental

  7. Optical absorption coefficients of pure water

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.

    2002-10-01

    The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.

  8. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  9. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  10. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  11. [Experimental determination of the absorption coefficients of biological tissues].

    PubMed

    Kovtun, A V; Kondrat'ev, V S; Terekhov, D V

    1980-01-01

    Procedure is presented for studying the coefficient of biological tissue absorption of radiation with the wavelength lambda = 1.06 mkm. The absorption coefficient is determined by the temperature values of biological tissue experimentally measured with thermopairs. The coherent radiation current falls on the surface of biological tissue. A mathematical model is formulated for biological tissue heating with radiation. Solution of Furier equation obtained by means of Green function is given. Using the relationship found, the energy absorbed by the biological tissue was calculated and the absorption coefficient of radiation with lambda - 1.06 mkm was determined. The results were analysed and the error of the obtained values of absorption coefficients of biological tissues under study were determined.

  12. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  13. Photon absorption potential coefficient as a tool for materials engineering

    NASA Astrophysics Data System (ADS)

    Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole

    2016-09-01

    Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and

  14. Prediction of absorption coefficients by pulsed laser induced photoacoustic measurements.

    PubMed

    Priya, Mallika; Satish Rao, B S; Ray, Satadru; Mahato, K K

    2014-06-05

    In the current study, a pulsed laser induced photoacoustic spectroscopy setup was designed and developed, aiming its application in clinical diagnostics. The setup was optimized with carbon black samples in water and with various tryptophan concentrations at 281nm excitations. The sensitivity of the setup was estimated by determining minimum detectable concentration of tryptophan in water at the same excitation, and was found to be 0.035mM. The photoacoustic experiments were also performed with various tryptophan concentrations at 281nm excitation for predicting optical absorption coefficients in them and for comparing the outcomes with the spectrophotometrically-determined absorption coefficients for the same samples. Absorption coefficients for a few serum samples, obtained from some healthy female volunteers, were also determined through photoacoustic and spectrophotometric measurements at the same excitations, which showed good agreement between them, indicating its clinical implications.

  15. NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS

    SciTech Connect

    Leung, Po Kin; Gammie, Charles F.; Noble, Scott C. E-mail: gammie@illinois.edu

    2011-08-10

    Magnetobremsstrahlung (MBS) emission and absorption play a role in many astronomical systems. We describe a general numerical scheme for evaluating MBS emission and absorption coefficients for both polarized and unpolarized light in a plasma with a general distribution function. Along the way we provide an accurate scheme for evaluating Bessel functions of high order. We use our scheme to evaluate the accuracy of earlier fitting formulae and approximations. We also provide an accurate fitting formula for mildly relativistic (kT/(m{sub e}c{sup 2}) {approx}> 0.5) thermal electron emission (and therefore absorption). Our scheme is too slow, at present, for direct use in radiative transfer calculations but will be useful for anyone seeking to fit emission or absorption coefficients in a particular regime.

  16. Methane Absorption Coefficients for the Jovian Planets and Titan

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich; Tomasko, M. G.

    2009-09-01

    We combined 11 data sets of methane transmission measurements within 0.4-5.5 micrometer wavelength in order to better understand the variation of methane absorption with temperature and pressure for conditions in the atmospheres of the Jovian planets and Titan. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere (Tomasko et al. 2008, PSS 56, 624). We present the data with a refined analysis. The last data set consists of Hubble Space Telescope images of Jupiter taken in 2005 and 2007 as Ganymede started to be occulted by Jupiter. Using Ganymede as a light source, we probed Jupiter's stratosphere with large methane pathlengths. Below 1000 nm wavelength, we find methane absorption coefficients generally similar to those by Karkoschka (1998, Icarus 133, 134). We added descriptions of temperature and pressure dependence, which are typically small in this wavelength range. Data in this wavelength range are consistent with each other, except between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the Jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data are consistent with Irwin's model of the pressure dependence of methane absorption. However, when large extrapolations were needed, such as from laboratory data above 200 K to Titan's temperatures near 80 K, Irwin's model of temperature dependence predicts absorption coefficients up to 100 times lower than measured by Huygens. We combined Irwin's and Huygens' data to obtain more reliable methane absorption coefficients for the temperatures in the atmospheres of the Jovian planets and Titan. This research was supported by NASA grants NAG5-12014 and NNX08AE74G.

  17. Vapor-Phase Infrared Absorptivity Coefficient of HN1

    DTIC Science & Technology

    2013-08-01

    infrared spectrometer GC gas chromatography HD sulfur mustard HeNe helium–neon (laser) HgCdTe mercury–cadmium–telluride detector HN1, HN2, HN3...coefficient of the compound. 15. SUBJECT TERMS Vapor phase Saturator cell Infrared (IR) HN1 Vapor pressure Nitrogen mustard Vesicant...9 1 VAPOR-PHASE INFRARED ABSORPTIVITY COEFFICIENT OF HN1 1. INTRODUCTION The nitrogen mustards (HN1, HN2, and HN3) are similar to

  18. Ozone absorption coefficients' role in Dobson instrument ozone measurement accuracy

    NASA Astrophysics Data System (ADS)

    Basher, R. E.

    1982-11-01

    The differences of 10% or more between the laboratory measurements of UV absorption coefficients by different investigators indicate accuracies that are quite inadequate for current needs in the measurement of atmospheric ozone. The standard band-integrated set of coefficients now used with the Dobson instrument are mutually consistent to about 2%, but their absolute accuracy is still in question. The accurate calculation of band-integrated coefficients must take account of their dependence on source spectral irradiance, atmospheric spectral transmittance, mean ozone temperature, and instrument spectral transmittance. A careful examination shows that Komhyr's (1980) case for an error of about +5% in the standard Dobson AD ozone estimation is subject to large uncertainties and certain lacks of independence. The obvious solution to this accuracy problem lies in better laboratory measurements of ozone absorption.

  19. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.

    PubMed

    Li, Xiaoqi; Jiang, Huabei

    2013-02-21

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  20. Field testing of sound absorption coefficients in a classroom

    NASA Astrophysics Data System (ADS)

    Pettyjohn, Steve

    2005-09-01

    Formal procedures for determining the sound absorption coefficients of materials installed in the field do not exist. However, the U.S. Air Force requested such tests to prove that the sound-absorbing material used in classrooms at Beale AFB in Marysville, CA, met the specified NRC of 0.80. They permitted the use of two layers of 0.5-in. fiberboard or 1-in.-thick fiberglass panels to meet the specified NRC rating. Post-construction tests showed reverberation times longer than expected. Unrealistic sound-absorption coefficients for room finish materials had to be used with the Sabine equation to achieve agreement between the measured and predicted reverberation time. By employing the Fitzroy equation and generally published absorption coefficients for ceiling tile, carpet, and fiberboard, the model provided excellent agreement with the measured reverberation times. The NRC of the fiberboard was computed to be 0.35, agreeing with published data. Since this did not meet project specifications, the Fitzroy model was used to learn the type and quantity of material needed to meet design goals. Follow-up tests showed good agreement between the predicted and measured reverberation times with material added, and project specifications were met. Results are also compared with the requirements of ANSI 12.60.

  1. In vivo light fluence correction for determination of tissue absorption coefficient using Multispectral Optoacoustic Tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal R.; Bohndiek, Sarah E.

    2016-03-01

    Optoacoustic Tomography is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound detection with the high contrast available from optical absorption in tissue. The spectral profile of near infrared excitation light used in optoacoustic tomography instruments is modified by absorption and scattering as it propagates deep into biological tissue. The resulting images therefore provide only qualitative insight into the distribution of tissue chromophores. Knowledge of the spectral profile of excitation light across the mouse is needed for accurate determination of the absorption coefficient in vivo. Under the conditions of constant Grueneisen parameter and accurate knowledge of the light fluence, a linear relationship should exist between the initial optoacoustic pressure amplitude and the tissue absorption coefficient. Using data from a commercial optoacoustic tomography system, we implemented an iterative optimization based on the σ-Eddington approximation to the Radiative Transfer Equation to derive a light fluence map within a given object. We segmented the images based on the positions of phantom inclusions, or mouse organs, and used known scattering coefficients for initialization. Performing the fluence correction in simple phantoms allowed the expected linear relationship between recorded and independently measured absorption coefficients to be retrieved and spectral coloring to be compensated. For in vivo data, the correction resulted in an enhancement of signal intensities in deep tissues. This improved our ability to visualize organs at depth (> 5mm). Future work will aim to perform the optimization without data normalization and explore the need for methodology that enables routine implementation for in vivo imaging.

  2. Optimization of the acoustic absorption coefficients of certain functional absorbents

    NASA Technical Reports Server (NTRS)

    Pocsa, V.; Biborosch, L.; Veres, A.; Halpert, E.; Lorian, R.; Botos, T.

    1974-01-01

    The sound absorption coefficients of some functional absorbents (mineral wool plates) are determined by the reverberation chamber method. The influence of the angle of inclination of the sound absorbing material with respect to the surface to be treated is analyzed as well as the influence of the covering index, defined as the ratio of the designed area of a plate and the area of the treated surface belonging to another plate. As compared with the conventional method of applying sound-absorbing plates, the analyzed structures have a higher technological and economical efficiency. The optimum structure corresponds to an angle of inclination of 15 deg and a covering index of 0.8.

  3. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  4. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state.

  5. Measurement of Acoustic Attenuation and Absorption Coefficients using Thermometry

    NASA Astrophysics Data System (ADS)

    Morris, Hugh; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2007-05-01

    Accurate knowledge of both the attenuation and the absorption coefficient of tissue are required when planning an optimal high intensity focused ultrasound treatment. A novel technique for simple measurement of this parameters has been developed in which a thin-film thermocouple (TFT) is placed between two layers of tissue of different thicknesses. The sample can be rotated about an axis through the junction of the TFT so that it can be insonated from either side leaving the tissue adjacent to the junction unchanged, but changing the overlying thickness. The attenuation and absorption coefficients can be calculated from the heating curves measured in the two orientations. Experiments have been carried out in both tissue mimicking material (TMM) and in ex vivo liver tissue. Weakly focused transducers, resonant at 1.05 MHz, 2.4 MHz and 3.55 MHz were used at free-field spatial peak intensities of 9-14 W/cm2. The temperature rise was measured as a function of time using a TFT. These thermocouples are not subject to the viscous heating artefact that is common to other thermocouple devices and so are advantageous for this purpose. Alignment was achieved with a 3D automated gantry system, which was controlled with specialised software. Timing and data acquisition were also controlled with this software. All experiments were carried out in degassed water. Results for TMM and degassed excised bovine liver are presented.

  6. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  7. Calibration of an integrating sphere for determining the absorption coefficient of scattering suspensions.

    PubMed

    Nelson, N B; Prézelin, B B

    1993-11-20

    Measuring the absolute absorption of suspensions of absorbing particles with unknown scattering characteristics is not possible in conventional spectrophotometers or in integrating spheres that have the sample located outside the sphere. A method for the calibration and use of an integrating sphere with a centrally located sample to measure absolute absorption coefficients of scattering suspensions is presented. Under the tested conditions the integrating sphere used in this study was insensitive to changes in the scattering coefficient of the sample but had a nonlinear response to increasing absorption of the sample, which could be corrected with an empirically derived function. This response was analyzed by using a Monte Carlo simulation, and results indicated that amplification of the absorption signal was primarily due to photons reflected from the sphere surface and the baffle reentering the cuvette. The calibration procedure described here may be generally applicable to spheres of different configurati n. An example of the use of the sphere for determining the absorption and scattering coefficients of marine phytoplankton samples is presented.

  8. Inference of the microwave absorption coefficient from stray radiation measurements in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Marushchenko, N.; Stange, T.; Braune, H.; Gellert, F.; Hirsch, M.; Hoefel, U.; Knauer, J.; Oosterbeek, J. W.; Turkin, Y.; The Wendelstein 7-X Team

    2017-03-01

    The efficiency of electron cyclotron heating is determined by the microwave absorption of the plasma. Good microwave absorption is also crucial for the machine safety. In this paper we present a method of evaluating the microwave absorption coefficient from stray radiation measurements. The discussed method is computationally simple and can be applied potentially in real time. Evolution of the second harmonic extraordinary mode (X2) microwave absorption coefficient in Wendelstein 7-X during the start-up phase is presented, as well as an estimate of the absorption coefficient for the second harmonic ordinary mode (O2) wave.

  9. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  10. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  11. FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases - Implications for laser remote sensing

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Grant, W. B.

    1984-01-01

    The absorption spectra of three hydrazines and four of their air-oxidation products were measured in the 9-12-micron spectral region with a Fourier transform infrared (FTIR) spectrometer with a 0.05-kayser resolution to determine absorption coefficients at CO2 and tunable diode laser wavelengths. The measurements agreed well with published CO2 laser determinations for many of the absorption coefficients, except where the published values are thought to be in error. The coefficients were then used to estimate the sensitivity for remote detection of these gases using CO2 and tunable diode lasers in long-path differential absorption measurements.

  12. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  13. Study of the absorption coefficient in layers of a semiconductor laser heterostructure

    SciTech Connect

    Veselov, D A; Pikhtin, N A; Lyutetskiy, A V; Nikolaev, D N; Slipchenko, S O; Sokolova, Z N; Shamakhov, V V; Shashkin, I S; Voronkova, N V; Tarasov, I S

    2015-07-31

    A method of studying the absorption coefficient in layers of semiconductor lasers is proposed. Using lasers based on MOVPE-grown separate-confinement heterostructures with a broadened waveguide, the absorption coefficient is investigated under pulsed current pumping. It is found that when the pump current flows through the laser in question, an additional internal optical absorption arises in the heterostructure layers. It is shown that an increase in the pump current density up to 20 kA cm{sup -2} leads to an increase in absorption up to 2.5 cm{sup -1}. The feasibility of studying free-carrier absorption in the active region is demonstrated. (lasers)

  14. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  15. A metabolic derivation of tritium transfer coefficients in animal products.

    PubMed

    Galeriu, D; Crout, N M; Melintescu, A; Beresford, N A; Peterson, S R; Van Hees, M

    2001-12-01

    Tritium is a potentially important environmental contaminant originating from the nuclear industry, and its behaviour in the environment is controlled by that of hydrogen. Animal food products represent a potentially important source of tritium in the human diet and a number of transfer coefficient values for tritium transfer to a limited number of animal products are available. In this paper we present an approach for the derivation of tritium transfer coefficients which is based on the metabolism of hydrogen in animals. The derived transfer coefficients separately account for transfer to and from free (i.e. water) and organically bound tritium. A novel aspect of the approach is that tritium transfer can be predicted for any animal product for which the required metabolic input parameters are available. The predicted transfer coefficients are compared to available independent data. Agreement is good (R2=0.97) with the exception of the transfer coefficient for transfer from tritiated water to organically bound tritium in ruminants. This may be attributable to the particular characteristics of ruminant digestion. We show that tritium transfer coefficients will vary in response to the metabolic status of an animal (e.g. stage of lactation, diet digestibility etc.) and that the use of a single transfer coefficient from diet to animal product is inappropriate. It is possible to derive concentration ratio values from the estimated transfer coefficients which relate the concentration of tritiated water and organically bound tritium in an animal product to their respective concentrations in the animals diet. These concentration ratios are shown to be less subject to metabolic variation and may be more useful radioecological parameters than transfer coefficients. For tritiated water the concentration ratio shows little variation between animal products ranging from 0.59 to 0.82. In the case of organically bound tritium the concentration ratios vary between animal products

  16. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  17. Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria

    NASA Astrophysics Data System (ADS)

    de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald

    2003-06-01

    We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.

  18. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  19. Absorption coefficient measurements of particle-laden filters using laser heating: Validation with nigrosin

    NASA Astrophysics Data System (ADS)

    Presser, Cary

    2012-05-01

    A laser-heating technique, referred as the laser-driven thermal reactor, was used in conjunction with laser transmissivity measurements to determine the absorption coefficient of particle-laden substrates (e.g., quartz-fiber filters). The novelty of this approach is that it analyzes a wide variety of specific samples (not just filtered samples) and overcomes measurement issues (e.g., absorption enhancement) associated with other filter-based particle absorption techniques. The absorption coefficient was determined for nigrosin-laden, quartz-fiber filters and the effect of the filter on the absorption measurements was estimated when compared to the isolated nigrosin results. The isolated nigrosin absorption coefficient compared favorably with Lorenz-Mie calculations for an idealized polydispersion of spherical particles (based on a measured nigronsin/de-ionized water suspension size distribution) dispersed throughout a volume equivalent to that of the nigrosin-laden filter. To validate the approach, the absorption coefficient of a nigrosin/de-ionized water suspension was in good agreement with results obtained from an ultraviolet/visible spectrometer. In addition, the estimated imaginary part of the refractive index from the Lorenz-Mie calculations compared well with literature values and was used to estimate the absorption coefficient of optically opaque packed nigrosin.

  20. Visible and Near Infrared Absorption Coefficients of Kaolinite and Related Clays.

    DTIC Science & Technology

    propagation of light. This work is intended to provide a quantitative estimate of the absorption coefficient of kaolinite clays by application of a method based on the Kubelka - Munk theory of diffuse reflectance.

  1. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.

  2. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  3. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  4. Determination of absorption coefficients in AlInP lattice matched to GaAs

    NASA Astrophysics Data System (ADS)

    Cheong, J. S.; Ng, J. S.; Krysa, A. B.; Ong, J. S. L.; David, J. P. R.

    2015-10-01

    The absorption properties of Al0.52In0.48P have been investigated near the fundamental absorption edge by measuring the photocurrent as a function of wavelength in a series of PIN and NIP diodes. Modelling of the photocurrent in these structures enables the absorption coefficients to be determined accurately over a wide dynamic range, which allows the direct and indirect band-gap to be determined.

  5. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  6. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  7. Determination of molar absorption coefficients of organic compounds adsorbed in porous media.

    PubMed

    Ciani, Andrea; Goss, Kai-Uwe; Schwarzenbach, René P

    2005-12-01

    The kinetics of direct photochemical transformations of organic compounds in light absorbing and scattering media has been sparsely investigated. This is mostly due to the experimental difficulties to assess the major parameters: light intensity in porous media, the reaction quantum yield and the molar absorption coefficient of the adsorbed compound, epsilon(i) (lambda). Here, we propose a method for the determination of the molar absorption coefficient of compounds adsorbed to air-dry surfaces using the Kubelka-Munk model for the description of radiative transfer. To illustrate the method, the molar absorption coefficients of three compounds, i.e. 4-nitroanisole (PNA), the herbicide trifluralin and the flame retardant decabromodiphenyl ether (DecaBDE), were determined on air-dry kaolinite. The measured diffuse reflectance spectra were evaluated with the Kubelka-Munk model and with previously determined Kubelka-Munk absorption and scattering coefficients (k and s), for kaolinite. For all compounds the maximum absorption band was found to be red shifted and the corresponding epsilon(i) (lambda) values were significantly greater than those determined in solvents. Together with the absorption and scattering coefficient of the medium, the measured epsilon(i) (lambda) can be used to determine the quantum yield of the photochemical reaction in this medium from experimentally determined reaction kinetics.

  8. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  9. The absorption of trapped particles by the inner satellites of Jupiter and the radial diffusion coefficient of particle transport

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Fillius, W.

    1976-01-01

    The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.

  10. Second derivative spectrophotometric determination of partition coefficients of phenothiazine derivatives between human erythrocyte ghost membranes and water.

    PubMed

    Kitamura, K; Goto, T; Kitade, T

    1998-08-01

    The absorption spectra of six phenothiazine derivatives, chlorpromazine, triflupromazine, promazine, promethazine, trifluoperazine and prochlorperazine, measured in the solutions containing various amounts of human erythrocyte ghosts (HEG) showed bathocromic shifts according to the amount of HEG. Due to the strong background signals caused by HEG, the baseline compensation was incomplete, even though the sample and the reference solutions contained the same amount of HEG, hence further spectral information could not be obtained. The second derivative spectra of these absorption spectra clearly showed the derivative isosbestic points, indicating that the residual background signal effects were entirely eliminated. The derivative intensity differences of the phenothiazines (DeltaD values) before and after the addition of HEG were measured at a specific wavelength. Using the DeltaD values, the partition coefficients (K(p)) of these drugs were calculated and obtained with R.S.D. of below 10 %. The fractions of partitioned phenothiazines calculated from the K(p) values agreed well with the experimental values. The results indicate that the derivative method can be applicable to the determination of partition coefficients of drugs to HEG without any separation procedures.

  11. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  12. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    SciTech Connect

    Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  13. Assessing Absorption Coefficient of Hemoglobin in the Breast Phantom Using Near-Infrared Spectroscopy

    PubMed Central

    Mehnati, Parinaz; Jafari Tirtash, Maede; Zakerhamidi, Mohammad Sadegh; Mehnati, Parisa

    2016-01-01

    Background Blood concentrations and oxygen saturation levels are important biomarkers for breast cancer diagnosis. Objectives In this study, the absorption coefficient of hemoglobin (Hb) was used to distinguish between normal and abnormal breast tissue. Materials and Methods A near-infrared source (637 nm) was transmitted from major and minor vessels of a breast phantom containing 2×, 4× concentrations of oxy- and deoxy-Hb. The absorption coefficients were determined from spectrometer (SM) and powermeter (PM) data. Results The absorption coefficients were 0.075 ± 0.026 cm-1 for oxygenated Hb (normal) in major vessels and 0.141 ± 0.023 cm-1 at 4× concentration (abnormal) with SM, whereas the breast absorption coefficients were 0.099 ± 0.017 cm-1 for oxygenated Hb (normal) in minor vessels and 0.171 ± 0.005 cm-1 at 4× concentrations with SM. A comparison of the data obtained using a SM and a PM was not significant statistically. Conclusion The study of the absorption coefficient data of different concentrations of Hb in normal and abnormal breasts via the diffusion of near-infrared light is a valuable method and has the potential to aid in early detection of breast abnormalities with SM and PM in major and minor vessels. PMID:27895869

  14. Evaluation of ammonia absorption coefficients by photoacoustic spectroscopy for detection of ammonia levels in human breath

    NASA Astrophysics Data System (ADS)

    Dumitras, D. C.; Dutu, D. C.; Matei, C.; Cernat, R.; Banita, S.; Patachia, M.; Bratu, A. M.; Petrus, M.; Popa, C.

    2011-04-01

    Photoacoustic spectroscopy represents a powerful technique for measuring extremely low absorptions independent of the path length and offers a degree of parameter control that cannot be attained by other methods. We report precise measurements of the ammonia absorption coefficients at the CO2 laser wavelengths by using a photoacoustic (PA) cell in an extracavity configuration and we compare our results with other values reported in the literature. Ammonia presents a clear fingerprint spectrum and high absorption strengths in the CO2 wavelengths region. Because more than 250 molecular gases of environmental concern for atmospheric, industrial, medical, military, and scientific spheres exhibit strong absorption bands in the region 9.2-10.8 μm, we have chosen a frequency tunable CO2 laser. In the present work, ammonia absorption coefficients were measured at both branches of the CO2 laser lines by using a calibrated mixture of 10 ppm NH3 in N2. We found the maximum absorption in the 9 μm region, at 9R(30) line of the CO2 laser. One of the applications based on the ammonia absorption coefficients is used to measure the ammonia levels in exhaled human breath. This can be used to determine the exact time necessary at every session for an optimal degree of dialysis at patients with end-stage renal disease.

  15. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  16. Determination of the Absorption Coefficient and Cloudiness Multiplicity Attenuation During the Gamma-Radiation Passage

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.

    2016-08-01

    The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.

  17. A numerical study of a method for measuring the effective in situ sound absorption coefficient.

    PubMed

    Kuipers, Erwin R; Wijnant, Ysbrand H; de Boer, André

    2012-09-01

    The accuracy of a method [Wijnant et al., Proc. of ISMA 31, Leuven, Belgium (2010), Vol. 31] for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assumption, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields.

  18. Measurement of optical absorption coefficient of bio-tissue at 532nm wavelength

    NASA Astrophysics Data System (ADS)

    Huang, Chuyun; Li, Zhengjia; Yao, Yucheng; He, Yanyan

    2007-05-01

    Laser technology has succeeded in medical application. High power 532nm laser has applied in prostate ablation and other clinic application. To understand optical property of bio-tissue at 532nm wavelength, a method of monitoring surface temperature was used to measure absorption coefficient of gall-stone, porcine liver and canine prostate. The absorption coefficient of gall-stone is about 62cm -1 at 532nm wavelength, and those of porcine liver and canine prostate are about 13cm -1 and 5.4cm -1, respectively. These results help to understand the optical property of bio-tissue and offer theoretic reference for optical dosimetry in clinic application.

  19. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  20. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  1. Additions and corrections to the absorption coefficients of CO2 ice - Applications to the Martian south polar cap

    NASA Technical Reports Server (NTRS)

    Calvin, Wendy M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 microns. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO2 than can be obtained from the method used here.

  2. Absorption and fluorescent spectral studies of imidazophenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Zozulya, V. N.; Voloshin, I. M.; Karachevtsev, V. A.; Makitruk, V. L.; Stepanian, S. G.

    2004-07-01

    Absorption and fluorescent spectra as well as fluorescence polarization degree of imidazo-[4,5-d]-phenazine (F1) and its two modified derivatives, 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F2) and 1,2,3-triazole-[4,5-d]-phenazine (F3), were investigated in organic solvents of various polarities and hydrogen bonding abilities. Extinction coefficients of F2 and F3 are increased, their fluorescence Stokes shifts are reduced in comparison with those for unmodified imidazophenazine. For F3 a red shift of the longwave absorption band is observed by 15-20 nm. Modifications of imidazophenazine have led to a sufficient increase of fluorescence polarization degrees that enables to use F2 and F3 as promising fluorescent probes with polarization method application. The configuration, atomic charge distribution and dipole moments of the isolated dye molecules in the ground state were calculated by the DFT method. The computation has revealed that ground state dipole moments of F1, F2, and F3 differ slightly and are equal to 3.5, 3.2, and 3.7 D, respectively. The changes in dipole moments upon the optical excitation for all derivatives estimated using Lippert equation were found to be Δ μ=9 D. The energies of the electronic S 1←S 0 transition in solvents of different proton donor abilities were determined, and energetic diagram illustrating the substituent effect was plotted. For nucleoside analogs of these compounds, covalently incorporated into a nucleotide chain, we have considered a possibility to use them as fluorescent reporters of hybridization of antisense oligonucleotides, as well as molecular anchors for its stabilization.

  3. Determination of Absorption and Scattering Coefficients for Nonhomogeneous Media: II. Experiment.

    DTIC Science & Technology

    prepared from a glass of known absorption coefficient variation. The new model produces an accuracy inprovement up to a factor of 2.5 over the Kubelka ... Munk theory. Off-axis scattering measurements were made with improved instrumentation between 0.33 and 2.7 micrometers. The model was then applied to

  4. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  5. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.

    PubMed

    Guo, Zijian; Favazza, Christopher; Garcia-Uribe, Alejandro; Wang, Lihong V

    2012-06-01

    Photoacoustic (PA) microscopy (PAM) can image optical absorption contrast with ultrasonic spatial resolution in the optical diffusive regime. Conventionally, accurate quantification in PAM requires knowledge of the optical fluence attenuation, acoustic pressure attenuation, and detection bandwidth. We circumvent this requirement by quantifying the optical absorption coefficients from the acoustic spectra of PA signals acquired at multiple optical wavelengths. With the acoustic spectral method, the absorption coefficients of an oxygenated bovine blood phantom at 560, 565, 570, and 575 nm were quantified with errors of <3%. We also quantified the total hemoglobin concentration and hemoglobin oxygen saturation in a live mouse. Compared with the conventional amplitude method, the acoustic spectral method provides greater quantification accuracy in the optical diffusive regime. The limitations of the acoustic spectral method was also discussed.

  6. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  7. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: system calibration.

    PubMed

    Karsten, A E; Singh, A; Karsten, P A; Braun, M W H

    2013-02-01

    An individualised laser skin treatment may enhance the treatment and reduces risks and side-effects. The optical properties (absorption and scattering coefficients) are important parameters in the propagation of laser light in skin tissue. The differences in the melanin content of different skin phototypes influence the absorption of the light. The absorption coefficient at the treatment wavelength for an individual can be determined by diffuse reflectance spectroscopy, using a probe containing seven fibres. Six of the fibres deliver the light to the measurement site and the central fibre collects the diffused reflected light. This is an in vivo technique, offering benefits for near-real-time results. Such a probe, with an effective wavelength band from 450 to 800 nm, was used to calibrate skin-simulating phantoms consisting of intralipid and ink. The calibration constants were used to calculate the absorption coefficients from the diffuse reflectance measurements of three volunteers (skin phototypes, II, IV and V) for sun-exposed and non-exposed areas on the arm.

  8. Absorption Coefficients of Particulate Matter off the Southwest Coast of Europe: A Contribution to Validation of the MERIS Sensor

    NASA Astrophysics Data System (ADS)

    Goela, P.; Icely, J.; Cristina, S.; Newton, A.

    2010-12-01

    Variability of particulate absorption coefficients was studied off the south-west coast of Portugal, as part of a validation exercise for the Medium Resolution Image Spectrometer Sensor. Regular sampling campaigns occurred at three stations on a transect from inshore to offshore to compare fluctuations in these coefficients at the local scale. Transmittance-reflectance method with sodium hypochlorite bleaching was used to determine absorption coefficients for phytoplankton and non-algal particles. Photosynthetic pigment concentrations were determined by High Performance Liquid Chromatography. Results show that the absorption of light by particulate matter is almost totally dependent on the phytoplankton, with no significant contribution from non-algal particles, both in coastal and oceanic waters. Specific phytoplankton coefficients show significant fluctuations between seasons and stations, ranging from 0.012 to 0.038 at 678 nm. Particulate absorption is dominant over dissolved absorption. The variations in the coefficients of absorption are analysed as a function of species assemblages.

  9. Parameterization of the Mie Extinction and Absorption Coefficients for Water Clouds.

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.

    2000-05-01

    It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: 1) internal reflection/refraction, 2) photon tunneling, and 3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR.The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Qabs and Qext, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, abs and ext. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for abs and ext were generally 10% for the effective radius range in water clouds of 5-30 m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.

  10. Thin-film absorption coefficients by attenuated-total-reflection spectroscopy.

    PubMed

    Holm, R T; Palik, E D

    1978-02-01

    The application of attenuated-total-reflection spectroscopy to the measurement of the absorption coefficient of thin films is presented. For low absorption the sensitivity of ATR is discussed in terms of the concept of an effective thickness. Both the case in which the refractive index of the film is higher and the case in which it is lower than that of the ATR trapezoid are considered. Experimental ATR data for antireflection-coating materials for laser windows is analyzed and compared with calorimetric data.

  11. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  12. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  13. Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Varanasi, P.; Gopalan, A.; Brannon, J. F., Jr.

    1992-01-01

    Spectral absorption coefficients, k(nu)/cm per atm, of SF6 have been measured in the central Q-branches of the nu(3)-fundamental at 947/cm at various temperature-pressure combinations representing tangent heights in solar-occultation experiments or layers in the atmosphere. The data obtained with the Doppler-limited spectral resolution (about 0.0001/cm) of a tunable-diode laser spectrometer are useful in the atmospheric remote sensing of this trace gas.

  14. Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data

    NASA Astrophysics Data System (ADS)

    Karkoschka, Erich; Tomasko, Martin G.

    2010-02-01

    We use 11 data sets of methane transmission measurements within 0.4-5.5 μm wavelength to model the methane transmission for temperature and pressure conditions in the jovian planets. Eight data sets are based on published laboratory measurements. Another two data sets come from two spectrometers onboard the Huygens probe that measured methane absorption inside Titan's atmosphere ( Tomasko et al., 2008b, PSS 56, 624), and we provide a refined analysis. The last data set is a set of new Jupiter images by the Hubble Space Telescope to measure atmospheric transmission with Ganymede as the light source. Below 1000 nm wavelength, our resulting methane absorption coefficients are generally close to those by Karkoschka (1998, Icarus 133, 134), but we add descriptions of temperature and pressure dependence. One remaining inconsistency occurs between 882 and 902 nm wavelength where laboratory data predict larger absorptions in the jovian atmospheres than observed. We present possible explanations. Above 1000 nm, our analysis of the Huygens data confirms methane absorption coefficients by Irwin et al. (2006, Icarus 181, 309) at their laboratory temperatures. Huygens data also confirm Irwin's model of extrapolation to Titan's lower pressures. However, their model of extrapolation to Titan's lower temperatures predicts absorption coefficients up to 100 times lower than measured by Huygens. For each of ˜3700 wavelengths, we present a temperature dependence that is consistent with all laboratory data and the Huygens data. Since the Huygens data probe similar temperatures as many observations of Saturn, Uranus, Neptune, and Titan, our methane model will allow more reliable radiative transfer models for their atmospheres.

  15. The influence of surface preparation on the absorption coefficient of laser radiation

    NASA Astrophysics Data System (ADS)

    Kurp, Piotr; Mucha, Zygmunt; Mulczyk, Krystian; Gradoń, Ryszard; Trela, Paweł

    2016-12-01

    The absorption coefficient of the surface of a workpiece is of importance in laser treatment, particularly in the treatment where the temperature of an element must be strictly controlled. Laser surface treatment (such as hardening, metallic glazing) and laser forming can be primarily included in this type of technology. In another case, surface temperature must be precisely controlled, especially if structural changes are to be avoided. There are a number of ways to increase the absorption coefficient of the surface of an element. Since the laser forming is the research subject of the authors of the presented paper, it was necessary to determine the absorption coefficient for the different surfaces preparation of workpieces. Raw surface, oxidized surface, sandblasted surface, black enamel covered surface and waterglass covered surface were examined, respectively. The experiment was performed using a CO2 laser with a head for a surface treatment which generates a rectangular beam of dimensions 2x20 mm, and the samples were made of X5CrNi18-10 stainless steel.

  16. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  17. Dependence of dose coefficients for inhaled 239Pu on absorption parameters.

    PubMed

    Suzuki, K; Sekimoto, H; Ishigure, N

    2001-01-01

    With regard to dissolution of particles in the respiratory tract after inhalation, the International Commission on Radiological Protection (ICRP) has classified all radionuclides into only three types according to the chemical form of compounds, and default values of absorption parameters are proposed for each type. However, it is just a simplification to estimate doses for practical use, and there is a possibility of unfitness in such an assortment. A code has been developed to reproduce the ICRP's dose coefficients for 239Pu, which is one of the most important elements for occupational exposure. By using this code, the respective absorption parameters were modified, and the effect owing to these changes evaluated. It was shown consequently that changes of absorption parameters do not greatly influence the effective doses of 239Pu for workers.

  18. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGES

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  19. Two-photon interband absorption coefficients in tungstate and molybdate crystals

    NASA Astrophysics Data System (ADS)

    Lukanin, V. I.; Karasik, A. Ya.

    2015-02-01

    Two-photon absorption (TPA) coefficients were measured in tungstate and molybdate crystals - BaWO4, KGW, CaMoO4, BaMoO4, CaWO4, PbWO4 and ZnWO4 upon different orientations of excitation polarization with respect to the crystallographic axes. Trains of 25 ps pulses with variable radiation intensities of third (349 nm) harmonics of passively mode-locked 1047 nm Nd:YLF laser were used for interband two-photon excitation of the crystals. It was suggested that in the case, when 349 nm radiation pumping energy exceeds the bandgap width (hν>Eg), the nonlinear excitation process can be considered as two-step absorption. The interband two-photon absorption in all the studied crystals induces the following one-photon absorption from the exited states, which affects the nonlinear process dynamics and leads to a hysteresis in the dependence of the transmission on the excitation intensity. This fact was taken into account under analysis of the experimental dependences of the reciprocal transmission on the excitation intensity. Laser excitation in the transparency region of the crystals caused stimulated Raman scattering (SRS) not for all the crystals studied. The measured nonlinear coefficients allowed us to explain the suppression of SRS in crystals as a result of competition between the SRS and TPA.

  20. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  1. Parameterization of the Mie extinction and absorption coefficients for water clouds

    SciTech Connect

    Mitchell, D.L.

    2000-05-01

    It was found that the anomalous diffraction approximation (ADA) could be made to approximate Mie theory for absorption and extinction in water clouds by parameterizing the missing physics: (1) internal reflection/refraction, (2) photon tunneling, and (3) edge diffraction. Tunneling here refers to processes by which tangential or grazing photons beyond the physical cross section of a spherical particle may be absorbed. Contributions of the above processes to extinction and/or absorption were approximated in terms of particle size, index of refraction, and wavelength. It was found that tunneling can explain most of the difference between ADA and Mie theory for water clouds in the thermal IR. The modified ADA yielded analytical expressions for the absorption and extinction efficiencies, Q{sub abs} and Q{sub ext}, which were integrated over a gamma size distribution to yield expressions for the absorption and extinction coefficients, {beta}{sub abs} and {beta}{sub ext}. These coefficients were expressed in terms of the three gamma distribution parameters, which were related to measured properties of the size distribution: liquid water content, mean, and mass-median diameter. Errors relative to Mie theory for {beta}{sub abs} and {beta}{sub ext} were generally {le}10% for the effective radius range in water clouds of 5--30 {micro}m, for any wavelength in the solar or terrestrial spectrum. For broadband emissivities and absorptivities regarding terrestrial and solar radiation, the errors were less than 1.2% and 4%, respectively. The modified ADA dramatically reduces computation times relative to Mie theory while yielding reasonably accurate results.

  2. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  3. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  4. Diffusion Coefficients of Water and Leachables in Methacrylate-based Crosslinked Polymers using Absorption Experiments

    PubMed Central

    Parthasarathy, Ranganathan; Misra, Anil; Park, Jonggu; Ye, Qiang; Spencer, Paulette

    2012-01-01

    The diffusion of water into dentin adhesive polymers and leaching of unpolymerized monomer from the adhesive are linked to their mechanical softening and hydrolytic degradation. Therefore, diffusion coefficient data are critical for the mechanical design of these polymeric adhesives. In this study, diffusion coefficients of water and leachables were obtained for sixteen methacrylate-based crosslinked polymers using absorption experiments. The experimental mass change data was interpreted using numerical solution of the two-dimensional diffusion equations. The calculated diffusion coefficients varied from 1.05 × 10−8 cm2/sec (co-monomer TMTMA) to 3.15 × 10−8 cm2/sec (co-monomer T4EGDMA). Correlation of the diffusion coefficients with crosslink density and hydrophilicity showed an inverse trend (R2 = 0.41). The correlation of diffusion coefficient with crosslink density and hydrophilicity are closer for molecules differing by simple repeat units (R2 = 0.95). These differences in the trends reveal mechanisms of interaction of the diffusing water with the polymer structure. PMID:22430592

  5. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    PubMed

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.

  6. Measurements of the absorption and scattering coefficients of aerosol particles in suburb of Nanjing (China)

    NASA Astrophysics Data System (ADS)

    Yin, Yan; Chen, Yu; Wang, Weiwei; Yan, Jiade; Qian, Ling; Tong, Yaoqing; Lin, Zhenyi

    2008-08-01

    The absorption and scattering coefficients of atmospheric aerosols were continuously measured with a Photoacoustic Soot Spectrometer (PASS, DMT Inc. USA) at a suburb site of Nanjing, one of the regions experiencing rapid industrialization in China. The measurements were carried out during autumn and winter 2007. A preliminary analysis of the data shows that, the scattering coefficient, Bscat, is two to ten times larger than the absorption coefficient, Babs, implying that the aerosols formed/emitted in this area are more scattering than previous assumed, and can be more important in cooling the Earth-atmosphere system. The results also indicate that the absolute values of both parameters are very much dependent on the meteorological conditions, such as wind speed and direction, fog, rain, etc. as well as the time of the day. Higher values often appear at nighttimes when wind is weak, especially when a temperature inverse layer is present near the surface. Higher values of Bscat and Babs were also observed under hazy and foggy weather conditions or when wind is blown from east, where a large industrial zone is located. Simultaneous measurements of the number concentrations, chemical compositions, and size distributions of aerosol particles are used to explain the characteristics of the changes in Bscat and Babs.

  7. Uncertainty analysis for absorption and first-derivative EPR spectra.

    PubMed

    Tseitlin, Mark; Eaton, Sandra S; Eaton, Gareth R

    2012-11-01

    Electron paramagnetic resonance (EPR) experimental techniques produce absorption or first-derivative spectra. Uncertainty analysis provides the basis for comparison of spectra obtained by different methods. In this study it was used to derive analytical equations to relate uncertainties for integrated intensity and line widths obtained from absorption or first-derivative spectra to the signal-to-noise ratio (SNR), with the assumption of white noise. Predicted uncertainties for integrated intensities and line widths are in good agreement with Monte Carlo calculations for Lorentzian and Gaussian lineshapes. Conservative low-pass filtering changes the noise spectrum, which can be modeled in the Monte Carlo simulations. When noise is close to white, the analytical equations provide useful estimates of uncertainties. For example, for a Lorentzian line with white noise, the uncertainty in the number of spins obtained from the first-derivative spectrum is 2.6 times greater than from the absorption spectrum at the same SNR. Uncertainties in line widths obtained from absorption and first-derivative spectra are similar. The impact of integration or differentiation on SNR and on uncertainties in fitting parameters was analyzed. Although integration of the first-derivative spectrum improves the apparent smoothness of the spectrum, it also changes the frequency distribution of the noise. If the lineshape of the signal is known, the integrated intensity can be determined more accurately by fitting the first-derivative spectrum than by first integrating and then fitting the absorption spectrum. Uncertainties in integrated intensities and line widths are less when the parameters are determined from the original data than from spectra that have been either integrated or differentiated.

  8. Effect of sealants of the sound absorption coefficients of acoustical friable insulating materials

    NASA Astrophysics Data System (ADS)

    Wayman, J. L.; Lory, M. K.

    1984-10-01

    Acoustical friable insulating materials (AFIM), which often in the past contained asbestos, have been used for sound control since the mid 1930's. Because of their widespread use and the ease of fiber dissemination, friable asbestos materials are considered to be the major source of asbestos fiber contamination in the indoor environment. Encapsulation of asbestos materials with a commercial sealant product is one of several methods used to control potential asbestos exposure in rooms. A sealant product that preserves most of the acoustical properties of the material is preferred in this usage. AFIM sample materials were treated with 6 types of sealants and the effects on normally incident absorption coefficients from 100 to 2500 Hz were measured using a fixed, dual-microphone technique. Penetrating type sealants were found to have a less detrimental effect on sound absorption than those of a bridging type.

  9. The effective air absorption coefficient for predicting reverberation time in full octave bands.

    PubMed

    Wenmaekers, R H C; Hak, C C J M; Hornikx, M C J

    2014-12-01

    A substantial amount of research has been devoted to producing a calculation model for air absorption for pure tones. However, most statistical and geometrical room acoustic prediction models calculate the reverberation time in full octave bands in accordance with ISO 3382-1 (International Organization for Standardization, 2009). So far, the available methods that allow calculation of air absorption in octave bands have not been investigated for room acoustic applications. In this paper, the effect of air absorption on octave band reverberation time calculations is investigated based on calculations. It is found that the approximation method, as described in the standard ANSI S1.26 (American National Standards Institute, 1995), fails to estimate accurate decay curves for full octave bands. In this paper, a method is used to calculate the energy decay curve in rooms based on a summation of pure tones within the band. From this decay curve, which is found to be slightly concave upwards, T20 and T30 can be determined. For different conditions, an effective intensity attenuation coefficient mB ;eff for the full octave bands has been calculated. This mB ;eff can be used for reverberation time calculations, if results are to be compared with T20 or T30 measurements. Also, guidelines are given for the air absorption correction of decay curves, measured in a scale model.

  10. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  11. The coefficient of bond thermal expansion measured by extended x-ray absorption fine structure.

    PubMed

    Fornasini, P; Grisenti, R

    2014-10-28

    The bond thermal expansion is in principle different from the lattice expansion and can be measured by correlation sensitive probes such as extended x-ray absorption fine structure (EXAFS) and diffuse scattering. The temperature dependence of the coefficient α(bond)(T) of bond thermal expansion has been obtained from EXAFS for CdTe and for Cu. A coefficient α(tens)(T) of negative expansion due to tension effects has been calculated from the comparison of bond and lattice expansions. Negative lattice expansion is present in temperature intervals where α(bond) prevails over α(tens); this real-space approach is complementary but not equivalent to the Grüneisen theory. The relevance of taking into account the asymmetry of the nearest-neighbours distribution of distances in order to get reliable bond expansion values and the physical meaning of the third cumulant are thoroughly discussed.

  12. Variation of Phytoplankton Absorption Coefficients in the Northern South China Sea during Spring and Autumn

    DTIC Science & Technology

    2007-05-21

    samples were collected with 1.7 L Niskin bottles mounted on a rosette equipped with a SBE19 CTD which provides temperature and salinity data. Samples were...21 November is 2002) on board R/V Yanping I1. Figure 1 shows the stations for CTD surveys and ab- sorption sampling . The 2001 cruise involved one...were sampled in both cruise legs for absorption coefficients (the second sampling is annotated as Sta. 6’ and Sta. 2’, respectively). 1559 Our sample

  13. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm

    NASA Astrophysics Data System (ADS)

    Bristow, Alan D.; Rotenberg, Nir; van Driel, Henry M.

    2007-05-01

    The degenerate two-photon absorption coefficient β and Kerr nonlinearity n2 are measured for bulk Si at 300K using 200fs pulses with carrier wavelength of 850<λ<2200nm for which indirect gap transitions occur. With a broad peak near the indirect gap and maximum value of 2±0.5cm/GW, the dispersion of β compares favorably with theoretical calculations of Garcia and Kalyanaraman [J. Phys. B 39, 2737 (2006)]. Within our wavelength range, n2 varies by a factor of 4 with a peak value of 1.2×10-13cm2/W at λ =1800nm.

  14. Vapor-Phase Absorptivity Coefficient of Ethyl N,N-Dimethylphosphoramidocyanidate

    DTIC Science & Technology

    2010-01-01

    diluted in solvent by gas chromotography -mass spectrometry (GC-MS) indicated 3.4% triethyl phosphate (TEPO), as well ə% each of 0-ethyl-N,N-dimethyl...absorptivity coefficient of the chemical warfare agent ethyl N,N-dimethyl- phosphoramidocyanidate ( GA ) in the mid-infrared (4000-550 cm"’) at a...spectral resolution of 0.125 cm"’. The GA used in the feedstock was purified by fractional distillation and analyzed by nuclear magnetic resonance and

  15. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  16. A comparison study of linear reconstruction techniques for diffuse optical tomographic imaging of absorption coefficient

    NASA Astrophysics Data System (ADS)

    Gaudette, Richard J.; Brooks, Dana H.; Di Marzio, Charles A.; Kilmer, Misha E.; Miller, Eric L.; Gaudette, Thomas; Boas, David A.

    2000-04-01

    We compare, through simulations, the performance of four linear algorithms for diffuse optical tomographic reconstruction of the three-dimensional distribution of absorption coefficient within a highly scattering medium using the diffuse photon density wave approximation. The simulation geometry consisted of a coplanar array of sources and detectors at the boundary of a half-space medium. The forward solution matrix is both underdetermined, because we estimate many more absorption coefficient voxels than we have measurements, and ill-conditioned, due to the ill-posedness of the inverse problem. We compare two algebraic techniques, ART and SIRT, and two subspace techniques, the truncated SVD and CG algorithms. We compare three-dimensional reconstructions with two-dimensional reconstructions which assume all inhomogeneities are confined to a known horizontal slab, and we consider two `object-based' error metrics in addition to mean square reconstruction error. We include a comparison using simulated data generated using a different FDFD method with the same inversion algorithms to indicate how our conclusions are affected in a somewhat more realistic scenario. Our results show that the subspace techniques are superior to the algebraic techniques in localization of inhomogeneities and estimation of their amplitude, that two-dimensional reconstructions are sensitive to underestimation of the object depth, and that an error measure based on a location parameter can be a useful complement to mean squared error.

  17. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  18. Modeling the cumulative distribution of absorption coefficients of gases using the generalized k-moment method

    NASA Astrophysics Data System (ADS)

    André, Frédéric; Solovjov, Vladimir; Vaillon, Rodolphe; Lemonnier, Denis

    2013-07-01

    The generalized k-moment method is formulated in terms of Cutteridge-Devyatov polynomials (CDP). In this novel approach, the moments involved are spectral averages of integer powers of the logarithm of the absorption coefficient. The technique to obtain k-distributions from those generalized moments is detailed both theoretically and from a practical point of view. Its outputs are afterward assessed against reference data in several test cases of increasing complexity. Indeed, the first ones involve single lines in the Lorentz, Doppler and Voigt regimes. The most sophisticated situations investigated in this work concern applications of the method to high resolution LBL data for pure CO2 at temperatures between 300K and 2300K and at atmospheric pressure. In any case, the CDP solution to the generalized k-moment problem is found to provide very accurate results. The present technique outperforms our previous approach to k-moment modeling of the cumulative distribution of absorption coefficients of gases that were based on first, second, first inverse and logarithmic moments, in all the situations investigated. Equations required to apply the model are provided in the paper, both over narrow bands and the full spectrum.

  19. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  20. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  1. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.

  2. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.

  3. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  4. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  5. Quantification of the dynamic changes in the absorption coefficient of liquid water at erbium:YAG and carbon dioxide laser wavelengths

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.

    The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second

  6. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.

    PubMed

    Yin, Lu; Wang, Qiang; Zhang, Qizhi; Jiang, Huabei

    2007-09-01

    We present a new method that can provide high resolution images of absolute optical absorption coefficient in heterogeneous turbid media. In this method, acoustic measurements in conventional photoacoustic tomography are combined with diffusing light measurements to separate the product of absorption coefficient and optical fluence or photon density. We validate this method using a series of tissuelike phantom experiments. The experimental results show that targets as small as 0.5 mm in diameter with optical absorption contrasts as low as 1.5 relative to a 50 mm diameter scattering background medium can be clearly detected.

  7. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  8. Remote-Sensing Technique for Determination of the Volume Absorption Coefficient of Turbid Water

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Arnone, Robert A.; Gould, Richard W., Jr.; Terrie, Gregory E.; Ladner, Sherwin D.; Wood, Christoper G.

    1998-07-01

    We use remote-sensing reflectance from particulate R rs to determine the volume absorption coefficient a of turbid water in the 400 700-nm spectral region. The calculated and measured values of a ( ) show good agreement for 0 . 5 a 10 (m 1 ). To determine R rs from a particulate, we needed to make corrections for remote-sensing reflectance owing to surface roughness S rs . We determined the average spectral distribution of S rs from the difference in total remote-sensing reflectance measured with and without polarization. The spectral shape of S rs showed an excellent fit to theoretical formulas for glare based on Rayleigh and aerosol scattering from the atmosphere.

  9. The Optical Absorption Coefficient of Maize Grains Investigated by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Páez, C. L.; Carballo-Carballo, A.; Rico-Molina, R.; Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Moreno-Martínez, E.

    2017-01-01

    In the maize and tortilla industry, it is important to characterize the color of maize ( Zea mays L.) grain, as it is one of the attributes that directly affect the quality of the tortillas consumed by the population. For this reason, the availability of alternative techniques for assessing and improving the quality of grain is valued. Photoacoustic spectroscopy has proven to be a useful tool for characterizing maize grain. So, the objective of the present study was to determine the optical absorption coefficient β of the maize grain used to make tortillas from two regions of Mexico: (a) Valles Altos, 2012-2013 production cycle and (b) Guasave, Sinaloa, 2013-2014 production cycle. Traditional reflectance measurements, physical characteristics of the grain and nutrient content were also calculated. The experimental results show different characteristics for maize grains.

  10. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation.

    PubMed

    Madelin, Guillaume; Grucker, Daniel; Franconi, Jean-Michel; Thiaudiere, Eric

    2006-07-01

    In this study, magnetic resonance imaging (MRI) is used to visualize acoustic streaming in liquids. A single-shot spin echo sequence (HASTE) with a saturation band perpendicular to the acoustic beam permits the acquisition of an instantaneous image of the flow due to the application of ultrasound. An average acoustic streaming velocity can be estimated from the MR images, from which the ultrasonic absorption coefficient and the bulk viscosity of different glycerol-water mixtures can be deduced. In the same way, this MRI method could be used to assess the acoustic field and time-average power of ultrasonic transducers in water (or other liquids with known physical properties), after calibration of a geometrical parameter that is dependent on the experimental setup.

  11. Measurement of acoustic absorption coefficient with phase-conjugate ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Brysev, A. P.; Bunkin, F. V.

    2011-07-01

    Experimental results on measurements of the acoustic absorption coefficient in test objects that were obtained with two methods, i.e., a standard insert-substitution method and a modification thereof using phase-conjugate waves, are given. Samples of gelatin and biological tissue in vitro (porcine muscle fibers) were used as test objects. Gelatin objects were manufactured that were both homogeneous and with inhomogeneities in the form of a rough surface or inclusions (air bubbles) distributed over the volume. A rough surface leads mainly to phase distortions of a probe beam, while bubble inclusions cause additional field scattering. For all homogeneous samples, both compared methods produce identical results. In the case of inhomogeneous samples including biological tissues, absorption measurement by a standard method may lead to significant errors. It is demonstrated that the use of properties of phase-conjugate waves provides an opportunity to eliminate almost completely the measurement error connected with phase distortions and reduce the error in the case of a medium with scatterers.

  12. Two-dimensional poroelastic acoustical foam shape design for absorption coefficient maximization by topology optimization method.

    PubMed

    Lee, Joong Seok; Kim, Yoon Young; Kim, Jung Soo; Kang, Yeon June

    2008-04-01

    Optimal shape design of a two-dimensional poroelastic acoustical foam is formulated as a topology optimization problem. For a poroelastic acoustical system consisting of an air region and a poroelastic foam region, two different physical regions are continuously changed in an iterative design process. To automatically account for the moving interfaces between two regions, we propose a new unified model to analyze the whole poroelastic acoustical foam system with one set of governing equations; Biot's equations are modified with a material property interpolation from a topology optimization method. With the unified analysis model, we carry out two-dimensional optimal shape design of a poroelastic acoustical foam by a gradient-based topology optimization setting. The specific objective is the maximization of the absorption coefficient in low and middle ranges of frequencies with different amounts of a poroelastic material. The performances of the obtained shapes are compared with those of well-known wedge shapes, and the improvement of absorption is physically interpreted.

  13. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  14. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  15. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    SciTech Connect

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thick Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.

  16. IR Absorption Coefficients for the Quantification of Water in Hydrous Ringwoodite

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Smyth, J. R.; Frost, D. J.

    2009-12-01

    Raman spectroscopy, combined with the ‘Comparator technique’ has been developed to determine water contents ranging from a few wt ppm to wt% in glasses and nominally anhydrous minerals including garnets, olivine, and SiO2 polymorphs (Thomas et al. 2009). The routine is one promising example of quantification tools to determine mineral specific molar absorption coefficients (ɛ) for IR spectroscopy. Mineral specific absorption coefficients are required because general IR calibrations do not necessarily apply to minerals with water incorporated as hydroxyl point defects. Here we utilize the ‘Comparator technique’ to provide ɛ-values for a set of synthetic Fe-free and Fe-bearing (Fo90) ringwoodites, as well as for γ-Mg2GeO4. Ringwoodite is considered one of the major phases of the Earth’s lower transition zone (520-660 km depth) and the knowledge of its absolute water storage capacity is essential for modeling the Earth’s deep water cycle. Samples were synthesized at variable P-T conditions in a multi-anvil press and cover a range of OH contents. Single-crystals were characterized using X-ray diffraction and IR spectroscopy. Mineral specific IR absorption coefficients were calculated from independently determined water contents from Raman spectroscopy. Unpolarized IR spectra of Mg-ringwoodite show broad absorption features in the OH region with band maxima at ~2350, 2538, 3127, 3172, 3598 and 3688 cm-1. In the spectra of Fe-bearing ringwoodite and γ-Mg2GeO4 the maxima of the main OH band are shifted to 3172 cm-1 and 3207 cm-1, respectively. For Mg-ringwoodite with the mean wavenumber (area-weighted average of the peak position) of 3109 cm-1 an ɛ-value of 170000 ± 51000 L cm-2 / molH2O was determined. For a Fo90 sample with the mean wavenumber of 3132 cm-1 the value was calculated to be 123000 ± 37000 L cm-2 / molH2O. The latter two values are in good agreement with the data from the linear calibration of ~159000 L cm-2 / molH2O and ~153000 L cm-2

  17. Analytical modeling of photon absorption coefficient in mono and bilayer circular graphene quantum dots for light absorber applications

    NASA Astrophysics Data System (ADS)

    Tamandani, Shahryar; Darvish, Ghafar

    2017-02-01

    We present an analytical method to calculate photon absorption coefficient in mono and bilayer circular graphene quantum dots (CGQDs). We use kobo equation to extract new closed relation as the main goal. First, we calculate real and imaginary part of optical conductance separately. Then, joint density of states is obtained using a new relation that was extracted for the energy levels of mono and bilayer circular grapheme quantum dots. In this work we use closed equations to calculate energy levels in CGQDs. Next we obtain a new closed formula to calculate the photon absorption coefficient. The results show that the absorption coefficient is related to the size of CGQDs and number of layers. The photon absorption coefficient becomes lower with larger size of CGQDs. It is seen that the results of our method is compatible with the results of practical works. We also compare photon absorption in biased and unbiased bilayer CGQDs and investigate the effect of external magnetic field on photon absorption. rights reserved

  18. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  19. Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue

    NASA Astrophysics Data System (ADS)

    Kienle, Alwin; Lilge, Lothar; Patterson, Michael S.; Hibst, Raimund; Steiner, Rudolf; Wilson, Brian C.

    1996-05-01

    The absorption and transport scattering coefficients of biological tissues determine the radial dependence of the diffuse reflectance that is due to a point source. A system is described for making remote measurements of spatially resolved absolute diffuse reflectance and hence noninvasive, noncontact estimates of the tissue optical properties. The system incorporated a laser source and a CCD camera. Deflection of the incident beam into the camera allowed characterization of the source for absolute reflectance measurements. It is shown that an often used solution of the diffusion equation cannot be applied for these measurements. Instead, a neural network, trained on the results of Monte Carlo simulations, was used to estimate the absorption and scattering coefficients from the reflectance data. Tests on tissue-simulating phantoms with transport scattering coefficients between 0.5 and 2.0 mm-1 and absorption coefficients between 0.002 and 0.1 mm -1 showed the rms errors of this technique to be 2.6% for the transport scattering coefficient and 14% for the absorption coefficients. The optical properties of bovine muscle, adipose, and liver tissue, as well as chicken muscle (breast), were also measured ex vivo at 633 and 751 nm. For muscle tissue it was found that the Monte Carlo simulation did not agree with experimental measurements of reflectance at distances less than 2 mm from the incident beam. Carlo, neural network.

  20. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  1. Reduction of the bulk absorption coefficient in silicon optics for high-energy lasers through defect engineering.

    PubMed

    Goodman, W A; Goorsky, M S

    1995-06-20

    We engineered a factor-of-4 reduction in the bulk absorption coefficient over the 2.6-to-3.0-µm bandwidth in single-crystal Czochralski silicon optics for high-energy infrared lasers with high-temperature annealing treatments. Defect engineering adapted from the integrated circuit industry has been used to reduce the absorption coefficient across the 1.5-to-5-µm bandwidth for substrates up to 5 cm thick. A high-temperature oxygen-dispersion anneal dissolves precipitates and thermal donors that are present in the as-grown material. The process has been verified experimentally with Fourier transform infrared spectroscopy, infrared laser calorimetry, and Hall measurements. Reduction of the absorption coefficient results in less substrate heating and thermal distortion of the optical surface. The process is appropriate for other silicon infrared optics applications such as thermal-imaging systems, infrared windows, and spectrophotometers.

  2. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  3. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  4. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  5. Second- and Higher-Order Virial Coefficients Derived from Equations of State for Real Gases

    ERIC Educational Resources Information Center

    Parkinson, William A.

    2009-01-01

    Derivation of the second- and higher-order virial coefficients for models of the gaseous state is demonstrated by employing a direct differential method and subsequent term-by-term comparison to power series expansions. This communication demonstrates the application of this technique to van der Waals representations of virial coefficients.…

  6. Effects of combined scattering and absorption coefficients on laser speckle contrast imaging values

    NASA Astrophysics Data System (ADS)

    Khaksari, Kosar; Kirkpatrick, Sean J.

    2015-03-01

    Laser Speckle contrast imaging (LSCI) is a non-invasive or minimally invasive method for visualizing blood flow and perfusion in biological tissues. In LSCI the motion of scattering particles results in a reduction in global and regional speckle contrast. A variety of parameters can affect the calculated contrast values in LSCI techniques, including the optical properties of the fluid and surrounding tissue. In typical LSCI where the motion of blood is of interests, optical properties are influenced by hematocrit levels. In this work we considered the combined effects of both the scattering and absorption coefficients on LSCI measurements on a flow phantom. Fluid phantoms consisting of various concentrations of neutrally buoyant ~10 micron microspheres and India ink mixed with DI water were formulated to mimic the optical properties of whole blood with various levels of hematocrit. In these flow studies, it was found that an increase in μa and/or μs led to a decrease in contrast values when all other experimental parameters were held constant. The observed reduction in contrast due to optical property changes could easily be confused with a contrast reduction due to increased flow velocity. These results suggest that optical properties need to be considered when using LSCI to make flow estimates.

  7. Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients

    SciTech Connect

    Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki

    2011-09-15

    In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.

  8. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  9. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.

  10. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  11. Effect of absorption parameters on calculation of the dose coefficient: example of classification of industrial uranium compounds.

    PubMed

    Chazel, V; Houpert, P; Paquet, F; Ansoborlo, E

    2001-01-01

    In the Human Respiratory Tract Model (HRTM) described in ICRP Publication 66, time-dependent dissolution is described by three parameters: the fraction dissolved rapidly, fr, and the rapid and slow dissolution rates sr and ss. The effect of these parameters on the dose coefficient has been studied. A theoretical analysis was carried out to determine the sensitivity of the dose coefficient to variations in the values of these absorption parameters. Experimental values of the absorption parameters and the doses per unit intake (DPUI) were obtained from in vitro dissolution tests, or from in vivo experiments with rats, for five industrial uranium compounds UO2, U3O8, UO4, UF4 and a mixture of uranium oxides. These compounds were classified in terms of absorption types (F, M or S) according to ICRP. The overall result was that the factor which has the greatest influence on the dose coefficient was the slow dissolution rate ss. This was verified experimentally, with a variation of 20% to 55% for the DPUI according to the absorption type of the compound. In contrast, the rapid dissolution rate sr had little effect on the dose coefficient, excepted for Type F compounds.

  12. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  13. Examination of the relationship between riometer-derived absorption and the integral proton flux in the context of modeling polar cap absorption

    NASA Astrophysics Data System (ADS)

    Fiori, R. A. D.; Danskin, D. W.

    2016-11-01

    Energetic protons can penetrate into the ionosphere increasing ionization in the D region causing polar cap absorption that may potentially block high-frequency radio communications for transpolar flights. The protons are guided by the geomagnetic field into the high-latitude polar cap region. Riometers monitor variations in ionospheric absorption by observing the level of background cosmic radio noise. Current polar cap absorption modeling techniques are based on the linear relationship between absorption and the square root of the integral proton flux, which has previously only been demonstrated using data from a single high-latitude polar station. The proportionality constant describing this relationship is evaluated for two different polar cap absorption events occurring 7-11 March 2012 and 23 January 2012 to 1 February 2012. Examination of the proportionality constant using data from riometers distributed between 60° and 90° magnetic latitude reveals a previously unreported latitudinal dependence for data at magnetic latitudes of ≤66.8° on the dayside and ≤70.8° on the nightside. Incorporating the latitudinal dependence into the current D Region Absorption Prediction absorption model improves the agreement between measurement-derived and modeled parameters by increasing the correlation coefficient between data sets, reducing the root-mean-square error, and reducing the bias.

  14. Quantum statistics of classical particles derived from the condition of a free diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Hoyuelos, M.; Sisterna, P.

    2016-12-01

    We derive an equation for the current of particles in energy space; particles are subject to a mean-field effective potential that may represent quantum effects. From the assumption that noninteracting particles imply a free diffusion coefficient in energy space, we derive Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein statistics. Other new statistics are associated to a free diffusion coefficient; their thermodynamic properties are analyzed using the grand partition function. A negative relation between pressure and energy density for low temperatures can be derived, suggesting a possible connection with cosmological dark energy models.

  15. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  16. Specific absorption coefficient and phytoplankton biomass in the southern region of the California Current

    NASA Astrophysics Data System (ADS)

    Millán-Núñez, Eduardo; Sieracki, Michael E.; Millán-Núñez, Roberto; Lara-Lara, José Rubén; Gaxiola-Castro, Gilberto; Trees, Charles C.

    2004-03-01

    In recent years, experts of optical hydrology have shown great interest in the variability of the specific absorption coefficient of light by phytoplankton (aph*). This parameter is important and necessary for comparing in situ bio-optical and satellite optical measurements. Such comparisons are needed for detecting primary productivity at a mesoscale level. At present, however, the parameters used in algorithms for predicting productivity are global averages. To avoid this bias, we measured the spatial-temporal variability of aph* as part of the Jan-01 Investigaciones Mexicanas de la Corriente de California cruise along the southern California Current. We observed median values of 0.041 m2 (mg chlorophyll a (Chl a))-1 at 440 nm and 0.015 at 674 nm, with significant differences between inshore and offshore stations. In general, the stations located in the area of Bahía Vizcaíno, with oceanographic conditions favorable for the growth of phytoplankton, showed lower values of the aph* . The nano-microphytoplankton (>5 μm) community comprised of 26 diatom genera with mean abundance values of the 19.5×103 cells l-1. Nitzschia closterium, a pennate diatom, was almost uniform throughout the study region. Flow cytometry measurements indicated that the picoplankton (<5 μm) community consisted of two prokaryotes, Prochlorococcus (mean 3.6×106 cells l-1) and Synechococcus (mean 10.4×106 cells l-1), and a mixture of picoeukaryotes (mean 6.5×106 cells l-1). Analyses of Chl and carotenoid pigments determined by high-performance liquid chromatographic confirmed the presence of the divinyl Chl a characteristic of Prochlorococcus. The nano-micro- and picoplankton were 82% and 18% of total phytoplankton biomass (μg C l-1), respectively. In general, we concluded that the phytoplankton community structure and biomass on this cruise showed conditions similar to oligotrophic systems.

  17. Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment.

    PubMed

    Koga, K; Holten, Vincent; Widom, B

    2015-10-22

    The osmotic virial coefficients, which are measures of the effective interactions between solute molecules in dilute solution, may be obtained from expansions of the osmotic pressure or of the solute activity in powers of the solute concentration. In these expansions, the temperature is held fixed, and one additional constraint is imposed. When the additional constraint is that of fixed chemical potential of the solvent, the coefficient of the second-order term yields directly the second osmotic virial coefficient itself. Alternative constraints, such as fixed pressure, fixed solvent density, or the specification of liquid-vapor equilibrium, yield alternative measures of the solute-solute interaction, different from but related to the osmotic virial coefficient. These relations are summarized and, where new, are derived here. The coefficient in question may be calculated from equations of state in which the parameters have been obtained by fitting to other experimental properties. Alternatively, the coefficients may be calculated from direct experimental measurements of the deviations from Henry's law based on measurements of the activity of the solute in a coexisting gas phase. It is seen for propane in water as a test case that with the latter method, even with what appear to be the best available experimental data, there are still large uncertainties in the resulting second osmotic virial coefficient. With the former method, by contrast, the coefficient may be obtained with high numerical precision but then depends for its accuracy on the quality of the equation of state from which it is derived.

  18. Derivation of Improved Surface and TOA Broadband Fluxes Using CERES-derived Narrowband-to-Broadband Coefficients

    NASA Technical Reports Server (NTRS)

    Khaiyer, Mandana M.; Doelling, David R.; Chan, Pui K.; Nordeen, MIchele L.; Palikonda, Rabindra; Yi, Yuhong; Minnis, Patrick

    2006-01-01

    Satellites can provide global coverage of a number of climatically important radiative parameters, including broadband (BB) shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA) and surface. These parameters can be estimated from narrowband (NB) Geostationary Operational Environmental Satellite (GOES) data, but their accuracy is highly dependent on the validity of the narrowband-to-broadband (NB-BB) conversion formulas that are used to convert the NB fluxes to broadband values. The formula coefficients have historically been derived by regressing matched polarorbiting satellite BB fluxes or radiances with their NB counterparts from GOES (e.g., Minnis et al., 1984). More recently, the coefficients have been based on matched Earth Radiation Budget Experiment (ERBE) and GOES-6 data (Minnis and Smith, 1998). The Clouds and the Earth's Radiant Energy Budget (CERES see Wielicki et al. 1998)) project has recently developed much improved Angular Distribution Models (ADM; Loeb et al., 2003) and has higher resolution data compared to ERBE. A limited set of coefficients was also derived from matched GOES-8 and CERES data taken on Topical Rainfall Measuring Mission (TRMM) satellite (Chakrapani et al., 2003; Doelling et al., 2003). The NB-BB coefficients derived from CERES and the GOES suite should yield more accurate BB fluxes than from ERBE, but are limited spatially and seasonally. With CERES data taken from Terra and Aqua, it is now possible to derive more reliable NB-BB coefficients for any given area. Better TOA fluxes should translate to improved surface radiation fluxes derived using various algorithms. As part of an ongoing effort to provide accurate BB flux estimates for the Atmospheric Radiation Measurement (ARM) Program, this paper documents the derivation of new NB-BB coefficients for the ARM Southern Great Plains (SGP) domain and for the Darwin region of the Tropical Western Pacific (DTWP) domain.

  19. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    NASA Astrophysics Data System (ADS)

    McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex

    2014-12-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.

  20. Activity Coefficient Derivatives of Ternary Systems Based on Scatchard's Neutral Electrolyte description

    SciTech Connect

    Miller, D G

    2007-05-16

    Activity coefficient derivatives with respect to molality are presented for the Scatchard Neutral Electrolyte description of a ternary common-ion electrolyte system. These quantities are needed for the calculation of 'diffusion Onsager coefficients' and in turn for tests of the Onsager Reciprocal Relations in diffusion. The usually-omitted b{sub 23} term is included. The direct SNE binary approximations and a further approximation are discussed. Binary evaluation strategies other than constant ionic strength are considered.

  1. A reduced-scale railway noise barrier's insertion loss and absorption coefficients: comparison of field measurements and predictions

    NASA Astrophysics Data System (ADS)

    Busch, T. A.; Nugent, R. E.

    2003-10-01

    In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed

  2. [Experimental determination of radiation scattering and absorption coefficients in a homogeneous layer of highly-dispersive biological medium].

    PubMed

    Danilov, A A; Masloboev, Iu P; Selishchev, S V; Tereshchenko, S A

    2006-01-01

    A method for experimental determination of optical characteristics of a highly-dispersive medium (radiation scattering and absorption coefficients) is described. The method is based on two mathematical models of ultrashort laser pulse propagation through a highly-dispersive medium (HDM), an axial model and a diffusion model. Milk dissolved in water was used as HDM. Dependences of optical characteristics of HDM on the concentration of milk in water are obtained. The limits of applicability of the axial and diffusion models to media with different scattering and absorption characteristics are determined.

  3. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  4. Influence of the scattering and absorption coefficients on homogeneous room simulations that use a diffusion equation model.

    PubMed

    Navarro, Juan M; Escolano, José; Cobos, Maximo; López, José J

    2013-03-01

    The diffusion equation model was used for room acoustic simulations to predict the sound pressure level and the reverberation time. The technical literature states that the diffusion equation method accurately models the late portion of the room impulse response if the energy is sufficiently scattered. This work provides conclusions on the validity of the diffusion equation model for rooms with homogeneous dimensions in relation to the scattering coefficients of the boundaries. A systematic evaluation was conducted out to determine the ranges of the absorption and scattering coefficient values that result in low noticeable differences between the predictions from a geometrical acoustic model and those from the diffusion equation model.

  5. Characterizing the Chlorophyll-a Specific Absorption Coefficient of Phytoplankton Measured in the Gulf of Maine in Varying Oceanic Provinces

    NASA Astrophysics Data System (ADS)

    Dowell, M.

    2006-12-01

    Chlorophyll-a specific absorption (aph*) is a parameter used in bio-optical and primary production models and its coefficients are usually assumed to be constant. However, it has been documented in previous studies that these coefficients vary significantly due to pigmentation and "the package effect" which are a function of the taxonomic composition and the physiological state of the algal population. As part of the Coastal Ocean Observing Center (COOC) at the University of New Hampshire, HPLC pigments and phytoplankton absorption measurements were taken from water samples collected within the Gulf of Maine from 2004-2006. These data were then partitioned spatially, temporally, seasonally, and by other classification criteria. Spectral aph* means were generated for all partitions within each classification method. The results were used to parameterize province-specific bio-optical models for a regional algorithm. The separation of aph* means into different classes captured the effects of taxonomy and the package effect by reducing aph* variability.

  6. Enhanced two-photon absorption property of silver nanoparticle aggregates induced by a thioether derivative

    NASA Astrophysics Data System (ADS)

    Liu, Yun; Wang, Xiao-lan; Wei, Meng-qing; Wang, Hui; Tian, Yu-peng; Li, Sheng-li; Xue, Zhao-ming; Yang, Jia-xiang; Kong, Lin

    2016-12-01

    A novel thioether derivative with two-photon absorption activity, 4,4'-((4-(dimethylamino)phenyl)methylene)bis (sulfanediyl)dianiline (abbreviated as L), was designed and synthesized, which was used to couple with Ag nanoparticles (Ag NPs, ∼6 nm) to construct L-Ag hybrid particles with L uniformly dispersed on the surface of Ag NPs. The newly-formed hybrid particles self-assembled through L-L interactions between L molecules in one hybrid particle and adjacent particle to from Ag NPs aggregates (100 nm in diameter). By Raman and XPS analysis, the interfacial interaction 'hot spot' was determined, which was between thioether group and primary amino group of L molecule and Ag+ ion on the surface of pure Ag NPs. The interfacial interactions between the two components brought about changeable linear optical properties and enhanced nonlinear optical properties, two-photon absorption cross section and two-photon absorption coefficient included. Furthermore, the optical power limiting application of Ag NPs aggregates was also optimized by this means.

  7. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  8. Vibrational resonance enhanced broadband multiphoton absorption in a triphenylamine derivative

    SciTech Connect

    Lu Changgui; Cui Yiping; Huang Wei; Yun Binfeng; Wang Zhuyuan; Hu Guohua; Cui Jing; Lu Zhifeng; Qian Ying

    2007-09-17

    Multiphoton absorption of 2,5-bis[4-(2-N,N-diphenylaminostyryl)phenyl]-1,3,4-oxadiazole was experimentally studied by using femtosecond laser pulses. This material demonstrates a very broad multiphoton absorption band of around 300 nm width with two peaks of 1250 and 1475 nm. The first peak results from the three-photon absorption process while the second is attributed to the vibrational resonance enhanced four-photon absorption process. Combination of these two processes provides a much broader multiphoton absorption band. In this letter, the analytical solution to nonlinear transmission of a three-photon absorption process is also given when the incident beam has a Gaussian transverse spatial profile.

  9. Absorption coefficient modeling of microcrystalline silicon thin film using Maxwell-Garnett effective medium theory.

    PubMed

    Chen, Sheng-Hui; Wang, Hsuan-Wen; Chang, Ting-Wei

    2012-03-12

    Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.

  10. Simultaneous Maximum-Likelihood Reconstruction of Absorption Coefficient, Refractive Index and Dark-Field Scattering Coefficient in X-Ray Talbot-Lau Tomography

    PubMed Central

    Ritter, André; Anton, Gisela; Weber, Thomas

    2016-01-01

    A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126

  11. Uranyl ion: A convenient standard for transient molar absorption coefficient measurements

    SciTech Connect

    Bakac, A.; Burrows, H.D.

    1997-12-01

    Transient absorption spectra of an aqueous solution of uranyl sulfate have been measured in the ultraviolet and visible spectra. The excited uranyl ion may be a convenient standard for actinometry and photoacoustic calorimetry. (AIP) {copyright} {ital 1997} {ital Society for Applied Spectroscopy}

  12. Intersubband transition in lattice-matched BGaN/AlN quantum well structures with high absorption coefficients.

    PubMed

    Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong

    2017-02-20

    Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.

  13. A QM/MM study of absorption spectra of uracil derivatives in aqueous solution

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira

    2016-12-01

    The absorption spectra of three representative uracil derivatives (uracil, thymine, and 5-fluorouracil) in aqueous solution are investigated by the QM/MM approach, where the CASPT2 method is employed to evaluate the excitation energies. The computed absorption spectra are in good agreement with the experimental results, and in particular, the relative values of the absorption maximum between these derivatives are well reproduced in the simulations.

  14. Intercomparison of diffusion coefficient derived from the through-diffusion experiment using different numerical methods.

    PubMed

    Chen, Chih-Lung; Wang, Tsing-Hai; Lee, Ching-Hor; Teng, Shi-Ping

    Diffusion is a dominant mechanism regulating the transport of released nuclides. The through-diffusion method is typically applied to determine the diffusion coefficients (D). Depending on the design of the experiment, the concentrations in the source term [i.e., inlet reservoir (IR)] or the end term [i.e., outlet reservoir (OR)] can be fixed or vary. The combinations involve four distinct models (i.e., the CC-CC model, CC-VC model, VC-CC model, and the VC-VC model). Studies discussing the VC-CC model are scant. An analytical method considering the decay effect is required to accurately interpret the radioactive nuclide diffusion experiment results. Therefore, we developed a CC-CC model and a CC-VC model with a decay effect and the simplified formulas of these two models to determine the diffusion coefficient (i.e., the CC-CC method and CC-VC method). We also proposed two simplified methods using the VC-VC model to determine the diffusion coefficient straightforwardly based upon the concentration variation in IR and OR. More importantly, the best advantage of proposed method over others is that one can derive three diffusion coefficients based on one run of experiment. In addition, applying our CC-VC method to those data reported from Radiochemica Acta 96:111-117, 2008; and J Contam Hydrol 35:55-65, 1998, derived comparable diffusion coefficient lying in the identical order of magnitude. Furthermore, we proposed a formula to determine the conceptual critical time (Tc), which is particularly beneficial for the selection of using CC-VC or VC-VC method. Based on our proposed method, it becomes possible to calculate diffusion coefficient from a through-diffusion experiment in a shorter period of time.

  15. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  16. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    SciTech Connect

    Zhong, Wei-Ping; Belić, Milivoj; Malomed, Boris A.; Huang, Tingwen

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of a transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.

  17. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  18. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  19. The Effect of Binding Groups on the Seebeck Coefficient of Phenyl Derivative Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Chang, William; Mai, Chengkang; Kotiuga, Michele; Urban, Jeffrey; Neaton, Jeffrey; Bazan, Gui; Segalman, Rachel

    2013-03-01

    Thermoelectrics currently suffer from low efficiencies due to inverse coupling of the Seebeck coefficient and electrical conductivity, limiting the power factor. Decoupling of these two physical properties has previously been demonstrated in molecular junctions. Using an STM break junction measurement technique, we demonstrate the effect that the direct binding group Au-C has on the Seebeck coefficient. Phenyl derivative molecules with an Au-C direct binding group show a significantly lower Seebeck coefficient than molecules with an Au-S binding group. This lower Seebeck coefficient is explained by theoretical calculations as a broadening in the transmission function due to the direct bonding group. This demonstrates the importance of the metal-molecule interface and binding group selection in tuning the transmission function, and the resultant conductance and Seebeck coefficient. This result will lend further insight in rational design for molecules with higher power factors. We would like to acknowledge support from Office of Naval Research - ONR/AFOSR BAA 10-026

  20. Spatial variations in the chlorophyll-specific absorption coefficients of phytoplankton and photosynthetically active pigments in the equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Allali, Karima; Bricaud, Annick; Claustre, Hervé

    1997-01-01

    Chlorophyll-specific absorption coefficients of particles, a*p(λ), and of phytoplankton, a*ph(λ), were determined using the glass-fiber filter technique along 150°W in the equatorial Pacific (13°S-1°N). A site-specific algorithm for correcting the path length amplification effect was derived from field measurements. Then a decomposition technique using the high-performance liquid chromatography pigment information and taking into account the package effect was used to partition a*ph into the contributions of photosynthetic pigments (a*ps) and nonphotosynthetic pigments (a*nps). Both a*ph and a*nps values were observed to decrease from the oligotrophic waters of the subequatorial area (13°-1°S) to the mesotrophic waters of the equatorial area (1°S-1°N) and from the surface to deep waters. The a*ph variations were primarily, but not exclusively, caused by changes in the concentrations of nonphotosynthetic pigments. The level of pigment packaging was also variable both horizontally and vertically, as a result of changes in populations and photoacclimation. In comparison with a*ph, a*ps exhibited a reduced range of variation with depth and along the latitudinal gradient. The variations in a*ps originating from the package effect were partly compensated by variations in the concentrations of photosynthetic pigments. We extended this analysis to include data collected in other areas with different trophic states. The a*ps values varied over a factor of 4 at 440 nm, instead of 8 for a*ph, for chlorophyll a concentrations covering 2 orders of magnitude (0.02-2 mg m-3). In agreement with a previous study performed off California with a different method [Sosik and Mitchell, 1995], we conclude that a*ps is less dependent on environmental parameters than a*ph. In addition, our results provide evidence that the variability in a*ps cannot be neglected. The use of a*ps instead of a*ph in light-photosynthesis models (in conjunction with a quantum yield for carbon fixation

  1. Using high-resolution laboratory and ground-based solar spectra to assess CH4 absorption coefficient calculations

    NASA Astrophysics Data System (ADS)

    Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.

    2017-03-01

    A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a

  2. Enhancements in Deriving Smoke Emission Coefficients from Fire Radiative Power Measurements

    NASA Technical Reports Server (NTRS)

    Ellison, Luke; Ichoku, Charles

    2011-01-01

    Smoke emissions have long been quantified after-the-fact by simple multiplication of burned area, biomass density, fraction of above-ground biomass, and burn efficiency. A new algorithm has been suggested, as described in Ichoku & Kaufman (2005), for use in calculating smoke emissions directly from fire radiative power (FRP) measurements such that the latency and uncertainty associated with the previously listed variables are avoided. Application of this new, simpler and more direct algorithm is automatic, based only on a fire's FRP measurement and a predetermined coefficient of smoke emission for a given location. Attaining accurate coefficients of smoke emission is therefore critical to the success of this algorithm. In the aforementioned paper, an initial effort was made to derive coefficients of smoke emission for different large regions of interest using calculations of smoke emission rates from MODIS FRP and aerosol optical depth (AOD) measurements. Further work had resulted in a first draft of a 1 1 resolution map of these coefficients. This poster will present the work done to refine this algorithm toward the first production of global smoke emission coefficients. Main updates in the algorithm include: 1) inclusion of wind vectors to help refine several parameters, 2) defining new methods for calculating the fire-emitted AOD fractions, and 3) calculating smoke emission rates on a per-pixel basis and aggregating to grid cells instead of doing so later on in the process. In addition to a presentation of the methodology used to derive this product, maps displaying preliminary results as well as an outline of the future application of such a product into specific research opportunities will be shown.

  3. Approximations of optimal control problems for semilinear elliptic equations with discontinuous coefficients and states and with controls in the coefficients multiplying the highest derivatives

    NASA Astrophysics Data System (ADS)

    Lubyshev, F. V.; Fairuzov, M. E.

    2016-07-01

    Mathematical formulations of nonlinear optimal control problems for semilinear elliptic equations with discontinuous coefficients and solutions and with controls in the coefficients multiplying the highest derivatives are studied. Finite difference approximations of optimization problems are constructed, and the approximation error is estimated with respect to the state and the cost functional. Weak convergence of the approximations with respect to the control is proved. The approximations are regularized in the sense of Tikhonov.

  4. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  5. Effects of magnetic field and the built-in internal fields on the absorption coefficients in a strained wurtzite GaN/AlGaN quantum dot

    NASA Astrophysics Data System (ADS)

    Minimala, N. S.; Peter, A. John

    2013-02-01

    Effects of magnetic field strength and the built-in electric fields on the exciton binding energy and the non-linear optical property such as absorption coefficients in a GaN/AlGaN wide band gap heterostructure are investigated. The internal fields due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Our results show that the optical absorption coefficients strongly depend on the internal fields and the applied magnetic field.

  6. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    NASA Astrophysics Data System (ADS)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  7. Intrinsic radiative lifetime derived via absorption cross section of one-dimensional excitons

    PubMed Central

    Chen, Shaoqiang; Yoshita, Masahiro; Ishikawa, Akira; Mochizuki, Toshimitsu; Maruyama, Shun; Akiyama, Hidefumi; Hayamizu, Yuhei; Pfeiffer, Loren N.; West, Ken W.

    2013-01-01

    Intrinsic radiative lifetime is an essential physical property of low-dimensional excitons that represents their optical transition rate and wavefunction, which directly measures the probability of finding an electron and a hole at the same position in an exciton. However, the conventional method that is used to determine this property via measuring the temperature-dependent photoluminescence (PL) decay time involves uncertainty due to various extrinsic contributions at high temperatures. Here, we propose an alternative method to derive the intrinsic radiative lifetime via temperature-independent measurement of the absorption cross section and transformation using Einstein's A-B-coefficient equations derived for low-dimensional excitons. We experimentally verified our approach for one-dimensional (1D) excitons in high-quality 14 × 6 nm2 quantum wires by comparing it to the conventional approach. Both independent evaluations showed good agreement with each other and with theoretical predictions. This approach opens a promising path to studying low-dimensional exciton physics. PMID:23736905

  8. An efficient method for systems of variable coefficient coupled Burgers' equation with time-fractional derivative.

    PubMed

    Aminikhah, Hossein; Malekzadeh, Nasrin

    2013-01-01

    A new homotopy perturbation method (NHPM) is applied to system of variable coefficient coupled Burgers' equation with time-fractional derivative. The fractional derivatives are described in the Caputo fractional derivative sense. The concept of new algorithm is introduced briefly, and NHPM is examined for two systems of nonlinear Burgers' equation. In this approach, the solution is considered as a power series expansion that converges rapidly to the nonlinear problem. The new approximate analytical procedure depends on two iteratives. The modified algorithm provides approximate solutions in the form of convergent series with easily computable components. Results indicate that the introduced method is promising for solving other types of systems of nonlinear fractional-order partial differential equations.

  9. Determination of scattering coefficient considering wavelength and absorption dependence of anisotropy factor measured by polarized beam for biological tissues

    NASA Astrophysics Data System (ADS)

    Fukutomi, D.; Ishii, K.; Awazu, K.

    2015-12-01

    Anisotropy factor g, one of the optical properties of biological tissues, is the most important parameter to accurately determine scattering coefficient μs in the inverse Monte Carlo (iMC) simulation. It has been reported that g has wavelength and absorption dependence, however, there are few attempts in order to calculate μs of biological tissue considering the wavelength and absorption dependence of g. In this study, the scattering angular distributions of biological tissue phantoms were measured in order to determine g by using goniometric measurements with three polarization conditions at strongly and weakly absorbing wavelengths of hemoglobin. Then, optical properties, especially, μs were measured by integrating sphere measurements and iMC simulation in order to confirm the influence of measured g on optical properties in comparison of with general value of g (0.9) for soft biological tissue. Consequently, it was found that μs was overestimated at strongly absorbing wavelength, however, μs was underestimated at weakly absorbing wavelength if the g was not considered its wavelength and absorption dependence.

  10. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  11. Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients

    SciTech Connect

    Banerjee, S.; Howard, P.H.

    1988-07-01

    Octanol-water partition coefficients (K/sub ow/) of 75 compounds ranging over 9 orders of magnitude are correlated by log K/sub ow/ = -0.40 + 0.73 log (..gamma../sub W/)/sub U/ -0.39 log (..gamma../sub 0/)/sub U/ (r = 0.98), where (..gamma..//sub W/)/sub U/ and (..gamma../sub 0/)/sub U/ are UNIFAC-derived activity coefficients in water and octanol, respectively. The constants 0.73 and -0.39 are obtained empirically and are intended to compensate for group nonadditivity. Correction factors of similar magnitude are obtained in independent correlations of water solubility with (..gamma../sub W/)/sub U/ and of octanol solubility with (..gamma../sub 0/)/sub U/, thereby confirming the validity of the approach.

  12. Photoinduced transparency of effective three-photon absorption coefficient for femtosecond laser pulses in Ge16As29Se55 thin films

    NASA Astrophysics Data System (ADS)

    Barik, A. R.; Adarsh, K. V.; Naik, Ramakanta; Sandeep, C. S. Suchand; Philip, Reji; Zhao, Donghui; Jain, Himanshu

    2011-05-01

    We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way.

  13. Dose coefficients and derived guidance and clinical decision levels for contaminated wounds

    SciTech Connect

    Bertelli, Luiz; Toohey, Richard E

    2009-01-01

    The NCRP Wound Model describing the retention of selected radionuclides at the site of a contaminated wound and their uptake into the transfer compartment has been combined with the ICRP element-specific systemic models for those radionuclides to derive dose coefficients for intakes via contaminated wounds. Those coefficients have been used to generate derived guidance levels (i.e., the activity in a wound that would result in an effective dose of 20 or 50 mSv, or in some cases, a committed organ equivalent dose of 500 mSv), and clinical decision levels (i.e., activity levels that would indicate the need for consideration of medical intervention to remove activity from the wound site or administration of decorporation therapy or both), typically set at 5 times the derived guidance levels. Data are provided for the radionuclides commonly encountered at nuclear power plants and nuclear weapons, fuel fabrication or recycling, waste disposal, medical and research facilities. These include: {sup 60}Co, {sup 90}Sr, {sup 99m}Tc, {sup 131}I, {sup 137}Cs, {sup 192}Ir, {sup 210}Po, {sup 226,228}Ra, {sup 228,232}Th, {sup 235,238}U, {sup 237}Np, {sup 238,239}Pu, {sup 241}Am, {sup 242,244}Cm, and {sup 252}Cf.

  14. Effects of suspended sediment concentration on the absorption and scattering coefficients

    NASA Astrophysics Data System (ADS)

    Terrie, Gregory E.; Ladner, Sherwin; Gould, Richard A., Jr.

    1997-02-01

    The scattering coefficient (b) for the nearshore waters off the coast of North Carolina near Camp Lejeune is strongly influenced by suspended sediment concentration and total particulate cross-sectional area (xg). In-situ measurements of a and b were made using a WET Labs AC9 meter. Estimates of suspended sediment concentration and total particulate cross-sectional area were determined from laser particle size analyses of surface water samples. The SeaWiFS bio-optical algorithm was modified for Case II waters and used to estimate a and bb from remote sensing reflectance (Rrs). After conversion from backscattering (bb) to total scattering (b), modeled a and b values from the modified SeaWiFS algorithm were compared to the measured values. The differences between the measured and estimated values appear to be directly related to increases in suspended sediment concentration and xg. Correlations of about 0.90 were obtained for b vs xg and bb vs xg.

  15. Derivation of the chemical-equilibrium rate coefficient using scattering theory

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1977-01-01

    Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.

  16. A time-resolved single-pass technique for measuring optical absorption coefficients of window materials under 100 GPa shock pressures.

    PubMed

    Li, Jun; Zhou, Xianming; Li, Jiabo

    2008-12-01

    An experimental method was developed to perform time-resolved, single-pass optical absorption measurements and to determine absorption coefficients of window materials under strong shock compression up to approximately 200 GPa. Experimental details are described of (i) a configuration to generate an in situ dynamic, bright, optical source and (ii) a sample assembly with a lithium fluoride plate to essentially eliminate heat transfer from the hot radiator into the specimen and to maintain a constant optical source within the duration of the experiment. Examples of measurements of optical absorption coefficients of several initially transparent single crystal materials at high shock pressures are presented.

  17. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    PubMed

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  18. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.

    PubMed

    Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko

    2013-09-01

    Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.

  19. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  20. Extension of the Inverse Adding-Doubling Method to the Measurement of Wavelength-Dependent Absorption and Scattering Coefficients of Biological Samples

    SciTech Connect

    Baba, Justin S; Allegood, Marcus S

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coefficients (us and ua), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specific wavelengths, and simultaneously, would be beneficial for a variety of different biomedical applications. The goal of this project was to take a user-defined g-value and determine the remaining two parameters for a specified wavelength range for an integrating sphere with a collimated white light input source system. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW was used to write programs to automate: raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl's Inverse Adding-Doubling (IAD) C code execution, and computation of the optical properties based on the output from the IAD code. To allow data to be passed efficiently between LabVIEW and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms and determination of the absorption and scattering coefficients showed excellent agreement with theory for wavelengths were the user inputted single g-value was sufficiently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete system multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to study actual biological tissues for the purpose of deriving and refining models for light-tissue interactions.

  1. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  2. Decoupling scattering and absorption of turbid samples using a simple empirical relation between coefficients of the Kubelka-Munk and radiative transfer theories.

    PubMed

    Gaonkar, Harshavardhan Ashok; Kumar, Dinesh; Ramasubramaniam, Rajagopal; Roy, Arindam

    2014-05-01

    Efforts are underway to better understand the absorption properties of micro- and nano-sized particles due to their potential in various photonic applications. However, most of these particles exhibit strong scattering in the spectral regions of interest in addition to absorption. Due to strong interference from scattering, the absorption of these turbid samples cannot be directly measured using conventional spectroscopy techniques. The optical properties of these particles are also different from that of the bulk due to quantum confinement and plasmon resonance effects and cannot be inferred from their bulk properties. By measuring the total transmittance and total reflectance (diffuse and collimated) of turbid samples and using an empirical relation between the coefficients of the Kubelka-Munk and radiative transfer theories, we have demonstrated a method to calculate the absorption and reduced scattering coefficients of turbid samples. This method is capable of extracting the absorption coefficient of turbid samples with an error of 2%. Using this method, we have decoupled the specific absorption and specific reduced scattering coefficients of commercially available micro-sized iron oxide particles. The current method can be used to measure the optical properties of irregularly shaped particle dispersions, which are otherwise difficult to estimate theoretically.

  3. The Effect of Plant Proteins Derived from Cereals and Legumes on Heme Iron Absorption.

    PubMed

    Weinborn, Valerie; Pizarro, Fernando; Olivares, Manuel; Brito, Alex; Arredondo, Miguel; Flores, Sebastián; Valenzuela, Carolina

    2015-10-30

    The aim of this study is to determine the effect of proteins from cereals and legumes on heme iron (Fe) absorption. The absorption of heme Fe without its native globin was measured. Thirty adult females participated in two experimental studies (15 per study). Study I focused on the effects of cereal proteins (zein, gliadin and glutelin) and study II on the effects of legume proteins (soy, pea and lentil) on heme Fe absorption. When heme was given alone (as a control), study I and II yielded 6.2% and 11.0% heme absorption (p > 0.05). In study I, heme Fe absorption was 7.2%, 7.5% and 5.9% when zein, gliadin and glutelin were added, respectively. From this, it was concluded that cereal proteins did not affect heme Fe absorption. In study II, heme Fe absorption was 7.3%, 8.1% and 9.1% with the addition of soy, pea and lentil proteins, respectively. Only soy proteins decreased heme Fe absorption (p < 0.05). These results suggest that with the exception of soy proteins, which decreased absorption, proteins derived from cereals and legumes do not affect heme Fe absorption.

  4. Do lab-derived distribution coefficient values of pesticides match distribution coefficient values determined from column and field-scale experiments? A critical analysis of relevant literature.

    PubMed

    Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M

    2011-01-01

    In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5.

  5. Atmospheric Chemistry of 1-Methoxy 2-Propyl Acetate: UV Absorption Cross Sections, Rate Coefficients, and Products of Its Reactions with OH Radicals and Cl Atoms.

    PubMed

    Zogka, Antonia G; Mellouki, Abdelwahid; Romanias, Manolis N; Bedjanian, Yuri; Idir, Mahmoud; Grosselin, Benoit; Daële, Véronique

    2016-11-17

    The rate coefficients for the reactions of OH and Cl with 1-methoxy 2-propyl acetate (MPA) in the gas phase were measured using absolute and relative methods. The kinetic study on the OH reaction was conducted in the temperature (263-373) K and pressure (1-760) Torr ranges using the pulsed laser photolysis-laser-induced fluorescence technique, a low pressure fast flow tube reactor-quadrupole mass spectrometer, and an atmospheric simulation chamber/GC-FID. The derived Arrhenius expression is kMPA+OH(T) = (2.01 ± 0.02) × 10(-12) exp[(588 ± 123/T)] cm(3) molecule(-1) s(-1). The absolute and relative rate coefficients for the reaction of Cl with MPA were measured at room temperature in the flow reactor and the atmospheric simulation chamber, which led to k(Cl+MPA) = (1.98 ± 0.31) × 10(-10) cm(3) molecule(-1) s(-1). GC-FID, GC-MS, and FT-IR techniques were used to investigate the reaction mechanism in the presence of NO. The products formed from the reaction of MPA with OH and their yields were methyl formate (80 ± 7.3%), acetic acid (50 ± 4.8%), and acetic anhydride (22 ± 2.4%), while for Cl reaction, the obtained yields were 60 ± 5.4, 41 ± 3.8, and 11 ± 1.2%, respectively, for the same products. The UV absorption cross section spectrum of MPA was determined in the wavelength range 210-370 nm. The study has shown no photolysis of MPA under atmospheric conditions. The obtained results are used to derive the atmospheric implication.

  6. A method to obtain the absorption coefficient spectrum of single grain coal in the aliphatic C-H stretching region using infrared transflection microspectroscopy.

    PubMed

    Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru

    2014-01-01

    A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.

  7. Mean absorption coefficients of He/Ar/N2/(C1-x-y , Ni x , Co y ) thermal plasmas for CNT synthesis

    NASA Astrophysics Data System (ADS)

    Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.

    2017-01-01

    In this paper, we present the mean absorption coefficients (MACs) calculated for plasma mixtures of argon-helium-nitrogen-carbon-nickel-cobalt at 60 kPa and in a temperature range from 1 kK to 20 kK. These coefficients have been computed under the assumption of a local thermodynamic equilibrium (LTE), isothermal plasma, including atomic and molecular continuum, molecular bands and lines radiation splitted into nine spectral intervals. The results show that the continuum absorption coefficients strongly depend on photodissociation and photoionization processes of the molecular species N2, CN and C2, with a significant effect on photodetachment processes of C- in a frequency interval lower than 1  ×  1015 Hz and for low temperature (<6 kK). While at high temperature, the main contribution in continuum absorption coefficient comes from radiative recombination processes except in the infrared region (<0.5  ×  1015 Hz) where the inverse bremsstrahlung represents the most important component in continuum processes for all temperature values. On the other hand, the calculation of MAC shows that the role of molecular continuum, molecular bands and line absorption of the neutral catalysis species Ni/Co are only important in a small range of temperature and in a few spectral bands located in visible and infrared regions, while at high temperature and in UV and visible regions, the foremost contributions to MAC come from atomic continuum and line absorption.

  8. [High-order derivative spectroscopy of infrared absorption spectra of the reaction centers from Rhodobacter sphaeroides].

    PubMed

    2005-01-01

    The infrared absorption spectra of reduced and chemically oxidized reaction center preparations from the purple bacterium Rhodobacter sphaeroides were investigated by means of high-order derivative spectroscopy. The model Gaussian band with a maximum at 810 nm and a half-band of 15 nm found in the absorption spectrum of the reduced reaction center preparation is eliminated after the oxidation of photoactive bacteriochlorophyll dimer (P). This band was related to the absorption of the P(+)y excitonic band of P. On the basis of experimental results, it was concluded that the bleaching of the P(+)y absorption band at 810 nm in the oxidized reaction center preparations gives the main contribution to the blue shift of the 800 nm absorption band of Rb. sphaeroides reaction centers.

  9. Two-photon absorption of [2.2]paracyclophane derivatives in solution: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Fossgaard, Eirik; Ruud, Kenneth

    2007-12-01

    The two-photon absorption of a class of [2.2]paracyclophane derivatives has been studied using quadratic response and density functional theories. For the molecules investigated, several effects influencing the two-photon absorption spectra have been investigated, such as side-chain elongation, hydrogen bonding, the use of ionic species, and solvent effects, the latter described by the polarizable continuum model. The calculations have been carried out using a recent parallel implementation of the polarizable continuum model in the DALTON code. Special attention is given to those aspects that could explain the large solvent effect on the two-photon absorption cross sections observed experimentally for this class of compounds.

  10. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  11. Derived Intervention Levels for Tritium Based on Food and Drug Administration Methodology Using ICRP 56 Dose Coefficients

    SciTech Connect

    Blanchard, A

    1999-06-09

    In 1998, the FDA released its recommendations for age-dependent derived intervention levels for several radionuclides involved in nuclear accidents. One radionuclide that is not included in that document is tritium. Therefore an analysis is presented here using dose coefficients from ICRP 56 to develop Derived Intervention Levels (DILs) for tritium in two forms: water (HTO) and organically bound tritium (OBT).

  12. Determination of molar absorptivity coefficients for major type-B trichothecenes and certification of calibrators for deoxynivalenol and nivalenol.

    PubMed

    Krska, Rudolf; Schubert-Ullrich, Patricia; Josephs, Ralf D; Emteborg, Håkan; Buttinger, Gerhard; Pettersson, Hans; van Egmond, Hans P; Schothorst, Ronald C; Macdonald, Susan; Chan, Danny

    2007-07-01

    This paper presents results from the European Commission-funded project Doncalibrant, the objective of which was to produce calibrators with certified mass fractions of the Fusarium toxins deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-Ac-DON), 15-acetyldeoxynivalenol (15-Ac-DON), and nivalenol (NIV), in acetonitrile. The calibrators, available in ampoules, were sufficiently homogeneous, with between-bottle variations (s (bb)) of less than 2%. Long-term stability studies performed at four different temperatures between -18 and 40 degrees C revealed no significant negative trends (at a confidence level of 95%). Molar absorptivity coefficients (in L mol(-1) cm(-1)) were determined for all four toxins (DON: 6805 +/- 126, NIV: 6955 +/- 205, 3-Ac-DON: 6983 +/- 141, 15-Ac-DON: 6935 +/- 142) on the basis of a mini-interlaboratory exercise. The overall uncertainty of the calibrators' target values for DON and NIV were evaluated on the basis of gravimetric preparation data and include uncertainty contributions from possible heterogeneity, storage, and transport. The Doncalibrant project resulted in the production of calibrators for DON (IRMM-315) and NIV (IRMM-316) in acetonitrile with certified mass fractions of 25.1 +/- 1.2 microg g(-1) and 24.0 +/- 1.1 microg g(-1), respectively. Both CRMs became commercially available from the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) at the beginning of 2007.

  13. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  14. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature.

  15. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    SciTech Connect

    Wang, X.; Heald, C. L.; Sedlacek, A.; de Sa, S. S.; Martin, S. T.; Alexander, M. L.; Watson, T. B.; Aiken, A. C.; Springston, S. R.; Artaxo, P.

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regarding the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is

  16. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; ...

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to

  17. Two-photon absorption in oxazole derivatives: An experimental and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Silva, D. L.; De Boni, L.; Correa, D. S.; Costa, S. C. S.; Hidalgo, A. A.; Zilio, S. C.; Canuto, S.; Mendonca, C. R.

    2012-05-01

    Experimental and theoretical studies on the two-photon absorption properties of two oxazole derivatives: 2,5-diphenyloxazole (PPO) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) are presented. The two-photon absorption cross-section spectra were determined by means of the Z-scan technique, from 460 up to 650 nm, and reached peak values of 84 GM for PBD and 27 GM for PPO. Density Functional Theory and response function formalism are used to determine the molecular structures and the one- and two-photon absorption properties and to assist in the interpretation of the experimental results. The Polarizable Continuum Model in one-photon absorption calculations is used to estimate solvent effects.

  18. Deriving in situ phytoplankton absorption for bio-optical productivity models in turbid waters

    NASA Astrophysics Data System (ADS)

    Oliver, Matthew J.; Schofield, Oscar; Bergmann, Trisha; Glenn, Scott; Orrico, Cristina; Moline, Mark

    2004-07-01

    As part of Hyperspectral Coupled Ocean Dynamics Experiment, a high-resolution hydrographic and bio-optical data set was collected from two cabled profilers at the Long-Term Ecosystem Observatory (LEO). Upwelling- and downwelling-favorable winds and a buoyant plume from the Hudson River induced large changes in hydrographic and optical structure of the water column. An absorption inversion model estimated the relative abundance of phytoplankton, colored dissolved organic matter (CDOM) and detritus, as well as the spectral exponential slopes of CDOM and detritus from in situ WET Labs nine-wavelength absorption/attenuation meter (ac-9) absorption data. Derived optical weights were proportional to the parameter concentrations and allowed for their absorptions to be calculated. Spectrally weighted phytoplankton absorption was estimated using modeled spectral irradiances and the phytoplankton absorption spectra inverted from an ac-9. Derived mean spectral absorption of phytoplankton was used in a bio-optical model estimating photosynthetic rates. Measured radiocarbon uptake productivity rates extrapolated with water mass analysis and the bio-optical modeled results agreed within 20%. This approach is impacted by variability in the maximum quantum yield (ϕmax) and the irradiance light-saturation parameter (Ek(PAR)). An analysis of available data shows that ϕmax variability is relatively constrained in temperate waters. The variability of Ek(PAR) is greater in temperate waters, but based on a sensitivity analysis, has an overall smaller impact on water-column-integrated productivity rates because of the exponential decay of light. This inversion approach illustrates the utility of bio-optical models in turbid coastal waters given the measurements of the bulk inherent optical properties.

  19. PRINCIPAL INFRARED ABSORPTION BANDS OF SOME DERIVATIVES OF 1,3-DINITROBENZENE AND 1,3,5TRINITROBENZENE,

    DTIC Science & Technology

    The frequencies of the strong infrared absorption bands of 46 derivatives of di- and tri-nitrobenzene were measured and tabulated. The vibrational ... modes producing these absorptions were assigned in most cases. The effect of structure on the frequency of the absorption due to each of the modes is discussed, with emphasis on identifying unknowns. (Author)

  20. In vivo absorption comparison of nanotechnology-based silybin tablets with its water-soluble derivative.

    PubMed

    Xu, Di; Ni, Rui; Sun, Wei; Li, Luk Chiu; Mao, Shirui

    2015-04-01

    In this study, the in vivo oral absorption of a nanocrystal tablet formulation of a BCS II poorly water-soluble drug was compared with that of its water-soluble salt form. Silybin is used as the model drug, and its nanosuspension was prepared by high-pressure homogenization. Effect of process and formulation parameters on properties of the nansuspensions was investigated. Dried powder of the nanosuspension was prepared by spray drying and used for preparing tablets. A pharmacokinetic study was performed in Beagle dogs to compare the absorption for tablets of silybin nanocrystals and silybin meglumine. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was determined. X-ray powder diffraction results indicated that silybin existed in a crystalline state after homogenization. In vivo absorption study in rats showed that the peroral absorption of silybin was enhanced remarkably by decreasing particle size. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was comparable with that of the commercially available tablet of the water-soluble salt form of silybin. In conclusion, it is possible to increase the bioavailability of poorly soluble drugs by preparing its water-soluble derivative.

  1. Determination of lateral-stability derivatives and transfer-function coefficients from frequency-response data for lateral motions

    NASA Technical Reports Server (NTRS)

    Donegan, James J; Robinson, Samuel W , Jr; Gates, Ordway, B , jr

    1955-01-01

    A method is presented for determining the lateral-stability derivatives, transfer-function coefficients, and the modes for lateral motion from frequency-response data for a rigid aircraft. The method is based on the application of the vector technique to the equations of lateral motion, so that the three equations of lateral motion can be separated into six equations. The method of least squares is then applied to the data for each of these equations to yield the coefficients of the equations of lateral motion from which the lateral-stability derivatives and lateral transfer-function coefficients are computed. Two numerical examples are given to demonstrate the use of the method.

  2. Water absorption lines, 931-961 nm - Selected intensities, N2-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Gentry, B.; Schwemmer, G.; Wilkerson, T. D.

    1982-01-01

    Intensities were measured for 97 lines of H2O vapor between 932 and 961 nm. The lines were selected for their potential usefulness for remote laser measurements of H2O vapor in the earth's atmosphere. The spectra were obtained with several different H2O vapor abundances and N2 broadening gas pressures; the spectral resolution was 0.046/cm FWHM. Measured H2O line intensities range from 7 x 10 to the -25th to 7 x 10 to the -22nd/cm per (molecules/sq cm). H2O self-broadening coefficients were measured for 13 of these strongest lines; the mean value was 0.5/cm per atm. N2-collision-broadening coefficients were measured for 73 lines, and the average was 0.11 cm per atm HWHM. Pressure shifts in air were determined for a sample of six lines between 948 and 950 nm; these lines shift to lower frequency by an amount comparable to 0.1 of the collision-broadened widths measured in air or N2. The measured intensities of many lines of 300-000 band are much larger than expected from prior computations, in some cases by over an order of magnitude. Coriolis interactions with the stronger 201-000 band appear to be the primary cause of the enhancement of these line intensities.

  3. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  4. Derivation of diffusion coefficient of a Brownian particle in tilted periodic potential from the coordinate moments

    NASA Astrophysics Data System (ADS)

    Zhang, Yunxin

    2009-07-01

    In this research, diffusion of an overdamped Brownian particle in the tilted periodic potential is investigated. Using the one-dimensional hopping model, the formulations of the mean velocity V and effective diffusion coefficient D of the Brownian particle have been obtained [B. Derrida, J. Stat. Phys. 31 (1983) 433]. Based on the relation between the effective diffusion coefficient and the moments of the mean first passage time, the formulation of effective diffusion coefficient D of the Brownian particle also has been obtained [P. Reimann, et al., Phys. Rev. E 65 (2002) 031104]. In this research, we'll give another analytical expression of the effective diffusion coefficient D from the moments of the particle's coordinate.

  5. Measurement of the Two-photon Absorption Coefficient of Gallium Phosphide (GaP) Using a Dispersion-minimized Sub-10 Femtosecond Z-scan Measurement System

    DTIC Science & Technology

    2012-09-01

    bandwidth of the pulse. Using the standard laboratory and analysis methods of Sheik- Bahae et al., we obtain a two-photon absorption coefficient, β, of...organic thin-film materials deposited on various substrates. 15 6. References 1. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W. High...sensitivity, Single-beam n2 Measurements. Optics Letters 1989, 14 (17). 2. Sheik- Bahae , M.; Said, A. A.; Van Stryland, E. W.; Wei, T-H; Hagan, D. J

  6. Deriving brown carbon from multiwavelength absorption measurements: method and application to AERONET and Aethalometer observations

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Heald, Colette L.; Sedlacek, Arthur J.; de Sá, Suzane S.; Martin, Scot T.; Lizabeth Alexander, M.; Watson, Thomas B.; Aiken, Allison C.; Springston, Stephen R.; Artaxo, Paulo

    2016-10-01

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However, the absorption properties of BrC are poorly understood, leading to large uncertainties in modeling studies. To obtain observational constraints from measurements, a simple absorption Ångström exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regarding the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new AAE method which improves upon previous approaches by using the information from the wavelength-dependent measurements themselves and by allowing for an atmospherically relevant range of BC properties, rather than fixing these at a single assumed value. We note that constraints on BC optical properties and mixing state would help further improve this method. We apply this method to multiwavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites. We estimate that BrC globally contributes up to 40 % of the seasonally averaged absorption at 440 nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with the BC / OA mass ratio. Based on the variability in BC properties and BC / OA emission ratio, we estimate a range of 0.05-1.5 m2 g-1 for OA-MAC at 440 nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440 nm for BrC is generally ˜ 4 worldwide, with a smaller value in Europe (< 2). Our analyses of observations at two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of

  7. DUVAS (derivative uv-absorption spectrometer): instrument description and operating manual

    SciTech Connect

    Hawthorne, A.R.; Dougherty, J.M.; Metcalfe, C.E.

    1980-11-01

    DUVAS is a real-time, field-portable spectrometer capable of monitoring a variety of aromatic organic vapors and inorganic gases at sub-ppM concentrations. The instrument is a prototype, microcomputer-controlled, derivative ultraviolet (UV) absorption spectrometer (DUVAS) developed primarily for area monitoring at coal conversion facilities, although other important occupational and environmental monitoring applications for compounds such as SO/sub 2/, NO/sub x/, NH/sub 3/, and HCHO are also being pursued.

  8. Exponential Sum Absorption Coefficients of Phosphine from 2750 to 3550/cm for Application to Radiative Transfer Analyses on Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.

    2006-01-01

    PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.

  9. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  10. Influence of size, proportion, and absorption coefficient of spherical scatterers on the degree of light polarization and the grain size of speckle pattern.

    PubMed

    Nader, Christelle Abou; Nassif, Rana; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie

    2015-12-10

    In this paper, we present the evolution of speckle pattern polarimetric parameters in response to controlled changes in scatterer sizes, proportions, and the absorption coefficient in media. The experimental study was performed on mixtures of polystyrene microspheres with dye in order to ensure biological medium-like properties. The speckle grain sizes and degrees of polarization for linear and circular light were monitored. We observed helicity flipping in the degree of circular polarization for small scatterer proportion around 25%. Furthermore, linear depolarization decreased slightly for media containing more small particles. Good agreement was shown with numerical results computed using a Monte Carlo simulation of polarized light taking into account our experimental configuration. Speckle grain size also evolves with the increase of small scatterers as well as the media absorption coefficient. Such variations of properties are encountered during fruit maturation, in tissues in precancerous stages, and any transformation that causes a modification in particle proportions and absorption coefficient in biological media. The computed parameters proved to be sensitive to these changes.

  11. Measurement of the mass energy-absorption coefficient of air for x-rays in the range from 3 to 60 keV.

    PubMed

    Buhr, H; Büermann, L; Gerlach, M; Krumrey, M; Rabus, H

    2012-12-21

    For the first time the absolute photon mass energy-absorption coefficient of air in the energy range of 10 to 60 keV has been measured with relative standard uncertainties below 1%, considerably smaller than those of up to 2% assumed for calculated data. For monochromatized synchrotron radiation from the electron storage ring BESSY II both the radiant power and the fraction of power deposited in dry air were measured using a cryogenic electrical substitution radiometer and a free air ionization chamber, respectively. The measured absorption coefficients were compared with state-of-the art calculations and showed an average deviation of 2% from calculations by Seltzer. However, they agree within 1% with data calculated earlier by Hubbell. In the course of this work, an improvement of the data analysis of a previous experimental determination of the mass energy-absorption coefficient of air in the range of 3 to 10 keV was found to be possible and corrected values of this preceding study are given.

  12. Discovery of 2-azetidinone and 1H-pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain as potential cholesterol absorption inhibitors.

    PubMed

    Yuan, Xinrui; Lu, Peng; Xue, Xiaojian; Qin, Hui; Fan, Chen; Wang, Yubin; Zhang, Qi

    2016-02-01

    Cholesterol absorption inhibitor (CAI) targeting Niemann-Pick C1-like1 protein was developed for the treatment of hyperlipidaemia and only ezetimibe was approved so far. For developing novel CAIs, we synthesized sixteen 2-azetidinone derivatives and thirteen 1H-pyrrole-2,5-dione derivatives containing sulfonamide group at the side chain, and their inhibitory activity of cholesterol absorption was evaluated in Caco-2 cell line in vitro. Furthermore, top six compounds were measured by cytotoxicity and partition coefficient, and 2-azetidinone analogue 9e was selected for in vivo study. Finally, 9e considerably reduced total cholesterol, LDL-C, FFA and triglyceride in the serum and increased the rate of HDL-C to total cholesterol, suggesting it could regulate the lipid metabolism and act as a potent CAI.

  13. Novel amino-β-lactam derivatives as potent cholesterol absorption inhibitors

    PubMed Central

    Dražić, Tonko; Molčanov, Krešimir; Sachdev, Vinay; Malnar, Martina; Hećimović, Silva; Patankar, Jay V.; Obrowsky, Sascha; Levak-Frank, Sanja; Habuš, Ivan; Kratky, Dagmar

    2014-01-01

    Two new trans-(3R,4R)-amino-β-lactam derivatives and their diastereoisomeric mixtures were synthesized as ezetimibe bioisosteres and tested in in vitro and in vivo experiments as novel β-lactam cholesterol absorption inhibitors. Both compounds exhibited low cytotoxicity in MDCKII, hNPC1L1/MDCKII, and HepG2 cell lines and potent inhibitory effect in hNPC1L1/MDCKII cells. In addition, these compounds markedly reduced cholesterol absorption in mice, resulting in reduced cholesterol concentrations in plasma, liver, and intestine. We determined the crystal structure of one amino-β-lactam derivative to establish unambiguously both the absolute and relative configuration at the new stereogenic centre C17, which was assigned to be S. The pKa values for both compounds are 9.35, implying that the amino-β-lactam derivatives and their diastereoisomeric mixtures are in form of ammonium salt in blood and the intestine. The IC50 value for the diastereoisomeric mixture is 60 μM. In vivo, it efficiently inhibited cholesterol absorption comparable to ezetimibe. PMID:25305716

  14. Nonlinear absorption coefficient and optically detected electrophonon resonance in cylindrical GaAs/AlAs quantum wires with different confined phonon models

    NASA Astrophysics Data System (ADS)

    Khoa, Doan Quoc; Phuong, Le Thi Thu; Hoi, Bui Dinh

    2017-03-01

    A quantum kinetic equation for electrons interacting with confined phonons is used to investigate the nonlinear absorption of an intense electromagnetic wave by electrons in cylindrical GaAs/AlAs quantum wires. The analytic expression for absorption coefficient is calculated for three models of confined optical phonons: the dielectric continuum (DC), hydrodynamic continuum (HC), and Huang-Zhu (HZ) models. The absorption coefficient depends on the square of the electromagnetic wave amplitude. The electrophonon resonance and optically detected electrophonon resonance (ODEPR) are observed through the absorption spectrum. The full width at half maximum (the line-width) of the ODEPR peaks is obtained by a computational method. The line-width is found to increase with increasing temperature and decrease with increasing the quantum wire radius. In particular, numerical results show that the DC and HZ models lead to a similar behaviour of electron - confined phonon interaction whereas the HC model results in a quite different one, especially at small quantum wire radius. For large quantum wire radii, above mentioned phonon models have equivalent contributions to the ODEPR line-width.

  15. Airloads research study. Volume 2: Airload coefficients derived from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Bartlett, M. D.; Feltz, T. F.; Olsen, A. D., Jr.; Smith, D. B.; Wildermuth, P. F.

    1984-01-01

    The development of B-1 aircraft rigid wind tunnel data for use in subsequent tasks of the Airloads Research Study is described. Data from the Rockwell International external structural loads data bank were used to generate coefficients of rigid airload shear, bending moment, and torsion at specific component reference stations or both symmetric and asymmetric loadings. Component stations include the movable wing, horizontal and vertical stabilizers, and forward and aft fuselages. The coefficient data cover a Mach number range from 0.7 to 2.2 for a wing sweep position of 67.5 degree.

  16. An Improvement to a Method for Measuring the Absorption Coefficient of Atmospheric Dust and other Strongly Absorbing Powders

    DTIC Science & Technology

    1975-07-01

    coefficient. Diffuse reflectance spectroscopy, and in particular the Kubelka - Munk (K-M) theory, can provide such information. A convenient method for...34Uber Den Streukoeffizienten Der Kubelka - Munk -Theorie," Z. Naturforsch, 19a, 28. 3. J. B. Gillespie, J. D. Lindberg and L. S. Laude, 1975 " Kubelka ... Munk Optical Coefficients for a Barium Sulfate White Reflectance Standard," Appl. Opt. 14, 807. 4. F. Grum and G. W. Lucky, 1968, "Optical Sphere

  17. Carbon Tetrachloride and Chloroform Partition Coefficients Derived from Aqueous Desorption of Contaminated Hanford Sediments

    SciTech Connect

    Riley, Robert G.; Sklarew, Debbie S.; Brown, Christopher F.; Gent, Philip M.; Szecsody, Jim E.; Mitroshkov, Alexandre V.; Thompson, Christopher J.

    2005-07-08

    Researchers at PNNL determined CCl4 and CHCl3 groundwater/sediment partition coefficients (Kd values) for contaminated aquifer sediments collected from borehole C3246 (299-W15-46) located in the 200 West Area adjacent to the Z-9 trench. Having realistic values for this parameter is critical to predict future movement of CCl4 in groundwater from the 200 West Area.

  18. Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue.

    PubMed

    Guo, Zijian; Hu, Song; Wang, Lihong V

    2010-06-15

    Optical absorption is closely associated with many physiological important parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of nonfluorescent molecules. We propose a method to use acoustic spectra of photoacoustic signals to quantify the absolute optical absorption. This method is self-calibrating and thus insensitive to variations in the optical fluence. Factors such as system bandwidth and acoustic attenuation can affect the quantification but can be canceled by dividing the acoustic spectra measured at two optical wavelengths. Using optical-resolution photoacoustic microscopy, we quantified the absolute optical absorption of black ink samples with various concentrations. We also quantified both the concentration and oxygen saturation of hemoglobin in a live mouse in absolute units.

  19. Metal content monitoring in Hypericum perforatum pharmaceutical derivatives by atomic absorption and emission spectrometry.

    PubMed

    Gomez, María R; Soledad, Cerutti; Olsina, Roberto A; Silva, María F; Martínez, Luis D

    2004-02-18

    Metals have been investigated in different plant materials in order to establish their normal concentration range and consider their role in plants as part of human medicinal treatment. Metal monitoring as a pattern recognition method is a promising tool in the characterization and/or standardization of phytomedicines. In the present work measurable amounts of Ca, Cu, K, Li, Mg, Mn, Na, Ni, and Zn were detected in phytopharmaceutical derivatives of Hypericum perforatum by atomic techniques. Atomic methodologies like flame atomic absorption spectrometry (FAAS) and electrothermal atomic absorption spectrometry (ETAAS) allow reliable determination of mineral content in pharmaceutical quality control of medicinal plants. Additionally, capillary electrophoresis (CE) patterns of characteristic components (fingerprints) have been performed for the search of adulterants in phytopharmaceutical products.

  20. Impact of Estimating Thermal Manikin Derived Wind Velocity Coefficients on Physiological Modeling

    DTIC Science & Technology

    2014-07-01

    addressing the wind velocity effect on insulation and evaporative resistance includes conducting standardized thermal manikin testing followed by...tests (i.e., 3 for insulation and 3 for evaporative resistance). This process seeks to create a set of measures to produce the gradient effect of wind...in order to obtain associated coefficients. This report outlines mathematical methods for determining reasonable estimates of wind velocity effect on

  1. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm

    NASA Astrophysics Data System (ADS)

    Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.

    2016-06-01

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  2. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  3. Donor impurity-related optical absorption coefficients and refractive index changes in a rectangular GaAs quantum dot in the presence of electric field

    NASA Astrophysics Data System (ADS)

    Sheng, Wang; Yun, Kang; Xianli, Li

    2016-11-01

    Within the quasi-one-dimensional effective potential model and effective mass approximation, we obtain the wavefunctions and energy eigenvalues of the ground (j = 1) and first 2 excited states (j = 2 and 3) of a donor impurity in a rectangular GaAs quantum dot in the presence of electric field. The donor impurity-related linear and nonlinear optical absorption as well as refractive index changes for the transitions j = 1-2 and j = 2-3 are investigated. The results show that the impurity position, incident optical intensity and electric field play important roles in the optical absorption coefficients and refractive index changes. We find that the impurity effect induces the blueshift for j = 1-2 and redshift for j = 3-2 in the absence of the electric field, but it leads to redshift for j = 1-2 and blueshift for j = 3-2 in the existence of the field. Also, the optical coefficient for the higher energy transitions j = 2-3 is insensitive to variation of impurity positions, while that for the low energy transition j = 1-2 depends significantly on the positions of impurity. In addition, the saturation and splitting phenomenon of the optical absorption are observed as the incident optical intensity increases. Project supported by the Science and Technology Project of Education Department of Heilongjiang Province of China (No. 12541070).

  4. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  5. New propanoyloxy derivatives of 5β-cholan-24-oic acid as drug absorption modifiers.

    PubMed

    Coufalová, Lenka; Mrózek, Lech; Rárová, Lucie; Plaček, Lukáš; Opatřilová, Radka; Dohnal, Jiří; Král'ová, Katarína; Paleta, Oldřich; Král, Vladimír; Drašar, Pavel; Jampílek, Josef

    2013-05-01

    A series of final twelve propanoyloxy derivatives of 5β-cholan-24-oic acid (O-propanoyl derivatives of cholic acid) as potential drug absorption modifiers (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by 1H NMR, 13C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (log S), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukemia cell line and breast adenocarcinoma cell line. One compound showed selective cytotoxicity against human skin fibroblast cells and another compound possessed the highest cytotoxicity against all the tested cell lines. Only one compound expressed anti-proliferative effect on leukemia cancer cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37 μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and enhancement effect are discussed in this article.

  6. New polyfluorothiopropanoyloxy derivatives of 5β-cholan-24-oic acid designed as drug absorption modifiers.

    PubMed

    Mrózek, Lech; Coufalová, Lenka; Rárová, Lucie; Plaček, Lukáš; Opatřilová, Radka; Dohnal, Jiří; Kráľová, Katarína; Paleta, Oldřich; Král, Vladimír; Drašar, Pavel; Jampílek, Josef

    2013-09-01

    A series of final six propanoyloxy derivatives of 5β-cholan-24-oic acid (tridecafluoroctylsulfanyl- and tridecafluoroctylsulfinylethoxycarbonylpropanoyloxy derivatives) as potential drug absorption promoters (skin penetration enhancers, intestinal absorption promoters) was generated by multistep synthesis. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (RM) was determined. The hydrophobicity (log P), solubility (logS), polar surface area (PSA) and molar volume (MV) of the studied compounds were also calculated. All the target compounds were tested for their in vitro transdermal penetration effect and as potential intestinal absorption enhancers. The cytotoxicity of all the evaluated compounds was evaluated against normal human skin fibroblast cells. Their anti-proliferative activity was also assessed against human cancer cell lines: T-lymphoblastic leukaemia cell line and breast adenocarcinoma cell line. One compound showed high selective cytotoxicity against human skin fibroblast cells and another compound possessed high cytotoxicity against breast adenocarcinoma cell line and skin fibroblast cells. Only one compound expressed anti-proliferative effect on leukaemia and breast adenocarcinoma cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC50>37μM), indicating they would have moderate cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity/polarity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and penetration enhancement effect are discussed in this article.

  7. The second derivative electronic absorption spectrum of cytochrome c oxidase in the Soret region.

    PubMed

    Horvath, M P; Copeland, R A; Makinen, M W

    1999-09-01

    The electronic absorption spectrum of solubilized beef heart cytochrome c oxidase was analyzed in the 400-500 nm region to identify the origin of doublet features appearing in the second derivative spectrum associated with ferrocytochrome a. This doublet, centered near 22,600 cm(-1), was observed in the direct absorption spectrum of the a(2+)a(3)(3+).HCOO(-) form of the enzyme at cryogenic temperatures. Since evidence for this doublet at room temperature is obtained only on the basis of the second derivative spectrum, a novel mathematical approach was developed to analyze the resolving power of second derivative spectroscopy as a function of parameterization of spectral data. Within the mathematical limits defined for resolving spectral features, it was demonstrated that the integrated intensity of the doublet feature near 450 nm associated with ferrocytochrome a is independent of the ligand and oxidation state of cytochrome a(3). Furthermore, the doublet features, also observed in cytochrome c oxidase from Paracoccus denitrificans, were similarly associated with the heme A component and were correspondingly independent of the ligand and oxidation state of the heme A(3) chromophore. The doublet features are attributed to lifting of the degeneracy of the x and y polarized components of the B state of the heme A chromophore associated with the Soret transition.

  8. A Series of Imidazole Derivatives: Synthesis, Two-Photon Absorption, and Application for Bioimaging

    PubMed Central

    Zhu, Yingzhong; Xiao, Lufei; Zhao, Meng; Zhou, Jiazheng; Zhang, Qiong; Wang, Hui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2015-01-01

    A new series of D-π-A type imidazole derivatives have been synthesized and characterized. Two corresponding imidazolium salts (iodine and hexafluorophosphate) were prepared from the imidazole compound. Their electron-withdrawing ability can be largely tunable by salt formation reaction or ion exchange. UV-vis absorption and single-photon fluorescence spectra have been systematically investigated in different solvents. The two-photon cross sections (δ2PA) of the imidazole derivatives are measured by two-photon excited fluorescence (2PEF) method. Compared with those of T-1 (107 GM) and T-3 (96 GM), T-2 (imidazolium iodine salt) has a large two-photon absorption (2PA) cross section value of 276 GM. Furthermore, the cytotoxicity and applications in bioimaging for the imidazole derivatives were carried out. The results showed that T-1 can be used as a lysosomal tracker with high stability and water solubility within pHs of 4–6, while T-2 and T-3 can be used as probes for cell cytoplasm. PMID:26579544

  9. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  10. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  11. Determination of true optical absorption and scattering coefficient of wooden cell wall substance by time-of-flight near infrared spectroscopy.

    PubMed

    Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru

    2016-02-22

    The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.

  12. Parameter identifiability and Extended Multiple Studies Analysis of a compartmental model for human vitamin A kinetics: fixing fractional transfer coefficients for the initial steps in the absorptive process.

    PubMed

    Park, Hyunjin; Green, Michael H

    2014-03-28

    In the existing compartmental models of human vitamin A metabolism, parameters related to the absorption of the isotopic oral dose have not been well identified. We hypothesised that fixing some poorly identified parameters related to vitamin A absorption would improve parameter identifiability and add statistical certainty to such models. In the present study, data for serum vitamin A kinetics in nine subjects given [2H8]retinyl acetate orally and a model with absorption fixed at 75 % were used to test this hypothesis. In addition to absorption efficiency, we fixed two other fractional transfer coefficients: one representing the initial processing of the ingested dose and the other representing the direct secretion of retinol bound to retinol-binding protein (RBP) from enterocytes into the plasma. The Windows version of Simulation, Analysis and Modeling software (WinSAAM) was used to fit serum tracer data v. time for each subject. Then, a population model was generated by WinSAAM's Extended Multiple Studies Analysis. All the parameters had fractional standard deviations < 0·5, and none of the pairs of parameters had a correlation coefficient >0·8 (accepted criteria for well-identified parameters). Similar to the values predicted by the original model, total traced mass for retinol was 1160 (sd 468) μmol, and the time for retinol to appear in the plasma bound to RBP was 31·3 (sd 4·4) h. In conclusion, we suggest that this approach holds promise for advancing compartmental modelling of vitamin A kinetics in humans when the dose must be administered orally.

  13. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    SciTech Connect

    Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch–Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch–Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  14. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    NASA Astrophysics Data System (ADS)

    Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  15. Assessment of satellite derived diffuse attenuation coefficients and euphotic depths in south Florida coastal waters

    EPA Science Inventory

    Optical data collected in coastal waters off South Florida and in the Caribbean Sea between January 2009 and December 2010 were used to evaluate products derived with three bio-optical inversion algorithms applied to MOIDS/Aqua, MODIS/Terra, and SeaWiFS satellite observations. Th...

  16. Investigation of new acyloxy derivatives of cholic acid and their esters as drug absorption modifiers.

    PubMed

    Mrózek, Lech; Dvořáková, Lenka; Mandelová, Zuzana; Rárová, Lucie; Řezáčová, Anna; Plaček, Lukáš; Opatřilová, Radka; Dohnal, Jiří; Paleta, Oldřich; Král, Vladimír; Drašar, Pavel; Jampílek, Josef

    2011-01-01

    Skin penetration enhancers are used in the formulation of transdermal delivery systems for drugs that are otherwise not sufficiently skin-permeable. Intestinal absorption promoters/enhancers are used as excipients in oral formulations of poorly oral-bioavailable drugs. Series of fourteen acyloxy derivatives of 5β-cholic acid as potential drug absorption modifiers was generated by multistep synthesis. The synthesis of all newly prepared compounds is presented here. Structure confirmation of all generated compounds was accomplished by (1)H NMR, (13)C NMR, IR and MS spectroscopy methods. All the prepared compounds were analyzed using RP-TLC, and their lipophilicity (R(M)) was determined. The hydrophobicity (logP) and solubility (logS) of the studied compounds were also calculated using two commercially available programs. All the target compounds were tested for their in vitro transdermal penetration activity and as potential intestinal absorption enhancers. The anti-proliferative activity of all the final compounds was also assessed against the human cancer cell lines: T-lymphoblastic leukemia cell line and the breast adenocarcinoma cell line. Their cytotoxicity was also evaluated against the normal human skin fibroblast cells. Two compounds showed anti-proliferative effect on cancer cells without affecting the growth of normal cells, which should be promising in potential development of new drugs. Most of the target compounds showed minimal anti-proliferative activity (IC(50)>37 μM), indicating they would have low cytotoxicity when administered as chemical absorption modifiers. The relationships between the lipophilicity and the chemical structure of the studied compounds as well as the relationships between their chemical structure and enhancement effects are discussed in this article.

  17. Derivation of aberration coefficients for single-element plane-symmetric reflecting systems using Mathematica{trademark}

    SciTech Connect

    McKinney, W.R.; Palmer, C.

    1997-09-01

    The definition of the generalized optical path function for a grating or mirror with a single plane of symmetry is reviewed. The generalized optical path function is then expanded in a series of wavefront aberration terms using only a few lines of code in the Mathematica{trademark} scientific programming environment. The use of the algebraic capabilities of the Mathematica{trademark} environment allows straightforward calculation of aberration coefficients that would normally require considerable effort if undertaken by paper and pencil. In addition, the derivation can be carried out to higher order aberration terms, limited only by the capabilities of the computer platform used.

  18. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure

    PubMed Central

    2012-01-01

    The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  19. Influence of image charge effect on impurity-related optical absorption coefficients and refractive index changes in a spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Vartanian, A. L.; Asatryan, A. L.; Vardanyan, L. A.

    2017-03-01

    We have investigated the influence of an image charge effect (ICE) on the energies of the ground and first few excited states of a hydrogen-like impurity in a spherical quantum dot (QD) in the presence of an external electric field. The oscillator strengths of transitions from the 1 s -like state to excited states of 2px and 2pz symmetries are calculated as the functions of the strengths of the confinement potential and the electric field. Also, we have studied the effect of image charges on linear and third-order nonlinear optical absorption coefficients and refractive index changes (RICs). The results show that image charges lead to the decrease of energies for all the hydrogen-like states, to the significant enhancement of the oscillator strengths of transitions between the impurity states, and to comparatively large blue shifts in linear, nonlinear, and total absorption coefficients and refractive index changes. Our results indicate that the total optical characteristics can be controlled by the strength of the confinement and the electric field.

  20. Measurement of the x-ray mass energy-absorption coefficient of air using 3 keV to 10 keV synchrotron radiation.

    PubMed

    Büermann, L; Grosswendt, B; Kramer, H-M; Selbach, H-J; Gerlach, M; Hoffmann, M; Krumrey, M

    2006-10-21

    For the first time absolute photon mass energy-absorption coefficients of air in the energy range 3 keV to 10 keV have been measured with relative standard uncertainties less than 1%, significantly smaller than those of up to 5% assumed hitherto for calculated data. Monochromatized synchrotron radiation was used to measure both the total radiant energy by means of silicon photodiodes calibrated against a cryogenic radiometer and the fraction of radiant energy that is deposited in dry air by means of a free air ionization chamber. The measured ionization charge was converted into energy absorbed in air by calculated effective W values of photons as a function of their energy based on new measurements of the W values in dry air for electron kinetic energies between 1 keV and 7 keV, also presented in this work. The measured absorption coefficients were compared with state-of-the art calculations and found to agree within 0.7% with data calculated earlier by Hubbell at energies above 4 keV but were found to differ by values up to 2.1% at 10 keV from more recent calculations of Seltzer.

  1. Preparation of Oxaliplatin-Deoxycholic Acid Derivative Nanocomplexes and In Vivo Evaluation of Their Oral Absorption and Tumor Growth Suppression.

    PubMed

    Jeon, Ok-Cheol; Byun, Youngro; Park, Jin Woo

    2016-02-01

    To prepare orally available oxaliplatin (OXA), nanocomplexes were formed by ionic conjugation of OXA with the deoxycholic acid derivative, Nalpha-deoxycholy-L-lysyl-methylester (DCK), as an oral absorption enhancer. We characterized the DCK-conjugated OXA nanocomplexes by differential scanning calorimetry, particle size determination, and morphological analysis. To evaluate the effects of DCK on the intestinal permeability of OXA, we assessed the solubilities and partition coefficients of OXA and the OXA/DCK nanocomplex, and then conducted in vitro artificial intestinal membrane and Caco-2 cell permeability studies. Finally, bioavailability in rats and tumor growth inhibition in the squamous cell carcinoma (SCC7) model after oral administration of the OXA/DCK nanocomplex were investigated compared to pure OXA. Analysis of the ionic complex formation of OXA with DCK revealed that OXA existed in an amorphous form within the complex, resulting in for- mation of nanocomp;exes (35.05 +/- 4.48 nm in diameter). The solubility of OXA in water was approximately 7.07 mg/mL, whereas the water solubility of OXA/DCK was approximately 2.04 mg/mL and its partition coefficient was approximately 1.2-fold higher than that of OXA. The in vitro intestinal membrane permeability of OXA was significantly enhanced by complex formation with DCK. An in vivo pharmacokinetic study revealed that the Cm value of the OXA/DCK nanocomplex was 3.18-fold higher than that of OXA (32.22 +/- 10.24 ng/mL), and the resulting oral bioavailability of the OXA/DCK nanocomplex was 39.3-fold more than that of OXA. Furthermore, the oral administration of OXA/DCK significantly inhibited tumor growth in SCC7-bearing mice, and maximally inhibited tumor volume by 54% compared to the control. These findings demonstrate the therapeutic potential of the OXA/DCK nanocomplex as an oral anti-cancer therapy because it improves the oral absorption of OXA, which may improve patient compliance and expand the therapeutic

  2. Two-photon absorption cross section determination for fluorene derivatives: analysis of the methodology and elucidation of the origin of the absorption processes.

    PubMed

    Belfield, Kevin D; Bondar, Mykhailo V; Hernandez, Florencio E; Przhonska, Olga V; Yao, Sheng

    2007-11-08

    A comprehensive analysis of the well-known open aperture Z-scan method, using a modified equation for the change in transmittance, is presented and accounts for discrepancies in two-photon absorption (2PA) cross sections between picosecond and femtosecond excitation. This new approach takes into account excited-state absorption and stimulated emission of the molecules studied. The two-photon absorption cross-section spectra of a series of six fluorene-based derivatives, determined using picosecond pulses, over a broad spectral range (500-900 nm), and this approach using a modified fitting procedure in the open aperture Z-scan is reported. We demonstrate that the fluorene derivatives exhibit two-photon absorption cross-section values between 700 and 5000 GM, when excited into the two-photon allowed electronic state. Excitation anisotropy spectra, measured to investigate the nature of the observed linear and nonlinear absorption bands, are presented and provide insight into the 2PA process.

  3. Optimizing Thermal-Optical Analysis for Atmospheric Black Carbon (BC): Determining the Beer-Lambert Mass Without a Fixed Mass Absorption Coefficient for BC

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Norris, G.

    2007-12-01

    In thermal-optical transmission analysis (TOT), laser light passing through a particle-laden filter is monitored while carbonaceous material is removed in several heating steps and measured by flame ionization detection. In a helium atmosphere, the laser signal is attenuated by the pyrolysis of organic carbon (OC). Later, while carbon is removed in an oxidizing atmosphere, the laser signal returns to its value prior to pyrolysis (split point), whereupon the amount of carbon equivalent to the native BC is measured. Since pyrolyzed OC may actually evolve beyond the split point, the specific absorption cross sections of pyrolyzed OC and native BC must be equivalent. Moreover, OC pyrolysis must be sufficient so that unpyrolyzed OC is not measured as BC beyond the split point. Using response surfaces models of the apparent specific absorption cross sections for pyrolyzed OC and what the instrument measures as native BC, we determined the thermal conditions for establishing the equivalence of the apparent cross sections while insuring sufficient pyrolysis of OC. In this way, we have optimized TOT for BC mass based on the Beer-Lambert Law but without the need for an absolute mass absorption coefficient (or an absolute attenuation coefficient) for BC. Optimal thermal conditions for the equivalence of the cross sections were indicated by the intersection of the response surfaces. Concurrently, optimal conditions for sufficient pyrolysis of OC were indicated by a plateau in the response surface for the BC cross section. Modeling was based on extensive analyses of PM2.5 samples collected from Atlanta, Los Angeles, and Seattle. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  4. Correlation between octanol/water and liposome/water distribution coefficients and drug absorption of a set of pharmacologically active compounds.

    PubMed

    Esteves, Freddy; Moutinho, Carla; Matos, Carla

    2013-06-01

    Absorption and consequent therapeutic action are key issues in the development of new drugs by the pharmaceutical industry. In this sense, different models can be used to simulate biological membranes to predict the absorption of a drug. This work compared the octanol/water and the liposome/water models. The parameters used to relate the two models were the distribution coefficients between liposomes and water and octanol and water and the fraction of drug orally absorbed. For this study, 66 drugs were collected from literature sources and divided into four groups according to charge and ionization degree: neutral; positively charged; negatively charged; and partially ionized/zwitterionic. The results show a satisfactory linear correlation between the octanol and liposome systems for the neutral (R²= 0.9324) and partially ionized compounds (R²= 0.9367), contrary to the positive (R²= 0.4684) and negatively charged compounds (R²= 0.1487). In the case of neutral drugs, results were similar in both models because of the high fraction orally absorbed. However, for the charged drugs (positively, negatively, and partially ionized/zwitterionic), the liposomal model has a more-appropriate correlation with absorption than the octanol model. These results show that the neutral compounds only interact with membranes through hydrophobic bonds, whereas charged drugs favor electrostatic interactions established with the liposomes. With this work, we concluded that liposomes may be a more-appropriate biomembrane model than octanol for charged compounds.

  5. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  6. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  7. COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION

    SciTech Connect

    Gilbert, Holly; Kilper, Gary; Kucera, Therese; Alexander, David

    2011-01-20

    In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda} < 504 A), and finally at wavelengths where H{sup 0}, He{sup 0}, and He{sup +} are all ionized ({lambda} < 228 A). This approach, first suggested by Kucera et al., permits the separation of the contributions of neutral hydrogen and helium to the total column density in prominences. Additionally, an enhancement of the technique allowed the calculation of the two-dimensional (2D) spatial distribution of the column density from the continuum absorption in each extreme-ultraviolet observation. We find the total prominence mass is consistently lower in the 625 A observations compared to lines in the other wavelength regimes. There is a significant difference in total mass between the 625 A and 195 A lines, indicating the much higher opacity at 625 A is causing a saturation of the continuum absorption and thus, a potentially large underestimation of mass.

  8. Simultaneous Determination of Ofloxacin and Flavoxate Hydrochloride by Absorption Ratio and Second Derivative UV Spectrophotometry

    PubMed Central

    Attimarad, Mahesh

    2010-01-01

    The objective of this study was to develop simple, precise, accurate and sensitive UV spectrophotometric methods for the simultaneous determination of ofloxacin (OFX) and flavoxate HCl (FLX) in pharmaceutical formulations. The first method is based on absorption ratio method, by formation of Q absorbance equation at 289 nm (λmax of OFX) and 322.4 nm (isoabsorptive point). The linearity range was found to be 1 to 30 μg/ml for FLX and OFX. In the method-II second derivative absorption at 311.4 nm for OFX (zero crossing for FLX) and at 246.2 nm for FLX (zero crossing for OFX) was used for the determination of the drugs and the linearity range was found to be 2 to 30 μg/ml for OFX and 2-75 μg /ml for FLX. The accuracy and precision of the methods were determined and validated statistically. Both the methods showed good reproducibility and recovery with % RSD less than 1.5%. Both the methods were found to be rapid, specific, precise and accurate and can be successfully applied for the routine analysis of OFX and FLX in combined dosage form PMID:24826003

  9. Ultrafast Dynamics in DNA and RNA Derivatives Monitored by Broadband Transient Absorption Spectrscopy

    NASA Astrophysics Data System (ADS)

    Brister, Matthew M.; Crespo-Hernández, Carlos E.

    2015-06-01

    The ultrafast dynamics of nucleic acids have been under scrutiny for the past couple of decades because of the role that the high-energy electronic states play in mutagenesis and carcinogenesis. Kinetic models have been proposed, based on both experimental and theoretical discoveries. Direct experimental evidence of the intersystem crossing rate and population of the triplet state for most nucleic acid bases has yet to be reported, even though the triplet state is thought to be the most reactive species. Utilizing broadband femtosecond transient absorption spectroscopy, we reveal the time scale at which singlet-to-triplet population transfer occurs in several nucleic acid derivatives in the condensed phase. The implication of these results to the current understanding of the DNA and RNA photochemistry will be discussed. The authors acknowledge the CAREER program of the National Science Foundation (Grant No. CHE-1255084) for financial support.

  10. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te125 NMR measurements in complex tellurides

    DOE PAGES

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T1, depends on both n and m* as 1/T1~(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*)2n2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficientmore » and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study AgxSbxGe50–2xTe50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.« less

  11. Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators.

    PubMed

    Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind

    2014-07-28

    We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

  12. Excited-State Dynamics of Melamine and Its Lysine Derivative Investigated by Femtosecond Transient Absorption Spectroscopy.

    PubMed

    Zhang, Yuyuan; Beckstead, Ashley A; Hu, Yuesong; Piao, Xijun; Bong, Dennis; Kohler, Bern

    2016-11-30

    Melamine may have been an important prebiotic information carrier, but its excited-state dynamics, which determine its stability under UV radiation, have never been characterized. The ability of melamine to withstand the strong UV radiation present on the surface of the early Earth is likely to have affected its abundance in the primordial soup. Here, we studied the excited-state dynamics of melamine (a proto-nucleobase) and its lysine derivative (a proto-nucleoside) using the transient absorption technique with a UV pump, and UV and infrared probe pulses. For melamine, the excited-state population decays by internal conversion with a lifetime of 13 ps without coupling significantly to any photochemical channels. The excited-state lifetime of the lysine derivative is slightly longer (18 ps), but the dominant deactivation pathway is otherwise the same as for melamine. In both cases, the vast majority of excited molecules return to the electronic ground state on the aforementioned time scales, but a minor population is trapped in a long-lived triplet state.

  13. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells.

    PubMed

    Gao, Feifei; Wang, Yuan; Shi, Dong; Zhang, Jing; Wang, Mingkui; Jing, Xiaoyan; Humphry-Baker, Robin; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-13

    We report two new heteroleptic polypyridyl ruthenium complexes, coded C101 and C102, with high molar extinction coefficients by extending the pi-conjugation of spectator ligands, with a motivation to enhance the optical absorptivity of mesoporous titania film and charge collection yield in a dye-sensitized solar cell. On the basis of this C101 sensitizer, several DSC benchmarks measured under the air mass 1.5 global sunlight have been reached. Along with an acetonitrile-based electrolyte, the C101 sensitizer has already achieved a strikingly high efficiency of 11.0-11.3%, even under a preliminary testing. More importantly, based on a low volatility 3-methoxypropionitrile electrolyte and a solvent-free ionic liquid electrolyte, cells have corresponding >9.0% and approximately 7.4% efficiencies retained over 95% of their initial performances after 1000 h full sunlight soaking at 60 degrees C. With the aid of electrical impedance measurements, we further disclose that, compared to the cell with an acetonitrile-based electrolyte, a dye-sensitized solar cell with an ionic liquid electrolyte shows a feature of much shorter effective electron diffusion lengths due to the lower electron diffusion coefficients and shorter electron lifetimes in the mesoporous titania film, explaining the photocurrent difference between these two type devices. This highlights the next necessary efforts to further improve the efficiency of cells with ionic liquid electrolytes, facilitating the large-scale production and application of flexible thin film mesoscopic solar cells.

  14. Satellite-derived light extinction coefficient and its impact on thermal structure simulations in a 1-D lake model

    NASA Astrophysics Data System (ADS)

    Zolfaghari, Kiana; Duguay, Claude R.; Kheyrollah Pour, Homa

    2017-01-01

    A global constant value of the extinction coefficient (Kd) is usually specified in lake models to parameterize water clarity. This study aimed to improve the performance of the 1-D freshwater lake (FLake) model using satellite-derived Kd for Lake Erie. The CoastColour algorithm was applied to MERIS satellite imagery to estimate Kd. The constant (0.2 m-1) and satellite-derived Kd values as well as radiation fluxes and meteorological station observations were then used to run FLake for a meteorological station on Lake Erie. Results improved compared to using the constant Kd value (0.2 m-1). No significant improvement was found in FLake-simulated lake surface water temperature (LSWT) when Kd variations in time were considered using a monthly average. Therefore, results suggest that a time-independent, lake-specific, and constant satellite-derived Kd value can reproduce LSWT with sufficient accuracy for the Lake Erie station. A sensitivity analysis was also performed to assess the impact of various Kd values on the simulation outputs. Results show that FLake is sensitive to variations in Kd to estimate the thermal structure of Lake Erie. Dark waters result in warmer spring and colder fall temperatures compared to clear waters. Dark waters always produce colder mean water column temperature (MWCT) and lake bottom water temperature (LBWT), shallower mixed layer depth (MLD), longer ice cover duration, and thicker ice. The sensitivity of FLake to Kd variations was more pronounced in the simulation of MWCT, LBWT, and MLD. The model was particularly sensitive to Kd values below 0.5 m-1. This is the first study to assess the value of integrating Kd from the satellite-based CoastColour algorithm into the FLake model. Satellite-derived Kd is found to be a useful input parameter for simulations with FLake and possibly other lake models, and it has potential for applicability to other lakes where Kd is not commonly measured.

  15. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    SciTech Connect

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.

  16. Photoinduced Absorption of the Monomer Derivative of a Polyphenylene Vinylene Segmented Block Copolymer

    NASA Astrophysics Data System (ADS)

    Gedelian, Cynthia; Coplin, Kim; Epstein, Arthur

    2002-10-01

    Conducting polymers are an exciting development in the fields of both physics and chemistry. They have the potential to revolutionize the electronics industry by allowing for the creation of flexible and/or transparent circuits and LED's in many applications. We present the millisecond photoinduced absorption (PA) spectrum of a methoxy-substituted monomer derivative of poly (p-phenylene vinylene) (PPV) in the near-infrared to visible region (1.1 eV to 2.5 eV). A prominent PA peak was found near 2.1 eV when the sample was excited with both 2.7 eV and ultraviolet pump energies. We also report temperature, frequency, and intensity dependence studies of the 2.1 eV PA peak. Our results indicate exciton formation consistent with previous studies of the monomer [1] and similar studies of the related segmented block copolymer [2]. [1] E. Kyllo, et al., Synth. Met. 116, 189 (2001). [2] D. Clark, et al., Bull. Am. Phys. Soc. 46, 9 (2001).

  17. Influence of substituents on the N K X-ray absorption near-edge structure of pyrrole derivatives

    NASA Astrophysics Data System (ADS)

    Hennig, C.; Hallmeier, K. H.; Bach, A.; Bender, S.; Franke, R.; Hormes, J.; Szargan, R.

    1996-08-01

    The X-ray absorption and electron yield spectra of monomeric pyrrole including derivatives with different substituents, thiazole and oxazole have been investigated. Inductive and mesomeric effects on the spectral features are discussed. Inductive effects create energy shifts of the π ∗ resonances: mesomeric effects cause a splitting and energy shifts of the π ∗ resonances.

  18. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  19. Relationships among the slopes of lines derived from various data analysis techniques and the associated correlation coefficient

    NASA Technical Reports Server (NTRS)

    Cohen, S. C.

    1980-01-01

    A technique for fitting a straight line to a collection of data points is given. The relationships between the slopes and correlation coefficients, and between the corresponding standard deviations and correlation coefficient are given.

  20. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

    2010-01-01

    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

  1. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  2. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)

  3. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  4. C02(nu2)-0 Quenching Rate Coefficient Derived from Coincidental Fort Collins Lidar and SABER Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; She, C. Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2009-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(V2) vibrational levels in collisions with oxygen atoms plays an important role. However, neither the rate coefficient of this process (k(CO2O)) nor the atomic oxygen concentrations ([O]) in the MLT are well known. The discrepancy between k(CO2O) measured in the lab and retrieved from atmospheric measurements is of about factor of 2.5. At the same time, the discrepancy between [O] in the MLT measured by different instruments is of the same order of magnitude. In this work we used a synergy of a ground based lidar and satellite infrared radiometer to make a further step in understanding of the physics of the region. In this study we apply the night- and daytime temperatures between 80 and 110 km measured by the Colorado State University narrow-band sodium (Na) lidar located at Fort Collins, Colorado for retrieving the product of k(CO2-O) x [O] from the limb radiances in the 15 micron channel measured by the SABER/TIMED instrument for nearly simultaneous common volume measurements of both instruments within +/-1 degree in latitude, +/-2 degrees in longitude and +/-10 minutes in time. We derive k(CO2-O) and its possible variation range from the retrieved product by utilizing the [O] values measured by the SABER and other instruments.

  5. QSPR models for predicting generator-column-derived octanol/water and octanol/air partition coefficients of polychlorinated biphenyls.

    PubMed

    Yuan, Jintao; Yu, Shuling; Zhang, Ting; Yuan, Xuejie; Cao, Yunyuan; Yu, Xingchen; Yang, Xuan; Yao, Wu

    2016-06-01

    Octanol/water (K(OW)) and octanol/air (K(OA)) partition coefficients are two important physicochemical properties of organic substances. In current practice, K(OW) and K(OA) values of some polychlorinated biphenyls (PCBs) are measured using generator column method. Quantitative structure-property relationship (QSPR) models can serve as a valuable alternative method of replacing or reducing experimental steps in the determination of K(OW) and K(OA). In this paper, two different methods, i.e., multiple linear regression based on dragon descriptors and hologram quantitative structure-activity relationship, were used to predict generator-column-derived log K(OW) and log K(OA) values of PCBs. The predictive ability of the developed models was validated using a test set, and the performances of all generated models were compared with those of three previously reported models. All results indicated that the proposed models were robust and satisfactory and can thus be used as alternative models for the rapid assessment of the K(OW) and K(OA) of PCBs.

  6. Intrinsic absolute bioavailability prediction in rats based on in situ absorption rate constants and/or in vitro partition coefficients: 6-fluoroquinolones.

    PubMed

    Sánchez-Castaño, G; Ruíz-García, A; Bañón, N; Bermejo, M; Merino, V; Freixas, J; Garriguesx, T M; Plá-Delfina, J M

    2000-11-01

    A preliminary study attempting to predict the intrinsic absolute bioavailability of a group of antibacterial 6-fluoroquinolones-including true and imperfect homologues as well as heterologues-was carried out. The intrinsic absolute bioavailability of the test compounds, F, was assessed on permanently cannulated conscious rats by comparing the trapezoidal normalized areas under the plasma concentration-time curves obtained by intravenous and oral routes (n = 8-12). The high-performance liquid chromatography analytical methods used for plasma samples are described. Prediction of the absolute bioavailability of the compounds was based on their intrinsic rat gut in situ absorption rate constant, k(a). The working equation was: where T represents the mean absorbing time. A T value of 0.93 (+/-0.06) h provides the best correlation between predicted and experimentally obtained bioavailabilities (F' and F, respectively) when k(a) values are used (slope a = 1.10; intercept b = -0.05; r = 0.991). The k(a) values can also be expressed in function of the in vitro partition coefficients, P, between n-octanol and a phosphate buffer. In this case, theoretical k(a) values can be determined with the parameters of a standard k(a)/P correlation previously established for a group of model compounds. When P values are taken instead of k(a) values, reliable bioavailability predictions can also be made. These and other relevant features of the method are discussed.

  7. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  8. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Astrophysics Data System (ADS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-11-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  9. Black Carbon Concentrations and Diesel Vehicle Emission FactorsDerived from Coefficient of Haze Measurements in California:1967-2003

    SciTech Connect

    Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.

    2007-10-01

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population's exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of {approx}3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  10. Black Carbon Concentrations and Diesel Vehicle Emission Factors Derived from Coefficient of Haze Measurements in California: 1967-2003

    SciTech Connect

    Tast, CynthiaL; Kirchstetter, Thomas W.; Aguiar, Jeffery; Tonse, Shaheen; Novakov, T.; Fairley, David

    2007-11-09

    We have derived ambient black carbon (BC) concentrations and estimated emission factors for on-road diesel vehicles from archived Coefficient of Haze (COH) data that was routinely collected beginning in 1967 at 11 locations in the San Francisco Bay Area. COH values are a measure of the attenuation of light by particles collected on a white filter, and available data indicate they are proportional to BC concentrations measured using the conventional aethalometer. Monthly averaged BC concentrations are up to five times greater in winter than summer, and, consequently, so is the population?s exposure to BC. The seasonal cycle in BC concentrations is similar for all Bay Area sites, most likely due to area-wide decreased pollutant dispersion during wintertime. A strong weekly cycle is also evident, with weekend concentrations significantly lower than weekday concentrations, consistent with decreased diesel traffic volume on weekends. The weekly cycle suggests that, in the Bay Area, diesel vehicle emissions are the dominant source of BC aerosol. Despite the continuous increase in diesel fuel consumption in California, annual Bay Area average BC concentrations decreased by a factor of ~;;3 from the late 1960s to the early 2000s. Based on estimated annual BC concentrations, on-road diesel fuel consumption, and recent measurements of on-road diesel vehicle BC emissions, diesel BC emission factors decreased by an order of magnitude over the study period. Reductions in the BC emission factor reflect improved engine technology, emission controls and changes in diesel fuel composition. A new BC monitoring network is needed to continue tracking ambient BC trends because the network of COH monitors has recently been retired.

  11. Derivation of jack movement influence coefficients as a basis for selecting wall contours giving reduced levels of interference in flexible walled test sections

    NASA Technical Reports Server (NTRS)

    Goodyer, M. J.

    1985-01-01

    This report covers work done in a transonic wind tunnel towards providing data on the influence of the movement of wall-control jacks on the Mach number perturbations along the test section. The data is derived using an existing streamline-curvature program, and in application is reduced to matrices of influence coefficients.

  12. A comparative study of one- and two-photon absorption properties of pyrene and perylene diimide derivatives.

    PubMed

    Liu, Xiao-Ting; Zhao, Yang; Ren, Ai-Min; Feng, Ji-Kang

    2011-06-01

    Two important classes of organic molecules, perylene diimide (PDI) and pyrene derivatives have been found to possess relatively excellent photophysical and photochemical properties and especially high two-photon absorption cross sections (δ(T)(max)). Herein, one-photon absorption (OPA) and two-photon absorption (TPA) properties of some novel PDI and pyrene derivatives were comparatively investigated by the density functional theory (DFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods. The calculated results indicate that with respect to PDI derivatives, the maximum TPA cross-sections for pyrene compounds increase obviously, the maximum peaks of OPA and TPA spectra are blue-shifted, the ΔE(H-L) (energy gaps between the highest occupied orbital and the lowest unoccupied orbital) increase. The different π-conjugated bridges (fluorene and pyrene) and terminal groups have slight effect on the OPA properties. Nevertheless, the molecules bearing 1,6-disubstituted pyrene as the π-conjugated bridge display the largest δ(T)(max) in both series of compounds 3 and 4. Moreover, the δ(T)(max) values of molecules with benzothiazole-substituted terminal groups are larger than those of the molecules with diphenylamine, which is attributed to benzothiazole groups stabilizing the planarity of the branch parts, extending the conjugated length and increasing the π-electron delocalized extent. Furthermore, the molecular size has marked effect on OPA and TPA properties. It is worthy to mention that cruciform 8 displays the largest δ(T)(max) among all the studied molecules in the range of 600-1100 nm. This research could provide a better understanding for the origin of the linear and nonlinear optical properties, and it would be helpful to gain more information about designing two-photon absorption materials with large δ(T)(max).

  13. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells.

    PubMed

    Chen, Chih-Ping; Chan, Shu-Hua; Chao, Teng-Chih; Ting, Ching; Ko, Bao-Tsan

    2008-09-24

    Two low-bandgap (LGB) conjugated polymers ( P1 and P2) based on thiophene-phenylene-thiophene (TPT) with adequate energy levels have been designed and synthesized for application in bulk-heterojunction polymer solar cells (PSCs). The absorption spectral, electrochemical, field effect hole mobility and photovoltaic properties of LGB TPT derivatives are investigated and compared with poly(3-hexylthiophene) (P3HT). Photophysical studies reveal bandgaps of 1.76 eV for P1 and 1.70 eV for P2, which could effectively harvest broader solar spectrum. In addition, the thin film absorption coefficients of P1 and P2 are 1.6 x 10 (5) cm (-1) (lambda approximately 520 nm) and 1.4 x 10 (5) cm (-1) (lambda approximately 590 nm), respectively. Electrochemical studies indicate desirable HOMO/LUMO levels that enable a high open circuit voltage while blending them with fullerene derivatives as electron acceptors. Furthermore, both materials show sufficient hole mobility (3.4 x 10 (-3) cm (2)/Vs for P2) allowing efficient charge extraction and a good fill-factor for PSC application. High-performance power conversion efficiency (PCE) of 4.4% is obtained under simulated solar light AM 1.5 G (100 mW/cm (2)) from PSC device with an active layer containing 25 wt% P2 and 75 wt% [6,6]-phenyl-C71-butyric acid methyl ester (PC 71BM), which is superior to that of the analogous P3HT cell (3.9%) under the same experimental condition.

  14. Ingestion, enzymatic digestion and absorption of particles derived from different vegetal sources by the cockle Cerastoderma edule

    NASA Astrophysics Data System (ADS)

    Arambalza, U.; Urrutia, M. B.; Navarro, E.; Ibarrola, I.

    2010-10-01

    Ingestion, enzymatic digestion and absorption of particulate detrital matter derived from six different vegetal sources by the common cockle Cerastoderma edule was analyzed in a series of seasonal experiments performed in March, May and October 2005. Two green macroalgae: Ulva lactuca and Enteromorpha sp; two vascular plants: Spartina maritima and Juncus maritimus, the red macroalgae Gracilaria gracilis; and the microalgae Isochrysis galbana were used in experiments. Detrital matter was elaborated by freeze-drying, grinding and sieving (< 63 μm) vegetal tissues. Mono-specific detrital diets of similar organic content (≈ 60-70%) were elaborated by mixing detritus with ashed silt. We measured i) the biochemical composition of different detritus, ii) physiological components of the absorptive balance (i.e. clearance, ingestion, rejection and absorption rate and absorption efficiency), iii) the capability of the digestive gland to hydrolyze carbohydrates from different detritus (digestibility), as well as iv) glandular cellulase and xylanase activities. Detritus type, season and the interaction detritus-season exerted significant effects upon all the physiological components of absorptive balance. Effects were light at the pre-absorptive level, however, huge variations associated to absorption efficiency promoted large significant differences in absorption rates (AR) of different kind of detritus: irrespective of season, highest values corresponded to cockles fed the green macroalgae ( Ulva and Enteromorpha) and lowest to those fed the vascular plant Juncus maritimus. Recorded significant differences in enzymatic digestibility among detritus were found to explain ≈ 40% of differences recorded in AR, and the following regression could be fitted: AR = 0.232 (± 0.032) * Digestibility + 0,072 (± 0.015); r 2 = 0.415; F = 51.036; p < 0.001. Digestibility of Ulva and Enteromorpha was found to be significantly correlated with cellulase activity in the digestive gland

  15. Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance

    DTIC Science & Technology

    2004-01-01

    For a data set collected around Baja California with chlorophyll-a concentration ((chl-a)) ranging from 0.16 to 11.3 mg/cubic meter, hyperspectral absorption spectra of phytoplankton pigments were independently inverted from hyperspectral remote - sensing reflectance using a newly...potential of using hyperspectral remote sensing to retrieve both chlorophyll-a and other accessory pigments. (7 figures, 47 refs.)

  16. Derivative Analysis of Absorption Features in Hyperspectral Remote Sensing Data of Carbonate Sediments

    DTIC Science & Technology

    2002-12-30

    reflectance of carbonate sediments and application to shallow water benthic habitat classification,” Doctoral Dissertation, University of Miami. Chap.3...resolve overlapping features. A primary application has been to analyze pigment and chemical composition of leaves in order to track physiological...final absorption feature was observed at 630 nm, in a region associated with the biliprotein, phycocyanin [16,17]. As biliproteins are water soluble

  17. Analysis of absorption spectra of purple bacterial reaction centers in the near infrared region by higher order derivative spectroscopy.

    PubMed

    Mikhailyuk, I K; Knox, P P; Paschenko, V Z; Razjivin, A P; Lokstein, H

    2006-06-20

    Reaction centers (RCs) of purple bacteria are uniquely suited objects to study the mechanisms of the photosynthetic conversion of light energy into chemical energy. A recently introduced method of higher order derivative spectroscopy [I.K. Mikhailyuk, H. Lokstein, A.P. Razjivin, A method of spectral subband decomposition by simultaneous fitting the initial spectrum and a set of its derivatives, J. Biochem. Biophys. Methods 63 (2005) 10-23] was used to analyze the NIR absorption spectra of RC preparations from Rhodobacter (R.) sphaeroides strain 2R and Blastochloris (B.) viridis strain KH, containing bacteriochlorophyll (BChl) a and b, respectively. Q(y) bands of individual RC porphyrin components (BChls and bacteriopheophytins, BPheo) were identified. The results indicate that the upper exciton level P(y+) of the photo-active BChl dimer in RCs of R. sphaeroides has an absorption maximum of 810nm. The blue shift of a complex integral band at approximately 800nm upon oxidation of the RC is caused primarily by bleaching of P(y+), rather than by an electrochromic shift of the absorption band(s) of the monomeric BChls. Likewise, the disappearance of a band peaking at 842nm upon oxidation of RCs from B. viridis indicates that this band has to be assigned to P(y+). A blue shift of an absorption band at approximately 830nm upon oxidation of RCs of B. viridis is also essentially caused by the disappearance of P(y+), rather than by an electrochromic shift of the absorption bands of monomeric BChls. Absorption maxima of the monomeric BChls, B(B) and B(A) are at 802 and 797nm, respectively, in RCs of R. sphaeroides at room temperature. BPheo co-factors H(B) and H(A) peak at 748 and 758nm, respectively, at room temperature. For B. viridis RCs the spectral positions of H(B) and H(A) were found to be 796 and 816nm, respectively, at room temperature.

  18. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ = 980 nm with a regard to the Ytterbium ion-pairs' effect: Reply

    NASA Astrophysics Data System (ADS)

    Kir'yanov, Alexander V.; Barmenkov, Yuri O.

    2006-07-01

    We reply to the comment [R. Paschotta and A.C. Tropper, Opt. Express, to be published (2006)] on our recent work reporting a study of the cooperative absorption and emission in heavily-doped Ytterbium silica fibers and mechanisms of the fiber nonlinear transmission coefficient reduction due to the Ytterbium ion-pairs’ effect [A.V. Kir’yanov et al., Opt. Express, 14 (9), 3981 (2006)]. We provide some additional evidences for that our work hypotheses and conclusions.

  19. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  20. Relationships between Water Attenuation Coefficients Derived from Active and Passive Remote Sensing: A Case Study from Two Coastal Environments

    DTIC Science & Technology

    2011-06-14

    surface (p0 ) (Table 1). Far from the sea surface, the Kd distribution is mainly driven by variations on the absorption co- efficient [8]. Attenuation...directions) and variations associated with the transmitter beam width. In this case, a __... Kd, and the lidar volume backscattering can be modeled...551)) that are sensitive to variations on particle size distribution. Unlike Rl, R2 is based on a particle size distribution proxy developed with

  1. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra.

    PubMed

    Baldassarre, Maurizio; Li, Chenge; Eremina, Nadejda; Goormaghtigh, Erik; Barth, Andreas

    2015-07-10

    Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase.

  2. TD-DFT Study of Absorption and Emission Spectra of 2-(2'-Aminophenyl)benzothiazole Derivatives in Water.

    PubMed

    Manojai, Natthaporn; Daengngern, Rathawat; Kerdpol, Khanittha; Kungwan, Nawee; Ngaojampa, Chanisorn

    2017-03-01

    Reduction of aromatic azides to amines is an important property of hydrogen sulphide (H2S) which is useful in fluorescence microscopy and H2S probing in cells. The aim of this work is to study the substituent effect on the absorption and emission spectra of 2-(2'-aminophenyl)benzothiazole (APBT) in order to design APBT derivatives for the use of H2S detection. Absorption and emission spectra of APBT derivatives in aqueous environment were calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) at B3LYP/6-311+G(d,p) level. The computed results favoured the substitution of strong electron-donating group on the phenyl ring opposite to the amino group for their large Stokes' shifts and emission wavelengths of over 600 nm. Also, three designed compounds were suggested as potential candidates for the fluorescent probes. Such generalised guideline learnt from this work can also be useful in further designs of other fluorescent probes of H2S in water.

  3. Determination of cadmium and lead in urine by derivative flame atomic absorption spectrometry using the atom trapping technique

    NASA Astrophysics Data System (ADS)

    Han-wen, Sun; De-qiang, Zhang; Li-li, Yang; Jian-min, Sun

    1997-06-01

    A method is described for the determinations of cadmium and lead in urine by derivative flame atomic absorption spectrometry with a modified water-cooled stainless steel atom trapping tube. The effects of the trap position, the flame conditions, the coolant flow rates, and the collection time were studied. With a 1 min collection time, the characteristic concentrations (derivative absorbance of 0.0044) for cadmium and lead were 0.028 and 1.4 μg L -1, the detection limits (3σ) were 0.02 and 0.27 μg L -1, respectively. The detection limits and sensitivities of the proposed method were 2 and 3 orders of magnitude higher for 1-3 min collection time than those of conventional flame atomic absorption spectrometry for cadmium and lead, respectively. Urine samples from a small population of normal individuals have been analyzed for cadmium and lead by the proposed method. Satisfactory recoveries of 91-110% and 91-106%, for Cd and Pb were obtained with these urine samples.

  4. State derivative feedback in second-order linear systems: A comparative analysis of perturbed eigenvalues under coefficient variation

    NASA Astrophysics Data System (ADS)

    Araújo, José M.; Dórea, Carlos E. T.; Gonçalves, Luiz M. G.; Datta, Biswa N.

    2016-08-01

    This paper presents a comparative study of sensitivity to parameter variation in two feedback techniques applied in second-order linear systems: state feedback technique and the less conventional state derivative feedback technique. The former uses information on displacements and velocities whereas the latter uses velocities and accelerations. Several contributions on the problem of partial or full eigenvalue/eigenstructure assignment using the state feedback technique are presented in the literature. Recently, some interesting possibilities, such as solving the regularization problem in singular mass second-order systems, are approached using state derivative feedback. In this work, a general equivalence between state feedback and state derivative feedback is first established. Then, figures of merit on the resulting perturbed spectrum are proposed in order to assess the sensitivity of the closed-loop system to variations on the system matrices. Numerical examples are presented to support the obtained results.

  5. Preparation of a Near-Infrared Ray Absorption Film from N-Phenylthiocarbamoyl Chitosan Derivative

    PubMed Central

    Nishida, Shouko; Shibano, Masaya; Kamitakahara, Hiroshi; Takano, Toshiyuki

    2015-01-01

    We recently observed that the decanoylation of N-phenylthiocarbamoyl chitosan (2) with a mixture of decanoic anhydride and pyridine at 60 °C for 24 h afforded N,N-(decanoyl)phenythiocarbamoyl-/2-isothiocynato chitosan decanoate (3b) rather than the expected product N,N-(decanoyl)phenylthiocarbamoyl chitosan decanoate (3a). This result suggested that some of the N,N-(decanoyl)phenylthiocarmbamoyl groups had been converted to isothiocyanate groups during the decanoylation process. The subsequent reaction of compound 3b with aniline gave N,N-(decanoyl)phenylthiocarbamoyl/N-phenylthiocarbamoyl chitosan decanoate (4) in high yield. A solution of compound 4 in CHCl3 was then added to a solution of copper decanoate (5) in the same solvent, and the resulting mixture was cast onto a glass plate to give a cast film. The film was annealed at 200 °C in an oven to give a greenish film, which showed good near-infrared absorption characteristic in the range of 800–2200 nm. PMID:26690129

  6. Infrared absorption by pure CO2 near 3340 cm-1: Measurements and analysis of collisional coefficients and line-mixing effects at subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Daneshvar, L.; Földes, T.; Buldyreva, J.; Vander Auwera, J.

    2014-12-01

    High resolution Fourier transform spectra of the 21102-00001 band of 12C16O2 near 3340 cm-1 have been recorded and analyzed to extract isolated-line intensities and collisional parameters, and first-order line-mixing coefficients. Voigt, hard-collision Rautian and Sobel'man, and quadratic-speed-dependent Voigt profiles have been used. The line-mixing coefficients measured for the three branches have also been evaluated using an Energy-Corrected Sudden approach employing a symmetric metric in the Liouville space. These coefficients compare very favorably with the experimental results and estimations with an algorithm available in the literature. Results of straightforward ECS-modeling of complete band shapes have been compared to the recorded spectra and future improvements of this model required at subatmospheric pressures have been outlined.

  7. Compensation for Spherical Geometric and Absorption Effects on Lower Thermospheric Emission Intensities Derived from High Earth Orbit Images

    NASA Technical Reports Server (NTRS)

    Swift, W.; Germany, G. A.; Richards, P. G.; Parks, G. K.; Brittnacher, M.; Spann, J. F., Jr.

    1997-01-01

    Remote sensing of the atmosphere from high earth orbit is very attractive due to the large field of view obtained and a true global perspective. This viewpoint is complicated by earth curvature effects so that slant path enhancement and absorption effects, small from low earth orbit, become dominant even at small nadir view angles. The effect is further complicated by the large range of local times and solar zenith angles in a single image leading to a modulation of the image intensity by a significant portion of the diurnal height variation of the absorbing layer. The latter effect is significant in particular for mesospheric, stratospheric and auroral emissions due to their depth in the atmosphere. As a particular case, the emissions from atomic oxygen (130.4 and 135.6 nm) and molecular nitrogen (two LBH bands, LBHS from 140 to 160 nm and LBHL from 160 to 180 nm) as viewed from the Ultraviolet Imager (UVI) are examined. The LBH emissions are of particular interest since LBHS has significant 02 absorption while LBHL does not, In the case of auroral emissions this differential absorption, well examined in the nadir, gives information about the height of the emission and therefore the energy of the precipitating particles. Using simulations of the viewing geometry and images from the UVI we examine these effects and obtain correction factors to adjust to the nadir case with a significant improvement of the derived characteristic energy. There is a surprisingly large effect on the images from the 02 diurnal layer height changes. An empirical compensation to the nadir case is explored based on the local nadir and local zenith angles for each portion of the image. These compensations are demonstrated as applied to the above emissions in both auroral and dayglow images and compared to models. The extension of these findings to other instruments, emissions and spectral regions is examined.

  8. Vertically-resolved profiles of mass concentrations and particle backscatter coefficients of Asian dust plumes derived from lidar observations of silicon dioxide.

    PubMed

    Noh, Youngmin; Müller, Detlef; Shin, Sung-Kyun; Shin, Dongho; Kim, Young J

    2016-01-01

    This study presents a method to retrieve vertically-resolved profiles of dust mass concentrations by analyzing Raman lidar signals of silicon dioxide (quartz) at 546nm. The observed particle plumes consisted of mixtures of East Asian dust with anthropogenic pollution. Our method for the first time allows for extracting the contribution of the aerosol component "pure dust" contained in the aerosol type "polluted dust". We also propose a method that uses OPAC (Optical Properties of Aerosols and Clouds) and the mass concentrations profiles of dust in order to derive profiles of backscatter coefficients of pure dust in mixed dust/pollution plumes. The mass concentration of silicon dioxide (quartz) in the atmosphere can be estimated from the backscatter coefficient of quartz. The mass concentration of dust is estimated by the weight percentage (38-77%) of mineral quartz in Asian dust. The retrieved dust mass concentrations are classified into water soluble, nucleation, accumulation, mineral-transported and coarse mode according to OPAC. The mass mixing ratio of 0.018, 0.033, 0.747, 0.130 and 0.072, respectively, is used. Dust extinction coefficients at 550nm were calculated by using OPAC and prescribed number concentrations for each of the 5 components. Dust backscatter coefficients were calculated from the dust extinction coefficients on the basis of a lidar ratio of 45±3sr at 532nm. We present results of quartz-Raman measurements carried out on the campus of the Gwangju Institute of Science and Technology (35.10°N, 126.53°E) on 15, 16, and 21 March 2010.

  9. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    NASA Astrophysics Data System (ADS)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  10. Absorption and Luminescence Studies of Some Highly Fluorescent Derivatives of Vitamin B1; Solvent and pH Effects

    NASA Astrophysics Data System (ADS)

    Marciniak, B.; Koput, J.; Kozubek, H.

    1990-08-01

    The influence of solvent on the UV-visible absorption and luminescence spectra of some highly fluorescent vitamin B1 derivatives, the products of the reaction of N-methylated vitamin B1 with cytidine (I), adenosine (II) and 2-amino-4-methylpyridine (III) is studied. Spectroscopic manifestations of protonation of I and II are also investigated using a semiempirical INDO/S CI method. Singlet and triplet energy levels of the free ion and several protonated species are calculated, and transition energies and oscillator strengths are compared with the experimental spectra. Calculated charge densities on heteroatoms in the ground and excited singlet and triplet states are correlated with changes of the experimental pKa values with excitation. The results for I and II are compared with those for the trimethylated pyrichrominium ion (III) previously studied

  11. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  12. Franck-Condon analysis of the S0 --> T1 absorption and phosphorescence spectra of biphenyl and bridged derivatives

    NASA Astrophysics Data System (ADS)

    Negri, Fabrizia; Zgierski, Marek Z.

    1992-11-01

    The equilibrium geometry and the vibrational force field of the ground and the lowest triplet electronic states of biphenyl and three bridged derivatives-biphenylene, fluorene and phenanthrene-are computed by using an updated version of the QCFF/PI (Quantum Chemical Force Field/π electron) Hamiltonian. The displacement parameters between T1 and S0 are obtained and used to model the S0→T1 absorption and the phosphorescence spectra. The calculated Franck-Condon envelopes are found to be in excellent agreement with the vibrational structure of the observed spectra. The common features of the phosphorescence spectra of biphenyl and fluorene are related to the same orbital nature of the lowest triplet state. The observed asymmetry between the phosphorescence and singlet-triplet absorption spectra of biphenyl is reproduced when the twisted equilibrium geometry of S0 is considered. It is shown that evidence of the nonplanarity of the ground state of biphenyl is manifested by the lower intensity of the band observed in the phosphorescence at 747 cm-1 with respect to the intensity of the same band in fluorene. The increased vibrational activity calculated in the lower frequency region for biphenylene and phenanthrene agrees with the observed spectra and reflects the different orbital nature of the lowest triplet state of the two strongly perturbed bridged derivatives with respect to biphenyl and fluorene. From the analysis of the computed vibrational frequencies, it is suggested that the false origin of the symmetry forbidden phosphorescence of biphenylene is due to the lowest out-of-plane mode of au symmetry.

  13. Absorption of carbohydrate-derived nutrients in sows as influenced by types and contents of dietary fiber.

    PubMed

    Serena, A; Jørgensen, H; Bach Knudsen, K E

    2009-01-01

    The current investigation was undertaken to study the absorption and plasma concentration of carbohydrate-derived nutrients [glucose, short-chain fatty acids (SCFA), and lactate] and the apparent insulin production in sows fed diets containing contrasting types and contents of dietary fiber. Six sows were fed 3 experimental diets, low fiber (LF; 177 g of dietary fiber and 44 g of soluble fiber/kg of DM), high soluble fiber (HF-S; 429 g of dietary fiber and 111 g of soluble fiber/kg of DM), and high insoluble fiber (HF-I; 455 g of dietary fiber and 74 g of soluble fiber/kg of DM), in a repeated crossover design. Variations in dietary concentration and solubility of dietary fiber were obtained by substituting starch-rich wheat and barley in the LF diet with dietary fiber-rich co-products (sugar beet pulp, potato pulp, pectin residue, brewers spent grain, pea hulls, and seed residue, which have distinct physicochemical properties). The main carbohydrate component of the LF diet was starch and nonstarch polysaccharides (cellulose and noncellulosic polysaccharides) for the 2 high dietary fiber diets. Consumption of the LF diet resulted in increased and rapid glucose absorption at 0 to 4 h postfeeding. With the HF-I diet, the glucose absorption pattern was similar but at a decreased rate, whereas it was decreased and delayed with the HF-S diet (diet, P < 0.001; time, P < 0.001). These differences were also reflected in the insulin response. The quantitative absorption of SCFA at 0 to 10 h postfeeding was greater when feeding the HF-S diet compared with the LF diet (P < 0.001) and intermediate when feeding the HF-I diet (P < 0.001). The study showed that feeding the high dietary fiber diets resulted in a increased and more uniform uptake of SCFA than when feeding the LF control. Moreover, the HF-S diet reduced diurnal variation in glucose and insulin concentrations.

  14. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  15. Influence of the nature of the absorption band on the potential performance of high molar extinction coefficient ruthenium(II) polypyridinic complexes as dyes for sensitized solar cells.

    PubMed

    Gajardo, Francisco; Barrera, Mauricio; Vargas, Ricardo; Crivelli, Irma; Loeb, Barbara

    2011-07-04

    When tested in solar cells, ruthenium polypyridinic dyes with extended π systems show an enhanced light-harvesting capacity that is not necessarily reflected by a high (collected electrons)/(absorbed photons) ratio. Provided that metal-to-ligand charge transfer bands, MLCT, are more effective, due to their directionality, than intraligand (IL) π-π* bands for the electron injection process in the solar cell, it seems important to explore and clarify the nature of the absorption bands present in these types of dyes. This article aims to elucidate if all the absorbed photons of these dyes are potentially useful in the generation of electric current. In other words, their potentiality as dyes must also be analyzed from the point of view of their contribution to the generation of excited states potentially useful for direct injection. Focusing on the assignment of the absorption bands and the nature of the emitting state, a systematic study for a series of ruthenium complexes with 4,4'-distyryl-2,2'-dipyridine (LH) and 4,4'-bis[p-(dimethylamino)-α-styryl]-2,2'-bipyridine (LNMe(2)) "chromophoric" ligands was undertaken. The observed experimental results were complemented with TDDFT calculations to elucidate the nature of the absorption bands, and a theoretical model was proposed to predict the available energy that could be injected from a singlet or a triplet excited state. For the series studied, the results indicate that the percentage of MLCT character to the anchored ligand for the lower energy absorption band follows the order [Ru(deebpy)(2)(LNMe(2))](PF(6))(2) > [Ru(deebpy)(2)(LH)](PF(6))(2) > [Ru(deebpy)(LH)(2)](PF(6))(2), where deebpy is 4,4'-bis(ethoxycarbonyl)-2,2'-bipyridine, predicting that, at least from this point of view, their efficiency as dyes should follow the same trend.

  16. Analytic expressions for perturbations and partial derivatives of range and range rate of a spacecraft with respect to the coefficient of the second harmonic

    NASA Technical Reports Server (NTRS)

    Georgevic, R. M.

    1973-01-01

    Closed-form analytic expressions for the time variations of instantaneous orbital parameters and of the topocentric range and range rate of a spacecraft moving in the gravitational field of an oblate large body are derived using a first-order variation of parameters technique. In addition, the closed-form analytic expressions for the partial derivatives of the topocentric range and range rate are obtained, with respect to the coefficient of the second harmonic of the potential of the central body (J sub 2). The results are applied to the motion of a point-mass spacecraft moving in the orbit around the equatorially elliptic, oblate sun, with J sub 2 approximately equal to .000027.

  17. Water Absorption in Galactic Translucent Clouds: Conditions and History of the Gas Derived from Herschel/HIFI PRISMAS Observations

    NASA Astrophysics Data System (ADS)

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Gerin, M.; Neufeld, D.; Sonnentrucker, P.; De Luca, M.; Godard, B.; Goicoechea, J. R.; Monje, R.; Phillips, T. G.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H2O (556, 1669, and 1113 GHz) and H218O (547, 1655, and 1101 GHz)—as well as the first few excited transitions of H2O (987, 752, and 1661 GHz)—toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H2O or H218O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 1013 cm-2. We find that the abundance of water relative to hydrogen nuclei is 1 × 10-8 in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H2O) =5 × 10-8, which makes water a good traced of H2 in translucent clouds. Observations of the excited transitions of H2O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T ex, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T ex ~= 5 K and that the density n(H2) in the translucent clouds is below 104 cm-3. We derive the water ortho-to-para ratio for each absorption feature along the line of sight and find that most of the clouds

  18. WATER ABSORPTION IN GALACTIC TRANSLUCENT CLOUDS: CONDITIONS AND HISTORY OF THE GAS DERIVED FROM HERSCHEL /HIFI PRISMAS OBSERVATIONS

    SciTech Connect

    Flagey, N.; Goldsmith, P. F.; Lis, D. C.; Monje, R.; Phillips, T. G.; Gerin, M.; De Luca, M.; Godard, B.; Neufeld, D.; Sonnentrucker, P.; Goicoechea, J. R.

    2013-01-01

    We present Herschel/HIFI observations of the three ground state transitions of H{sub 2}O (556, 1669, and 1113 GHz) and H{sub 2}{sup 18}O (547, 1655, and 1101 GHz)-as well as the first few excited transitions of H{sub 2}O (987, 752, and 1661 GHz)-toward six high-mass star-forming regions, obtained as part of the PRISMAS (PRobing InterStellar Molecules with Absorption line Studies) Guaranteed Time Key Program. Water vapor associated with the translucent clouds in Galactic arms is detected in absorption along every line of sight in all the ground state transitions. The continuum sources all exhibit broad water features in emission in the excited and ground state transitions. Strong absorption features associated with the source are also observed at all frequencies except 752 GHz. We model the background continuum and line emission to infer the optical depth of each translucent cloud along the lines of sight. We derive the column density of H{sub 2}O or H{sub 2}{sup 18}O for the lower energy level of each transition observed. The total column density of water in translucent clouds is usually about a few 10{sup 13} cm{sup -2}. We find that the abundance of water relative to hydrogen nuclei is 1 Multiplication-Sign 10{sup -8} in agreement with models for oxygen chemistry in which high cosmic ray ionization rates are assumed. Relative to molecular hydrogen, the abundance of water is remarkably constant through the Galactic plane with X(H{sub 2}O) =5 Multiplication-Sign 10{sup -8}, which makes water a good traced of H{sub 2} in translucent clouds. Observations of the excited transitions of H{sub 2}O enable us to constrain the abundance of water in excited levels to be at most 15%, implying that the excitation temperature, T {sub ex}, in the ground state transitions is below 10 K. Further analysis of the column densities derived from the two ortho ground state transitions indicates that T {sub ex} {approx_equal} 5 K and that the density n(H{sub 2}) in the translucent clouds

  19. Absorption and safety of serum-derived bovine immunoglobulin/protein isolate in healthy adults

    PubMed Central

    Shaw, Audrey L; Mathews, David W; Hinkle, John E; Petschow, Bryon W; Weaver, Eric M; Detzel, Christopher J; Klein, Gerald L; Bradshaw, Timothy P

    2016-01-01

    Purpose Previous studies have shown that oral administration of bovine immunoglobulin protein preparations is safe and provides nutritional and intestinal health benefits. The purpose of this study was to evaluate the plasma amino acid response following a single dose of serum-derived bovine immunoglobulin/protein isolate (SBI) and whether bovine immunoglobulin G (IgG) is present in stool or in blood following multiple doses of SBI in healthy volunteers. Methods A total of 42 healthy adults were administered a single dose of placebo or SBI at one of three doses (5 g, 10 g, or 20 g) in blinded fashion and then continued on SBI (2.5 g, 5 g, or 10 g) twice daily (BID) for an additional 2 weeks. Serial blood samples were collected for amino acid analysis following a single dose of placebo or SBI. Stool and blood samples were collected to assess bovine IgG levels. Results The area under the curve from time 0 minute to 180 minutes for essential and total amino acids as well as tryptophan increased following ingestion of 5 g, 10 g, or 20 g of SBI, with a significant difference between placebo and all doses of SBI (p<0.05) for essential amino acids and tryptophan but only the 10 g and 20 g doses for total amino acids. Bovine IgG was detected in the stool following multiple doses of SBI. No quantifiable levels of bovine IgG were determined in plasma samples 90 minutes following administration of a single dose or multiple doses of SBI. Conclusion Oral administration of SBI leads to increases in plasma essential amino acids during transit through the gastrointestinal tract and is safe at levels as high as 20 g/day. PMID:27980432

  20. Derivation of an eddy diffusivity coefficient depending on source distance for a shear dominated planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Alves, I. P.; Degrazia, G. A.; Buske, D.; Vilhena, M. T.; Moraes, O. L. L.; Acevedo, O. C.

    2012-12-01

    In this study an integral and an algebraic formulation for the eddy diffusivities in a shear driven planetary boundary layer are derived for pollutant dispersion applications. The expressions depend on the turbulence properties and on the distance from the source. They are based on the turbulent kinetic energy spectra, Taylor’s statistical diffusion theory and measured turbulent characteristics during intense wind events. The good agreement between the algebraic and the integral formulation for the eddy diffusivities corroborate the hypothesis that using an algebraic formulation as a surrogate for the eddy diffusivities in the neutral planetary boundary layer is valid. As a consequence, the vertical eddy diffusivity provided by the algebraic formulation and its asymptotic limit for large time (diffusion time much larger than the Lagrangian integral time scale), were introduced into an analytical air pollution model and validated against data from the classic Prairie Grass project. A statistical analysis, employing specific indices shows that the results are in good agreement with the observations. Furthermore, this study suggests that the inclusion of the memory effect, which is important in regions near to a continuous point source, improves the description of the turbulent transport process of atmospheric contaminants. Therefore, the major finding of this paper is the necessity of including the downwind distance-dependent eddy diffusivity for low continuous point sources in air quality modeling studies.

  1. Using satellite-derived backscattering coefficients in addition to chlorophyll data to constrain a simple marine biogeochemical model

    NASA Astrophysics Data System (ADS)

    Kettle, H.

    2009-08-01

    Biogeochemical models of the ocean carbon cycle are frequently validated by, or tuned to, satellite chlorophyll data. However, ocean carbon cycle models are required to accurately model the movement of carbon, not chlorophyll, and due to the high variability of the carbon to chlorophyll ratio in phytoplankton, chlorophyll is not a robust proxy for carbon. Using inherent optical property (IOP) inversion algorithms it is now possible to also derive the amount of light backscattered by the upper ocean (bb) which is related to the amount of particulate organic carbon (POC) present. Using empirical relationships between POC and bb, a 1-D marine biogeochemical model is used to simulate bb at 490 nm thereby allowing the model to be compared with both remotely-sensed chlorophyll or bb data. Here I investigate the possibility of using bb in conjunction with chlorophyll data to help constrain the parameters in a simple 1-D NPZD model. The parameters of the biogeochemical model are tuned with a genetic algorithm, so that the model is fitted to either chlorophyll data or to both chlorophyll and bb data at three sites in the Atlantic with very different characteristics. Several inherent optical property (IOP) algorithms are available for estimating bb, three of which are used here. The effect of the different bb datasets on the behaviour of the tuned model is examined to ascertain whether the uncertainty in bb is significant. The results show that the addition of bb data does not consistently alter the same model parameters at each site and in fact can lead to some parameters becoming less well constrained, implying there is still much work to be done on the mechanisms relating chlorophyll to POC and bb within the model. However, this study does indicate that including bb data has the potential to significantly effect the modelled mixed layer detritus and that uncertainties in bb due to the different IOP algorithms are not particularly significant.

  2. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    SciTech Connect

    Dakhlaoui, Hassen

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  3. Modified Biserial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Kraemer, Helena Chmura

    1981-01-01

    Asymptotic distribution theory of Brogden's form of biserial correlation coefficient is derived and large sample estimates of its standard error obtained. Its relative efficiency to the biserial correlation coefficient is examined. Recommendations for choice of estimator of biserial correlation are presented. (Author/JKS)

  4. EXTENSION OF THE INVERSE ADDING-DOUBLING METHOD TO THE MEASUREMENT OF WAVELENGTH-DEPENDENT ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL SAMPLES

    SciTech Connect

    Allegood, M.S.; Baba, J.S.

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.

  5. Adipose-Derived Mesenchymal Stem Cell Exosomes Suppress Hepatocellular Carcinoma Growth in a Rat Model: Apparent Diffusion Coefficient, Natural Killer T-Cell Responses, and Histopathological Features

    PubMed Central

    Ko, Sheung-Fat; Yip, Hon-Kan; Zhen, Yen-Yi; Lee, Chen-Chang; Lee, Chia-Chang; Huang, Chung-Cheng; Ng, Shu-Hang; Lin, Jui-Wei

    2015-01-01

    We sought to evaluate the effects of adipose-derived mesenchymal stem cells (ADMSCs) exosomes on hepatocellular carcinoma (HCC) in rats using apparent diffusion coefficient (ADC), natural killer T-cell (NKT-cell) responses, and histopathological features. ADMSC-derived exosomes appeared as nanoparticles (30–90 nm) on electron microscopy and were positive for CD63, tumor susceptibility gene-101, and β-catenin on western blotting. The control (n = 8) and exosome-treated (n = 8) rats with N1S1-induced HCC underwent baseline and posttreatment day 10 and day 20 magnetic resonance imaging and measurement of ADC. Magnetic resonance imaging showed rapidly enlarged HCCs with low ADCs in the controls. The exosome-treated rats showed partial but nonsignificant tumor reduction, and significant ADC and ADC ratio increases on day 10. On day 20, the exosome-treated rats harbored significantly smaller tumors and volume ratios, higher ADC and ADC ratios, more circulating and intratumoral NKT-cells, and low-grade HCC (P < 0.05 for all comparisons) compared to the controls. The ADC and volume ratios exhibited significant inverse correlations (P < 0.001, R2 = 0.679). ADMSC-derived exosomes promoted NKT-cell antitumor responses in rats, thereby facilitating HCC suppression, early ADC increase, and low-grade tumor differentiation. ADC may be an early biomarker of treatment response. PMID:26345219

  6. Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies

    NASA Astrophysics Data System (ADS)

    do Nascimento, Gustavo M.; do Pim, Walace D.; Reis, Daniella O.; Simões, Tatiana R. G.; Pradie, Noriberto A.; Stumpf, Humberto O.

    2015-05-01

    In this work, compounds derived from copper-oxamate anions (ortho, meta, and para)-phenylenebis (oxamate) and imidazolium cations (1-butyl-3-methylimidazolium) were synthesized. The compounds were characterized by Raman and FTIR spectroscopies and the band assignments were supported by DFT calculations. Strong IR bands from 1610 to 1700 cm-1 dominated the spectra of the complex and can be assigned to νCdbnd O vibrations of the [Cu(opba)]2- anions by the comparison with the DFT data. In opposition to the FTIR spectra, the main vibrational bands in the Raman spectra are observed in the 1350-1600 cm-1 range. All bands in this region are associated to the modified benzene vibrations of the copper-phenylenebis(oxamate) anions. X-ray absorption near edge (XANES) at different energies (NK and Cu L2,3 edges) was also used to probe the interionic interactions. XANES data show that anion-cation interaction in the Cu-oxamate-imidazolium changes the electronic structure around the sbnd Cusbnd Nsbnd sites in the oxamate anion.

  7. Characterization of compounds derived from copper-oxamate and imidazolium by X-ray absorption and vibrational spectroscopies.

    PubMed

    do Nascimento, Gustavo M; do Pim, Walace D; Reis, Daniella O; Simões, Tatiana R G; Pradie, Noriberto A; Stumpf, Humberto O

    2015-05-05

    In this work, compounds derived from copper-oxamate anions (ortho, meta, and para)-phenylenebis (oxamate) and imidazolium cations (1-butyl-3-methylimidazolium) were synthesized. The compounds were characterized by Raman and FTIR spectroscopies and the band assignments were supported by DFT calculations. Strong IR bands from 1610 to 1700cm(-1) dominated the spectra of the complex and can be assigned to νCO vibrations of the [Cu(opba)](2-) anions by the comparison with the DFT data. In opposition to the FTIR spectra, the main vibrational bands in the Raman spectra are observed in the 1350-1600cm(-1) range. All bands in this region are associated to the modified benzene vibrations of the copper-phenylenebis(oxamate) anions. X-ray absorption near edge (XANES) at different energies (NK and Cu L2,3 edges) was also used to probe the interionic interactions. XANES data show that anion-cation interaction in the Cu-oxamate-imidazolium changes the electronic structure around the CuN sites in the oxamate anion.

  8. Prediction of partition coefficient of some 3-hydroxy pyridine-4-one derivatives using combined partial least square regression and genetic algorithm.

    PubMed

    Shahlaei, M; Fassihi, A; Saghaie, L; Zare, A

    2014-01-01

    A quantiatative structure property relationship (QSPR) treatment was used to a data set consisting of diverse 3-hydroxypyridine-4-one derivatives to relate the logarithmic function of octanol:water partition coefficients (denoted by log po/w) with theoretical molecular descriptors. Evaluation of a test set of 6 compounds with the developed partial least squares (PLS) model revealed that this model is reliable with a good predictability. Since the QSPR study was performed on the basis of theoretical descriptors calculated completely from the molecular structures, the proposed model could potentially provide useful information about the activity of the studied compounds. Various tests and criteria such as leave-one-out cross validation, leave-many-out cross validation, and also criteria suggested by Tropsha were employed to examine the predictability and robustness of the developed model.

  9. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  10. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.

  11. Bulk heat transfer coefficient in the ice-upper ocean system in the ice melt season derived from concentration-temperature relationship

    NASA Astrophysics Data System (ADS)

    Nihashi, Sohey; Ohshima, Kay I.

    2008-06-01

    The bulk heat transfer coefficient in the ice-upper ocean system (Kb) in the ice melt season is estimated by a new method at 18 areas that cover much of the Antarctic seasonal ice zone. The method is based on a model in which ice melting is caused only by heat input through open water and is treated in a bulk fashion in the ice-upper ocean system. Kb is estimated by fitting a convergent curve derived from the model to an observed ice concentration-temperature plot (CT-plot). Estimated Kb is 1.15 ± 0.72 × 10-4 m s-1 on average. If Kb can be expressed by the product of the heat transfer coefficient (ch) and the friction velocity (uτ), ch is 0.0113 ± 0.0055. This value is about two times larger than that estimated at the ice bottom. The relationship between Kb and the geostrophic wind speed (Uw), which is roughly proportional to uτ, shows a significant positive correlation, as expected. Further, Kb seems more likely to be proportional to the square or cube of Uw rather than a linear relationship. Since Kb estimated from our method is associated with ice melting in a bulk fashion in the ice-upper ocean system, this relationship likely indicates both the mixing process of heat in the upper ocean (proportional to uτ3) and the local heat transfer process at the ice-ocean interface (proportional to uτ).

  12. The emission coefficient of uranium plasmas

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (Temperature: 8000 K) was measured for the wavelength range (200 A - 6000 A). The results are compared to theory and other measurements. The absorption coefficient for the same wavelength interval is also given.

  13. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  14. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  15. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study.

    PubMed

    Adriano Junior, L; Fonseca, T L; Castro, M A

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller-Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to the gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.

  16. Modulational instability, nonautonomous breathers and rogue waves for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas

    SciTech Connect

    Wang, Lei Li, Min; Qi, Feng-Hua; Xu, Tao

    2015-03-15

    Under investigation in this paper is a variable-coefficient derivative nonlinear Schrödinger (vc-DNLS) equation modeling the nonlinear Alfvén waves in the inhomogeneous plasmas. The modulation instability is examined for this inhomogeneous nonlinear model. The nonautonomous breather and rogue wave solutions of the vc-DNLS equation are obtained via the modified Darboux transformation. It is found that the velocity and amplitude of the breather can be controlled by the inhomogeneous magnetic field and nonuniform density. Such novel phenomena as breather amplification and nonlinear Talbot effect-like property are demonstrated with the proper choices of the inhomogeneous parameters. Furthermore, dynamics of the fundamental rogue wave, periodical rogue wave, and composite rogue wave are graphically discussed. The trajectories and amplitudes of the rogue waves can be manipulated by the inhomogeneous magnetic field and nonuniform density. In addition, the nonlinear tunneling of the rogue waves and breathers is studied. As an application, a sample model is treated with our results, and the graphical illustrations exhibit the compressing, expanding, and fluctuating phenomena of the Alfvén rogue waves.

  17. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix C: Method for computing the aerodynamic influence coefficient matrix of nonplanar wing-body-tail configurations

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1972-01-01

    Expressions are derived for computing the aerodynamic influence coefficient matrix for nonplanar wing-body-tail configurations. An aerodynamic influence coefficient is defined as the load in lbs. induced on a panel as a result of a unit angle of attack on another panel. Fuselage, wing and tail thickness are assumed to be small with the result that the thickness effect on the flow-field is negligible. The method for determining the aerodynamic influence coefficient matrix is based on the lifting solution to the small perturbation, steady potential flow equation.

  18. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    SciTech Connect

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  19. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  20. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a).

    PubMed

    González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José

    2015-04-01

    CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under

  1. Influence of transannular interaction over absorption and fluorescent properties of [2.2] paracyclophane and its phenyl derivatives

    NASA Astrophysics Data System (ADS)

    Nurmukhametov, R. N.; Shapovalov, A. V.; Antonov, D. Yu.

    2016-12-01

    A significant bathochromic shift of the fluorescent and long-wavelength absorption bands of [2.2] paracyclophane comparing to corresponding bands of alkyl-benzenes is due to a strong transannular interaction, resulting in formation of a principally new excited state of lower energy. It is concluded that the fluorescent levels for alkylbenzene excimers and for the macrocycle are of the same nature. Analysis of [2.2] paracyclophane mono- and diphenylderivatives spectra shows that their intensive absorption bands (230-310 nm) are originated from electron transitions of biphenyl groups and weak long wavelength absorption (310-340 nm) and fluorescent bands are governed by the same electron transitions between ground and excimer-like excited states as in the case of non-substituted macrocycle.

  2. Absorption Coefficient of Alkali Halides. Part I.

    DTIC Science & Technology

    1979-03-01

    442 LIAY OF ~:S42.~SON T111 ALiSON ,’FlON CU12rCIUNT OF .l~i~ FLUORIVIl: (iviunLvr Iiepcndcncu) (cort .i.j) S’t .~Ue Rne uhr~) ~clo Wvna,br n rt...al. [134j reported their results for the region from 0.170 to 0.197 um and Handi et al. [24] reported results for the range of 35 to 770 pm. Li (331...lection Spectra of Pure and Doped Potassium Iodide at Low Temperatures," Appl. Opt., 7(1), 161-5 (1968). L, __ 243 26. Vergnat, P., Claudel, J., Handi

  3. Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon.

    PubMed

    Biswas, Sourav; Arief, Injamamul; Panja, Sujit Sankar; Bose, Suryasarathi

    2017-01-25

    To minimize electromagnetic (EM) pollution, two key parameters, namely, intrinsic wave impedance matching and intense absorption of incoming EM radiation, must satisfy the utmost requirements. To target these requirements, soft conducting composites consisting of binary blends of polycarbonate (PC) and poly(vinylidene fluoride) (PVDF) were designed with doped multiwalled carbon nanotubes (MWCNTs) and a three-dimensional cross-linked graphene oxide (GO) framework doped with ferrite nanoparticles. The doping of α-MnO2 onto the MWCNTs ensured intrinsic wave impedance matching in addition to providing conducting pathways, and the ferrite-doped cross-linked GO facilitated the enhanced attenuation of the incoming EM radiation. This unique combination of magnetodielectric coupling led to a very high electromagnetic shielding efficiency (SE) of -37 dB at 18 GHz, dominated by absorption-driven shielding. The promising results from the composites further motivated us to rationally stack individual composites into a multilayer architecture following an absorption-multiple reflection-absorption pathway. This resulted in an impressive SE of -57 dB for a thin shield of 0.9-mm thickness. Such a high SE indicates >99.999% attenuation of the incoming EM radiation, which, together with the improvement in structural properties, validates the potential of these materials in terms of applications in cost-effective and tunable solutions.

  4. Study of CO2 cyclic absorption stability of CaO-based sorbents derived from lime mud purified by sucrose method.

    PubMed

    Ma, AiHua; Jia, QingMing; Su, HongYing; Zhi, YunFei; Tian, Na; Wu, Jing; Shan, ShaoYun

    2016-02-01

    Using lime mud (LM) purified by sucrose method, derived from paper-making industry, as calcium precursor, and using mineral rejects-bauxite-tailings (BTs) from aluminum production as dopant, the CaO-based sorbents for high-temperature CO2 capture were prepared. Effects of BTs content, precalcining time, and temperature on CO2 cyclic absorption stability were illustrated. The cyclic carbonation behavior was investigated in a thermogravimetric analyzer (TGA). Phase composition and morphologies were analyzed by XRD and SEM. The results reflected that the as-synthesized CaO-based sorbent doped with 10 wt% BTs showed a superior CO2 cyclic absorption-desorption conversion during multiple cycles, with conversion being >38 % after 50 cycles. Occurrence of Ca12Al14O33 phase during precalcination was probably responsible for the excellent CO2 cyclic stability.

  5. Cooperative enhancement of TPA in cruciform double-chain DSB derivation: a femtosecond transient absorption spectra study

    NASA Astrophysics Data System (ADS)

    He, X.; Wang, Y.; Yang, Z.; Ma, Y.; Yang, Y.

    2010-09-01

    Femtosecond time-resolved transient absorption (TA) spectra study was adopted to study the mechanism of the cooperative enhancement of two-photon absorption (TPA) cross section from the linear structure 1,4-di(4'-N,N-diphenylaminostyryl)benzene (DPA-DSB) to its cruciform double-chain dimer DPA-TSB. The results suggested that a non-emissive intramolecular charge-transfer (ICT) state, ICT’, was present upon excitation in the dimer, which was absent in the monomer. The existence of this non-emissive state, indicating the enhancement of the intramolecular charge-transfer of the dimer, should be the reason for the cooperative enhancement of the TPA cross section of the dimer compared to the monomer.

  6. The relationship between "BET" and "free volume"-derived parameters for water vapor absorption into amorphous solids.

    PubMed

    Zhang, J; Zografi, G

    2000-08-01

    Water vapor absorption isotherms for amorphous solids with the same chemical composition but differing in molecular weight (i.e., PVP-90, PVP-30, and PVP-12), and for glucose, trehalose, and two molecular weight grades of dextran were obtained at 30 degrees C and analyzed using the Brunauer-Emmett-Teller (BET) equation to obtain the parameters, W(m) and C(B). Similar analyses were carried out for the same molecule (e.g., glucose or fructose) at -10 and 40 degrees C. Within each chemical group, W(m), the apparent BET-like parameter that is generally referred to as the "monolayer-limit of absorption", changed very little. In contrast, C(B), a measure of the free energy of absorption, significantly increased with increasing molecular weight or decreasing temperature, leading to a shift from a Type III to a Type II isotherm. The shift in isotherm shape correlates directly with the glass transition temperature, T(g), of the dry sample relative to the operating temperature, T (i.e., Type III when T > T(g) and Type II when T < T(g). These results are shown to be consistent with the combined Flory-Huggins solution model and Vrentas structural relaxation model; wherein Type II isotherm behavior, observed for T < T(g), reflects nonideal volumetric contributions to the overall free energy of absorption due to plasticization by water, as described by Vrentas, whereas Type III behavior only reflects the Flory-Huggins solution model. These volumetric free energy changes within each chemical group are shown to be correlated to the values of the "BET" parameter C(B).

  7. Optical absorption measurements and quantum-chemical simulations of optical properties of novel fluoro derivatives of pyrazoloquinoline

    NASA Astrophysics Data System (ADS)

    Brik, M. G.; Kuznik, W.; Gondek, E.; Kityk, I. V.; Uchacz, T.; Szlachcic, P.; Jarosz, B.; Plucinski, K. J.

    2010-05-01

    The results of experimental research and quantum-chemical simulations of the absorption spectra of 1-(4-fluorophenyl)-3,4-diphenyl, 3-(4-fluorophenyl)-1,4-diphenyl, and 4-(4-fluorophenyl)-1,3-diphenyl-pyrazolo[3,4- b] quinoline are presented. Although the fluorine atom is located on different phenyl rings in these molecules, the absorption spectra do not differ significantly. Semi-empirical AM1, PM3 and RM1 methods, as well as ab initio ADF code-based calculations were used to optimize geometry, calculate the infrared and visible spectra of the afore mentioned compounds and analyze the molecular orbitals schemes. The results of calculations are in good agreement with the experimental data. It was also demonstrated that the positions of the fluorescence maxima depend significantly on the solvent (contrary to the absorption spectra), in which the molecules are embedded, which allows for manipulating with fluorescence properties of the synthesized molecules by changing the solvent.

  8. Crystal structure and nonlinear optical absorption of a new chalcone derivative: a promising candidate for optical switching

    NASA Astrophysics Data System (ADS)

    Chandra Shekhara Shetty, T.; Raghavendra, S.; Chidan Kumar, C. S.; Dharmaprakash, S. M.

    2016-07-01

    A new nonlinear optical material, 4-[(2 E)-3-(3-fluorophenyl) prop-2-enoyl] benzonitrile (3FPB), belonging to chalcone family was synthesized and characterized by FTIR and linear absorption spectroscopy. Single-crystal X-ray diffraction reveals that the new material crystallizes in monoclinic system with P21/c space group and lattice parameters a = 6.4841(2) Å, b = 13.6038(5) Å, c = 14.6418(6) Å, α = 90.00°, β = 94.552(2)° and γ = 90°. The crystallographic perfection of the synthesized material has been analyzed by X-ray powder diffraction. The X-ray powder diffraction peaks of the sample were indexed with hkl values. The UV-visible spectrum for 3FPB crystals showed the optical transmittance window and a lower cutoff wavelength of absorption at 343 nm. The direct transition band gap energy and indirect transition energy gap were determined using Tauc's plots. The thermal stability and melting point of the material have been investigated by thermogravimetric analysis/differential thermal analysis (TGA/DTA). The Thermogravimetric curve showed the absence of any phase transition before melting point. Third-order nonlinear absorption and optical limiting experiment were carried out using open-aperture Z-scan experiment with Nd:YAG laser nanosecond pulses at a wavelength of 532 nm.

  9. Ionic complex of risedronate with positively charged deoxycholic acid derivative: evaluation of physicochemical properties and enhancement of intestinal absorption in rats.

    PubMed

    Park, Jin Woo; Byun, Youngro

    2014-12-01

    Risedronate is widely used clinically to treat osteoporosis, Paget's disease, hypercalcemia, bone metastasis, and multiple myeloma. However, its oral efficacy is restricted due to its low bioavailability and severe gastrointestinal adverse effects. This study was designed to evaluate the effect of deoxycholic acid derivatives on the permeability and oral bioavailability of risedronate by increasing its lipophilicity and affinity to bile transporters. We synthesized two bile acid derivatives, N(α)-deoxycholyl-L-lysyl-methylester (DCK) and N(α)-deoxycholyl-L-lysyl-hydroxide (HDCK) as oral absorption enhancers. After ionic complex formation with the bile acid derivatives, the complexes were characterized by powder X-ray diffraction. Their artificial membrane permeabilities and bioavailabilities in rats were investigated in comparison with pure risedronate. Complex formation with DCK or HDCK demonstrated that risedronate existed in an amorphous form in the complex. A physical complex of risedronate with DCK enhanced the apparent membrane permeability of risedronate significantly but pure risedronate was not permeable. An in vivo study revealed that the C max and AUClast of risedronate/DCK (1:2) complex were 1.92- and 2.64-fold higher than those of pure risedronate, respectively. Thus, the risedronate/DCK complex can improve the oral absorption of risedronate and patient compliance by reducing dose frequency and adverse reactions.

  10. Semi-active control of piezoelectric coating's underwater sound absorption by combining design of the shunt impedances

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Li, Zhaohui; Huang, Aigen; Li, Qihu

    2015-10-01

    Piezoelectric shunt damping technology has been applied in the field of underwater sound absorption in recent years. In order to achieve broadband echo reduction, semi-active control of sound absorption of multi-layered piezoelectric coating by shunt damping is significant. In this paper, a practical method is proposed to control the underwater sound absorption coefficients of piezoelectric coating layers by combining design of the shunt impedance that allows certain sound absorption coefficients at setting frequencies. A one-dimensional electro-acoustic model of the piezoelectric coating and the backing is established based on the Mason equivalent circuit theory. First, the shunt impedance of the coating is derived under the constraint of sound absorption coefficient at one frequency. Then, taking the 1-3 piezoelectric composite coating as an example, the sound absorption properties of the coating shunted to the designed shunt impedance are investigated. Next, on the basis of that, an iterative method for two constrained frequencies and an optimizing algorithm for multiple constrained frequencies are provided for combining design of the shunt impedances. At last, an experimental sample with four piezoelectric material layers is manufactured, of which the sound absorption coefficients are measured in an impedance tube. The experimental results show good agreement with the finite element simulation results. It is proved that a serial R-L circuit can control the peak frequency, maximum and bandwidth of the sound absorption coefficient and the combining R-L circuits shunted to multiple layers can control the sound absorption coefficients at multiple frequencies.

  11. Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium.

    PubMed

    Chernomordik, Victor; Hattery, David W; Gannot, Israel; Zaccanti, Giovanni; Gandjbakhche, Amir

    2002-07-01

    The mean time spent by photons inside a nonlocalized optically abnormal embedded inclusion has been derived analytically. The accuracy of the results has been tested against Monte Carlo and experimental data. We show that for quantification of the absorption coefficient of absorptive inclusions, a corrective factor that takes into account the size of the inclusion is needed. This finding suggests that perturbation methods derived for very small inclusions which are used in inverse algorithms require a corrective factor to adequately quantify the differential absorption coefficient of nonlocalized targets embedded in optically turbid media.

  12. Ingestion and absorption of particles derived from different macrophyta in the cockle Cerastoderma edule: effects of food ration.

    PubMed

    Arambalza, U; Ibarrola, I; Navarro, E; Urrutia, M B

    2014-02-01

    We analyzed the capacity of the common cockle Cerastoderma edule to utilize detrital food particles obtained from three different macrophytes: the vascular plant Juncus maritimus and two green macroalgae (Ulva lactuca and Enteromorpha sp.). We measured feeding and digestive parameters at three concentrations of detritus (0.5, 1.0 and 3.0 mm(3) l(-1)), so that functional relationships between ingestive and digestive processes could be assessed. Increasing concentrations of detritus (food) resulted in a reduction in filtering activity (clearance rate l h(-1)), but an increase in ingestion rate. Consequently, gut content also increased with increasing food concentration, irrespective of food type. In contrast, the trend followed by absorption efficiency with increasing ingestion rate was determined by food type, being significantly reduced (from 0.63 to 0.11) with Juncus but remaining almost constant with the green macroalgae (0.58 ± 0.07 with Ulva) or only minimally reduced (from 0.66 to 0.48 with Enteromorpha). This differential response had clear consequences for energy uptake: absorption rate increased with increasing particulate organic matter with Enteromorpha but decreased with Juncus. We discuss the possible role of digestive parameters such as digestibility, gut content and gut-residence time in the differential utilization of detrital matter from different vegetal origins by cockles.

  13. Extraction of full absorption peaks in airborne gamma-spectrometry by filtering techniques coupled with a study of the derivatives. Comparison with the window method.

    PubMed

    Guillot, L

    2001-01-01

    In this paper, an adaptation of a spectral profile analysis method, currently used in high-resolution spectrometry, to airborne gamma measurements is presented. A new algorithm has been developed for extraction of full absorption peaks by studying the variations in the spectral profile of data recorded with large-volume NaI detectors (16 l) with a short sampling time (2 s). The use of digital filters, taking into consideration the characteristics of the absorption peaks, significantly reduced the counting fluctuations, making detection possible based on study of the first and second derivatives. The absorption peaks are then obtained by modelling, followed by subtraction of the Compton continuum in the detection window. Compared to the conventional stripping ratio method, spectral profile analysis offers similar performance for the natural radioelements. The 137Cs 1SD detection limit is approximately 1200 Bq/m2 in a natural background of 200 Bq/kg 40K, 33 Bq/kg 238U and 33 Bq/kg 232Th. At low energy the very high continuum leads to detection limits similar to those obtained by the windows method, but the results obtained are more reliable. In the presence of peak overlaps, however, analysis of the spectral profile alone is not sufficient to separate the peaks, and further processing is necessary. Within the framework of environmental monitoring studies, spectral profile analysis is of great interest because it does not require any assumptions about the nature of the nuclides. The calculation of the concentrations from the results obtained is simple and reliable, since only the full absorption contributions are taken into consideration. A quantitative estimate of radioactive anomalies can thus be obtained rapidly.

  14. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  15. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2013-09-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al. 2013): First, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m). Second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angles, for which the uncertainties are especially small. Using only 1 elevation angle also allows an increased temporal resolution. We apply correction factors (and their uncertainties) as function of the simultaneously modelled O4 absorption. In this way the correction factors can be directly determined according to the measured O4 dAMF. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of the aerosol extinction. Depending on the atmospheric visibility, the typical uncertainty of the results ranges from about 15 to 30%. We apply the rapid method to observations of a newly developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirt near Hefei City in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations. Good agreement is

  16. Measuring the scattering coefficient of turbid media from two-photon microscopy.

    PubMed

    Sevrain, David; Dubreuil, Matthieu; Leray, Aymeric; Odin, Christophe; Le Grand, Yann

    2013-10-21

    In this paper, we propose a new and simple method based on two-photon excitation fluorescence (TPEF) microscopy to measure the scattering coefficient µ(s) of thick turbid media. We show, from Monte Carlo simulations, that µ(s) can be derived from the axial profile of the ratio of the TPEF signals epi-collected by the confocal and the non-descanned ports of a scanning microscope, independently of the anisotropy factor g and of the absorption coefficient µ(a) of the medium. The method is validated experimentally on tissue-mimicking optical phantoms, and is shown to have potential for imaging the scattering coefficient of heterogeneous media.

  17. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Dahmani, Rachid; Ligon, David; Bronk, Burt V.

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 μm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented.

  18. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  19. Triplet extinction coefficients of some laser dyes. II

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1990-01-01

    We measured the triplet extinction coefficients over the laser action spectral region of DODC, DMC, Sulforhodamine B, Rhodamine 575, Coumarin 523, Coumarin 521, Coumarin 504, Coumarin 498, Coumarin 490, LD466, bis-MSB, and BBO. We employed the different lines from an argon and a krypton ion cw laser for excitation. McClure's method was again employed to measure the triplet extinction coefficients. We provide a simplified derivation of McClure's equation. The triplet extinction coefficient of Rhodamine 575 was also measured by using the depletion method and improving it by reconstructing for true triplet-triplet (T-T) absorption. The ET value obtained is in good agreement with the one obtained by McClure's method.

  20. Enhanced pulmonary absorption of a macromolecule through coupling to a sequence-specific phage display-derived peptide.

    PubMed

    Morris, Christopher J; Smith, Mathew W; Griffiths, Peter C; McKeown, Neil B; Gumbleton, Mark

    2011-04-10

    With the aim of identifying a peptide sequence that promotes pulmonary epithelial transport of macromolecule cargo we used a stringent peptide-phage display library screening protocol against rat lung alveolar epithelial primary cell cultures. We identified a peptide-phage clone (LTP-1) displaying the disulphide-constrained 7-mer peptide sequence, C-TSGTHPR-C, that showed significant pulmonary epithelial translocation across highly restrictive polarised cell monolayers. Cell biological data supported a differential alveolar epithelial cell interaction of the LTP-1 peptide-phage clone and the corresponding free synthetic LTP-1 peptide. Delivering select phage-clones to the intact pulmonary barrier of an isolated perfused rat lung (IPRL) resulted in 8.7% of lung deposited LTP-1 peptide-phage clone transported from the IPRL airways to the vasculature compared (p<0.05) to the cumulative transport of less than 0.004% for control phage-clone groups. To characterise phage-independent activity of LTP-1 peptide, the LTP-1 peptide was conjugated to a 53kDa anionic PAMAM dendrimer. Compared to respective peptide-dendrimer control conjugates, the LTP-1-PAMAM conjugate displayed a two-fold (bioavailability up to 31%) greater extent of absorption in the IPRL. The LTP-1 peptide-mediated enhancement of transport, when LTP-1 was either attached to the phage clone or conjugated to dendrimer, was sequence-dependent and could be competitively inhibited by co-instillation of excess synthetic free LTP-1 peptide. The specific nature of the target receptor or mechanism involved in LTP-1 lung transport remains unclear although the enhanced transport is enabled through a mechanism that is non-disruptive with respect to the pulmonary transport of hydrophilic permeability probes. This study shows proof-of principle that array technologies can be effectively exploited to identify peptides mediating enhanced transmucosal delivery of macromolecule therapeutics across an intact organ.

  1. Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption.

    PubMed

    Park, J H; Jin, J Y; Baek, W K; Park, S H; Sung, H Y; Kim, Y K; Lee, J; Song, D K

    2009-12-01

    Prolonged postprandial hyperglycemia is a detrimental factor for type 2 diabetes and obesity. The benefit of green tea extract (GTE) consumption still requires confirmation. We report the effects of circulating green tea catechins on blood glucose and insulin levels. Oral glucose loading 1 h after GTE ingestion in humans led to higher blood glucose and insulin levels than in control subjects. Gallated catechins were required for these effects, although within the intestinal lumen they have been known to decrease glucose and cholesterol absorption. Treatment with epigallocatechin-3-gallate hindered 2-deoxyglucose uptake into liver, fat, pancreatic beta-cell, and skeletal muscle cell lines. The glucose intolerance was ameliorated by gallated catechin-deficient GTE or GTE mixed with polyethylene glycol, which was used as an inhibitor of intestinal absorption of gallated catechins. These findings may suggest that the gallated catechin when it is in the circulation elevates blood glucose level by blocking normal glucose uptake into the tissues, resulting in secondary hyperinsulinemia, whereas it decreases glucose entry into the circulation when they are inside the intestinal lumen. These findings encourage the development of non-absorbable derivatives of gallated catechins for preventative treatment of type 2 diabetes and obesity, which would specifically induce only the positive luminal effect.

  2. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study.

    PubMed

    Baryshnikov, Gleb V; Bondarchuk, Sergey V; Minaeva, Valentina A; Ågren, Hans; Minaev, Boris F

    2017-02-01

    A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor-acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission. Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs.

  3. Absorption of flavonols derived from sea buckthorn (Hippophaë rhamnoides L.) and their effect on emerging risk factors for cardiovascular disease in humans.

    PubMed

    Suomela, Jukka-Pekka; Ahotupa, Markku; Yang, Baoru; Vasankari, Tommi; Kallio, Heikki

    2006-09-20

    Sea buckthorn (Hippophaë rhamnoides L.) is a rich source of flavonols, especially isorhamnetin. Most prospective cohort studies have indicated some degree of inverse association between flavonoid intake and coronary heart disease. Animal and human studies suggest that sea buckthorn flavonoids may scavenge free radicals, lower blood viscosity, and enhance cardiac function. The effects of flavonol aglycones derived from sea buckthorn on the risk factors of cardiovascular disease as well as their absorption were studied in humans. The flavonols, ingested with oatmeal porridge, did not have a significant effect on the levels of oxidized low-density lipoprotein, C-reactive protein, and homocysteine, on the plasma antioxidant potential, or on the paraoxonase activity. Flavonols at two dosages in oatmeal porridge were rapidly absorbed, and a relatively small amount of sea buckthorn oil added to the porridge seemed to have increased the bioavailability of sea buckthorn flavonols consumed at the higher dose.

  4. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. II. The phenanthrene cation (C14H10+) and its 1-methyl derivative

    NASA Technical Reports Server (NTRS)

    Salama, F.; Joblin, C.; Allamandola, L. J.

    1994-01-01

    The ultraviolet, visible, and near infrared absorption spectra of phenanthrene (C14H10), 1-methylphenanthrene [(CH3)C14H9], and their radical ions [C14H10+; (CH3)C14H9+], formed by vacuum-ultraviolet irradiation, were measured in neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed. The oscillator strengths were calculated for the phenanthrene ion and found lower than the theoretical predictions. This study presents the first spectroscopic data for phenanthrene and its methyl derivative trapped in a neon matrix where the perturbation of the isolated species by its environment is minimum; a condition crucial to astrophysical applications.

  5. Complexities in pyroxene compositions derived from absorption band centers: Examples from Apollo samples, HED meteorites, synthetic pure pyroxenes, and remote sensing data

    NASA Astrophysics Data System (ADS)

    Moriarty, D. P.; Pieters, C. M.

    2016-02-01

    We reexamine the relationship between pyroxene composition and near-infrared absorption bands, integrating measurements of diverse natural and synthetic samples. We test an algorithm (PLC) involving a two-part linear continuum removal and parabolic fits to the 1 and 2 μm bands—a computationally simple approach which can easily be automated and applied to remote sensing data. Employing a suite of synthetic pure pyroxenes, the PLC technique is shown to derive similar band centers to the modified Gaussian model. PLC analyses are extended to natural pyroxene-bearing materials, including (1) bulk lunar basalts and pyroxene separates, (2) diverse lunar soils, and (3) HED meteorites. For natural pyroxenes, the relationship between composition and absorption band center differs from that of synthetic pyroxenes. These differences arise from complexities inherent in natural materials such as exsolution, zoning, mixing, and space weathering. For these reasons, band center measurements of natural pyroxene-bearing materials are compositionally nonunique and could represent three distinct scenarios (1) pyroxene with a narrow compositional range, (2) complexly zoned pyroxene grains, or (3) a mixture of multiple pyroxene (or nonpyroxene) components. Therefore, a universal quantitative relationship between band centers and pyroxene composition cannot be uniquely derived for natural pyroxene-bearing materials without additional geologic context. Nevertheless, useful relative relationships between composition and band center persist in most cases. These relationships are used to interpret M3 data from the Humboldtianum Basin. Four distinct compositional units are identified (1) Mare Humboldtianum basalts, (2) distinct outer basalts, (3) low-Ca pyroxene-bearing materials, and (4) feldspathic materials.

  6. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J.; Berger, Andrew J.; Cerussi, Albert E.; Bevilacqua, Frederic; Jakubowski, Dorota

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  7. Co2(nu2)-o Quenching Rate Coefficient Derived from Coincidental SABER-TIMED and Fort Collins Lidar Observations of the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Feofilov, A. G.; Kutepov, A. A.; She, C.-Y.; Smith, A. K.; Pesnell, W. D.; Goldberg, R. A.

    2012-01-01

    Among the processes governing the energy balance in the mesosphere and lower thermosphere (MLT), the quenching of CO2(nu2) vibrational levels by collisions with O atoms plays an important role. However, there is a factor of 3-4 discrepancy between the laboratory measurements of the CO2-O quenching rate coefficient, k(sub VT),and its value estimated from the atmospheric observations. In this study, we retrieve k(sub VT) in the altitude region85-105 km from the coincident SABER/TIMED and Fort Collins sodium lidar observations by minimizing the difference between measured and simulated broadband limb 15 micron radiation. The averaged k(sub VT) value obtained in this work is 6.5 +/- 1.5 X 10(exp -12) cubic cm/s that is close to other estimates of this coefficient from the atmospheric observations.However, the retrieved k(sub VT) also shows altitude dependence and varies from 5.5 1 +/-1 10(exp -12) cubic cm/s at 90 km to 7.9 +/- 1.2 10(exp -12) cubic cm/s at 105 km. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 micron radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the non-thermal oxygen atoms with CO2 molecules.

  8. Self-association of caffeine in aqueous solution. Study of dilute solutions by normal and second derivative UV absorption spectroscopy.

    NASA Astrophysics Data System (ADS)

    Iza, N.; Gil, M.; Montero, J. L.; Morcillo, J.

    1988-05-01

    The concentration dependence of the spectral parameters of caffeine bands at ˜205 and 273 nm has been studied in aqueous solution by normal and second derivative spectroscopy. The concentration range was 5 x 10 -6 - 5 x 10 -3 M and thirty-five different concentrations were used. Discontinuities in parameter variation of these two bands at ˜7.5 x 10 -5, ˜2 x 10 -4, and ˜1 x 10 -3M were observed as concentration was increased. These "limiting" concentrations define three quite differenciated hyper- or hipochromic effects: the first one can be explained as caffeine-water molecule interaction and the second and third as dimer and (dimer + polymer) stacking, respectively. Apparent self-association constants using the isodesmic model have been obtained K= 160 M -1 (for the second hypochromic effect) and K= 13.6 M -1 (for the third hypochromic effect), for the 273 nm band. It is noteworthy that the three "limiting" concentrations coincide with changes in DNA-caffeine interaction modes (H. Lang , 1976) and biological activity (I.B. Syed , 1976).

  9. Prediction of the Ultraviolet-Visible Absorption Spectra of Polycyclic Aromatic Hydrocarbons (Dibenzo and Naphtho) Derivatives of Fluoranthene.

    PubMed

    Oña-Ruales, Jorge O; Ruiz-Morales, Yosadara

    2016-09-26

    The annellation theory method has been used to predict the locations of maximum absorbance (LMA) of the ultraviolet-visible (UV-Vis) spectral bands in the group of polycyclic aromatic hydrocarbons (PAHs) C24H14 (dibenzo and naphtho) derivatives of fluoranthene (DBNFl). In this group of 21 PAHs, ten PAHs present a sextet migration pattern with four or more benzenoid rings that is potentially related to a high molecular reactivity and high mutagenic conduct. This is the first time that the locations of maximum absorbance in the UV-Vis spectra of naphth[1,2-a]aceanthrylene, dibenz[a,l]aceanthrylene, indeno[1,2,3-de]naphthacene, naphtho[1,2-j]fluoranthene, naphth[2,1-e]acephenanthrylene, naphth[2,1-a]aceanthrylene, dibenz[a,j]aceanthrylene, naphth[1,2-e]acephenanthrylene, and naphtho[2,1-j]fluoranthene have been predicted. Also, this represents the first report about the application of the annellation theory for the calculation of the locations of maximum absorbance in the UV-Vis spectra of PAHs with five-membered rings. Furthermore, this study constitutes the premier investigation beyond the pure benzenoid classical approach toward the establishment of a generalized annellation theory that will encompass not only homocyclic benzenoid and non-benzenoid PAHs, but also heterocyclic compounds.

  10. Deriving adaptive MRF coefficients from previous normal-dose CT scan for low-dose image reconstruction via penalized weighted least-squares minimization

    PubMed Central

    Zhang, Hao; Han, Hao; Wang, Jing; Ma, Jianhua; Liu, Yan; Moore, William; Liang, Zhengrong

    2014-01-01

    Purpose: Repeated computed tomography (CT) scans are required for some clinical applications such as image-guided interventions. To optimize radiation dose utility, a normal-dose scan is often first performed to set up reference, followed by a series of low-dose scans for intervention. One common strategy to achieve the low-dose scan is to lower the x-ray tube current and exposure time (mAs) or tube voltage (kVp) setting in the scanning protocol, but the resulted image quality by the conventional filtered back-projection (FBP) method may be severely degraded due to the excessive noise. Penalized weighted least-squares (PWLS) image reconstruction has shown the potential to significantly improve the image quality from low-mAs acquisitions, where the penalty plays an important role. In this work, the authors' explore an adaptive Markov random field (MRF)-based penalty term by utilizing previous normal-dose scan to improve the subsequent low-dose scans image reconstruction. Methods: In this work, the authors employ the widely-used quadratic-form MRF as the penalty model and explore a novel idea of using the previous normal-dose scan to obtain the MRF coefficients for adaptive reconstruction of the low-dose images. In the coefficients determination, the authors further explore another novel idea of using the normal-dose scan to obtain a scale map, which describes an optimal neighborhood for the coefficients determination such that a local uniform region has a small spread of frequency spectrum and, therefore, a small MRF window, and vice versa. The proposed penalty term is incorporated into the PWLS image reconstruction framework, and the low-dose images are reconstructed via the PWLS minimization. Results: The presented adaptive MRF based PWLS algorithm was validated by physical phantom and patient data. The experimental results demonstrated that the presented algorithm is superior to the PWLS reconstruction using the conventional Gaussian MRF penalty or the edge

  11. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model

  12. CO2(v2)-O Quenching Rate Coefficient Derived From Coincidental SABER/TIMED And Ground-Based Lidar Observations Of The Mesosphere And Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Feofilov, A.; Kutepov, A.; Chu, X.; Smith, A. K.

    2012-12-01

    Infrared emission in 15 μm CO2 band (I15 μm) is the dominant cooling mechanism in the Earth's mesosphere and lower thermosphere (MLT). On Earth, the magnitude of the MLT cooling affects both the mesopause temperature and height; the stronger the cooling, the colder and higher is the mesopause. This process is also important for the energy budgets of Martian and, especially, Venusian atmospheres, where CO2 cooling compensates for the EUV heating of the dayside upper atmosphere. The I15 μm radiation is used to retrieve vertical temperature distributions T(z) in Earth's atmosphere by a number of satellite instruments. Both the cooling efficiency and I15 μm strongly depend on the rate coefficient of the quenching of the CO2(ν2) vibrational levels by collisions with oxygen atoms. However, there is a factor of 3-4 discrepancy between the laboratory measurements of this rate coefficient, kVT, and its value estimated from the atmospheric observations. In this study, we retrieve kVT in the altitude region 85-105 km from the coincident SABER/TIMED and ground-based lidar observations in different locations by minimizing the difference between measured and simulated broadband limb 15 μm radiation. Obtained results demonstrate the deficiency in current non-LTE modeling of the atmospheric 15 μm radiation, based on the application of the CO2-O quenching and excitation rates, which are linked by the detailed balance relation. We discuss the possible model improvements, among them accounting for the interaction of the "non-thermal" oxygen atoms with CO2 molecules.

  13. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  14. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and Te125 NMR measurements in complex tellurides

    SciTech Connect

    Levin, E. M.

    2016-06-27

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S, depends on the free (mobile) carrier concentration, n, and effective mass, m*, as S ~ m*/n2/3. The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1/T1, depends on both n and m* as 1/T1~(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1/T1~(m*)2n2/3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study AgxSbxGe50–2xTe50, well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Thus, values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  15. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  16. Direct comparison of extinction coefficients derived from Mie-scattering lidar and number concentrations of particles, subjective weather report in Japan

    NASA Astrophysics Data System (ADS)

    Shimizu, Atsushi; Sugimoto, Nobuo; Matsui, Ichiro; Nishizawa, Tomoaki

    2015-03-01

    Two components of the lidar extinction coefficient, the dust extinction and the spherical particles extinction, were obtained from observations made by the National Institute for Environmental Studies lidar network in Japan. These two extinctions were compared with the number concentration of particles measured by an optical particle counter, and with subjective weather reports recorded at the nearest meteorological observatories. The dust extinction corresponded well with the number concentration of large particles with diameters as great as 5 μm and during dry conditions with the number concentration of particles larger than 2 μm. The relationship between the spherical particle extinction and the number of small particles was nearly constant under all conditions. Asian dust was sometimes reported by meteorological observatories in the period of lower dust extinction. This indicates contradicting relationship between human-eye based reports and optical characteristics observed by lidars in some cases. The most consistent results between lidar observation and meteorological reports were obtained in dry mist conditions, in which lidars exhibited higher spherical extinction as expected by the definition of the atmospheric phenomenon of dry mist or haze.

  17. Spectral absorption properties of colored dissolved organic matter (CDOM) and total suspended matter (TSM) of inland waters

    NASA Astrophysics Data System (ADS)

    Song, Kaishan; Liu, Dianwei; Li, Lin; Wang, Zongming; Wang, Yuandong; Jiang, Guangjia

    2010-08-01

    Spectral absorption properties of total suspended matter (TSM) and colored dissolved organic matter (CDOM) are important for the use of the bio-optical model to estimate water quality parameters. This study aims to investigate the variation in the absorption coefficients of TSM and CDOM of inland waters. A total of 92 water samples were collected from Shitoukoumen Reservoir and Songhua Lake in Northeast China, analyzed for TSM and Chl-a, and measured for the absorption coefficient of TSM, CDOM and total pigments using a laboratory spectrophotometer. The absorption coefficient of TSM has been decomposed for phytoplankton and inorganic sediments. The results show that for Shitoukoumen Reservoir, CDOM has strong absorptions with shallow absorption slopes (i.e., the coefficient S in a(λ)=a(λ0)exp[-S(λ- λ0)]) and large absorption at 355 nm; and for Songhua Lake, CDOM follows similar spectral absorption curves but less variation in the S value. The results also show TSM has the average absorption coefficient 5.7 m-1 at 440 nm and 0.93 m-1 at 675 nm, and their concentration is well correlated to TSM with R2 larger than 0.85 at 440 nm over both Songhu Lake and Shitoukoumen Reservoir. In summer, CDOM was mainly terrigenous and had a high proportion of humic acid derived from the decomposition of phytoplankton and there were no obvious difference of S value. The results indicate that inorganic sediments contributed much more absorption than phytoplankton pigments in Shitoukoumen Reservoir than that in Songhua Lake, and there is strong association of TSM concentration to absorption coefficient at 440 nm.

  18. Effects of Ge substitution in GeTe by Ag or Sb on the Seebeck coefficient and carrier concentration derived from 125Te NMR

    NASA Astrophysics Data System (ADS)

    Levin, E. M.

    2016-01-01

    GeTe, a self-doping p -type semiconductor where the high free hole concentration is determined by Ge vacancies is a well-known base for high-efficiency A gxS bxG e50 -2 xT e50 (a tellurium-antimony-germanium-silver series) thermoelectric materials. Here it is shown that the replacement of Ge by Ag in GeTe (a A gxG e50 -xT e50 system) significantly decreases the Seebeck coefficient, whereas the replacement by Sb (S bxG e50 -xT e50 ) increases it. These effects can be attributed to a change in carrier concentration and consistent with 125Te NMR spin-lattice relaxation measurements and NMR signal position, which is mostly dependent on the Knight shift. Opposite changes in carrier concentration in A gxG e50 -xT e50 and S bxG e50 -xT e50 can be explained by different valence electron configurations of Ag and Sb compared to that of Ge, which results in a different local electron imbalance and/or in a change in Ge vacancy formation energy and affects the total carrier concentration. Comparison of our data for GeTe, A g2G e48T e50 , and S b2G e48T e50 with those for A g2S b2G e46T e50 shows that the effects from Ag and Sb compensate for each other and supports the formation of [Ag +Sb ] atomic pairs suggested earlier based on theoretical calculations.

  19. Emission, absorption and polarization of gyrosynchrotron radiation of mildly relativistic particles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Mctiernan, J. M.

    1983-01-01

    Approximate analytic expressions are presented for the emissivity and absorption coefficient of synchrotron radiation of mildly relativistic particles with an arbitrary energy spectrum and pitch angle distribution. From these, an expression for the degree of polarization is derived. The analytic results are compared with numerical results for both thermal and non-thermal (power law) distributions of particles.

  20. Investigation of two-photon absorption behavior in symmetrical acceptor-pi-acceptor derivatives with dimesitylboryl end-groups. Evidence of new engineering routes for TPA/transparency trade-off optimization.

    PubMed

    Chariot, Marina; Porrès, Laurent; Entwistle, Christopher D; Beeby, Andrew; Marder, Todd B; Blanchard-Desce, Mireille

    2005-02-21

    Investigations of the non-linear optical properties of a novel series of A-pi-A quadrupoles, based on dimesitylboron end-groups, reveal the promising potential of elongated vinylboranes derivatives for combined enhanced two-photon absorption cross-section and improved transparency in the visible region. In addition, the excited state lifetime can be significantly enhanced in A-pi-A'-pi-A derivatives. This opens a new route towards optimized molecules for optical power limiting.

  1. Photophysical and photochemical parameters of octakis (benzylthio) phthalocyaninato zinc, aluminium and tin: Red shift index concept in solvent effect on the ground state absorption of zinc phthalocyanine derivatives

    NASA Astrophysics Data System (ADS)

    Akpe, Victor; Brismar, Hjalmar; Nyokong, Tebello; Osadebe, P. O.

    2010-12-01

    This paper addresses the synthesis of octa-substituted benzylthio metallophthalocyanines (OBTMPcs) that contain the central metal ions of Zn 2+, Al 3+ and Sn 4+. The ground state absorption of ZnPc(SR) 8 (OBTZnPc) along with the ZnPc derivatives, well documented in literature were used to study a new concept called the red shift index ( R sI ). The concept is based on the empirical values of R sI of the different complexes in solvent media. Unequivocally, parameters used in this paper show strong correlations that are consistent with the results obtained. For instance, R sI of the complexes tend to increase as the refractive index, n D, and solvent donor, DN, of solvent increases. Photodegradation (photobleaching) quantum yield, ϕ d measurements of these compounds show that they are highly photostable, ϕ d (0.03-0.33 × 10 -5). The triplet quantum yield, ϕ T (0.40-0.53) and the triplet lifetime, τ T (610-810 μs) are within the typical range for metallophthalocyanines in DMSO. The photosensitisation efficiency, SΔ, is relatively high for all the molecules (0.74-0.90).

  2. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  3. Stratospheric infrared continuum absorptions observed by the ATMOS instrument

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Namkung, J. S.; Farmer, C. B.; Norton, R. H.

    1989-01-01

    A quantitative analysis of infrared continuum absorption features observed in ATMOS/Spacelab 3 (1985) spectra of the lower stratosphere is reported. Continuous absorption produced primarily by the collision-induced fundamental vibration-rotation band of O2 and to a lesser extent by the superposition of H2O far line wings has been observed in the 1400 to 1800/cm interval below tangent heights of about 25 km. Continuum optical depths measured in microwindows nearly free of atmospheric line absorption are 0.78 + or - 0.06 times those calculated with the O2 absorption coefficients of Timofeyev and Tonkov (1978). Transmittance measurements in microwindows between 2395 and 2535/cm have been used to study continuous absorption from the collision induced fundamental vibration-rotation band of N2 and the far wings of strong CO2 lines. The measured transmittances have been analyzed to derive best fit absorption coefficients for the N2 pressure-induced band at lower stratospheric temperatures (about 210 K).

  4. Thermally induced effect on sub-band gap absorption in Ag doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Sharma, Kriti; Bharti, Shivani; Tripathi, S. K.

    2015-05-01

    Thin films of Ag doped CdSe have been prepared by thermal evaporation using inert gas condensation (IGC) method taking Argon as inert gas. The prepared thin films are annealed at 363 K for one hour. The sub-band gap absorption spectra in the as deposited and annealed thin films have been studied using constant photocurrent method (CPM). The absorption coefficient in the sub-band gap region is described by an Urbach tail in both as deposited and annealed thin films. The value of Urbach energy and number density of trap states have been calculated from the absorption coefficient in the sub-band gap region which have been found to increase after annealing treatment indicating increase in disorderness in the lattice. The energy distribution of the occupied density of states below Fermi level has also been studied using derivative procedure of absorption coefficient.

  5. The experimental determination of atmospheric absorption from aircraft acoustic flight tests

    NASA Technical Reports Server (NTRS)

    Miller, R. L.; Oncley, P. B.

    1971-01-01

    A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.

  6. Effective photons in weakly absorptive dielectric media and the Beer-Lambert-Bouguer law

    NASA Astrophysics Data System (ADS)

    Judge, A. C.; Brownless, J. S.; Bhat, N. A. R.; Sipe, J. E.; Steel, M. J.; de Sterke, C. Martijn

    2014-04-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with a mode field distribution that includes the effects of both material and structural dispersion, and an effective line-width that determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials.

  7. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  8. Nonequilibrium Green's function formulation of intersubband absorption for nonparabolic single-band effective mass Hamiltonian

    SciTech Connect

    Kolek, Andrzej

    2015-05-04

    The formulas are derived that enable calculations of intersubband absorption coefficient within nonequilibrium Green's function method applied to a single-band effective-mass Hamiltonian with the energy dependent effective mass. The derivation provides also the formulas for the virtual valence band components of the two-band Green's functions which can be used for more exact estimation of the density of states and electrons and more reliable treatment of electronic transport in unipolar n-type heterostructure semiconductor devices.

  9. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as

  10. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering.

    PubMed

    Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20  mm-1 at reduced scattering coefficients of 1 and 11.5  mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime

  11. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  12. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  13. Infrared Absorption in Partially Disordered K2CuCl4·2H2O-TYPE Compounds

    NASA Astrophysics Data System (ADS)

    Grado-Caffaro, M. A.; Grado-Caffaro, M.

    An approximate relationship for the coefficient of optical absorption valid, in principle, for the infrared range, corresponding to K2CuCl4·2H2O-type compounds is derived from a model for electronic density of states. These compounds are assumed to be partially disordered from the point of view of the general theory of solids.

  14. Transport coefficients of gluonic fluid

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e

    2011-06-01

    The shear ({eta}) and bulk ({zeta}) viscous coefficients have been evaluated for a gluonic fluid. The elastic, gg{yields}gg and the inelastic, number nonconserving, gg{yields}ggg processes have been considered as the dominant perturbative processes in evaluating the viscous coefficients to entropy density (s) ratios. Recently the processes: gg{yields}ggg has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The {eta} and {zeta} have been evaluated for gluonic fluid with the formula recently derived. At large {alpha}{sub s} the value of {eta}/s approaches its lower bound, {approx}1/4{pi}.

  15. Zernike aberration coefficients transformed to and from Fourier series coefficients for wavefront representation.

    PubMed

    Dai, Guang-Ming

    2006-02-15

    The set of Fourier series is discussed following some discussion of Zernike polynomials. Fourier transforms of Zernike polynomials are derived that allow for relating Fourier series expansion coefficients to Zernike polynomial expansion coefficients. With iterative Fourier reconstruction, Zernike representations of wavefront aberrations can easily be obtained from wavefront derivative measurements.

  16. Reflective-tube absorption meter

    NASA Astrophysics Data System (ADS)

    Zaneveld, J. Ronald V.; Bartz, Robert; Kitchen, James C.

    1990-09-01

    The design and calibration of a proposed in situ spectral absorption meter is evaluated using a laboratory prototype. The design includes a silver coated (second-surface) glass tube, a tungsten light source (stabilized by means of optical feedback), a monochromator, and a solid state detector. The device measures the absorption coefficient plus a portion of the volume scattering function. Theoretical analyses and laboratory experiments which explore the magnitude and variation of the errors due to scattering and internal reflections are described. Similar analyses are performed on the Cary 1 18 Spectrophotometer to allow cross calibration. Algorithms to yield the abscrption coefficient and the zenith-sun diffuse attenuation coefficient are presented and evaluated. Simultaneous measurement of the beam attenuation or backscattering coefficient allows use of algoriThms with much narrower error bands. The various methods of obtaining absorption and diffuse attenuation values are compared. Procedures for using reverse osmosis filtration to produce a clean water calibration standard are described. An absorption spectrum for pure water is obtained. Development of the absorption meter is proceeding along two lines: 1) a two-wavelength side-by-side LED is being fabricated to allow an in situ chlorophyll a absorption meter to be constructed, and 2) scientific projects using a shipboard or laboratory flow.-through pumping system are being planned.

  17. Mechanism of resonant perfect optical absorption in dielectric film supporting metallic grating structures.

    PubMed

    Chen, Xiumei; Yan, Xiaopeng; Li, Ping; Mou, Yongni; Wang, Wenqiang; Guan, Zhiqiang; Xu, Hongxing

    2016-08-22

    The mechanism of resonant perfect optical absorbers is quantitatively revealed by the coupled mode method for the air/grating/dielectric film/air four region system. The sufficient and necessary conditions of the perfect optical absorption are derived from the interface scattering coefficients analyses. The coupling of the Fabry-Perot modes in the grating slits and non-zero order quasi waveguide modes in the dielectric film play a key role for the perfect optical absorption when the light is incident from the grating side. The analytical sufficient and necessary conditions of the perfect optical absorption provide an efficient tool towards geometry design for the perfect optical absorption at the specific wavelengths. The advantages of a widely tunable perfect optical absorption wavelength, a high Q factor and the confined energy loss on metal surfaces make the air/grating/film/air structures promising for applications in sensing, modulation and detection.

  18. Orthogonality of spherical harmonic coefficients

    NASA Technical Reports Server (NTRS)

    Mcleod, M. G.

    1980-01-01

    Orthogonality relations are obtained for the spherical harmonic coefficients of functions defined on the surface of a sphere. Following a brief discussion of the orthogonality of Fourier series coefficients, consideration is given to the values averaged over all orientations of the coordinate system of the spherical harmonic coefficients of a function defined on the surface of a sphere that can be expressed in terms of Legendre polynomials for the special case where the function is the sum of two delta functions located at two different points on the sphere, and for the case of an essentially arbitrary function. It is noted that the orthogonality relations derived have found applications in statistical studies of the geomagnetic field.

  19. Stochastic Approach to Phonon-Assisted Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-10-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band gaps in good agreement with experiment. The present approach opens the way to predictive calculations of the optical properties of solids at finite temperature.

  20. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  1. Recursive prescription for logarithmic jet rate coefficients

    NASA Astrophysics Data System (ADS)

    Gerwick, Erik

    2013-11-01

    We derive a recursion relation for the analytic leading logarithmic coefficients of a final state gluon cascade. We demonstrate the potential of our method by analytically computing the rate coefficients for the emission of up to 80 gluons in both the exclusive-kt (Durham) and generalized inclusive-kt class of jet algorithms. There is a particularly simple form for the ratios of resolved coefficients. We suggest potential applications for our method including the efficient generation of shower histories.

  2. Transport coefficients of quantum plasmas

    SciTech Connect

    Bennaceur, D.; Khalfaoui, A.H. )

    1993-09-01

    Transport coefficients of fully ionized plasmas with a weakly coupled, completely degenerate electron gas and classical ions with a wide range of coupling strength are expressed within the Bloch transport equation. Using the Kohler variational principle the collision integral of the quantum Boltzmann equation is derived, which accounts for quantum effects through collective plasma oscillations. The physical implications of the results are investigated through comparisons with other theories. For practical applications, electrical and thermal conductivities are derived in simple analytical formulas. The relation between these two transport coefficients is expressed in an explicit form, giving a generalized Wiedemann-Franz law, where the Lorentz ratio is a dependent function of the coupling parameter and the degree of degeneracy of the plasma.

  3. A Method for Maximizing Split-Half Reliability Coefficients

    ERIC Educational Resources Information Center

    Callender, John C.; Osburn, H. G.

    1977-01-01

    An efficient algorithm for maximizing split-half reliability coefficients is described. Coefficients derived by the algorithm were found to be generally larger than odd-even split-half coefficients or other internal consistency measures and nearly as large as the largest split half coefficients. MSPLIT, Odd-Even, and Kuder-Richardson-20…

  4. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes

    NASA Astrophysics Data System (ADS)

    Roy, Arindam; Ramasubramaniam, Rajagopal; Gaonkar, Harshavardhan A.

    2012-11-01

    Kubelka-Munk (K-M) theory is a phenomenological light transport theory that provides analytical expressions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive incident beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering coefficient (μs‧), whereas the K-M absorption coefficient depends on both absorption (μa) and reduced scattering (μs‧) coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thickness from the measured reflectance spectra with a maximum accuracy of 90% to 95%.

  5. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes.

    PubMed

    Roy, Arindam; Ramasubramaniam, Rajagopal; Gaonkar, Harshavardhan A

    2012-11-01

    Kubelka–Munk (K-M) theory is a phenomenological light transport theory that provides analytical expressions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive incident beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering coefficient (μ's), whereas the K-M absorption coefficient depends on both absorption (μa ) and reduced scattering (μs' ) coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thickness from the measured reflectance spectra with a maximum accuracy of 90% to 95%.

  6. Triplet extinction coefficients of some laser dyes. II. Interim technical report

    SciTech Connect

    Pavlopoulos, T.G.; Golich, D.J.

    1989-04-19

    The authors measured the triplet extinction coefficients T over the laser action spectral region of DODC, DMC, Sulforhodamine B, Rhodamine 575, Coumarin 523, Coumarine 521 Coumarin 504, Coumarin 498, Coumarin 490, LD466, bis-MSB, BBO, and OLIG0415. The different lines from an argon- and a krypton-ion cw laser were employed for excitation. McClure's method was again employed to measure the triplet extinction coefficients. The authors provide a simplified derivation of McClure's equation. The triplet extinction coefficient of Rhodamine 575 was also measured by using the depletion method and improving it by reconstructing for true triplet-triplet absorption. The value obtained is in good agreement with the one obtained by McClure's method.

  7. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  8. Application of modified difference absorption method to stand-off detection of alcohol in simulated car cabins

    NASA Astrophysics Data System (ADS)

    Kubicki, Jan; Młyńczak, Jaroslaw; Kopczyński, Krzysztof

    2013-01-01

    Some aspects of stand-off detection of alcohol in simulated car cabins are described. The proposed method is the well-known "difference absorption" method applied to the differential absorption lidar system, modified by taking advantage of a third laser beam. The modification was motivated by the familiar physical phenomena such as dispersion and different absorption coefficients in window panes for applied laser wavelengths. The mathematical expressions for the method were derived and confirmed by experiments. The presented investigations indicate that the method can be successfully applied to stand-off detection of ethyl alcohol in moving cars.

  9. The influence of water mixtures on the dermal absorption of glycol ethers

    SciTech Connect

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M. . E-mail: F.M.Williams@ncl.ac.uk

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a corresponding increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.

  10. An interesting relationship between drug absorption and melting point.

    PubMed

    Chu, Katherine A; Yalkowsky, Samuel H

    2009-05-21

    The ability to predict the extent of passive intestinal drug absorption is very important for efficient lead candidate selection and development. Physicochemical-based absorption predictive models previously developed use solubility, partition coefficient and pK(a) as drug input parameters for intestinal absorption. Alternatively, this study looks at the relationship between melting point and passive transport for poorly soluble drugs. It is based entirely on the expression derived from the General Solubility Equation (GSE) that relates melting point to the product of intrinsic solubility and partition coefficient. Given that the melting point of a compound is one of the first and more reliable physical properties measured, it can be advantageously used as a guide in early drug discovery and development. This paper elucidates the interesting relationship between the melting point and dose to the fraction absorbed of poorly soluble drugs, i.e., class II and IV compounds in the Biopharmaceutics Classification System. The newly defined melting point based absorption potential (MPbAP) parameter is successful at distinguishing 90% of the 91 drugs considered being well absorbed (FA>0.5) or poorly absorbed. In general, lower melting compounds are more likely to be well absorbed than higher melting compounds for any given dose. The fraction absorbed for drugs with high melting temperatures is limited by the dose to a greater degree than it is for low melting compounds.

  11. Computed survey spectra of 2-5 micron atmospheric absorption

    NASA Astrophysics Data System (ADS)

    Leslie, D. H.; Lebow, P. S.

    1983-08-01

    Computed high resolution survey spectra of atmospheric absorption coefficient vs wavenumber are presented covering the wavelength region 2-5 micrometers. The 1980 AFGL atmospheric absorption parameter compilation was employed with a mid-latitude, sea-level atmospheric model.

  12. Transient absorption study on the influence of several polyphenylene vinylene derivatives on the exciton lifetimes in lead(II) sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Piatkowski, Piotr; Gadomski, Wojciech; Ratajska-Gadomska, Bozena; Borysiuk, Jolanta

    2012-04-01

    The aim of this Letter is to show the influence of several new polyphenylene vinylene (PPV) derivatives, covering surfaces of lead(II) sulfide semiconductor quantum dots, on optical properties of nanocrystals, especially on exciton lifetimes. The collected data exhibit strong dependence of the excited states lifetimes in PbS nanocrystals on the distance between the polymer chain and the quantum dot. It turns out that the presence of PPV derivatives stabilizes the created exciton, which is manifested by the increase of its lifetime. Anyway this effect weakens in PPV derivatives with longer side chains separating nanocrystal from the main conductive chain.

  13. [A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar].

    PubMed

    Fan, Guang-Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Dong, Yun-Sheng; Zhao, Xue-Song

    2012-12-01

    Aerosols interfere with differential absorption lidar ozone concentration measurement and can introduce significant errors. A new retrieval method was introduced, and ozone concentration and aerosol extinction coefficient were gained simultaneously based on the retrieval method. The variables were analyzed by experiment including aerosol lidar ratio, aerosol wavelength exponent, and aerosol-molecular ratio at the reference point. The results show that these parameters introduce error less than 8% below 1 km. The measurement error derives chiefly from signal noise and the parameters introduce error less than 3% above 1 km. Finally the vertical profile of tropospheric ozone concentration and aerosol extinction coefficient were derived by using this algorithm. The retrieval results of the algorithm and traditional dual-wavelength difference algorithm are compared and analyzed. Experimental results indicate that the algorithm is feasible, and the algorithm can reduce differential absorption lidar measurement error introduced by aerosol.

  14. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  15. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  16. Consistent transport coefficients in astrophysics

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.

    1986-01-01

    A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.

  17. Emission, absorption and polarization of gyrosynchrotron radiation of mildly relativistic paricles

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Mctiernan, J. M.

    1982-01-01

    Approximate analytic expressions for the emissivity and absorption coefficient of synchrotron radiation of mildly relativistic particles with an arbitrary energy spectrum and pitch angle distribution are given. From these, an expression for the degree of polarization is derived. To accomplish this, previously developed methods of integration are used. The analytic results are compared with numerical results for both thermal and non-thermal (power law) distributions of particles.

  18. Near-infrared absorptions of monomethylhydrazine

    NASA Technical Reports Server (NTRS)

    Murray, Mark; Kurtz, Joe

    1993-01-01

    The peak absorption coefficients for two near-infrared absorptions of monomethylhydrazine, CH3-N2H3, (MMH) were measured. Absorption bands located at 1.524 micrometers (6560/cm), 1.557 micrometers (6423/cm), and 1.583 micrometers (6316/cm) are assigned to the Delta upsilon = 2 overtones of the infared N-H stretching fundamentals at 3317, 3245 and 3177/cm. An absorption band located at 1.04 micrometers (9620 +/- 100/cm) is assigned to the Delta upsilon = 3 overtone of one of these fundamentals. The peak absorption coefficients (alpha(sub 10)) at 1.524 micrometers (6560 +/- 20/cm) and 1.04 micrometers (9620 +/- 100/cm) are 31 x 10(exp -3) and 0.97 x 10(exp -3)/(cm atm), respectively. Uncertainties in these coefficients were estimated to be less than +/- 20% due primarily to uncertainties in the partial vapor pressure of MMH.

  19. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  20. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  1. Path-counting formulas for generalized kinship coefficients and condensed identity coefficients.

    PubMed

    Cheng, En; Ozsoyoglu, Z Meral

    2014-01-01

    An important computation on pedigree data is the calculation of condensed identity coefficients, which provide a complete description of the degree of relatedness of two individuals. The applications of condensed identity coefficients range from genetic counseling to disease tracking. Condensed identity coefficients can be computed using linear combinations of generalized kinship coefficients for two, three, four individuals, and two pairs of individuals and there are recursive formulas for computing those generalized kinship coefficients (Karigl, 1981). Path-counting formulas have been proposed for the (generalized) kinship coefficients for two (three) individuals but there have been no path-counting formulas for the other generalized kinship coefficients. It has also been shown that the computation of the (generalized) kinship coefficients for two (three) individuals using path-counting formulas is efficient for large pedigrees, together with path encoding schemes tailored for pedigree graphs. In this paper, we propose a framework for deriving path-counting formulas for generalized kinship coefficients. Then, we present the path-counting formulas for all generalized kinship coefficients for which there are recursive formulas and which are sufficient for computing condensed identity coefficients. We also perform experiments to compare the efficiency of our method with the recursive method for computing condensed identity coefficients on large pedigrees.

  2. Total and Partial Absorption Coefficients for a Nitrogen Plasma

    DTIC Science & Technology

    2014-09-26

    Boulder, CO 80309 ATTN: Dr. Arthur V. Phelps 43 0 - . .. > . v- . - . -, . . " )h A’ I , U’ C ’ -- o. • p Lawrence Berkeley Laboratory University of...Gerald N. Hays Dr. James Chang Dr. Michael G. Mazerakis RiJ University of California Physics Department Irvine, CA 92664 -ATTN: Dr. Gregory Benford Air

  3. Absorption of CO laser radiation by NO

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.; Monat, J. P.; Kruger, C. H.

    1976-01-01

    The paper describes absorption calculations and measurements at selected infrared CO laser wavelengths which are nearly coincident with absorption lines in the fundamental vibration-rotation band of NO near 5.3 microns. Initial work was directed towards establishing the optimal CO laser-NO absorption line coincidence for high temperature applications. Measurements of the absorption coefficient at this optimal laser wavelength were carried out, first using a room-temperature absorption cell for high-temperature calculations and then using a shock tube, for the temperature range 630-4000 K, to validate the high temperature calculations.

  4. Coefficients of Effective Length.

    ERIC Educational Resources Information Center

    Edwards, Roger H.

    1981-01-01

    Under certain conditions, a validity Coefficient of Effective Length (CEL) can produce highly misleading results. A modified coefficent is suggested for use when empirical studies indicate that underlying assumptions have been violated. (Author/BW)

  5. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  6. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  7. An agreement coefficient for image comparison

    USGS Publications Warehouse

    Ji, L.; Gallo, K.

    2006-01-01

    Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison. ?? 2006 American Society for Photogrammetry and Remote Sensing.

  8. Gasoline-Water Distribution Coefficients of Xylidines

    DTIC Science & Technology

    1943-06-01

    sample calculated. The extinction (absorption) of light is related to the concentration of the absorbing group by the Beer - Lambert law. It was neceaaar...the use of a Beckman quartz spectrophotometer . Data obtained 1dth the spectzrograph were checzed with the spectrophotom- eter and were reproducible to...within 5 percent of the value of the distribution coefficient given, The use of the spectrophotometer greatly enhanced the speed with which the

  9. Properties of the Water Column and Bottom Derived from AVIRIS Data

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

    2001-01-01

    Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  10. On some properties of SU(3) fusion coefficients

    NASA Astrophysics Data System (ADS)

    Coquereaux, Robert; Zuber, Jean-Bernard

    2016-11-01

    Three aspects of the SU(3) fusion coefficients are revisited: the generating polynomials of fusion coefficients are written explicitly; some curious identities generalizing the classical Freudenthal-de Vries formula are derived; and the properties of the fusion coefficients under conjugation of one of the factors, previously analyzed in the classical case, are extended to the affine algebra su ˆ (3) at finite level.

  11. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  12. Stack emission monitoring using non-dispersive infrared spectroscopy with an optimized nonlinear absorption cross interference correction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y. W.; Liu, C.; Chan, K. L.; Xie, P. H.; Liu, W. Q.; Zeng, Y.; Wang, S. M.; Huang, S. H.; Chen, J.; Wang, Y. P.; Si, F. Q.

    2013-08-01

    In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR) to in situ monitor stack emissions. The proposed algorithm simultaneously compensates for nonlinear absorption and cross interference among different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The proposed algorithm is derived from a classical one and uses interference functions to quantify cross interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO) serves as an example for the validation of the proposed algorithm. The interference functions in this case can be obtained by least-squares fitting with third-order polynomials. Experiments show that the results of cross interference correction are improved significantly by utilizing the fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new algorithm was embedded. The comparison of the two analyzers show that the prototype works well both within the linear and nonlinear ranges.

  13. Stack emission monitoring using non-dispersive infrared with optimized nonlinear absorption cross-interference correction algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y.-W.; Liu, C.; Chan, K.-L.; Xie, P.-H.; Liu, W.-Q.; Zeng, Y.; Wang, S.-M.; Huang, S.-H.; Chen, J.; Wang, Y.-P.; Si, F.-Q.

    2013-02-01

    In this paper, we present an optimized analysis algorithm for non-dispersive infrared (NDIR) to monitor stack emissions. The newly developed analysis algorithm simultaneously compensates for nonlinear absorption and cross-interference between different gases. We present a mathematical derivation for the measurement error caused by variations in interference coefficients when nonlinear absorption occurs. The optimized algorithm is derived from a classical one and uses interference functions to quantify cross-interference. The interference functions vary proportionally with the nonlinear absorption. Thus, interference coefficients among different gases can be modeled by the interference functions whether gases are characterized by linear or nonlinear absorption. In this study, the simultaneous analysis of two components (CO2 and CO) serves as an example for the validation of the optimized algorithm. The interference functions in this case can be obtained by least-squares fitting with three-order polynomials. Experiments show that the results of cross-interference correction are improved significantly by utilizing fitted interference functions when nonlinear absorptions occur. The dynamic measurement ranges of CO2 and CO are improved by about a factor of 1.8 and 3.5, respectively. A commercial NDIR multi-gas analyzer with high accuracy was used to validate the CO and CO2 measurements derived from the NDIR analyzer prototype in which the new cross-interference correction algorithm was embedded. Both measurements well agreed.

  14. A Predictive Model for Satellite-Derived Phytoplankton Absorption Over the Louisiana Shelf Hypoxic Zone: Effects of Nutrients and Physical Forcing

    DTIC Science & Technology

    2008-06-06

    model, the Modular Ocean Data Assimilation System size of summertime hypoxia [Mississippi River/Gulf of (MODAS) [ Carnes et aL, 1996]. Real-time...satellite- derived and model-predicted a,,, in the (a) Mississippi River I plume (Box A) and (b) Atchafalaya River plume (Box B). losi ph (m Both satellite...produc- column mixing. tivity of the Texas-Louisiana continental shelf, J Mar Syst., 11,237- 247.doi: 10.1016/SO924-7963(97)00019-5. Carnes , M. R., D. N

  15. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  16. JKTLD: Limb darkening coefficients

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2015-11-01

    JKTLD outputs theoretically-calculated limb darkening (LD) strengths for equations (LD laws) which predict the amount of LD as a function of the part of the star being observed. The coefficients of these laws are obtained by bilinear interpolation (in effective temperature and surface gravity) in published tables of coefficients calculated from stellar model atmospheres by several researchers. Many observations of stars require the strength of limb darkening (LD) to be estimated, which can be done using theoretical models of stellar atmospheres; JKTLD can help in these circumstances.

  17. Improved input parameters for diffusion models of skin absorption.

    PubMed

    Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F

    2013-02-01

    To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.

  18. X-Ray Attenuation Coefficients from 10 Kev to 100 Mev,

    DTIC Science & Technology

    1957-04-30

    fig. 1). A well- shielded detector measures the shells account for most of the absorption by this intensity of the trinsmitted beam, and any photon...narrow-beam measurements ----------------- 2 1.4. Combination of attenuation coefficients -------------------- 2 1.5. Energy absorption...thickness is increased measures the unlikely to be absorbed. Consequently, the ab- total probability of the interaction processes. sorption coefficient

  19. Derivation of tropospheric NO3 profiles using off-axis differential optical absorption spectroscopy measurements during sunrise and comparison with simulations

    NASA Astrophysics Data System (ADS)

    von Friedeburg, Christoph; Wagner, Thomas; Geyer, Andreas; Kaiser, Norbert; Vogel, Bernhard; Vogel, Heike; Platt, Ulrich

    2002-07-01

    Early morning vertical profiles of tropospheric NO3 were derived by spectroscopy of scattered sunlight in off-axis geometry during sunrise. The measurements were carried out in the urban area of Heidelberg, Germany (April, July, and August 1999). The retrieval algorithm is based on the nitrate radical's rapid photolysis during sunrise, radiative transfer, as well photochemical modeling. We derived NO3 near-ground concentrations of typically (0.2-18) × 107 cm-3, concentrations above 3 km of (5-50) × 107 cm-3, and a NO3 maximum at a height of ~350 m with concentrations of (100-900) × 107 cm-3. Assuming the case of very high terpene levels even at higher altitudes, which is very unlikely for the atmospheric conditions during the measurements, we obtain a different mathematical solution of our inversion problem yielding the NO3 maximum at altitudes of ~2.5 km. The enriched layer was found to hold the bulk of the tropospheric nighttime NO3. The retrieved profile confirms earlier suggestions that ground-level measurements may be significantly underestimating the oxidative capacity of the boundary layer under stable nocturnal conditions. The NO3 layer is probably formed as a result of the vertical profiles of the NO3 educts (NO2 and O3), with NO2 concentrations falling off more slowly with height than the NO3 scavengers, e.g., anthropogenic NO as well as volatile organic compounds emitted at ground level. Independently from these measurements model simulations with a comprehensive three-dimensional model system were performed for an area, which includes the measurement site. A pronounced maximum (3.3 × 109 cm-3) of the nocturnal NO3 concentration was found at ~250 m above the surface, i.e., at the top of the nocturnal stable boundary layer. The average NO3 concentration close to the surface was 5 × 107 cm-3. The only significant difference between the observations and the model results was a steeper decrease of the NO3 concentration above the maximum of the observed

  20. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  1. Two-photon absorption in arsenic sulfide glasses

    NASA Astrophysics Data System (ADS)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  2. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  3. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra.

    PubMed

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He-Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D7 is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  4. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  5. Broadband absorption spectroscopy by combining frequency-domain and steady-state techniques

    NASA Astrophysics Data System (ADS)

    Berger, Andrew J.; Bevilacqua, Frederic; Jakubowski, Dorota B.; Cerussi, Albert E.; Butler, John A.; Hsiang, D.; Tromberg, Bruce J.

    2001-06-01

    A technique for measuring broadband near-infrared absorption spectra of turbid media is presented using a combination of frequency-domain (FD) and steady-state (SS) reflectance methods. Most of the wavelength coverage is provided by a white-light SS measurement, while the FD data are acquired at a few selected wavelengths. Coefficients of absorption ((mu) a) and reduced scattering ((mu) s') derived from the FD data are used to intensity-calibrate the SS measurements and to estimate (mu) s' at all wavelengths in the spectral window of interest. After these steps are performed, (mu) a can be determined by comparing the SS reflectance values to the predictions of diffusion theory, wavelength by wavelength. We present an application of this method to breast tumor characterization. A case study of a fibroadenoma is shown, where different absorption spectra were found between the normal and the tumor sides.

  6. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  7. Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media.

    PubMed

    De Nicola, S; Esposito, R; Lepore, M

    2003-08-01

    We develop a perturbation model to predict the effect of a spatially varying absorptive inhomogeneities in a diffusing slab. The model is based on a perturbation solution of diffusion equation derived for a refractive index mismatch between the scattering slab and the surrounding medium, through the use of the extrapolated boundary conditions. We show that the model allows to compute the time-dependent relative change in the transmitted signal resulting from the presence of the inclusion. We derive simplified expressions for the perturbed time-resolved transmittance that allows to implement an efficient fitting procedure for obtaining the optical properties of the absorptive inclusion. The accuracy of the predictions of the model was investigated through comparison with the results of the Finite Element Method to solve the time-dependent diffusion equation numerically. The procedure is used to obtain the absorption perturbation parameter of an absorptive inclusion characterized by spatially dependent Gaussian distribution of its absorption coefficient located at the midplane of a scattering slab.

  8. High-Absorption-Efficiency Superlattice Solar Cells by Excitons

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Kawaharazuka, Atsushi; Onomitsu, Koji; Horikoshi, Yoshiji

    2013-11-01

    The effect of excitonic absorption on solar cell efficiency has been investigated using solar cells with AlGaAs/GaAs superlattice structures. Numerical calculations reveal that excitonic absorption considerably enhances the overall absorption of bulk GaAs. Excitonic absorption shows strong and sharp peaks at the absorption edge and in the energy region above the band gap. Absorption enhancement is also achieved in the AlGaAs/GaAs superlattice. The measured quantum efficiency spectra of the superlattice solar cells are quite similar to the calculated absorption spectra considering the excitonic effect. The superlattice solar cells are confirmed to have high absorption coefficient compared with the GaAs and AlGaAs bulk solar cells. These results suggest that the enhanced absorption by excitons can increase the quantum efficiency of solar cells. This effect is more prominent for the solar cells with small absorption layer thicknesses.

  9. Stacking-induced diamagnetic/paramagnetic conversion of imidazo[1,2-a]pyridin-2(3 H)-one derivatives: near-infrared absorption and magnetic properties in the solid state.

    PubMed

    Yong, Guoping; Zhang, Xuerui; Zhao, Yumei; She, Wenlong

    2013-09-01

    Herein, we present three imidazo[1,2-a]pyridin-2(3 H)-one derivatives that are diamagnetic in solution, but paramagnetic in the solid state, possibly owing to a stacking-induced formation of phenoxide-type radicals. Notably, a larger bathochromic shift of the absorption (even up to the near- infrared region) of these three compounds was observed in the solid state than in solution, which was attributable to the ordered columnar stacking arrangements or their single-electron character as radicals in the solid state. Interestingly, compared to that in solution, (E)-3-(pyridin-4'-ylmethylene)imidazo[1,2-a]pyridine 2(3 H)-one displayed a largely red-shifted emission (centered at 660 nm, with tailing above 800 nm) in the solid state. A larger bathochromic shift (260 nm) of the emission is an indication of better order and tight stacking in the solid state, which is brought about by the rigid and polar acceptor. These three compounds also reveal different magnetic susceptibilities at 300 K, thus implying that they possess various columnar stacking structures. Most interestingly, these three radicals exhibit unusual ferromagnetic-to-antiferromagnetic phase transitions, which can be attributed to anisotropic contraction and non-uniform slippage of the columnar stacking chains.

  10. Use of diffusion-weighted magnetic resonance imaging to distinguish between lung cancer and focal inflammatory lesions: a comparison of intravoxel incoherent motion derived parameters and apparent diffusion coefficient.

    PubMed

    Deng, Yu; Li, Xinchun; Lei, Yongxia; Liang, Changhong; Liu, Zaiyi

    2016-11-01

    Background Using imaging techniques to diagnose malignant and inflammatory lesions in the lung can be challenging. Purpose To compare intravoxel incoherent motion (IVIM) and apparent diffusion coefficient (ADC) magnetic resonance imaging (MRI) analysis in their ability to discriminate lung cancer from focal inflammatory lung lesions. Material and Methods Thirty-eight patients with lung masses were included: 30 lung cancers and eight inflammatory lesions. Patients were imaged with 3.0T MRI diffusion weighted imaging (DWI) using 10 b values (range, 0-1000 s/mm(2)). Tissue diffusivity ( D), pseudo-diffusion coefficient ( D*), and perfusion fraction ( f) were calculated using segmented biexponential analysis. ADC (total) was calculated with monoexponential fitting of the DWI data. D, D*, f, and ADC were compared between lung cancer and inflammatory lung lesions. Receiver operating characteristic analysis was performed for all DWI parameters. Results The ADC was significantly higher for inflammatory lesions than for lung cancer ([1.21 ± 0.20] × 10(-3) mm(2)/s vs. [0.97 ± 0.15] × 10(-3) mm(2)/s; P = 0.004). By IVIM, f was found to be significantly higher in inflammatory lesions than lung cancer ([46.10 ± 12.92] % vs. [29.29 ± 10.89] %; P = 0.005). There was no difference in D and D* between lung cancer and inflammatory lesions ( P = 0.747 and 0.124, respectively). f showed comparable diagnostic performance with ADC in differentiating lung cancer from inflammatory lung lesions, with areas under the curve of 0.833 and 0.826, sensitivity 80.0% and 73.3%, and specificity 75.0% and 87.5%, respectively. Conclusion The IVIM parameter f value provides comparable diagnostic performance with ADC and could be used as a surrogate marker for differentiating lung cancer from inflammatory lesions.

  11. HAB detection based on absorption and backscattering properties of phytoplankton

    NASA Astrophysics Data System (ADS)

    Lei, Hui; Pan, Delu; Bai, Yan; Chen, Xiaoyan; Zhou, Yan; Zhu, Qiankun

    2011-11-01

    The coastal area of East China Sea (ECS) suffers from the harmful algal blooms (HAB) frequently every year in the warm season. The most common causative phytoplankton algal species of HAB in the ECS in recent years are Prorocentrum donghaiense (dinoflagellates), Karenia mikimotoi (dinoflagellates which could produce hemolytic and ichthyotoxins) and Skeletonema costatum (diatom). The discrimination between the dinoflagellates and diatom HAB through ocean color remote sensing approach can add the knowledge of HAB events in ECS and help to the precaution. A series of in-situ measurement consisted of absorption coefficient, total scattering and particulate backscattering coefficient was conducted in the southern coast of Zhejiang Province in May 2009, and the estuary of Changjiang River in August 2009 and December 2010, which encountered two HAB events and a moderate bloom. The Inherent Optical Properties (IOPs) of the bloom waters have significant difference between phytoplankton species in absorption and backscattering properties. The chlorophyll a specific absorption coefficient (a*phy(λ)) for the bloom patches (chlorophyll a concentration >6mg m-3) differ greatly from the adjacent normal seawater, with the a*phy(λ) of bloom water lower than 0.03 m2 mg-1 while the a*phy(λ) of the adjacent normal seawater is much higher (even up to 0.06 m2 mg-1). Meanwhile, the backscattering coefficients at 6 wavebands (420, 442, 470, 510, 590 and 700nm) are also remarkably lower for bloom waters (<0.01 m-1) than the normal seawater (> 0.02 m-1). The backscattering coefficient ratio (Rbp(λ)) is much lower for diatom bloom waters than for dinoflagellates types (0.01079 vs. 0.01227). A discrimination model based on IOPs is established, and several typical dinoflagellates and diatom bloom events including Prorocentrum donghaiense, Karenia mikimotoi and Skeletonema costatum in the ECS are picked out for testing with the MODIS-L2 and L3 ocean color remote sensing products from NASA

  12. Contribution of ferric iron to the absorption by chromophoric dissolved matter

    NASA Astrophysics Data System (ADS)

    Xiao, Y. H.; Sara-aho, T.; Vähätalo, A. V.

    2012-04-01

    Chromophoric dissolved organic matter (CDOM) is a major absorber of ultraviolet and visible radiation in surface waters. CDOM consists primarily of humic substances (HS), which can adsorb inorganic cations such as ferric iron. Often more than 99% of dissolved iron is complexed by CDOM in natural waters. Our study assessed the contribution of ferric iron to the absorption of CDOM by mixing dissolved humic substance (HS) standards with iron(III) in acidic conditions and later adjusting the pH to 8. The maximum iron-binding capacities for Suwannee River humic acid, Suwannee River fulvic acid and Pony Lake fulvic acid were 13.0, 13.5 and 7.64 μmol iron [mg C]-1, respectively, suggesting higher iron-binding capacity for terrestrial- than microbial-derived CDOM. Iron(III) associated with HS increased the absorption coefficient by CDOM by 1.73-5.33 times (λ=254-550 nm). Inorganic iron, thus, contributed up to 4/5 of the absorption by CDOM (λ=550 nm). In other words, only less than 1/5 of the absorption by CDOM-iron mixture was generated by organic chromophores. The associated iron decreased spectral slope coefficients of HS. This finding indicates that changes of the spectral slope by CDOM can be solely caused by inorganic interference (e.g. iron). The increase of absorption by associated iron(III) was always spectrally similar among different HS standards. We calculated a specific absorption spectrum for iron associated with dissolved HS standards. This spectrum allows estimates for the absorption by iron associated with HS in circum neutral natural waters. For Löytynlähde spring water, iron contributed over 1/10 (ca. 0.108, λ=400 nm) to the total absorption. The contribution of iron to total absorption increased with wavelength. In typical CDOM absorption measurement, water samples are filtered for the removal of particulate constituents but no attempts are implemented for separating the organic chromophores from inorganic chromophores. Our findings show that

  13. Graphical Solution of the Monic Quadratic Equation with Complex Coefficients

    ERIC Educational Resources Information Center

    Laine, A. D.

    2015-01-01

    There are many geometrical approaches to the solution of the quadratic equation with real coefficients. In this article it is shown that the monic quadratic equation with complex coefficients can also be solved graphically, by the intersection of two hyperbolas; one hyperbola being derived from the real part of the quadratic equation and one from…

  14. Induced Transparency and Absorption in Coupled Microresonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Chang, Hongrok

    2004-01-01

    We review the conditions for the occurrence of coherence phenomena in passive coupled optical microresonators. We derive the effective steady-state response and determine conditions for induced transparency and absorption in these systems.

  15. Asymptotic Solutions for Optical Properties of Large Particles with Strong Absorption

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Mishchenko, Michael I.; Winker, Dave M.; Nasiri, Shaima L.

    2001-01-01

    The transverse wave condition is not applicable to the refracted electromagnetic wave within the context of geometrical optics when absorption is involved. Either the transverse magnetic (TM) or the transverse electric (TE) wave condition can be assumed for the wave to locally satisfy the electromagnetic boundary condition in a ray-tracing calculation. The assumed wave mode affects both the reflection and the refraction coefficients. As a result, nonunique solutions for these coefficients are inevitable. In this study the appropriate solutions for the Fresnel reflection-refraction coefficients are identified in light-scattering calculations based on the ray-tracing technique. In particular, a 3x2 refraction or transmission matrix is derived to account for the inhomogeneity of the refracted wave in an absorbing medium. An asymptotic solution that completely includes the effect of medium absorption on Fresnel coefficients is obtained for the scattering properties of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with both preferred and random orientations.

  16. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of tin over the energy range of 29-60keV

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Paterson, David; Kanter, Elliot P.; Southworth, Stephen H.; Young, Linda; Beno, Mark A.; Linton, Jennifer A.; Jennings, Guy

    2007-03-01

    We use the x-ray extended-range technique (XERT) [C. T. Chantler , Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of tin in the x-ray energy range of 29-60keV to 0.04-3% accuracy, and typically in the range 0.1-0.2% . Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct a number of potential experimental systematic errors. These results represent the most extensive experimental data set for tin and include absolute mass attenuation coefficients in the regions of x-ray absorption fine structure, extended x-ray absorption fine structure, and x-ray absorption near-edge structure. The imaginary component of the atomic form factor f2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-2% persist between calculated and observed values.

  17. A note on Hansen's coefficients in satellite theory

    NASA Technical Reports Server (NTRS)

    Giacaglia, G. E. O.

    1976-01-01

    General formulas for Hansen's coefficients in satellite theory are derived along with expressions for the eccentricity functions G and H. Recurrence relations for the eccentricity functions and their derivatives are obtained which are valid for all values of the parameter p. It is noted that the recurrence relations obtained by Challe and Laclaverie (1969) as well as by Balmino (1973) do not satisfy certain parity conditions and therefore involve coefficients outside the range of usage.

  18. Infrasound absorption by atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Baudoin, Michael; Coulouvrat, Francois; Thomas, Jean-Louis

    2010-05-01

    A model is developed for the absorption of infrasound by atmospheric clouds made of a suspension of liquid water droplets within a gaseous mixture of water vapor and air. The model is based on the work of D.A. Gubaidullin and R.I. Nigmatulin [Int. J. Multiphase Flow, 26, 207-228, 2000], which is applied to atmospheric clouds. Three physical mechanisms are included : unsteady viscous drag associated with momentum transfers due to the translation of water droplets, unsteady thermal transfers between the liquid and gaseous phases, and mass transfers due to the evaporation or condensation of the water phase. For clouds, in the infrasonic frequency range, phase changes are the dominant mechanisms (around 1 Hz), while viscous and heat transfers become significant only around 100 Hz. Mass transfers involve two physical effects : evaporation and condensation of the water phase at the droplet surface, and diffusion of the water vapor within the gaseous phase. The first one is described through the Hertz-Knudsen-Langmuir theory based on kinetic theory. It involves a little known coefficient known as coefficient of accommodation. The second one is the classical Fick diffusion. For clouds, and unless the coefficient of accommodation is very small (far from the generally recommended value is close to one), diffusion is the main limiting effects for mass transfers. In a second stage, the sound and infrasound absorption is evaluated for various typical clouds up to about 4 km altitude. Above this altitude, the ice content of clouds is dominant compared to their water content, and the present model is not applicable. Cloud thickness, water content, and droplets size distribution are shown to be the major factors influencing the infrasound absorption. A variety of clouds have been analyzed. In most cases, it is shown that infrasound absorption within clouds is several orders larger than classical absorption (due to molecular relaxation of nitrogen and oxygen molecules in presence

  19. Models of optical absorption in amorphous semiconductors at the absorption edge — A review and re-evaluation

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Al-Ani, S. K. J.

    1994-08-01

    Davis-Mott and Tauc models of optical absorption at the absorption edge in the high absorption coefficient region (104cm-1) are carefully reviewed with regard to their theoretical foundations, assumptions, mathematical derivations, and results. The full implications of these models are exploited, and it is found that the Davis-Mott model for negligible matrix elements between localised states could account for the cubic power law behaviour of with photon energy of some amorphous semiconductors such as a-Si. A fractional power law to find the optical band gapE opt, of the form [αħω ∝ (ħω-E opt)r; 2≤r≤3] based on Davis-Mott model is proposed in which the indexr can be a function of disorder. The Tauc model has further been extended to the case of negligible matrix elements between localised states, in which the same square power law forα vs.ħω with the same meaning of the optical gap as in the original Tauc model has resulted. A consideration of the case of unequal matrix elements for those transitions between localised states and those between extended states is also included. The meaning ofE opt has been re-assessed and it is emphasized that it is an extrapolation of delocalised states to the zero of the density of states rather than a threshold energy for the onset of some kind of optical transitions.

  20. An assessment of optical properties and primary production derived from remote sensing in the Southern Ocean (SO GasEx)

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Lance, Veronica P.; Shang, Shaoling; Vaillancourt, Robert; Freeman, Scott; Lubac, Bertrand; Hargreaves, Bruce R.; Del Castillo, Carlos; Miller, Richard; Twardowski, Michael; Wei, Guomei

    2011-04-01

    Optical properties and primary production were measured during the Southern Ocean (SO) Gas Exchange Experiment (GasEx) (March-April 2008). To assess and evaluate these properties derived from remote sensing, absorption coefficients derived from remote sensing reflectance (Rrs) with the quasi-analytical algorithm were compared with those from in situ measurements from both an ac-9 optical instrument deployed on a profiling package and from discrete water samples analyzed using filter pad spectrophotometry. Total absorption coefficients from Rrs retrievals were found, on average, to be ˜12% less than ac-9 measurements and ˜15% less than filter pad measurements. Absorption coefficients of gelbstoff-detritus and phytoplankton pigments (at 443 nm) derived from Rrs were ˜15% and ˜25% less than ac-9 measurements, respectively. The difference can be well explained based on the determination methods and these results indicate general consistency between remote sensing retrievals and in situ measurements for these waters. Further, incorporating measured surface radiation data, water column primary production (PPeu) was estimated using chlorophyll concentration based models (Chl-PP) and a phytoplankton absorption based model (Aph-PP), where remote-sensing Chl was retrieved with an operational empirical algorithm. These estimated PPeu values were then compared with primary productivity measured using 14C incubation techniques, and coefficient of determination (R2, N = 13) of 0.74 were found for the Aph-PP results, while the R2 of the Chl-PP results were less than 0.5. Such a contrast further highlights the importance of analytically retrieving phytoplankton absorption from measurement of ocean color and the advantage of using phytoplankton absorption to represent the role of phytoplankton in photosynthesis. Spatial distribution and contrast of PPeu in the greater SO GasEx region estimated from satellite data are also presented.

  1. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  2. On the relationship between coefficient alpha and composite reliability.

    PubMed

    Peterson, Robert A; Kim, Yeolib

    2013-01-01

    Cronbach's coefficient alpha is the most widely used estimator of the reliability of tests and scales. However, it has been criticized as being a lower bound and hence underestimating true reliability. A popular alternative to coefficient alpha is composite reliability, which is usually calculated in conjunction with structural equation modeling. A quantitative analysis of 2,524 pairs of coefficient alpha and composite reliability values derived from empirical investigations revealed that although the average composite reliability value (.86) exceeded the average corresponding coefficient alpha value (.84), the difference was relatively inconsequential for practical applications such as meta-analysis.

  3. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  4. Space, energy and anisotropy effects on effective cross sections and diffusion coefficients in the resonance region

    SciTech Connect

    Meftah, B.

    1982-01-01

    Present methods used in reactor analysis do not include adequately the effect of anisotropic scattering in the calculation of resonance effective cross sections. Also the assumption that the streaming term ..cap omega...del Phi is conserved when the total, absorption and transfer cross sections are conserved, is bad because the leakage from a heterogeneous cell will not be conserved and is strongly anisotropic. A third major consideration is the coupling between different regions in a multiregion reactor; currently this effect is being completely ignored. To assess the magnitude of these effects, a code based on integral transport formalism with linear anisotropic scattering was developed. Also, a more adequate formulation of the diffusion coefficient in a heterogeneous cell was derived. Two reactors, one fast, ZPR-6/5, and one thermal, TRX-3, were selected for the study. The study showed that, in general, the inclusion of linear scattering anisotropy increases the cell effective capture cross section of U-238. The increase was up to 2% in TRX-3 and 0.5% in ZPR-6/5. The effect on the multiplication factor was -0.003% ..delta..k/k for ZPR-6/5 and -0.05% ..delta..k/k for TRX-3. For the case of the diffusion coefficient, the combined effect of heterogeneity and linear anisotropy gave an increase of up to 29% in the parallel diffusion coefficient of TRX-3 and 5% in the parallel diffusion coefficient of ZPR-6/5. In contrast, the change in the perpendicular diffusion coefficient did not exceed 2% in both systems.

  5. Crop Coefficients of Some Selected Crops of Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Reddy, K. Chandrasekhar; Arunajyothy, S.; Mallikarjuna, P.

    2015-06-01

    Precise information on crop coefficients for estimating crop evapotranspiration (ETc) for regional scale irrigation planning is a major impediment in many regions. Crop coefficients suggested based on lysimeter data by earlier investigators have to be locally calibrated to account for the differences in the crop canopy under given climatic conditions. In the present study crop coefficients were derived based on reference crop evapotranspiration (ET0) estimated from Penman-Monteith equation and lysimeter measured ETc for groundnut, paddy, tobacco, sugarcane and castor crops at Tirupati, Nellore, Rajahmundry, Anakapalli and Rajendranagar centers of Andhra Pradesh respectively. Crop coefficients derived were compared with those recommended by FAO-56. The mean crop coefficients at different stages of growth were significantly different from those of FAO-56 curve though a similar trend was observed. A third order polynomial crop coefficient model has therefore been developed as a function of time (days after sowing the crop) for deriving suitable crop coefficients. The crop coefficient models suggested may be adopted to estimate crop evapotranspiration in the study area with reasonable degree of accuracy.

  6. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  7. Terahertz absorption spectroscopy of protein-containing reverse micellar solution

    NASA Astrophysics Data System (ADS)

    Murakami, H.; Toyota, Y.; Nishi, T.; Nashima, S.

    2012-01-01

    Terahertz time-domain spectroscopy has been carried out for AOT/isooctane reverse micellar solution with myoglobin at the water-to-surfactant molar ratios ( w0) of 0.2 and 4.4. The amplitude of the absorption spectrum increases with increasing the protein concentration at w0 = 0.2, whereas it decreases at w0 = 4.4. The molar extinction coefficients of the protein-filled reverse micelle, and the constituents, i.e., myoglobin, water, and AOT, have been derived by use of the structural parameters of the micellar solution. The experimental results are interpreted in terms of hydration onto the protein and surfactant in the reverse micelle.

  8. Quantum-Confined and Enhanced Optical Absorption of Colloidal PbS Quantum Dots at Wavelengths with Expected Bulk Behavior.

    PubMed

    Debellis, Doriana; Gigli, Giuseppe; Ten Brinck, Stephanie; Infante, Ivan; Giansante, Carlo

    2017-02-08

    Nowadays it is well-accepted to attribute bulk-like optical absorption properties to colloidal PbS quantum dots (QDs) at wavelengths above 400 nm. This assumption permits to describe PbS QD light absorption by using bulk optical constants and to determine QD concentration in colloidal solutions from simple spectrophotometric measurements. Here we demonstrate that PbS QDs experience the quantum confinement regime across the entire near UV-vis-NIR spectral range, therefore also between 350 and 400 nm already proposed to be sufficiently far above the band gap to suppress quantum confinement. This effect is particularly relevant for small PbS QDs (with diameter of ≤4 nm) leading to absorption coefficients that largely differ from bulk values (up to ∼40% less). As a result of the broadband quantum confinement and of the high surface-to-volume ratio peculiar of nanocrystals, suitable surface chemical modification of PbS QDs is exploited to achieve a marked, size-dependent enhancement of the absorption coefficients compared to bulk values (up to ∼250%). We provide empirical relations to determine the absorption coefficients at 400 nm of as-synthesized and ligand-exchanged PbS QDs, accounting for the broadband quantum confinement and suggesting a heuristic approach to qualitatively predict the ligand effects on the optical absorption properties of PbS QDs. Our findings go beyond formalisms derived from Maxwell Garnett effective medium theory to describe QD optical properties and permit to spectrophotometrically calculate the concentration of PbS QD solutions avoiding underestimation due to deviations from the bulk. In perspective, we envisage the use of extended π-conjugated ligands bearing electronically active substituents to enhance light-harvesting in QD solids and suggest the inadequacy of the representation of ligands at the QD surface as mere electric dipoles.

  9. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  10. Wavelength-locking-free 1.57µm differential absorption lidar for CO₂ sensing.

    PubMed

    Liu, Hao; Chen, Tao; Shu, Rong; Hong, Guanglie; Zheng, Long; Ge, Ye; Hu, Yihua

    2014-11-03

    We propose a novel wavelength-locking-free differential absorption lidar system for CO₂ sensing. The ON-line wavelength laser was wavelength modulated around a specific CO₂ absorption line to ensure that the emission from the ON-line laser hit the atmospheric CO₂ absorption line peak twice a cycle. In the meantime, the intensity of the ON-line and OFF-line wavelength lasers were sinusoidally intensity modulated to enhance the SNR of the back-scattered signal. As a consequence, the system configuration was simplified and the measurement error caused by the deviation of CO₂ absorption coefficient from the long-time ON-line wavelength drifting was completely eliminated. Furthermore, a more precise calibration method was developed which could simultaneously calibrate the offset and precision of the lidar detector. This method could be applied to other differential-absorption-based lidar systems. The result showed that a measurement precision of 0.525% for the column concentration was achieved in 1 s time interval through a path of 780m. We recorded the CO₂ concentration variation for 12 hours starting from mid-night, the result showed that the course of the concentration derived from the DIAL was in good agreement with that of the in situ CO₂ sensor only when the status of atmosphere was stable.

  11. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    SciTech Connect

    Shalchi, A.

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.

  12. IRS SCAN-MAPPING OF THE WASP-WAIST NEBULA (IRAS 16253-2429). I. DERIVATION OF SHOCK CONDITIONS FROM H{sub 2} EMISSION AND DISCOVERY OF 11.3 {mu}m PAH ABSORPTION

    SciTech Connect

    Barsony, Mary; Wolf-Chase, Grace A.; Ciardi, David R.

    2010-09-01

    The outflow driven by the Class 0 protostar, IRAS 16253-2429, is associated with bipolar cavities visible in scattered mid-infrared light, which we refer to as the Wasp-Waist Nebula. InfraRed Spectometer (IRS) scan mapping with the Spitzer Space Telescope of a {approx}1' x 2' area centered on the protostar was carried out. The outflow is imaged in six pure rotational (0-0 S(2) through 0-0 S(7)) H{sub 2} lines, revealing a distinct, S-shaped morphology in all maps. A source map in the 11.3 {mu}m polycyclic aromatic hydrocarbon (PAH) feature is presented in which the protostellar envelope appears in absorption. This is the first detection of absorption in the 11.3 {mu}m PAH feature. Spatially resolved excitation analysis of positions in the blue- and redshifted outflow lobes, with extinction-corrections determined from archival Spitzer 8 {mu}m imaging, shows remarkably constant temperatures of {approx}1000 K in the shocked gas. The radiated luminosity in the observed H{sub 2} transitions is found to be 1.94 {+-} 0.05 x 10{sup -5} L{sub sun} in the redshifted lobe and 1.86 {+-} 0.04 x 10{sup -5} L{sub sun} in the blueshifted lobe. These values are comparable to the mechanical luminosity of the flow. By contrast, the mass of hot (T {approx} 1000 K) H{sub 2} gas is 7.95 {+-} 0.19 x 10{sup -7} M{sub sun} in the redshifted lobe and 5.78 {+-} 0.17 x 10{sup -7} M{sub sun} in the blueshifted lobe. This is just a tiny fraction, of order 10{sup -3}, of the gas in the cold (30 K), swept-up gas mass derived from millimeter CO observations. The H{sub 2} ortho/para ratio of 3:1 found at all mapped points in this flow suggests previous passages of shocks through the gas. Comparison of the H{sub 2} data with detailed shock models of Wilgenbus et al. shows the emitting gas is passing through Jump (J-type) shocks. Pre-shock densities of 10{sup 4} cm{sup -3{<=}} n {sub H{<=}} 10{sup 5} cm{sup -3} are inferred for the redshifted lobe and n {sub H{<=}} 10{sup 3} cm{sup -3} for the

  13. Static coefficient test method and apparatus

    NASA Technical Reports Server (NTRS)

    Haehner, C. L.; Tarpley, J. L. (Inventor)

    1976-01-01

    The static coefficient of friction between contacting surfaces of a plurality of bodies is determined by applying a load to the bodies in a direction normal to the contacting surfaces. Opposite ends of a flexible filament are connected to a load cell and the first of the bodies. A motor continuously moves the second of the bodies away from the load cell at constant velocity at right angles to the force of the normal load so that the first body moves intermittently relative to the second body across a contact surface between them. The load on the surfaces, the nature of the surfaces, and the speed of the first body relative to the load cell are such that the filament is alternately and cyclically tensioned and relaxed as the movement occurs. The maximum tension occurs at the incipient stages of movement of the first body relative to the second body. The load cell derives a series of measurements which are coupled to an x-y recorder, from which the maximum forces of the filament are determined to enable the static coefficient of friction to be determined. From the maximum forces and the normal force, the coefficient is determined. For determining coefficients of friction where there are large compression loads, the normal load is applied with a calibrated compression spring that is deflected by a predetermined amount determined by a spring load vs. deflection calibration curve.

  14. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  15. How knowledge of the gastrointestinal absorption of elements could be used to predict transfer to milk

    PubMed Central

    Howard, Brenda J.; Wells, Claire; Barnett, Catherine L.; Sheppard, Steve C.

    2016-01-01

    The quality and quantity of data used to derive transfer parameter values for milk are variable and there are many data gaps for elements/radionuclides which may need to be considered for risk assessment of the agricultural foodchain. There has been a recent focus on critically evaluating current methods to fill data gaps and on identifying extrapolation methods to derive suitable values for the elements, and particularly radioisotopes, with no or sparse data. The relationship between fractional absorption of elements in the ruminant gastrointestinal tract and transfer to milk has been explored to determine whether knowledge of the former can be used to predict the latter. A relationship has been derived between fractional absorption of elements and two empirical ratios commonly used to quantify transfer to milk; transfer coefficients (element concentration in milk divided by element daily intake) and concentrations ratios (concentration in milk divided by concentration in feed). We propose that fractional absorption may be used to predict the order of magnitude of the transfer to milk of elements/radionuclides for which no relevant data have yet been identified or collated. PMID:27845403

  16. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2014-10-17

    goals are: ri~0.2 (at-tSilri),*? (at 1 kHz), and absorption coefficient B 5/cm. 15. SUBJECT TERMS Low absorption, MWIR, chlorinated liquid crystals...spectral region of interest by deuteration, fluorination and chlorination ; 2) Employing thin cell gap by choosing a high birefringence liquid crystal...mixture. First, we synthesized several chlorinated terphenyls and made a eutectic mixture showing a low absorption window in the region of 4-5|a.m

  17. Parametric analysis of the crystal field splitting pattern of Sm(eta(5)-C(5)Me(5))(3) derived on the basis of absorption spectra of pellets or solutions and electronic raman spectra of oriented single crystals.

    PubMed

    Amberger, Hanns-Dieter; Reddmann, Hauke; Evans, William J

    2009-11-16

    By comparing the absorption spectrum of pseudo trigonal planar Sm(eta(5)-C(5)Me(5))(3) (1) (KBr pellet, methylcyclohexane solution) with the previously assigned one of Sm(eta(5)-C(5)Me(4)H)(3) (2) a truncated experimental crystal field (CF) splitting pattern of the former compound could be derived in the NIR range. Because of its dark brown color, fluorescence is not observed from complex 1, and thus the CF splitting pattern in the low energy range could not be determined on the basis of luminescence measurements. However, comparing the FIR and MIR spectra (pellets) as well as the Raman spectra of oriented single crystals of 1 with those of La(eta(5)-C(5)Me(5))(3) (3) at least two additional CF levels could be detected. The free parameters of a phenomenological Hamiltonian were fitted to the thus extended CF splitting pattern of 1, leading to a reduced rms deviation of 15.0 cm(-1) for 21 assignments. On the basis of these phenomenological CF parameters, the global CF strength experienced by the Sm(3+) central ion was estimated, and seems to be the third largest one ever encountered in Sm(III) chemistry. The obtained Slater parameter F(2) and the spin-orbit coupling parameter zeta(4f) allow the insertion of compound 1 into empirical nephelauxetic and relativistic nephelauxetic series, respectively, of Sm(III) compounds. With its low F(2) value, complex 1 is the most covalent Sm(III) compound (considering only f electrons) found to date. The experimentally based non-relativistic molecular orbital scheme (in the f range) of complex 1 was set up and compared with the results of a previous Xalpha-SW calculation on the pseudo trigonal planar model compound Sm(eta(5)-C(5)H(5))(3). In the frame of the search for f-f and electronic Raman transitions, the vibrational spectra (FIR/MIR of pellets, Raman spectra of oriented single crystals) of compound 1 were recorded too, and partly assigned on the basis of the observed coincidences and polarizations.

  18. Revised Kubelka-Munk theory. III. A general theory of light propagation in scattering and absorptive media.

    PubMed

    Yang, Li; Miklavcic, Stanley J

    2005-09-01

    A generally applicable theoretical model describing light propagating through turbid media is proposed. The theory is a generalization of the revised Kubelka-Munk theory, extending its applicability to accommodate a wider range of absorption influences. A general expression for a factor taking into account the effect of scattering on the total photon path traversed in a turbid medium is derived. The extended model is applied to systems of ink-dyed paper sheets-mixtures of wood fibers with dyes-which represent examples of systems that have thus far eluded the original Kubelka-Munk model. The results of simulations of the spectral dependence of Kubelka-Munk coefficients of absorption and scattering show that they compare very well with those derived from experimental results.

  19. Optimal Cooling Load and COP Relationship of a Four-Heat-Reservoir Endoreversible Absorption Refrigeration Cycle

    NASA Astrophysics Data System (ADS)

    Chen, Lingen; Zheng, Tong; Sun, Fengrui; Wu, Chih

    2004-06-01

    On the basis of a four-heat-reservoir endoreversible absorption refrigeration cycle model, another linear heat transfer law [i.e., the heat-flux] is adopted, the fundamental optimal relation between the coefficient of performance (COP) and the cooling load, as well as the maximum cooling load and the corresponding COP of the cycle coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics or thermodynamic optimization. The optimal distribution of the heat-transfer surface areas is also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are of importance to the optimal design and performance improvement of an absorption refrigeration cycle.

  20. Absorption in Extended Inhomogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Vasilkov, Alexander; Spurr, Robert; Bhartia, P. K.; Krotkov, Nick

    2008-01-01

    The launch of several different sensors, including CloudSat, into the A-train constellation of satellites allows us for the first time to compute absorption that can occur in realistic vertically inhomogeneous clouds including multiple cloud decks. CloudSat data show that these situations are common. Therefore, understanding vertically inhomogeneous clouds is important from both climate and satellite atmospheric composition remote sensing perspectives. Satellite passive sensors that operate from the near IR to the UV often rely on radiative cloud pressures derived from absorption in oxygen bands (A, B, gamma, or O2-O2 bands) or from rotational-Raman scattering in order to retrieve information about atmospheric trace gases. The radiative cloud pressure is distinct from the physical cloud top derived from thermal infrared measurements. Therefore, the combination of information from different passive sensors yields some information about the cloud vertical profile. When either or both the clouds or atmospheric absorbers (trace gases and aerosols) are vertically inhomogeneous, the use of an effective cloud pressure derived from these approaches may lead to errors. Here, we focus on several scenarios (deep convective clouds and distinct two layer clouds) based on realistic cloud optical depth vertical profiles derived from the CloudSatfMODIS combination. We focus on implications for trace-gas column amount retrievals (specifically ozone and NO2) and derived surface UV irradiance from the Ozone Monitoring Instrument (OMI) on the Atrain Aura platform.

  1. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  2. Parameterization of the light absorption properties of chromophoric dissolved organic matter in the Baltic Sea and Pomeranian lakes

    NASA Astrophysics Data System (ADS)

    Meler, Justyna; Kowalczuk, Piotr; Ostrowska, Mirosława; Ficek, Dariusz; Zabłocka, Monika; Zdun, Agnieszka

    2016-08-01

    This study presents three alternative models for estimating the absorption properties of chromophoric dissolved organic matter aCDOM(λ). For this analysis we used a database containing 556 absorption spectra measured in 2006-2009 in different regions of the Baltic Sea (open and coastal waters, the Gulf of Gdańsk and the Pomeranian Bay), at river mouths, in the Szczecin Lagoon and also in three lakes in Pomerania (Poland) - Obłęskie, Łebsko and Chotkowskie. The variability range of the chromophoric dissolved organic matter (CDOM) absorption coefficient at 400 nm, aCDOM(400), lay within 0.15-8.85 m-1. The variability in aCDOM(λ) was parameterized with respect to the variability over 3 orders of magnitude in the chlorophyll a concentration Chl a (0.7-119 mg m-3). The chlorophyll a concentration and aCDOM(400) were correlated, and a statistically significant, nonlinear empirical relationship between these parameters was derived (R2 = 0.83). On the basis of the covariance between these parameters, we derived two empirical mathematical models that enabled us to design the CDOM absorption coefficient dynamics in natural waters and reconstruct the complete CDOM absorption spectrum in the UV and visible spectral domains. The input variable in the first model was the chlorophyll a concentration, and in the second one it was aCDOM(400). Both models were fitted to a power function, and a second-order polynomial function was used as the exponent. Regression coefficients for these formulas were determined for wavelengths from 240 to 700 nm at 5 nm intervals. Both approximations reflected the real shape of the absorption spectra with a low level of uncertainty. Comparison of these approximations with other models of light absorption by CDOM demonstrated that our parameterizations were superior (bias from -1.45 to 62 %, RSME from 22 to 220 %) for estimating CDOM absorption in the optically complex waters of the Baltic Sea and Pomeranian lakes.

  3. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  4. Millimeter and submillimeter wave absorption by atmospheric pollutants and constituents

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Leskovar, B.

    1981-10-01

    Calculated absorption coefficients and rotational transition frequencies are given for a number of polar molecules of interest to pollution and energy research. The results, which are presented in graphical form for microwave frequencies up to 1400 GHz, illustrate the increased absorption line intensities occurring in the submillimeter region. For most species these absorption coefficients attain their maximum values in this region. Included in the calculations are the gases SO2, H2CO, O3, H2O, H2S, OCS, CO, NO, OH, SO, NH3, and CS. A discussion of the techniques currently available for the detection in the submillimeter region of these species is also given.

  5. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  6. Enhancing rigid frame porous layer absorption with three-dimensional periodic irregularities.

    PubMed

    Groby, J-P; Brouard, B; Dazel, O; Nennig, B; Kelders, L

    2013-02-01

    This papers reports a three-dimensional (3D) extension of the model proposed by Groby et al. [J. Acoust. Soc. Am. 127, 2865-2874 (2010)]. The acoustic properties of a porous layer backed by a rigid plate with periodic rectangular irregularities are investigated. The Johnson-Champoux-Allard model is used to predict the complex bulk modulus and density of the equivalent fluid in the porous material. The method of variable separation is used together with the radiation conditions and Floquet theorem to derive the analytical expression for the acoustic reflection coefficient from the porous layer with 3D inhomogeneities. Finite element method is also used to validate the proposed analytical solution. The theoretical and numerical predictions agree well with the experimental data obtained from an impedance tube experiment. It is shown that the measured acoustic absorption coefficient spectrum exhibits a quasi-total absorption peak at the predicted frequency of the mode trapped in the porous layer. When more than one irregularity per spatial period is considered, additional absorption peaks are observed.

  7. Sound absorption by clamped poroelastic plates.

    PubMed

    Aygun, H; Attenborough, K

    2008-09-01

    Measurements and predictions have been made of the absorption coefficient and the surface acoustic impedance of poroelastic plates clamped in a large impedance tube and separated from the rigid termination by an air gap. The measured and predicted absorption coefficient and surface impedance spectra exhibit low frequency peaks. The peak frequencies observed in the absorption coefficient are close to those predicted and measured in the deflection spectra of the clamped poroelastic plates. The influences of the rigidity of the clamping conditions and the width of the air gap have been investigated. Both influences are found to be important. Increasing the rigidity of clamping reduces the low frequency absorption peaks compared with those measured for simply supported plates or plates in an intermediate clamping condition. Results for a closed cell foam plate and for two open cell foam plates made from recycled materials are presented. For identical clamping conditions and width of air gap, the results for the different materials differ as a consequence mainly of their different elasticity, thickness, and cell structure.

  8. Onsager coefficients for systems with periodic potentials

    NASA Astrophysics Data System (ADS)

    Rosas, Alexandre; Van den Broeck, Christian; Lindenberg, Katja

    2016-11-01

    We carry out the thermodynamic analysis of a Markovian stochastic engine, driven by a spatially and temporally periodic modulation in a d -dimensional space. We derive the analytic expressions for the Onsager coefficients characterizing the linear response regime for the isothermal transfer of one type of work (a driver) to another (a load), mediated by a stochastic time-periodic machine. As an illustration, we obtain the explicit results for a Markovian kangaroo process coupling two orthogonal directions and find extremely good agreement with numerical simulations. In addition, we obtain and discuss expressions for the entropy production, power, and efficiency for the kangaroo process.

  9. Gauge Invariance of Thermal Transport Coefficients

    NASA Astrophysics Data System (ADS)

    Ercole, Loris; Marcolongo, Aris; Umari, Paolo; Baroni, Stefano

    2016-10-01

    Thermal transport coefficients are independent of the specific microscopic expression for the energy density and current from which they can be derived through the Green-Kubo formula. We discuss this independence in terms of a kind of gauge invariance resulting from energy conservation and extensivity, and demonstrate it numerically for a Lennard-Jones fluid, where different forms of the microscopic energy density lead to different time correlation functions for the heat flux, all of them, however, resulting in the same value for the thermal conductivity.

  10. Functional constraints on phenomenological coefficients

    NASA Astrophysics Data System (ADS)

    Klika, Václav; Pavelka, Michal; Benziger, Jay B.

    2017-02-01

    Thermodynamic fluxes (diffusion fluxes, heat flux, etc.) are often proportional to thermodynamic forces (gradients of chemical potentials, temperature, etc.) via the matrix of phenomenological coefficients. Onsager's relations imply that the matrix is symmetric, which reduces the number of unknown coefficients is reduced. In this article we demonstrate that for a class of nonequilibrium thermodynamic models in addition to Onsager's relations the phenomenological coefficients must share the same functional dependence on the local thermodynamic state variables. Thermodynamic models and experimental data should be validated through consistency with the functional constraint. We present examples of coupled heat and mass transport (thermodiffusion) and coupled charge and mass transport (electro-osmotic drag). Additionally, these newly identified constraints further reduce the number of experiments needed to describe the phenomenological coefficient.

  11. Sedimentation coefficient distributions of large particles.

    PubMed

    Schuck, Peter

    2016-07-21

    The spatial and temporal evolution of concentration boundaries in sedimentation velocity analytical ultracentrifugation reports on the size distribution of particles with high hydrodynamic resolution. For large particles such as large protein complexes, fibrils, viral particles, or nanoparticles, sedimentation conditions usually allow migration from diffusion to be neglected relative to sedimentation. In this case, the shape of the sedimentation boundaries of polydisperse mixtures relates directly to the underlying size-distributions. Integral and derivative methods for calculating sedimentation coefficient distributions g*(s) of large particles from experimental boundary profiles have been developed previously, and are recapitulated here in a common theoretical framework. This leads to a previously unrecognized relationship between g*(s) and the time-derivative of concentration profiles. Of closed analytical form, it is analogous to the well-known Bridgman relationship for the radial derivative. It provides a quantitative description of the effect of substituting the time-derivative by scan differences with finite time intervals, which appears as a skewed box average of the true distribution. This helps to theoretically clarify the differences between results from time-derivative method and the approach of directly fitting the integral definition of g*(s) to the entirety of experimental boundary data.

  12. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1.

  13. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  14. Variability in light absorption and scattering of phytoplankton in Patagonian waters: Role of community size structure and pigment composition

    NASA Astrophysics Data System (ADS)

    Ferreira, Amabile; Stramski, Dariusz; Garcia, Carlos A. E.; Garcia, Virginia M. T.; Ciotti, ÁUrea M.; Mendes, Carlos R. B.

    2013-02-01

    Intense phytoplankton blooms were observed along the Patagonian shelf-break with satellite ocean color data, but few in situ optical observations were made in that region. We examine the variability of phytoplankton absorption and particulate scattering coefficients during such blooms on the basis of field data. The chlorophyll-a concentration, [Chla], ranged from 0.1 to 22.3 mg m-3 in surface waters. The size fractionation of [Chla] showed that 80% of samples were dominated by nanophytoplankton (N-group) and 20% by microphytoplankton (M-group). Chlorophyll-specific phytoplankton absorption coefficients at 440 and 676 nm, a*ph(440) and a*ph(676), and particulate scattering coefficient at 660 nm, b*p(660), ranged from 0.018 to 0.173, 0.009 to 0.046, and 0.031 to 2.37 m2 (mg Chla)-1, respectively. Both a*ph(440) and a*ph(676) were statistically higher for the N-group than M-group and also considerably higher than expected from global trends as a function of [Chla]. This result suggests that size of phytoplankton cells in Patagonian waters tends to be smaller than in other regions at similar [Chla]. The phytoplankton cell size parameter, Sf, derived from phytoplankton absorption spectra, proved to be useful for interpreting the variability in the data around the general inverse dependence of a*ph(440), a*ph(676), and b*p(660) on [Chla]. Sf also showed a pattern along the increasing trend of a*ph(440) and a*ph(676) as a function of the ratios of some accessory pigments to [Chla]. Our results suggest that the variability in phytoplankton absorption and scattering coefficients in Patagonian waters is caused primarily by changes in the dominant phytoplankton cell size accompanied by covariation in the concentrations of accessory pigments.

  15. Quantum and classical optics of dispersive and absorptive structured media

    NASA Astrophysics Data System (ADS)

    Bhat, Navin Andrew Rama

    This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schrodinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF 2 metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100% or more for common media regardless of geometry if the pump is near the band

  16. Absorption of 9.6-micron CO2 laser radiation by CO2 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Robinson, A. M.

    1983-03-01

    Transitions in CO2 gas induced by the absorption of 9.6 micron laser radiation at higher temperatures were examined. Several lines of the 9.6 micron 0011-0012 transition at temperatures between 296-625 K were studied, and the absorption coefficient was determined as a function of temperature. Additional trials were run to define the relative optical broadening coefficients due to He and N2 for the R16-R22 and P16-P22 transitions. The values obtained for the coefficients and the percentage contribution to calculated absorption coefficient at 620 K are provided.

  17. Comprehensive analysis of the optical Kerr coefficient of graphene

    SciTech Connect

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.

  18. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  19. Comprehensive analysis of the optical Kerr coefficient of graphene

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-01

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S -matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.

  20. Experimental determination of terahertz atmospheric absorption parameters

    NASA Astrophysics Data System (ADS)

    Slocum, David M.; Goyette, Thomas M.; Giles, Robert H.; Nixon, William E.

    2015-05-01

    The terahertz frequency regime is often used as the `chemical fingerprint' region of the electromagnetic spectrum since many molecules exhibit a dense selection of rotational and vibrational transitions. Water is a major component of the atmosphere and since it has a large dipole moment the propagation of terahertz radiation will be dominated by atmospheric effects. This study will present the results of high-­-resolution broadband measurements of the terahertz atmospheric absorption and detail the technique for directly measuring the pressure broadening coefficients, absolute absorption coefficients, line positions, and continuum effects. Differences between these measured parameters and those tabulated in HITRAN will be discussed. Once the water vapor absorption was characterized, the same technique was used to measure the line parameters for methanol, a trace gas of interest within Earth's atmosphere. Methanol has a dense absorption spectrum in the terahertz frequency region and is an important molecule in fields such as environmental monitoring, security, and astrophysics. The data obtained in the present study will be of immediate use for the remote sensing community, as it is uncommon to measure this many independent parameters as well as to measure the absolute absorption of the transitions. Current models rely on tabulated databases of calculated values for the line parameters measured in this study. Differences between the measured data and those in the databases will be highlighted and discussed.

  1. Anomalous absorption of laser light on ion acoustic fluctuations

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  2. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  3. Monitoring of MOCVD reactants by UV absorption

    SciTech Connect

    Baucom, K.C.; Killeen, K.P.; Moffat, H.K.

    1995-07-01

    In this paper, we describe how UV absorption measurements can be used to measure the flow rates of metal organic chemical vapor deposition (MOCVD) reactants. This method utilizes the calculation of UV extinction coefficients by measuring the total pressure and absorbance in the neat reactant system. The development of this quantitative reactant flow rate monitor allows for the direct measurement of the efficiency of a reactant bubbler. We demonstrate bubbler efficiency results for TMGa, and then explain some discrepancies found in the TMAl system due to the monomer to dimer equilibrium. Also, the UV absorption spectra of metal organic and hydride MOCVD reactants over the wavelength range 185 to 400 nm are reported.

  4. Atmospheric absorption cell characterization

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The measurement capability of the Avionics Laboratory IR Facility was used to evaluate an absorption cell that will be used to simulate atmospheric absorption over horizontal paths of 1 - 10 km in length. Band models were used to characterize the transmittance of carbon dioxide (CO2), nitrogen (N2), and nitrous oxide (N2O) in the cell. The measured transmittance was compared to the calculated values. Nitrous oxide is important in the 4 - 4.5 micron range in shaping the weak line absorption of carbon dioxide. The absorption cell is adequate for simulating atmospheric absorption over these paths.

  5. Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data

    NASA Technical Reports Server (NTRS)

    Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.

  6. The estimation of decay coefficient in pulsed transient data

    NASA Technical Reports Server (NTRS)

    Park, T. W.; Andrepont, W.; Park, C. J.

    1980-01-01

    The problem of estimation and interpretation of a decay coefficient in a pulsed transient signal is considered. Two methods are proposed in estimating the decay coefficient of pulsed decay transient data. The methods are derived through a spectral analysis for a parametric model of impulse response function of signal frequency. The several pulsed response data from T burner tests as well as some synthesized data are analyzed and the performance of the estimation procedures are examined. Suggestions for further research in this area are offered. The estimation procedures presented can be extended to the case of multiple frequencies in pulse response function and time dependent decay or growth coefficients.

  7. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  8. On Similarity Coefficients for 2x2 Tables and Correction for Chance

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2008-01-01

    This paper studies correction for chance in coefficients that are linear functions of the observed proportion of agreement. The paper unifies and extends various results on correction for chance in the literature. A specific class of coefficients is used to illustrate the results derived in this paper. Coefficients in this class, e.g. the simple…

  9. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  10. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  11. Temperature dependence of the particle/gas partition coefficient: An application to predict indoor gas-phase concentrations of semi-volatile organic compounds.

    PubMed

    Wei, Wenjuan; Mandin, Corinne; Blanchard, Olivier; Mercier, Fabien; Pelletier, Maud; Le Bot, Barbara; Glorennec, Philippe; Ramalho, Olivier

    2016-09-01

    The indoor gas-phase concentrations of semi-volatile organic compounds (SVOCs) can be predicted from their respective concentrations in airborne particles by applying the particle/gas partitioning equilibrium. The temperature used for partitioning is often set to 25°C. However, indoor temperatures frequently differ from this reference value. This assumption may result in errors in the predicted equilibrium gas-phase SVOC concentrations. To improve the prediction model, the temperature dependence of the particle/gas partition coefficient must be addressed. In this paper, a theoretical relationship between the particle/gas partition coefficient and temperature was developed based on the SVOC absorptive mechanism. The SVOC particle/gas partition coefficients predicted by employing the derived theoretical relationship agree well with the experimental data retrieved from the literature (R>0.93). The influence of temperature on the equilibrium gas-phase SVOC concentration was quantified by a dimensionless analysis of the derived relationship between the SVOC particle/gas partition coefficient and temperature. The predicted equilibrium gas-phase SVOC concentration decreased by between 31% and 53% when the temperature was lowered by 6°C, while it increased by up to 750% when the indoor temperature increased from 15°C to 30°C.

  12. Sound absorption of metallic sound absorbers fabricated via the selective laser melting process

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan

    2017-01-01

    The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.

  13. Intracavity Dye-Laser Absorption Spectroscopy (IDLAS) for application to planetary molecules

    NASA Technical Reports Server (NTRS)

    Lang, Todd M.; Allen, John E., Jr.

    1990-01-01

    Time-resolved, quasi-continuous wave, intracavity dye-laser absorption spectroscopy is applied to the investigation of absolute absorption coefficients for vibrational-rotational overtone bands of water at visible wavelengths. Emphasis is placed on critical factors affecting detection sensitivity and data analysis. Typical generation-time dependent absorption spectra are given.

  14. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  15. Asymmetric perfectly matched layer for the absorption of waves

    SciTech Connect

    Vay, Jean-Luc

    2002-02-10

    The Perfectly Matched Layer (PML) has become a standard for comparison in the techniques that have been developed to close the system of Maxwell equations (more generally wave equations) when simulating an open system. The original Berenger PML formulation relies on a split version of Maxwell equations with numerical electric and magnetic conductivities. They present here an extension of this formulation which introduces counterparts of the electric and magnetic conductivities affecting the term which is spatially differentiated in the equations. they phase velocity along each direction is also multiplied by an additional coefficient. They show that, under certain constraints on the additional numerical coefficients, this ''medium'' does not generate any reflection at any angle and any frequency and is then a Perfectly Matched Layer. Technically it is a super-set of Berenger's PML to which it reduces for a specific set of parameters and like it, it is anisotropic. However, unlike the PML, it introduces some asymmetry in the absorption rate and is therefore labeled an APML for Asymmetric Perfectly Matched Layer. They present here the numerical considerations that have led them to introduce such a medium as well as its theory. Several finite-different numerical implementations are derived (in one, two and three dimensions) and the performance of the APML is contrasted with that of the PML in one and two dimensions. Using plane wave analysis, they show that the APML implementations lead to higher absorption rates than the considered PML implementations. Although they have considered in this paper the finite-different discretization of Maxwell-like equations only, the APML system of equations may be used with other discretization schemes, such as finite-elements, and may be applied to other equations, for applications beyond electromagnetics.

  16. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  17. Visibility Estimation for Neutron Resonance Absorption Radiography using a Pulsed Neutron Source

    NASA Astrophysics Data System (ADS)

    Kai, Tetsuya; Maekawa, Fujio; Oshita, Hidetoshi; Sato, Hirotaka; Shinohara, Takenao; Ooi, Motoki; Harada, Masahide; Uno, Shoji; Otomo, Toshiya; Kamiyama, Takashi; Kiyanagi, Yoshiaki

    Neutron resonance absorption radiography is a technique to enhance neutron transmission images of specific nucleus at neutron resonance energies. Demonstration measurements by using a lithium-glass pixel type scintillator and a gas electron multiplication (GEM) neutron detector were carried out at NOBORU beam line in MLF/J-PARC for sodium, manganese, cobalt, copper, zinc, molybdenum, cadmium, indium, tantalum and gold. To discuss advantages of the resonance absorption radiography the mass attenuation coefficient at resonance energy of each element was compared to that at 25 meV. In addition a visibility index derived by a resonance peak cross section and a relative width (full width at half maximum divided by its resonance energy) was proposed to summarize visibility of the neutron resonance absorption radiography for natural elements. The values of visibility index and the resonance energy indicated that large advantages of the resonance absorption radiography were obtainable for the following elements: sodium (Na), manganese (Mn), cobalt (Co), rhodium (Rh), silver (Ag), cadmium (Cd), indium (In), xenon (Xe), cesium (Cs), samarium (Sm), europium (Eu), dysprosium (Dy), erbium (Er), thulium (Tm), hafnium (Hf), tantalum (Ta), tungsten (W), rhenium (Re), iridium (Ir) and gold (Au).

  18. Conditional Reliability Coefficients for Test Scores.

    PubMed

    Nicewander, W Alan

    2017-04-06

    The most widely used, general index of measurement precision for psychological and educational test scores is the reliability coefficient-a ratio of true variance for a test score to the true-plus-error variance of the score. In item response theory (IRT) models for test scores, the information function is the central, conditional index of measurement precision. In this inquiry, conditional reliability coefficients for a variety of score types are derived as simple transformations of information functions. It is shown, for example, that the conditional reliability coefficient for an ordinary, number-correct score, X, is equal to, ρ(X,X'|θ)=I(X,θ)/[I(X,θ)+1] Where: θ is a latent variable measured by an observed test score, X; p(X, X'|θ) is the conditional reliability of X at a fixed value of θ; and I(X, θ) is the score information function. This is a surprisingly simple relationship between the 2, basic indices of measurement precision from IRT and classical test theory (CTT). This relationship holds for item scores as well as test scores based on sums of item scores-and it holds for dichotomous as well as polytomous items, or a mix of both item types. Also, conditional reliabilities are derived for computerized adaptive test scores, and for θ-estimates used as alternatives to number correct scores. These conditional reliabilities are all related to information in a manner similar-or-identical to the 1 given above for the number-correct (NC) score. (PsycINFO Database Record

  19. Numerical Integral of Resistance Coefficients in Diffusion

    NASA Astrophysics Data System (ADS)

    Zhang, Q. S.

    2017-01-01

    The resistance coefficients in the screened Coulomb potential of stellar plasma are evaluated to high accuracy. I have analyzed the possible singularities in the integral of scattering angle. There are possible singularities in the case of an attractive potential. This may result in a problem for the numerical integral. In order to avoid the problem, I have used a proper scheme, e.g., splitting into many subintervals where the width of each subinterval is determined by the variation of the integrand, to calculate the scattering angle. The collision integrals are calculated by using Romberg’s method, therefore the accuracy is high (i.e., ∼10‑12). The results of collision integrals and their derivatives for ‑7 ≤ ψ ≤ 5 are listed. By using Hermite polynomial interpolation from those data, the collision integrals can be obtained with an accuracy of 10‑10. For very weakly coupled plasma (ψ ≥ 4.5), analytical fittings for collision integrals are available with an accuracy of 10‑11. I have compared the final results of resistance coefficients with other works and found that, for a repulsive potential, the results are basically the same as others’ for an attractive potential, the results in cases of intermediate and strong coupling show significant differences. The resulting resistance coefficients are tested in the solar model. Comparing with the widely used models of Cox et al. and Thoul et al., the resistance coefficients in the screened Coulomb potential lead to a slightly weaker effect in the solar model, which is contrary to the expectation of attempts to solve the solar abundance problem.

  20. Second virial coefficients of asymmetric top molecules.

    PubMed

    Wormer, Paul E S

    2005-05-08

    A short self-contained derivation is given for the second virial coefficient B2(T) of a gas consisting of identical interacting asymmetric rigid rotors. The resulting expression is correct through variant Planck's over h2. First, the canonical partition function is derived by means of an variant Planck's over h expansion of exp[-H/(k(B)T)] due to Friedmann [Adv. Chem. Phys. 4, 225 (1962)]. The present work applies angular momentum operators and known facts from angular momentum theory. It is considerably more accessible than Friedmann's exposition, which is not based on angular momentum operators, but instead on explicit derivatives with respect to Euler angles. The partition function obtained from the variant Planck's over h expansion is applied to the derivation of an expression for B2(T) that is identical in appearance to the expression for symmetric rotors of T Pack [J. Chem. Phys. 78, 7217 (1983)]. The final equation in this work is valid for rigid rotors of any symmetry.