Science.gov

Sample records for absorption coefficients obtained

  1. A method to obtain the absorption coefficient spectrum of single grain coal in the aliphatic C-H stretching region using infrared transflection microspectroscopy.

    PubMed

    Tonoue, Ryota; Katsura, Makoto; Hamamoto, Mai; Bessho, Hiroki; Nakashima, Satoru

    2014-01-01

    A method was developed to obtain the absorption coefficient spectrum of a grain of coal (as small as 10(-7)) in the region of aliphatic and aromatic C-H stretching bands (2700-3200 cm(-1)) using infrared transflection microspectroscopy. In this method, the complex refractive index n - ik was determined using an optimization algorithm with the Kramers-Kronig transform so that the calculated transflection spectrum from the Fresnel equation corresponded to the measured one. The obtained absorption coefficients were compared with the bulk values determined from the potassium bromide (KBr) pellet measurement method.

  2. Converting Sabine absorption coefficients to random incidence absorption coefficients.

    PubMed

    Jeong, Cheol-Ho

    2013-06-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a sample and non-uniform intensity in the reverberation chambers under test. In this study, conversion methods from Sabine absorption coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model do not guarantee reliable estimations, particularly at frequencies below 250 Hz and beyond 2500 Hz.

  3. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  4. Effect of applied mechanical stress on absorption coefficient of compounds

    SciTech Connect

    Gupta, Manoj Kumar; Singh, Gurinderjeet; Dhaliwal, A. S.; Kahlon, K. S.

    2015-08-28

    The absorption coefficient of given materials is the parameter required for the basic information. The measurement of absorption coefficient of compounds Al{sub 2}O{sub 3}, CaCO{sub 3}, ZnO{sub 2}, SmO{sub 2} and PbO has been taken at different incident photon energies 26, 59.54, 112, 1173, 1332keV. The studies involve the measurements of absorption coefficient of the self supporting samples prepared under different mechanical stress. This mechanical stress is render in terms of pressure up to 0-6 ton by using hydraulic press. Measurements shows that absorption coefficient of a material is directly proportional to applied mechanical stress on it up to some extent then become independent. Experimentally measured results are in fairly good agreement with in theoretical values obtained from WinXCOM.

  5. Optical absorption coefficients of pure water

    NASA Astrophysics Data System (ADS)

    Lu, Zheng; Zhao, Xianzhen; Fry, Edward S.

    2002-10-01

    The integrating cavity absorption meter(ICAM), which is independent of scattering effect, is used to measure the absolute values of small optical absorption coefficients of liquid. A modified ICAM is being used to measure the absorption of water in the wavelength range 300 to 700 nm. The ultrapure water produced by a two-stages water purification system reaches Type I quality. This is equal to or better than ASTM,CAP and NCCLS water quality standards. To avoid the fact that dissolved oxygen absorbs ultraviolet light due to the photochemical effect, the water sample is delivered through a nitrogen sealed system which will prevent the sample from contacting with oxygen. A compassion of our absorption spectrum with other existing data is given.

  6. Absorption coefficient instrument for turbid natural waters

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  7. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented.

  8. Absorption-coefficient-determination method for particulate materials.

    PubMed

    Lindberg, J D; Douglass, R E; Garvey, D M

    1994-07-01

    A method is presented for determining the optical absorption coefficient, or the imaginary refractive index, of particulate material that has been collected from aerosols or hydrosols by means of filtration. The method, based on the Kubelka-Munk theory of diffuse reflectance, is nondestructive and requires no other knowledge of the sample than the amount present, the specific gravity, and an estimate of the real index of refraction. The theoretical development of the method is discussed along with an analysis of photometric and gravimetric errors. We test the method by comparing results obtained for powdered didymium glass with measurements made before the glass was crushed. An example of the method's application to the determination of the absorption coefficient of atmospheric dust at UV, visible, and near-IR wavelengths is also presented. PMID:20935789

  9. A method for obtaining coefficients of compositional inverse generating functions

    NASA Astrophysics Data System (ADS)

    Kruchinin, Dmitry V.; Shablya, Yuriy V.; Kruchinin, Vladimir V.; Shelupanov, Alexander A.

    2016-06-01

    The aim of this paper is to show how to obtain expressions for coefficients of compositional inverse generating functions in explicit way. The method is based on the Lagrange inversion theorem and composita of generating functions. Also we give a method of obtaining expressions for coefficients of reciprocal generating functions and consider some examples.

  10. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  11. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  12. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  13. Absorption Coefficient Imaging by Near-Field Scanning Optical Microscopy in Bacteria

    NASA Astrophysics Data System (ADS)

    de Paula, Ana M.; Chaves, Claudilene R.; Silva, Haroldo B.; Weber, Gerald

    2003-06-01

    We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa . The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa , in which membrane vesicles are clearly seen.

  14. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed.

  15. Photon absorption potential coefficient as a tool for materials engineering

    NASA Astrophysics Data System (ADS)

    Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole

    2016-09-01

    Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and

  16. [Influencing factors in measuring absorption coefficient of suspended particulate matters].

    PubMed

    Yu, Xiao-long; Shen, Fang; Zhang, Jin-fang

    2013-05-01

    Absorption coefficient of suspended particulate matters in natural water is one of the key parameters in ocean color remote sensing. In order to study the influencing factors that affect the measurement, a series of experiments were designed to measure samples using transmittance method (T method), transmittance-reflectance method (T-R method) and absorptance method (A method). The results shows that absorption coefficient measured by the A method has a much lower error compared to the T method and T-R method due to influencing factors,such as filter-to-filter variations, water content of the filter, and homogeneity of filter load and so on. Another factor influence absorption coefficient is path-length amplification induced by multiple scattering inside the filter. To determine the path-length amplification, the true absorption was measured by AC-s (WetLabs). The linear fitting result shows that the mean path-length amplification is much higher for the A method than that of the T-R method and the T method (4.01 versus 2.20 and 2.32), and the corresponding correlation coefficient are 0.90, 0.87 and 0.80. For the A method and the T-R method, higher correlation coefficients are calculated when using polynomial fitting, and the value are 0.95 and 0.94. Analysis of the mean relative error caused by different influencing factors indicates that path-length amplification is the largest error source in measuring the absorption coefficient.

  17. Scattering and absorption coefficients of silica-doped alumina aerogels.

    PubMed

    Fu, Tairan; Tang, Jiaqi; Chen, Kai; Zhang, Fan

    2016-02-01

    Alumina-based aerogels are especially useful in many applications due to their excellent stability at high temperatures. This study experimentally analyzed the radiative properties of silica-doped alumina aerogels through spectral directional-hemispherical measurements for wavelengths of 0.38-25 μm. The silica-doped alumina aerogel samples were prepared with a 1.4∶1 molar ratio of silica to alumina. A two-flux model was used to describe the radiation propagation in a 1D scattering absorbing sample to derive expressions for the normal-hemispherical transmittances and reflectances based on the transport approximation. The normal-hemispherical transmittances and reflectances were measured at various spectral wavelengths and sample thicknesses using the integrating sphere method. The spectral absorption and transport scattering coefficients of silica-doped alumina aerogels were then determined from the measured normal-hemispherical data. The absorption and transport scattering coefficients of silica-doped alumina aerogels are (0.1  cm-1, 36  cm-1) and (0.1  cm-1, 112  cm-1) for wavelengths of 0.38-8.0 μm. The spectral transport scattering coefficient varies in the opposite direction from the spectral absorption coefficient for various wavelengths. The radiative properties for silica and alumina aerogels were quite different for the absorption coefficient for wavelengths of 2.5-8.0 μm and for the transport scattering coefficient for wavelengths of 0.38-2.5 and 3.5-6.0 μm. The measured radiative properties were used to predict the spectral normal-hemispherical reflectance and transmittance of the silica-doped alumina aerogels for various sample thicknesses and wavelengths. The predicted values do not change for the sample thicknesses greater than a critical value. The analysis provides valuable reference data for alumina aerogels for high-temperature applications. PMID:26836071

  18. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.

    PubMed

    Li, Xiaoqi; Jiang, Huabei

    2013-02-21

    We present a study through extensive simulation that considers the impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data collected from media mimicking breast tissue. We found that while the impact of scattering heterogeneities/targets is modest on photoacoustic recovery of optical absorption coefficients, the impact of scattering contrast caused by adipose tissue, a layer of normal tissue along the boundary of the breast, is dramatic on reconstruction of optical absorption coefficients using photoacoustic data-up to 25.8% relative error in recovering the absorption coefficient is estimated in such cases. To overcome this problem, we propose a new method to enhance photoacoustic recovery of the optical absorption coefficient in heterogeneous media by considering inhomogeneous scattering coefficient distribution provided by diffuse optical tomography (DOT). Results from extensive simulations show that photoacoustic recovery of absorption coefficient maps can be improved considerably with a priori scattering information from DOT.

  19. Nonlinear absorption coefficient of pulsed laser deposited MgZnO thin film

    SciTech Connect

    Agrawal, Arpana Dar, Tanveer A.; Solanki, Ravi; Sen, Pratima; Phase, D. M.

    2015-06-24

    We report the imaginary part of 3{sup rd} order nonlinear susceptibility and the nonlinear absorption coefficient of Mg doped ZnO thin film using standard Z-scan technique. The origin of nonlinear absorption is attributed to the two photon absorption followed by the free carrier absorption because of the presence of oxygen vacancy defects. We have also confirmed the experimental results with the theoretical results obtained by considering the steady state response of a two level atom with the monochromatic field models.

  20. A high absorption coefficient DL-MPP imitating owl skin

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Zhao, Zhan; Kong, Deyi; Wu, Shaohua; Du, Lidong; Fang, Zhen

    2012-11-01

    This paper proposes a high absorption coefficient micro-perforated panel (MPP) imitating owl skin structure for acoustic noise reduction. Compared to the traditional micro-perforated panel, this device has two unique characteristics-simulating the owl skin structure, its radius of perforated apertures even can be as small as 55μ, and its material is silicon and fabricated by micro-electrical mechanical system (MEMS) technology; So that its absorption coefficients of acoustic noise for normal incidence sound wave whose frequencies arrange from 1.5 kHz to 6.0 kHz are all above 0.8 which is the owl's hunts sensitivity frequency band. Double leaf MPP fabricated by MEMS technology is an absolutely bionic success in functional-imitation.

  1. Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Jiang, Huabei

    2006-06-01

    We report on experimental demonstration of photoacoustic tomography for reconstructing the optical absorption coefficient images of heterogeneous media. Photoacoustic images are obtained from a series of tissuelike phantom experiments using a finite element-based reconstruction algorithm coupled with a scanning photoacoustic imaging system. The experimental results show that optical absorption images can be quantitatively reconstructed when the photon diffusion model is coupled with the Helmholtz photoacoustic wave equation.

  2. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  3. Size segregated light absorption coefficient of the atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Horvath, H.

    The light absorption coefficient of atmospheric aerosols in the visible can be determined by depositing the particles on a filter and measuring its "transmission" in a special optical arrangement. With an impactor with rotating impaction plates producing a homogeneous deposit, it is possible to extend this technique to size segregated aerosol samples. A simultaneous determination of the mass size distribution is possible. Test measurements with black carbon aerosol have shown the feasibility of this method. Samples of the atmospheric aerosol have been taken in and near Vienna, in Naples and near Bologna. The light absorption of the aerosol is always highest for particle diameters between 0.1 and 0.2 μm. Only in the humid environment of the Po valley it had a slightly larger peak size, whereas the size of the nonabsorbing particles increased considerably. The light absorption of the atmospheric aerosol is always higher in an urban environment. 'The mass absorption coefficient of the aerosol at all four locations was very similar, and completely different from values which could be. expected using effective refractive indices which are frequently used in models. Using the data measured in this work two alternate models for the effective refractive index and black carbon content of the aerosol are suggested: (a) a size-dependent refractive index, where the imaginary part varies from -0.25 for particles smaller than 30 nm to - 0.003 for particles larger than 2 μm; this could especially be applied if an internal mixing of the aerosol is to be expected, or (2) a size-dependent fraction of elemental carbon in the case of external mixing with 43% of carbon particles for sizes below 30 nm decreasing to 10% for sizes up to 0.4 μm.

  4. A method for monitoring nuclear absorption coefficients of aviation fuels

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Shen, Chih-Ping

    1989-01-01

    A technique for monitoring variability in the nuclear absorption characteristics of aviation fuels has been developed. It is based on a highly collimated low energy gamma radiation source and a sodium iodide counter. The source and the counter assembly are separated by a geometrically well-defined test fuel cell. A computer program for determining the mass attenuation coefficient of the test fuel sample, based on the data acquired for a preset counting period, has been developed and tested on several types of aviation fuel.

  5. Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method.

    PubMed

    Yuan, Zhen; Wang, Qiang; Jiang, Huabei

    2007-12-24

    We describe a novel reconstruction method that allows for quantitative recovery of optical absorption coefficient maps of heterogeneous media using tomographic photoacoustic measurements. Images of optical absorption coefficient are obtained from a diffusion equation based regularized Newton method where the absorbed energy density distribution from conventional photoacoustic tomography serves as the measured field data. We experimentally demonstrate this new method using tissue-mimicking phantom measurements and simulations. The reconstruction results show that the optical absorption coefficient images obtained are quantitative in terms of the shape, size, location and optical property values of the heterogeneities examined.

  6. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  7. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  8. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  9. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  10. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  11. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    NASA Astrophysics Data System (ADS)

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  12. Measuring high spectral resolution specific absorption coefficients for use with hyperspectral imagery

    SciTech Connect

    Keller, M.; Bostater, C.

    1997-06-01

    A portable, long path length (50 cm), flow through, absorption tube system is utilized to obtain in-situ specific absorption coefficients from various water environments consisting of both clear and turbid water conditions from an underway ship or vessel. The high spectral resolution absorption signatures can be obtained and correlated with measured water quality parameters along a ship track. The long path cuvette system is capable of measuring important water quality parameters such as chlorophyll-a, seston or total suspended matter, tannins, humics, fulvic acids, or dissolved organic matter (dissolved organic carbon, DOC). The various concentrations of these substances can be determined and correlated with laboratory measurements using the double inflection ratio (DIR) of the spectra based upon derivative spectroscopy. The DIR is determined for all of the possible combinations of the bands ranging from 362-1115 nm using 252 channels, as described previously by Bostater. The information gathered from this system can be utilized in conjunction with hyperspectral imagery that allows one to relate reflectance and absorption to water quality of a particular environment. A comparison is made between absorption signatures and reflectance obtained from the Banana River, Florida.

  13. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  14. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  15. Novel transmucosal absorption enhancers obtained by aminoalkylation of chitosan.

    PubMed

    Zambito, Ylenia; Uccello-Barretta, Gloria; Zaino, Chiara; Balzano, Federica; Di Colo, Giacomo

    2006-12-01

    Literature data suggest that quaternized chitosans have a transmucosal drug absorption enhancing property depending on their MW, quaternization degree and other structural features. With the purpose of preparing novel effective promoters, a chitosan (Ch) from crab shell (ChC; viscometric MW, 800 kDa; deacetylation: 90%, IR; 84%, NMR) and one from shrimp shell (ChS; viscometric MW, 590 kDa; deacetylation: 90%, IR; 82%, NMR) were reacted with 2-diethylaminoethyl chloride (DEAE-Cl) and novel derivatives containing different percentages of pendant quaternary ammonium groups were obtained. NMR analysis, based on HSQC, COSY, TOCSY and ROESY maps, indicated that three partially substituted N,O-[N,N-diethylaminomethyl(diethyldimethylene ammonium)(n)]methyl chitosans, coded N(+)-ChS-2 (degree of substitution, DS=40%; n=1.6), N(+)-ChS-4 (DS=132%; n=2.5), and N(+)-ChC-4 (DS=85%; n=1.7) resulted from the reaction, depending on whether the DEAE-Cl/Ch repeating unit molar ratio, was 2:1 or 4:1. The effects of the derivatives on the permeability of rhodamine 123 (Rh-123), hydrophobic, marker of the transcellular absorption route, and of fluorescein sodium (NaFlu), polar, marker of the paracellular route, across excised porcine cheek epithelium were assessed, using Franz type diffusion cells. Rh-123 permeability was enhanced by N(+)-ChS-4 (enhancement ratio, ER=8.4) and by N(+)-ChC-4 (ER=3.9), whereas N(+)-ChS-2 was ineffective. NaFlu permeability was enhanced by N(+)-ChS-2 (ER=7.2), N(+)-ChS-4 (ER=7.4) and N(+)-ChC-4 (ER=6.6). In conclusion, the three derivatives, whichever their DS, promote paracellular transport, while transcellular transport is substantially accelerated only by the most substituted one.

  16. Dynamic absorption coefficients of CAR and non-CAR resists at EUV

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-03-01

    The dynamic absorption coefficients of several CAR and non-CAR EUV photoresists are measured experimentally using a specifically developed setup in transmission mode at the XIL beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called Chemical Sensitivity to account for all the post-absorption chemical reaction ongoing in the resist, which is also predicts a quantitative clearing volume, and respectively clearing radius, due to the photon absorption in the resist. These parameters may help in deeper insight into the underlying mechanisms of EUV concept of clearing volume and clearing radius are then defined and quantitatively calculated.

  17. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.

    2015-01-01

    Geant4 Monte Carlo code simulations were used to solve experimental and theoretical complications for calculation of mass energy-absorption coefficients of elements, air, and compounds. The mass energy-absorption coefficients for nuclear track detectors were computed first time using Geant4 Monte Carlo code for energy 1 keV-20 MeV. Very good agreements for simulated results of mass energy-absorption coefficients for carbon, nitrogen, silicon, sodium iodide and nuclear track detectors were observed on comparison with the values reported in the literatures. Kerma relative to air for energy 1 keV-20 MeV and energy absorption buildup factors for energy 50 keV-10 MeV up to 10 mfp penetration depths of the selected nuclear track detectors were also calculated to evaluate the absorption of the gamma photons. Geant4 simulation can be utilized for estimation of mass energy-absorption coefficients in elements and composite materials.

  18. [Obtaining aerosol backscattering coefficient using pure rotational Raman-Mie scattering spectrum].

    PubMed

    Rong, Wei; Chen, Si-Ying; Zhang, Yin-Chao; Chen, He; Guo, Pan

    2012-11-01

    Both the traditional Klett and Fernald methods used to obtain atmospheric aerosol backscattering coefficient require the hypothesis of relationship between the extinction coefficient and backscattering coefficient, and this will bring error. According to the theory that the pure rotational Raman backscattering coefficient is only related to atmospheric temperature and pressure, a new method is presented for inverting aerosol backscattering coefficient, which needed the intensity of elastic scattering and rotational Raman combined with atmospheric temperature and pressure obtained with the sounding balloons in this article. This method can not only eliminate the errors of the traditional Klett and Fernald methods caused by the hypothesis, but also avoid the error caused by the correction of the overlap. Finally, the aerosol backscattering coefficient was acquired by using this method and the data obtained via the Raman-Mie scattering Lidar of our lab. And the result was compared with that of Klett and Fernald. PMID:23387171

  19. Measurement of the absorption coefficient of a glucose solution through transmission of light and polarymetry techniques

    NASA Astrophysics Data System (ADS)

    Yáñez M., J.

    2011-10-01

    Diabetes is a disease with no cure, but can be controlled to improve the quality of life of sufferers. Currently there are means to control, but this means they have the disadvantage that in order to measure the amount of glucose is necessary to take blood samples that are painful. This paper presents a system for measuring glucose using non-invasive optical techniques: using absorption spectroscopy and polarimetry technique. It shows the results obtained from experiments done on samples containing distilled water and different amounts of glucose to study the absorption coefficient of glucose with both techniques. Water is used because it is one of the main elements in the blood and interferes with glucose measurement. This experiment will develop a prototype to measure glucose through a non-invasive technique.

  20. Sound absorption coefficient in situ: an alternative for estimating soil loss factors.

    PubMed

    Freire, Rosane; Meletti de Abreu, Marco Henrique; Okada, Rafael Yuri; Soares, Paulo Fernando; GranhenTavares, Célia Regina

    2015-01-01

    The relationship between the sound absorption coefficient and factors of the Universal Soil Loss Equation (USLE) was determined in a section of the Maringá Stream basin, Paraná State, by using erosion plots. In the field, four erosion plots were built on a reduced scale, with dimensions of 2.0×12.5m. With respect to plot coverage, one was kept with bare soil and the others contained forage grass (Brachiaria), corn and wheat crops, respectively. Planting was performed without any type of conservation practice in an area with a 9% slope. A sedimentation tank was placed at the end of each plot to collect the material transported. For the acoustic system, pink noise was used in the measurement of the proposed monitoring, for collecting information on incident and reflected sound pressure levels. In general, obtained values of soil loss confirmed that 94.3% of material exported to the basin water came from the bare soil plot, 2.8% from the corn plot, 1.8% from the wheat plot, and 1.1% from the forage grass plot. With respect to the acoustic monitoring, results indicated that at 16kHz erosion plot coverage type had a significant influence on the sound absorption coefficient. High correlation coefficients were found in estimations of the A and C factors of the USLE, confirming that the acoustic technique is feasible for the determination of soil loss directly in the field.

  1. Absorption coefficients for the 6190-A CH4 band between 290 and 100 K with application to Uranus' atmosphere

    NASA Technical Reports Server (NTRS)

    Smith, Wm. Hayden; Conner, Charles P.; Baines, Kevin H.

    1990-01-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH4 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum.

  2. Absorption coefficients for the 6190-A CH sub 4 band between 290 and 100 K with application to Uranus' atmosphere

    SciTech Connect

    Smith, WM.H.; Conner, C.P.; Baines, K.H. JPL, Pasadena, CA )

    1990-05-01

    A novel laser intracavity photoacoustic spectroscopy method allowing high sample control accuracy due to the small sample volume required has been used to obtain absorption coefficients for the CH{sub 4} 6190 A band as a function of temperature, from 290 to 100 K. The peak absorption coefficient is found to increase from 0.6 to 1.0/cm, and to be accompanied by significant band shape changes. When used to further constrain the Baines and Bergstrahl (1986) standard model of the Uranus atmosphere, the low-temperature data yield an excellent fit to the bandshape near the 6190 A band's minimum. 18 refs.

  3. Statistical Estimation of the Atmospheric Aerosol Absorption Coefficient Based on the Data of Optical Measurements

    SciTech Connect

    Uzhegov, V.N.; Kozlov, V.S.; Panchenko, M.V.; Pkhalagov, Yu.A.; Pol'kin, V.V.; Terpugova, S.A.; Shmargunov, V.P.; Yausheva, E.P.

    2005-03-18

    The problem of the choice of the aerosol optical constants and, in particular, imaginary part of the refractive index of particles in visible and infrared (IR) wavelength ranges is very important for calculation of the global albedo of the atmosphere in climatic models. The available models of the aerosol optical constants obtained for the prescribed chemical composition of particles (see, for example, Ivlev et al. 1973; Ivlev 1982; Volz 1972), often are far from real aerosol. It is shown in (Krekov et al. 1982) that model estimates of the optical characteristics of the atmosphere depending on the correctness of real and imaginary parts of the aerosol complex refractive index can differ by some hundreds percent. It is known that the aerosol extinction coefficient {alpha}({lambda}) obtained from measurements on a long horizontal path can be represented as {alpha}({lambda})={sigma}({lambda})+{beta}({lambda}), where {sigma} is the directed light scattering coefficient, and {beta} is the aerosol absorption coefficient. The coefficient {sigma}({lambda}) is measured by means of a nephelometer. Seemingly, if measure the values {alpha}({lambda}) and {sigma}({lambda}), it is easy to determine the value {beta}({lambda}). However, in practice it is almost impossible for a number of reasons. Firstly, the real values {alpha}({lambda}) and {sigma}({lambda}) are very close to each other, and the estimate of the parameter {beta}({lambda}) is concealed by the errors of measurements. Secondly, the aerosol optical characteristics on the long path and in the local volume of nephelometer can be different, that also leads to the errors in estimating {beta}({lambda}). Besides, there are serious difficulties in performing spectral measurements of {sigma}({lambda}) in infrared wavelength range. Taking into account these circumstances, in this paper we consider the statistical technique, which makes it possible to estimate the absorption coefficient of real aerosol on the basis of analysis

  4. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.

    2009-02-01

    ABSTRACT During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10-3, 3.4 × 10-3 and 2.0 × 10-3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10-3, 1.6 × 10-3 and 4.5 × 10-4.

  5. High resolution absorption coefficients for Freon-12. [by using tunable diode laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Hoell, J. M.; Bair, C. H.; Williams, B.; Harward, C.

    1979-01-01

    The ultra high resolution absorption coefficients of the Q-branch of Freon-12 obtained with tunable diode laser spectroscopy are presented. Continuous spectra are presented from 1155/cm to 1163/cm, and absolute wavelength calibration was obtained using SO2 spectra as a standard and a 5 cm Ge etalon for relative calibration between SO2 lines. The Freon-12 data obtained at a pressure of 0.05 torr showed a rich and highly structured spectra, but with the exception of three isolated features, collisional broadening reduces the spectra to a structureless continuum for nitrogen pressures greater than 20 torr. The spectra at 1161/cm continue to exhibit structure at atmospheric pressure.

  6. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  7. Particle scattering, backscattering, and absorption coefficients: An in situ closure and sensitivity study

    NASA Astrophysics Data System (ADS)

    Wex, Heike; Neusüß, Christian; Wendisch, Manfred; Stratmann, Frank; Koziar, Christian; Keil, Andreas; Wiedensohler, Alfred; Ebert, Martin

    2002-11-01

    Comparisons between measured and calculated aerosol scattering, backscattering, and absorption coefficients were made based on in situ, ground-based measurements during the Melpitz INTensive (MINT) and Lindenberg Aerosol Characterization Experiment 1998 (LACE 98) field studies. Furthermore, airborne measurements made with the same type of instruments are reviewed and compared with the ground-based measurements. Agreement between measured and calculated values is on the order of ±20% for scattering and backscattering coefficients. A sensitivity analysis showed a large influence on the calculated particle scattering and backscattering coefficients resulting from sizing uncertainties in the measured number size distributions. Measured absorption coefficients were significantly smaller than the corresponding calculated values. The largest uncertainty for the calculated absorption coefficients resulted from the size-dependent fraction of elemental carbon (EC) of the aerosol. A correction for the measured fractions of EC could significantly improve the agreement between measured and calculated absorption coefficients. The overall uncertainty of the calculated values was investigated with a Monte Carlo method by simultaneously and randomly varying the input parameters of the calculations, where the variation of each parameter was bounded by its uncertainty. The measurements were mostly found to be within the range of uncertainties of the calculations, with uncertainties for the calculated scattering and backscattering coefficients of about ±20% and for the absorption coefficients of about ±30%. Thus, to increase the accuracy of calculated scattering, backscattering, and absorption coefficients, it is crucial to further reduce the error in particle number size distribution measurement techniques. In addition, further improvement of the techniques for measuring absorption coefficients and further investigation of the measurement of the fraction of EC of the aerosol is

  8. Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status.

    PubMed

    Hoge, F E; Wright, C W; Lyon, P E; Swift, R N; Yungel, J K

    1999-12-20

    Oceanic radiance model inversion methods are used to develop a comprehensive algorithm for retrieval of the absorption coefficients of phycourobilin (PUB) pigment, type I phycoerythrobilin (PEB) pigment rich in PUB, and type II PEB deficient in PUB pigment (together with the usual "big three" inherent optical properties: the total backscattering coefficient and the absorption coefficients of chromophoric dissolved organic matter (CDOM)-detritus and phytoplankton). This fully modeled inversion algorithm is then simplified to yield a hybrid modeled-unmodeled inversion algorithm in which the phycoerythrin (PE) absorption coefficient is retrieved as unmodeled 488-nm absorption (which exceeds the modeled phytoplankton and the CDOM-detritus absorption coefficients). Each algorithm was applied to water-leaving radiances, but only hybrid modeled-unmodeled inversions yielded viable retrievals of the PE absorption coefficient. Validation of the PE absorption coefficient retrieval was achieved by relative comparison with airborne laser-induced PEB fluorescence. The modeled-unmodeled retrieval of four inherent optical properties by direct matrix inversion is rapid and well conditioned, but the accuracy is strongly limited by the accuracy of the three principal inherent optical property models across all four spectral bands. Several research areas are identified to enhance the radiance-model-based retrievals: (a) improved PEB and PUB absorption coefficient models, (b) PE spectral shifts induced by PUB chromophore substitution at chromophore binding sites, (c) specific absorption-sensitive phytoplankton absorption modeling, (d) total constituent backscattering modeling, (e) unmodeled carotinoid and phycocyanin absorption that are not now accounted for in the chlorophyll-dominated phytoplankton absorption coefficient model, and (f) iterative inversion techniques to solve for six constituents with only five radiances. Although considerable progress has been made toward the

  9. Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Galović, S.; Todorović, D. M.; Bialkowski, S. E.

    2015-06-01

    The open-cell photoacoustic signal measured in the transmission configuration for aluminum thin plates with thicknesses of 280 μm, 197 μm, and 112 μm is experimentally and theoretically analyzed, in the 20 Hz-7 kHz modulation frequency range. It is shown that the observed differences between the predictions of the standard thermoelastic model and the experiment data of both the amplitude and phase of the photoacoustic signal can be overcome by considering the aluminum samples coated with a thin layer of black paint as volume-absorber materials. This new approach provides a quite good agreement with the obtained experimental data, in the whole frequency range, and yields an effective absorption coefficient of (16 ± 2) mm-1, for a 280 μm-thick sample. The introduction of the finite absorption coefficient led to the correct ratio between the thermal diffusion and thermoelastic components of the photoacoustic signal. Furthermore, it is found that the "volume-absorber" approach accurately describes the behavior of the amplitude, but not that of the phase recorded for a 112 μm-thick sample, due to its relatively strong thermoelastic bending, which is not considered by this theory. Within the approximation of the small bending, the proposed "volume-absorber" model provides a reliable description of the photoacoustic signal for Al samples thicker than 112 μm, and extends the applicability of the classical "opaque" approach.

  10. Temperature dependence of the band-band absorption coefficient in crystalline silicon from photoluminescence

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu T.; Rougieux, Fiacre E.; Mitchell, Bernhard; Macdonald, Daniel

    2014-01-01

    The band-band absorption coefficient in crystalline silicon has been determined using spectral photoluminescence measurements across the wavelength range of 990-1300 nm, and a parameterization of the temperature dependence has been established to allow interpolation of accurate values of the absorption coefficient for any temperature between 170 and 363 K. Band-band absorption coefficient measurements across a temperature range of 78-363 K are found to match well with previous results from MacFarlane et al. [Phys. Rev. 111, 1245 (1958)], and are extended to significantly longer wavelengths. In addition, we report the band-band absorption coefficient across the temperature range from 270-350 K with 10 K intervals, a range in which most practical silicon based devices operate, and for which there are only sparse data available at present. Moreover, the absorption coefficient is shown to vary by up to 50% for every 10 K increment around room temperature. Furthermore, the likely origins of the differences among the absorption coefficient of several commonly referenced works by Green [Sol. Energy Mater. Sol. Cells 92, 1305 (2008)], Daub and Würfel [Phys. Rev. Lett. 74, 1020 (1995)], and MacFarlane et al. [Phys. Rev. 111, 1245 (1958)] are discussed.

  11. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  12. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  13. Determination of absorption coefficients in AlInP lattice matched to GaAs

    NASA Astrophysics Data System (ADS)

    Cheong, J. S.; Ng, J. S.; Krysa, A. B.; Ong, J. S. L.; David, J. P. R.

    2015-10-01

    The absorption properties of Al0.52In0.48P have been investigated near the fundamental absorption edge by measuring the photocurrent as a function of wavelength in a series of PIN and NIP diodes. Modelling of the photocurrent in these structures enables the absorption coefficients to be determined accurately over a wide dynamic range, which allows the direct and indirect band-gap to be determined.

  14. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  15. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  16. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  17. Extinction and absorption coefficients and scattering phase functions of human tissues in vitro.

    PubMed

    Marchesini, R; Bertoni, A; Andreola, S; Melloni, E; Sichirollo, A E

    1989-06-15

    Optical properties of different human tissues in vitro have been evaluated by measuring extinction and absorption coefficients at 635- and 515-nm wavelengths and a scattering angular dependence at 635 nm. Extinction was determined by the on-axis attenuation of light transmitted through sliced specimens of various thicknesses. The absorption coefficient was determined by placing samples into an integrating sphere. The Henyey-Greenstein function was used for fitting experimental data of the scattering pattern. The purpose of this work was to contribute to the study of light propagation in mammalian tissues. The results show that, for the investigated tissues, extinction coefficients range from ~200 to 500 cm(-1) whereas absorption coefficients, depending on wavelength, vary from 0.2 to 25 cm(-1). Scattering is forward peaked with an average cosine of ~0.7.

  18. Comparison between different spectral models of the diffuse attenuation and absorption coefficients of seawater

    NASA Astrophysics Data System (ADS)

    Kopelevich, Oleg V.; Filippov, Yuri V.

    1994-10-01

    The goal of this work is to verify different spectral models of the diffuse attenuation and absorption coefficients of sea water and to work out a recommendation for their use. It is shown that the spectral models of the diffuse attenuation coefficient Kd((lambda) ) developed by Austin, Petzold, 1984 and by Volynsky, Sud'bin, 1992 correspond with each other, as well the models of Ivanov, Shemshura, 1973 and of Kopelevich, Shemshura, 1988 for calculation of the spectral absorption coefficient a((lambda) ) on the values of Kd((lambda) ). Theoretical foundation of the relation between a((lambda) ) and Kd((lambda) ) is given. The up-to-date physical model of the sea water light absorption is considered and checked by means of comparison with measured values of the attenuation coefficient at the ultraviolet and visible spectral ranges.

  19. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  20. Investigation of linear optical absorption coefficients in core-shell quantum dot (QD) luminescent solar concentrators (LSCs)

    NASA Astrophysics Data System (ADS)

    Ebrahimipour, Bahareh Alsadat; Askari, Hassan Ranjbar; Ramezani, Ali Behjat

    2016-09-01

    The interlevel absorption coefficient of CdSe/ZnS and ZnS/CdSe core-shell Quantum Dot (QD) in luminescent solar concentrators (LSCs) is reported. By considering the quantum confinement effects, the wave functions and eigenenergies of electrons in the nonperturebative system consists of a core-shell QD have been numerically calculated under the frame work of effective-mass approximation by solving a three-dimensional Schrӧdinger equation. And then the absorption coefficient is obtained under density matrix approximation considering in the polymer sheets of the concentrator including the core-shell QDs. The effect of the hetero-structure geometry upon the energy spectrum and absorption coefficient associated to interlevel transitions was also considered. The results show that the core-shell QDs can absorb the photons with higher energy in solar spectrum as compared to the inverted core-shell. And with a small shell layer diameter, the core-shell QDs produce larger linear absorption coefficients and consequently higher efficiency values, however it is inversed for inverted core-shell QDs. The work described here gives a detailed insight into the promise of QD-based LSCs and the optoelectronic devices applications.

  1. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  2. Effective absorption coefficient measurements in PMMA and PTFE by clean ablation process with a coherent VUV source at 125 nm

    NASA Astrophysics Data System (ADS)

    Riedel, D.; Castex, M. C.

    First measurements of effective absorption coefficient and penetration depth are given here from the ablation of poly-methylmethacrylate (PMMA) and poly-tetrafluoroethylene (PTFE) samples at 125 nm ( 10 eV). The coherent VUV source used which provides smooth, efficient and clean etched areas, is briefly described. Experimental curves of etch depth as a function of the number of laser shots and etch rate as a function of energy density are obtained and compared with previous works performed at 157 nm (F2 laser) and 193 nm (ArF laser). Experimental results are described with a Beer-Lambert absorption law and discussed.

  3. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  4. Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients k(v) in the atmospheric window are reported for CFC-11 and CFC-12. Data obtained with a grating spectrometer are compared with NCAR cross sections and measurements of k(v) made with a tunable diode laser spectrometer at various temperature-pressure combinations representing tangent heights or layers in the atmosphere are presented. The results are suitable for atmospheric remote sensing and global warming studies.

  5. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  6. Measurement of the absorption coefficient of scattering liquid media by the calorimetric method

    NASA Astrophysics Data System (ADS)

    Butenin, A. V.; Kogan, B. Ya.

    2012-02-01

    Using the example of a number of hydrosols (gold nanorods and nanoshells, silver nanoshells, zinc phthalocyanine nanoparticles), we show that the absorption coefficient of a scattering liquid medium can be measured from its heating by a short-time laser irradiation. The degree of heating was determined from expansion of the liquid in an ampoule with a capillary (the principle of liquid thermometer). Irradiation was performed at a wavelength of 671 or 1069 nm. From the transmission of samples of hydrosols at these wave-lengths, the sum of the absorption and scattering coefficients has been determined. To measure the absorption spectra of scattering liquids by this method, a laser with a tunable radiation wavelength is required. In the case of monodisperse colloidal solutions, the method ensures the measurement of the absorption and scattering cross-section ratio of particles.

  7. Use of the light absorption coefficient to monitor elemental carbon and PM2.5--example of Santiago de Chile.

    PubMed

    Gramsch, Ernesto; Ormeño, Isabel; Palma, Guillermo; Cereceda-Balic, Francisco; Oyola, Pedro

    2004-07-01

    The optical absorption coefficient, particulate matter with an aerodynamic diameter <2.5 microm, and elemental carbon (EC) have been measured simultaneously during winter and spring of 2000 in the western part of Santiago, Chile (Pudahuel district). The optical measurements were carried out with a low-cost instrument recently developed at the University of Santiago. From the data, a site-specific mass absorption coefficient of 4.45+/-0.01 m2/g has been found for EC. In addition, a mass absorption coefficient of 1.02+/-0.03 m2/g has been obtained for PM2.5. These coefficients can be used during the colder months (May-August) to obtain EC concentration or PM2.5 from a measurement of the light absorption coefficient (sigmaa). The high correlation that has been found between these variables indicates that sigmaa is a good indicator of the degree of contamination of urbanized areas. The data also show an increase in PM2.5 and EC concentration during winter and an increase in the ratio of EC to PM2.5. When the EC/PM2.5 ratio is calculated during rush hour (7:00 a.m.-11:00 a.m.) and during part of the night (9:00 p.m.-2:00 a.m.), it is found that the increase is caused by higher concentration levels of EC at night. These results suggest that the rise in the EC concentration is caused by emissions from heating and air mass transport of pollution from other parts of the city, while traffic contribution remains approximately constant.

  8. Determination of the Absorption Coefficient and Cloudiness Multiplicity Attenuation During the Gamma-Radiation Passage

    NASA Astrophysics Data System (ADS)

    Orlova, K. N.; Borovikov, I. F.; Gaidamak, M. A.

    2016-08-01

    The paper presents background value equivalent dose of gamma-radiation investigation in different weather: clear cloudy and overcast. The change of the dose rate of gamma radiation, depending on the weather and the ability cloudiness to shield gamma rays is shown. A new method for eliminating the consequences of accidents at nuclear power plants or plants using radioactive elements is proposed. A calculation method of cloudiness coefficient absorption and cloudiness gamma-radiation multiplicity attenuation is developed. The gamma- radiation multiplicity attenuation and the absorption coefficient of gamma radiation were calculated.

  9. The absorption of trapped particles by the inner satellites of Jupiter and the radial diffusion coefficient of particle transport

    NASA Technical Reports Server (NTRS)

    Mogro-Campero, A.; Fillius, W.

    1976-01-01

    The process of trapped particle absorption by the inner Jovian satellites is considered in detail taking into account both the particle and satellite motions in a magnetic dipole field which is displaced from the center of the planet and tilted with respect to the planetary rotation axis. An expression is derived for computing the sweeping time at a given satellite, defined as the time required for the satellite to sweep up a given fraction of the trapped particles within its sweeping region. By making use of the sweeping time and the radial diffusion equation of particle transport approximate expressions for the diffusion coefficient are derived. Measurements obtained by Pioneer 10 are then used to obtain estimates of the diffusion coefficient at the orbits of Io and Europa. We find that the diffusion coefficient is a function of energy and magnetic latitude for electrons in the energy range 0.7-14 MeV.

  10. Accurate estimation of normal incidence absorption coefficients with confidence intervals using a scanning laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Vuye, Cedric; Vanlanduit, Steve; Guillaume, Patrick

    2009-06-01

    When using optical measurements of the sound fields inside a glass tube, near the material under test, to estimate the reflection and absorption coefficients, not only these acoustical parameters but also confidence intervals can be determined. The sound fields are visualized using a scanning laser Doppler vibrometer (SLDV). In this paper the influence of different test signals on the quality of the results, obtained with this technique, is examined. The amount of data gathered during one measurement scan makes a thorough statistical analysis possible leading to the knowledge of confidence intervals. The use of a multi-sine, constructed on the resonance frequencies of the test tube, shows to be a very good alternative for the traditional periodic chirp. This signal offers the ability to obtain data for multiple frequencies in one measurement, without the danger of a low signal-to-noise ratio. The variability analysis in this paper clearly shows the advantages of the proposed multi-sine compared to the periodic chirp. The measurement procedure and the statistical analysis are validated by measuring the reflection ratio at a closed end and comparing the results with the theoretical value. Results of the testing of two building materials (an acoustic ceiling tile and linoleum) are presented and compared to supplier data.

  11. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state. PMID:24059163

  12. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  13. Contributions of particle absorption to mass extinction coefficients (0.55-14microm) of soil-derived atmospheric dusts: erratum.

    PubMed

    Carlon, H R

    1980-04-01

    Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure. absorbers at longer IR wavelengths.

  14. Contributions of particle absorption to mass extinction coefficients (0.55-14 microm) of soil-derived atmospheric dusts.

    PubMed

    Carlon, H R

    1980-03-01

    Mass extinction coefficients of soil-derived atmospheric dusts often are determined largely by the absorption (rather than scattering) by individual particles, especially at longer IR wavelengths. Under many conditions, reasonable estimates of mass extinction coefficients of dusts can be made from absorption coefficients without the need for detailed knowledge of particle optical constants to perform, e.g., Mie calculations. This paper discusses absorption coefficients of dusts in the visible and IR wavelengths and the physical mechanisms of dust aerosol generation determining that portion of extinction attributable to absorption in a given dust cloud. Some soils, especially clays, can produce dust clouds that are almost pure absorbers at longer IR wavelengths.

  15. Techniques for obtaining detailed heat transfer coefficient measurements within gas turbine blade and vane cooling passages

    NASA Astrophysics Data System (ADS)

    Clifford, R. J.; Jones, T. V.; Dunnne, S. T.

    1983-03-01

    Techniques developed jointly by Rolls-Royce Bristol and Oxford University for determining detailed heat transfer distributions inside turbine blade and vane cooling passages are reviewed. Use is made of a low temperature phase change paint to map the heat flux distributions within models of the cooling passages; the paints change from an opaque coating to a clear liquid at a well-defined melting point. In this way the surface temperature history of a model subjected to transient convective heating is recorded. The heat transfer coefficient distribution is deduced from this history using a transient conduction analysis within the model. Results are presented on detailed heat transfer coefficient distributions within a variety of cooling passages; and data obtained from a comprehensive study of a typical engine multipass cooling geometry are examined.

  16. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  17. Additions and corrections to the absorption coefficients of CO2 ice - Applications to the Martian south polar cap

    NASA Technical Reports Server (NTRS)

    Calvin, Wendy M.

    1990-01-01

    Reflectance spectra of carbon dioxide frosts were calculated using the optical constants provided by Warren (1986) for the wavelength region 2-6 microns. In comparing these calculated spectra to spectra of frosts observed in the laboratory and on the surface of Mars, problems in the optical constants presented by Warren (1986) became apparent. Absorption coefficients for CO2 ice have been derived using laboratory reflectance measurements and the Hapke (1981) model for calculating diffuse reflectance. This provides approximate values in regions where no data were previously available and indicates where corrections to the compilation by Warren (1986) are required. Using these coefficients to calculate the reflectance of CO2 ice at varying grain sizes indicates that a typical Mariner polar cap spectrum is dominated by absorptions due to CO2 frost or ice at grain sizes that are quite large, probably of the order of millimeters to centimeters. There are indications of contamination of water frost or dust, but confirmation will require more precise absorption coefficients for solid CO2 than can be obtained from the method used here.

  18. Absorption Coefficients of SF{6}, SF{4}, SOF{2} and SO{2}F{2} in the Vacuum Ultraviolet

    NASA Astrophysics Data System (ADS)

    Pradayrol, C.; Casanovas, A. M.; Deharo, I.; Guelfucci, J. P.; Casanovas, J.

    1996-05-01

    Absorption coefficients k0(m^{-1} 100 kPa^{-1}) of SF{6} and of its main gaseous by-products SF{4}, SOF{2} and SO{2}F{2} were measured in the VUV region. The experiments were carried out at a temperature of 298 K and a spectral resolution of 0.1 nm over the wavelength range 115 - 180 nm for SF{6}, 115 - 220 nm for SF{4}, 120 - 195 nm for SOF{2} and 120 - 210 nm for SO{2}F{2}. The highest absorption coefficient values were obtained for SF{4} and the lowest for SF{6}. Les coefficients d'absorption k0(m^{-1} 100 kPa^{-1}) du SF{6} et de ses principaux produits de décomposition gazeux, SF{4}, SOF{2} et SO{2}F{2} ont été mesurés dans le domaine de l'ultraviolet sous vide. Les expériences ont été réalisées à la température de 298 K avec une résolution de 0,1 nm dans la gamme 115 180 nm pour le SF{6}, 115 220 nm pour le SF{4}, 120 195 nm pour le SOF{2} et 120 210 nm pour le SO{2}F{2}. Les coefficients d'absorption les plus élevés ont été mesurés pour le SF{4} et les plus faibles pour le SF{6}.

  19. Traffic-related differences in indoor and personal absorption coefficient measurements in Amsterdam, the Netherlands

    NASA Astrophysics Data System (ADS)

    Wichmann, Janine; Janssen, Nicole A. H.; van der Zee, Saskia; Brunekreef, Bert

    Population studies indicate that study participants living near major roads are more prone to chronic respiratory symptoms, lung function decrements and hospital admissions for asthma. The majority of the studies used proxy measures, such as distance to major roads or traffic intensity in the surroundings of the home. Few studies have communicated findings of concurrently performed measurements of outdoor, indoor and personal air pollution in urban streets with high- and low-traffic density. Measuring light absorption or reflectance of particulate matter (PM) collected on filters is an alternative method to determine elemental carbon, a marker for particles produced by incomplete combustion, compared to expensive and destructive analytical methods. This study sets out to test the null hypothesis that there is no difference in personal and indoor filter absorption coefficients for participants living along busy and quiet roads in Amsterdam. In one study we measured personal and indoor absorption coefficients in a sample of adults (50-70 years) and, in another study, the indoor levels in a population of adults (50-70 years) and school children (10-12 years). In the first study, the ratios of personal and indoor absorption coefficients in homes along busy roads compared with homes on quiet streets were significantly higher by 29% for personal measurements ( n=16 days, p<0.001), and by 19% for indoor measurements ( n=20, p<0.001), while in the second study, the ratio for the indoor measurements was higher by 26% ( n=25 days, p<0.05). Exposure differences between homes along busy compared to homes along quiet streets remained and significant after adjustment for potential indoor sources (such as cooking and use of unvented heating appliances). This study therefore provides tentative support for the use of the type of road as proxy measure for indoor and personal absorption coefficient measurements in epidemiological studies due to the limitations of the study.

  20. A new photoacoustic method based on the modulation of the light induced absorption coefficient

    NASA Astrophysics Data System (ADS)

    Engel, S.; Wenisch, C.; Müller, F. A.; Gräf, S.

    2016-04-01

    The present study reports on a new photoacoustic (PA) measurement method that is suitable for the investigation of light induced absorption effects including e.g. excited state absorption. Contrary to the modulation of the radiation intensity used in conventional PA-methods, the key principle of this novel setup is based on the modulation of the induced absorption coefficient by light. For this purpose, a pump-probe setup with a pulsed pump laser beam and a continuous probe laser beam is utilized. In this regime, the potential influence of heat on the PA-signal is much smaller when compared to arrangements with pulsed probe beam and continuous pump beam. Beyond that, the negative effect of thermal lenses can be neglected. Thus, the measurement technique is well-suited for materials exhibiting a strong absorption at the pump wavelength. The quantitative analysis of the induced absorption coefficient was achieved by the calibration of the additional PA-signal caused by the continuous probe laser to the PA-signal resulting from the pulsed pump laser using thallium bromoiodide (KRS-5) as sample material.

  1. Absorption coefficients of GeSn extracted from PIN photodetector response

    NASA Astrophysics Data System (ADS)

    Ye, Kaiheng; Zhang, Wogong; Oehme, Michael; Schmid, Marc; Gollhofer, Martin; Kostecki, Konrad; Widmann, Daniel; Körner, Roman; Kasper, Erich; Schulze, Jörg

    2015-08-01

    In this paper the optical absorption of the GeSn PIN photodetector was investigated. The vertical GeSn PIN photodetectors were fabricated by molecular beam epitaxy (MBE) and dry etching. By means of current density-voltage (J-V) and capacity-voltage (C-V) measurements the photodetector device was characterized. The absorption coefficients of GeSn material were finally extracted from the optical response of PIN structure. With further direct bandgap analysis the influences of device structure was proved negligible.

  2. Absorption Coefficients of the Methane-Nitrogen Binary Ice System: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, Silvia; Grundy, W.; Tegler, S.; Bergonio, J.; Boehnhardt, H.; Barrera, L.

    2013-10-01

    Near infrared spectroscopic measurements of Pluto display methane (CH4) ice absorption bands shifted toward shorter wavelengths compared to the central wavelengths of pure CH4 obtained in the laboratory. This shift, described by Schmitt and Quirico (1992), occurs when CH4 is dissolved at low concentrations in a matrix of solid N2, and the magnitude of the shift varies from one CH4 band to another. This is the main argument behind the modeling analysis of Pluto’s spectra available in literature, employing pure CH4 and CH4 diluted at low concentrations in N2. However, the nitrogen-methane binary phase diagram generated from X-ray diffraction studies by Prokhvatilov & Yantsevich (1983) indicates that at temperatures relevant to the surfaces of icy dwarf planets, like Pluto, two phases contribute to the absorptions: methane ice saturated with nitrogen and nitrogen ice saturated with methane. No optical constants are available so far for the latter component, limiting this way the knowledge of the methane-nitrogen mixing ratio across and into the surface of Pluto and other dwarf planets. New infrared absorption coefficient spectra of CH4-I diluted in β-N2 and β-N2 diluted in CH4-I were measured at temperatures between 40 and 90 K, in the wavelength range 0.8-2.5 μm at different mixing ratios. The spectra were derived from transmission measurements of crystals grown from the liquid phase in closed cells. In particular, a systematic study of the changes in CH4:N2 mixtures spectral behavior with mixing ratio is presented for the first time, in order to understand whether the peak frequencies of the CH4-ice bands correlate with the amount of N2-ice. We report a linear trend of the blueshifts of the CH4-ice bands vs CH4 abundance. This trend varies from band to band, while it is fairly constant with temperature. These data are applied to interpret unpublished high dispersion H and K bands spectra of Pluto acquired with the NACO instrument at the ESO VLT on 27 June 2008

  3. New method for obtaining drift mobility and diffusion coefficient and their relation in photorefractive polymers

    NASA Astrophysics Data System (ADS)

    Hirao, Akiko; Nishizawa, Hideyuki; Tsukamoto, Takayuki; Matsumoto, Kazuki

    1999-10-01

    A new easy method for obtaining a drift mobility and a diffusion coefficient from a nondispersive time-of-flight transient has been developed. Nondispersive transients are described well in the theoretical photocurrent equation (PTE) based on the fact that a carrier packet drifts at a constant velocity and is spread by diffusion, the top electrode acts as a reflecting and partially absorbing wall, and the counter electrode acts as an absorbing wall. The fitting of the PTE to photocurrent transients gives the mobility and the diffusion coefficient (D) simultaneously. These are suitable characteristic values for descriptions of carriers transport because they do not show the thickness dependence and the negative field dependence in a low electric field. The mobility that sometimes shows the thickness dependence and the negative field dependence in a low electric field, however, has usually been measured from the time of the intersection of the asymptotes to the plateau and trailing edge of the transients. In order to obtain (mu) a from photocurrent transients by a simple method, we have tried to describe t0 and tail-broadening parameter W as functions of (mu) a and D, where W is defined as (t1/2 - t0)/t1/2 and t1/2 is the time at which the current is a half of that in the plateau region. The dependences of calculated (mu) k and W on the electric field and the sample thickness agreed well with those of the experimental data. These results verify the PTE and suggest that (mu) a and D can be calculated from t0 and W. We also report that the diffusion coefficient is proportional to the power of 2 of the mobility. This result agrees with a theory based on the Langevin equation which describes motions of carriers in a fluctuated field.

  4. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  5. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  6. Measurement and calculation of the sound absorption coefficient of pine wood charcoal

    NASA Astrophysics Data System (ADS)

    Suh, Jae Gap; Baik, Kyung min; Kim, Yong Tae; Jung, Sung Soo

    2013-10-01

    Although charcoal has been widely utilized for physical therapy and as a deodorant, water purifier, etc. due to its porous features, research on its role as a sound-absorbing material is rarely found. Thus, the sound absorption coefficients of pine wood charcoal were measured using an impedance tube and were compared with the theoretical predictions in the frequency range of 500˜ 5000 Hz. The theory developed in the current study only considers the lowest possible mode propagating along the air channels of the charcoal and shows good agreements with the measurements. As the frequency is increased, the sound absorption coefficients of pine wood charcoals also increase, but are lower than those of other commonly-used sound-absorbing materials.

  7. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    NASA Astrophysics Data System (ADS)

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  8. AN INTERCOMPARISON CF THE INTEGRATING PLATE AND THE LASER TRANSMISSION METHODS FOR DETERMINATION OF AEROSOL ABSORPTION COEFFICIENTS

    SciTech Connect

    Sadler, M.; Charlson, R.J.; Rosen, H.; Novakov, T.

    1980-07-01

    The absorption coefficients determined by the integrating plate method and the laser transmission method are found to be comparable and highly correlated. Furthermore, a high correlation is found between these absorption coefficients and the carbon content of the aerosol in urbanized regions.

  9. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    DOE PAGES

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0°more » to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less

  10. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-01-30

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages both in computational efficiency and in gaining an intuitive understanding of the effects of absorption on the diffraction data. A matrix of absorption coefficients calculated for μRproducts between 0 and 20 for diffraction angles θDof 0–90° were used to examine the influence of (1) capillary diameter and (2) sample density on the overall scattered intensity as a function of diffraction angle, where μ is the linear absorption coefficient for the sample andRis the capillary radius. On the basis of this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0–50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used and when the sample density is adjusted to be 3/(4μR) of its original density.

  11. Use of radial symmetry for the calculation of cylindrical absorption coefficients and optimal capillary loadings

    SciTech Connect

    Khalifah, Peter

    2015-02-01

    The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.

  12. Determining Spectral Reflectance Coefficients from Hyperspectral Images Obtained from Low Altitudes

    NASA Astrophysics Data System (ADS)

    Walczykowski, P.; Jenerowicz, A.; Orych, A.; Siok, K.

    2016-06-01

    Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based), object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor mounted on an

  13. Backscatter factors and mass energy-absorption coefficient ratios for diagnostic radiology dosimetry.

    PubMed

    Benmakhlouf, Hamza; Bouchard, Hugo; Fransson, Annette; Andreo, Pedro

    2011-11-21

    Backscatter factors, B, and mass energy-absorption coefficient ratios, (μ(en)/ρ)(w, air), for the determination of the surface dose in diagnostic radiology were calculated using Monte Carlo simulations. The main purpose was to extend the range of available data to qualities used in modern x-ray techniques, particularly for interventional radiology. A comprehensive database for mono-energetic photons between 4 and 150 keV and different field sizes was created for a 15 cm thick water phantom. Backscattered spectra were calculated with the PENELOPE Monte Carlo system, scoring track-length fluence differential in energy with negligible statistical uncertainty; using the Monte Carlo computed spectra, B factors and (μ(en)/ρ)(w, air) were then calculated numerically for each energy. Weighted averaging procedures were subsequently used to convolve incident clinical spectra with mono-energetic data. The method was benchmarked against full Monte Carlo calculations of incident clinical spectra obtaining differences within 0.3-0.6%. The technique used enables the calculation of B and (μ(en)/ρ)(w, air) for any incident spectrum without further time-consuming Monte Carlo simulations. The adequacy of the extended dosimetry data to a broader range of clinical qualities than those currently available, while keeping consistency with existing data, was confirmed through detailed comparisons. Mono-energetic and spectra-averaged values were compared with published data, including those in ICRU Report 74 and IAEA TRS-457, finding average differences of 0.6%. Results are provided in comprehensive tables appropriated for clinical use. Additional qualities can easily be calculated using a designed GUI interface in conjunction with software to generate incident photon spectra.

  14. Microwave Resonator Measurements of Atmospheric Absorption Coefficients: A Preliminary Design Study

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Spilker, Thomas R.

    1995-01-01

    A preliminary design study examined the feasibility of using microwave resonator measurements to improve the accuracy of atmospheric absorption coefficients and refractivity between 18 and 35 GHz. Increased accuracies would improve the capability of water vapor radiometers to correct for radio signal delays caused by Earth's atmosphere. Calibration of delays incurred by radio signals traversing the atmosphere has applications to both deep space tracking and planetary radio science experiments. Currently, the Cassini gravity wave search requires 0.8-1.0% absorption coefficient accuracy. This study examined current atmospheric absorption models and estimated that current model accuracy ranges from 5% to 7%. The refractivity of water vapor is known to 1% accuracy, while the refractivity of many dry gases (oxygen, nitrogen, etc.) are known to better than 0.1%. Improvements to the current generation of models will require that both the functional form and absolute absorption of the water vapor spectrum be calibrated and validated. Several laboratory techniques for measuring atmospheric absorption and refractivity were investigated, including absorption cells, single and multimode rectangular cavity resonators, and Fabry-Perot resonators. Semi-confocal Fabry-Perot resonators were shown to provide the most cost-effective and accurate method of measuring atmospheric gas refractivity. The need for accurate environmental measurement and control was also addressed. A preliminary design for the environmental control and measurement system was developed to aid in identifying significant design issues. The analysis indicated that overall measurement accuracy will be limited by measurement errors and imprecise control of the gas sample's thermodynamic state, thermal expansion and vibration- induced deformation of the resonator structure, and electronic measurement error. The central problem is to identify systematic errors because random errors can be reduced by averaging

  15. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb.

  16. Spectroscopic method for determination of the absorption coefficient in brain tissue.

    PubMed

    Johansson, Johannes D

    2010-01-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  17. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range.

    PubMed

    Wu, Xiaojun; Zhou, Chun; Huang, Wenqian Ronny; Ahr, Frederike; Kärtner, Franz X

    2015-11-16

    Optical rectification with tilted pulse fronts in lithium niobate crystals is one of the most promising methods to generate terahertz (THz) radiation. In order to achieve higher optical-to-THz energy efficiency, it is necessary to cryogenically cool the crystal not only to decrease the linear phonon absorption for the generated THz wave but also to lengthen the effective interaction length between infrared pump pulses and THz waves. However, the refractive index of lithium niobate crystal at lower temperature is not the same as that at room temperature, resulting in the necessity to re-optimize or even re-build the tilted pulse front setup. Here, we performed a temperature dependent measurement of refractive index and absorption coefficient on a 6.0 mol% MgO-doped congruent lithium niobate wafer by using a THz time-domain spectrometer (THz-TDS). When the crystal temperature was decreased from 300 K to 50 K, the refractive index of the crystal in the extraordinary polarization decreased from 5.05 to 4.88 at 0.4 THz, resulting in ~1° change for the tilt angle inside the lithium niobate crystal. The angle of incidence on the grating for the tilted pulse front setup at 1030 nm with demagnification factor of -0.5 needs to be changed by 3°. The absorption coefficient decreased by 60% at 0.4 THz. These results are crucial for designing an optimum tilted pulse front setup based on lithium niobate crystals.

  18. Stopping-power and mass energy-absorption coefficient ratios for Solid Water.

    PubMed

    Ho, A K; Paliwal, B R

    1986-01-01

    The AAPM Task Group 21 protocol provides tables of ratios of average restricted stopping powers and ratios of mean energy-absorption coefficients for different materials. These values were based on the work of Cunningham and Schulz. We have calculated these quantities for Solid Water (manufactured by RMI), using the same x-ray spectra and method as that used by Cunningham and Schulz. These values should be useful to people who are using Solid Water for high-energy photon calibration. PMID:3724702

  19. Determination of Absorption Coefficient of a Solution by a Simple Experimental Setup

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Deepak; Akhildev, C.; Sreenivasan, P. V.; Leelamma, K. K.; Joseph, Lyjo K.; Anila, E. I.

    2011-10-01

    The absorption coefficients of aqueous potassium permanganate (KMnO4) solution at 638.8 nm for various concentrations are determined using a simple experimental set up. The setup consists of He-Ne laser source (Red, 638.8 nm, 10 mW), a glass jar in which the KMnO4 sample is taken, a mirror strip inclined at 45° to direct the laser beam towards the bottom of the glass jar, a traveling microscope to adjust the position of light dependent resistor (LDR) and a digital multimeter to measure the resistance.

  20. Partition coefficients for Al, Ca, Ti, Cr, and Ni in olivine obtained by melting experiment on an LL6 chondrite

    NASA Technical Reports Server (NTRS)

    Miyamoto, M.; Mikouchi, T.; Mckay, G. A.

    1994-01-01

    We report the partition coefficients for Ca, Al, Ti, Cr, and Ni in olivine obtained through a series of melting experiments on an LL6 chondrite under varying conditions of temperature and oxygen fugacity. It is necessary to examine the variation of partition coefficients up to extremely reducing conditions in order to study meteoritic olivines. For Ca, Al, and Cr, the partition coefficients tend to decrease as temperature increases, but do not change even under extremely reducing conditions.

  1. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  2. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  3. On the uncertainties of photon mass energy-absorption coefficients and their ratios for radiation dosimetry.

    PubMed

    Andreo, Pedro; Burns, David T; Salvat, Francesc

    2012-04-21

    A systematic analysis of the available data has been carried out for mass energy-absorption coefficients and their ratios for air, graphite and water for photon energies between 1 keV and 2 MeV, using representative kilovoltage x-ray spectra for mammography and diagnostic radiology below 100 kV, and for ¹⁹²Ir and ⁶⁰Co gamma-ray spectra. The aim of this work was to establish 'an envelope of uncertainty' based on the spread of the available data. Type A uncertainties were determined from the results of Monte Carlo (MC) calculations with the PENELOPE and EGSnrc systems, yielding mean values for µ(en)/ρ with a given statistical standard uncertainty. Type B estimates were based on two groupings. The first grouping consisted of MC calculations based on a similar implementation but using different data and/or approximations. The second grouping was formed by various datasets, obtained by different authors or methods using the same or different basic data, and with different implementations (analytical, MC-based, or a combination of the two); these datasets were the compilations of NIST, Hubbell, Johns-Cunningham, Attix and Higgins, plus MC calculations with PENELOPE and EGSnrc. The combined standard uncertainty, u(c), for the µ(en)/ρ values for the mammography x-ray spectra is 2.5%, decreasing gradually to 1.6% for kilovoltage x-ray spectra up to 100 kV. For ⁶⁰Co and ¹⁹²Ir, u(c) is approximately 0.1%. The Type B uncertainty analysis for the ratios of µ(en)/ρ values includes four methods of analysis and concludes that for the present data the assumption that the data interval represents 95% confidence limits is a good compromise. For the mammography x-ray spectra, the combined standard uncertainties of (µ(en)/ρ)(graphite,air) and (µ(en)/ρ)(graphite,water) are 1.5%, and 0.5% for (µ(en)/ρ)(water,air), decreasing gradually down to u(c) = 0.1% for the three µ(en)/ρ ratios for the gamma-ray spectra. The present estimates are shown to coincide well

  4. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  5. Measuring absorption coefficient of scattering liquids using a tube inside an integrating sphere.

    PubMed

    Villanueva, Yolanda; Veenstra, Colin; Steenbergen, Wiendelt

    2016-04-10

    A method for measuring the absorption coefficient μa of absorbing and scattering liquid samples is presented. The sample is injected into a small transparent tube mounted through an integrating sphere. Two models for determining the absorption coefficient using the relative optical output signal are described and validated using aqueous ink absorbers of 0.5 vol.% (0.3  mm-1a<1.55  mm-1) and 1.0 vol.% (1.0  mm-1a<4.0  mm-1) concentrations with 1 vol.% (μs'≈1.4  mm-1) and 10 vol.% (μs'≈14  mm-1) Intralipid dilutions. The low concentrations give μa and μs values, which are comparable with those of biological tissues. One model assumes a uniform light distribution within the sample, which is valid for low absorption. Another model considers light attenuation that obeys Lambert-Beer's law, which may be used for relatively high absorption. Measurements with low and high scattering samples are done for the wavelength range of 400-900 nm. Measured spectra of purely absorbing samples are within 15% agreement with measurements using standard transmission spectrophotometry. For 0.5 vol.% ink absorbers and at wavelengths below 700 nm, measured μa values are higher for samples with low scattering and lower for those with high scattering. At wavelengths above 700 nm, measured μa values do not vary significantly with amount of scattering. For 1.0 vol.% ink absorbers, measured spectra do not change with low scattering. These results indicate that the method can be used for measuring absorption spectra of scattering liquid samples with optical properties similar to biological absorbers, particularly at wavelengths above 700 nm, which is difficult to accomplish with standard transmission spectrophotometry.

  6. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum. PMID:1886936

  7. The melanosome: threshold temperature for explosive vaporization and internal absorption coefficient during pulsed laser irradiation.

    PubMed

    Jacques, S L; McAuliffe, D J

    1991-06-01

    The explosive vaporization of melanosomes in situ in skin during pulsed laser irradiation (pulse duration less than 1 microsecond) is observed as a visible whitening of the superficial epidermal layer due to stratum corneum disruption. In this study, the ruby laser (694 nm) was used to determine the threshold radiant exposure, H0 (J/cm2), required to elicit whitening for in vitro black (Negroid) human skin samples which were pre-equilibrated at an initial temperature, Ti, of 0, 20, or 50 degrees C. A plot of H0 vs Ti yields a straight line whose x-intercept indicates the threshold temperature of explosive vaporization to be 112 +/- 7 degrees C (SD, N = 3). The slope, delta H0/delta Ti, specifies the internal absorption coefficient, mua, within the melanosome: mua = -rho C/(slope(1 + 7.1 Rd)), where rho C is the product of density and specific heat, and Rd is the total diffuse reflectance from the skin. A summary of the absorption spectrum (mua) for the melanosome interior (351-1064 nm) is presented based on H0 data from this study and the literature. The in vivo absorption spectrum (380-820 nm) for human epidermal melanin was measured by an optical fiber spectrophotometer and is compared with the melanosome spectrum.

  8. Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals.

    PubMed

    De Roo, Jonathan; Ibáñez, Maria; Geiregat, Pieter; Nedelcu, Georgian; Walravens, Willem; Maes, Jorick; Martins, Jose C; Van Driessche, Isabel; Kovalenko, Maksym V; Hens, Zeger

    2016-02-23

    Lead halide perovskite materials have attracted significant attention in the context of photovoltaics and other optoelectronic applications, and recently, research efforts have been directed to nanostructured lead halide perovskites. Collodial nanocrystals (NCs) of cesium lead halides (CsPbX3, X = Cl, Br, I) exhibit bright photoluminescence, with emission tunable over the entire visible spectral region. However, previous studies on CsPbX3 NCs did not address key aspects of their chemistry and photophysics such as surface chemistry and quantitative light absorption. Here, we elaborate on the synthesis of CsPbBr3 NCs and their surface chemistry. In addition, the intrinsic absorption coefficient was determined experimentally by combining elemental analysis with accurate optical absorption measurements. (1)H solution nuclear magnetic resonance spectroscopy was used to characterize sample purity, elucidate the surface chemistry, and evaluate the influence of purification methods on the surface composition. We find that ligand binding to the NC surface is highly dynamic, and therefore, ligands are easily lost during the isolation and purification procedures. However, when a small amount of both oleic acid and oleylamine is added, the NCs can be purified, maintaining optical, colloidal, and material integrity. In addition, we find that a high amine content in the ligand shell increases the quantum yield due to the improved binding of the carboxylic acid.

  9. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes.

    PubMed

    Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T

    2006-01-21

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.

  10. Kramers-Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers.

    PubMed

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1996-07-20

    Spectral distortions that arise in evanescent-wave absorption spectra obtained with multimode step-index optical fibers are analyzed both theoretically and experimentally. Theoretical analysis is performed by the application of Kramers-Kronig relations to the real and the imaginary parts of the complex refractive index of an absorbing external medium. It is demonstrated that even when the extinction coefficient of the external medium is small, anomalous dispersion of that medium in the vicinity of an absorption band must be considered. Deviations from Beer's law, band distortions, and shifts in peak position are quantified theoretically as a function of the refractive index and the extinction coefficient of the external medium; the effect of bandwidth for both Lorentzian and Gaussian bands is also evaluated. Numerical simulations are performed for two types of sensing sections in commonly used plastic-clad silica optical fibers. These sensors include an unclad fiber in contact with a lower-index absorbing liquid and a fiber with the original cladding modified with an absorbing species. The numerical results compare favorably with those found experimentally with these types of sensing sections.

  11. High-resolution spectra and photoabsorption coefficients for carbon monoxide absorption bands between 94.0 nm and 100.4 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Smith, P. L.; Parkinson, W. H.; Ito, K.

    1988-01-01

    Photoabsorption coefficients have been measured for the CO in interstellar clouds at a resolving power more than 20 times greater than previously obtainable. In order to facilitate comparisons, these data have been integrated over the same wavelength ranges as used in Letzelter et al. (1987). It is found that most of the results obtained for bands between 94.0 and 100.4 nm are larger than those of Letzelter; the discrepancy may be attributable to the difference between the resolving powers of the spectrometers used, because the saturation effects associated with low resolution can underestimate absorption coefficient values.

  12. Measuring the acoustic absorption coefficient in biological tissue specimens using ultrasonic phase conjugation

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Zelenova, Z. V.; Brysev, A. P.

    2014-03-01

    Acoustic absorption has been measured in a series of biological tissue specimens—porcine muscle, renal and fat tissues—by the standard insert-substitution method, as well as by ultrasonic phase conjugation. Comparison of the experimental results and revealed differences confirm the promise of using phase conjugate waves to measure acoustic losses in biological objects. It is demonstrated that in inhomogeneous tissues, the phase conjugation method makes it possible to obtain a more reliable estimate of dissipative losses.

  13. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    NASA Astrophysics Data System (ADS)

    Bondarenko, S. V.; Garanin, Sergey G.; Zhidkov, N. V.; Pinegin, A. V.; Suslov, N. A.

    2012-01-01

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 — 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s — 2p transitions in Al atoms and the 2p — 3d transitions in Ge atoms are presented.

  14. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  15. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  16. Optical absorption coefficients in GaN/Al(Ga)N double inverse parabolic quantum wells under static external electric field

    NASA Astrophysics Data System (ADS)

    El Kadadra, A.; Fellaoui, K.; Abouelaoualim, D.; Oueriagli, A.

    2016-09-01

    In this work, we have investigated theoretically the effects of applied electric field on the linear and nonlinear optical properties in a GaN/AlxGa1-xN double inverse parabolic quantum well for different Al concentrations at the well center. Our calculations are based on the potential morphing method in the effective mass approximation. The systematic theoretical investigation contains results with all possible combinations of the involved parameters, such as quantum well width, quantum barrier width, Al concentration at each well center and magnitude of the external electric field. Our results show that the electric fields strengths, the parameter of nanostructure and incident optical intensity have a great effect on the optical characteristics of these nanostructures. Thus, the absorption coefficients which can be suitable for great performance optical modulators and multiple infrared optical device applications can be easily obtained by tuning the external electric field value and the Al concentration at the well center.

  17. Spectral particle absorption coefficients, single scattering albedos and imaginary parts of refractive indices from ground based in situ measurements at Cape Verde Island during SAMUM-2

    NASA Astrophysics Data System (ADS)

    Müller, T.; Schladitz, A.; Kandler, K.; Wiedensohler, A.

    2011-09-01

    During the SAMUM-2 experiment, spectral absorption coefficients, single scattering albedos and imaginary parts of refractive indices of mineral dust particles were investigated at the Cape Verde Islands. Main absorbing constituents of airborne samples were mineral dust and soot. PM10 spectral absorption coefficients were measured using a Spectral Optical Absorption Photometer (SOAP) covering the wavelength range from 300 to 960 nm with a resolution of 25 nm. From SOAP, also information on the particle scattering coefficients could be retrieved. Spectral single scattering albedos were obtained in the wavelength range from 350 to 960 nm. Imaginary parts of the refractive index were inferred from measured particle number size distributions and absorption coefficients using Mie scattering theory. Imaginary parts for a dust case were 0.012, 0.0047 and 0.0019 at the wavelengths 450, 550 and 950 nm, respectively, and the single scattering albedos were 0.91, 0.96 and 0.98 at the same wavelengths. During a marine case, the imaginary parts of the refractive indices were 0.0045, 0.0040 and 0.0036 and single scattering albedos were 0.93, 0.95 and 0.96 at the wavelengths given above.

  18. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  19. Can we obtain the coefficient of restitution from the sound of a bouncing ball?

    NASA Astrophysics Data System (ADS)

    Heckel, Michael; Glielmo, Aldo; Gunkelmann, Nina; Pöschel, Thorsten

    2016-03-01

    The coefficient of restitution may be determined from the sound signal emitted by a sphere bouncing repeatedly off the ground. Although there is a large number of publications exploiting this method, so far, there is no quantitative discussion of the error related to this type of measurement. Analyzing the main error sources, we find that even tiny deviations of the shape from the perfect sphere may lead to substantial errors that dominate the overall error of the measurement. Therefore, we come to the conclusion that the well-established method to measure the coefficient of restitution through the emitted sound is applicable only for the case of nearly perfect spheres. For larger falling height, air drag may lead to considerable error, too.

  20. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  1. Variation of phytoplankton absorption coefficients in the northern South China Sea during spring and autumn

    NASA Astrophysics Data System (ADS)

    Wu, J.; Hong, H.; Shang, S.; Dai, M.; Lee, Z.

    2007-05-01

    We examined the temporal and spatial variabilities of phytoplankton absorption coefficients (αphλ)) and their relationships with physical processes in the northern South China Sea from two cruise surveys during spring (May 2001) and late autumn (November 2002). A large river plume induced by heavy precipitation in May stimulated a phytoplankton bloom on the inner shelf, causing significant changes in the surface water in αph values and B/R ratios (αph(440)/αph(675)). This was consistent with the observed one order of magnitude elevation of chlorophyll α and a shift from a pico/nano dominated phytoplankton community to one dominated by micro-algae. At the seasonal level, enhanced vertical mixing due to strengthened northeast monsoon in November has been observed to result in higher surface αph(675) (0.002-0.006 m-1 higher) and less pronounced subsurface maximum on the outer shelf/slope in November as compared that in May. Measurements of αph and B/R ratios from three transects in November revealed a highest surface αph(675) immediately outside the mouth of the Pearl River Estuary, whereas lower αph(675) and higher B/R ratios were featured in the outer shelf/slope waters, demonstrating the respective influence of the Pearl River plume and the oligotrophic nature of South China Sea water. The difference in spectral shapes of phytoplankton absorption (measured by B/R ratios and bathochromic shifts) on these three transects infers that picoprocaryotes are the major component of the phytoplankton community on the outer shelf/slope rather than on the inner shelf. In addition, a regional tuning of the phytoplankton absorption spectral model (Carder et al., 1999) demonstrated a greater spatial variation than seasonal variation in the lead parameter a0(λ). These results suggest that phytoplankton absorption properties in a coastal region such as the northern South China Sea are complex and region-based parameterization is mandatory in order for remote sensing

  2. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  3. Retrieval of phytoplankton and colored detrital matter absorption coefficients with remote sensing reflectance in an ultraviolet band.

    PubMed

    Wei, Jianwei; Lee, Zhongping

    2015-02-01

    The light absorption of phytoplankton and colored detrital matter (CDM), which includes contribution of gelbstoff and detrital matters, has distinctive yet overlapping features in the ultraviolet (UV) and visible domain. The CDM absorption (a(dg)) increases exponentially with decreasing wavelength while the absorption coefficient of phytoplankton (a(ph)) generally decreases toward the shorter bands for the range of 350-450 nm. It has long been envisioned that including ocean color measurements in the UV range may help the separation of these two components from the remotely sensed ocean color spectrum. An attempt is made in this study to provide an analytical assessment of this expectation. We started with the development of an absorption decomposition model [quasi-analytical algorithm (QAA)-UV], analogous to the QAA, that partitions the total absorption coefficient using information at bands 380 and 440 nm. Compared to the retrieval results relying on the absorption information at 410 and 440 nm of the original QAA, our analyses indicate that QAA-UV can improve the retrieval of a(ph) and a(dg), although the improvement in accuracy is not significant for values at 440 nm. The performance of the UV-based algorithm is further evaluated with in situ measurements. The limited improvement observed with the field measurements highlights that the separation of a(dg) and a(ph) is highly dependent on the accuracy of the ocean color measurements and the estimated total absorption coefficient.

  4. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    NASA Astrophysics Data System (ADS)

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  5. Laboratory measurements of the ozone absorption coefficient in the wavelength region 339 to 362 nm at different temperatures

    NASA Astrophysics Data System (ADS)

    Cacciani, Marco; Disarra, Alcide; Fiocco, Giorgio

    1987-06-01

    Instrumentation for the absolute measurement of the ozone absorption coefficient in the Huggins bands at different temperatures was set up. Ozone is produced with an electrical discharge and stored cryogenically; differential absorption measurements are carried out in a slowly evolving mixture of ozone and molecular oxygen. Results in the region 339 to 362 nm at temperatures between minus 30 and plus 40 C are reported. Results support Katayama's (1979) model of the transitions giving rise to the Huggins absorption bands of ozone. For measurements of atmospheric ozone profiles by DIAL techniques, the results on the temperature dependence of the absorption coefficient at the wavelength corresponding to the third harmonic of an NdYAG laser are stressed.

  6. Optoelectronic properties of Mg{sub 2}Si semiconducting layers with high absorption coefficients

    SciTech Connect

    Kato, Takashi; Sago, Yuichiro; Fujiwara, Hiroyuki

    2011-09-15

    In an attempt to develop a low-cost material for solar cell devices, polycrystalline magnesium silicide (poly-Mg{sub 2}Si) semiconducting layers have been prepared by applying rf magnetron sputtering using a Mg{sub 2}Si target. The optimum substrate temperature for the poly-Mg{sub 2}Si growth was found to be T{sub s} = 200 deg. C; the film deposition at higher temperatures leads to desorption of Mg atoms from the growing surface, while the amorphous phase formation occurs at room temperature. The poly-Mg{sub 2}Si layer deposited at T{sub s} = 200 deg. C shows the (111) preferential orientation with a uniform grain size of {approx}50 nm. The dielectric function of the poly-Mg{sub 2}Si layer has been determined accurately by spectroscopic ellipsometry. From the analysis, quite high absorption coefficients and an indirect gap of 0.77 eV in the poly-Mg{sub 2}Si layer have been confirmed. The above poly-Mg{sub 2}Si layer shows clear photoconductivity and can be applied as a narrow-gap bottom layer in multi-junction solar cell devices.

  7. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.

  8. Noise-driven optical absorption coefficients of impurity doped quantum dots

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  9. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens. PMID:27256895

  10. An empirical determination of the dust mass absorption coefficient, κd, using the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Clark, Christopher J. R.; Schofield, Simon P.; Gomez, Haley L.; Davies, Jonathan I.

    2016-06-01

    We use the published photometry and spectroscopy of 22 galaxies in the Herschel Reference Survey to determine that the value of the dust mass absorption coefficient κd at a wavelength of 500 μm is kappa _{500} = 0.051^{+0.070}_{-0.026} m^{2 kg^{-1}}. We do so by taking advantage of the fact that the dust-to-metals ratio in the interstellar medium of galaxies appears to be constant. We argue that our value for κd supersedes that of James et al. - who pioneered this approach for determining κd - because we take advantage of superior data, and account for a number of significant systematic effects that they did not consider. We comprehensively incorporate all methodological and observational contributions to establish the uncertainty on our value, which represents a marked improvement on the oft-quoted `order-of-magnitude' uncertainty on κd. We find no evidence that the value of κd differs significantly between galaxies, or that it correlates with any other measured or derived galaxy properties. We note, however, that the availability of data limits our sample to relatively massive (109.7 < M⋆ < 1011.0 M⊙), high metallicity (8.61 < [ 12 + log_{10} fracOH ] < 8.86) galaxies; future work will allow us to investigate a wider range of systems.

  11. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  12. Linear absorption coefficient of beryllium in the 50-300-A wavelength range. [bandpass filter materials for ultraviolet astronomy instrumentation

    NASA Technical Reports Server (NTRS)

    Barstow, M. A.; Lewis, M.; Petre, R.

    1983-01-01

    Transmittances of thin-film filters fabricated for an extreme-UV astronomy sounding-rocket experiment yield values for the linear absorption coefficient of beryllium in the 50-300-A wavelength range, in which previous measurements are sparse. The inferred values are consistent with the lowest data previously published and may have important consequences for extreme-UV astronomers.

  13. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  14. Absorption coefficient of urban aerosol in Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, B. L.; Wang, T. J.; Liu, J.; Ma, Y.; Yin, C. Q.; Li, S.; Xie, M.; Han, Y.; Zhu, J. L.; Yang, X. Q.; Fu, C. B.

    2015-12-01

    Absorbing aerosols can significantly modulate short-wave solar radiation in the atmosphere, affecting regional and global climate. The aerosol absorption coefficient (AAC) is an indicator that assesses the impact of absorbing aerosols on radiative forcing. In this study, the near-surface AAC and absorption Ångström exponent (AAE) in the urban area of Nanjing, China, are characterized on the basis of measurements in 2012 and 2013 using the seven-channel Aethalometer (model AE-31, Magee Scientific, USA). The AAC is estimated with direct and indirect corrections, which result in consistent temporal variations and magnitudes of AAC at 532 nm. The mean AAC at 532 nm is about 43.23 ± 28.13 M m-1 in the urban area of Nanjing, which is much lower than that in Pearl River Delta and the same as in rural areas (Lin'an) in Yangtze River Delta. The AAC in the urban area of Nanjing shows strong seasonality (diurnal variations); it is high in cold seasons (at rush hour) and low in summer (in the afternoon). It also shows synoptic and quasi-2-week cycles in response to weather systems. Its frequency distribution follows a typical log-normal pattern. The 532 nm AAC ranging from 15 to 65 M m-1 dominates, accounting for more than 72 % of the total data samples in the entire study period. Frequent high pollution episodes, such as those observed in June 2012 and in winter 2013, greatly enhanced AAC and altered its temporal variations and frequency distributions. These episodes are mostly due to local emissions and regional pollution. Air masses flowing from northern China to Nanjing can sometimes be highly polluted and lead to high AAC at the site. AAE at 660/470 nm from the Schmid correction (Schmid et al., 2006) is about 1.56, which might be more reasonable than from the Weingartner correction (Weingartner et al., 2003). Low AAEs mainly occur in summer, likely due to high relative humidity (RH) in the season. AAC increases with increasing AAE at a fixed aerosol loading. The RH

  15. A system coefficient approach for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures.

    PubMed

    Xia, X R; Baynes, R E; Monteiro-Riviere, N A; Riviere, J E

    2007-01-01

    A system coefficient approach is proposed for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures. The complicated molecular interactions are dissected into basic molecular interaction forces via Abraham's linear solvation energy relationship (LSER). The molecular interaction strengths of a chemical are represented by a set of solute descriptors, while those of a membrane/chemical mixture system are represented by a set of system coefficients. The system coefficients can be determined by using a set of probe compounds with known solute descriptors. Polydimethylsiloxane (PDMS) membrane-coated fibres and 32 probe compounds were used to demonstrate the proposed approach. When a solvent was added into the chemical mixture, the system coefficients were altered and detected by the system coefficient approach. The system coefficients of the PDMS/water system were (0.09, 0.49, -1.11, -2.36, -3.78, 3.50). When 25% ethanol was added into the PDMS/water system, the system coefficients were altered significantly (0.38, 0.41, -1.18, -2.07, -3.40, 2.81); and the solvent effect was quantitatively described by the changes in the system coefficients (0.29, -0.08, -0.07, 0.29, 0.38, -0.69). The LSER model adequately described the experimental data with a correlation coefficient (r(2)) of 0.995 and F-value of 1056 with p-value less than 0.0001.

  16. Depth profiling the optical absorption and thermal reflection coefficient via an analysis based on the method of images (abstract)

    NASA Astrophysics Data System (ADS)

    Power, J. F.

    2003-01-01

    The problem of depth profiling optical absorption in a thermally depth variable solid is a problem of direct interest for the analysis of complex structured materials. In this work, we introduce a new algorithm to solve this problem in a planar layered sample which is impulse irradiated. The sample is comprised of "N" model layers of thickness Δx, of constant diffusivity α, where the conductivity varies depth wise with each layer. This derivation extends to the general case of a depth variable thermal reflection coefficient with depth variable optical source density. In such a sample, at finite time, t, past excitation, thermal energy can only significantly penetrate NL model layers NL≈√4αt[-ln(ɛ)] /2Δx, where ɛ is a small error (ɛ⩽10-6) and a double transit through each layer is assumed. The depth profile of optical absorption in each layer, i, is approximated by δ(x-iΔx), weighted by the optical source density Si. The temperature at x=0- just inside a front medium contacting the sample is given by T(x=0,t)= ∑ i=12NL SiṡGR(x,x0=iΔx,t)]x=0, where GR(x,x0,t) represents an effective Green's function for optical absorption at the depth x0=iΔx in the sample. The method of images1 gives GR(x,x0=iΔx,t) in the following form: [GR(x,0Δx,t)GR(x,2Δx,t)…GR(x,2NLΔx,t)]=[A10A12 A14 A16 …..A1,2NL0A32A34 A36 …..A3,2NL….0……A2NL-1,2NL][G(x-0Δx,t)G(x-2Δx,t)……G(x-2NLΔx,t)]. The G(x-nΔx,t) are shifted image fields obtained from the infinite domain Green's function for one-dimensional heat conduction. They account for thermal wave reflection/transmission over the path length nΔx from the source (at interface i) to the surface (x=0). The Ain are lumped coefficients giving the efficiency of heat transmission from the ith source to the surface for each path order n. They are determined by a mapping procedure that identifies all propagation paths of each order, n, and computes the individual and lumped reflection coefficients. Equation (2) is

  17. Quasi-random narrow-band model fits to near-infrared low-temperature laboratory methane spectra and derived exponential-sum absorption coefficients

    NASA Technical Reports Server (NTRS)

    Baines, Kevin H.; West, Robert A.; Giver, Lawrence P.; Moreno, Fernando

    1993-01-01

    Near-infrared 10/cm resolution spectra of methane obtained at various temperatures, pressures, and abundances are fit to a quasi-random narrow-band model. Exponential-sum absorption coefficients for three temperatures (112, 188, and 295 K), and 20 pressures from 0.0001 to 5.6 bars, applicable to the cold environments of the major planets, are then derived from the band model for the 230 wavelengths measured from 1.6 to 2.5 microns. RMS deviations between the laboratory and the exponential-sum synthetic transmissions are reported for the best fitting 50 wavelengths. Deviations relevant to broadband, 1-percent spectral resolution observations are also presented. The validity of exponential-sum coefficients derived from broadband (10/cm) transmission data is demonstrated via direct comparison with line-by-line calculations. The complete atlas of coefficients is available from the Planetary Data System-Planetary Atmospheres Discipline Node.

  18. A reduced-scale railway noise barrier's insertion loss and absorption coefficients: comparison of field measurements and predictions

    NASA Astrophysics Data System (ADS)

    Busch, T. A.; Nugent, R. E.

    2003-10-01

    In situ testing determined the insertion loss ( IL) and absorption coefficients of a candidate absorptive noise barrier (soundwall) to abate railway noise for residents of Anaheim, CA. A 4000 m barrier is proposed south of the tracks, but residential areas to the north have expressed concerns that barrier reflections will increase their noise exposure. To address these concerns, a 3.66 m high by 14.6 m long demonstration barrier was built in the parking lot of Edison Field, Anaheim, as part of a public open house, thereby allowing for acoustical measurements. Insertion loss ( IL) was measured in third-octave bands assuming 1/2-scale construction. The IL for three, scaled railway noise sub-sources (rail/wheel interface, locomotive, and train horn) was measured at six, scaled distances. The highest total, A-weighted IL, after corrections for finite-barrier and point-source speaker effects was 22 dB(A) for rail/wheel noise, 18 dB(A) for locomotive noise, and 20 dB(A) for train horn noise. These results can be compared favourably to IL predictions made using algorithms from the US Federal Rail Administration (FRA) noise assessment guidelines. For the actual barrier installation, shielded residential receivers located south of the project are expected to see their future noise exposures reduced from an unmitigated 78 CNEL to 65 CNEL. Absorption coefficients were measured using time delay spectrometry. At lower frequencies, measured absorption coefficients were notably less than the reverberation room results advertised in the manufacturer's literature, but generally conformed with impedance tube results. At higher frequencies the correspondence between measured absorption coefficients and reverberation room results was much improved. For the actual barrier installation, unshielded residential receivers to the north are expected to experience noise exposure increases of less than 1 dB(A). This factor of increase is consistent with a finding of no impact when assessed

  19. The absorption coefficient of the liquid N2 2.15-micron band and application to Triton

    NASA Technical Reports Server (NTRS)

    Grundy, William M.; Fink, Uwe

    1991-01-01

    The present measurements of the temperature dependence exhibited by the liquid N2 2.15-micron 2-0 collision-induced band's absorption coefficient and integrated absorption show the latter to be smaller than that of the N2 gas, and to decrease with decreasing temperature. Extrapolating this behavior to Triton's nominal surface temperature yields a new estimate of the N2-ice grain size on the Triton south polar cap; a mean N2 grain size of 0.7-3.0 cm is consistent with grain growth rate calculation results.

  20. Measurements of standing waves and the absorption coefficients of Various materials with surface electromagnetic waves on Al.

    PubMed

    Bell, R J; Davarpanah, M; Goben, C A; Begley, D L; Bhasin, K; Alexander, R W

    1975-07-01

    The first measurements of the absorption coefficient of materials via surface electromagnetic wave (SEW) techniques are reported. By simply laying samples on a metal sheet on which SEW were passing, the transmittances and absorption coefficients of the sample have been determined. These measurements were made at microwave frequencies, but the general techniques are applicable over the entire frequency range from microwaves into the near ir. Solid samples were used in these measurements, but liquid or gases could also be studied by this new easy-to-use technique. Comments about the applicability of the technique to very thin samples are made. Another result reported is the existence of different propagating SEW modes as a function of the height of a sample (film thickness) measured from the metal-sample interface to the top of the sample at the sample-vacuum interface above.

  1. Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Huot, Y.; Gray, D. J.; Weidemann, A.; Rhea, W. J.

    2013-09-01

    In the aquatic environment, particles can be broadly separated into phytoplankton (PHY), non-algal particle (NAP) and dissolved (or very small particle, VSP) fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs) can also be used. Both absorption spectra and VSFs were used to estimate particle fractions for an experiment in the Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM); the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient measured by an ac-s and the VSF at a few backward angles measured by a HydroScat-6 and an ECO-VSF agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative errors = -20%). The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering. Since the sizes of VSP range from 0.02 to 0.2 μm, covering (a portion of) the operationally defined "dissolved" matter, the typical assumption that colored dissolved organic matter (i.e., CDOM) does not scatter may not hold, particularly in a coastal or estuarine environment.

  2. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  3. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    SciTech Connect

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.

  4. Simultaneous Maximum-Likelihood Reconstruction of Absorption Coefficient, Refractive Index and Dark-Field Scattering Coefficient in X-Ray Talbot-Lau Tomography

    PubMed Central

    Ritter, André; Anton, Gisela; Weber, Thomas

    2016-01-01

    A maximum-likelihood reconstruction technique for X-ray Talbot-Lau tomography is presented. This technique allows the iterative simultaneous reconstruction of discrete distributions of absorption coefficient, refractive index and a dark-field scattering coefficient. This technique avoids prior phase retrieval in the tomographic projection images and thus in principle allows reconstruction from tomographic data with less than three phase steps per projection. A numerical phantom is defined which is used to evaluate convergence of the technique with regard to photon statistics and with regard to the number of projection angles and phase steps used. It is shown that the use of a random phase sampling pattern allows the reconstruction even for the extreme case of only one single phase step per projection. The technique is successfully applied to measured tomographic data of a mouse. In future, this reconstruction technique might also be used to implement enhanced imaging models for X-ray Talbot-Lau tomography. These enhancements might be suited to correct for example beam hardening and dispersion artifacts and improve overall image quality of X-ray Talbot-Lau tomography. PMID:27695126

  5. Effect of electron collisions on transport coefficients induced by the inverse bremsstrahlung absorption in plasmas

    SciTech Connect

    Bendib, A.; Tahraoui, A.; Bendib, K.; Mohammed El Hadj, K.; Hueller, S.

    2005-03-01

    The transport coefficients of fully ionized plasmas under the influence of a high-frequency electric field are derived solving numerically the electron Fokker-Planck equation using a perturbation method, parametrized as a function of the electron mean-free-path {lambda}{sub ei} compared to the spatial scales L. The isotropic and anisotropic contributions of the inverse bremsstrahlung heating are considered. Electron-electron collision terms are kept in the analysis, which allows us to consider with sufficient accuracy to describe plasmas with arbitrary atomic number Z. Practical numerical fits of the transport coefficients are proposed as functions of Z and the collisionality parameter {lambda}{sub ei}/L.

  6. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  7. Spatial variability of absorption coefficients over a biogeochemical gradient in a large and optically complex shallow lake

    NASA Astrophysics Data System (ADS)

    Riddick, Caitlin A. L.; Hunter, Peter D.; Tyler, Andrew N.; Martinez-Vicente, Victor; Horváth, Hajnalka; Kovács, Attila W.; Vörös, Lajos; Preston, Tom; Présing, Mátyás.

    2015-10-01

    In order to improve robustness of remote sensing algorithms for lakes, it is vital to understand the variability of inherent optical properties (IOPs) and their mass-specific representations (SIOPs). In this study, absorption coefficients for particulate and dissolved constituents were measured at 38 stations distributed over a biogeochemical gradient in Lake Balaton, Hungary. There was a large range of phytoplankton absorption (aph(λ)) over blue and red wavelengths (aph(440) = 0.11-4.39 m-1, aph(675) = 0.048-2.52 m-1), while there was less variability in chlorophyll-specific phytoplankton absorption (a*ph(λ)) in the lake (a*ph(440) = 0.022 ± 0.0046 m2 mg-1, a*ph(675) = 0.010 ± 0.0020 m2 mg-1) and adjoining wetland system, Kis-Balaton (a*ph(440) = 0.017 ± 0.0015 m2 mg-1, a*ph(675) = 0.0088 ± 0.0017 m2 mg-1). However, in the UV, a*ph(350) significantly increased with increasing distance from the main inflow (Zala River). This was likely due to variable production of photoprotective pigments (e.g., MAAs) in response to the decreasing gradient of colored dissolved organic matter (CDOM). The slope of CDOM absorption (SCDOM) also increased from west to east due to larger terrestrial CDOM input in the western basins. Absorption by nonalgal particles (aNAP(λ)) was highly influenced by inorganic particulates, as a result of the largely mineral sediments in Balaton. The relative contributions to the absorption budget varied more widely than oceans with a greater contribution from NAP (up to 30%), and wind speed affected the proportion attributed to NAP, phytoplankton, or CDOM. Ultimately, these data provide knowledge of the heterogeneity of (S)IOPs in Lake Balaton, suggesting the full range of variability must be considered for future improvement of analytical algorithms for constituent retrieval in inland waters.

  8. The Optical Absorption Coefficient of Barley Seeds Investigated by Photoacoustic Spectroscopy and Their Effects by Laser Biostimulation

    NASA Astrophysics Data System (ADS)

    Pérez Reyes, Ma. C.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Moreno Martínez, E.

    2015-09-01

    Laser light as a biostimulator has been applied in agriculture, and some scientific reports evidence its usefulness. A knowledge about seed optical parameters is of great relevance in the biostimulation process, because information can be provided about the light absorption of seeds. Thus, the objective of the present study was to determine the optical absorption coefficient (β ) of barley ( Hordeum vulgare L.) seeds by means of photoacoustic spectroscopy; these seeds were studied in two conditions: seeds in their natural color and seeds dyed with methylene blue. The seeds were biostimulated by a laser beam (650 nm wavelength) to evaluate the effects of pre-sowing biostimulation in natural mycobiota associated with different laser irradiation times (0 s, 60 s, 120 s, 240 s, and 480 s). The results of this research demonstrated changes in the optical parameters (absorption and penetration) that occur in the seeds by changing the natural condition to a dyed condition. The dyed seeds, by the methylene blue photosensitizer, become optically opaque, producing greater optical absorption at 650 nm which causes an increase in the effect of laser stimulation. The experimental results showed that the biggest mycobiota reduction (52 %) corresponded to dyed seeds irradiated with a laser for 120 s.

  9. Solvent drag in jejunal absorption of salicylic acid and antipyrine obtained by in situ single-pass perfusion method in rat.

    PubMed

    Hirasawa, T; Muraoka, T; Karino, A; Hayashi, M; Awazu, S

    1984-04-01

    The in situ single-pass perfusion method in an individual rat was developed to discuss the solvent drag in drug intestinal absorption without the individual differences. In this method the apparent water influx (influx') was used as a measure of solvent drag in the same manner as the previous paper. Consequently the sieving coefficients of salicylic acid and antipyrine in one rat are not significantly different from one but in the other are significantly smaller than one, resulting in 0.6-0.7 in average. And it was also shown that the reflection from the membrane in the solvent drag can be detected more precisely and efficiently by this method than the recirculating method in the previous paper. The D2O absorption clearance (CLD2O) was equal to net water flux as estimated theoretically when the D2O concentration in lumen was equal to that in plasma, indicating that D2O can be absorbed by water absorption even in the absence of the concentration gradient. Estimating the real water influx from the net water flux obtained under such condition, the minimal contribution ratio of the solvent drag to the total absorption clearance of salicylic acid and antipyrine was calculated to be approximately 12%.

  10. Airborne Measurements of Scattering and Absorption Coefficients in the Planetary Boundary Layer above the Po Valley, Italy, during the PEGASOS Campaigns

    NASA Astrophysics Data System (ADS)

    Rosati, B.; Weingartner, E.; Gysel, M.; Tillmann, R.; Mentel, T. F.; Decesari, S.; Marinoni, A.; Gobbi, G. P.; Fierli, F.; Cairo, F.; Bucci, S.; Zanatta, M.; Größ, J.; Baltensperger, U.

    2014-12-01

    Aerosol particles influence the Earth's radiation budget by interacting with the incoming sunlight. The chemical composition and size of aerosol particles determine their potential to scatter and absorb radiation as well as their capability to take up water (Zieger et al., 2011). If particles are hygroscopic their optical properties will be altered at enhanced relative humidities (RH) due to the increase in size and change in index of refraction. It is known that RH but also the chemical composition of aerosols change with altitude (Morgan et al., 2010) which makes it very important to investigate optical properties at different heights. Within the Pan-European Gas-Aerosols-climate interaction Study (PEGASOS) a set of instruments was installed on a Zeppelin to investigate changes of light scattering and absorption in the planetary boundary layer. In order to obtain the scattering properties, Mie calculations were performed for size distributions recorded with SMPS (scanning mobility particle sizer) and WELAS (optical size spectrometer). The index of refraction and the hygroscopicity of the aerosol particles were measured with the white-light humidified optical particle spectrometer (WHOPS). These measurements further allowed studying the RH-dependence of the optical properties. Moreover, a seven wavelength portable aethalometer was employed to determine the light absorption properties of the aerosol. In this work we will present vertical profiles of scattering and absorption coefficients measured during Zeppelin flights of the PEGASOS campaigns in Italy in 2012. Additionally comparisons with ground based measurements from nephelometers and aethalometers, as well as remote sensing results will be shown. W.T. Morgan et al., Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: Airborne measurements in North-Western Europe, Atmospheric Chemistry and Physics 10(2010), pp. 8151-8171.P. Zieger et al., Comparison of ambient aerosol

  11. Absorption, scattering and single scattering albedo of aerosols obtained from in situ measurements in the subarctic coastal region of Norway

    NASA Astrophysics Data System (ADS)

    Montilla, E.; Mogo, S.; Cachorro, V.; Lopez, J.; de Frutos, A.

    2011-01-01

    In situ measurements of aerosol optical properties were made in summer 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the North of the island of Andøya (Vesterålen archipelago), about 300 km north of the Arctic Circle. The extended three months campaign was part of the POLAR-CAT Project of the International Polar Year (IPY-2007-2008), and its goal was to characterize the aerosols of this sub-Arctic area which frequently transporte to the Arctic region. The ambient light-scattering coefficient, σs(550 nm), at ALOMAR had a hourly mean value of 5.412 Mm-1 (StD = 3.545 Mm-1) and the light-absorption coefficient, σa(550 nm), had an hourly mean value of 0.400 Mm-1 (StD = 0.273 Mm-1). The scattering/absorption Ångström exponents, αs,a, are used for detailed analysis of the variations of the spectral shape of σs,a. The single scattering albedo, &omega0, ranges from 0.622 to 0.985 (mean = 0.913, StD = 0.052) and the relation of this property to the absorption/scattering coefficients and the Ångström exponents is presented. The relationships between all the parameters analyzed, mainly those related to the single scattering albedo, allow us to describe the local atmosphere as extremely clean.

  12. Effect of quantum dot size and size distribution on the intersublevel transitions and absorption coefficients of III-V semiconductor quantum dot

    SciTech Connect

    Kabi, Sanjib; Perera, A. G. Unil

    2015-03-28

    The intersublevel absorption peak energy and absorption coefficient of non-uniform quantum dot (QD) ensembles are calculated analytically. The effect of size variations and size distribution of QDs on their energy states is analyzed. The dots are considered as a quantum box with finite potential at the barriers and the size distribution described by a Gaussian function. The influence of the aspect ratio (base to height ratio) of the QDs on the optical transitions is studied. Our model predicts the dot size (height and base) accurately to determine the absorption peaks and corresponding absorption coefficient. We also compute the absorption coefficient of the QD with different size distributions to verify the results calculated using this model with the reported experimental and other theoretical results.

  13. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  14. Absorption coefficients of the methane-nitrogen binary ice system: Implications for Pluto

    NASA Astrophysics Data System (ADS)

    Protopapa, S.; Grundy, W. M.; Tegler, S. C.; Bergonio, J. M.

    2015-06-01

    The methane-nitrogen phase diagram of Prokhvatilov and Yantsevich (1983. Sov. J. Low Temp. Phys. 9, 94-98) indicates that at temperatures relevant to the surfaces of icy dwarf planets like Pluto, two phases contribute to the methane absorptions: nitrogen saturated with methane N2 ‾ :CH4 and methane saturated with nitrogen CH4 ‾ :N2 . No optical constants are available so far for the latter component limiting construction of a proper model, in compliance with thermodynamic equilibrium considerations. New optical constants for solid solutions of methane diluted in nitrogen (N2 :CH4) and nitrogen diluted in methane (CH4 :N2) are presented at temperatures between 40 and 90 K, in the wavelength range 1.1-2.7 μm at different mixing ratios. These optical constants are derived from transmission measurements of crystals grown from the liquid phase in closed cells. A systematic study of the changes of methane and nitrogen solid mixtures spectral behavior with mixing ratio and temperature is presented.

  15. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    NASA Astrophysics Data System (ADS)

    McKee, David; Röttgers, Rüdiger; Neukermans, Griet; Calzado, Violeta Sanjuan; Trees, Charles; Ampolo-Rella, Marina; Neil, Claire; Cunningham, Alex

    2014-12-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertainties on derived values of aph*Chl (λ) has received insufficient study. This study presents an analysis of measurement uncertainties for a data set collected in the Ligurian Sea in Spring and assesses the impact on estimates of aph*Chl (λ). It is found that a large proportion of apparent variability in this set of aph*Chl (λ) can be attributed to measurement errors. Application of the same analysis to the global NOMAD data set suggests that a significant fraction of variability in aph*Chl (λ) may also be due to measurement errors. The copyright line for this article was changed on 16 JAN 2015 after original online publication.

  16. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    Despite of its importance, the possibilities to determine the direct radiative forcing by atmospheric aerosols is very limited due to lack of the reliable on-line instruments. Therefore there is an increasing concern for novel methods promising more accurate and reliable results in this field. The accuracy and reliability of the available on-line instruments like SP2 (Single Particle Soot Photometer), MAAP (Multi Angle Absorption Photometer), are limited by the weakness of the spectral resolution or the sampling artefact of filter matrix during the light attenuation measurement on the deposited filter. These methods neither suitable for direct determination of the light absorption by aerosols nor dispose the capability of the source apportionment. In this work we present a novel photoacoustic based instrument for direct light absorption measurements in the atmosphere and demonstrate the suitability of that both in laboratory and field circumstances. We have developed a novel Multi Wavelength PhotoAcoustic System (WaSul-MuWaPas) based on the diode laser pumped, high repetition rate, Q-switched Nd:YAG laser and its frequency converted harmonics for direct determination of light absorption by aerosols. This instrument has designed to make in situ measurements at four different wavelengths simultaneously from the NIR to the UV wavelength range (1064nm, 532nm, 355nm, 266nm). The Wasul-MuWaPas measures directly the optical absorption coefficient on airborne particles, not belong to the integrated plate type technique (filter-free operation), operating at wide wavelength range (source apportionment possibilities), due to the possibilities of the wavelength independent cell constant determination the measurement method is absolute. Because of these the Wasul-MuWaPas system may become one of the best candidate for absorption measurements of various atmospheric aerosols such as black carbon, mineral dust, and secondary organic and inorganic aerosols as well as for source

  17. Simulation of maize irrigation requirements at the regional scale: comparison between results obtained with measured and FAO-56 crop coefficient

    NASA Astrophysics Data System (ADS)

    Facchi, A.; Gharsallah, O.; Gandolfi, C.; Chiaradia, E.; Mancini, M.

    2012-04-01

    The FAO-56 "single crop coefficient" or "double crop coefficient" approaches are the most recommended and widely adopted procedures for the estimation of crop irrigation requirements. In these methods crop evapotranspiration in well-watered conditions is calculated by multiplying the grass reference evapotranspiration ET0 determined by the Penman-Monteith FAO-56 equation and a crop coefficient Kc depending on the crop type and its growing stage. In particular, the "double crop coefficient" allows the separation of soil evaporation and crop transpiration, splitting Kc in two different terms: a basal crop coefficient Kcb and a soil evaporation coefficient Ke. Many authors in the last fifteen years showed that the FAO Kc and Kcb tabulated coefficients, even if adjusted using the specific procedure based on local meteorological, irrigation and crop data suggested by FAO-56, tend to underestimate the observed crop coefficients in arid and semi-arid environments, while an overestimation often occurs for humid and semi-humid regions. In the literature differences up to ±40% especially during the middle growth cycle are reported, mainly due to the complexity of the crop coefficient which actually integrates several physical and biological factors. The purpose of our research was to measure the Kc pattern for maize grown in the Lombardy Region (Northern Italy) and to evaluate the difference in crop irrigation requirements at a regional scale considering the measured Kc instead of the FAO tabulated values using a spatially distributed hydrological model. Kc was calculated for two experimental maize fields for years 2006, 2010 and 2011 as the ratio between actual crop evapotranspiration (ET) in well watered conditions and ET0. ET was measured using eddy-covariance technique while ET0 was determined from agro-meteorological data registered by the two standard meteo stations closest to the experimental areas. The second step of the research was achieved by using the

  18. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    PubMed

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  19. ON THE DIFFERENT ANALYTICAL RESULTS OBTAINED FOR THE PARALLEL DIFFUSION COEFFICIENT OF COSMIC PARTICLES WITH ADIABATIC FOCUSING

    SciTech Connect

    Shalchi, A.; Danos, R. J.

    2013-03-10

    A spatially varying mean magnetic field gives rise to so-called adiabatic focusing of energetic particles propagating through the universe. In the past, different analytical approaches have been proposed to calculate the particle diffusion coefficient along the mean field with focusing. In the present paper, we show how these different results are related to each other. New results for the parallel diffusion coefficient that are more general than previous results are also presented.

  20. Absorption Ångström exponents of aerosols and light absorbing carbon (LAC) obtained from in situ data in Covilhã, central Portugal.

    PubMed

    Mogo, S; Cachorro, V E; de Frutos, A; Rodrigues, A

    2012-12-01

    A field campaign was conducted from October 2009 to July 2010 at Covilhã, a small town located in the region of Beira Interior (Portugal) in the interior of the Iberian Peninsula. The ambient light-absorption coefficient, σ(a) (522 nm), obtained from a Particle Soot Absorption Photometer (PSAP), presented a daily mean value of 12.1 Mm⁻¹ (StD = 7.3 Mm⁻¹). The wavelength dependence of aerosol light absorption is investigated through the Ångström parameter, α(a). The α(a) values for the pair of wavelengths 470-660 nm ranged from 0.86 to 1.47 during the period of measurements. The PSAP data were used to infer the mass of light absorbing carbon (LAC) and the daily mean varied from 0.1 to 6.8 μg m⁻³. A detailed study of special events with different aerosol characteristics is carried out and, to support data interpretation, air masses trajectory analysis is performed.

  1. Antimony orthophosphate glasses with large nonlinear refractive indices, low two-photon absorption coefficients, and ultrafast response

    SciTech Connect

    Falcao-Filho, E.L.; Araujo, Cid B. de; Bosco, C.A.C.; Maciel, G.S.; Acioli, L.H.; Nalin, M.; Messaddeq, Y.

    2005-01-01

    Antimony glasses based on the composition Sb{sub 2}O{sub 3}-SbPO{sub 4} were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n{sub 2}, of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n{sub 2} was observed by adding lead oxide to the Sb{sub 2}O{sub 3}-SbPO{sub 4} composition. Large values of n{sub 2}{approx_equal}10{sup -14} cm{sup 2}/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications.

  2. Variability in the light absorption coefficients of phytoplankton, non-algal particles, and colored dissolved organic matter in a subtropical bay (Brazil)

    NASA Astrophysics Data System (ADS)

    Ferreira, Amabile; Ciotti, Áurea Maria; Coló Giannini, Maria Fernanda

    2014-02-01

    This study characterized the variability in magnitudes and spectral shapes of the absorption coefficients of phytoplankton, detritus, and colored dissolved organic matter (CDOM) in a dynamic bay (Santos Bay) in southeastern Brazil in response to the contributions of the main estuarine channel and large tide variations, therefore in different time scales. Two strategies were adopted: (1) monthly year-round sampling in the estuarine channel and Santos Bay and (2) sampling in Santos Bay during spring/neap tides and cold/warm months. Chlorophyll-a concentration and CDOM absorption were higher during warm (wet) months, while the relative contribution of organic and inorganic particles was driven by neap/spring tide cycles. Salinity partially accounted for changes in optical variables, especially for CDOM absorption and total suspended matter (TSM) during cold months and neap tides, respectively. The spectral shapes of detritus and CDOM absorption showed relatively little variability for the entire dataset and were not considered feasible for monitoring purposes. The spectral shape of phytoplankton absorption (index of cell size) varied broadly, with no remarkable dependence on the sampling conditions. Comparison of absorption coefficients measured by the Quantitative Filter Technique (QFT) and Transmittance Reflectance (TR) method showed higher phytoplankton coefficients toward longer visible wavelengths (flatter spectra) and shallower slopes of detritus absorption yielded by the TR method. Our results also suggest that measurements at the near red spectral region result from not only scattering signals but also non-algal particle absorption.

  3. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.

    PubMed

    Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko

    2013-09-01

    Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.

  4. Velocity distribution function of sputtered Cu atoms obtained by time resolved optical absorption spectroscopy

    SciTech Connect

    Kang, Namjun; Gaboriau, Freddy; Ricard, Andre; Oh, Soo-ghee

    2010-01-15

    A new method based on time resolved optical absorption spectroscopy is proposed to determine the velocity distribution function of sputtered Cu atoms in a magnetron plasma discharge. The method consists of applying a short pulse of 1.5 {mu}s and of recording time variations in copper atom density in off pulse at different positions (1, 2, and 3 cm) from target surface under 3-30 mTorr. The time evolution of the density is then converted into velocity distribution. We estimate that only sputtered atoms with radial velocity component lower than 0.5 km/s are detected. The average velocity of Cu atoms is evaluated as the first order moment of the velocity distribution functions. The velocity distribution functions become the more dispersive the farther from target surface. The average velocities vary in the range of 2.5-3 km/s at the vicinity of target surface whereas at 3 cm a decrease from 2.5 to 1.2 km/s is observed at 30 mTorr.

  5. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    PubMed

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency. PMID:15162849

  6. Molar absorption coefficients and stability constants of metal complexes of 4-(2-pyridylazo)resorcinol (PAR): Revisiting common chelating probe for the study of metalloproteins.

    PubMed

    Kocyła, Anna; Pomorski, Adam; Krężel, Artur

    2015-11-01

    4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492 nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500 M(-1) cm(-1), and the dissociation constant of the complex in these conditions is 7.08×10(-13) M(2). To confirm these values and estimate the range of the dissociation constants of zinc-binding biomolecules that can be measured using PAR, we performed several titrations of zinc finger peptides and zinc chelators. Taken together, our results provide the updated parameters that are applicable to any experiment conducted using inexpensive and commercially available PAR.

  7. Integrating sphere-based photoacoustic setup for simultaneous absorption coefficient and Grüneisen parameter measurements of biomedical liquids

    NASA Astrophysics Data System (ADS)

    Villanueva, Yolanda; Hondebrink, Erwin; Petersen, Wilma; Steenbergen, Wiendelt

    2015-03-01

    A method for simultaneously measuring the absorption coefficient μa and Grüneisen parameter Γ of biological absorbers in photoacoustics is designed and implemented using a coupled-integrating sphere system. A soft transparent tube with inner diameter of 0.58mm is used to mount the liquid absorbing sample horizontally through the cavity of two similar and adjacent integrating spheres. One sphere is used for measuring the sample's μa using a continuous halogen light source and a spectrometer fiber coupled to the input and output ports, respectively. The other sphere is used for simultaneous photoacoustic measurement of the sample's Γ using an incident pulsed light with wavelength of 750nm and a flat transducer with central frequency of 5MHz. Absolute optical energy and pressure measurements are not necessary. However, the derived equations for determining the sample's μa and Γ require calibration of the setup using aqueous ink dilutions. Initial measurements are done with biological samples relevant to biomedical imaging such as human whole blood, joint and cyst fluids. Absorption of joint and cyst fluids is enhanced using a contrast agent like aqueous indocyanine green dye solution. For blood sample, measured values of μa = 0.580 +/- 0.016 mm-1 and Γ = 0.166 +/- 0.006 are within the range of values reported in literature. Measurements with the absorbing joint and cyst fluid samples give Γ values close to 0.12, which is similar to that of water and plasma.

  8. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  9. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  10. Light absorption coefficient measurement of SOA using a UV-Visible spectrometer connected with an integrating sphere

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Jang, Myoseon

    2011-08-01

    A method for measuring an aerosol light absorption coefficient ( B a) has been developed using a conventional UV-visible spectrometer equipped with an integrating sphere covering a wide range of wavelengths (280-800 nm). The feasibility of the proposed method was evaluated in both the transmittance mode (TUV-IS) and the reflective mode (RUV-IS) using the reference aerosol known for the cross-sectional area. The aerosol was collected on a conventional filter and measured for B a values. The resulting RUV-IS method was applied to measure light absorption of secondary organic aerosol (SOA). SOA was produced through photooxidation of different precursor hydrocarbons such as toluene, d-limonene and α-pinene in the presence of NO x (60-70 ppb) and inorganic seed aerosol using a 2-m 3 indoor Teflon film chamber. Of the three precursor hydrocarbons, the B a value of toluene SOA (0.574 m 2 g -1 at 350 nm) was the highest compared with B a values for α-pinene SOA (0.029 m 2 g -1) and d-limonene SOA (0.038 m 2 g -1). When d-limonene SOA or toluene SOA was internally mixed with neutral [(NH 4) 2SO 4] or acidic inorganic seed (NH 4HSO 4:H 2SO 4 = 1:1 by mole), the SOA showed 2-3 times greater B a values at 350 nm than the SOA with no seed. Aerosol aging with a light source for this study reduced B a values of SOA (e.g., on average 10% for toluene SOA and 30% for d-limonene SOA within 4 h). Overall, weak absorption appeared for chamber-generated SOA over wavelengths ranging from 280 to 550 nm, which fall into the sunlight spectrum.

  11. Distinct positive temperature coefficient effect of polymer-carbon fiber composites evaluated in terms of polymer absorption on fiber surface.

    PubMed

    Zhang, Xi; Zheng, Shaodi; Zheng, Xiaofang; Liu, Zhengying; Yang, Wei; Yang, Mingbo

    2016-03-21

    In this article, the positive temperature coefficient (PTC) effect was studied for high-density polyethylene (HDPE)/carbon fiber (CF) composites. All of the samples showed a significant PTC effect during the heating processes without a negative temperature coefficient (NTC) effect, even at a temperature much higher than the melting point of the polymer matrix. An ever-increasing PTC intensity with increasing thermal cycles was observed in our study that had never been reported in previous research. The absence of a NTC effect resulted from the increased binding force between the matrix and fillers that contributed to the very special structure of CF surface. We incorporated thermal expansion theory and quantum tunneling effects to explain PTC effect. From the SEM micrographs for the HDPE/CF composites before and after the different thermal cycles, we found that the surface of CF was covered with a layer of polymer which resulted in a change in the gap length between CF and HDPE and its distribution. We believed that the gap change induced by polymer absorption on the fiber surface had a great effect on the PTC effect. PMID:26923428

  12. Comparison of polar motion excitation function derived from equivalent water thickness data, obtained from filtered stokes coefficients

    NASA Astrophysics Data System (ADS)

    Nagalski, T.

    2012-12-01

    It is known that the estimates of the Earth's gravity field produced by the Gravity Recovery and Climate Experiment (GRACE) satellite mission can be used to infer changes in equivalent water thickness (EWT). However, inadequately smoothed GRACE satellite mission EWT data contain significant striping and thus ought to be filtered to improve signal to noise ratio. We used Stokes coefficients data from GFZ (GeoForschungsZentrum), JPL (Jet Propulsion Laboratory) and CSR (Center for Space Research), filtered by decorrelation anisotropic filters: DDK3, DDK2 and DDK1 (Kusche et al., 2009) and made available in the ICGEM (International Center for Global Earth Models). To determine gravimetric excitation function of polar motion for the entire globe or selected areas, we convert gravity coefficients into Equivalent Water Thickness fields. To eliminate stripes from the maps of the EWT, one uses anisotropic filters (Kusche et al., 2009) that are smoothing the EWT data. In this study we investigate the influence of decorrelation anisotropic DDK filters used to process the GRACE EWT fields on the determined polar motion gravimetric excitation functions. We investigate the effect of these filters for four regions: 1) entire Earth, 2) ocean area, 3) land area and 4) Tibetan Plateau area (a rectangle bounded by 4 points A(37.N,78.E), B(37.N,102.E), C(28.N,78.E), D(28.N,102.E). Stokes coefficients are made available on the ICGEM web site. The data contain spherical harmonic coefficients delivered by three research centers: CSR, GFZ, JPL. The time span of the data is 2002 - 2010. The time resolution is 30 days. The ICGEM delivers either the raw Stokes coefficients or filtered Stokes coefficients after application of the anisotropic filters. Computation were based on the following equations

  13. Global accuracy estimates of point and mean undulation differences obtained from gravity disturbances, gravity anomalies and potential coefficients

    NASA Technical Reports Server (NTRS)

    Jekeli, C.

    1979-01-01

    Through the method of truncation functions, the oceanic geoid undulation is divided into two constituents: an inner zone contribution expressed as an integral of surface gravity disturbances over a spherical cap; and an outer zone contribution derived from a finite set of potential harmonic coefficients. Global, average error estimates are formulated for undulation differences, thereby providing accuracies for a relative geoid. The error analysis focuses on the outer zone contribution for which the potential coefficient errors are modeled. The method of computing undulations based on gravity disturbance data for the inner zone is compared to the similar, conventional method which presupposes gravity anomaly data within this zone.

  14. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  15. Morphology evolution, magnetic and microwave absorption properties of nano/submicrometre iron particles obtained at different reduced temperatures

    NASA Astrophysics Data System (ADS)

    Fan, Xi'an; Guan, Jianguo; Wang, Wei; Tong, Guoxiu

    2009-04-01

    Nano/submicrometre iron particles were prepared by a hydrogen reduction method in a fluidized bed furnace using α-FeOOH nanorods as precursors. The effect of the reducing temperature (T) on the microstructure, static magnetic properties, microwave electromagnetic parameters and microwave absorption properties of the resultant iron particles was investigated. When T increases from 450 to 650 °C, the as-obtained iron particles show an obvious morphology evolution from anisotropic nanorods to isotropic submicrometre polyhedra. As a result, the saturation magnetization, the complex permittivity and the real permeability all increase, while the coercivity and the imaginary permeability decrease due to the reducing surface effect and shape anisotropy. Nanocomposites containing 30 wt% iron nanorods obtained at 450 °C show a minimal reflection loss (RL) as low as -36.8 dB at 14.1 GHz and an absorption band with RL under -10 dB from 11.6 to 17.0 GHz when the thickness is 1.5 mm, suggesting that they are promising as a strong absorption, thin and lightweight microwave absorber.

  16. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  17. Influence of Diffraction Effects on the Result of Measuring the Absorption Coefficient of Ultrasound in Weakly Absorbing Liquids by the Pulse Method

    NASA Astrophysics Data System (ADS)

    Shatsky, A. V.

    2016-07-01

    We consider the problem of the influence of diffraction effects on the result of measuring the absorption coefficient of ultrasound in weakly absorbing liquids by the pulse method. Diffraction attenuation of an ultrasonic signal in a measuring cell using solid-state delay lines is calculated. It is shown that the use of delay lines of the ultrasonic signal leads to a considerable distortion of the measured absorption coefficient in the low-frequency range from the true value and can either overestimate or underestimate the results.

  18. Statistical models for sediment/detritus and dissolved absorption coefficients in coastal waters of the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Green, Rebecca E.; Gould, Richard W., Jr.; Ko, Dong S.

    2008-06-01

    We developed statistically-based, optical models to estimate tripton (sediment/detrital) and colored dissolved organic matter (CDOM) absorption coefficients ( a sd, a g) from physical hydrographic and atmospheric properties. The models were developed for northern Gulf of Mexico shelf waters using multi-year satellite and physical data. First, empirical algorithms for satellite-derived a sd and a g were developed, based on comparison with a large data set of cruise measurements from northern Gulf shelf waters; these algorithms were then applied to a time series of ocean color (SeaWiFS) satellite imagery for 2002-2005. Unique seasonal timing was observed in satellite-derived optical properties, with a sd peaking most often in fall/winter on the shelf, in contrast to summertime peaks observed in a g. Next, the satellite-derived values were coupled with the physical data to form multiple regression models. A suite of physical forcing variables were tested for inclusion in the models: discharge from the Mississippi River and Mobile Bay, Alabama; gridded fields for winds, precipitation, solar radiation, sea surface temperature and height (SST, SSH); and modeled surface salinity and currents (Navy Coastal Ocean Model, NCOM). For satellite-derived a sd and a g time series (2002-2004), correlation and stepwise regression analyses revealed the most important physical forcing variables. Over our region of interest, the best predictors of tripton absorption were wind speed, river discharge, and SST, whereas dissolved absorption was best predicted by east-west wind speed, river discharge, and river discharge lagged by 1 month. These results suggest the importance of vertical mixing (as a function of winds and thermal stratification) in controlling a sd distribution patterns over large regions of the shelf, in comparison to advection as the most important control on a g. The multiple linear regression models for estimating a sd and a g were applied on a pixel-by-pixel basis and

  19. Influence of the light propagation models on a linearized photoacoustic image reconstruction of the light absorption coefficient

    NASA Astrophysics Data System (ADS)

    Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya

    2015-03-01

    Quantification of the optical properties of the tissues and blood by noninvasive photoacoustic (PA) imaging may provide useful information for screening and early diagnosis of diseases. Linearized 2D image reconstruction algorithm based on PA wave equation and the photon diffusion equation (PDE) can reconstruct the image with computational cost smaller than a method based on 3D radiative transfer equation. However, the reconstructed image is affected by the differences between the actual and assumed light propagations. A quantitative capability of a linearized 2D image reconstruction was investigated and discussed by the numerical simulations and the phantom experiment in this study. The numerical simulations with the 3D Monte Carlo (MC) simulation and the 2D finite element calculation of the PDE were carried out. The phantom experiment was also conducted. In the phantom experiment, the PA pressures were acquired by a probe which had an optical fiber for illumination and the ring shaped P(VDF-TrFE) ultrasound transducer. The measured object was made of Intralipid and Indocyanine green. In the numerical simulations, it was shown that the linearized image reconstruction method recovered the absorption coefficients with alleviating the dependency of the PA amplitude on the depth of the photon absorber. The linearized image reconstruction method worked effectively under the light propagation calculated by 3D MC simulation, although some errors occurred. The phantom experiments validated the result of the numerical simulations.

  20. A method to determine the acoustic reflection and absorption coefficients of porous media by using modal dispersion in a waveguide.

    PubMed

    Prisutova, Jevgenija; Horoshenkov, Kirill; Groby, Jean-Philippe; Brouard, Bruno

    2014-12-01

    The measurement of acoustic material characteristics using a standard impedance tube method is generally limited to the plane wave regime below the tube cut-on frequency. This implies that the size of the tube and, consequently, the size of the material specimen must remain smaller than a half of the wavelength. This paper presents a method that enables the extension of the frequency range beyond the plane wave regime by at least a factor of 3, so that the size of the material specimen can be much larger than the wavelength. The proposed method is based on measuring of the sound pressure at different axial locations and applying the spatial Fourier transform. A normal mode decomposition approach is used together with an optimization algorithm to minimize the discrepancy between the measured and predicted sound pressure spectra. This allows the frequency and angle dependent reflection and absorption coefficients of the material specimen to be calculated in an extended frequency range. The method has been tested successfully on samples of melamine foam and wood fiber. The measured data are in close agreement with the predictions by the equivalent fluid model for the acoustical properties of porous media.

  1. Comparison of aerodynamic coefficients obtained from theoretical calculations wind tunnel tests and flight tests data reduction for the alpha jet aircraft

    NASA Technical Reports Server (NTRS)

    Guiot, R.; Wunnenberg, H.

    1980-01-01

    The methods by which aerodynamic coefficients are determined and discussed. These include: calculations, wind tunnel experiments and experiments in flight for various prototypes of the Alpha Jet. A comparison of obtained results shows good correlation between expectations and in-flight test results.

  2. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  3. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  4. Electronic structure of d{sup 0} vanadates obtained by x-ray absorption and emission spectroscopies

    SciTech Connect

    Herrera, G.; Jimenez-Mier, J.; Chavira, E.; Moewes, A.; Wilks, R.

    2009-01-29

    We present experimental results for x-ray absorption at the L{sub 2,3}-edge of vanadium in V{sub 2}O{sub 5}, YVO{sub 4} and LaVO{sub 4} compounds and at the M{sub 4,5}-edge of lanthanum in LaVO{sub 4} compound. The data are interpreted in terms of the multiplet structure of the transition metal ion V{sup 5+} (d{sup 0}) and rare earth ion La{sup 3+} (d{sup 10}). The data are compared with calculations in the free-ion approximation for La and including the effects of the D{sub 4h} ligand field and charge transfer for V. These calculations allow a direct interpretation of the absorption spectra. Good overall agreement between experiment and theory is found. We also show resonant x-ray emission (XES) data for these compounds obtained at the top of the L{sub 2} excitation.

  5. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  6. New integral formula for obtaining analytical Legendre expansion coefficients and its applications to light-nucleus reactions

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojun; Zhang, Jingshang

    2015-12-01

    A new integral formula, which has not been compiled in any integral tables or mathematical softwares, is proposed to obtain the analytical energy-angular spectra of the particles that are sequentially emitted from the discrete energy levels of the residual nuclei in the statistical theory of light nucleus reaction (STLN). In the cases of the neutron induced light nucleus reactions, the demonstration of the kinetic energy conservation in the sequential emission processes becomes straightforward thanks to this new integral formula and it is also helpful to largely reduce the volume of file-6 in nuclear reaction databases. Furthermore, taking p + 9Be reaction at 18 MeV as an example, this integral formula is extended to calculate the energy-angular spectra of the sequentially emitted neutrons for proton induced light nucleus reactions in the frame of STLN.

  7. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  8. Exponential Sum Absorption Coefficients of Phosphine from 2750 to 3550/cm for Application to Radiative Transfer Analyses on Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.

    2006-01-01

    PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.

  9. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    NASA Astrophysics Data System (ADS)

    Fairuz Budiman, Mohd; Hu, Weiguo; Igarashi, Makoto; Tsukamoto, Rikako; Isoda, Taiga; Itoh, Kohei M.; Yamashita, Ichiro; Murayama, Akihiro; Okada, Yoshitaka; Samukawa, Seiji

    2012-02-01

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells.

  10. Influence of size, proportion, and absorption coefficient of spherical scatterers on the degree of light polarization and the grain size of speckle pattern.

    PubMed

    Nader, Christelle Abou; Nassif, Rana; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie

    2015-12-10

    In this paper, we present the evolution of speckle pattern polarimetric parameters in response to controlled changes in scatterer sizes, proportions, and the absorption coefficient in media. The experimental study was performed on mixtures of polystyrene microspheres with dye in order to ensure biological medium-like properties. The speckle grain sizes and degrees of polarization for linear and circular light were monitored. We observed helicity flipping in the degree of circular polarization for small scatterer proportion around 25%. Furthermore, linear depolarization decreased slightly for media containing more small particles. Good agreement was shown with numerical results computed using a Monte Carlo simulation of polarized light taking into account our experimental configuration. Speckle grain size also evolves with the increase of small scatterers as well as the media absorption coefficient. Such variations of properties are encountered during fruit maturation, in tissues in precancerous stages, and any transformation that causes a modification in particle proportions and absorption coefficient in biological media. The computed parameters proved to be sensitive to these changes.

  11. A model for partitioning the light absorption coefficient of natural waters into phytoplankton, nonalgal particulate, and colored dissolved organic components: A case study for the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zheng, Guangming; Stramski, Dariusz; DiGiacomo, Paul M.

    2015-04-01

    We present a model, referred to as Generalized Stacked-Constraints Model (GSCM), for partitioning the total light absorption coefficient of natural water (with pure-water contribution subtracted), anw(λ), into phytoplankton, aph(λ), nonalgal particulate, ad(λ), and CDOM, ag(λ), components. The formulation of the model is based on the so-called stacked-constraints approach, which utilizes a number of inequality constraints that must be satisfied simultaneously by the model outputs of component absorption coefficients. A major advancement is that GSCM provides a capability to separate the ad(λ) and ag(λ) coefficients from each other using only weakly restrictive assumptions about the component absorption coefficients. In contrast to the common assumption of exponential spectral shape of ad(λ) and ag(λ) in previous models, in our model these two coefficients are parameterized in terms of several distinct spectral shapes. These shapes are determined from field data collected in the Chesapeake Bay with an ultimate goal to adequately account for the actual variability in spectral shapes of ad(λ) and ag(λ) in the study area. Another advancement of this model lies in its capability to account for potentially nonnegligible magnitude of ad(λ) in the near-infrared spectral region. Evaluation of model performance demonstrates good agreement with measurements in the Chesapeake Bay. For example, the median ratio of the model-derived to measured ad(λ), ag(λ), and aph(λ) at 443 nm is 0.913, 1.064, and 1.056, respectively. Whereas our model in its present form can be a powerful tool for regional studies in the Chesapeake Bay, the overall approach is readily adaptable to other regions or bio-optical water types.

  12. Mineral Specific IR Molar Absorption Coefficients for Routine Water Determination in Olivine, SiO2 polymorphs and Garnet

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Koch-Mueller, M.; Reichart, P.; Rhede, D.; Thomas, R.

    2007-12-01

    Conventionally applied Infrared (IR) calibrations [1, 2] for quantitative water analyses in solids are established on hydrous minerals and glasses with several wt% water. These calibrations are based on a negative correlation between the IR molar absorption coefficient (ɛ) for water and the mean wavenumber of the corresponding OH pattern. The correlation reflects the dependence of the OH band position on the appropriate O- H...O distances and thereby the magnitude of the dipole momentum which is proportional to the band intensity. However, it has been observed that these calibrations can not be adopted to nominally anhydrous minerals (NAMs) [3].To study the potential dependence of ɛ on structure and chemistry in NAMs we synthesized olivine and SiO2 polymorphs with specific isolated hydroxyl point defects, e.g. quartz, coesite and stishovite with B3++H+=Si4+ and/or Al3++H+=Si4+ substitutions. Experiments were performed with water in excess in piston cylinder and multi-anvil presses. Single crystal IR spectra demonstrate that we successfully managed to seperate generally complex OH patterns as e.g. observed in natural quartz and synthetic coesite. We quantified sample water contents of both natural samples and our run products by applying proton-proton-scattering [4], confocal microRaman spectroscopy [5] and Secondary Ion mass spectrometry. Resulting water concentrations were used to calculate new mineral specific ɛs. For olivine with the mean wavenumber of 3517 cm-1 we determined an ɛ value of 41,000±5,000 lmol-1H2Ocm-2. Quantification of olivine with the mean wavenumber of 3550 cm-1 in contrast resulted in an ɛ value of 47,000±1,000 lmol-1H2Ocm-2. Taking into account previous studies [6, 7] there is evidence to suggest a linear wavenumber dependent correlation for olivine, where ɛ increases with decreasing wavenumber. In case of the SiO2 system it turns out that the magnitude of ɛ within one structure type is independent of the liable OH point defect and

  13. A linear relationship between the Hall carrier concentration and the effective absorption coefficient measured by means of photothermal radiometry in IR semi-transparent n-type CdMgSe mixed crystals

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Maliński, M.; Firszt, F.; Pelzl, J.; Ludwig, A.; Marasek, A.

    2014-03-01

    In this work we demonstrate the ability to measure the effective infrared absorption coefficient in semiconductors by a photothermal infrared radiometry (PTR) experiment, and its correlation with the Hall carrier concentration. The amplitude and phase of the PTR signal were measured for Cd1-xMgxSe mixed crystals, with the magnesium content varying from x = 0 to x = 0.15. The PTR experiments were performed at room temperature in thermal reflection and transmission configurations using a mercury cadmium telluride infrared detector. The PTR data were analyzed in the frame of the one-dimensional heat transport model for infrared semi-transparent crystals. Based on the variation of the normalized PTR phase and amplitude on the modulation frequency, the thermal diffusivity and the effective infrared absorption coefficient were obtained by fitting the theoretical expression to experimental data and compared with the Hall carrier concentration determined by supplementary Hall experiments. A linear relationship between the effective infrared absorption coefficient and the Hall carrier concentration was found which is explained in the frame of the Drude theory. The uncertainty of the measured slope was 6%. The value of the slope depends on (1) the sample IR absorption spectrum and (2) the spectral range of the infrared detector. It has to be pointed out that this method is suitable for use in an industrial environment for a fast and contactless carrier concentration measurement. This method can be used for the characterization of other semiconductors after a calibration procedure is carried out. In addition, the PTR technique yields information on the thermal properties in the same experiment.

  14. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at lambda=980 nm with a regard to the Ytterbium ion-pairs' effect.

    PubMed

    Kir'yanov, Alexander V; Barmenkov, Yuri O; Martinez, Itzel L; Kurkov, Audrey S; Dianov, Evgenii M

    2006-05-01

    An experimental and theoretical investigation of the nonlinear transmission coefficient in a set of Ytterbium-doped silica fibers (YFs) with various concentrations of Yb(3+) ions at continuous-wave 980-nm pumping is reported. An analysis of the obtained experimental data shows that YF transmission coefficient is notably affected by the presence of Yb(3+) - Yb(3+) ion-pairs in the fibers, especially in heavily-doped ones. The last fact is confirmed by the study of the cooperative luminescence and absorption effects in the fibers, where a detailed inspection of their dependence on Yb3+ concentration is presented. The pairs' effect is shown to seriously modify both the nonlinear character of YF transmission coefficient at lambda = 980 nm and Yb(3+) excited-state relaxation. A modeling of the experimental data is performed, which allows to find the coefficients addressing the pairs' effect in each of YFs under study and, as a result, to fit the experimentally measured dependences of YF transmission coefficient on pump power, fiber length, and Yb(3+) concentration. PMID:19516545

  15. Cooperative luminescence and absorption in Ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at λ=980 nm with a regard to the Ytterbium ion-pairs' effect

    NASA Astrophysics Data System (ADS)

    Kir'yanov, Alexander V.; Barmenkov, Yuri O.; Martinez, Itzel L.; Kurkov, Audrey S.; Dianov, Evgenii M.

    2006-05-01

    An experimental and theoretical investigation of the nonlinear transmission coefficient in a set of Ytterbium-doped silica fibers (YFs) with various concentrations of Yb3+ ions at continuous-wave 980-nm pumping is reported. An analysis of the obtained experimental data shows that YF transmission coefficient is notably affected by the presence of Yb3+ - Yb3+ ion-pairs in the fibers, especially in heavily-doped ones. The last fact is confirmed by the study of the cooperative luminescence and absorption effects in the fibers, where a detailed inspection of their dependence on Yb3+ concentration is presented. The pairs’ effect is shown to seriously modify both the nonlinear character of YF transmission coefficient at λ = 980 nm and Yb3+ excited-state relaxation. A modeling of the experimental data is performed, which allows to find the coefficients addressing the pairs’ effect in each of YFs under study and, as a result, to fit the experimentally measured dependences of YF transmission coefficient on pump power, fiber length, and Yb3+ concentration.

  16. Linear and nonlinear optical absorption coefficients and refractive index changes in GaN/Al{sub x}Ga{sub (1−x)}N double quantum wells operating at 1.55 μm

    SciTech Connect

    Dakhlaoui, Hassen

    2015-04-07

    In the present paper, the linear and nonlinear optical absorption coefficients and refractive index changes between the ground and the first excited states in double GaN/Al{sub x}Ga{sub (1−x)}N quantum wells are studied theoretically. The electronic energy levels and their corresponding wave functions are obtained by solving Schrödinger-Poisson equations self-consistently within the effective mass approximation. The obtained results show that the optical absorption coefficients and refractive index changes can be red- and blue-shifted through varying the left quantum well width and the aluminum concentration x{sub b2} of the central barrier, respectively. These structural parameters are found to present optimum values for carrying out the transition of 0.8 eV (1.55 μm). Furthermore, we show that the desired transition can also be achieved by replacing the GaN in the left quantum well with Al{sub y}Ga{sub (1−y)}N and by varying the aluminum concentration y{sub Al}. The obtained results give a new degree of freedom in optoelectronic device applications such as optical fiber telecommunications operating at (1.55 μm)

  17. Mass-specific optical absorption coefficients and imaginary part of the complex refractive indices of mineral dust components measured by a multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2015-01-01

    Mass-specific optical absorption coefficients (MACs) and the imaginary part (κ) of the refractive indices of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at the wavelengths of 1064, 532, 355 and 266 nm. The MAC values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. Values of κ were calculated from the measured and particle-loss-corrected data by using a Mie-theory-based retrieval algorithm. The determined values could be used for comparisons with calculated wavelength-dependent κ values typically deduced from bulk-phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk-phase measurements.

  18. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm

    NASA Astrophysics Data System (ADS)

    Ivascu, I. R.; Matei, C. E.; Patachia, M.; Bratu, A. M.; Dumitras, D. C.

    2016-06-01

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8 μm and power levels up to 4.7 W. Measurements revealed a predominant absorption for ethanol within 9.4 μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68 cm- 1 atm- 1 at 9R(20) line and 3.65 cm- 1 atm- 1 at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30 ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  19. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications.

  20. CO2 laser photoacoustic measurements of ethanol absorption coefficients within infrared region of 9.2-10.8 μm.

    PubMed

    Ivascu, I R; Matei, C E; Patachia, M; Bratu, A M; Dumitras, D C

    2016-06-15

    Absorption coefficients of the ethanol vapors at atmospheric pressure and room temperature were measured by photoacoustic technique using a cw, line-tunable, frequency-stabilized CO2 laser as radiation source. The spectrum of the employed CO2 laser includes 54 lines with wavelengths in the infrared region of 9.2-10.8μm and power levels up to 4.7W. Measurements revealed a predominant absorption for ethanol within 9.4μm band of the CO2 laser spectrum, where the highest values of the absorption coefficients were recorded: 3.68cm(-1)atm(-1) at 9R(20) line and 3.65cm(-1)atm(-1) at 9R(22) line. The estimated detection range covers six orders of magnitude, from a minimum of 30ppbV to a maximum of 4% concentration of ethanol in nitrogen, which proves the suitability of the photoacoustic technique for accurate measurements of the ethanol concentration in various applications. PMID:27045783

  1. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  2. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  3. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    DOE PAGES

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field.more » By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.« less

  4. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the March 17 2013 storm

    SciTech Connect

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyro-resonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the March 17 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against non-dipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field RAM-SCB, a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and MLT-averaged electron pitch angle, mixed term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (~1 MeV) and ring current (~100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyro-resonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L = 4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the March 17 2013 storm and for L ≲ 4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  5. Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Yu, Yiqun; Delzanno, Gian Luca; Jordanova, Vania K.

    2015-04-01

    Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pitch angle, mixed-term, and energy diffusion coefficients are calculated for each magnetic field configuration. For radiation belt (˜1 MeV) and ring current (˜100 keV) electrons, it is shown that at some MLTs the bounce-averaged diffusion coefficients become rather insensitive to the details of the magnetic field configuration, while at other MLTs storm conditions can expand the range of equatorial pitch angles where gyroresonant diffusion occurs and significantly enhance the diffusion rates. When MLT average is performed at drift shell L=4.25 (a good approximation to drift average), the diffusion coefficients become quite independent of the magnetic field configuration for relativistic electrons, while the opposite is true for lower energy electrons. These results suggest that, at least for the 17 March 2013 storm and for L≲4.25, the commonly adopted dipole approximation of the Earth's magnetic field can be safely used for radiation belt electrons, while a realistic modeling of the magnetic field configuration is necessary to describe adequately the diffusion rates of ring current electrons.

  6. Determination of mass attenuation coefficient by numerical absorption calibration with Monte-Carlo simulations at 59.54 keV

    NASA Astrophysics Data System (ADS)

    Degrelle, D.; Mavon, C.; Groetz, J.-E.

    2016-04-01

    This study presents a numerical method in order to determine the mass attenuation coefficient of a sample with an unknown chemical composition at low energy. It is compared with two experimental methods: a graphic method and a transmission method. The method proposes to realise a numerical absorption calibration curve to process experimental results. Demineralised water with known mass attenuation coefficient (0.2066cm2g-1 at 59.54 keV) is chosen to confirm the method. 0.1964 ± 0.0350cm2g-1 is the average value determined by the numerical method, that is to say less than 5% relative deviation compared to more than 47% for the experimental methods.

  7. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  8. A wave based method to predict the absorption, reflection and transmission coefficient of two-dimensional rigid frame porous structures with periodic inclusions

    NASA Astrophysics Data System (ADS)

    Deckers, Elke; Claeys, Claus; Atak, Onur; Groby, Jean-Philippe; Dazel, Olivier; Desmet, Wim

    2016-05-01

    This paper presents an extension to the Wave Based Method to predict the absorption, reflection and transmission coefficients of a porous material with an embedded periodic set of inclusions. The porous unit cell is described using the Multi-Level methodology and by embedding Bloch-Floquet periodicity conditions in the weighted residual scheme. The dynamic pressure field in the semi-infinite acoustic domains is approximated using a novel wave function set that fulfils the Helmholtz equation, the Bloch-Floquet periodicity conditions and the Sommerfeld radiation condition. The method is meshless and computationally efficient, which makes it well suited for optimisation studies.

  9. Calibration of the infrared molar absorption coefficients by elastic recoil detection analysis (ERDA) for H measurements in olivine and clinopyroxene crystals and rhyolitic glasses

    NASA Astrophysics Data System (ADS)

    Aubaud, C.; Bureau, H.; Raepsaet, C.; Khodja, H.; Hirschmann, M. M.; Withers, A. C.; Bell, D. R.

    2007-12-01

    Fourier transform infrared (FTIR) spectroscopy is the most widely applied technique for measuring hydrogen in nominally anhydrous minerals (NAMs) and silicate glasses. FTIR is rapid, sensitive, widely available and gives information on the bonding environment of H-bearing species. H determination relies on the Beer-Lambert law and therefore requires constraints on the applicable molar absorption coefficient, ɛ. Values of ɛ may be derived only from independent absolute methods. These ɛ are now reasonably well known for glasses, but to date determinations of ɛ applicable to NAMs are extremely limited and subject to uncertainties. Most notably, the Paterson (1982) calibration gives H contents in olivine that are a factor of 2.5- 3.5 lower than those suggested by the Bell et al. JGR 2003 calibration. We performed elastic recoil detection analysis (ERDA) on a range of samples that had been previously analyzed by FTIR, including natural rhyolitic glasses (1430-1772 ppm H2O), natural and synthetic olivine (0-910 ppm), natural orthopyroxene (38-147 ppm), and natural clinopyroxene crystals (0-490 ppm). ERDA is a nuclear microprobe technique that yields matrix-independent absolute determinations of H concentration. A 3 MeV beam of 4He is employed at high spatial resolution (50 × 200 microns). The detection limit, determined from analysis of dry minerals is 150±20 ppm H2O, too great for analysis of many NAMs from the upper mantle, but applicable to H-rich natural and synthetic NAMs. For glasses, synthetic olivines, and clinopyroxenes, we found good proportionality between the measured ERDA hydrogen concentration and the linear (rhyolite) or integrated (minerals) absorbance measured by FTIR. The ɛ found for rhyolite (103±9 l/mol per cm) is close to that of 88±2 l/mol per cm given by Dobson et al. (GCA, 1989). For clinopyroxene, we obtain ɛ 47010±6070 l/mol per cm2, slightly larger than 38300±1700 l/mol per cm2 found by Bell et al. (Am. Min. 1995). Finally, for

  10. Effects of soot absorption coefficient-Planck function correlation on radiative heat transfer in oxygen-enriched propane turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Nmira, F.

    2016-03-01

    The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.

  11. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  12. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  13. Characterization of thin poly(dimethylsiloxane)-based tissue-simulating phantoms with tunable reduced scattering and absorption coefficients at visible and near-infrared wavelengths

    PubMed Central

    Greening, Gage J.; Istfan, Raeef; Higgins, Laura M.; Balachandran, Kartik; Roblyer, Darren; Pierce, Mark C.; Muldoon, Timothy J.

    2014-01-01

    Abstract. Optical phantoms are used in the development of various imaging systems. For certain applications, the development of thin phantoms that simulate the physical size and optical properties of tissue is important. Here, we demonstrate a method for producing thin phantom layers with tunable optical properties using poly(dimethylsiloxane) (PDMS) as a substrate material. The thickness of each layer (between 115 and 880  μm) was controlled using a spin coater. The reduced scattering and absorption coefficients were controlled using titanium dioxide and alcohol–soluble nigrosin, respectively. These optical coefficients were quantified at six discrete wavelengths (591, 631, 659, 691, 731, and 851 nm) at varying concentrations of titanium dioxide and nigrosin using spatial frequency domain imaging. From the presented data, we provide lookup tables to determine the appropriate concentrations of scattering and absorbing agents to be used in the design of PDMS-based phantoms with specific optical coefficients. In addition, heterogeneous phantoms mimicking the layered features of certain tissue types may be fabricated from multiple stacked layers, each with custom optical properties. These thin, tunable PDMS optical phantoms can simulate many tissue types and have broad imaging calibration applications in endoscopy, diffuse optical spectroscopic imaging, and optical coherence tomography, etc. PMID:25387084

  14. Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra.

    PubMed

    Curiel, Fernando; Vargas, William E; Barrera, Rubén G

    2002-10-01

    A spectral-projected gradient method and an extension of the Kubelka-Munk theory are applied to obtain the relevant parameters of the theory from measured diffuse reflectance spectra of pigmented samples illuminated with visible diffuse radiation. The initial estimate of the spectral dependence of the parameters, required by a recursive spectral-projected gradient method, was obtained by use of direct measurements and up-to-date theoretical estimates. We then tested the consistency of the Kubelka-Munk theory by repeating the procedure with samples of different thicknesses.

  15. WE-G-18C-02: Estimation of Optimal B-Value Set for Obtaining Apparent Diffusion Coefficient Free From Perfusion in Non-Small Cell Lung Cancer

    SciTech Connect

    Karki, K; Hugo, G; Ford, J; Saraiya, S; Weiss, E; Olsen, K; Groves, R

    2014-06-15

    Purpose: Diffusion-weighted MRI (DW-MRI) is increasingly being investigated for radiotherapy planning and response assessment. Selection of a limited number of b-values in DW-MRI is important to keep geometrical variations low and imaging time short. We investigated various b-value sets to determine an optimal set for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in nonsmall cell lung cancer. Methods: Seven patients had 27 DW-MRI scans before and during radiotherapy in a 1.5T scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR=4500ms approximately, TE=74ms, pixel size=1.98X1.98mm{sub 2}, slice thickness=4–6mm and 7 axial slices. Diffusion gradients were applied to all three axes producing traceweighted images with eight b-values of 0–1000μs/μm{sup 2}. Monoexponential model ADC values using various b-value sets were compared to ADCIVIM using all b-values. To compare the relative noise in ADC maps, intra-scan coefficient of variation (CV) of active tumor volumes was computed. Results: ADCIVIM, perfusion coefficient and perfusion fraction for tumor volumes were in the range of 880-1622 μm{sup 2}/s, 8119-33834 μm{sup 2}/s and 0.104–0.349, respectively. ADC values using sets of 250, 800 and 1000; 250, 650 and 1000; and 250–1000μs/μm{sup 2} only were not significantly different from ADCIVIM(p>0.05, paired t-test). Error in ADC values for 0–1000, 50–1000, 100–1000, 250–1000, 500–1000, and three b-value sets- 250, 500 and 1000; 250, 650 and 1000; and 250, 800 and 1000μs/μm{sup 2} were 15.0, 9.4, 5.6, 1.4, 11.7, 3.7, 2.0 and 0.2% relative to the reference-standard ADCIVIM, respectively. Mean intrascan CV was 20.2, 20.9, 21.9, 24.9, 32.6, 25.8, 25.4 and 24.8%, respectively, whereas that for ADCIVIM was 23.3%. Conclusion: ADC values of two 3 b-value sets

  16. Carotenoid absorption in humans consuming tomato sauces obtained from tangerine or high-beta-carotene varieties of tomatoes.

    PubMed

    Unlu, Nuray Z; Bohn, Torsten; Francis, David; Clinton, Steven K; Schwartz, Steven J

    2007-02-21

    Tomato sauces were produced from unique tomato varieties to study carotenoid absorption in humans. Tangerine tomatoes, high in cis-lycopene, especially prolycopene (7Z,9Z,7'Z,9'Z), and high-beta-carotene tomatoes as an alternative dietary source of beta-carotene were grown and processed. Sauces were served after 2 week washout periods and overnight fasting for breakfast to healthy subjects (n = 12, 6M/6F) in a randomized crossover design. The serving size was 150 g (containing 15 g of corn oil), tangerine sauce containing 13 mg of lycopene (97.0% as cis-isomers) and high-beta-carotene sauce containing 17 mg of total beta-carotene (1.6% as the 9-cis-isomer) and 4 mg of lycopene. Blood samples were collected 0, 2, 3, 4, 5, 6, 8, and 9.5 h following test meal consumption and carotenoids determined in the plasma triacylglycerol-rich lipoprotein fraction by HPLC-electrochemical detection. Baseline-corrected areas under the concentration vs time curves (AUC) were used as a measure of absorption. AUC0-9.5h values for total lycopene in the tangerine sauce group were 870 +/- 187 (nmol.h)/L (mean +/- SEM) with >99% as cis-isomers (59% as the tetra-cis-isomer). The AUC0-9.5h values for total beta-carotene and lycopene after consumption of the high-beta-carotene sauce were 304 +/- 54 (4% as 9-cis-carotene) and 118 +/- 24 (nmol.h)/L, respectively. Lycopene dose-adjusted triacylglycerol-rich lipoprotein AUC responses in the tangerine sauce group were relatively high when compared to those in the literature and the high-beta-carotene group. The results support the hypothesis that lycopene cis-isomers are highly bioavailable and suggest that special tomato varieties can be utilized to increase both the intake and bioavailability of health-beneficial carotenoids.

  17. Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Hoge, Frank E.; Vodacek, Anthony; Swift, Robert N.; Yungel, James K.; Blough, Neil V.

    1995-10-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) at 355 nm has been retrieved from airborne laser-induced and water Raman-normalized CDOM fluorescence. Four combined airborne and ship field experiments have demonstrated that (1) the airborne CDOM fluorescence-to--water Raman ratio is linearly related to concurrent quinine-sulfate-standardized CDOM shipboard fluorescence measurements over a wide range of water masses (coastal to blue water); (2) the vicarious calibration of the airborne fluorosensor in units traceable to a fluorescence standard can be established and then maintained over an extended time period by tungsten lamp calibration; (3) the vicariously calibrated airborne CDOM fluorescence-to-water Raman ratio can be directly applied to previously developed

  18. Noninvasive determination of absorption and reduced scattering coefficients of adult heads by time-resolved reflectance measurements for functional near infra-red spectroscopy.

    PubMed

    Tanifuji, T; Wang, L

    2014-01-01

    Absorption and reduced scattering coefficients (μ(a) and μ'(s)) of adult heads have been noninvasively determined by time-resolved reflectance measurements. The finite difference time domain (FDTD) analysis was used to calculate time-resolved reflectance from realistic adult head models with brain grooves containing a non-scattering layer. In vivo time-resolved reflectances of human heads were measured by a system composed of a time-correlated single photon counter and a diode laser. By minimizing the objective functions that compare theoretical and experimental time resolved reflectances, μ(a) and μ'(s) of brain were determined. It became clear that time-resolved measurements have enough sensitivity to determine both μ(a) and μ'(s) for superficial tissues, gray matter and white matter, except μ(s) for white matter.

  19. In vivo time-resolved multidistance near infra-red spectroscopy of adult heads: time shift tolerance of measured reflectance to suppress the coupling between absorption and reduced scattering coefficients

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.; Sakai, D.

    2015-03-01

    The absorption and reduced scattering coefficients ( μa and μ's) of adult heads were determined by multidistance timeresolved reflectance measurements. The finite difference time domain analysis was used to calculate the time-resolved reflectance from adult head models. In vivo time-resolved reflectances of human heads was measured at wavelengths of 680 and 780 nm. By minimizing the objective functions that compare the theoretical and experimental time-resolved reflectances, μa and μ's of the brains were determined. The results show that the time shift tolerance of measured reflectance for reducing to less than 10% the deviations in μa and μ's due to their coupling from the values obtained by optimum time shifts is more than 20 ps at both wavelengths.

  20. An inversion model based on salinity and remote sensing reflectance for estimating the phytoplankton absorption coefficient in the Saint Lawrence Estuary

    NASA Astrophysics Data System (ADS)

    Montes-Hugo, Martin; Xie, Huxiang

    2015-10-01

    The inversion of individual inherent optical properties (IOPs) is very challenging in optically complex waters and within the violet spectral range (i.e., 380-450 nm) due to the strong light attenuation caused by chromophoric dissolved organic matter, nonalgal particulates, and phytoplankton. Here we present a technique to better discriminate light absorption contributions due to phytoplankton based on a hybrid model (QAA-hybrid) that combines regional Saint Lawrence System estimates of IOPs derived from a quasi-analytical algorithm (hereafter QAA-SLE) and empirical relationships between salinity and IOPs. Preliminary results in the Saint Lawrence System during May 2000 and April 2001 showed that QAA-hybrid estimates of phytoplankton absorption coefficient at 443 nm have a smaller bias with respect to in situ measurements (root-mean-square deviation, RMSD = 0.156) than those derived from QAA-SLE (RMSD = 0.341). These results were valid for surface waters (i.e., 0-5 m depth) of the lower estuary with a salinity and chlorophyll-a concentration range of 22-28 psu and 2.1-13.8 mg m-3, respectively.

  1. Determination of the Telluric Water Vapor Absorption Correction for Astronomical Data Obtained from the Kuiper Airborne Observatory

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Simpson, J. P.; Kuhn, P. M.; Stearns, L. P.

    1979-01-01

    The amount of telluric water vapor along the line of sight of the Kuiper Airborne Observatory telescope as obtained concommitantly on 23 flights is compared with the NASA-Ames Michelson interferometer and with the NOAA-Boulder radiometer. A strong correlation between the two determinations exists, and a method for computing the atmospheric transmission for a given radiometer reading is established.

  2. Absorption features in the quasar HS 1603 + 3820 II. Distance to the absorber obtained from photoionisation modelling

    NASA Astrophysics Data System (ADS)

    Różańska, A.; Nikołajuk, M.; Czerny, B.; Dobrzycki, A.; Hryniewicz, K.; Bechtold, J.; Ebeling, H.

    2014-04-01

    We present the photoionisation modelling of the intrinsic absorber in the bright quasar HS 1603 + 3820. We constructed the broad-band spectral energy distribution using the optical/UV/X-ray observations from different instruments as inputs for the photoionisation calculations. The spectra from the Keck telescope show extremely high CIV to HI ratios, for the first absorber in system A, named A1. This value, together with high column density of CIV ion, place strong constraints on the photoionisation model. We used two photoionisation codes to derive the hydrogen number density at the cloud illuminated surface. By estimating bolometric luminosity of HS 1603 + 3820 using the typical formula for quasars, we calculated the distance to A1. We could find one photoionization solution, by assuming either a constant density cloud (which was modelled using CLOUDY), or a stratified cloud (which was modelled using TITAN), as well as the solar abundances. This model explained both the ionic column density of CIV and the high CIV to HI ratio. The location of A1 is 0.1 pc, and it is situated even closer to the nucleus than the possible location of the Broad Line Region in this object. The upper limit of the distance is sensitive to the adopted covering factor and the carbon abundance. Photoionisation modelling always prefers dense clouds with the number density n0 = 1010 - 1012 cm-3, which explains intrinsic absorption in HS 1603 + 3820. This number density is of the same order as that in the disk atmosphere at the implied distance of A1. Therefore, our results show that the disk wind that escapes from the outermost accretion disk atmosphere can build up dense absorber in quasars.

  3. Evaluating the Use of MODIS AOD for Air Quality Determination by Comparison with the Vertical Distribution of Aerosol Light Scattering Coefficient Obtained with a Balloon-Borne Nephelometer

    NASA Astrophysics Data System (ADS)

    Sumlin, B.; Arnott, W. P.; Moosmuller, H.

    2012-12-01

    The MODIS instruments aboard the Aqua and Terra satellites provide aerosol optical depth information for the entire Earth on a daily basis. Ideally, satellite measurements should correlate with ground-based measurements in order to be useful for air quality applications. Reno, Nevada, USA is a high desert city situated in the Great Basin. Its unique geography and proximity to urban and biomass burning aerosol sources make it an ideal candidate for aerosol research. In August 2011, the Reno Aerosol Characterization Experiment measured atmospheric aerosols with a ground-based Cimel CE-318 sun-photometer and in situ photoacoustic instrumentation to quantify aerosol concentrations at the surface and in the column. However, the results of these measurements indicated the existence of a more complex system of aerosol mixing above the atmospheric boundary layer than previously thought. In order to validate these measurements, an autonomous suite of instrumentation has been developed. This device is carried aloft by a weather balloon and utilizes a reciprocal nephelometer to obtain a high-resolution profile of the vertical distribution of aerosol light scattering coefficient, as well as instrumentation to record atmospheric variables such as temperature, pressure, relative humidity, and dew point. Position, course, speed, and altitude are logged with an onboard GPS module and correlated with atmospheric and aerosol measurements. Presented is the design and development of this new instrument, its comparison with proven laboratory instruments, data gathered from flights during August-November 2012, and its comparison to ground-based measurements and satellite data from the MODIS instruments.

  4. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer.

    PubMed

    Karki, Kishor; Hugo, Geoffrey D; Ford, John C; Olsen, Kathryn M; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-10-21

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR ≈ 4500 ms, TE  =  74 ms, eight b-values of 0-1000 μs μm(-2), pixel size  =  1.98 × 1.98 mm(2), slice thickness  =  6 mm, interslice gap  =  1.2 mm, 7 axial slices and total acquisition time ≈6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 μs μm(-2) from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 μs μm(-2) were not significantly different from ADCIVIM values (p > 0.05, paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets-0-1000; 50-1000; 100-1000; 500-1000; and 250 and 800 μs μm(-2) were significantly different from the ADCIVIM values. From Rician noise

  5. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Karki, Kishor; Hugo, Geoffrey D.; Ford, John C.; Olsen, Kathryn M.; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-10-01

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5 T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with \\text{TR}≈ 4500 ms, TE  =  74 ms, eight b-values of 0-1000 μs μm-2, pixel size  =  1.98× 1.98 mm2, slice thickness  =  6 mm, interslice gap  =  1.2 mm, 7 axial slices and total acquisition time ≈6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0-2000 μs μm-2 from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250-1000 μs μm-2 were not significantly different from ADCIVIM values (p>0.05 , paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets—0-1000 50-1000 100-1000 500-1000 and 250 and 800 μs μm-2 were significantly different from the ADCIVIM values. From Rician noise simulation

  6. Estimation of optimal b-value sets for obtaining apparent diffusion coefficient free from perfusion in non-small cell lung cancer

    PubMed Central

    Karki, Kishor; Hugo, Geoffrey D.; Ford, John C.; Olsen, Kathryn M.; Saraiya, Siddharth; Groves, Robert; Weiss, Elisabeth

    2015-01-01

    The purpose of this study was to determine optimal sets of b-values in diffusion-weighted MRI (DW-MRI) for obtaining monoexponential apparent diffusion coefficient (ADC) close to perfusion-insensitive intravoxel incoherent motion (IVIM) model ADC (ADCIVIM) in non-small cell lung cancer. Ten subjects had 40 DW-MRI scans before and during radiotherapy in a 1.5T MRI scanner. Respiratory triggering was applied to the echo-planar DW-MRI with TR ≈ 4500 ms, TE = 74 ms, eight b-values of 0–1000 µs/µm2, pixel size = 1.98×1.98 mm2, slice thickness = 6 mm, interslice gap = 1.2 mm, 7 axial slices and total acquisition time ≈ 6 min. One or more DW-MRI scans together covered the whole tumour volume. Monoexponential model ADC values using various b-value sets were compared to reference-standard ADCIVIM values using all eight b-values. Intra-scan coefficient of variation (CV) of active tumour volumes was computed to compare the relative noise in ADC maps. ADC values for one pre-treatment DW-MRI scan of each of the 10 subjects were computed using b-value pairs from DW-MRI images synthesized for b-values of 0–2000 µs/µm2 from the estimated IVIM parametric maps and corrupted by various Rician noise levels. The square root of mean of squared error percentage (RMSE) of the ADC value relative to the corresponding ADCIVIM for the tumour volume of the scan was computed. Monoexponential ADC values for the b-value sets of 250 and 1000; 250, 500 and 1000; 250, 650 and 1000; 250, 800 and 1000; and 250–1000 µs/µm2 were not significantly different from ADCIVIM values (p > 0.05, paired t-test). Mean error in ADC values for these sets relative to ADCIVIM were within 3.5%. Intra-scan CVs for these sets were comparable to that for ADCIVIM. The monoexponential ADC values for other sets- 0–1000; 50–1000; 100–1000; 500–1000; and 250 and 800 µs/µm2 were significantly different from the ADCIVIM values. From Rician noise simulation using b-value pairs, there was a wide range of

  7. Absolute calibration and atmospheric versus mineralogic origin of absorption features in 2.0 to 2.5 micron Mars spectra obtained during 1993

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We obtained new high resolution reflectance spectra of Mars during the 1993 opposition from Mauna Kea Observatory using the UKIRT CGS4 spectrometer. Fifty spectra of 1600-2000 km surface regions and a number of standard star spectra were obtained in the 2.04 to 2.44 micron wavelength region on 4 February 1993 UT. Near-simultaneous observations of bright standard stars were used to perform terrestrial atmospheric corrections and an absolute flux calibration. Using the known magnitude of the stars and assuming blackbody continuum behavior, the flux from Mars could be derived. A radiative transfer model and the HITRAN spectral line data base were used to compute atmospheric transmission spectra for Mars and the Earth in order to simulate the contributions of these atmospheres to our observed data. Also, we examined the ATMOS solar spectrum in the near-IR to try to identify absorption features in the spectrum of the Sun that could be misinterpreted as Mars features. Eleven absorption features were detected in our Mars spectra. Our data provide no conclusive identification of the mineralogy responsible for the absorption features we detected. However, examination of terrestrial spectral libraries and previous high spectral resolution mineral studies indicates that the most likely origin of these features is either CO3(sup 2-), HCO3(-), or HSO4(-) anions in framework silicates or possibly (Fe, Mg)-OH bonds in sheet silicates.

  8. Time-resolved visible and infrared absorption spectroscopy data obtained using photosystem I particles with non-native quinones incorporated into the A1 binding site.

    PubMed

    Makita, Hiroki; Hastings, Gary

    2016-06-01

    Time-resolved visible and infrared absorption difference spectroscopy data at both 298 and 77 K were obtained using cyanobacterial menB (-) mutant photosystem I particles with several non-native quinones incorporated into the A1 binding site. Data was obtained for photosystem I particles with phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone), 2-bromo-1,4-naphthoquinone, 2-chloro-1,4-naphthoquinone, 2-methyl-1,4-naphthoquinone, 2,3-dibromo-1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, and 9,10-anthraquinone incorporated. Transient absorption data were obtained at 487 and 703 nm in the visible spectral range, and 1950-1100 cm(-1) in the infrared region. Time constants obtained from fitting the time-resolved infrared and visible data are in good agreement. The measured time constants are crucial for the development of appropriate kinetic models that can describe electron transfer processes in photosystem I, "Modeling Electron Transfer in Photosystem I" Makita and Hastings (2016) [1].

  9. Diffusion Coefficient Values Obtained at Individual Diffuse Ion Events Based on Cluster Observations: What Do We Know About the Physical Process?

    NASA Astrophysics Data System (ADS)

    Kis, Arpad; Scholer, Manfred; Klecker, Berndt; Lucek, Elisabeth; Reme, Henry

    2010-05-01

    We present simultaneous multipoint observations of diffuse ions in front of the Earth's quasi-parallel bow shock. For the analysis we use data provided by the Cluster CIS-HIA particle instrument and data from FGM magnetic field instrument. Several individual diffuse ion events during various solar wind conditions are presented and analysed. The diffusion coefficients at each analysed upstream ion event present unique characteristics especially at lower diffuse ion energies (around 10 keV). We analyse in detail the reasons for the observed differences in the value of the diffusion coefficient; results are also compared with predictions of the theory and the reason for the eventual difference is explained.

  10. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 1. Monte-Carlo simulation of laser fluence distribution at the beam axis beneath the surface of a turbid medium

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    A new method for measuring the local light absorption coefficient in turbid media, for example, biological tissues, is proposed. The method is based on the fact that the amplitude of the excited opto-acoustic (OA) signal is proportional to the absorbed laser power density (the product of the light absorption coefficient and the laser fluence) at the medium interface. In the first part of the paper, the influence of the laser beam diameter, the light absorption and reduced scattering coefficients on the maximal amplitude of the laser fluence at the laser beam axis in the near-surface layer of the turbid medium is studied by using the Monte-Carlo simulation. The conditions are predicted under which the amplitude of the OA signal detected in a transparent medium in contact with the scattering medium should remain proportional to the light absorption coefficient of the medium under study, when the scattering coefficient in it changes more than twice. The results of the numerical simulation are used for the theoretical substantiation of the OA method being proposed. (measurement of parametrs of laser radiation)

  11. Fluorescence monitor method for measuring effective absorption coefficients of molecular rovibronic transitions using tunable dye laser excitation: The case of absorber linewidth narrower than the laser linewidth applied to H/sub 2/CO

    SciTech Connect

    Fairchild, P.W.; Garland, N.L.; Howard, W.E. III; Lee, E.K.C.

    1980-10-01

    A technique for measuring ''effective'' absorption coefficients is described. It circumvents deviations from Beer's law caused when the excitation source bandwidth is larger than the absorber bandwidth. The technique employs a fluorescence cell placed after an absorption cell to selectively monitor absorption in the center region of the source line. Model calculations relating the fluorescence intensity to source and absorber line shapes indicate that this method should yield linear Beer's law plots for moderate values of k/sub 0/Nl and ..cap alpha.., where ..cap alpha.. is the ratio of the source bandwidth to the absorber bandwidth. This technique has been applied to a number of single rotational levels in the 4/sup 1//sub 0/ transition of the H/sub 2/CO A /sup 1/A/sub 2/reverse arrowX /sup 1/A/sub 1/ system using pulsed, tunable dye laser excitation. The effective absorption coefficients determined experimentally have been compared to the theoretically calculated absorption coefficients.

  12. Intensities and self-broadening coefficients of the strongest water vapour lines in the 2.7 and 6.25 μm absorption bands

    NASA Astrophysics Data System (ADS)

    Ptashnik, Igor V.; McPheat, Robert; Polyansky, Oleg L.; Shine, Keith P.; Smith, Kevin M.

    2016-07-01

    Intensities and self-broadening coefficients are presented for about 460 of the strongest water vapour lines in the spectral regions 1400-1840 cm-1 and 3440-3970 cm-1 at room temperature, obtained from rather unique measurements using a 5-mm-path-length cell. The retrieved spectral line parameters are compared with those in the HITRAN database ver. 2008 and 2012 and with recent ab-initio calculations. Both the retrieved intensities and half-widths are on average in reasonable agreement with those in HITRAN-2012. Maximum systematic differences do not exceed 4% for intensities (1600 cm-1 band) and 7% for self-broadening coefficients (3600 cm-1 band). For many lines however significant disagreements were detected with the HITRAN-2012 data, exceeding the average uncertainty of the retrieval. In addition, water vapour line parameters for 5300 cm-1 (1.9 μm) band reported by us in 2005 were also compared with HITRAN-2012, and show average differences of 4-5% for both intensities and half-widths.

  13. Diffusion coefficients of conductive ions in a copolymer of vinylidene cyanide and vinyl acetate obtained from dielectric measurements using the model of Trukhan

    NASA Astrophysics Data System (ADS)

    Compañ, Vincente; Smith Sørensen, Torben; Diaz-Calleja, Ricardo; Riande, Evaristo

    1996-01-01

    The dielectric dispersion measurements of Furukawa et al. are treated in the light of a previously proposed model of Trukhan. The latter describes the influence of mobile ions on the dielectric dispersion in a slab of material placed between polarizable electrodes. It is shown that the so-called ``constant phase element'' is just a crude approximation to the predictions of the theory of Trukhan, an approximation not valid at very low frequencies. At low frequencies macropolarizations appear analogous to the ones observed in asymmetric cellulose acetate membranes by Malmgren-Hansen et al. The polarizations are much larger in the present case, and this indicates that there are no microheterogeneities in the polymeric film of Furukawa et al. The diffusion coefficient of the most rapidly diffusing ion (presumably H+) may be found as a function of temperature within some uncertainty. The Arrhenius plot shows clearly the change in activation energy around the glass transition temperature (182 °C). Below the glass transition the activation energy for diffusion is much larger (˜50000 K) than above. The diffusion coefficients increase from ˜10-17 m2/s at 170 °C to ˜5.10-16 m2/s at 195 °C. The concentration of electrolyte present in the polymer increases from ˜15 to ˜200 mol m-3 in the same temperature interval.

  14. Broadband microwave absorption spectrometer for liquid media

    SciTech Connect

    Mukherjee, P.; Gosnell, T.R.; Bigio, I.J.

    1988-12-01

    A broadband, continuous-sweep microwave spectrometer has been constructed for measurements of the absorption coefficient of aqueous solutions and other liquid media. The spectrometer makes use of the phase fluctuation optical heterodyne technique, which provides a direct measure of the microwave power deposited in the sample. Consequently, in contrast to the standard dielectrometric techniques that indirectly determine the absorption coefficient via separate measurements of the real and imaginary parts of the dielectric constant, this spectrometer directly measures the microwave absorption coefficient. Broadband spectra are obtained using a transmission line to couple microwave power into the liquid sample. The absorption spectrum for deionized water in the range 3--20 GHz is presented as an example and shows excellent agreement with calculated values of the absorption coefficient based on previously published dielectric data.

  15. Absorption coefficients and frequency shifts measurement in the spectral range of 1071.88-1084.62 cm-1 vs. pressure for chlorodifluoromethane (CHClF2) using tunable CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Al-Hawat, Sharif

    2013-02-01

    Infrared (IR) absorption in the spectral range of (1071.88-1084.62 cm-1) vs. pressure in chlorodifluoromethane (CFC-22, F-22, and CHClF2) was studied using a tunable continuous wave (CW) CO2 laser radiation on 9R branch lines with a maximum output power of about 2.12 W, provided with an absorber cell located outside the laser cavity. The absorption coefficients were determined vs. the gas pressure between 0.2 mbar and 170 mbar at lines from 9R branch for CFC-22. The frequency shifts of the absorption lines of CFC-22 in relative to the central frequencies of laser lines were calculated vs. the pressure on the basis of these absorption coefficients. The chosen lines were selected according to IR spectrum of the studied gas given by HITRAN cross section database. So the absorption was achieved for CFC-22 at the spectral lines of 9R branch situated from 9R (10) to 9R (30) emitted by a tunable CW CO2 laser. The absorption cross sections of CFC-22 determined in this work were compared with the relevant data given by HITRAN cross section database and a reasonable agreement was observed.

  16. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region.

    PubMed

    Stramski, Dariusz; Reynolds, Rick A; Kaczmarek, Sławomir; Uitz, Julia; Zheng, Guangming

    2015-08-01

    Spectrophotometric measurement of particulate matter retained on filters is the most common and practical method for routine determination of the spectral light absorption coefficient of aquatic particles, ap(λ), at high spectral resolution over a broad spectral range. The use of differing geometrical measurement configurations and large variations in the reported correction for pathlength amplification induced by the particle/filter matrix have hindered adoption of an established measurement protocol. We describe results of dedicated laboratory experiments with a diversity of particulate sample types to examine variation in the pathlength amplification factor for three filter measurement geometries; the filter in the transmittance configuration (T), the filter in the transmittance-reflectance configuration (T-R), and the filter placed inside an integrating sphere (IS). Relationships between optical density measured on suspensions (ODs) and filters (ODf) within the visible portion of the spectrum were evaluated for the formulation of pathlength amplification correction, with power functions providing the best functional representation of the relationship for all three geometries. Whereas the largest uncertainties occur in the T method, the IS method provided the least sample-to-sample variability and the smallest uncertainties in the relationship between ODs and ODf. For six different samples measured with 1 nm resolution within the light wavelength range from 400 to 700 nm, a median error of 7.1% is observed for predicted values of ODs using the IS method. The relationships established for the three filter-pad methods are applicable to historical and ongoing measurements; for future work, the use of the IS method is recommended whenever feasible. PMID:26368092

  17. Influence of coefficient of variation in determining significant difference of quantitative values obtained from 28-day repeated-dose toxicity studies in rats.

    PubMed

    Kobayashi, Katsumi; Sakuratani, Yuki; Abe, Takemaru; Yamazaki, Kazuko; Nishikawa, Satoshi; Yamada, Jun; Hirose, Akihiko; Kamata, Eiichi; Hayashi, Makoto

    2011-01-01

    In order to understand the influence of coefficient of variation (CV) in determining significant difference of quantitative values of 28-day repeated-dose toxicity studies, we examined 59 parameters of 153 studies conducted in accordance with Chemical Substance Control Law in 12 test facilities. Sex difference was observed in 12 parameters and 10 parameters showed large CV in females. The minimum CV was 0.74% for sodium. CV of electrolytes was comparatively small, whereas enzymes had large CV. Large differences in CV were observed for major parameters among 7-8 test facilities. The changes in CV were grossly classified into 11. Our study revealed that a statistical significant difference is usually detected if there is a difference of 7% in mean values between the groups and the groups have a CV of about 7%. A parameter with a CV as high as 30% may be significantly different, if the difference of the mean between the groups is 30%. It would be ideal to use median value to assess the treatment-related effect, rather than mean, when the CV is very high. We recommend using CV of the body weight as a standard to judge the adverse effect level.

  18. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  19. Monitoring spacecraft atmosphere contaminants by laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.

    1975-01-01

    Data were obtained which will provide a test of the accuracy of the differential absorption method for trace contaminant detection in many-component gas mixtures. The necessary accurate absorption coefficient determinations were carried out for several gases; acetonitrile, 1,2-dichloroethane, Freon-113, furan, methyl ethyl ketone, and t-butyl alcohol. The absorption coefficients are displayed graphically. An opto-acoustic method was tested for measuring absorbance, similar to the system described by Dewey.

  20. EXTENSION OF THE INVERSE ADDING-DOUBLING METHOD TO THE MEASUREMENT OF WAVELENGTH-DEPENDENT ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL SAMPLES

    SciTech Connect

    Allegood, M.S.; Baba, J.S.

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.

  1. Temperature Dependence of Surface Acoustic Wave Propagation Velocity in InxGa1-xN Films Obtained by High-Resolution Brillouin Spectroscopy: Determination of Temperature Coefficient of Frequency

    NASA Astrophysics Data System (ADS)

    Riobóo, Rafael J. Jiménez; Prieto, Carlos; Cuscó, Ramón; Artús, Lluís; Boney, Chris; Bensaoula, Abdelhak; Yamaguchi, Tomohiro; Nanishi, Yasushi

    2013-05-01

    Temperature-dependent surface acoustic wave (SAW) propagation velocity and temperature coefficient of frequency (TCF) have been determined for the first time in InxGa1-xN alloys by means of high-resolution Brillouin spectroscopy (HRBS). HRBS offers an alternative way of determining TCF. The obtained TCF values present a non-linear behavior with the In concentration. TCF of pure InN (-13.75 ppm/K) is similar to those of AlN and GaN (-19 and -17.7 ppm/K, respectively). InxGa1-xN samples exhibit frequency values that are very stable against temperature changes, which makes InxGa1-xN a good candidate for current SAW-based technological applications.

  2. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  3. Ultraviolet (250-550  nm) absorption spectrum of pure water.

    PubMed

    Mason, John D; Cone, Michael T; Fry, Edward S

    2016-09-01

    Data for the spectral light absorption of pure water from 250 to 550 nm have been obtained using an integrating cavity made from a newly developed diffuse reflector with a very high UV reflectivity. The data provide the first scattering-independent measurements of absorption coefficients in the spectral gap between well-established literature values for the absorption coefficients in the visible (>400  nm) and UV (<200  nm). A minimum in the absorption coefficient has been observed in the UV at 344 nm; the value is 0.000811±0.000227  m-1. PMID:27607297

  4. Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance

    NASA Astrophysics Data System (ADS)

    Tanifuji, T.

    2016-03-01

    Time-resolved multi-distance measurements are studied to retrieve absorption and reduced scattering coefficients of adult heads, which have enough depth sensitivity to determine the optical parameters in superficial tissues and brain separately. Measurements were performed by putting the injection and collection fibers on the left semi-sphere of the forehead, with the injection fiber placed toward the temporal region, and by moving the collection fiber between 10 and 60 mm from the central sulcus. It became clear that optical parameters of the forehead at all collection fibers were reasonably determined by selecting the appropriate visibility length of the geometrical head models, which is related to head surface curvature at each position.

  5. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  6. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a).

    PubMed

    González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José

    2015-04-01

    CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under

  7. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a).

    PubMed

    González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José

    2015-04-01

    CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under

  8. [Decomposing total suspended particle absorption based on the spectral correlation relationship].

    PubMed

    Wang, Gui-Fen; Cao, Wen-Xi; Yang, Ding-Tian; Zhao, Jun

    2009-01-01

    A model for estimating the contributions of phytoplankton and nonalgal particles to the total particulate absorption coefficient was developed based on their separate spectral relationships, and a constrained nonlinear optimization code was used to realize the spectral decomposition. The spectral absorption of total particulate matter including phytoplankton and nonalgal particles was measured using the filter-pad method during two cruises in autumn in Northern South China Sea. Using the dataset collected in 2004, the spectral relationships of particle absorption coefficients were examined and the results showed that the phytoplankton absorption coefficients at various wavebands could be well expressed by aph (443) as the second-order quadratic equations; and the nonalgal particle absorption (aNAP(lambda)) could be successfully modeled with the simple exponential function. Based on these spectral relationships, we developed this partition model. The model was tested using the independently measured absorption by phytoplankton and nonalgal materials which were obtained in 2005 from the same area. The test results showed that the computed spectral absorption coefficients of phytoplankton and nonalgal particles were consistent with in situ measurement. Good correlations were fo und between the comput ed phytoplankton absorption coefficient and the measured value,with the determination coefficients (r2) being higher than 0.97 and slopes being around 1.0; and the RMSE values could be controlled within 17% over the main absorption wavebands such as 443, 490 and 683 nm. Compared with the other two existing models from Bricaud et al. and Oubelkheir et al., this method shows many advantages for local applications. Moreover, this model does not need any information about pigment concentrations and the selected spectral bands are consistent with the ocean color satellite sensor. This method could also be used in the total absorption coefficient decomposition which provides

  9. Light absorption properties and absorption budget of Southeast Pacific waters

    NASA Astrophysics Data System (ADS)

    Bricaud, Annick; Babin, Marcel; Claustre, Hervé; Ras, JoséPhine; TièChe, Fanny

    2010-08-01

    Absorption coefficients of phytoplankton, nonalgal particles (NAPs), and colored dissolved organic matter (CDOM), and their relative contributions to total light absorption, are essential variables for bio-optical and biogeochemical models. However, their actual variations in the open ocean remain poorly documented, particularly for clear waters because of the difficulty in measuring very low absorption coefficients. The Biogeochemistry and Optics South Pacific Experiment (BIOSOPE) cruise investigated a large range of oceanic regimes, from mesotrophic waters around the Marquesas Islands to hyperoligotrophic waters in the subtropical gyre and eutrophic waters in the upwelling area off Chile. The spectral absorption coefficients of phytoplankton and NAPs were determined using the filter technique, while the CDOM absorption coefficients were measured using a 2 m capillary waveguide. Over the whole transect, the absorption coefficients of both dissolved and particulate components covered approximately two orders of magnitude; in the gyre, they were among the lowest ever reported for open ocean waters. In the oligotrophic and mesotrophic waters, absorption coefficients of phytoplankton and NAPs were notably lower than those measured in other oceanic areas with similar chlorophyll contents, indicating some deviation from the standard chlorophyll-absorption relationships. The contribution of absorption by NAPs to total particulate absorption showed large vertical and horizontal variations. CDOM absorption coefficients covaried with algal biomass, albeit with a high scatter. The spectral slopes of both NAP and CDOM absorption revealed structured spatial variability in relation with the trophic conditions. The relative contributions of each component to total nonwater absorption were (at a given wavelength) weakly variable over the transect, at least within the euphotic layer.

  10. Acoustic Absorption Characteristics of People.

    ERIC Educational Resources Information Center

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  11. Singular topology of optical absorption in biaxial crystals.

    PubMed

    Joly, Simon; Petit, Yannick; Boulanger, Benoît; Segonds, Patricia; Félix, Corinne; Ménaert, Bertrand; Aka, Gérard

    2009-10-26

    We show for the first time that biaxial crystals exhibit continua of directions of propagation where the absorption coefficient is the same for the two associated polarization modes. This statement is supported by both calculations and experimental data obtained in Nd:YCOB.

  12. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  13. Measurements of spectral attenuation coefficients in the lower Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.

    1983-01-01

    The spectral transmission was measured for water samples taken in the lower Chesapeake Bay to allow characterization of several optical properties. The coefficients of total attenuation, particle attenuation, and absorption by dissolved organic matter were determined over a wavelength range from 3500 A to 8000 A. The data were taken over a 3 year period and at a number of sites so that an indication of spatial and temporal variations could be obtained. The attenuations determined in this work are, on the average, 10 times greater than those obtained by Hulburt in 1944, which are commonly accepted in the literature for Chesapeake Bay attenuation.

  14. Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces

    SciTech Connect

    Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith; LeBlanc, Mary M.; Lowdermilk, W. Howard; Rotter, Mark D.; Stanley, Joel R.

    2014-07-17

    When modeling laser interaction with metals for various applications it requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. But, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. Futhermore, the obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.

  15. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  16. Photoacoustic technique for simultaneous measurements of thermal effusivity and absorptivity of pigments in liquid solution.

    PubMed

    Balderas-López, J A; Díaz-Reyes, J; Zelaya-Angel, O

    2011-12-01

    A photoacoustic (PA) methodology, in the transmission configuration, for simultaneous measurements of thermal effusivity and molar absorption coefficient (absorptivity) for pigments in liquid solution is introduced. The analytical treatment involves a self-normalization procedure for the PA signal, as a function of the modulation frequency, for a strong absorbing material in the thermally thin regime, when the light travels across the sample under study. Two fitted parameters are obtained from the analysis of the self-normalized PA amplitude and phase, one of them proportional to the sample's optical absorption coefficient and from which, taking it for a series of samples at different concentrations, the pigment's absorptivity in liquid solution can be measured, the other one yields the sample's thermal effusivity. Methylene blue's absorptivity in distilled water was measured with this methodology at 658 nm, finding good agreement with the corresponding one reported in the literature.

  17. Infrared bulk and surface absorption by nearly transparent crystals.

    PubMed

    Rosenstock, H B; Gregory, D A; Harrington, J A

    1976-09-01

    We present an analysis of laser calorimetric data that deduces both the bulk and the surface absorption in a single run. The method involves use of long rod geometry combined with an analytical solution of the heat equation for the temperature distribution in a sample that is heated both internally and on the surfaces. Bulk and surface absorption coefficients, heat transfer coefficient, and thermal diffusivity appear as parameters; the last is treated as known, and the thermal rise curve is fitted to the three others. The solution obtained is valid at all points and times, and measurement of the temperature during and after laser heating at different points therefore narrows the possible fit considerably. Examples illustrating the method are presented for ZnSe, CaF(2) NaF:Li, NaCl, KBr, and KC1 at 2.7 microm, 3.8 microm, and 10.6 microm. Surface absorption is found to be dominant in all cases.

  18. Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-04-01

    Absorption of acid gases such as CO{sub 2} and H{sub 2}S from natural and process gases is of great industrial importance. The kinetics of the reaction between CO{sub 2} and aqueous diethanolamine (DEA) were estimated over the temperature range of 293--343 K from absorption data obtained in a laminar-liquid jet absorber. The absorption data were obtained over a wide range of DEA concentrations and for CO{sub 2} partial pressures near atmospheric. A rigorous numerical mass-transfer model based on penetration theory in which all chemical reactions are considered to be reversible was developed and used to estimate kinetic rate coefficients from the experimental absorption data. The kinetic data were found to be consistent with the zwitterion mechanism. The scarce zwitterion rate coefficient estimates reported in the literature are in fair agreement with the results of this work.

  19. Determining the Gruneisen coefficient for liquids using the PAZ-scan technique

    NASA Astrophysics Data System (ADS)

    Dantiste, Olivier A.

    Measurement of Gruneisen coefficient is utterly important in developing efficient molecular photoacoustic (PA) contrast agents. It is one of the two parameters that describes how efficient a molecule is in transforming optical energy into sound, the other being absorption coefficient. Using the PAZ-scan technique, the Gruneisen coefficient was obtained for various samples and the values are compared with standard techniques. In a PAZ-scan, the sample is translated through the path of a focused laser beam in small steps while the generated PA signal is recorded. The incident intensity is optimum at the focal point and decreases gradually on either side of the focus. As such, the absorption and the PA signal varies according to the sample properties. Therefore at positions away from the focal point, the incident intensities are weak and the PA signal varies linearly with intensity. A plot of the PA signal versus the intensity is used to obtain the Gruneisen coefficient. Using this technique, the Gruneisen coefficients for crystal violet in two different solvents, food coloring dyes that are dissolved in water were determined. Results show that the linear part of the PAZ-scan can be used to determine the Gruneisen coefficient for liquids.

  20. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    PubMed

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  1. Identification of a dissipation coefficient by a variational method

    NASA Astrophysics Data System (ADS)

    Baev, A. V.; Kutsenko, N. V.

    2006-10-01

    A generalized inverse problem for the identification of the absorption coefficient for a hyperbolic system is considered. The well-posedness of the problem is examined. It is proved that the regular part of the solution is an L 2 function, which reduces the inverse problem to minimizing the error functional. The gradient of the functional is determined in explicit form from the adjoint problem, and approximate formulas for its calculation are derived. A regularization algorithm for the solution of the inverse problem is considered. Numerical results obtained for various excitation sources are displayed.

  2. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  3. Is the G Index a Correlation Coefficient?

    ERIC Educational Resources Information Center

    Vegelius, Jan

    1980-01-01

    One argument against the G index is that, unlike phi, it is not a correlation coefficient; yet, G conforms to the Kendall and E-coefficient definitions. The G index is also equal to the Pearson product moment correlation coefficient obtained from double scoring. (Author/CP)

  4. Factor Scores, Structure Coefficients, and Communality Coefficients

    ERIC Educational Resources Information Center

    Goodwyn, Fara

    2012-01-01

    This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…

  5. Solvent drag effect in drug intestinal absorption. II. Studies on drug absorption clearance and water influx.

    PubMed

    Karino, A; Hayashi, M; Awazu, S; Hanano, M

    1982-09-01

    In order to study the solvent drag effect, it was shown that back flux of absorbed drug from blood to intestinal lumen can be ignored but the back flux of water cannot. Then, apparent water influx was calculated as a new measure of solvent drag based on the model in which the back flux of D2O from blood to lumen was considered during absorption. Consequently, the correlation between drug absorption clearance (CLdrug) and apparent water influx was highly significant for benzoic acid, salicylic acid, p-hydroxybenzoic acid, antipyrine, cephalexin (CEX) and cefroxadine (CXD), resulting the high solvent drag effects were detected. The mean values of the slopes in the regression lines of CLdrug versus apparent water influx, i.e., sieving coefficients, were smaller than one for benzoic acid and salicylic acid, but the values were not significantly different from one. The sieving coefficients of the other drugs were significantly smaller than one. From these results, the molecular size dependence in the reflection from the intestinal membrane during absorption was clearly shown. And the intercepts of the regression lines including diffusive permeabilities were found to be significantly different from zero in CEX and CXD. On the basis of the sieving coefficients and intercept values obtained in such ways, the appropriateness of this model was discussed.

  6. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  7. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  8. Free-free absorption of infrared radiation in collisions of electrons with neutral rare-gas atoms

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    A relationship between the inverse bremsstrahlung absorption cross section and the electron neutral momentum transfer cross section has been utilized to determine the infrared free-free continuum absorption coefficient for the negative ions of helium, neon, argon, krypton, and xenon. The values of the momentum transfer cross section for this calculation have been obtained from experimental measurements. Analytical expressions for the absorption coefficient have also been developed. From the results of this calculation, it is possible to determine the absorption coefficient per unit electron density per neutral atom for temperatures in the range from 2500 to 25,000 K. The results are compared with those from tabulations of previous calculations and those computed from theoretical values of the phase shifts for the elastic scattering of electrons by neutral atoms.

  9. Epidermal melanin absorption in human skin

    NASA Astrophysics Data System (ADS)

    Norvang Nilsen, Lill T.; Fiskerstrand, Elisanne J.; Nelson, J. Stuart; Berns, Michael W.; Svaasand, Lars O.

    1996-01-01

    The principle of laser induced selective photothermolysis is to induced thermal damage to specific targets in such a manner that the temperature of the surrounding tissue is maintained below the threshold for thermal damage. The selectivity is obtained by selection of a proper wavelength and pulse duration. The technique is presently being used in the clinic for removal of port-wine stains. The presence of melanin in the epidermal layer can represent a limitation to the selectivity. Melanin absorption drops off significantly with increasing wavelength, but is significant in the entire wavelength region where the blood absorption is high. Treatment of port-wine stain in patients with high skin pigmentation may therefore give overheating of the epidermis, resulting in epidermal necrosis. Melanosomal heating is dependent on the energy and duration of the laser pulse. The heating mechanism for time scales less than typically 1 microsecond(s) corresponds to a transient local heating of the individual melanosomes. For larger time scales, heat diffusion out of the melanosomes become of increased importance, and the temperature distribution will reach a local steady state condition after typically 10 microsecond(s) . For even longer pulse duration, heat diffusing from neighboring melanosomes becomes important, and the temperature rise in a time scale from 100 - 500 microsecond(s) is dominated by this mechanism. The epidermal heating during the typical 450 microsecond(s) pulse used for therapy is thus dependent on the average epidermal melanin content rather than on the absorption coefficient of the individual melanosomes. This study will present in vivo measurements of the epidermal melanin absorption of human skin when exposed to short laser pulses (< 0.1 microsecond(s) ) from a Q-switched ruby laser and with long laser pulses (approximately 500 microsecond(s) ) from a free-running ruby laser or a long pulse length flashlamp pumped dye laser. The epidermal melanin

  10. A Parallel Reconstruction Scheme in Fluorescence Tomography Based on Contrast of Independent Inversed Absorption Properties

    PubMed Central

    Yi, Ji; Bai, Jing

    2006-01-01

    Based on an independent forward model in fluorescent tomography, a parallel reconstructed scheme for inhomogeneous mediums with unknown absorption property is proposed in this paper. The method considers the two diffusion equations as separately describing the propagation of excited light in tissues with and without fluorescent probes inside. Then the concentration of fluorophores is obtained directly through the difference between two estimations of absorption coefficient which can be parallel inversed. In this way, the multiparameter estimation problem in fluorescent tomography is transformed into two independent single-coefficient determined schemes of diffusion optical tomography (DOT). Any algorithms proved to be efficient and effective in DOT can be directly applied here. In this study the absorption property is estimated from the independent diffusion equations by a gradient-based optimization method with finite element method (FEM) solving the forward model. Simulation results of three representative occasions show that the reconstructed method can well estimate fluorescent property and tissue absorption distribution. PMID:23165045

  11. Measuring optical temperature coefficients of Intralipid.

    PubMed

    McGlone, V Andrew; Martinsen, Paul; Künnemeyer, Rainer; Jordan, Bob; Cletus, Biju

    2007-05-01

    The temperature sensitivities of absorption and reduced scattering coefficients in the range 700-1000 nm are determined for the liquid phantom Intralipid using spatially resolved continuous wave measurements. The measurements were conducted on a 10 L heated volume of 1% Intralipid subjected to a 40-30 degrees C cooling regime. The temperature sensitivities of the absorbance coefficients are similar to that expected for pure water. However, the reduced scattering coefficients are more sensitive than can be explained by temperature related density changes, and show an unexpected relationship with wavelength. We have also found that temperature perturbations provide a useful means to evaluate instrument model performance. PMID:17440240

  12. On the emission coefficient of uranium plasmas.

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Campbell, H. D.; Mack, J. M.

    1973-01-01

    The emission coefficient for uranium plasmas (temperature: 8000 K) was measured for the wavelength range from 1200 to 6000 A. The results were compared to theoretical calculations and other measurements. Reasonable agreement between theoretical predictions and our measurements was found in the region from 1200 to 2000 A. Although it was difficult to make absolute comparisons among the different reported measurements, considerable disagreement was found for the higher wavelength region. A short discussion regarding the overall comparisons is given, and final suggestions are made as to the most appropriate emission coefficient values to be used in future design calculations. The absorption coefficient for the same wavelength interval is also reported.

  13. Effective photons in weakly absorptive dielectric media and the Beer-Lambert-Bouguer law

    NASA Astrophysics Data System (ADS)

    Judge, A. C.; Brownless, J. S.; Bhat, N. A. R.; Sipe, J. E.; Steel, M. J.; de Sterke, C. Martijn

    2014-04-01

    We derive effective photon modes that facilitate an intuitive and convenient picture of photon dynamics in a structured Kramers-Kronig dielectric in the limit of weak absorption. Each mode is associated with a mode field distribution that includes the effects of both material and structural dispersion, and an effective line-width that determines the temporal decay rate of the photon. These results are then applied to obtain an expression for the Beer-Lambert-Bouguer law absorption coefficient for unidirectional propagation in structured media consisting of dispersive, weakly absorptive dielectric materials.

  14. Empirical relationship between Kubelka-Munk and radiative transfer coefficients for extracting optical parameters of tissues in diffusive and nondiffusive regimes

    NASA Astrophysics Data System (ADS)

    Roy, Arindam; Ramasubramaniam, Rajagopal; Gaonkar, Harshavardhan A.

    2012-11-01

    Kubelka-Munk (K-M) theory is a phenomenological light transport theory that provides analytical expressions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive incident beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering coefficient (μs‧), whereas the K-M absorption coefficient depends on both absorption (μa) and reduced scattering (μs‧) coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thickness from the measured reflectance spectra with a maximum accuracy of 90% to 95%.

  15. Inference of the aerosol Angstrom coefficient from SAGE short-wavelength data. [Stratospheric Aerosol and Gas Experiment

    NASA Technical Reports Server (NTRS)

    Lenoble, J.; Pruvost, P.

    1983-01-01

    SAGE four-channel transmission profiles are inverted to retrieve the extinction profiles from which the aerosol Angstrom coefficient alpha is obtained. The procedure allows one to check the influence of the NO2 absorption profile, which is small below 25 km. The results compare well with those obtained by a completely different procedure at NASA Langley Research Center, and the main features of the alpha profiles seem to be significant, even considering the rather large error bars. The relation between the retrieved Angstrom coefficient, the particle effective radius and the asymmetry factor is considered.

  16. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  17. Transport coefficients of gluonic fluid

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e

    2011-06-01

    The shear ({eta}) and bulk ({zeta}) viscous coefficients have been evaluated for a gluonic fluid. The elastic, gg{yields}gg and the inelastic, number nonconserving, gg{yields}ggg processes have been considered as the dominant perturbative processes in evaluating the viscous coefficients to entropy density (s) ratios. Recently the processes: gg{yields}ggg has been revisited and a correction to the widely used Gunion-Bertsch (GB) formula has been obtained. The {eta} and {zeta} have been evaluated for gluonic fluid with the formula recently derived. At large {alpha}{sub s} the value of {eta}/s approaches its lower bound, {approx}1/4{pi}.

  18. Infrared absorption mechanisms of black silicon

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2014-09-01

    Black silicon has a wide spectrum of non-spectral characteristics high absorption from visible to long wave infrared band .Based on semi-empirical impurity band model, free carrier absorption, radiation transitions between the valence band and the impurity band, radiation transitions between the impurity band and the conduction band were calculated, and absorption coefficients for each process were got. The results showed that the transitions from valence band to the impurity band induced absorption in the near-infrared waveband, but it has a rapid decay with wavelength. In the shortwave mid-wave and long-wave IR bands, transitions from the impurity band to the conduction band caused a huge absorption, and the absorption coefficient was slowly decreased with increasing wavelength. The free carrier absorption dominates in long-wave band. The calculation results agreed well with the test results of plant black silicon in magnitude and trends.

  19. Transport coefficients of heavy baryons

    NASA Astrophysics Data System (ADS)

    Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.

    2016-08-01

    We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.

  20. Absorption heat pump system

    DOEpatents

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  1. Influence of absorption on stability of terahertz difference frequency generation.

    PubMed

    Huang, Nan; Liu, Hongjun; Sun, Qibing; Wang, Zhaolu; Li, Shaopeng; Han, Jing

    2016-01-20

    This work presents numerical studies of the stability feature of terahertz difference frequency generation (THz-DFG) with a ZnGeP(2) crystal using two pump wavelengths. We found that the maximum output of a THz wave is located in the unstable output region because of the competitive equilibrium between the absorption and the gain. Furthermore, the output stability is dependent on the pump stability. Different from the results at the pump wavelength of 9.588 μm, there is neither an appropriate stable output region nor gain saturation region at the pump wavelength of 1.064 μm for a larger absorption coefficient. This work demonstrates that the stable output region of the THz wave is difficult to obtain when the pump absorption is excessively large in DFG. PMID:26835915

  2. Stochastic Approach to Phonon-Assisted Optical Absorption

    NASA Astrophysics Data System (ADS)

    Zacharias, Marios; Patrick, Christopher E.; Giustino, Feliciano

    2015-10-01

    We develop a first-principles theory of phonon-assisted optical absorption in semiconductors and insulators which incorporates the temperature dependence of the electronic structure. We show that the Hall-Bardeen-Blatt theory of indirect optical absorption and the Allen-Heine theory of temperature-dependent band structures can be derived from the present formalism by retaining only one-phonon processes. We demonstrate this method by calculating the optical absorption coefficient of silicon using an importance sampling Monte Carlo scheme, and we obtain temperature-dependent line shapes and band gaps in good agreement with experiment. The present approach opens the way to predictive calculations of the optical properties of solids at finite temperature.

  3. The influence absorb stratification on absorptivity of atmosphere

    NASA Astrophysics Data System (ADS)

    Goryachev, B. V.; Mogilnitskiy, S. B.

    2014-11-01

    The authors have studied the radiation transfer in multilayer atmosphere. The analytical formulae for the calculation of the transmission coefficient, reflectance and absorption of dispersion media consisting of three plane layers were obtained. It was shown that absorption of dispersed media depends strongly on absorption layer's position in dispersed media. The lowest value is marked when the layer takes place below of the media the light falls from above. Investigation of the radiation balance of the atmosphere is usually conducted on the basis of the theory of radiative transfer and numerical methods [1]. In conducting research using various models of the atmosphere [2-4]. Accuracy of the results depends on the accuracy of the approximation and taking into account all the effects that significantly affect the results, such as the effect of the spatial limitations of the dispersion medium [4-6].

  4. Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes

    SciTech Connect

    Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.

    2009-11-26

    The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate 'kicks' after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.

  5. Comparison of ICRF-Induced Ion Diffusion Coefficients Calculated with the DC and AORSA Codes

    NASA Astrophysics Data System (ADS)

    Harvey, R. W.; Petrov, Yu.; Jaeger, E. F.; Berry, L. A.; Batchelor, D. B.; Bonoli, P. T.; Wright, J. C.

    2009-11-01

    The DC (Diffusion Coefficient) code obtains RF diffusion coefficients by direct numerical integration of the Lorentz force equation for ion motion in the combined equilibrium fields and the RF full wave EM fields from the AORSA full-wave code. Suitable averaging over initial gyro- and toroidal-angle of coordinate "kicks" after a bounce-period, gives noise-free bounce-averaged diffusion coefficients. For direct comparison with zero-banana-width coefficients from AORSA, perpendicular-drift terms in the Lorentz equation are subtracted off the integration. The DC code has been coupled to the CQL3D Fokker-Planck code. For a C-Mod minority ion ICRF heating test case, the total power absorption using the diffusion coefficients agree well, and the profiles are similarly close. This supports the DC calculation and the Kennel-Engelmann-based, no-correlations, coefficient calculation in AORSA. However, resonance correlations cause large differences in the pitch angle variations of the diffusion coefficients, and in the resulting evolution of the ion distribution functions.

  6. Determination of LIII subshell absorption jump ratio and jump factor of wolfram

    NASA Astrophysics Data System (ADS)

    Cengiz, Erhan; Saritas, Nuriye

    2014-04-01

    The LIII subshell absorption jump ratio and jump factor of wolfram have been measured by two different methods. In the first method the mass attenuation coefficients have been obtained by narrow beam transmission geometry to calculate the LIII subshell absorption jump ratio and jump factor. In the latter these parameters have been derived from the LIII subshell X-ray production and the photoionization cross sections of the LIII subshell and higher subshells determined by Energy Dispersive X-ray Fluorescence technique and narrow beam transmission geometry, respectively. The results obtained by both methods have been compared with theoretical and experimental values. They are in good agreement with each other.

  7. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    SciTech Connect

    Sarkissian, Raymond O'Brien, John

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  8. Constant optimization of oral drug absorption kinetics in the compartment absorption and transit models using particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Prabowo, K.; Sumaryada, T.; Kartono, A.

    2016-01-01

    Simulation of predictive modeling oral drug namely Compartment Absorption and Transit (CAT) using Particle Swarm Optimization (PSO) algorithm has been performed. This research will be carried out optimization of kinetic constant value oral drug use PSO algorithm to obtain the best global transport constant values for CAT equation that can predict drug concentration in plasma. The value of drug absorption rate constant for drug atenolol 25 mg is k10, k12, k21, k13 and k31 with each value is 0.8562, 0.3736, 0.2191, 0.4334 and 1.000 have been obtained thus raising the value of the coefficient of determination of a model CAT. From the experimental data plasma drug concentrations used are Atenolol, the coefficient of determination (R2) obtained from simulations atenolol 25 mg (PSO) was 81.72% and 99.46%. Better correlation between the dependent variable as the drug concentration and explanatory variables such as mass medication, plasma volume, and rate of absorption of the drug has increased in CAT models using PSO algorithm. Based on the results of CAT models fit charts can predict drug concentration in plasma.

  9. High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials

    NASA Astrophysics Data System (ADS)

    Cnudde, Veerle; Dierick, Manuel; Vlassenbroeck, Jelle; Masschaele, Bert; Lehmann, Eberhard; Jacobs, Patric; Van Hoorebeke, Luc

    2008-01-01

    Fluid flow through porous natural building stones is of great importance when studying their weathering processes. Many traditional experiments based on mass changes are available for studying liquid transport in porous stones, such as the determination of the water absorption coefficient by capillarity. Because thermal neutrons experience a strong attenuation by hydrogen, neutron radiography is a suitable technique for the study of water absorption by capillarity in porous stones. However, image contrast can be impaired because hydrogen mainly scatters neutrons rather than absorbing them, resulting in a blurred image. Capillarity results obtained by neutron radiography and by the European Standard 1925 for the determination of the water absorption coefficient by capillarity for natural building stones with a variable porosity were compared. It is illustrated that high-speed neutron radiography can be a useful research tool for the visualization of internal fluid flow inside inorganic building materials such as limestones and sandstones.

  10. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  11. Terahertz absorption spectrum of triacetone triperoxide (TATP)

    NASA Astrophysics Data System (ADS)

    Wilkinson, John; Konek, Christopher T.; Moran, Jesse S.; Witko, Ewelina M.; Korter, Timothy M.

    2009-08-01

    We report here, for the first time, the terahertz absorption spectrum of triacetone triperoxide (TATP). The experimental spectra are coupled with solid-state density functional theory, and preliminary assignments are provided to gain physical insight into the experimental spectrum. The calculated absorption coefficients are in excellent agreement with experiment.

  12. Absorption heat pump for space applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun

    1993-01-01

    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  13. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  14. Application of wet effluent diffusion denuder for measurement of uptake coefficient of gaseous pollutants.

    PubMed

    Motyka, Kamil; Mikuška, Pavel; Večeřa, Zbyněk

    2011-04-15

    The comparison of theoretical approaches describing the collection of analyte in the cylindrical wet effluent diffusion denuder (CWEDD) with experimental data is presented. Various absorption liquids were tested for the collection of formaldehyde (distilled-deionized water, H(2)SO(4) solution), acetaldehyde (distilled-deionized water) and nitrous acid (distilled-deionized water, sodium carbonate and sodium bicarbonate solutions of various concentrations and sodium phosphate pH 6-8) in CWEDD. pH of absorption liquids significantly influences the collection of formaldehyde as well as nitrous acid. The collection efficiency of formaldehyde for 0.05 M H(2)SO(4) as absorption liquid was generally higher than for distilled-deionized water. Absorption liquid pH markedly affected the collection efficiency of HONO too (with increasing pH the collection efficiency increase). Data derived by Gormley-Kennedy equation for all investigated compounds were overestimated especially for higher flow rates of air, data calculated with respect to Henry constant are not in good agreement with experimental data and are considerably depended on a determination of the Henry constant value. The CWEDD can be alternative tool for the determination of uptake coefficient. Obtained uptake coefficients were in good agreement with data found in other literature. PMID:21376982

  15. Measurement of the absorption rate of carbon dioxide into aqueous diethanolamine

    SciTech Connect

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.; Oscarson, J.L.; Wilding, W.V.; Anderson, D.J.

    1998-05-01

    Aqueous alkanolamine solutions are commonly used in natural gas sweetening processes to remove the acid gases CO{sub 2} and H{sub 2}S. Absorption rates of gaseous CO{sub 2} into aqueous diethanolamine (DEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate, protonated DEA, and carbamate ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. The diffusion coefficient of DEA in water was also measured using a Taylor dispersion apparatus. A numerical model was developed and used to regress diffusion coefficients of bicarbonate, carbamate, and protonated amine from measured absorption rates. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate, carbamate, and protonated DEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % DEA in water.

  16. Consistent transport coefficients in astrophysics

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.

    1986-01-01

    A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.

  17. Measurement of attenuation coefficients of the fundamental and second harmonic waves in water

    NASA Astrophysics Data System (ADS)

    Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing

    2016-02-01

    Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.

  18. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain

    NASA Astrophysics Data System (ADS)

    Lyamani, H.; Olmo, F. J.; Alados-Arboledas, L.

    Surface measurements of optical and physical aerosol properties were made at an urban site, Granada (Spain) (37.18°N, 3.58°W, 680 m a.s.l), during winter 2005-2006. Measurements included the aerosol scattering, σsca, and backscattering coefficients, σbsca, at three wavelengths (450, 550 and 700 nm) measured at low relative humidity (RH<50%) by an integrating nephelometer, the absorption coefficient at 670 nm, σabs, measured with a multi-angle absorption photometer, and aerosol size distribution in the 0.5-20 μm aerodynamic diameter range registered by an aerodynamic aerosol sizer (APS-3321, TSI). The hourly average of σsca (550 nm) ranged from 2 to 424 M m -1 with an average value of 84±62 M m -1 (±S.D.). The Angstrom exponent presented an average value of 1.8±0.3, suggesting a large fraction of fine particles at the site, an observation confirmed by aerosol size distribution measurements. The hourly average of σabs (670 nm) ranged from 1.7 to 120.5 M m -1 with an average value of 28±20 M m -1. The results indicate that the aerosol absorption coefficient in Granada was relatively large. The largest σsca value was associated with air masses that passed over heavily polluted European areas and local stagnation conditions. High absorbing aerosol level was obtained during dust transport from North Africa probably due to the presence of hematite. Based on the measured scattering and absorption coefficients, a very low average value of the single scattering albedo of 0.66±0.11 at 670 nm was calculated, suggesting that urban aerosols in this region contain a large fraction of absorbing material. A clear diurnal pattern was observed in scattering and absorption coefficients and particle concentrations with two local maxima occurring in early morning and late evening. This behavior can be explained in terms of local conditions that control the particle sources associated with traffic and upward mixing of the aerosol during the daytime development of a

  19. Microscopic modeling of País grape seed extract absorption in the small intestine.

    PubMed

    Morales, Cristian; Roeckel, Marlene; Fernández, Katherina

    2014-02-01

    The concentration profiles and the absorbed fraction (F) of the País grape seed extract in the human small intestine were obtained using a microscopic model simulation that accounts for the extracts' dissolution and absorption. To apply this model, the physical and chemical parameters of the grape seed extract solubility (C s), density (ρ), global mass transfer coefficient between the intestinal and blood content (k) (effective permeability), and diffusion coefficient (D) were experimentally evaluated. The diffusion coefficient (D = 3.45 × 10(-6) ± 5 × 10(-8) cm(2)/s) was approximately on the same order of magnitude as the coefficients of the relevant constituents. These results were chemically validated to discover that only the compounds with low molecular weights diffused across the membrane (mainly the (+)-catechin and (-)-epicatechin compounds). The model demonstrated that for the País grape seed extract, the dissolution process would proceed at a faster rate than the convective process. In addition, the absorbed fraction was elevated (F = 85.3%). The global mass transfer coefficient (k = 1.53 × 10(-4) ± 5 × 10(-6) cm/s) was a critical parameter in the absorption process, and minor changes drastically modified the prediction of the extract absorption. The simulation and experimental results show that the grape seed extract possesses the qualities of a potential phytodrug.

  20. Measuring Seebeck Coefficient

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor)

    2015-01-01

    A high temperature Seebeck coefficient measurement apparatus and method with various features to minimize typical sources of errors is described. Common sources of temperature and voltage measurement errors which may impact accurate measurement are identified and reduced. Applying the identified principles, a high temperature Seebeck measurement apparatus and method employing a uniaxial, four-point geometry is described to operate from room temperature up to 1300K. These techniques for non-destructive Seebeck coefficient measurements are simple to operate, and are suitable for bulk samples with a broad range of physical types and shapes.

  1. Subwavelength structure for sound absorption from graphene oxide-doped polyvinylpyrrolidone nanofibers

    NASA Astrophysics Data System (ADS)

    Qamoshi, Khadijeh; Rasuli, Reza

    2016-09-01

    We study the sound absorption of the reinforced polyvinylpyrrolidone nanofibers with graphene oxide. It is shown that reinforced nanofibers can acquire impedance-matched surface to airborne sound at special frequencies. To obtain such surface, nanofibers were spun with polyvinylpyrrolidone polymer that was doped by graphene oxide with concentrations of 0, 6 and 12 wt%. It was found that fibers without graphene oxide were spun continuously and randomly, whereas by doping with graphene oxide, the mode of fibers is changed and some nodes form on the fibers coating. The sound absorption coefficient was measured by an impedance tube based on 105341-1 ISO standard. Measurements in the frequency range from 700 to 1600 Hz show that use of graphene oxide as a reinforcing phase increases sound absorption coefficient of the samples at a frequency ~1500 Hz up to ~40 %. Angular eigenfrequency and dissipation coefficient of the samples were obtained by impedance measurement for the prepared samples. Results show that doping the polymer with graphene oxide causes an increase in the angular eigenfrequency and the dissipation coefficient.

  2. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  3. Intracavity absorption with a continuous wave dye laser: quantification for a narrowband absorber.

    PubMed

    Brobst, W D; Allen, J E

    1987-09-01

    Although it is recognized as a very sensitive detection technique, the general application of intracavity absorption to areas such as chemical kinetics and photochemistry has been somewhat limited. Concerns are frequently expressed about the nonlinear nature, experimental difficulty, and reliability of the technique. To allay some of these objections, the dependence of intracavity absorption on factors such as transition strength, concentration, absorber path length, and pump power has been investigated experimentally for a cw dye laser with a narrowband absorber (NO(2)). For this case a Beer-Lambert type relationship has been confirmed over a useful range of these parameters. The extent of intracavity absorption was quantitatively measured directly from the dye laser spectral profiles and, when compared to extracavity measurements, indicated enhancements as high as 12,000 for pump powers near lasing threshold. By defining an intracavity absorption coefficient, it was possible to demonstrate the reliability of the method by obtaining accurate transition strength ratios.

  4. Intracavity absorption with a continuous wave dye laser: quantification for a narowband absorber

    SciTech Connect

    Brobst, W.D.; Allen J.E. Jr.

    1987-09-01

    Although it is recognized as a very sensitive detection technique, the general application of intracavity absorption to areas such as chemical kinetics and photochemistry has been somewhat limited. Concerns are frequently expressed about the nonlinear nature, experimental difficulty, and reliability of the technique. To allay some of these objections, the dependence of intracavity absorption on factors such as transition strength, concentration, absorber path length, and pump power has been investigated experimentally for a cw dye laser with a narrowband absorber (NO/sub 2/). For this case a Beer-Lambert type relationship has been confirmed over a useful range of these parameters. The extent of intracavity absorption was quantitatively measured directly from the dye laser spectral profiles and, when compared to extracavity measurements, indicated enhancements as high as 12,000 for pump powers near lasing threshold. By defining an intracavity absorption coefficient, it was possible to demonstrate the reliability of the method by obtaining accurate transition strength ratios.

  5. Ionization coefficients in gas mixtures

    NASA Astrophysics Data System (ADS)

    Marić, D.; Šašić, O.; Jovanović, J.; Radmilović-Rađenović, M.; Petrović, Z. Lj.

    2007-03-01

    We have tested the application of the common E/N ( E—electric field, N—gas number density) or Wieland approximation [Van Brunt, R.J., 1987. Common parametrizations of electron transport, collision cross section, and dielectric strength data for binary gas mixtures. J. Appl. Phys. 61 (5), 1773-1787.] and the common mean energy (CME) combination of the data for pure gases to obtain ionization coefficients for mixtures. Test calculations were made for Ar-CH4, Ar-N2, He-Xe and CH4-N2 mixtures. Standard combination procedure gives poor results in general, due to the fact that the electron energy distribution is considerably different in mixtures and in individual gases at the same values of E/N. The CME method may be used for mixtures of gases with ionization coefficients that do not differ by more than two orders of magnitude which is better than any other technique that was proposed [Marić, D., Radmilović-Rađenović, M., Petrović, Z.Lj., 2005. On parametrization and mixture laws for electron ionization coefficients. Eur. Phys. J. D 35, 313-321.].

  6. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives

    NASA Astrophysics Data System (ADS)

    Masoud, Mamdouh S.; Hagagg, Sawsan S.; Ali, Alaa E.; Nasr, Nessma M.

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υmax-) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υmax- on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  7. Solvatochromic behavior of the electronic absorption spectra of gallic acid and some of its azo derivatives.

    PubMed

    Masoud, Mamdouh S; Hagagg, Sawsan S; Ali, Alaa E; Nasr, Nessma M

    2012-08-01

    The electronic absorption spectra of gallic acid and its azo derivatives have been studied in various solvents of different polarities. Multiple regression techniques were applied to calculate the regression and correlation coefficients based on an equation that relates the wavenumbers of the absorption band maxima (υ(max)(-)) to the solvent parameters; refractive index (n), dielectric constant (D), empirical Kamlet-Taft solvent parameters, π*(dipolarity/polarizability), α (solvent hydrogen-bond donor acidity) and β (solvent hydrogen-bond acceptor basicity). The fitting coefficient obtained from this analysis allows estimating the contribution of each type of interactions relative to total spectral shifts in solution. The dependence of υ(max)(-) on the solvent parameters indicates that the obtained bands are affected by specific and non-specific solute-solvent interactions.

  8. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    SciTech Connect

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R.; Steenbergen, E. H.

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  9. Temperature dependence of HNO3 absorption in the 11.3-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Valero, F. P. J.; Goorvitch, D.; Boese, R. W.

    1981-01-01

    Laboratory spectra have been obtained for HNO3 with a Michelson-type Fourier transform interferometer using absorption cells with path lengths of 10.3, 25.5, and 49.8 cm at temperatures of 240, 248, 283, and 294 K. The measurements lead to a total band intensity value of 642 plus or minus 5% per sq cm amagat, which is a temperature independent value after the gas density correction has been made. However, the temperature dependence of the spectral absorption coefficients is apparent in the 885 kayser region.

  10. Extending the Constant Coefficient Solution Technique to Variable Coefficient Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mohammed, Ahmed; Zeleke, Aklilu

    2015-01-01

    We introduce a class of second-order ordinary differential equations (ODEs) with variable coefficients whose closed-form solutions can be obtained by the same method used to solve ODEs with constant coefficients. General solutions for the homogeneous case are discussed.

  11. Ratios of internal conversion coefficients

    SciTech Connect

    Raman, S.; Ertugrul, M.; Nestor, C.W. . E-mail: CNestorjr@aol.com; Trzhaskovskaya, M.B.

    2006-03-15

    We present here a database of available experimental ratios of internal conversion coefficients for different atomic subshells measured with an accuracy of 10% or better for a number of elements in the range 26 {<=} Z {<=} 100. The experimental set involves 414 ratios for pure and 1096 ratios for mixed-multipolarity nuclear transitions in the transition energy range from 2 to 2300 keV. We give relevant theoretical ratios calculated in the framework of the Dirac-Fock method with and without regard for the hole in the atomic subshell after conversion. For comparison, the ratios obtained within the relativistic Hartree-Fock-Slater approximation are also presented. In cases where several ratios were measured for the same transition in a given isotope in which two multipolarities were involved, we present the mixing ratio {delta} {sup 2} obtained by a least squares fit.

  12. Temperature and pressure measurement based on tunable diode laser absorption spectroscopy with gas absorption linewidth detection

    NASA Astrophysics Data System (ADS)

    Meng, Yunxia; Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Wang, Tao; Wang, Ranran

    2014-11-01

    A gas temperature and pressure measurement method based on Tunable Diode Laser Absorption Spectroscopy (TDLAS) detecting linewidth of gas absorption line was proposed in this paper. Combined with Lambert-Beer Law and ideal gas law, the relationship between temperature, pressure and gas linewidth with Lorentzian line shape was investigated in theory. Taking carbon monoxide (CO) at 1567.32 nm for example, the linewidths of gas absorption line in different temperatures and pressures were obtained by simulation. The relationship between the linewidth of second harmonic and temperature, pressure with the coefficient 0.025 pm/K and 0.0645 pm/kPa respectively. According to the relationship of simulation results and detected linewidth, the undefined temperature and pressure of CO gas were measured. The gas temperature and pressure measurement based on linewidth detection, avoiding the influence of laser intensity, is an effective temperature and pressure measurement method. This method also has the ability to detect temperature and pressure of other gases with Lorentzian line shape.

  13. Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.

    2016-10-01

    The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.

  14. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  15. The absorption jump factor of effective atomic number and electronic density for some barium compounds

    NASA Astrophysics Data System (ADS)

    Polat, Recep; Yalçın, Zeynel; İçelli, Orhan

    2011-02-01

    Some photonic energy absorption parameters such as the mass attenuation coefficient μt, the molecular σM, atomic σA, the electronic cross-sections σE, the effective atomic number Zeff and the electron density NE have been calculated and measured. We have gained the terms jump factor of effective atomic number JZeff and jump factor of electronic density JNE to literature with the help of these fundamental parameters. Also, we want to obtain both XAFS effect and the applicability of mixture rule. The most interesting finding in this study is that the trend of the total molecular, atomic and electronic cross-sections is getting beyond the measure by the absorption edge and these cross-sections are affected in the region of absorption edge. The obtained results have been compared with some other theoretical values given earlier.

  16. Direct interband light absorption in the cylindrical quantum dot with modified Pöschl-Teller potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Kazaryan, E. M.; Tevosyan, H. Kh.

    2012-09-01

    In this paper the direct interband light absorption in cylindrical quantum dot with modified Pöschl-Teller potential made of GaAs is studied. For the regime of strong size quantization analytical expressions for the particle energy spectrum, absorption coefficient and dependencies of effective threshold frequencies of absorption on the geometrical sizes of quantum dot are obtained. The selection rules corresponding to different transitions between quantum levels are found. To facilitate the comparison of obtained results with the probable experimental data, size dispersion distribution of growing quantum dots by the geometrical sizes using two experimentally realizing distribution functions has been taken into account. Distribution functions of Lifshits-Slezov and Gaussian have been considered.

  17. In situ measurement of hydrocarbon fuel concentration near a spark plug in an engine cylinder using the 3.392 µm infrared laser absorption method: application to an actual engine

    NASA Astrophysics Data System (ADS)

    Tomita, Eiji; Kawahara, Nobuyuki; Nishiyama, Atsushi; Shigenaga, Masahiro

    2003-08-01

    An infrared absorption method with a 3.392 µm He-Ne laser was used to determine the hydrocarbon fuel concentration near the spark plug in a spark-ignition engine. Iso-octane was used for the fuel. The pressure and temperature dependence of the molar absorption coefficient was clarified. The molar absorption coefficients of a multi-component fuel such as gasoline were estimated by using the coefficient of each component and considering the mass balance. A sensor was developed and installed in a spark plug, which was substituted in place of an ordinary spark plug in a spark-ignition engine. Light can pass from the sensor through the engine cylinder to measure the fuel concentration. The effects of liquid droplets inside the engine cylinder, mechanical vibrations and other gases such as H2O and CO2 on the measurement accuracy were considered. Four main conclusions were drawn from this study. First, the pressure and temperature effects on the molar absorption coefficient of liquid fuel vapour were determined independently in advance using a constant-volume vessel. The pressure and temperature dependence of the molar absorption coefficient was determined under engine firing conditions. Second, the molar absorption coefficients of a multi-component hydrocarbon fuel such as gasoline were estimated by considering the molar fraction of each component. Third, in situ measurements of the hydrocarbon fuel concentration in an actual engine were obtained using the spark plug sensor and the molar absorption coefficient of iso-octane. The concentration near the spark plug just before ignition was almost in agreement with the mean value that was obtained from the measurement of the flow rate made with a burette, which represented the mean value averaged over many cycles. And fourth, no liquid droplets were observed at near-idling conditions. The effects of other gases, such as CO, CO2 and H2O, can be neglected.

  18. Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame

    SciTech Connect

    Iyer, Suresh S.; Litzinger, Thomas A.; Lee, Seong-Young; Santoro, Robert J.

    2007-04-15

    The total scattering coefficient is determined from three multiangle scattering measurements at different heights above the burner in a nonsooting laminar ethylene diffusion flame. The local extinction coefficient is determined from multichord extinction measurements. The above analysis quantifies the contribution from scattering to extinction without knowledge of the soot primary particle diameter or the morphology of the aggregates, and the absorption coefficient can now be determined. The primary particle diameter, the number density of primary particles, the average number of primary particles in an aggregate, and the width of the lognormal distribution function for the number of primary particles in an aggregate are calculated using the absorption coefficient and assumed constant values for the fractal dimension, the fractal prefactor, and the complex refractive index for soot. The values for the primary particle diameter obtained from the in situ measurements in this study compare well with those obtained from transmission electron microscopic measurements of thermophoretically sampled soot aggregates in a previous study at all heights in the diffusion flame, while the calculated soot structure parameters compare well with previous studies only at heights between 30 and 50 mm above the burner. (author)

  19. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  20. Optical spectroscopy study of the phase of the reflection coefficient of a single quantum well in the exciton resonance region

    NASA Astrophysics Data System (ADS)

    Malpuech, G.; Kavokin, A.; Leymarie, J.; Disseix, P.; Vasson, A.

    1999-11-01

    Using reflectivity and thermally detected optical absorption spectra of a (In,Ga)As/GaAs single quantum well (QW) sample we have restored the complex amplitude reflection coefficient of the QW in the vicinity of the exciton resonance region. Our method has allowed experimental determination of the phase of the reflection coefficient of a QW. Knowing this phase we were able to distinguish between inhomogeneous and homogeneous contributions to the exciton broadening. A model based on the nonlocal dielectric response theory and assuming the in-plane component of the wave vector of light to be conserved has provided an excellent agreement with the data. The time-resolved reflection spectra of a single QW have been obtained by the numerical Fourier transform of the complex reflection coefficient of the QW. They have shown pronounced oscillations caused by an inhomogeneous broadening of the single exciton resonance.

  1. Heat transfer coefficient of cryotop during freezing.

    PubMed

    Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J

    2013-01-01

    Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).

  2. Modulation of ganciclovir intestinal absorption in presence of absorption enhancers.

    PubMed

    Shah, Pranav; Jogani, Viral; Mishra, Pushpa; Mishra, Anil Kumar; Bagchi, Tamishraha; Misra, Ambikanandan

    2007-10-01

    The purpose of this investigation was to study the influences of absorption enhancers in increasing oral bioavailability of Ganciclovir (GAN) by assessing the transepithelial permeation across cell monolayers in vitro and bioavailability in rats in vivo. The permeation of GAN across Caco-2 and MDCK cell monolayers in the absence/presence of dimethyl-beta-cyclodextrin (DMbetaCD), chitosan hydrochloride (CH), sodium lauryl sulphate (SLS), and their combinations was studied for a 2-h period. GAN was administered to rats in absence/presence of absorption enhancers and drug contents in plasma were estimated. We found that the apparent permeability coefficient (Papp) of GAN in absence of absorption enhancers (control) were 0.261 +/- 0.072 x 10(-6) and 0.486 +/- 0.063 x 10(-6) cm/s in Caco-2 and MDCK cell monolayers, respectively, whereas in the presence of DMbetaCD, CH, SLS, and their combinations, Papp of GAN increased by 5- to 25-fold and 7- to 33-fold as compared to control in Caco-2 and MDCK cell monolayers, respectively. However, in rats, the maximum enhancement in bioavailability of GAN during coadministration of these absorption enhancers was only fivefold compared to GAN control. To conclude, the absorption enhancers-DMbetaCD, CH, SLS, and their combinations demonstrated significant improvement in transepithelial permeation and bioavailability of GAN.

  3. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  4. Path length enhancement in disordered media for increased absorption.

    PubMed

    Mupparapu, Rajeshkumar; Vynck, Kevin; Svensson, Tomas; Burresi, Matteo; Wiersma, Diederik S

    2015-11-30

    We theoretically and numerically investigate the capability of disordered media to enhance the optical path length in dielectric slabs and augment their light absorption efficiency due to scattering. We first perform a series of Monte Carlo simulations of random walks to determine the path length distribution in weakly to strongly (single to multiple) scattering, non-absorbing dielectric slabs under normally incident light and derive analytical expressions for the path length enhancement in these two limits. Quite interestingly, while multiple scattering is expected to produce long optical paths, we find that media containing a vanishingly small amount of scatterers can still provide high path length enhancements due to the very long trajectories sustained by total internal reflection at the slab interfaces. The path length distributions are then used to calculate the light absorption efficiency of media with varying absorption coefficients. We find that maximum absorption enhancement is obtained at an optimal scattering strength, in-between the single-scattering and the diffusive (strong multiple-scattering) regimes. This study can guide experimentalists towards more efficient and potentially low-cost solutions in photovoltaic technologies.

  5. Atmospheric degradation of pyridine: UV absorption spectrum and reaction with OH radicals and O3

    NASA Astrophysics Data System (ADS)

    Errami, M.; El Dib, G.; Cazaunau, M.; Roth, E.; Salghi, R.; Mellouki, A.; Chakir, A.

    2016-10-01

    The UV absorption spectrum of pyridine and its gas phase reactions with OH radicals and O3 were investigated. UV absorption cross-sections were determined by using a D2-lamp system in the range 200-350 nm. The kinetic studies were carried out at room temperature and atmospheric pressure of purified air. The rate coefficient for the reaction of pyridine with OH was determined relative to that with acetone while that with O3 was measured under pseudo first order conditions. The rate coefficients obtained are (in cm3 molecule-1 s-1): k(OH + pyridine) = (5.40 ± 0.80) × 10-13 and k(O3 + pyridine) = (3.28 ± 1.70) × 10-20.

  6. Light absorption enhancement in Ge nanomembrane and its optoelectronic application.

    PubMed

    Kim, Munho; Liu, Shih-Chia; Kim, Tong June; Lee, Jaeseong; Seo, Jung-Hun; Zhou, Weidong; Ma, Zhenqiang

    2016-07-25

    In this study, the light absorption property of Ge nanomembrane (Ge NM), which incorporates hydrogen (H), in near-infrared (NIR) wavelength range was analyzed. Due to the presence of a large amount of structural defects, the light absorption coefficient of the Ge layer becomes much higher (10 times) than that of bulk Ge in the wavelength range of 1000 ~1600 nm. Increased light absorption was further measured from released Ge NM that has H incorporation in comparison to that of bulk Ge, proving the enhanced light absorption coefficient of H incorporated Ge. Finally, metal-semiconductor-metal (MSM) photodetectors were demonstrated using the H incorporated Ge on GeOI.

  7. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  8. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  9. Absorption-heat-pump system

    DOEpatents

    Grossman, G.; Perez-Blanco, H.

    1983-06-16

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  10. Optical absorption and radiative heat transport in olivine at high temperature

    NASA Technical Reports Server (NTRS)

    Shankland, T. J.; Nitsan, U.; Duba, A. G.

    1979-01-01

    Results are presented of measurements of the optical absorption spectra (300-8000 nm) of olivine as a function of temperature (300-1700 K) under conditions of controlled and known oxygen fugacity within the stability field of the samples. The absorption spectra are used to calculate the temperature-dependent radiative transfer coefficient of olivine and to numerically study the accuracy of the method. The present absorption measurements in olivine under oxidizing conditions known to be within the olivine stability field indicate that the effective radiative conductivity K(R) is lower than that obtained in previous studies under different experimental conditions. The lower value of K(R) makes it more likely that some of the earth's internal heat is removed by convection and less likely that thermal models involving conduction and radiation alone will satisfactorily explain thermal conditions in the earth's mantle.

  11. Intersubband optical absorption in InSb stepped quantum wells: Effect of spin sublevels crossing

    NASA Astrophysics Data System (ADS)

    Hernández-Cabrera, A.; Aceituno, P.

    2015-06-01

    We study linear and non-linear coefficients of the intersubband absorption in InSb-based stepped quantum wells subjected to an in-plane magnetic field. We consider also a transverse electric field to achieve near resonance conditions. Taking into account the two deepest conduction levels and their corresponding Zeeman spin splitting sublevels, we calculate dispersion relations by means of an improved version of Kane model. Besides the known anti-crossing between down and up spin split sublevels, we obtain an extra spin level crossing for some determined parameters. This crossing clearly modifies the absorption spectrum for transitions among the four sublevels considered. We study a low electron density case, when only the first deepest sublevel is occupied, and a high density case with only the highest sublevel empty. We find a similar behavior of the absorption spectrum in both cases.

  12. Comparison of measured and theoretical inverse bremsstrahlung and photoionization absorption of infrared radiation in a H-He plasma.

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Stallcop, J. R.; Rowley, P. D.; Presley, L. L.

    1972-01-01

    The absorption coefficients of 1.15- and 3.39-micrometer radiation for a homogeneous H-He plasma have been measured in a temperature and electron density range where the major absorption mechanisms are electron-ion inverse bremsstrahlung and neutral-atom photoionization. Measurements were made behind both the incident and reflected shock waves in a driven tube by recording the laser intensity transmitted along the tube diameter as a function of time. The measured values compare well with those obtained from theoretical calculations for a gas in thermodynamic equilibrium.

  13. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  14. Size-dependent two-photon absorption in circular graphene quantum dots.

    PubMed

    Feng, Xiaobo; Li, Xin; Li, Zhisong; Liu, Yingkai

    2016-02-01

    We investigate theoretically the size-dependence of two-photon absorption (TPA) for circular graphene quantum dots (GQDs) on the basis of electronic energy states obtained by solving the Dirac-Weyl equation analytically under infinite-mass boundary condition. The analytical expressions for TPA coefficient are derived with an arbitrary size-distribution and the transition selection rules are obtained. Results reveal that the intraband transitions in conduction band and valence band contribute much more to TPA than interband transitions. The energy spectrum and TPA peaks are tuned by the size of GQDs. PMID:26906856

  15. Some procedures for computerized electronic data processing of absorption measurements from artificial earth satellites

    NASA Technical Reports Server (NTRS)

    Trinkkeller, B.

    1975-01-01

    The processing of data obtained from solar absorption radiation measurements is discussed. The position of the satellite was obtained by numerical integration of the differential equations of motion using initial conditions. The position of the sun was calculated as a function of time, and the tangential elevation was determined approximately from the positions of the satellite and the sun. The coefficients of an approximation formula and of a data smoothing process were determined, and the inversion of an Abel integral equation is solved analytically.

  16. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  17. Measuring the Optical Absorption Cross-sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging

    PubMed Central

    Cho, Eun Chul; Kim, Chulhong; Zhou, Fei; Cobley, Claire M.; Song, Kwang Hyun; Chen, Jingyi; Li, Zhi-Yuhan; Wang, Lihong V.; Xia, Younan

    2009-01-01

    This paper presents a method for measuring the optical absorption cross-sections (σa) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μa) of the nanostructure. For each type of nanostructure, we firstly obtained μa from the PA signal by benchmarking against a linear calibration curve (PA signal vs. μa) derived from a set of methylene blue solutions with different concentrations. We then calculated σa by dividing the μa by the corresponding concentration of the Au nanostructure. Additonally, we obtained the extinction cross-section (σe, sum of absorption and scattering) from the extinction spectrum recorded using a conventional UV-vis-NIR spectrometer. From the measurements of σa and σe, we were able to easily derive both the absorption and scattering cross-sections for each type of gold nanostructure. The ratios of absorption to extinction obtained from experimental and theoretical approaches agreed well, demonstrating the potential use of this method in determining the optical absorption and scattering properties of gold nanostructures and other types of nanomaterials. PMID:19680423

  18. Diffusion coefficient of three-dimensional Yukawa liquids

    SciTech Connect

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-15

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  19. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    SciTech Connect

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui; Liang Zhichao; Sun, M.-T.

    2009-11-20

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 where the emissivity reduction coefficient is too weak and lost among the noise.

  20. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  1. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  2. The electron diffusion coefficient in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Birmingham, T.; Northrop, T.; Baxter, R.; Hess, W.; Lojko, M.

    1974-01-01

    A steady-state model of Jupiter's electron radiation belt is developed. The model includes injection from the solar wind, radial diffusion, energy degradation by synchrotron radiation, and absorption at Jupiter's surface. A diffusion coefficient of the form D sub RR/R sub J squared = k times R to the m-th power is assumed, and then observed data on synchrotron radiation are used to fit the model. The free parameters determined from this fit are m = 1.95 plus or minus 0.5, k = 1.7 plus or minus 0.5 x 10 to the 9th power per sec, and the magnetic moment of injected particles equals 770 plus or minus 300 MeV/G. The value of m shows quite clearly that the diffusion is not caused by magnetic pumping by a variable solar wind or by a fluctuating convection electric field. The process might be field line exchange driven by atmospheric-ionospheric winds; our diffusion coefficient has roughly the same radial dependence but is considerably smaller in magnitude than the upper bound diffusion coefficients recently suggested for this process by Brice and McDonough (1973) and Jacques and Davis (1972).

  3. Determination of the total attenuation coefficient for six contact lens materials using the Beer-Lambert law.

    PubMed

    Hull, C C; Crofts, N C

    1996-03-01

    The Beer-Lambert law has been used to determine the total attenuation coefficient, mu t, of three hard and three soft contact lens materials. The three hard contact lens materials were PMMA, Polycon II and Boston IV whereas the 3 soft materials were chosen with differing water contents of 38, 55 and 70%, respectively. The total attenuation coefficients of all six materials were obtained from measurements of the axial transmission at 632.8 nm of a series of plano powered lenses varying in axial thickness from 0.5 to 3.5 mm. The value of the total attenuation coefficient depends on both scattering and absorption and hence PMMA and Boston IV, which both incorporated a handling tint, showed significantly higher values (P < 0.0001) of mu t (0.562 +/- 0.010 mm-1 and 0.820 +/- 0.008 mm-1, respectively) than Polycon II (mu t = 0.025 +/- 0.005 mm-1). A comparison between Polycon II and the three hydrated soft contact lens materials showed a significant increase (P < 0.02) in the total attenuation coefficients for the 38% and 55% water content materials, and a weakly significant increase for the 70% water content soft lens material (P < 0.1). On the assumption that the absorption coefficients of these four materials are approximately constant, then this change would be due to an increase in the scattering coefficient of the material and could contribute to an increase in intraocular scatter. No significant difference (P > 0.5) was found between any of the hydrated soft contact lens materials tested.

  4. Air- and N2-Broadening Coefficients and Pressure-Shift Coefficients in the C-12(O2-16) Laser Bands

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    In this paper we report the pressure broadening and the pressure-induced line shift coefficients for 46 individual rovibrational lines in both the (12)C(16)O2, 00(sup 0)1-(10(sup 0)0-02(sup 0)0)I, and 00(sup 0)1-(10(sup 0)0-02(sup 0)0)II, laser bands (laser band I centered at 960.959/cm and laser band II centered at 1063.735/cm) determined from spectra recorded with the McMath-Pierce Fourier transform spectrometer. The results were obtained from analysis of 10 long-path laboratory absorption spectra recorded at room temperature using a multispectrum nonlinear least-squares technique. Pressure effects caused by both air and nitrogen have been investigated. The air-broadening coefficients determined in this study agree well with the values in the 1996 HITRAN database; ratios and standard deviations of the ratios of the present air-broadening measurements to the 1996 HITRAN values for the two laser bands are: 1.005(15) for laser band I and 1.005(14) for laser band II. Broadening by nitrogen is 3 to 4% larger than that of air. The pressure-induced line shift coefficients are found to be transition dependent and different for the P- and R-branch lines with same J" value. No noticeable differences in the shift coefficients caused by air and nitrogen were found. The results obtained are compared with available values previously reported in the literature.

  5. TRACK--A new method for the evaluation of low-level extinction coefficient in optical films.

    PubMed

    Vernhes, R; Martinu, L

    2015-11-01

    We develop a rigorous methodology named TRACK based on the collection of multi-angle spectrophotometric transmission and reflection data in order to assess the extinction coefficient of quasi-transparent optical films. The accuracy of extinction coefficient values obtained by this method is not affected by sample non-idealities (thickness non-uniformity, refractive index inhomogeneities, anisotropy, interfaces, etc.) and therefore a simple two-layer (substrate/film) optical model can be used. The method requires the acquisition of transmission and reflection data at two angles of incidence: 10° and 65° in p polarization. Data acquired at 10° provide information about the film thickness and the refractive index, while data collected at 65° are used for absorption evaluation and extinction coefficient computation. We test this method on three types of samples: (i) a CR-39 plastic substrate coated with a thick protective coating; (ii) the same substrate coated with a thin TiO(2) film; (iii) and a thick Si(3)N(4) film deposited on Gorilla glass that presents thickness non-uniformity and refractive index gradient non-idealities. We also compare absorption and extinction coefficient values obtained at 410 and 550 nm by both TRACK and Laser Induced Deflection techniques in the case of a 1 micron thick TiO(2) coating. Both methods display consistent extinction coefficient values in the 10(-4) and 10(-5) ranges at 410 and 550 nm, respectively, which proves the validity of the methodology and provides an estimate of its accuracy limit. PMID:26561121

  6. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    SciTech Connect

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  7. [Effects of temperature on the ultraviolet absorption characteristics of SO2].

    PubMed

    Zheng, Hai-Ming; Jin, Wei-Jia

    2013-03-01

    Absorption spectrum of SO2 is obtained under the condition of room temperature and atmosphere pressure. The spectrum is composed of banded structure superimposed on a continuum. The continuum structure comes from the transition of SO2 molecule from the ground electronic state to the higher dense rovibronic energy levels, and the banded one comes from the transition of B1B1<--X1A1. The symmetric stretch and bend vibration frequencies are obtained from the banded structure. They are omega1 =(665+/-29) cm-1 and omega2 = (448+/-17) cm-1, respectively. Measuring the absorption spectra of SOz at different temperature, it was also found that the configuration of the spectra is similar. But the absorption cross-section decreases with the increase in temperature. The absorption cross-section corresponding to the absorption peaks varies with temperature in the manner of cube. But the rate coefficients are different. So the effect of temperature on the measurement results must be considered when we use the technique of DOAS for the detection of SO2. PMID:23705452

  8. Reference Material for Seebeck Coefficients

    NASA Astrophysics Data System (ADS)

    Edler, F.; Lenz, E.; Haupt, S.

    2015-03-01

    This paper describes a measurement method and a measuring system to determine absolute Seebeck coefficients of thermoelectric bulk materials with the aim of establishing reference materials for Seebeck coefficients. Reference materials with known thermoelectric properties are essential to allow a reliable benchmarking of different thermoelectric materials for application in thermoelectric generators to convert thermal into electrical energy or vice versa. A temperature gradient (1 to 8) K is induced across the sample, and the resulting voltage is measured by using two differential Au/Pt thermocouples. On the basis of the known absolute Seebeck coefficients of Au and Pt, the unknown Seebeck coefficient of the sample is calculated. The measurements are performed in inert atmospheres and at low pressure (30 to 60) mbar in the temperature range between 300 K and 860 K. The measurement results of the Seebeck coefficients of metallic and semiconducting samples are presented. Achievable relative measurement uncertainties of the Seebeck coefficient are on the order of a few percent.

  9. Absorption by oxygen and water vapor in the real atmosphere.

    PubMed

    Cachorro, V E; de Frutos, A M; Casanova, J L

    1987-02-01

    Unexpected absorption in the real atmosphere in the window from 840 to 890 nm has been clearly observed through measurements of direct solar spectral irradiance under clear, cloud-free skies. This absorption is not predicted by the known theoretical models. The cause of this apparent absorption may be due to the presence of high thin nonvisible cirrus clouds. A quantitative evaluation of this absorption and an improvement of oxygen absorption coefficients has been carried out after a comparison of more than seventy experimental spectra. Moreover, it is necessary to take into account the different behavior of modeled and experimental data at low and high air masses.

  10. High efficiency advanced absorption heat pump

    NASA Astrophysics Data System (ADS)

    Reid, E. A., Jr.

    1982-03-01

    A high efficiency absorption heat pump for the residential market is investigated. The performance targets established for this high efficiency absorption heat pump are a heating coefficient of performance of 1.5 and a cooling coefficient of performance of 0.8 at rating conditions, including parasitic electric power consumption. The resulting heat pump would have a space heating capacity of 68,000 BTU/hour, and a space cooling capacity of 36,000 BTU/hour at rating conditions. A very simplified schematic block diagram of the high efficiency absorption heat pump cycle is shown. High temperature, high pressure, refrigerant vapor is produced in the refrigerant generator and heat exchange system, is condensed to a liquid in the condenser, expanded to a low pressure vapor in the evaporator, and mixed with and reabsorbed into the weakened solution returned from the refrigerant generator and heat exchange system in the absorber.

  11. Series extension: predicting approximate series coefficients from a finite number of exact coefficients

    NASA Astrophysics Data System (ADS)

    Guttmann, Anthony J.

    2016-10-01

    Given the first 20-100 coefficients of a typical generating function of the type that arises in many problems of statistical mechanics or enumerative combinatorics, we show that the method of differential approximants performs surprisingly well in predicting (approximately) subsequent coefficients. These can then be used by the ratio method to obtain improved estimates of critical parameters. In favourable cases, given only the first 20 coefficients, the next 100 coefficients are predicted with useful accuracy. More surprisingly, this is also the case when the method of differential approximants does not do a useful job in estimating the critical parameters, such as those cases in which one has stretched exponential asymptotic behaviour. Nevertheless, the coefficients are predicted with surprising accuracy. As one consequence, significant computer time can be saved in enumeration problems where several runs would normally be made, modulo different primes, and the coefficients constructed from their values modulo different primes. Another is in the checking of newly calculated coefficients. We believe that this concept of approximate series extension opens up a whole new chapter in the method of series analysis.

  12. Coefficient Alpha: A Reliability Coefficient for the 21st Century?

    ERIC Educational Resources Information Center

    Yang, Yanyun; Green, Samuel B.

    2011-01-01

    Coefficient alpha is almost universally applied to assess reliability of scales in psychology. We argue that researchers should consider alternatives to coefficient alpha. Our preference is for structural equation modeling (SEM) estimates of reliability because they are informative and allow for an empirical evaluation of the assumptions…

  13. Determination of attenuation coefficients, thicknesses and effective atomic numbers for CuInSe 2 semiconductor

    NASA Astrophysics Data System (ADS)

    Çevik, Ugˇur; Baltaş, Hasan; Çelik, Ahmet; Bacaksız, Emin

    2006-06-01

    The X-rays attenuation coefficients for Cu, In and Se in elemental state and the semiconductor CuInSe2 were measured at 15 different energies from 11.9 to 37.3 keV by using the secondary excitation method. Monochromatic photons were obtained using the following secondary targets: Br, Sr, Mo, Cd, Te and Ba. 59.5 keV gamma rays emitted from an annular 241Am radioactive source were used to excite secondary target and X-rays emitted from secondary target were counted by a Si(Li) detector with a resolution of 0.16 keV at 5.9 keV. A method to determine the thickness of thin film with XRF is described. Additionally, the effect of absorption edges on effective atomic numbers and their variation with photon energy in composite semiconductor sample was discussed. Obtained values were compared with calculated values.

  14. Determination of sedimentation coefficients for small peptides.

    PubMed Central

    Schuck, P; MacPhee, C E; Howlett, G J

    1998-01-01

    Direct fitting of sedimentation velocity data with numerical solutions of the Lamm equations has been exploited to obtain sedimentation coefficients for single solutes under conditions where solvent and solution plateaus are either not available or are transient. The calculated evolution was initialized with the first experimental scan and nonlinear regression was employed to obtain best-fit values for the sedimentation and diffusion coefficients. General properties of the Lamm equations as data analysis tools were examined. This method was applied to study a set of small peptides containing amphipathic heptad repeats with the general structure Ac-YS-(AKEAAKE)nGAR-NH2, n = 2, 3, or 4. Sedimentation velocity analysis indicated single sedimenting species with sedimentation coefficients (s(20,w) values) of 0.37, 0.45, and 0.52 S, respectively, in good agreement with sedimentation coefficients predicted by hydrodynamic theory. The described approach can be applied to synthetic boundary and conventional loading experiments, and can be extended to analyze sedimentation data for both large and small macromolecules in order to define shape, heterogeneity, and state of association. PMID:9449347

  15. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  16. Extinction coefficients and purity of single-walled carbon nanotubes.

    PubMed

    Zhao, B; Itkis, M E; Niyogi, S; Hu, H; Perea, D E; Haddon, R C

    2004-11-01

    Single-walled carbon nanotubes (SWNTs) hold great promise for advanced applications in aerospace, electronics and medicine, yet these industries require materials with rigorous quality control. There are currently no accepted standards for quality assurance or quality control among the commercial suppliers of SWNTs. We briefly discuss the applicability of various techniques to measure SWNT purity and review, in detail, the advantages of near infrared (NIR) spectroscopy for the quantitative assessment of the bulk carbonaceous purity of SWNTs. We review the use of solution phase NIR spectroscopy for the analysis and characterization of a variety of carbon materials, emphasizing SWNTs produced by the electric arc (EA), laser oven (LO) and HiPco (HC) methods. We consider the applicability of Beer's law to carbon materials dispersed in dimethylformamide (DMF) and the effective extinction coefficients that are obtained from such dispersions. Analysis of the areal absorptivities of the second interband transition of semiconducting EA-produced SWNTs for a number of samples of differing purities has lead to an absolute molar extinction coefficient for the carbonaceous impurities in EA-produced SWNT samples. We conclude that NIR spectroscopy is the clear method of choice for the assessment of the bulk carbonaceous purity of EA-produced SWNTs, and we suggest that an absolute determination of the purity of SWNTs is within reach. Continued work in this area is expected to lead to a universal method for the assessment of the absolute bulk purity of SWNTs from all sources--such a development will be of great importance for nanotube science and for future customers for this product.

  17. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system*

    PubMed Central

    Fang, Zhen-huan; Fu, Xia-ping; He, Xue-ming

    2016-01-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μ a and the reduced scattering coefficient μ s' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μ a and μ s' of different parts of the kiwifruit were 0.031–0.308 mm−1 and 0.120–0.946 mm−1, respectively. The results showed significant differences among the μ a and μ s' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  18. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.

    PubMed

    Fang, Zhen-Huan; Fu, Xia-Ping; He, Xue-Ming

    2016-06-01

    For a quantitative understanding of light interaction with fruit tissue, it is critical to obtain two fundamental parameters: the absorption coefficient and the scattering coefficient of the tissue. This study was to investigate the optical properties of kiwifruit tissue at the wavelength of 632.8 nm. The total reflectance and total transmittance of kiwifruit tissue from three parts (including the flesh part, the seed part, and the seed-base part) were measured using a single integrating sphere system. Based on the measured spectral signals, the absorption coefficient μa and the reduced scattering coefficient μs' of kiwifruit tissue were calculated using the inverse adding-doubling (IAD) method. Phantoms made from Intralipid 20% and India ink as well as a Biomimic solid phantom were used for system validation. The mean values of μa and μs' of different parts of the kiwifruit were 0.031-0.308 mm(-1) and 0.120-0.946 mm(-1), respectively. The results showed significant differences among the μa and μs' of the three parts of the kiwifruit. The results of this study confirmed the importance of studying the optical properties for a quantitative understanding of light interaction with fruit tissue. Further investigation of fruit optical properties will be extended to a broader spectral region and different kinds of fruits. PMID:27256682

  19. Universal statistics of the scattering coefficient of chaotic microwave cavities

    SciTech Connect

    Hemmady, Sameer; Zheng, Xing; Antonsen, Thomas M. Jr.; Ott, Edward; Anlage, Steven M.

    2005-05-01

    We consider the statistics of the scattering coefficient S of a chaotic microwave cavity coupled to a single port. We remove the nonuniversal effects of the coupling from the experimental S data using the radiation impedance obtained directly from the experiments. We thus obtain the normalized scattering coefficient whose probability density function (PDF) is predicted to be universal in that it depends only on the loss (quality factor) of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those obtained from random matrix theory (RMT), and find excellent agreement. The results apply to scattering measurements on any wave chaotic system.

  20. Universal statistics of the scattering coefficient of chaotic microwave cavities.

    PubMed

    Hemmady, Sameer; Zheng, Xing; Antonsen, Thomas M; Ott, Edward; Anlage, Steven M

    2005-05-01

    We consider the statistics of the scattering coefficient S of a chaotic microwave cavity coupled to a single port. We remove the nonuniversal effects of the coupling from the experimental S data using the radiation impedance obtained directly from the experiments. We thus obtain the normalized scattering coefficient whose probability density function (PDF) is predicted to be universal in that it depends only on the loss (quality factor) of the cavity. We compare experimental PDFs of the normalized scattering coefficients with those obtained from random matrix theory (RMT), and find excellent agreement. The results apply to scattering measurements on any wave chaotic system.

  1. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  2. Absorption of ozone by porous particles

    SciTech Connect

    Afanas'ev, V.P.; Dorofeev, S.B.; Sinitsyn, V.I.; Smirnov, B.M.

    1981-11-01

    The absorption of ozone by porous zeolite, silica gel, and activated carbon particles has been studied experimentally. It was shown that in addition to absorption, dissociation of ozone on the surface plays an important and sometimes decisive role. The results obtained were used to analyze the nature of ball lightning.

  3. Connection coefficients between orthogonal polynomials and the canonical sequence

    NASA Astrophysics Data System (ADS)

    Maroni, P.; Da Rocha, Z.

    2008-03-01

    We deal with the problem of obtaining closed formulas for the connection coefficients between orthogonal polynomials and the canonical sequence. We use a recurrence relation fulfilled by these coefficients and symbolic computation with the Mathematica language. We treat the cases of Gegenbauer, Jacobi and a new semi-classical sequence.

  4. Optical absorption and scattering properties in the East China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; He, Xian-qiang; Chen, Xiao-yan; Hao, Zeng-zhou; Huang, Haiqing; Zhu, Qiankun

    2011-11-01

    The absorption and particulate backscattering coefficients are the basic parameters of the water inherent optical properties (IOPs), which are also the basic parameters for the development and validation of the semi-analysis models of the ocean color remote sensing. In this work, the absorption and backscattering coefficients in the East China Sea (ECS) were measured in the summer and winter of 2009 using the three in-situ optical instruments, including the WET Labs acs, and the HOBI Labs HydroScat-6. Based on the in-situ measured data, the distribution of the absorption and backscattering coefficients in the ECS are analyzed. The results show that in the summer the water absorption coefficient at 440nm (a(440nm),excluding the absorption of the pure sea water) in the surface layer is ranged from 0.022 to 0.067 m-1, and the particulate backscattering coefficient at 442nm(bbp(442nm), is between 0.00064 and 0.03274 m-1. As a whole, both of the absorption and backscattering coefficients decrease with the offshore direction, and the high values located at the mouth of Changjiang River. In the winter, a(440nm) is between 0.051 and 0.887 m-1, and bbp(442nm) is ranged from 0.000639 to 0.14614 m-1 at the surface layer. The spatial distributions in winter are similar as the summer, with the high value in the coast and low value in the offshore. The absorption and backscattering coefficients in winter are significantly larger than the summer's, especially in coastal area near the mouth of Changjiang River, which maybe caused by the southward Fujian-Zhejiang coastal current occurring in winter. As the vertical profile distributions, we find that both of the absorption and backscattering coefficients present a layer structure, which caused by the stratification of the sea water in the summer; while in the winter, affected by the strong wind disturbing, both of the absorption and backscattering coefficients are thoroughly vertical mixing. To our knowledge, it is the first time

  5. A practical acoustical absorption analysis of coir fiber based on rigid frame modeling

    NASA Astrophysics Data System (ADS)

    Ayub, Md.; Nor, Mohd Jailani Mohd; Fouladi, Mohammad Hosseini; Zulkifli, Rozli; Amin, Nowshad

    2012-03-01

    An analytical study based on rigid frame model is demonstrated to evaluate the acoustic absorption of coir fiber. Effects of different conditions such as combination of air gap and perforated plate (PP) are studied in this work. Materials used here are treated as rigid rather than elastic, since the flow resistivity of coir fiber is very low. The well-known rigid frame Johnson-Allard equivalent-fluid model is applied to obtain the acoustic impedance of single layer coir fiber. Atalla and Sgard model is employed to estimate the surface impedance of PP. Acoustic transmission approach (ATA) is utilized for adding various consecutive layers in multilayer structure. Models are examined in different conditions such as single layer coir fiber, coir fiber backed with air gap, single layer PP in combination with coir fiber and air gap. Experiments are conducted in impedance tube on normal incidence sound absorption to validate the results. Results from the measurement are found to be in well agreement with the theoretical absorption coefficients. The performance of the rigid frame modeling method is checked more specifically in all conditions, by the mean prediction error rate of normal incidence sound absorption coefficients. Comparison between the measured absorption coefficients and predicted by rigid frame method shows discrepancy lower than 20 and 15% for most of the conditions in the frequency range of 0.2-1.5 and 1.5-5 kHz, respectively. Moreover, acoustic absorption of various single and multilayer structures is compared with the simpler empirical methods such as Delany-Bazley and Miki model; and complicated method such as Biot-Allard Model and Allard Transfer Function (TF) method. Comparisons show that the presented method offers a better accuracy of the results than the empirical models. Subsequently, it can provide almost same absorption plot with Biot-Allard model (single layer combination) and TF method (multilayer combination) proving it to be a

  6. Cytoplasmic hydrogen ion diffusion coefficient.

    PubMed Central

    al-Baldawi, N F; Abercrombie, R F

    1992-01-01

    The apparent cytoplasmic proton diffusion coefficient was measured using pH electrodes and samples of cytoplasm extracted from the giant neuron of a marine invertebrate. By suddenly changing the pH at one surface of the sample and recording the relaxation of pH within the sample, an apparent diffusion coefficient of 1.4 +/- 0.5 x 10(-6) cm2/s (N = 7) was measured in the acidic or neutral range of pH (6.0-7.2). This value is approximately 5x lower than the diffusion coefficient of the mobile pH buffers (approximately 8 x 10(-6) cm2/s) and approximately 68x lower than the diffusion coefficient of the hydronium ion (93 x 10(-6) cm2/s). A mobile pH buffer (approximately 15% of the buffering power) and an immobile buffer (approximately 85% of the buffering power) could quantitatively account for the results at acidic or neutral pH. At alkaline pH (8.2-8.6), the apparent proton diffusion coefficient increased to 4.1 +/- 0.8 x 10(-6) cm2/s (N = 7). This larger diffusion coefficient at alkaline pH could be explained quantitatively by the enhanced buffering power of the mobile amino acids. Under the conditions of these experiments, it is unlikely that hydroxide movement influences the apparent hydrogen ion diffusion coefficient. PMID:1617134

  7. Estimating Vertical Diffusion Coefficients By Lidar

    NASA Technical Reports Server (NTRS)

    Culkowski, Walter M.; Swisher, Searle D.

    1973-01-01

    The Atmospheric Turbulence and Diffusion Laboratory at Oak Ridge, Tennessee has been conducting routine probing of the lower troposphere and comparing the results with those obtained with turbidity photometers and a distant suspended particulate station. The change in scale height, K (sub z) divided by v (sub s), with time permits the vertical turbulence coefficient K (sub z) to be estimated if v (sub s) is known or assumed. Extremely high monthly correlations of turbidity versus the log of backscatter at 100 meters have been obtained. In addition, high correlations of suspended particulate matter at Chattanooga and Oak Ridge suggest that the bulk of particulate matter is of natural, rather than industrial, origin.

  8. Heat transfer coefficients for drying in pulsating flows

    SciTech Connect

    Fraenkel, S.L.

    1998-05-01

    Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.

  9. Monte Carlo simulations of coherent backscatter for identification of the optical coefficients of biological tissues in vivo

    NASA Astrophysics Data System (ADS)

    Eddowes, M. H.; Mills, T. N.; Delpy, D. T.

    1995-05-01

    A Monte Carlo model of light backscattered from turbid media has been used to simulate the effects of weak localization in biological tissues. A validation technique is used that implies that for the scattering and absorption coefficients and for refractive index mismatches found in tissues, the Monte Carlo method is likely to provide more accurate results than the methods previously used. The model also has the ability to simulate the effects of various illumination profiles and other laboratory-imposed conditions. A curve-fitting routine has been developed that might be used to extract the optical coefficients from the angular intensity profiles seen in experiments on turbid biological tissues, data that could be obtained in vivo.

  10. New consistency tests for high-accuracy measurements of X-ray mass attenuation coefficients by the X-ray extended-range technique

    SciTech Connect

    Chantler, C.T.; Islam, M.T.; Rae, N.A.; Tran, C.Q.; Glover, J.L.; Barnea, Z.

    2012-09-25

    An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.

  11. Obtaining and maintaining funding

    SciTech Connect

    Beverly Hartline

    1996-04-01

    Obtaining and maintaining funding is important for individuals, groups, institutions, and fields. This challenge is easier during times of abundant and growing resources than it is now, when funding is tight and shrinking. Thus, to obtain and maintain funding will require: maintaining healthy funding levels for all of science; maintaining healthy funding levels for the field(s) you work in; and competing successfully for the available funds. Everyone should pay attention to the overall prospects for science funding and dedicate some effort to working with others to grow the constituency for science. Public support is likely an important prerequisite for keeping future science budgets high. In this context, researchers should share with society at large the benefits of their research, so that taxpayers can see and appreciate some return from the federal investment in science. Assuming this effort is successful, and there continue to be government and private organizations with substantial resources to invest in research, what can the individual investigator do to improve her chances? She can be clear about her goal(s) and carefully plan her effort to make maximum progress for minimum resources, especially early in her career while she is establishing a solid professional reputation. Specific useful strategies include: brainstorm funding options and select the most promising one(s); be persistent but flexible, responsive to new information and changing circumstances; provide value and assistance to prospective funding sources both before and after receiving funding; know the funding agents and what their goals are, they are the customers; promise a lot and always deliver more; build partnerships and collaboration to leverage interest and resources; and develop capabilities and ideas with a promising, irresistible future. There is no guarantee of success. For the best chances, consistently contribute positively and productively in all your efforts, and continue to

  12. Conversion coefficients of the isomeric state in {sup 72}Br

    SciTech Connect

    Briz, J. A.; Borge, M. J. G.; Maira, A.; Perea, A.; Tengblad, O.; Agramunt, J.; Algora, A.; Estevez, E.; Nacher, E.; Rubio, B.; Fraile, L. M.; Deo, A.; Farrelly, G.; Gelletly, W.; Podolyak, Z.

    2010-04-26

    In order to determine the Gamow-Teller strength distribution for the N Z nucleus {sup 72}Kr an experiment was performed with a Total Absorption Gamma Spectrometer. To fully accomplish this task it is crucial to determine the multipolarity of the low energy transitions as the spin-parity of the daughter ground state has been debated. This is done by experimental determination of the conversion coefficients. Preliminary results for the multipolarity and conversion coefficients of the transition connecting the isomeric state at 101 keV with the {sup 72}Br ground state are presented.

  13. Optical-induced absorption tunability of Barium Strontium Titanate film

    NASA Astrophysics Data System (ADS)

    Luo, Chunya; Ji, Jie; Yue, Jin; Rao, Yunkun; Yao, Gang; Li, Dan; Zeng, Ying; Li, Renkui; Xiao, Longsheng; Liu, Xinxing; Yao, Jianquan; Ling, Furi

    2016-10-01

    The absorption tunability of 100 nm thickness of ferroelectric Barium Strontium Titanate (Ba0.5Sr0.5TiO3) thin films with different densities of pumped optical field is measured by terahertz time-domain spectroscopy in the range of 0.2 THz - 1.2 THz at 19 °C. Experimental results show that the absorption coefficient of BST film is approximately at 5000 cm-1-20000 cm-1 in the range of 0.2 THz - 1.2 THz and the absorption coefficient reached up to 16% when we applied the optical field up to 600 mW. The theoretical calculations reveal that increasing photoexcitation fluences is responsible for the increasing of transmission change in the conduction current density cause the absorption coefficient varied.

  14. Absorption of microwaves in metal-ceramic powder materials

    NASA Astrophysics Data System (ADS)

    Egorov, S. V.; Eremeev, A. G.; Plotnikov, I. V.; Rybakov, K. I.; Kholoptsev, V. V.; Bykov, Yu. V.

    2010-11-01

    Sintering of metal-ceramic composites by microwave heating is a promising method for creation of functionally graded materials. In this paper, we study the absorption of microwaves in compacted mixtures of metal and dielectric powders. The coefficient of microwave absorption is calculated within the framework of the effective-medium approximation as a function of the mass fraction, dimensions, and temperature of metal particles. The experimental method for determination of the microwave absorption coefficient is proposed, which is based on measuring the temperature of the samples during their heating by microwaves in an oversized working chamber. The coefficients of microwave absorption in powder composites Al2O3-Ni, which were measured by the proposed method, are presented. An agreement between the theoretical and experimental results is demonstrated.

  15. Calibration coefficient of reference brachytherapy ionization chamber using analytical and Monte Carlo methods.

    PubMed

    Kumar, Sudhir; Srinivasan, P; Sharma, S D

    2010-06-01

    A cylindrical graphite ionization chamber of sensitive volume 1002.4 cm(3) was designed and fabricated at Bhabha Atomic Research Centre (BARC) for use as a reference dosimeter to measure the strength of high dose rate (HDR) (192)Ir brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin general cavity theory and by the Monte Carlo method. In the analytical method, calibration coefficients were calculated for each spectral line of an HDR (192)Ir source and the weighted mean was taken as N(K). In the Monte Carlo method, the geometry of the measurement setup and physics related input data of the HDR (192)Ir source and the surrounding material were simulated using the Monte Carlo N-particle code. The total photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficients. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber and N(K) was determined. The Monte Carlo calculated N(K) agreed within 1.77 % of that obtained using the analytical method. The experimentally determined RAKR of HDR (192)Ir sources, using this reference ionization chamber by applying the analytically estimated N(K), was found to be in agreement with the vendor quoted RAKR within 1.43%.

  16. Recursive Construction of Operator Product Expansion Coefficients

    NASA Astrophysics Data System (ADS)

    Holland, Jan; Hollands, Stefan

    2015-06-01

    We derive a novel formula for the derivative of operator product expansion (OPE) coefficients with respect to a coupling constant. The formula involves just the OPE coefficients themselves but no further input, and is in this sense self-consistent. Furthermore, unlike other formal identities of this general nature in quantum field theory (such as the formal expression for the Lagrangian perturbation of a correlation function), our formula requires no further UV-renormalization, i.e., it is completely well-defined from the start. This feature is a result of a cancelation of UV- and IR-divergences between various terms in our identity. Our proof, and an analysis of the features of the identity, is given for the example of massive, Euclidean theory in 4 dimensional Euclidean space. It relies on the renormalization group flow equation method and is valid to arbitrary, but finite orders in perturbation theory. The final formula, however, makes neither explicit reference to the renormalization group flow, nor to perturbation theory, and we conjecture that it also holds non-perturbatively. Our identity can be applied constructively because it gives a novel recursive algorithm for the computation of OPE coefficients to arbitrary (finite) perturbation order in terms of the zeroth order coefficients corresponding to the underlying free field theory, which in turn are trivial to obtain. We briefly illustrate the relation of this method to more standard methods for computing the OPE in some simple examples.

  17. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; de Sa, S. S.; Martin, S. T.; Alexander, M. L.; Watson, T. B.; Aiken, A. C.; Springston, S. R.; Artaxo, P.

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to

  18. Computational oral absorption simulation for low-solubility compounds.

    PubMed

    Sugano, Kiyohiko

    2009-11-01

    Bile micelles play an important role in oral absorption of low-solubility compounds. Bile micelles can affect solubility, dissolution rate, and permeability. For the pH-solubility profile in bile micelles, the Henderson-Hasselbalch equation should be modified to take bile-micelle partition into account. For the dissolution rate, in the Nernst-Brunner equation, the effective diffusion coefficient in bile-micelle media should be used instead of the monomer diffusion coefficient. The diffusion coefficient of bile micelles is 8- to 18-fold smaller than that of monomer molecules. For permeability, the effective diffusion coefficient in the unstirred water layer adjacent to the epithelial membrane, and the free fraction at the epithelial membrane surface should be taken into account. The importance of these aspects is demonstrated here using several in vivo and clinical oral-absorption data of low-solubility model compounds. Using the theoretical equations, the food effect on oral absorption is further discussed.

  19. Self-Broadening and Self-Shift Coefficients in the Fundamental Band of 12C 16O

    NASA Technical Reports Server (NTRS)

    Devi, Malathy V.; Benner, D. Chris; Smith, Mary Ann H.; Rinsland, Curtis P.

    1998-01-01

    High quality and precise measurements of self-broadened and self-shift coefficients in the fundamental band of C-12O-16 were made using spectra recorded at room temperature with the high-resolution (0.0027 cm(exp -1)) McMath-Pierce Fourier transform spectrometer located at the National Solar Observatory on Kitt Peak, Arizona. The spectral region under investigation (2008-2247 cm(exp -1)) contains the P(31) to R(31) transitions. The data were obtained using a high-purity natural isotopic sample ofcarbon monoxide and two absorption cells with pathlengths of 4.08 and 9.98 cm, respectively. Various pressures of CO were used, ranging between 0.25 and 201.2 Torr. The results were obtained by analyzing five spectra simultaneously, using a multispectrum nonlinear least-squares fitting technique. The self-broadened coefficients ranged from 0.0426(2) cm(exp -1) atm(exp -1) at 296 K to 0.0924(2) cm(exp -1) atm(exp -1) at 296 K, while the pressure-induced shift coefficients varied between -0.0042(3) cm(exp -1) atm(exp -1) at 296 K and +0.0005(l) cm(exp -1) atm(exp -1) at 296 K. The value in parentheses is the estimated uncertainty in units of the last digit. The self-broadened coefficients of lines with same values of m in the P and R branches agree close to within experimental uncertainties while the self-shift coefficients showed considerable variation within and between the two branches. The mean value of the ratios of P branch to R branch self-broadened coefficients was found to be 1.01 with a standard deviation of + or - 0.01. Comparisons of the results with other published data were made.

  20. Bounds and estimates for power absorption in two-dimensional highly lossy configurations

    NASA Astrophysics Data System (ADS)

    Razansky, D.; Soldea, D. F.; Einziger, P. D.

    2004-06-01

    Electromagnetic power absorption in biological tissues has recently received due scientific and public attention, particularly, in the areas of cellular communication and hyperthermic treatments. While efficient numerical algorithms, such as the finite difference time domain technique and the method of moments, have been developed as to obtain accurate power distributions in complicated configurations, their physical interpretation and explicit dependence on problem's parameters are still difficult to achieve. In attempt to gain a clear insight into the electromagnetic power absorption mechanism as well as its estimation and relation to the Specific Absorption Rate (SAR), we have recently proposed an infinite-extent current-sheet model. Herein, the model is further extended by incorporating finite-extent sources, i.e., electric and magnetic line-sources, exciting a highly lossy semi-infinite half-space. This modification results in deeper insight and understanding of the crucially important parameters, commonly involved in realistic configurations, namely, bounds and estimates on the power absorption and radiation efficiencies, local and total SAR coupling coefficients, and effective absorption dimensions.

  1. In vitro assessment of acyclovir permeation across cell monolayers in the presence of absorption enhancers.

    PubMed

    Shah, Pranav; Jogani, Viral; Mishra, Pushpa; Mishra, Anil Kumar; Bagchi, Tamishraha; Misra, Ambikanandan

    2008-03-01

    The aim of the investigation was to establish transepithelial permeation of acyclovir across Caco-2 and Madin-Darby canine kidney (MDCK) cell monolayers and attempt to improve its permeation by employing absorption enhancers (dimethyl beta cyclodextrin, chitosan hydrochloride and sodium lauryl sulfate) and combinations thereof. Caco-2 and MDCK cell monolayers have been widely employed in studying drug transport, mechanisms of drug transport, and screening of absorption enhancers and excipients. Transepithelial electrical resistance and permeation of 99mTc-mannitol were employed as control parameters to assess the tight junction and paracellular integrity. Permeation of acyclovir in the presence of absorption enhancers was found to be significantly higher compared with drug permeation in their absence when assessed as apparent permeability coefficients (Papp). Synergistic improvements in Papp values of acyclovir were obtained in case-selected combinations of absorption enhancers; dimethyl beta cyclodextrin-chitosan hydrochloride, chitosan hydrochloride-sodium lauryl sulfate, and dimethyl beta cyclodextrin-sodium lauryl sulfate, were used. Recovery and viability assessment studies of both cell monolayers suggested reestablishment of paracellular integrity and no damage to cell membranes. Significantly improved permeation of acyclovir in the presence of selected combinations of absorption enhancers may be used as a viable approach in overcoming the problem of limited oral bioavailability of acyclovir.

  2. ANALYTIC FORMS OF THE PERPENDICULAR DIFFUSION COEFFICIENT IN NRMHD TURBULENCE

    SciTech Connect

    Shalchi, A.

    2015-02-01

    In the past different analytic limits for the perpendicular diffusion coefficient of energetic particles interacting with magnetic turbulence were discussed. These different limits or cases correspond to different transport modes describing how the particles are diffusing across the large-scale magnetic field. In the current paper we describe a new transport regime by considering the model of noisy reduced magnetohydrodynamic turbulence. We derive different analytic forms of the perpendicular diffusion coefficient, and while we do this, we focus on the aforementioned new transport mode. We show that for this turbulence model a small perpendicular diffusion coefficient can be obtained so that the latter diffusion coefficient is more than hundred times smaller than the parallel diffusion coefficient. This result is relevant to explain observations in the solar system where such small perpendicular diffusion coefficients have been reported.

  3. The temperature variation of hydrogen diffusion coefficients in metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    Hydrogen diffusion coefficients were measured as a function of temperature for a few metal alloys using an electrochemical evolution technique. Results from these measurements are compared to those obtained by the time-lag method. In all cases, diffusion coefficients obtained by the electrochemical method are larger than those by the time-lag method by an order of magnitude or more. These differences are attributed mainly to hydrogen trapping.

  4. Fuel Temperature Coefficient of Reactivity

    SciTech Connect

    Loewe, W.E.

    2001-07-31

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  5. Wrong Signs in Regression Coefficients

    NASA Technical Reports Server (NTRS)

    McGee, Holly

    1999-01-01

    When using parametric cost estimation, it is important to note the possibility of the regression coefficients having the wrong sign. A wrong sign is defined as a sign on the regression coefficient opposite to the researcher's intuition and experience. Some possible causes for the wrong sign discussed in this paper are a small range of x's, leverage points, missing variables, multicollinearity, and computational error. Additionally, techniques for determining the cause of the wrong sign are given.

  6. Diffusion Coefficients in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Saumon, D.; Starrett, C. E.; Daligault, J.

    2015-06-01

    Models of diffusion in white dwarfs universally rely on the coefficients calculated by Paquette et al. (1986). We present new calculations of diffusion coefficients based on an advanced microscopic theory of dense plasmas and a numerical simulation approach that intrinsically accounts for multiple collisions. Our method is validated against a state-of-the-art method and we present results for the diffusion of carbon ions in a helium plasma.

  7. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  8. Obtaining an equivalent beam

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1990-01-01

    In modeling a complex structure the researcher was faced with a component that would have logical appeal if it were modeled as a beam. The structure was a mast of a robot controlled gantry crane. The structure up to this point already had a large number of degrees of freedom, so the idea of conserving grid points by modeling the mast as a beam was attractive. The researcher decided to make a separate problem of of the mast and model it in three dimensions with plates, then extract the equivalent beam properties by setting up the loading to simulate beam-like deformation and constraints. The results could then be used to represent the mast as a beam in the full model. A comparison was made of properties derived from models of different constraints versus manual calculations. The researcher shows that the three-dimensional model is ineffective in trying to conform to the requirements of an equivalent beam representation. If a full 3-D plate model were used in the complete representation of the crane structure, good results would be obtained. Since the attempt is to economize on the size of the model, a better way to achieve the same results is to use substructuring and condense the mast to equivalent end boundary and intermediate mass points.

  9. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-05-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  10. Water vapor-nitrogen absorption at CO2 laser frequencies

    NASA Technical Reports Server (NTRS)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  11. Quasilinear analysis of absorption of ion Bernstein waves by electrons

    SciTech Connect

    Cardinali, A.; Paoletti, F.; Bernabei, S.; Ono, M.

    1995-01-01

    The effects induced on plasma electrons by an externally launched ion Bernstein wave (IBW), in the presence of a lower hybrid wave (LHW) in the current drive regime, are studied by analytical integration of the IBW ray-tracing equations along with the amplitude transport equation (Poynting theorem). The electric field amplitude parallel and perpendicular to the external magnetic field, the quasilinear diffusion coefficient, and the modified electron distribution function are analytically calculated in the case of IBW. The analytical calculation is compared to the numerical solution obtained by using a 2-D Fokker-Planck code for the distribution function, without any approximation for the collision operator. The synergy between the IBW and LHW can be accounted for, and the absorption of the IBW power when the electron distribution function presents a tail generated by the LHW in the current drive regime can be calculated.

  12. Quasilinear analysis of absorption of ion Bernstein waves by electrons

    SciTech Connect

    Cardinali, A.; Paoletti, F.; Bernabei, S.; Ono, M.

    1995-05-01

    The effects induced on plasma electrons by an externally launched ion Bernstein wave (IBW), in the presence of a lower hybrid wave (LHW) in the current drive regime, are studied by analytical integration of the IBW ray-tracing equations, along with the amplitude transport equation (Poynting theorem). The electric field amplitude parallel and perpendicular to the external magnetic field, the quasilinear diffusion coefficient, and the modified electron distribution function are analytically calculated in the case of IBW. The analytical calculation is compared to the numerical solution obtained by using a two-dimensional (2-D) Fokker--Planck code for the distribution function, without any approximation for the collision operator. The synergy between the IBW and LHW can be accounted for, and the absorption of the IBW power when the electron distribution function presents a tail generated by the LHW in the current drive regime can be calculated.

  13. Comprehensive analysis of the optical Kerr coefficient of graphene

    DOE PAGES

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-25

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S-matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition,more » self-coupling, and quadratic ac Stark effect. As a result, we present a comparison of our theory with recent experimental and theoretical results.« less

  14. Comprehensive analysis of the optical Kerr coefficient of graphene

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Hamerly, Ryan; Mabuchi, Hideo

    2016-08-01

    We present a comprehensive analysis of the nonlinear optical Kerr effect in graphene. We directly solve the S -matrix element to calculate the absorption rate, utilizing the Volkov-Keldysh-type crystal wave functions. We then convert to the nonlinear refractive index coefficients through the Kramers-Kronig relation. In this formalism, the source of Kerr nonlinearity is the interplay of optical fields that cooperatively drive the transition from valence to conduction band. This formalism makes it possible to identify and compute the rates of distinct nonlinear processes that contribute to the Kerr nonlinear refractive index coefficient. The four identified mechanisms are two-photon absorption, Raman transition, self-coupling, and quadratic ac Stark effect. We also present a comparison of our theory with recent experimental and theoretical results.

  15. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  16. Maximum profit performance of an absorption refrigerator

    SciTech Connect

    Chen, L.; Sun, F.; Wu, C.

    1996-12-01

    The operation of an absorption refrigerator is viewed as a production process with exergy as its output. The relations between the optimal profit and COP (coefficient of performance), and the COP bound at the maximum profit of the refrigerator are derived based on a general heat transfer law. The results provide a theoretical basis for developing and utilizing a variety of absorption refrigerators. The focus of this paper is to search the compromise optimization between economics (profit) and the utilization factor (COP) for finite-time endoreversible thermodynamic cycles.

  17. Monitoring of MOCVD reactants by UV absorption

    SciTech Connect

    Baucom, K.C.; Killeen, K.P.; Moffat, H.K.

    1995-07-01

    In this paper, we describe how UV absorption measurements can be used to measure the flow rates of metal organic chemical vapor deposition (MOCVD) reactants. This method utilizes the calculation of UV extinction coefficients by measuring the total pressure and absorbance in the neat reactant system. The development of this quantitative reactant flow rate monitor allows for the direct measurement of the efficiency of a reactant bubbler. We demonstrate bubbler efficiency results for TMGa, and then explain some discrepancies found in the TMAl system due to the monomer to dimer equilibrium. Also, the UV absorption spectra of metal organic and hydride MOCVD reactants over the wavelength range 185 to 400 nm are reported.

  18. Stratospheric eddy diffusion coefficients from tracer data

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Hunten, D. M.

    1981-01-01

    Global distributions of nitrous oxide, methane, ozone, and carbon 14 are used to estimate four sets of stratospheric eddy diffusion coefficients. A photochemical equilibrium model calculates O(3P), O(1D), H, HO2, OH, H2O2, NO, and NO2 densities, as a function of altitude, latitude, and time. The calculated O(1D), OH, and observed Cl densities are used to obtain the eddy profiles associated with the methane and nitrous oxide distributions, for altitudes between 10 and 40 km. Application of a constant flux condition to the seasonally averaged ozone data yields eddy values below 20 km. Time-dependent carbon 14 calculations produce eddy coefficients between 13 and 27 km. A composite profile is obtained by comparing the four sets of coefficients. Further, carbon 14 computations are used to test these profiles as well as those recommended in reports issued by the National Academy of Sciences in 1976 and 1979. The composite eddy profile produces the best agreement.

  19. The resistance coefficient of commercial round wire grids

    NASA Technical Reports Server (NTRS)

    Eckert, B; Pfluger, F

    1942-01-01

    The resistance coefficients of commercial types of round wire grids were examined for the purpose of obtaining the necessary data on supercharger test stands for throttling the inducted air to a pressure corresponding to a desired air density. The measurements of the coefficients ranged up to Reynolds numbers of 1000. In the arrangement of two grids in tandem, which was necessary in order to obtain high resistance coefficients with the solidity, that is, mesh density of grid, was found to be accompanied by a further relationship with the mutual spacing of the individual grids.

  20. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  1. Absorption spectra of HCFC-22 around 829/cm at atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad

    1992-01-01

    Spectral absorption coefficients of HCFC-22 have been measured around 829/cm in the laboratory at various temperature-pressure combinations chosen to represent tangent heights (as in solar-occultation experiments) or layers in the atmosphere. The data measured employing the Doppler-limited spectra resolution (about 10 exp -4/cm) of a tunable diode laser spectrometer are free of instrumental distortion and are more practical in this case than the spectral line parameters adapted in conventional line-by-line procedures for analyzing atmospheric spectra. The present data obtained with N2 as the broadening gas are shown to be directly applicable to the real atmosphere.

  2. Collision-induced vibrational absorption in molecular hydrogens

    SciTech Connect

    Reddy, S.P.

    1993-05-01

    Collision induced absorption (CIA) spectra of the first overtone bands of H{sub 2}, D{sub 2}, and HD have been recorded for gas densities up to 500 amagat at 77-300 K. Analyses of these spectra reveal that (1) contrary to the observations in the fundamental bands, the contribution of the isotropic overlap interaction to the first overtone bands is negligible, (2) the squares of the matrix elements B{sub 32}(R)/ea{sub o} [= {lambda}{sub 32} exp(-(R-{sigma})/{rho}{sub 32}) + 3 (R/a{sub o}){sup -4}] where the subscripts 3 and 2 represent L and {lambda}, respectively, account for the absorption intensity of the bands and (3) the mixed term, 2,3 {lambda}{sub 32} exp (-(R-{sigma})/{rho}{sub 32}) <{vert_bar}Q{vert_bar}> <{alpha}> (R/a){sup -4}, gives a negative contribution. In the CIA spectra of H{sub 2} in its second overtone region recorded at 77, 201 and 298 K for gas densities up to 1000 amagat, a dip in the Q branch with characteristic Q{sub p} and Q{sub R} components has been observed. The analysis of the absorption profiles reveals, in addition to the previously known effects, the occurrence of the triple-collision transitions of H{sub 2} of the type Q{sub 1}(J) + Q{sub 1}(J) + Q{sub 1}(J) for the first time. From the profile analysis the absorption coefficient of these transitions is obtained.

  3. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems. PMID:23805835

  4. Electron mobility and free-carrier absorption in GaAs - Determination of the compensation ratio

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Lagowski, L.; Jastrzebski, L.; Lichtensteiger, M.; Gatos, H. C.

    1979-01-01

    Theoretical calculations of electron mobility and free-carrier absorption in n-type GaAs at room temperature were carried out taking into consideration all major scattering processes. It was found that satisfactory agreement between theoretical and experimental results on free-carrier absorption is obtained only when the effect of compensation is quantitatively taken into account. In conjunction with experimental studies it is shown that the electron mobility (for n greater than 10 to the 15th per cu cm) and free-carrier absorption (for n greater than 10 to the 16th per cu cm) are sufficiently sensitive to the ionized impurity concentration to provide a reliable means for determining the compensation ratio. Convenient procedures are presented for the determination of the compensation ratio from the free-carrier absorption coefficient and from the computed values of room-temperature electron mobility. Values of the compensation ratio obtained by these two procedures are in good agreement provided the carrier-concentration variations in the material are not appreciably greater than 10%.

  5. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  6. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  7. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  8. Yb3+ doped fluorophosphate laser glasses with high gain coefficient and improved laser property

    NASA Astrophysics Data System (ADS)

    Wang, P. F.; Peng, B.; Li, W. N.; Hou, Ch. Q.; She, J. B.; Guo, H. T.; Lu, M.

    2012-04-01

    Yb3+ doped fluorophosphate glasses with high stimulated emission cross-section, large gain coefficient and low hydroxyl absorption coefficient were prepared by high temperature melting for fiber laser applications, and their spectral, general laser parameters were investigated accordingly by means of fluorescence emission spectrum, decay cure and infrared absorption spectra. Compared with previously reported fluorophosphate glasses, the investigated fluorophosphate glasses have highest grain coefficient and maintain a maximum laser systematical factor over other various types of laser glasses. The introduction of fluorides to fluorophosphate glasses results in the low level of hydroxyl absorption coefficient and concentration. All these advantages might mean that Yb3+ doped fluorophosphate glasses are a good candidate as an active laser media for short pulse, high power laser generation used for next generation nuclear fusion.

  9. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  10. Analytical modeling and experimental investigation on optical properties of new class of nanofluids (Al2O3-CuO binary nanofluids) for direct absorption solar thermal energy

    NASA Astrophysics Data System (ADS)

    Menbari, Amir; Alemrajabi, Ali Akbar

    2016-02-01

    Nanofluids play a major role in many modern engineering processes. Binary nanofluids are a new class of nanofluids that are prepared by dispersing simultaneously two dissimilar nanoparticles in a base fluid. They offer a good potential for use in direct absorption solar systems. The present study investigates both experimentally and analytically the optical properties of binary nanofluids for direct absorption in solar applications. For this purpose, two dissimilar nanoparticles, i.e. CuO and γ-Al2O3, are dispersed in water, ethylene glycol, and the ethylene glycol-water mixture to form binary nanofluids. In addition, a new method is developed for calculating the extinction coefficient of the binary nanofluids based on the classical electromagnetic theory. It will be shown that the extinction coefficients obtained from both analytical and experimental studies are in good agreement. Moreover, the extinction coefficient of the binary nanofluids is found to be approximately equal to the sum of the extinction coefficients of the constituent components, determined both analytically and experimentally. By increasing the nanoparticle volume fraction, improvements are observed in the extinction coefficient of the binary nanofluids prepared. Also, the analytical and experimental results of the study show that the extinction coefficient of the binary nanoparticles dispersed in water as the "base fluid" is greater than those of the binary nanoparticles dispersed in ethylene glycol or the mixture of ethylene glycol-water.

  11. Reference Phantom Method for Acoustic Backscatter Coefficient and Attenuation Coefficient Measurements.

    NASA Astrophysics Data System (ADS)

    Yao, Linxin

    1990-08-01

    In previous work in our laboratory accurate backscatter coefficient measurements were obtained with a data reduction method that explicitly accounts for experimental factors involved in recording echo data. An alternative, relative processing method for determining the backscatter coefficient and the attenuation coefficient is presented here. This method involves comparison of echo data from a sample with data recorded from a reference phantom whose backscatter and attenuation coefficients are known. The ratio of the signals cancels depth-dependent instrumentation factors. This saves the efforts of beam profile computation and various calibrations. The attenuation coefficient and backscatter coefficient of the sample are found from these ratios and the known acoustic properties of the reference phantom. This method is tested using tissue-mimicking phantoms with known scattering and attenuation properties. Various experiments have been done using clinical scanners with different transducers to compute attenuation coefficients and backscatter coefficients, and to make quantitative images. This method has been found to be accurate for media containing Rayleigh scatterers, as well as samples containing intermediate-size scatterers. Accuracy was maintained over different frequency bands and for a wide range of transducer-to-ROI distances. Measurements were done in vivo for human livers, kidneys and dog myocardium. The results have shown that the reference phantom method simplifies the measurement procedure as well as keeps the accuracy, and therefore is practical clinically. Statistical uncertainties propagated in the data reduction have been analyzed in detail. Formulae are deduced to predict statistical errors in the attenuation and backscatter coefficients measured with the reference phantom method. Spatial correlations of the echo signals are also considered. A 2-dimensional lateral correlation matrix is introduced to compute the number of effective independent

  12. Rate coefficients for reaction of OH with acetone between 202 and 395 K

    SciTech Connect

    Wollenhaupt, M.; Carl, S.A.; Horowitz, A.; Crowley, J.N.

    2000-03-30

    The kinetics of the title reaction were investigated between 202 and 395 K and at 20, 50, and 100 Torr of Ar or N{sub 2} bath gas using pulsed laser photolysis (PLP) generation of OH combined with both resonance fluorescence (RF) and laser-induced fluorescence (LIF) detection. OH was generated either by the sequential 439 nm, two-photon dissociation of NO{sub 2} in the presence of H{sub 2}, or by HONO photolysis at 351 nm. The accuracy of the rate constants obtained was enhanced by optical absorption measurements of acetone concentrations both before and after the photolysis reactor. The temperature dependence is not describe by a simple Arrhenius expression but by k{sub 1} (202--395 K) = 8.8 x 10{sup {minus}12} exp({minus}1,320/T) + 1.7 x 10{sup {minus}14} exp(423/T) cm{sup 3} s{sup {minus}1}, indicating that a simple H atom abstraction may not be the only reaction mechanism. The estimated total error (95% confidence) associated wit the rate coefficient derived from this expression is estimated as 5% and is independent of temperature. The curvature in the Arrhenius plot results in a significantly larger rate coefficient at low temperatures than obtained by extrapolation of the previous measurement and implies greater significance for the reaction with OH as a sink for acetone in the upper troposphere than presently assumed.

  13. Analysis of internal conversion coefficients

    PubMed

    Coursol; Gorozhankin; Yakushev; Briancon; Vylov

    2000-03-01

    An extensive database has been assembled that contains the three most widely used sets of calculated internal conversion coefficients (ICC): [Hager R.S., Seltzer E.C., 1968. Internal conversion tables. K-, L-, M-shell Conversion coefficients for Z = 30 to Z = 103, Nucl. Data Tables A4, 1-237; Band I.M., Trzhaskovskaya M.B., 1978. Tables of gamma-ray internal conversion coefficients for the K-, L- and M-shells, 10 < or = Z < or = 104, Special Report of Leningrad Nuclear Physics Institute; Rosel F., Fries H.M., Alder K., Pauli H.C., 1978. Internal conversion coefficients for all atomic shells, At. Data Nucl. Data Tables 21, 91-289] and also includes new Dirac Fock calculations [Band I.M. and Trzhaskovskaya M.B., 1993. Internal conversion coefficients for low-energy nuclear transitions, At. Data Nucl. Data Tables 55, 43-61]. This database is linked to a computer program to plot ICCs and their combinations (sums and ratios) as a function of Z and energy, as well as relative deviations of ICC or their combinations for any pair of tabulated data. Examples of these analyses are presented for the K-shell and total ICCs of the gamma-ray standards [Hansen H.H., 1985. Evaluation of K-shell and total internal conversion coefficients for some selected nuclear transitions, Eur. Appl. Res. Rept. Nucl. Sci. Tech. 11.6 (4) 777-816] and for the K-shell and total ICCs of high multipolarity transitions (total, K-, L-, M-shells of E3 and M3 and K-shell of M4). Experimental data sets are also compared with the theoretical values of these specific calculations. PMID:10724406

  14. Modification of Einstein A Coefficient in Dissipative Gas Medium

    NASA Technical Reports Server (NTRS)

    Cao, Chang-Qi; Cao, Hui; Qin, Ke-Cheng

    1996-01-01

    Spontaneous radiation in dissipative gas medium such as plasmas is investigated by Langevin equations and the modified Weisskopf-Wigner approximation. Since the refractive index of gas medium is expected to be nearly unity, we shall first neglect the medium polarization effect. We show that absorption in plasmas may in certain case modify the Einstein A coefficient significantly and cause a pit in the A coefficient-density curves for relatively low temperature plasmas and also a pit in the A coefficient-temperature curves. In the next, the effect of medium polarization is taken into account in addition. To our surprise, its effect in certain case is quite significant. The dispersive curves show different behaviors in different region of parameters.

  15. Determination of stream reaeration coefficients by use of tracers

    USGS Publications Warehouse

    Kilpatrick, F.A.; Rathbun, R.E.; Yotsukura, Nobuhiro; Parker, G.W.; DeLong, L.L.

    1987-01-01

    Stream reaeration is the physical absorption of oxygen from the atmosphere by a flowing stream. This is the primary process by which a stream replenishes the oxygen consumed in the biodegradation of organic wastes. Prior to 1965, reaeration rate coefficients could be estimated only by indirect methods. In 1965, a direct method of measuring stream reaeration coefficients was developed in which a radioactive tracer gas was injected into a stream--the tracer gas being desorbed from the stream inversely to how oxygen would be absorbed. The technique has since been modified by substituting hydrocarbon gases for the radioactive tracer gas. The slug-injection and constant-rate injection methods of performing gas tracer desorption measurements are described. Emphasis is on the use of rhodamine WT dye as a relatively conservative tracer and propane as the nonconservative gas tracer, on planning field tests, methods of injection, sampling and analysis, and computational techniques to compute desorption and reaeration coefficients. (Author 's abstract)

  16. Optical Absorption Cross Section of Individual Multi-Walled Carbon Nanotubes in the Visible Region.

    PubMed

    Shahzad, Muhammad Imran; Shahzad, Nadia; Tagliaferro, Alberto

    2016-01-01

    The aim of the present work is to determine the optical absorption cross section for visible radiation of various types of multiwall carbon nanotubes (MWCNTs) having different dimensions through macroscopic optical measurements. This is achieved by dispersing MWCNTs in polydimethylsiloxane (PDMS) and preparing composite films. Different percentages (0.0% to 1.5%) of each MWCNTs type were mixed into the PDMS matrix using high speed mechanical stirring (~1000 rpm) and ultrasonication (~37 kHz) to reach optimal dispersion. By using doctor blading technique, 100 µm thick uniform films were produced on glass. They were then thermally cured and detached from the glass to get flexible and self-standing films. Field-Emission Scanning Electron Microscope (FESEM) analysis of cryo-fractured composite samples was used to check the dispersion of MWCNTs in PDMS, while Raman spectroscopy and FTIR were employed to rule out possible structural changes of the polymer in the composite that would have altered its optical properties. Total and specular reflection and transmission spectra were measured for all films. The absorption coefficient, which represents the fractional absorption per unit length and is proportional to the concentration of absorbing sites (i.e., MWCNTs at photon energies upon which PDMS is non-absorbing), was extracted. For each MWCNTs type, the absorption cross section of an individual MWCNT was obtained from the slope of absorption coefficient versus MWCNTs number density curve. It was found to be related with MWCNT volume. This method can be applied to all other nanoparticles as far as they can be dispersed in a host transparent matrix. PMID:27398474

  17. Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data.

    PubMed

    Abascal, Juan Felipe Perez-Juste; Aguirre, Juan; Chamorro-Servent, Judit; Schweiger, Martin; Arridge, Simon; Ripoll, Jorge; Vaquero, Juan J; Desco, Manuel

    2012-03-01

    Reconstruction algorithms for imaging fluorescence in near infrared ranges usually normalize fluorescence light with respect to excitation light. Using this approach, we investigated the influence of absorption and scattering heterogeneities on quantification accuracy when assuming a homogeneous model and explored possible reconstruction improvements by using a heterogeneous model. To do so, we created several computer-simulated phantoms: a homogeneous slab phantom (P1), slab phantoms including a region with a two- to six-fold increase in scattering (P2) and in absorption (P3), and an atlas-based mouse phantom that modeled different liver and lung scattering (P4). For P1, reconstruction with the wrong optical properties yielded quantification errors that increased almost linearly with the scattering coefficient while they were mostly negligible regarding the absorption coefficient. This observation agreed with the theoretical results. Taking the quantification of a homogeneous phantom as a reference, relative quantification errors obtained when wrongly assuming homogeneous media were in the range +41 to +94% (P2), 0.1 to -7% (P3), and -39 to +44% (P4). Using a heterogeneous model, the overall error ranged from -7 to 7%. In conclusion, this work demonstrates that assuming homogeneous media leads to noticeable quantification errors that can be improved by adopting heterogeneous models.

  18. Influence of absorption and scattering on the quantification of fluorescence diffuse optical tomography using normalized data

    NASA Astrophysics Data System (ADS)

    Abascal, Juan Felipe Perez-Juste; Aguirre, Juan; Chamorro-Servent, Judit; Schweiger, Martin; Arridge, Simon; Ripoll, Jorge; Vaquero, Juan J.; Desco, Manuel

    2012-03-01

    Reconstruction algorithms for imaging fluorescence in near infrared ranges usually normalize fluorescence light with respect to excitation light. Using this approach, we investigated the influence of absorption and scattering heterogeneities on quantification accuracy when assuming a homogeneous model and explored possible reconstruction improvements by using a heterogeneous model. To do so, we created several computer-simulated phantoms: a homogeneous slab phantom (P1), slab phantoms including a region with a two- to six-fold increase in scattering (P2) and in absorption (P3), and an atlas-based mouse phantom that modeled different liver and lung scattering (P4). For P1, reconstruction with the wrong optical properties yielded quantification errors that increased almost linearly with the scattering coefficient while they were mostly negligible regarding the absorption coefficient. This observation agreed with the theoretical results. Taking the quantification of a homogeneous phantom as a reference, relative quantification errors obtained when wrongly assuming homogeneous media were in the range +41 to +94% (P2), 0.1 to -7% (P3), and -39 to +44% (P4). Using a heterogeneous model, the overall error ranged from -7 to 7%. In conclusion, this work demonstrates that assuming homogeneous media leads to noticeable quantification errors that can be improved by adopting heterogeneous models.

  19. Synopsis of Mid-latitude Radio Wave Absorption in Europe

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Friedrich, M.

    1984-01-01

    Radio wave absorption data covering almost two years from Europe to Central Asia are presented. They are normalized by relating them to a reference absorption. Every day these normalized data are fitted to a mathematical function of geographical location in order to obtain a daily synopsis of radio wave absorption. A film of these absorption charts was made which is intended to reveal movements of absorption or absorption anomaly. In addition, radiance (temperature) data from the lower D-region are also plotted onto these charts.

  20. ABSORPTION OF p MODES BY THIN MAGNETIC FLUX TUBES

    SciTech Connect

    Jain, Rekha; Hindman, Bradley W.; Braun, Doug C.; Birch, Aaron C.

    2009-04-10

    We study the interaction between p modes and the many magnetic fibrils that lace the solar convection zone. In particular, we investigate the resulting absorption of p-mode energy by the fibril magnetic field. Through mechanical buffeting, the p modes excite tube waves on the magnetic fibrils-in the form of longitudinal sausage waves and transverse kink waves. The tube waves propagate up and down the magnetic fibrils and out of the p-mode cavity, thereby removing energy from the incident acoustic waves. We compute the absorption coefficient associated with this damping mechanism and model the absorption that would be observed for magnetic plage. We compare our results to the absorption coefficient that is measured using the local-helioseismic technique of ridge-filtered holography. We find that, depending on the mode order and the photospheric boundary conditions, we can achieve absorption coefficients for simulated plage that exceed 50%. The observed increase of the absorption coefficient as a function of frequency is reproduced for all model parameters.

  1. Tunable erbium-doped fiber ring laser for applications of infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ryu, Han Young; Lee, Won-Kyu; Moon, Han Seb; Suh, Ho Suhng

    2007-07-01

    We fabricate a low noise erbium-doped fiber ring laser that can be continuously tuned over 102 nm by insertion of the fiber Fabry-Perot tunable filter (FFP-TF) in the ring cavity with a novel cavity structure and the optimal gain medium length. As an application of this fiber ring laser, we performed the absorption spectroscopy of acetylene (13C2H2) and hydrogen cyanide (H13C14N) and measure the absorption spectra of more than 50 transition lines of these gases with an excellent signal to noise ratio (SNR). The pressure broadening coefficients of four acetylene transition lines are obtained using this fiber ring laser and an external cavity laser diode.

  2. An analytical solution for the model of drug distribution and absorption in small intestine

    NASA Astrophysics Data System (ADS)

    Mingyu, Xu

    1990-11-01

    According to the physiological and anatomical characteristics of small intestine, neglecting the effect of its motility on the distribution and absorption of drug and nutrient, Y. Miyamoto et al.[1] proposed a model of two-dimensional laminar flow in a circular porous tube with permeable wall and calculated the concentration profile of drug by numerical analysis. In this paper, we give a steady state analytical solution of the above model including deactivation term. The obtained results are in agreement with the results of their numerical analysis. Moreover the analytical solution presented in this paper reveals the relation among the physiological parameters of the model and describes the basic absorption rule of drug and nutrient through the intestinal wall and hence provides a theoretical basis for determining the permeability and reflection coefficient through in situ experiments.

  3. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  4. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study.

    PubMed

    Müller, Thomas; Müller, Detlef; Dubois, René

    2006-04-01

    Spectral particle extinction coefficients of atmospheric aerosols were measured with, to the best of our knowledge, a newly designed differential optical absorption spectroscopy (DOAS) instrument. A closure study was carried out on the basis of optical and microphysical aerosol properties obtained from nephelometer, particle soot/absorption photometer, hygroscopic tandem differential mobility analyzer, twin differential mobility particle sizer, aerodynamic particle sizer, and Berner impactors. The data were collected at the urban site of Leipzig during a period of 10 days in March 2000. The performance test also includes a comparison of the optical properties measured with DOAS to particle optical properties calculated with a Mie-scattering code. The computations take into account dry and ambient particle conditions. Under dry particle conditions the linear regression and the correlation coefficient for particle extinction are 0.95 and 0.90, respectively. At ambient conditions these parameters are 0.89 and 0.97, respectively. An inversion algorithm was used to retrieve microphysical particle properties from the extinction coefficients measured with DOAS. We found excellent agreement within the retrieval uncertainties.

  5. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study.

    PubMed

    Müller, Thomas; Müller, Detlef; Dubois, René

    2006-04-01

    Spectral particle extinction coefficients of atmospheric aerosols were measured with, to the best of our knowledge, a newly designed differential optical absorption spectroscopy (DOAS) instrument. A closure study was carried out on the basis of optical and microphysical aerosol properties obtained from nephelometer, particle soot/absorption photometer, hygroscopic tandem differential mobility analyzer, twin differential mobility particle sizer, aerodynamic particle sizer, and Berner impactors. The data were collected at the urban site of Leipzig during a period of 10 days in March 2000. The performance test also includes a comparison of the optical properties measured with DOAS to particle optical properties calculated with a Mie-scattering code. The computations take into account dry and ambient particle conditions. Under dry particle conditions the linear regression and the correlation coefficient for particle extinction are 0.95 and 0.90, respectively. At ambient conditions these parameters are 0.89 and 0.97, respectively. An inversion algorithm was used to retrieve microphysical particle properties from the extinction coefficients measured with DOAS. We found excellent agreement within the retrieval uncertainties. PMID:16607998

  6. Slow light and saturable absorption

    NASA Astrophysics Data System (ADS)

    Selden, A. C.

    2009-06-01

    Quantitative analysis of slow light experiments utilising coherent population oscillation (CPO) in a range of saturably absorbing media, including ruby and alexandrite, Er3+:Y2SiO5, bacteriorhodopsin, semiconductor quantum devices and erbium-doped optical fibres, shows that the observations may be more simply interpreted as saturable absorption phenomena. A basic two-level model of a saturable absorber displays all the effects normally associated with slow light, namely phase shift and modulation gain of the transmitted signal, hole burning in the modulation frequency spectrum and power broadening of the spectral hole, each arising from the finite response time of the non-linear absorption. Only where hole-burning in the optical spectrum is observed (using independent pump and probe beams), or pulse delays exceeding the limits set by saturable absorption are obtained, can reasonable confidence be placed in the observation of slow light in such experiments. Superluminal (“fast light”) phenomena in media with reverse saturable absorption (RSA) may be similarly explained.

  7. A theoretical consideration of percutaneous drug absorption.

    PubMed

    Kubota, K; Ishizaki, T

    1985-02-01

    The percutaneous drug absorption process and its clinical significance are not fully known. In this article we propose a theoretical method to obtain two parameters (kd and kc) of percutaneous drug absorption from in vivo data. These parameters are related to diffusion of a drug through the skin and removal process at the skin-capillary boundary, respectively, characterizing several pharmacokinetic aspects of the drug applied to the skin. Moreover, by employing these two kinetic constants, a simulation of percutaneous drug absorption can be theoretically generated. On the basis of our theoretical considerations on the percutaneous drug absorption process described herein, we conclude that the percutaneous drug absorption process is better understood by employing two kinetic constants in a mathematical model and that its clinical application would be highly possible. PMID:4020622

  8. Effective Viscosity Coefficient of Nanosuspensions

    NASA Astrophysics Data System (ADS)

    Rudyak, V. Ya.; Belkin, A. A.; Egorov, V. V.

    2008-12-01

    Systematic calculations of the effective viscosity coefficient of nanosuspensions have been performed using the molecular dynamics method. It is established that the viscosity of a nanosuspension depends not only on the volume concentration of the nanoparticles but also on their mass and diameter. Differences from Einstein's relation are found even for nanosuspensions with a low particle concentration.

  9. Aerodynamic coefficients and transformation tables

    NASA Technical Reports Server (NTRS)

    Ames, Joseph S

    1918-01-01

    The problem of the transformation of numerical values expressed in one system of units into another set or system of units frequently arises in connection with aerodynamic problems. Report contains aerodynamic coefficients and conversion tables needed to facilitate such transformation. (author)

  10. Estimating the Polyserial Correlation Coefficient.

    ERIC Educational Resources Information Center

    Bedrick, Edward J.; Breslin, Frederick C.

    1996-01-01

    Simple noniterative estimators of the polyserial correlation coefficient are developed by exploiting a general relationship between the polyserial correlation and the point polyserial correlation to give extensions of the biserial estimators of K. Pearson (1909), H. E. Brogden (1949), and F. M. Lord (1963) to the multicategory setting. (SLD)

  11. Integer Solutions of Binomial Coefficients

    ERIC Educational Resources Information Center

    Gilbertson, Nicholas J.

    2016-01-01

    A good formula is like a good story, rich in description, powerful in communication, and eye-opening to readers. The formula presented in this article for determining the coefficients of the binomial expansion of (x + y)n is one such "good read." The beauty of this formula is in its simplicity--both describing a quantitative situation…

  12. Tables of the coefficients A

    NASA Technical Reports Server (NTRS)

    Chandra, N.

    1974-01-01

    Numerical coefficients required to express the angular distribution for the rotationally elastic or inelastic scattering of electrons from a diatomic molecule were tabulated for the case of nitrogen and in the energy range from 0.20 eV to 10.0 eV. Five different rotational states are considered.

  13. Identities for generalized hypergeometric coefficients

    SciTech Connect

    Biedenharn, L.C.; Louck, J.D.

    1991-01-01

    Generalizations of hypergeometric functions to arbitrarily many symmetric variables are discussed, along with their associated hypergeometric coefficients, and the setting within which these generalizations arose. Identities generalizing the Euler identity for {sub 2}F{sub 1}, the Saalschuetz identity, and two generalizations of the {sub 4}F{sub 3} Bailey identity, among others, are given. 16 refs.

  14. Prediction of stream volatilization coefficients

    USGS Publications Warehouse

    Rathbun, Ronald E.

    1990-01-01

    Equations are developed for predicting the liquid-film and gas-film reference-substance parameters for quantifying volatilization of organic solutes from streams. Molecular weight and molecular-diffusion coefficients of the solute are used as correlating parameters. Equations for predicting molecular-diffusion coefficients of organic solutes in water and air are developed, with molecular weight and molal volume as parameters. Mean absolute errors of prediction for diffusion coefficients in water are 9.97% for the molecular-weight equation, 6.45% for the molal-volume equation. The mean absolute error for the diffusion coefficient in air is 5.79% for the molal-volume equation. Molecular weight is not a satisfactory correlating parameter for diffusion in air because two equations are necessary to describe the values in the data set. The best predictive equation for the liquid-film reference-substance parameter has a mean absolute error of 5.74%, with molal volume as the correlating parameter. The best equation for the gas-film parameter has a mean absolute error of 7.80%, with molecular weight as the correlating parameter.

  15. Super-Resonant Intracavity Coherent Absorption

    PubMed Central

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; De Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  16. Super-Resonant Intracavity Coherent Absorption.

    PubMed

    Malara, P; Campanella, C E; Giorgini, A; Avino, S; De Natale, P; Gagliardi, G

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator's quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes. PMID:27364475

  17. Super-Resonant Intracavity Coherent Absorption

    NASA Astrophysics Data System (ADS)

    Malara, P.; Campanella, C. E.; Giorgini, A.; Avino, S.; de Natale, P.; Gagliardi, G.

    2016-07-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator’s quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption (CPA). We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot (FP)/ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy and optical sensing schemes.

  18. Enhanced absorption in silicon metamaterials waveguide structure

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria; Shabat, Mohammed M.

    2016-07-01

    Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial's refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

  19. Direct Extraction of One-loop Integral Coefficients

    SciTech Connect

    Forde, Darren

    2007-04-16

    We present a general procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted by considering two-particle and triple unitarity cuts of the corresponding bubble and triangle integral functions. After choosing a specific parameterization of the cut loop momentum we can uniquely identify the coefficients of the desired integral functions simply by examining the behavior of the cut integrand as the unconstrained parameters of the cut loop momentum approach infinity. In this way we can produce compact forms for scalar integral coefficients. Applications of this method are presented for both QCD and electroweak processes, including an alternative form for the recently computed three-mass triangle coefficient in the six-photon amplitude A{sub 6}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup -}, 6{sup +}). The direct nature of this extraction procedure allows for a very straightforward automation of the procedure.

  20. Diffusion and viscosity coefficients for helium. [in astrophysical gas mixtures

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, R.

    1982-01-01

    The first order Boltzmann-Fokker-Planck equation is solved numerically to obtain diffusion and viscosity coefficients for a ternary gas mixture composed of electron, protons, and helium. The coefficients are tabulated for five He/H abundances ranging from 0.01 to 10 and for both He II and He III. Comparison with Burgers's thermal diffusion coefficients reveals a maximum difference of 9-10% for both He II and He III throughout the range of helium abundances considered. The viscosity coefficients are compared to those of Chapman and Cowling and show a maximum difference of only 5-6% for He II but 15-16% for He III. For the astrophysically important gas mixtures, it is concluded that the results of existing studies which employed Burgers's or Chapman and Cowling's coefficients will remain substantially unaltered.

  1. Determination of absolute internal conversion coefficients using the SAGE spectrometer

    NASA Astrophysics Data System (ADS)

    Sorri, J.; Greenlees, P. T.; Papadakis, P.; Konki, J.; Cox, D. M.; Auranen, K.; Partanen, J.; Sandzelius, M.; Pakarinen, J.; Rahkila, P.; Uusitalo, J.; Herzberg, R.-D.; Smallcombe, J.; Davies, P. J.; Barton, C. J.; Jenkins, D. G.

    2016-03-01

    A non-reference based method to determine internal conversion coefficients using the SAGE spectrometer is carried out for transitions in the nuclei of 154Sm, 152Sm and 166Yb. The Normalised-Peak-to-Gamma method is in general an efficient tool to extract internal conversion coefficients. However, in many cases the required well-known reference transitions are not available. The data analysis steps required to determine absolute internal conversion coefficients with the SAGE spectrometer are presented. In addition, several background suppression methods are introduced and an example of how ancillary detectors can be used to select specific reaction products is given. The results obtained for ground-state band E2 transitions show that the absolute internal conversion coefficients can be extracted using the methods described with a reasonable accuracy. In some cases of less intense transitions only an upper limit for the internal conversion coefficient could be given.

  2. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  3. On the Ammonia Absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; Karimov, A. M.; Lyssenko, P. G.; Kharitonova, G. A.

    2015-11-01

    The ammonia absorption bands centered at wavelengths of 645 and 787 nm in the visible spectrum of Saturn are very weak and overlapped with more strong absorption bands of methane. Therefore, the allocation of these bands is extremely difficult. In fact, the NH3 band 787 nm is completely masked by methane. The NH3 645 nm absorption band is superimposed on a relatively weak shortwave wing of CH4 band, in which the absorption maximum lies at the wavelength of 667 nm. In 2009, during the equinox on Saturn we have obtained the series of zonal spectrograms by scanning of the planet disk from the southern to the northern polar limb. Besides studies of latitudinal variation of the methane absorption bands we have done an attempt to trace the behavior of the absorption of ammonia in the band 645 nm. Simple selection of the pure NH3 profile of the band was not very reliable. Therefore, after normalizing to the ring spectrum and to the level of the continuous spectrum for entire band ranging from 630 to 680 nm in the equivalent widths were calculated for shortwave part of this band (630-652 nm), where the ammonia absorption is present, and a portion of the band CH4 652-680 nm. In any method of eliminating the weak part of the methane uptake in the short wing show an increased ammonia absorption in the northern hemisphere compared to the south. This same feature is observed also in the behavior of weak absorption bands of methane in contrast to the more powerful, such as CH4 725 and 787 nm. This is due to the conditions of absorption bands formation in the clouds at multiple scattering. Weak absorption bands of methane and ammonia are formed on the large effective optical depths and their behavior reflects the differences in the degree of uniformity of the aerosol component of the atmosphere of Saturn.

  4. Optical absorption in ion-implanted lead lanthanum zirconate titanate ceramics

    NASA Astrophysics Data System (ADS)

    Seager, C. H.; Land, C. E.

    1984-08-01

    Optical absorption measurements have been performed on unmodified and on ion-implanted lead lanthanum zirconate titanate ceramics using the photothermal deflection spectroscopy technique. Bulk absorption coefficients depend on the average grain size of the material while the absorption associated with the ion-damaged layers does not. The damage-induced surface absorptance correlates well with the photosensitivity observed in implanted PLZT devices, supporting earlier models for the enhanced imaging efficiency of the materials.

  5. Solving Second-Order Differential Equations with Variable Coefficients

    ERIC Educational Resources Information Center

    Wilmer, A., III; Costa, G. B.

    2008-01-01

    A method is developed in which an analytical solution is obtained for certain classes of second-order differential equations with variable coefficients. By the use of transformations and by repeated iterated integration, a desired solution is obtained. This alternative method represents a different way to acquire a solution from classic power…

  6. Wood-Polymer composites obtained by gamma irradiation

    SciTech Connect

    Gago, J.; Lopez, A.; Rodriguez, J.; Santiago, J.; Acevedo, M.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  7. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    SciTech Connect

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu; John, Honey

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  8. Solar absorption surface panel

    DOEpatents

    Santala, Teuvo J.

    1978-01-01

    A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.

  9. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  10. Application of an in vitro DDASS to evaluate oral absorption of two chemicals simultaneously: establishment of a level A in vitro-in vivo correlation.

    PubMed

    Hou, Jipeng; He, Xin; Xu, Xuefang; Shi, Xiaoyan; Xu, Yanyan; Liu, Changxiao

    2012-11-01

    The aim of this study was to evaluate the oral absorption of two chemicals simultaneously using a drug dissolution/absorption simulating system (DDASS), and to establish a correlation between DDASS and in vivo absorption to clarify the prediction of this in vitro model. Ferulic acid (FA) and tetrahydropalmatine (THP), the components of Angelicae Sinensis Radix and Corydalis Yanhusuo Rhizoma, respectively, were chosen as model compounds. Three groups including FA, THP, and FA and THP together (FA + THP) were studied in DDASS. The corresponding in vivo pharmacokinetics study was performed in rats. Then the correlation was analysed between DDASS permeation in vitro and rat absorption data in vivo. A strong level A correlation (r > 0.84) was obtained after a correlation coefficient test (p < 0.05 or 0.01). Moreover, when FA and THP were used together in DDASS, the cumulative permeation of FA increased by 38.5%, while THP permeation decreased by 25.8%. In rats, the area under the concentration-time curve from time to infinity for FA increased 2.6-fold, while THP decreased 19.6%. The changes in rat intestinal permeation modeled by the DDASS were consistent with the absorption changes in rats. We conclude that DDASS is a valid in vitro model to evaluate oral absorption of two drug components simultaneously and reflect the in vivo characteristics of drug absorption accurately.

  11. An analytical solution for quantum size effects on Seebeck coefficient

    NASA Astrophysics Data System (ADS)

    Karabetoglu, S.; Sisman, A.; Ozturk, Z. F.

    2016-03-01

    There are numerous experimental and numerical studies about quantum size effects on Seebeck coefficient. In contrast, in this study, we obtain analytical expressions for Seebeck coefficient under quantum size effects. Seebeck coefficient of a Fermi gas confined in a rectangular domain is considered. Analytical expressions, which represent the size dependency of Seebeck coefficient explicitly, are derived in terms of confinement parameters. A fundamental form of Seebeck coefficient based on infinite summations is used under relaxation time approximation. To obtain analytical results, summations are calculated using the first two terms of Poisson summation formula. It is shown that they are in good agreement with the exact results based on direct calculation of summations as long as confinement parameters are less than unity. The analytical results are also in good agreement with experimental and numerical ones in literature. Maximum relative errors of analytical expressions are less than 3% and 4% for 2D and 1D cases, respectively. Dimensional transitions of Seebeck coefficient are also examined. Furthermore, a detailed physical explanation for the oscillations in Seebeck coefficient is proposed by considering the relative standard deviation of total variance of particle number in Fermi shell.

  12. Piezoelectric and pyroelectric coefficients for ferroelectric crystals with polarizable molecules

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Taylor, P. L.

    1982-01-01

    Expressions for piezoelectric and pyroelectric coefficients for a crystal of polarizable point dipoles are derived. The effect of crystal structure on the local electric field acting to polarize the molecules is included via the Lorentz-factor formalism. The derived expressions for the piezo- and pyroelectric coefficients are found to contain terms dependent on derivatives of the Lorentz factors. These terms reflect the changing of molecular dipole moments in response to the changing local electric field in the strained crystal. Inclusion of this effect results in predictions of coefficients substantially different from those obtained using the Lorentz field approximation.

  13. Risk assessment of distribution coefficient from 137Cs measurements.

    PubMed

    Külahci, Fatih; Sen, Zekai

    2009-02-01

    Classically distribution coefficient is defined as the ratio of solid total element concentration to surface water total concentration. This coefficient is obtained from the ion measurements in the Keban Dam, Turkey, which supplies water for domestic, irrigation and hydroelectric energy generation purposes. The measurements of 137Cs are carried out in 40 different sites and the general risk formulation and application is achieved for the distribution coefficient. The models are of exponential type and the spatial independence of the data is considered. Various charts are prepared for a set of risk levels as 5%, 10%, 20%, 25%, and 50%.

  14. Averaged particle dose conversion coefficients in air crew dosimetry.

    PubMed

    Mares, V; Roesler, S; Schraube, H

    2004-01-01

    The MCNPX Monte Carlo code was used to calculate energy-dependent fluence-to-effective dose conversion coefficients for neutrons, protons, electrons, photons, charged pions and muons. The FLUKA Monte Carlo code was used to calculate the spectral particle fluences of secondary cosmic rays for different altitudes, and for different combinations of solar modulation and vertical cut-off rigidity parameters. The energy-averaged fluence-to-dose conversion coefficients were obtained by folding the particle fluence spectra with the conversion coefficients for effective dose and ambient dose equivalent. They show a slight dependence on altitude, solar activity and location in the geomagnetic field.

  15. Averaged particle dose conversion coefficients in air crew dosimetry.

    PubMed

    Mares, V; Roesler, S; Schraube, H

    2004-01-01

    The MCNPX Monte Carlo code was used to calculate energy-dependent fluence-to-effective dose conversion coefficients for neutrons, protons, electrons, photons, charged pions and muons. The FLUKA Monte Carlo code was used to calculate the spectral particle fluences of secondary cosmic rays for different altitudes, and for different combinations of solar modulation and vertical cut-off rigidity parameters. The energy-averaged fluence-to-dose conversion coefficients were obtained by folding the particle fluence spectra with the conversion coefficients for effective dose and ambient dose equivalent. They show a slight dependence on altitude, solar activity and location in the geomagnetic field. PMID:15353676

  16. Transport coefficients of He(+) ions in helium.

    PubMed

    Viehland, Larry A; Johnsen, Rainer; Gray, Benjamin R; Wright, Timothy G

    2016-02-21

    This paper demonstrates that the transport coefficients of (4)He(+) in (4)He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X(2)Σu (+) and A(2)Σg (+) states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of (4)He(+) in (4)He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects. PMID:26896985

  17. Transport coefficients of He+ ions in helium

    NASA Astrophysics Data System (ADS)

    Viehland, Larry A.; Johnsen, Rainer; Gray, Benjamin R.; Wright, Timothy G.

    2016-02-01

    This paper demonstrates that the transport coefficients of 4He+ in 4He can be calculated over wide ranges of E/N, the ratio of the electrostatic field strength to the gas number density, with the same level of precision as can be obtained experimentally if sufficiently accurate potential energy curves are available for the X2Σu+ and A2Σg+ states and one takes into account resonant charge transfer. We start by computing new potential energy curves for these states and testing their accuracy by calculating spectroscopic values for the separate states. It is established that the potentials obtained by extrapolation of results from d-aug-cc-pVXZ (X = 6, 7) basis sets using the CASSCF+MRCISD approach are each in exceptionally close agreement with the best potentials available and with experiment. The potentials are then used in a new computer program to determine the semi-classical phase shifts and the transport cross sections, and from these the gaseous ion transport coefficients are determined. In addition, new experimental values are reported for the mobilities of 4He+ in 4He at 298.7 K, as a function of E/N, where careful consideration is given to minimizing various sources of uncertainty. Comparison with previously measured values establishes that only one set of previous data is reliable. Finally, the experimental and theoretical ion transport coefficients are shown to be in very good to excellent agreement, once corrections are applied to account for quantum-mechanical effects.

  18. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  19. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  20. Unitarity cuts with massive propagators and algebraic expressions for coefficients

    SciTech Connect

    Britto, Ruth; Feng Bo

    2007-05-15

    In the first part of this paper, we extend the d-dimensional unitarity cut method of Anastasiou et al. to cases with massive propagators. We present formulas for integral reduction with which one can obtain coefficients of all pentagon, box, triangle and massive bubble integrals. In the second part of this paper, we present a detailed study of the phase space integration for unitarity cuts. We carry out spinor integration in generality and give algebraic expressions for coefficients, intended for automated evaluation.

  1. Study of Dispersion Coefficient Channel

    NASA Astrophysics Data System (ADS)

    Akiyama, K. R.; Bressan, C. K.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.

    2016-08-01

    The issue of water pollution has worsened in recent times due to releases, intentional or not, of pollutants in natural water bodies. This causes several studies about the distribution of pollutants are carried out. The water quality models have been developed and widely used today as a preventative tool, ie to try to predict what will be the concentration distribution of constituent along a body of water in spatial and temporal scale. To understand and use such models, it is necessary to know some concepts of hydraulic high on their application, including the longitudinal dispersion coefficient. This study aims to conduct a theoretical and experimental study of the channel dispersion coefficient, yielding more information about their direct determination in the literature.

  2. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  3. Portable vapor diffusion coefficient meter

    DOEpatents

    Ho, Clifford K.

    2007-06-12

    An apparatus for measuring the effective vapor diffusion coefficient of a test vapor diffusing through a sample of porous media contained within a test chamber. A chemical sensor measures the time-varying concentration of vapor that has diffused a known distance through the porous media. A data processor contained within the apparatus compares the measured sensor data with analytical predictions of the response curve based on the transient diffusion equation using Fick's Law, iterating on the choice of an effective vapor diffusion coefficient until the difference between the predicted and measured curves is minimized. Optionally, a purge fluid can forced through the porous media, permitting the apparatus to also measure a gas-phase permeability. The apparatus can be made lightweight, self-powered, and portable for use in the field.

  4. An in silico skin absorption model for fragrance materials.

    PubMed

    Shen, Jie; Kromidas, Lambros; Schultz, Terry; Bhatia, Sneha

    2014-12-01

    Fragrance materials are widely used in cosmetics and other consumer products. The Research Institute for Fragrance Materials (RIFM) evaluates the safety of these ingredients and skin absorption is an important parameter in refining systemic exposure. Currently, RIFM's safety assessment process assumes 100% skin absorption when experimental data are lacking. This 100% absorption default is not supportable and alternate default values were proposed. This study aims to develop and validate a practical skin absorption model (SAM) specific for fragrance material. It estimates skin absorption based on the methodology proposed by Kroes et al. SAM uses three default absorption values based on the maximum flux (J(max)) - namely, 10%, 40%, and 80%. J(max) may be calculated by using QSAR models that determine octanol/water partition coefficient (K(ow)), water solubility (S) and permeability coefficient (K(p)). Each of these QSAR models was refined and a semi-quantitative mechanistic model workflow is presented. SAM was validated with a large fragrance-focused data set containing 131 materials. All resulted in predicted values fitting the three-tiered absorption scenario based on Jmax ranges. This conservative SAM may be applied when fragrance material lack skin absorption data.

  5. Radial diffusion in Saturn's radiation belts - A modeling analysis assuming satellite and ring E absorption

    NASA Technical Reports Server (NTRS)

    Hood, L. L.

    1983-01-01

    A modeling analysis is carried out of six experimental phase space density profiles for nearly equatorially mirroring protons using methods based on the approach of Thomsen et al. (1977). The form of the time-averaged radial diffusion coefficient D(L) that gives an optimal fit to the experimental profiles is determined under the assumption that simple satellite plus Ring E absorption of inwardly diffusing particles and steady-state radial diffusion are the dominant physical processes affecting the proton data in the L range that is modeled. An extension of the single-satellite model employed by Thomsen et al. to a model that includes multisatellite and ring absorption is described, and the procedures adopted for estimating characteristic satellite and ring absorption times are defined. The results obtained in applying three representative solid-body absorption models to evaluate D(L) in the range where L is between 4 and 16 are reported, and a study is made of the sensitivity of the preferred amplitude and L dependence for D(L) to the assumed model parameters. The inferred form of D(L) is then compared with that which would be predicted if various proposed physical mechanisms for driving magnetospheric radial diffusion are operative at Saturn.

  6. Synthesis, characterization and in situ intestinal absorption of different molecular weight scutellarin-PEG conjugates.

    PubMed

    Zhou, Qingsong; Jiang, Xuehua; Li, Kejia; Fan, Xingxing

    2006-08-01

    Highly water soluble esters of scutellarin with different molecular weight polyethylene glycol (PEG) were synthesized. The physicochemical properties, the stabilities under different conditions and the in situ intestinal absorption of the conjugates in rats were investigated. By PEG modification, greatly increased water solubility and a desirable partition coefficient were obtained. These compounds act as prodrugs i.e. breakdown occurrs in a predictable fashion: in vitro, the t1/2 of them in PBS buffer at pH 7.4 was above 12 h (37 degrees C), while in plasma a more rapid breakdown was observed (t1/2 1.5-3 h). PEGylation could enhance the absorption of scutellarin in rat intestine, and scutellarin, its PEG conjugates are absorbed through intestine mainly via passive transport. When the molecular weight of PEG increased from 200 to 1000 Da, the absorption of the conjugates decreased accordingly. The range of PEG molecular weight used for the PEGylation of scutellarin was about 400-1000 Da based on considerations of the yield, the stability and the absorption.

  7. Absorption by H2O and H2O-N2 mixtures at 153 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.; Tippings, R. H.

    1993-01-01

    New experimental data on and a theoretical analysis of the absorption coefficient at 153 GHz are presented for pure water vapor and water vapor-nitrogen mixtures. This frequency is 30 GHz lower than the resonant frequency of the nearest strong water line (183 GHz) and complements our previous measurements at 213 GHz. The pressure dependence is observed to be quadratic in the case of pure water vapor, while in the case of mixtures there are both linear and quadratic density components. By fitting our experimental data taken at several temperatures we have obtained the temperature dependence of the absorption. Our experimental data are compared to several theoretical models with and without a continuum contribution, and we find that none of the models is in very good agreement with the data; in the case of pure water vapor, the continuum contribution calculated using the recent theoretical absorption gives the best results. In general, the agreement between the data and the various models is less satisfactory than found previously in the high-frequency wing. The anisotropy in the observed absorption differs from that currently used in atmospheric models.

  8. The interpretation of selection coefficients.

    PubMed

    Barton, N H; Servedio, M R

    2015-05-01

    Evolutionary biologists have an array of powerful theoretical techniques that can accurately predict changes in the genetic composition of populations. Changes in gene frequencies and genetic associations between loci can be tracked as they respond to a wide variety of evolutionary forces. However, it is often less clear how to decompose these various forces into components that accurately reflect the underlying biology. Here, we present several issues that arise in the definition and interpretation of selection and selection coefficients, focusing on insights gained through the examination of selection coefficients in multilocus notation. Using this notation, we discuss how its flexibility-which allows different biological units to be identified as targets of selection-is reflected in the interpretation of the coefficients that the notation generates. In many situations, it can be difficult to agree on whether loci can be considered to be under "direct" versus "indirect" selection, or to quantify this selection. We present arguments for what the terms direct and indirect selection might best encompass, considering a range of issues, from viability and sexual selection to kin selection. We show how multilocus notation can discriminate between direct and indirect selection, and describe when it can do so. PMID:25790030

  9. Absorption of water and lubricating oils into porous nylon

    NASA Technical Reports Server (NTRS)

    Bertrand, P. A.

    1995-01-01

    Oil and water absorption from air into sintered porous nylon can be described by infiltration into the pores of the material. This process can be modeled by a diffusion-like mechanism. For water absorption, we find a formal diffusion coefficient of 1.5 x 10(exp -4)sq cm/min when the nylon is initially dry. The diffusion coefficient is 4 x 10(exp -6)sq cm/min when the nylon is oil-impregnated prior to air exposure. In a 52% RH atmosphere, dry nylon absorbs 3% w/w water, and oil-impregnated nylon absorbs 0.6% w/w water. For oil absorption there are three steps: (1) surface absorption and infiltration into (2) larger and (3) smaller pores. Surface absorption is too fast to be measured in these experiments. The diffusion coefficient for the second step is 6 x 10(exp -4)sq cm/min for SRG-60 oil into dry nylon and 4 x 10(exp -4)sq cm/min for air-equilibrated nylon. The diffusion coefficient for the third step is about 1 x 10(exp -6)sq cm/min for both cases. The total amount of oil absorbed is 31% w/w. The interaction between water and nylon is not as strong as that between water and cotton-phenolic: oil can replace water, and only a small amount of water can enter previously oil-impregnated nylon.

  10. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  11. Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence.

    PubMed

    Zhang, Yunlin; Yin, Yan; Wang, Mingzhu; Liu, Xiaohan

    2012-05-21

    We investigated phytoplankton absorption properties of Lake Taihu, in the spring and summer of 2005 and 2006, and for 17 days studied laboratory cultures of Scenedesmus obliquus (chlorophyta) and Microcystis aeruginosa (cyanophyta) to determine the effect of phytoplankton community composition and cell size on the absorption properties. There were significant seasonal differences in phytoplankton community composition and absorption coefficients. In spring, the phytoplankton community was dominated by chlorophyta with large cells, whereas in summer was dominated by cyanophyta with small cells. Phytoplankton absorption coefficients increased significantly from spring to summer, with the increase in chlorophyll a (Chla) concentration. In addition, Chla-specific absorption coefficients increased with the phytoplankton community succession from chlorophyta to cyanophyta. In culture, the cells density of S. obliquus was generally lower than that of M. aeruginosa, and Chla concentrations of S. obliquus were significantly higher than those of M. aeruginosa. Correspondingly, the Chla-specific absorption coefficients of S. obliquus were significantly lower than those of M. aeruginosa. Significant exponential correlations were found between absorption and Chla-specific absorption coefficients and Chla concentration for S. obliquus and M. aeruginosa. In addition, we developed a model to predict absorption and Chla-specific absorption coefficients using Chla concentration and cell size when data from two species was grouped together. Field and experimental results both showed that the Chla-specific absorption coefficients of cyanophyta were significantly higher than those of chlorophyta. The variability in specific absorption can attributed to phytoplankton community composition, cell size and pigment composition. As phytoplankton community composition changed significantly with season in the lake, and as variation in the cell sizes and accessory pigments of the phytoplankton

  12. Synthesis and characterization of silver/poly( N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Krklješ, Aleksandra; Stojkovska, Jasmina; Tomić, Simonida; Obradović, Bojana; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2011-11-01

    This work describes radiolytic synthesis of silver nanoparticles (Ag NPs) within the poly( N-vinyl-2-pyrrolidone) (PVP) hydrogel. The hydrogel matrix was obtained by gamma irradiation-induced crosslinking, while the in situ reduction of Ag + ions was performed using strong reducing species formed under water radiolysis. Absorption spectrum of the Ag/PVP nanocomposite confirmed the formation of Ag NPs, showing the surface plasmon band maxima at 405 nm. Ag/PVP nanocomposites were characterized by XRD and TEM analysis, accompanied with investigations of swelling and diffusion properties in the simulated body fluid at 37 °C, and mechanical properties in bioreactor conditions. It was shown that Ag/PVP nanocomposite exhibited higher values of equilibrium swelling degree, Young's modulus, and molar mass between crosslinks, while lower values of the diffusion coefficient and effective crosslink density were obtained, as compared to the pure PVP.

  13. Experimental determination of partition coefficient for β-pinene ozonolysis products in SOA

    NASA Astrophysics Data System (ADS)

    Gensch, Iulia; Hohaus, Thorsten; Kimmel, Joel; Jayne, John T.; Worsnop, Douglas R.; Kiendler-Scharr, Astrid

    2013-04-01

    In the present study, simultaneous measurement of β-pinene ozonolysis products in the gas phase by Proton Transfer Reaction - Time of Flight Mass Spectrometry (PTR-ToFMS) and particle phase by using an Aerosol Collection Module coupled to a Gas Chromatograph - Mass Spectrometer (ACM-GC-MS) were employed to determine the equilibrium partitioning coefficient (Kp) of several semi-volatile organic species. Mean Kp values of 6.7 10-5 ± 2.5 10-5 for nopinone, 4.8 10-4 ± 1.7 10-4 for apoverbenone, 7.0 10-4 ± 1.7 10-4 for oxonopinone and 1.9 10-3 ± 1.1 10-3 for hydroxynopinone were obtained. The results were compared with calculations arising from studies on the gas-particle partitioning, based on the Pankow absorption model. The experimental partition coefficients are two to three orders of magnitudes higher than the calculated values, leading to the conclusion that the amount of semi-volatile organic compounds in secondary organic aerosol (SOA) is currently underestimated by the theory, thus impacting on the modeling of the organic matter in the atmosphere.

  14. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  15. Polarization control of intermediate state absorption in resonance-mediated multi-photon absorption process

    NASA Astrophysics Data System (ADS)

    Xu, Shuwu; Huang, Yunxia; Yao, Yunhua; Jia, Tianqing; Ding, Jingxin; Zhang, Shian; Sun, Zhenrong

    2015-07-01

    We theoretically and experimentally demonstrate the control of the intermediate state absorption in an (n + m) resonance-mediated multi-photon absorption process by the polarization-modulated femtosecond laser pulse. An analytical solution of the intermediate state absorption in a resonance-mediated multi-photon absorption process is obtained based on the time-dependent perturbation theory. Our theoretical results show that the control efficiency of the intermediate state absorption by the polarization modulation is independent of the laser intensity when the transition from the intermediate state to the final state is coupled by the single-photon absorption, but will be affected by the laser intensity when this transition is coupled by the non-resonant multi-photon absorption. These theoretical results are experimentally confirmed via a two-photon fluorescence control in (2 + 1) resonance-mediated three-photon absorption of Coumarin 480 dye and a single-photon fluorescence control in (1 + 2) resonance-mediated three-photon absorption of IR 125 dye.

  16. Effect of concentration dependence of the diffusion coefficient on homogenization kinetics in multiphase binary alloy systems

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Unnam, J.

    1978-01-01

    Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.

  17. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  18. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  19. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  20. [Study on experiment of absorption spectroscopy detection of pesticide residues of carbendazim in orange juice].

    PubMed

    Ji, Ren-Dong; Chen, Meng-Lan; Zhao, Zhi-Min; Zhu, Xing-Yue; Wang, Le-Xin; Liu, Quan-Jin

    2014-03-01

    Absorption spectra were studied for the carbendazim, in the mixed solution of orange juice and carbendazim using spectrophotometer. The most intensive characteristic peak (285 nm) was found in the spectrum of carbendazim standard solution. Compared with the carbendazim drug solution, the peak position of absorption spectrum has the blue shift (285-280 nm) when carbendazim (0.28 mg x mL(-1))was added in the orange juice. So that we can conclude that interaction happened between the orange juice and carbendazim. Through the method of least squares fitting, the prediction models between the absorbance of orange juice and carbendazim content was obtained with a good linear relationship. The linear function model was: I = 2.41 + 9.26x, the correlation coefficient was 0.996, and the recovery was: 81%-102%. According to the regression model, we can obtain the amount of carbendazim pesticide residues in orange juice. It was verified that the method of using ultraviolet-visible absorption spectra was feasible to detect the carbendazim residues in orange juice. The result proved that it is possible to detect pesticide residues of carbendazim in orange juice, and it can meet the needs of rapid analysis. This study provides a new way for the detection of pesticide residues.

  1. Air broadening coefficients for the ν3 band of hydroperoxyl radicals

    NASA Astrophysics Data System (ADS)

    Minamida, Maya; Tonokura, Kenichi

    2014-11-01

    Using mid-infrared laser absorption spectroscopy, we investigated the room-temperature pressure broadening coefficients for hydroperoxyl radicals (HO2) in nitrogen and oxygen over the 1060.0-1065.5 cm-1 range of the ν3 band. The HO2 radicals were produced by flash photolysis of a chlorine/1,4-cyclohexadiene/oxygen mixture. The 20 measured absorption profiles were analyzed with Voigt functions. Air broadening coefficients were estimated from the nitrogen- and oxygen-broadening results and compared with previous results. We discuss the dependence of air broadening on rotational states.

  2. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  3. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  4. Inclusion Analysis and Absorption Measurement in Nonlinear Crystals

    SciTech Connect

    Smith, L L

    2005-08-26

    Yttrium calcium oxyborate (YCOB) is a newly developed nonlinear optical crystal used for second harmonic generation in the Mercury laser. As with any new crystal, optical characterization of the material properties needs to be fully investigated. We are developing two new techniques to detect inclusions and measure optical absorption. With the side illuminating detection examination (SIDE) method, we hope to identify and map the size, density, and the morphology of inclusions. The multi-pass absorption technique (MPAT) will be used to help determine the absorption coefficient of various finished crystalline pieces at near-infrared wavelengths.

  5. Development of solar driven absorption air conditioners and heat pumps

    NASA Astrophysics Data System (ADS)

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  6. Measurements of thermal accommodation coefficients.

    SciTech Connect

    Rader, Daniel John; Castaneda, Jaime N.; Torczynski, John Robert; Grasser, Thomas W.; Trott, Wayne Merle

    2005-10-01

    A previously-developed experimental facility has been used to determine gas-surface thermal accommodation coefficients from the pressure dependence of the heat flux between parallel plates of similar material but different surface finish. Heat flux between the plates is inferred from measurements of temperature drop between the plate surface and an adjacent temperature-controlled water bath. Thermal accommodation measurements were determined from the pressure dependence of the heat flux for a fixed plate separation. Measurements of argon and nitrogen in contact with standard machined (lathed) or polished 304 stainless steel plates are indistinguishable within experimental uncertainty. Thus, the accommodation coefficient of 304 stainless steel with nitrogen and argon is estimated to be 0.80 {+-} 0.02 and 0.87 {+-} 0.02, respectively, independent of the surface roughness within the range likely to be encountered in engineering practice. Measurements of the accommodation of helium showed a slight variation with 304 stainless steel surface roughness: 0.36 {+-} 0.02 for a standard machine finish and 0.40 {+-} 0.02 for a polished finish. Planned tests with carbon-nanotube-coated plates will be performed when 304 stainless-steel blanks have been successfully coated.

  7. Coefficient of thermal expansion of fluorinert as a function of volume percent absorbed air

    SciTech Connect

    Reilly, J.M.

    1982-06-01

    The relationship between the coefficient of volumetric thermal expansion of liquid Fluorinert FC-86 and the volume percent of absorbed air was examined experimentally. A special test apparatus was built for this purpose. A floating liquid seal was used to isolate the Fluorinert sample from the atmosphere. This prevented gas absorption during thermal cycling yet allowed the sample to expand and contract freely during testing. It was found that the coefficient of thermal expansion is not influenced by the percentage of absorbed air.

  8. Vibrational properties of gold nanoparticles obtained by green synthesis

    NASA Astrophysics Data System (ADS)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  9. Bandgap widening in thermochromic Mg-doped VO2 thin films: Quantitative data based on optical absorption

    NASA Astrophysics Data System (ADS)

    Li, Shu-Yi; Mlyuka, Nuru R.; Primetzhofer, Daniel; Hallén, Anders; Possnert, Göran; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-10-01

    Thermochromic Mg-doped VO2 films were deposited by reactive direct current magnetron sputtering onto heated glass and carbon substrates. Elemental compositions were inferred from Rutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurements—from both the film side and the back side of the samples—and ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 ± 0.5 eV per unit of atom ratio Mg/(Mg + V) for 0 < Mg/(Mg + V) < 0.21. The presence of ˜0.45 at. % Si enhanced the bandgap even more.

  10. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  11. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  12. Estimating biokinetic coefficients in the PACT™ system.

    PubMed

    Shen, Zhiyao; Arbuckle, Wm Brian

    2016-02-01

    When powdered activated carbon (PAC) is continuously added to the aeration tank of an activated sludge reactor, the modification is called a PACT™ process (for powdered activated carbon treatment). The PAC provides many benefits, but complicates the determination of biological phenomena. Determination of bio-oxidation kinetics in a PACT system is a key to fully understanding enhanced biological mechanisms resulting from PAC addition. A model is developed to account for the main mechanisms involved in the PACT system -- adsorption, air stripping and bio-oxidation. The model enables the investigation of biokinetic information, including possible synergistic effects. Six parallel reactors were used to treat a synthetic waste; three activated sludge and three PACT. The PACT reactors provided significantly reduced effluent TOC (total organic carbon). Biokinetic coefficients were obtained from steady-state data using averaged reactor data and by using all data (22 points for each reactor). As expected, the PACT reactors resulted in a substantial reduction in the effluent concentration of non-biodegradable total organic carbon. The Monod equation's half-saturation coefficient (Ks) was reduced significantly in the PACT reactors, resulting in higher growth rates at lower concentrations. The maximum specific substrate utilization (qm) rate was also reduced about 25% using the averaged data and remained unchanged using all the data. The substrate utilization values are affected by errors in biomass determination and more research is needed to accurately determine biomass.

  13. Estimating biokinetic coefficients in the PACT™ system.

    PubMed

    Shen, Zhiyao; Arbuckle, Wm Brian

    2016-02-01

    When powdered activated carbon (PAC) is continuously added to the aeration tank of an activated sludge reactor, the modification is called a PACT™ process (for powdered activated carbon treatment). The PAC provides many benefits, but complicates the determination of biological phenomena. Determination of bio-oxidation kinetics in a PACT system is a key to fully understanding enhanced biological mechanisms resulting from PAC addition. A model is developed to account for the main mechanisms involved in the PACT system -- adsorption, air stripping and bio-oxidation. The model enables the investigation of biokinetic information, including possible synergistic effects. Six parallel reactors were used to treat a synthetic waste; three activated sludge and three PACT. The PACT reactors provided significantly reduced effluent TOC (total organic carbon). Biokinetic coefficients were obtained from steady-state data using averaged reactor data and by using all data (22 points for each reactor). As expected, the PACT reactors resulted in a substantial reduction in the effluent concentration of non-biodegradable total organic carbon. The Monod equation's half-saturation coefficient (Ks) was reduced significantly in the PACT reactors, resulting in higher growth rates at lower concentrations. The maximum specific substrate utilization (qm) rate was also reduced about 25% using the averaged data and remained unchanged using all the data. The substrate utilization values are affected by errors in biomass determination and more research is needed to accurately determine biomass. PMID:26613352

  14. Electron and proton damage coefficients in low-resistivity silicon

    NASA Technical Reports Server (NTRS)

    Srour, J. R.; Othmer, S.; Chiu, K. Y.

    1975-01-01

    The electron and proton damage coefficients for low resistivity p-type boron-doped silicon were determined from minority-carrier lifetime measurements on bulk material and diffusion length measurements on solar cells. The bulk samples were irradiated with electrons at three energy levels (0.5, 1.5, and 2.5 MeV) using a Dynamitron. Lifetime measurements were made with a steady-state photoconductivity apparatus, and comparison measurements of diffusion length were obtained using the steady-state surface photovoltage method (Goodman, 1961). The diffusion-length damage coefficients increased with decreasing resistivity for boron-doped silicon; this dependence can be qualitatively accounted for using a two-level Hall-Shockley-Read model. The damage coefficients for solar cells were larger than for their bulk-material counterparts. The damage coefficient was apparently independent of the dislocation density in the 0.1 ohm-cm bulk samples and solar cells investigated.

  15. Virial coefficients and demixing in the Asakura-Oosawa model.

    PubMed

    López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés; Yuste, Santos B; Fiumara, Giacomo; Saija, Franz

    2015-01-01

    The problem of demixing in the Asakura-Oosawa colloid-polymer model is considered. The critical constants are computed using truncated virial expansions up to fifth order. While the exact analytical results for the second and third virial coefficients are known for any size ratio, analytical results for the fourth virial coefficient are provided here, and fifth virial coefficients are obtained numerically for particular size ratios using standard Monte Carlo techniques. We have computed the critical constants by successively considering the truncated virial series up to the second, third, fourth, and fifth virial coefficients. The results for the critical colloid and (reservoir) polymer packing fractions are compared with those that follow from available Monte Carlo simulations in the grand canonical ensemble. Limitations and perspectives of this approach are pointed out. PMID:25573578

  16. Virial coefficients and demixing in the Asakura-Oosawa model.

    PubMed

    López de Haro, Mariano; Tejero, Carlos F; Santos, Andrés; Yuste, Santos B; Fiumara, Giacomo; Saija, Franz

    2015-01-01

    The problem of demixing in the Asakura-Oosawa colloid-polymer model is considered. The critical constants are computed using truncated virial expansions up to fifth order. While the exact analytical results for the second and third virial coefficients are known for any size ratio, analytical results for the fourth virial coefficient are provided here, and fifth virial coefficients are obtained numerically for particular size ratios using standard Monte Carlo techniques. We have computed the critical constants by successively considering the truncated virial series up to the second, third, fourth, and fifth virial coefficients. The results for the critical colloid and (reservoir) polymer packing fractions are compared with those that follow from available Monte Carlo simulations in the grand canonical ensemble. Limitations and perspectives of this approach are pointed out.

  17. Temperature dependence of the Soret coefficient of ionic colloids

    NASA Astrophysics Data System (ADS)

    Sehnem, A. L.; Figueiredo Neto, A. M.; Aquino, R.; Campos, A. F. C.; Tourinho, F. A.; Depeyrot, J.

    2015-10-01

    The temperature dependence of the Soret coefficient ST(T ) in electrostatically charged magnetic colloids is investigated. Two different ferrofluids, with different particles' mean dimensions, are studied. In both cases we obtain a thermophilic behavior of the Soret effect. The temperature dependence of the Soret coefficient is described assuming that the nanoparticles migrate along the ionic thermoelectric field created by the thermal gradient. A model based on the contributions from the thermoelectrophoresis and variation of the double-layer energy, without fitting parameters, is used to describe the experimental results of the colloid with the bigger particles. To do so, independent measurements of the ζ potential, mass diffusion coefficient, and Seebeck coefficient are performed. The agreement of the theory and the experimental results is rather good. In the case of the ferrofluid with smaller particles, it is not possible to get experimentally reliable values of the ζ potential and the model described is used to evaluate this parameter and its temperature dependence.

  18. Absorption spectroscopy of the rubidium dimer in an overheated vapor: An accurate check of molecular structure and dynamics

    SciTech Connect

    Beuc, R.; Movre, M.; Horvatic, V.; Vadla, C.; Dulieu, O.; Aymar, M.

    2007-03-15

    Experimental studies of the absorption spectrum of the Rb{sub 2} dimer are performed in the 600-1100 nm wavelength range for temperatures between 615 and 745 K. The reduced absorption coefficient is measured by spatially resolved white light absorption in overheated rubidium vapor with a radial temperature gradient, which enables simultaneous measurements at different temperatures. Semiclassical and quantum spectral simulations are obtained by taking into account all possible transitions involving the potential curves stemming from the 5 {sup 2}S+5 {sup 2}S and 5 {sup 2}S+5 {sup 2}P asymptotes. The most accurate experimental potential curves are used where available, and newly calculated potential curves and transition dipole moments otherwise. The overall consistency of the theoretical model with the experimental interpretation is obtained only if the radial dependence of both the calculated transition dipole moments and the spin-orbit coupling is taken into account. This highlights the low-resolution absorption spectroscopy as a valuable tool for checking the accuracy of molecular electronic structure calculations.

  19. Water sorption and diffusion coefficient through an experimental dental resin.

    PubMed

    Costella, A M; Trochmann, J L; Oliveira, W S

    2010-01-01

    Polymeric composites have been widely used as dental restorative materials. A fundamental knowledge and understanding of the behavior of these materials in the oral cavity is essential to improve their properties and performance. In this paper we computed the data set of water absorption through an experimental dental resin blend using specimen discs of different thicknesses to estimate the diffusion coefficient. The resins were produced using Bisphenol A glycol dimethacrylate, Bisphenol A ethoxylated dimethacrylate and Triethylene glycol dimethacrylate monomers. The water sorption test method was based on International Standard ISO 4049 "Dentistry-Polymer-based filling materials". Results show a diffusion coefficient around 6.38 x 10(-8) cm(2)/s, within a variance of 0.01%, which is in good agreement with the values reported in the literature and represents a very suitable value.

  20. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.