Science.gov

Sample records for absorption column density

  1. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  2. Column densities of interstellar molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Spitzer, L., Jr.; Cochran, W. D.; Hirshfeld, A.

    1974-01-01

    Equivalent widths of some 50 lines in the 0-0 to 5-0 Lyman bands of H2 are reported in the spectra of 28 stars. Curves of growth are given and column densities for levels from J = 0 to J = 5 are tabulated, with a few values and upper limits for N(6) and N(7), together with values for b, the velocity spread parameter. In three Orion stars and in rho Leo pairs of components are detected, the difference in radial velocity is determined, and column densities are measured or estimated; tentative identifications are made with the components observed by Hobbs (1969) in the Na D-lines. Column densities for HD are given for 13 stars. Upper limits for column densities in the first and second vibrational levels are listed for several stars; the ratio of N(J = 0) in the v double prime = 1 level to that in the ground vibrational level is less than 2.4 x 10 to the minus 8th power in zeta Oph. Values of a rotational excitation temperature for the higher J levels are given for all the stars. Data are presented which show an apparent increase of velocity dispersion with J for a number of stars, as measured both from the curves of growth and from line widths.

  3. Pulsed Airborne Lidar Measurements of C02 Column Absorption

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Rodriquez, Michael; Browell, Edward V.

    2011-01-01

    We report on airborne lidar measurements of atmospheric CO2 column density for an approach being developed as a candidate for NASA's ASCENDS mission. It uses a pulsed dual-wavelength lidar measurement based on the integrated path differential absorption (IPDA) technique. We demonstrated the approach using the CO2 measurement from aircraft in July and August 2009 over four locations. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The 2009 measurements have been analyzed in detail and the results show approx.1 ppm random errors for 8-10 km altitudes and approx.30 sec averaging times. Airborne measurements were also made in 2010 with stronger signals and initial analysis shows approx. 0.3 ppm random errors for 80 sec averaging times for measurements at altitudes> 6 km.

  4. DUST EXTINCTION BIAS IN THE COLUMN DENSITY DISTRIBUTION OF GAMMA-RAY BURSTS: HIGH COLUMN DENSITY, LOW-REDSHIFT GRBs ARE MORE HEAVILY OBSCURED

    SciTech Connect

    Watson, Darach; Jakobsson, Pall E-mail: pja@raunvis.hi.is

    2012-08-01

    The afterglows of gamma-ray bursts (GRBs) have more soft-X-ray absorption than expected from the foreground gas column in the Galaxy. While the redshift of the absorption can in general not be constrained from current X-ray observations, it has been assumed that the absorption is due to metals in the host galaxy of the GRB. The large sample of X-ray afterglows and redshifts now available allows the construction of statistically meaningful distributions of the metal column densities. We construct such a sample and show, as found in previous studies, that the typical absorbing column density (N{sub H{sub X}}) increases substantially with redshift, with few high column density objects found at low-to-moderate redshifts. We show, however, that when highly extinguished bursts are included in the sample, using redshifts from their host galaxies, high column density sources are also found at low-to-moderate redshift. We infer from individual objects in the sample and from observations of blazars that the increase in column density with redshift is unlikely to be related to metals in the intergalactic medium or intervening absorbers. Instead we show that the origin of the apparent increase with redshift is primarily due to dust extinction bias: GRBs with high X-ray absorption column densities found at z {approx}< 4 typically have very high dust extinction column densities, while those found at the highest redshifts do not. It is unclear how such a strongly evolving N{sub H{sub X}}/A{sub V} ratio would arise, and based on current data, remains a puzzle.

  5. Evidence of Contribution of Intervening Clouds to Gamma-Ray Burst's X-Ray Column Density

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-10-01

    The origin of excess of X-ray column density with respect to optical extinction in gamma-ray bursts (GRBs) is still a puzzle. A proposed explanation of the excess is the photoelectric absorption due to the intervening clouds along a GRB's line of sight. Here, we test this scenario by using the intervening Mg II absorption as a tracer of the neutral hydrogen column density of the intervening clouds. We identify a connection between the large X-ray column density (and large column density ratio of {log (N_{H,X}/N_{H\\,\\scriptsize{I}})}\\sim 0.5) and large neutral hydrogen column density probed by the Mg II doublet ratio (DR). In addition, GRBs with large X-ray column density (and large ratio of {log (N_{H,X}/N_{H\\,\\scriptsize{I}})}\\gt0) tend to have multiple saturated intervening absorbers with DR < 1.2. These results therefore indicate an additional contribution from the intervening system to the observed X-ray column density in some GRBs, although the contribution from the host galaxy alone cannot be excluded based on this study.

  6. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  7. Cascaded process model based control: packed absorption column application.

    PubMed

    Govindarajan, Anand; Jayaraman, Suresh Kumar; Sethuraman, Vijayalakshmi; Raul, Pramod R; Rhinehart, R Russell

    2014-03-01

    Nonlinear, adaptive, process-model based control is demonstrated in a cascaded single-input-single-output mode for pressure drop control in a pilot-scale packed absorption column. The process is shown to be nonlinear. Control is demonstrated in both servo and regulatory modes, for no wind-up in a constrained situation, and for bumpless transfer. Model adaptation is demonstrated and shown to provide process insight. The application procedure is revealed as a design guide to aid others in implementing process-model based control.

  8. Scattering, Thermal Emission and Extinction: Column Density and Dust Properties

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan

    2013-07-01

    We compare three different ways to measure the column density of molecular clouds using (1) scat- tered light (cloudshine), (2) thermal emission in the sub-millimeter and (3) extinction of background stars. Our methods for estimating the column density from thermal emission and from extinction of background stars use hierarchical Bayesian models to coherently infer correlations in the dust properties and the column density estimates. In particular, we measure the slope of the extinction law (Rv) from extinction estimates and the deviation from blackbody emission (beta) from the thermal emission estimates. These dust properties are related to the size distribution and compo- sition of dust. The comparison among these three methods therefore tells us about which regimes particular methods work or fail and about the properties of the dust at different depths inside the cloud.

  9. Effects of system densities on distillation column performance

    SciTech Connect

    Fasesan, S.O.; Sanni, S.A.; Taiwo, E.A.

    1998-06-01

    Distillation experiments were carried out on three binary systems (ethanol-butanol, ethanol-propan-2-ol, and propan-2-ol-butanol) in a 0.1-m internal diameter glass column packed with 8 mm diameter Raschig rings. The experiments were performed under total reflux conditions and at atmospheric pressure. The data collected on column performance showed that performance declined with increasing average bulk liquid density. The results also lend credence to earlier reports on the behavior of column performance with respect to component concentration in the feed mixtures. The system densities of the three binary systems were measured at four different temperatures, 30, 40, 50, and 60 C. The data were compared with the predicted data of Yen-Woods and Multifluid models. The accuracy of the predictions of the Yen-Woods model was rather poor while that of the Multifluid model was very encouraging.

  10. Dynamics and column densities of small particles ejected from spacecraft

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1974-01-01

    Trajectories and relative motions of small particles ejected from a spacecraft were analyzed, and modifications to the clearing times and column densities because of orbital dynamics were assessed. It was found that despite the fact that such particles are confined by orbital dynamics to move along similar trajectories with the spacecraft rather than to continue their free expansion, the effect is negligible for viewing angles away from the orbital path. Small particles are rapidly swept away by drag and will not contribute significantly to the column density when viewing along the velocity vector in 420-km earth orbit. However, substantial increases in column density can results when viewing in a direction opposite to the velocity vector because of drag effects. In the absence of drag, significant column densities can build up both in front of and behind the spacecraft in earth orbit for particles released at a few meters per second. This effect is much less pronounced in lunar orbit because the same release velocity produces a larger orbital perturbation for the particle.

  11. Molecular column densities in selected model atmospheres. [stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Sneden, C.; Beebe, R. F.

    1975-01-01

    Molecular column densities are presented for 35 molecules in a variety of cool stellar model atmospheres. From an examination of the predicted column densities, we draw the following conclusions: (1) OH might be visible in carbon stars which have been generated from triplet-alpha burning, but will be absent from carbon stars generated from the CNO bi-cycle; (2) the TiO/ZrO ratio shows small but interesting variations as C/O is changed and as the effective temperature is changed; (3) the column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence, all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is, however, a substantial luminosity effect present in the SiC2 column densities; (4) unexpectedly, SiC2 is anticorrelated with C2; (5) the presence of SiC2 in a carbon star allows us to eliminate the possibility that these stars are both 'hot' (T sub eff greater than or equal to 3000 K) and have been produced through the CNO bi-cycle (so that C/H is less than solar).

  12. Analysis of Mexico City urban air pollution using nitrogen dioxide column density measurements from UV/Visible spectroscopy

    NASA Astrophysics Data System (ADS)

    Garcia Payne, D. G.; Grutter, M.; Melamed, M. L.

    2010-12-01

    The differential optical absorption spectroscopy method (DOAS) was used to get column densities of nitrogen dioxide (NO2) from the analysis of zenith sky UV/visible spectra. Since the optical path length provides critical information in interpreting NO2 column densities, in conjunction with NO2 column densities, the oxygen dimer (O4) column density was retrieved to give insight into the optical path length. We report observations of year round NO2 and O4 column densities (from august 2009 to september 2010) from which the mean seasonal levels and the daily evolution, as well as the occurrence of elevated pollution episodes are examined. Surface nitric oxide (NO) and NO2 from the local monitoring network, as well as wind data and the vertical aerosol density from continuous Lidar measurements are used in the analysis to investigate specific events in the context of local emissions from vehicular traffic, photochemical production and transport from industrial emissions. The NO2 column density measurements will enhance the understanding Mexico City urban air pollution. Recent research has begun to unravel the complexity of the air pollution problem in Mexico City and its effects not only locally but on a regional and global scale as well.

  13. BAL PHOSPHORUS ABUNDANCE AND EVIDENCE FOR IMMENSE IONIC COLUMN DENSITIES IN QUASAR OUTFLOWS: VLT/X-SHOOTER OBSERVATIONS OF QUASAR SDSS J1512+1119

    SciTech Connect

    Borguet, Benoit C. J.; Edmonds, Doug; Arav, Nahum; Chamberlain, Carter; Benn, Chris

    2012-10-10

    We present spectroscopic analysis of the broad absorption line (BAL) outflow in quasar SDSS J1512+1119. In particular, we focus our attention on a kinematic component in which we identify P V and S IV/S IV* absorption troughs. The shape of the unblended phosphorus doublet troughs and the three S IV/S IV* troughs allow us to obtain reliable column density measurements for these two ions. Photoionization modeling using these column densities and those of He I* constrain the abundance of phosphorus to the range of 0.5-4 times the solar value. The total column density, ionization parameter, and metallicity inferred from the P V and S IV column densities lead to large optical depth values for the common transition observed in BAL outflows. We show that the true C IV optical depth is {approx}1000 times greater in the core of the absorption profile than the value deduced from its apparent optical depth.

  14. Radiation-damped profiles of extremely high column density neutral hydrogen: implications of cosmic reionization

    NASA Astrophysics Data System (ADS)

    Bach, Kiehunn

    2017-01-01

    Incorporating the time-dependent second-order perturbation theory for the Lyman scattering cross-section, we investigate the intergalactic absorption profiles of extremely high column density systems near the end of cosmic reionization. Assuming a representative set of the redshift distribution of neutral hydrogen, we quantitatively examined the impact of inhomogeneous density on the intrinsic absorption profiles. The cumulative absorption by neutral patches in the line of sight mainly affects the far off-centre region of the red damping wing, but the effect is not significant. The shape of the line centre can be modified by the near-zone distribution due to high opacities of the near-resonance scattering. On the other hand, the HWHM (half width at half-maximum) as an effective line width is relatively less sensitive to the local inhomogeneity. Specifically, when the two local damping wings of Lyα and Lyβ are close in spectra of the strongly damped systems, accurate profiles of both lines are required. In the case of N_{H I}≲ 10^{21} { cm^{-2}}, the two-level approximation is marginally applicable for the damping wing fit within 5 - 7 per cent errors. However, as the local column density reaches N_{H I}˜ 10^{22.3} { cm^{-2}}, this classical approximation yields a relative error of a 10 per cent overestimation in the red wing and a 20 per cent underestimation in the blue wing of Lyα. If severe extinction by the Lyα forests is carefully subtracted, the intrinsic absorption profile will provide a better constraint on the local ionized states. For practical applications, an analytic fitting function for the Lyβ scattering is derived.

  15. Measurement of Carbon Dioxide Column via Space Borne Laser Absorption

    NASA Technical Reports Server (NTRS)

    Heaps, WIlliam S.

    2007-01-01

    In order to better understand the budget of carbon dioxide in the Earth's atmosphere it is necessary to develop a global high precision understanding of the carbon dioxide column. In order to uncover the 'missing sink that is responsible for the large discrepancies in the budget as we presently understand it calculation has indicated that measurement accuracy on the order of 1 ppm is necessary. Because typical column average CO2 has now reached 380 ppm this represents a precision on the order of .25% for these column measurements. No species has ever been measured from space at such a precision. In recognition of the importance of understanding the CO2 budget in order to evaluate its impact on global warming the National Research Council in its decadal survey report to NASA recommended planning for a laser based total CO2 mapping mission in the near future. The extreme measurement accuracy requirements on this mission places very strong requirements on the laser system used for the measurement. This work presents an analysis of the characteristics necessary in a laser system used to make this measurement. Consideration is given to the temperature dependence, pressure broadening, and pressure shift of the CO2 lines themselves and how these impact the laser system characteristics Several systems for meeting these requirements that are under investigation at various institutions in the US as well as Europe will be discussed.

  16. The dependence of gamma-ray burst X-ray column densities on the model for Galactic hydrogen

    NASA Astrophysics Data System (ADS)

    Arcodia, R.; Campana, S.; Salvaterra, R.

    2016-05-01

    We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts (GRBs). In recent years, a strong correlation has been found between the intrinsic X-ray absorbing column density (NH(z)) and the redshift. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium (IGM), by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the NH(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models: the Leiden Argentine Bonn HI survey and the more recent model that includes molecular hydrogen. We find that if, on the one hand, the new Galactic model considerably affects the single column density values, on the other hand, there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second order correction. The cosmological increase of NH(z) as a function of redshift persists and, to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.

  17. The column density distribution of hard X-ray radio galaxies

    NASA Astrophysics Data System (ADS)

    Panessa, F.; Bassani, L.; Landi, R.; Bazzano, A.; Dallacasa, D.; La Franca, F.; Malizia, A.; Venturi, T.; Ubertini, P.

    2016-09-01

    In order to investigate the role of absorption in active galactic nuclei (AGN) with jets, we have studied the column density distribution of a hard X-ray selected sample of radio galaxies, derived from the INTEGRAL/Imager on Board the Integral Satellite (IBIS) and Swift/The Burst Alert Telescope (BAT) AGN catalogues (˜7-10 per cent of the total AGN population). The 64 radio galaxies have a typical FR II radio morphology and are characterized by high 20-100 keV luminosities (from 1042 to 1046 erg s-1) and high Eddington ratios (log LBol/LEdd typically larger than ˜0.01). The observed fraction of absorbed AGN (NH > 1022 cm-2) is around 40 per cent among the total sample, and ˜75 per cent among type 2 AGN. The majority of obscured AGN are narrow-line objects, while unobscured AGN are broad-line objects, obeying to the zeroth-order predictions of unified models. A significant anti-correlation between the radio core dominance parameter and the X-ray column density is found. The observed fraction of Compton thick AGN is ˜2-3 per cent, in comparison with the 5-7 per cent found in radio-quiet hard X-ray selected AGN. We have estimated the absorption and Compton thick fractions in a hard X-ray sample containing both radio galaxies and non-radio galaxies and therefore affected by the same selection biases. No statistical significant difference was found in the absorption properties of radio galaxies and non-radio galaxies sample. In particular, the Compton thick objects are likely missing in both samples and the fraction of obscured radio galaxies appears to decrease with luminosity as observed in hard X-ray non-radio galaxies.

  18. XUV Absorption by Solid Density Aluminum

    SciTech Connect

    Iglesias, C A

    2009-09-21

    An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold, solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV laser applications. The model involves an all-order calculation using a semi-analytical effective electron-ion interaction. The predicted increases in XUV absorption with rising temperature occur via two effects: increased availability of final states from reduced electron degeneracy and a stronger electron-ion interaction from reduced screening. Discrepancies in the temperature dependence as well as other details between the present approach and a recently proposed absorption model are discussed.

  19. NO2 Vertical Column Density at the Marambio Antarctic Station as Retrieved by DOAS

    NASA Astrophysics Data System (ADS)

    Raponi, Marcelo M.; Jiménez, Rodrigo; Tocho, Jorge O.; Quel, Eduardo J.

    2009-03-01

    A number of chemical species present in the stratosphere in very small concentrations (parts per billion and even smaller) contribute significantly to its chemical balance. One of the main stratospheric trace gases is nitrogen dioxide (NO2). This species acts as a restrictive agent for stratospheric ozone destruction (due to the chlorine monoxide), hence the importance of its study. We present a preliminary analysis of passive remote sensing measurements carry out at the Marambio Argentinean Antarctic Base (64.233° S; 56.616° W; 197 m amsl) during the months of January—February of 2008. The spectroscopy system consists of an optical fiber (400 μm core diameter and 6 m of longitude) and a portable spectral analyzer (spectrometer HR4000, Ocean Optics). The device analyzes diffuse solar spectral irradiance in the UV-visible range (290-650 nm), collected and transferred by a zenith-pointing optical fiber. The NO2 vertical column density (VCD) is derived from the radiance spectra using the DOAS (Differential Optical Absorption Spectroscopy) technique. The system and technique allow for simultaneous measurements of different species of interest on a variety of meteorological conditions. The vertical columns obtained are compared with co-located measurements performed with EVA, a visible absorption spectrometer operated by the Instituto Nacional de Técnica Aeroespacial (INTA), Spain.

  20. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  1. THE CORRELATION BETWEEN DISPERSION MEASURE AND X-RAY COLUMN DENSITY FROM RADIO PULSARS

    SciTech Connect

    He, C.; Ng, C.-Y.; Kaspi, V. M.

    2013-05-01

    Pulsars are remarkable objects that emit across the entire electromagnetic spectrum, providing a powerful probe of the interstellar medium. In this study, we investigate the relation between dispersion measure (DM) and X-ray absorption column density N{sub H} using 68 radio pulsars detected at X-ray energies with the Chandra X-Ray Observatory or XMM-Newton. We find a best-fit empirical linear relation of N{sub H} (10{sup 20} cm{sup -2})= 0.30{sup +0.13}{sub -0.09} DM (pc cm{sup -3}), which corresponds to an average ionization of 10{sup +4}{sub -3}%, confirming the ratio of one free electron per 10 neutral hydrogen atoms commonly assumed in the literature. We also compare different N{sub H} estimates and note that some N{sub H} values obtained from X-ray observations are higher than the total Galactic H I column density along the same line of sight, while the optical extinction generally gives the best N{sub H} predictions.

  2. Continuous absorption of CO2 in packed column using MDEA solution for biomethane preparation

    NASA Astrophysics Data System (ADS)

    Mindaryani, A.; Budhijanto, W.; Ningrum, S. S.

    2016-11-01

    Nowadays, the energy consumption in Indonesia is increasing. Raising of energy consumption force Indonesia to find other energy resources. Biogas is one of the renewable energy, which was developed in anticipation to the fossil energy reduction. Reducing the content of impurities in biogas may reduce the corrosion impact and increase the combustion efficiency. The biomethane can be utilised as fuel for generator in small and medium scale industries (IKM). Continuous CO2 absorption in packed column using MDEA solution as absorbent is studied for biomethane preparation. CO2 absorption experiments was performed continuously in the packed absorption column with a diameter of 6 cm and 75 cm length. Gas is sparged from the bottom of the column while the liquid is pumped through the top of the column. The concentration of CO2 at exit gas is analysed by GC and recorded as a function of time. The flowrate of the inlet gas was varied at 1 LPM; 1.5 LPM; and 1.8 LPM. Variation of MDEA solution concentration used was 20% and 35.31%. Mathematical model for unsteady state CO2 absorption in packed column was developed. The reaction rate constant (k) and mass transfer coefficient KGa were determined by fitting the outlet CO2 concentration data as a function of time to the model solution with smallest Sum of Square of Errors (SSE). The experimental data shows that absorption of 1 LPM gas flow rate with 0,15 LPM MDEA solution flow rate may reduce 40 % CO2 to be 17 % CO2 in outlet gas. The steady state process reaches at 10 minutes. Increasing gas flow rates shows the higher overall mass transfer coefficient. The reaction rate constant is not affected by gas flow rate variation.

  3. Hydrogen in diffuse molecular clouds in the Milky Way. Atomic column densities and molecular fraction along prominent lines of sight

    NASA Astrophysics Data System (ADS)

    Winkel, B.; Wiesemeyer, H.; Menten, K. M.; Sato, M.; Brunthaler, A.; Wyrowski, F.; Neufeld, D.; Gerin, M.; Indriolo, N.

    2017-03-01

    Context. Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse molecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, H i, must be known. Aims: We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Methods: Based on Jansky Very Large Array data, we employ the 21 cm H i absorption-line technique to construct profiles of the H i opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended H i emission to calculate the H i column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Results: Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example. The data sets are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A2

  4. Does the differential photodissociation and chemical fractionation reaction of 13CO affect the column density estimates?

    NASA Astrophysics Data System (ADS)

    Szücs, László; Glover, Simon

    2013-07-01

    Carbon monoxide (CO) and its isotopes are frequently used as a tracer of column density in studies of the dense interstellar medium. The most abundant CO isotope, 12CO, is usually optically thick in intermediate and high density regions and so provides only a lower limit for the column density. In these regions, less abundant isotopes are used, such as 13CO. To relate observations of 13CO to the 12CO column density, a constant 12CO/13CO isotopic ratio is often adopted. In this work, we examine the impact of two effects -- selective photodissociation of 13CO and chemical fractionation -- on the 12CO/13CO isotopic ratio, with the aid of numerical simulations. Our simulations follow the coupled chemical, thermal and dynamical evolution of isolated molecular clouds in several different environments. We post-process our simulation results with line radiative transfer and produce maps of the emergent 13CO emission. We compare emission maps produced assuming a constant isotopic ratio with ones produced using the results from a more self-consistent calculation, and also compare the column density maps derived from the emission maps. We find that at low and high column densities, the column density estimates that we obtain with the approximation of constant isotopic ratio agree well with those derived from the self-consistent model. At intermediate column densities, 10^12 cm^-2 < N(13CO)< 10^15 cm^-2, the approximate model under-predicts the column density by a factor of a few, but we show that we can correct for this, and hence obtain accurate column density estimates, via application of a simple correction factor.

  5. The Bane of Column Density Analysis and What Good It Can Do for Us

    NASA Astrophysics Data System (ADS)

    How-Huan Chen, Hope; Goodman, Alyssa A.; Burkhart, Blakesley K.; Myers, Philip C.; Collins, David C.; Meisner, Aaron M.; Lee, Katherine I.

    2016-01-01

    Despite the fact that astronomers are inclined to apply statistical tools, from least-square fitting to machine learning, on the big, high-dimensional data, not enough care is often spent on examining the biases that could be introduced by sample selection and observation. The talk focuses on investigating arguably one of the most often applied statistical analyses in clouds and filaments recently--the probability distribution function (PDF) analysis of column density. We look at the correlation between column density PDF and various physical processes including turbulence and star formation as traced by young stellar objects and star forming cores, in both observation and simulation; as well as potential problems in statistically consistent fitting of column density distribution, validating correlation, biased sample selection, and projection effects. Our results show that 1) even though on large scale, the "width" of the column density PDF seems to correlate with turbulence, no clear correlation is found between column density PDF and turbulence in both simulation and observation, and 2) even previous works show that the index of the "power-law tail" correlates with the star formation activity, there is statistical ambiguity in the sampling of column density structures and associating point sources with any of these structures. We further analyze the hierachical structures of column density in molecular clouds and filaments, using the structure extraction algorithm, the dendrogram.

  6. Impact of atmospheric state uncertainties on retrieved XCO2 columns from laser differential absorption spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. Scott; Pernini, Timothy; Snell, Hilary E.; Browell, Edward V.

    2014-01-01

    This work assesses the impact of uncertainties in atmospheric state knowledge on retrievals of carbon dioxide column amounts (XCO2) from laser differential absorption spectroscopy (LAS) measurements. LAS estimates of XCO2 columns are normally derived not only from differential absorption observations but also from measured or prior knowledge of atmospheric state that includes temperature, moisture, and pressure along the viewing path. In the case of global space-based monitoring systems, it is often difficult if not impossible to provide collocated in situ measurements of atmospheric state for all observations, so retrievals often rely on collocated remote-sensed data or values derived from numerical weather prediction (NWP) models to describe the atmospheric state. A radiative transfer-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences on estimates of column CO2 and O2 concentrations. These analyses focus on characterizing these errors for LAS measurements of CO2 in the 1.57-μm region and of O2 in the 1.27-μm region. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved values associated with uncertainties in atmospheric state and provide a method for selecting optimal differential absorption line pairs to minimize the impact of these noise terms.

  7. Recent Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption to 13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Mao, J.; Hasselbrack, W.; Sun, X.; Rodriguez, M. R.

    2010-12-01

    We have developed a lidar technique for measuring atmospheric CO2 concentrations as a candidate for NASA’s ASCENDS mission. It uses pulsed laser transmitters to simultaneously measure a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers step in wavelength across the CO2 line and an O2 line pair during the measurement. The receiver uses a telescope and photon counting detectors, and measures the time resolved backscatter of the laser echoes. Signal processing is used to isolate the laser echo signals from the surface, estimate their range, and reject laser photons scattered in the atmosphere. The gas extinction and column densities for the CO2 and O2 gases are estimated via the IPDA technique. We developed a lidar to demonstrate the CO2 measurement from aricraft. The lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 or 30 steps per scan. The line scan rate is 450 Hz and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. During July and August 2009 we made 5 two hour long flights while installed on the NASA Glenn Lear-25 aircraft. We measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over a variety of surfaces in Nebraska, Illinois, the SGP ARM site, and near and over the Chesapeake Bay. Strong laser signals and clear line shapes were observed at all altitudes, and some measurements were made through thin clouds. The Oklahoma and east coast flights were coordinated with the NASA LaRC/ITT CO2 lidar on their UC-12 aircraft, a LaRC in-situ CO2 sensor, and the Oklahoma flights also included a JPL CO2 lidar on a Twin Otter aircraft. Ed Browell

  8. Isoelectric focusing of red blood cells in a density gradient stabilized column

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.; Miller, T. Y.

    1980-01-01

    The effects of Ficoll and cell application pH on red blood cell electrophoretic mobility and focusing pH were investigated by focusing cells in a density gradient stabilized column. Sample loading, cell dispersion, column conductivity, resolution of separation, and the effect of Ampholines were examined.

  9. Validation of Carbon Monoxide Vertical Column Densities Retrieved from SCIAMACHY InfraRed Nadir Observations

    NASA Astrophysics Data System (ADS)

    Hochstaffl, P.; Gimeno Garcia, S.; Schreier, F.; Hamidouche, M.; Lichtenberg, G.

    2016-08-01

    This validation study examines the accuracy of carbon monoxide (CO) total columns derived from nadir measurements of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). Therefore, an intercomparison of the CO columns estimated from SCIAMACHY measurements with coincidented and colocated retrievals provided by several ground-based (g-b) stations affiliated to the Network for the Detection of Atmospheric Composition Change (NDACC) and the Total Carbon Column Observing Network (TCCON) had been performed. The study demonstrated that the SCIAMACHY CO total column validation results depend on many aspects. The results indicate particularly the importance of appropriate post- processing of the BIRRA retrievals (esp. filtering). It shows that the CO product is sensitive to settings in retrieval algorithm. Furthermore, the analysis gives evidence of a degrading channel 8 detector in later years. In conclusion, for most cases monthly mean SCIAMACHY CO total columns agree within the standard deviation when compared to g-b measurements.

  10. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  11. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. Precision atomic beam density characterization by diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  13. Evolving molecular cloud structure and the column density probability distribution function

    NASA Astrophysics Data System (ADS)

    Ward, Rachel L.; Wadsley, James; Sills, Alison

    2014-12-01

    The structure of molecular clouds can be characterized with the probability distribution function (PDF) of the mass surface density. In particular, the properties of the distribution can reveal the nature of the turbulence and star formation present inside the molecular cloud. In this paper, we explore how these structural characteristics evolve with time and also how they relate to various cloud properties as measured from a sample of synthetic column density maps of molecular clouds. We find that, as a cloud evolves, the peak of its column density PDF will shift to surface densities below the observational threshold for detection, resulting in an underlying lognormal distribution which has been effectively lost at late times. Our results explain why certain observations of actively star-forming, dynamically older clouds, such as the Orion molecular cloud, do not appear to have any evidence of a lognormal distribution in their column density PDFs. We also study the evolution of the slope and deviation point of the power-law tails for our sample of simulated clouds and show that both properties trend towards constant values, thus linking the column density structure of the molecular cloud to the surface density threshold for star formation.

  14. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs altitude. The

  15. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption and Range During the ASCENDS 2009-2011 Airborne Campaigns

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Weaver, C. J.; Riris, H.; Mao, J.; Sun, X.; Allan, G. R.; Hasselbrack, W. E.; Browell, E. V.

    2012-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission and have demonstrated the CO2 and O2 measurements from aircraft. Our technique uses two pulsed lasers allowing simultaneous measurement of a single CO2 absorption line near 1572 nm, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are stepped in wavelength across the CO2 line and an O2 line doublet during the measurement. The column densities for the CO2 and O2 are estimated from the differential optical depths (DOD) of the scanned absorption lines via the IPDA technique. For the 2009 ASCENDS campaign we flew the CO2 lidar only on a Lear-25 aircraft, and measured the absorption line shapes of the CO2 line using 20 wavelength samples per scan. Measurements were made at stepped altitudes from 3 to 12.6 km over the Lamont OK, central Illinois, North Carolina, and over the Virginia Eastern Shore. Although the received signal energies were weaker than expected for ASCENDS, clear C02 line shapes were observed at all altitudes. Most flights had 5-6 altitude steps with 200-300 seconds of recorded measurements per step. We averaged every 10 seconds of measurements and used a cross-correlation approach to estimate the range to the scattering surface and the echo pulse energy at each wavelength. We then solved for the best-fit CO2 absorption line shape, and calculated the DOD of the fitted CO2 line, and computed its statistics at the various altitude steps. We compared them to CO2 optical depths calculated from spectroscopy based on HITRAN 2008 and the column number densities calculated from the airborne in-situ readings. The 2009 measurements have been analyzed in detail and they were similar on all flights. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. They showed the expected nearly the linear dependence of DOD vs

  16. Densities in Diffuse Molecular Clouds as Determined from Observations of CO Absorption

    NASA Astrophysics Data System (ADS)

    Ryder Picard, Trevor; Indriolo, Nick; Goldsmith, Paul

    2016-01-01

    One parameter that is important to interstellar chemistry is the density of H2, but direct density measurement is impossible. We must therefore rely on methods of estimation based on the observable effects that H2 density has on other molecules. One such effect is the excitation of CO through collisions with H2, which is imprinted in the relative populations between CO rotational levels. Spectroscopic observations were made along 17 sight lines targeting ro-vibrational transitions out of the 0 ≤ J ≤ 6 levels in the fundamental band of CO. These absorption features were analyzed to determine level-specific CO column densities, allowing us to express the relative populations between adjacent energy levels as excitation temperatures. By utilizing the analysis of Goldsmith (2013), which relates H2 density to CO excitation temperatures, we inferred upper and lower limits on the H2 density in several clouds. Many of our results are consistent with those found by Goldsmith (2013) and suggest sight lines probing diffuse molecular clouds (n(H2) ≈ 10 - 103 cm-3), although some likely sample denser material (n(H2) ≥ 103 cm-3). We also see a trend for individual sight lines where the inferred density increases when determined from higher J-level pairs. We discuss these findings and the future applicability of observations of CO in the infrared for constraining interstellar gas densities.

  17. Far-infrared Dust Temperatures and Column Densities of the MALT90 Molecular Clump Sample

    NASA Astrophysics Data System (ADS)

    Guzmán, Andrés E.; Sanhueza, Patricio; Contreras, Yanett; Smith, Howard A.; Jackson, James M.; Hoq, Sadia; Rathborne, Jill M.

    2015-12-01

    We present dust column densities and dust temperatures for ˜3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm-2, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  18. Inverse estimation of parameters for multidomain flow models in soil columns with different macropore densities

    PubMed Central

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.

    2013-01-01

    Soil and crop management practices have been found to modify soil structure and alter macropore densities. An ability to accurately determine soil hydraulic parameters and their variation with changes in macropore density is crucial for assessing potential contamination from agricultural chemicals. This study investigates the consequences of using consistent matrix and macropore parameters in simulating preferential flow and bromide transport in soil columns with different macropore densities (no macropore, single macropore, and multiple macropores). As used herein, the term“macropore density” is intended to refer to the number of macropores per unit area. A comparison between continuum-scale models including single-porosity model (SPM), mobile-immobile model (MIM), and dual-permeability model (DPM) that employed these parameters is also conducted. Domain-specific parameters are obtained from inverse modeling of homogeneous (no macropore) and central macropore columns in a deterministic framework and are validated using forward modeling of both low-density (3 macropores) and high-density (19 macropores) multiple-macropore columns. Results indicate that these inversely modeled parameters are successful in describing preferential flow but not tracer transport in both multiple-macropore columns. We believe that lateral exchange between matrix and macropore domains needs better accounting to efficiently simulate preferential transport in the case of dense, closely spaced macropores. Increasing model complexity from SPM to MIM to DPM also improved predictions of preferential flow in the multiple-macropore columns but not in the single-macropore column. This suggests that the use of a more complex model with resolved domain-specific parameters is recommended with an increase in macropore density to generate forecasts with higher accuracy. PMID:24511165

  19. NGC 1365: A low column density state unveiling a low ionization disk wind

    SciTech Connect

    Braito, V.; Reeves, J. N.; Gofford, J.; Nardini, E.; Porquet, D.; Risaliti, G.

    2014-11-01

    We present the time-resolved spectral analysis of the XMM-Newton data of NGC 1365 collected during one XMM-Newton observation, which caught this 'changing-look' active galactic nucleus in a high flux state characterized also by a low column density (N {sub H} ∼ 10{sup 22} cm{sup –2}) of the X-ray absorber. During this observation, the low-energy photoelectric cut-off is at about ∼1 keV and the primary continuum can be investigated with the XMM-Newton-RGS data, which show strong spectral variability that can be explained as a variable low N {sub H} that decreased from N {sub H} ∼ 10{sup 23} cm{sup –2} to 10{sup 22} cm{sup –2} in a 100 ks timescale. The spectral analysis of the last segment of the observation revealed the presence of several absorption features that can be associated with an ionized (log ξ ∼ 2 erg cm s{sup –1}) outflowing wind (v {sub out} ∼ 2000 km s{sup –1}). We detected for the first time a possible P-Cygni profile of the Mg XII Lyα line associated with this mildly ionized absorber indicative of a wide angle outflowing wind. We suggest that this wind is a low ionization zone of the highly ionized wind present in NGC 1365, which is responsible for the iron K absorption lines and is located within the variable X-ray absorber. At the end of the observation, we detected a strong absorption line at E ∼ 0.76 keV most likely associated with a lower ionization zone of the absorber (log ξ ∼ 0.2 erg cm s{sup –1}, N {sub H} ∼ 10{sup 22} cm{sup –2}), which suggests that the variable absorber in NGC 1365 could be a low ionization zone of the disk wind.

  20. THE COLUMN DENSITY VARIANCE IN TURBULENT INTERSTELLAR MEDIA: A FRACTAL MODEL APPROACH

    SciTech Connect

    Seon, Kwang-Il

    2012-12-20

    Fractional Brownian motion structures are used to investigate the dependency of column density variance ({sigma}{sup 2}{sub lnN}) in the turbulent interstellar medium on the variance of three-dimensional density ({sigma}{sup 2}{sub ln{rho}}) and the power-law slope of the density power spectrum. We provide quantitative expressions to infer the three-dimensional density variance, which is not directly observable, from the observable column density variance and spectral slope. We also investigate the relationship between the column density variance and sonic Mach number (M{sub s}) in the hydrodynamic (HD) regime by assuming the spectral slope and density variance to be functions of sonic Mach number, as obtained from the HD turbulence simulations. They are related by the expression {sigma}{sup 2}{sub lnN} = A{sigma}{sub ln{rho}} {sup 2} = Aln (1 + b {sup 2} M{sup 2}{sub s}), suggested by Burkhart and Lazarian for the magnetohydrodynamic case. The proportional constant A varies from Almost-Equal-To 0.2 to Almost-Equal-To 0.4 in the HD regime as the turbulence forcing parameter b increases from 1/3 (purely solenoidal forcing) to 1 (purely compressive forcing). It is also discussed that the parameter A is lowered in the presence of a magnetic field.

  1. Simulation of hydrogen sulphide absorption in alkaline solution using a packed column.

    PubMed

    Azizi, Mohamed; Biard, Pierre-François; Couvert, Annabelle; Ben Amor, Mohamed

    2014-01-01

    In this work, a simulation tool was developed for hydrogen sulphide (H₂S) removal in an alkaline solution in packed columns working at countercurrent. Modelling takes into account the mass-transfer enhancement due to the reversible reactions between H₂S and the alkaline species (CO(²⁻)(3), HCO⁻(3), and HO⁻) in the liquid film. Many parameters can be controlled by the user such as the gas and liquid inlet H₂S concentrations, the gas and liquid flow rates, the scrubbing liquid pH, the desired H₂S removal efficiency, the temperature, the alkalinity, etc. Since the influence of the hydrodynamic and mass-transfer performances in a packed column is well known, the numerical resolutions performed were dedicated to the study of the influence of the chemical conditions (through the pH and the alkalinity), the temperature and the liquid-to-gas mass flow rate ratio (L/G). A packed column of 3 m equipped with a given random packing material working at countercurrent and steady state has been modelled. The results show that the H₂S removal efficiency increases with the L/G, the pH, the alkalinity and more surprisingly with the temperature. Alkalinity has a very significant effect on the removal efficiency through the mass-transfer enhancement and buffering effect, which limits pH decreasing due to H₂S absorption. This numerical resolution provides a tool for designers and researchers involved in H₂S treatment to understand deeper the process and optimize their processes.

  2. Spatial and temporal variations in the column density distribution of comet Halley's CN coma

    NASA Technical Reports Server (NTRS)

    Schulz, Rita; Schlosser, W.; Meisser, W.; Koczet, P.; Celnik, W. E.

    1992-01-01

    Mean radial column density profiles of comet P/Halley's CN coma were derived by combining photographic and photoelectric observations. The shape of the profiles as well as their temporal variations were analyzed in detail and compared with the results of other CN observations of the comet.

  3. Calibrating Column Density Tracers with Gamma-Ray Observations of the ρ Ophiuchi Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Abrahams, Ryan D.; Teachey, Alex; Paglione, Timothy A. D.

    2017-01-01

    Diffuse gamma-ray emission from interstellar clouds results largely from cosmic ray (CR) proton collisions with ambient gas, regardless of the gas state, temperature, or dust properties of the cloud. The interstellar medium is predominantly transparent to both CRs and gamma-rays, so GeV emission is a unique probe of the total gas column density. The gamma-ray emissivity of a cloud of known column density is then a measure of the impinging CR population and may be used to map the k-scale CR distribution in the Galaxy. To this end, we test a number of commonly used column density tracers to evaluate their effectiveness in modeling the GeV emission from the relatively quiescent, nearby ρ Ophiuchi molecular cloud. We confirm that both H i and an appropriate {{{H}}}2 tracer are required to reproduce the total gas column densities probed by diffuse gamma-ray emisison. We find that the optical depth at 353 GHz ({τ }353) from Planck best reproduces the gamma-ray data overall, based on the test statistic across the entire region of interest, but near-infrared stellar extinction also performs very well, with smaller spatial residuals in the densest parts of the cloud.

  4. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis.

    PubMed

    Dufour, Emmanuel; Bréon, François-Marie

    2003-06-20

    For better knowledge of the carbon cycle, there is a need for spaceborne measurements of atmospheric CO2 concentration. Because the gradients are relatively small, the accuracy requirements are better than 1%. We analyze the feasibility of a CO2-weighted-column estimate, using the differential absorption technique, from high-resolution spectroscopic measurements in the 1.6- and 2-microm CO2 absorption bands. Several sources of uncertainty that can be neglected for other gases with less stringent accuracy requirements need to be assessed. We attempt a quantification of errors due to the radiometric noise, uncertainties in the temperature, humidity and surface pressure uncertainty, spectroscopic coefficients, and atmospheric scattering. Atmospheric scattering is the major source of error [5 parts per 10 (ppm) for a subvisual cirrus cloud with an assumed optical thickness of 0.03], and additional research is needed to properly assess the accuracy of correction methods. Spectroscopic data are currently a major source of uncertainty but can be improved with specific ground-based sunphotometry measurements. The other sources of error amount to several ppm, which is less than, but close to, the accuracy requirements. Fortunately, these errors are mostly random and will therefore be reduced by proper averaging.

  5. X-ray shadows of the Draco nebula. A new method to determine total hydrogen column densities

    NASA Astrophysics Data System (ADS)

    Moritz, P.; Wennmacher, A.; Herbstmeier, U.; Mebold, U.; Egger, R.; Snowden, S. L.

    1998-08-01

    We have used the ROSAT (1)/(4) keV all-sky survey together with H I observations to derive the total column density of hydrogen nuclei, N(H), of the Draco nebula [= G91+38 (v_LSR = -21 km s(-1) )], which casts a deep shadow in the soft X-ray background. Adopting a two-component model for the X-ray plasma in which one component is located behind the Draco nebula, the other in front of all the absorbing material (the so-called Local Hot Bubble, LHB), we fit the parameters of the radiation transport equation to the observed X-ray count rates. The optical depth in this equation is derived from H I column densities obtained with the 100-m telescope and the appropriate X-ray absorption cross sections. The solutions obtained by this approach are biased since H I column densities underestimate the absorption in regions where molecular hydrogen is abundant. The bias is avoided by excluding regions with strong X-ray shadowing from the fit and by comparing fits which are obtained on the basis of hydrogen column densities derived from IRAS 100 mu m data. We find that the absorbing column densities at the deepest X-ray shadows are up to about 3 10(20) cm(-2) larger than the observed H I column densities. At the edge towards low galactic latitudes and longitudes, up to 70% of the hydrogen is in molecular form. In other parts of the nebula the molecular abundance is la25 %. We also find an approximately constant FIR-emissivity per hydrogen nucleon (H I + 2H_2) of about 1.0 10(-20) MJy sr(-1) cm(2) . This is close to the mean value for the galactic cirrus (0.86 10(-20) MJy sr(-1) cm(2) ). In contrast, the FIR-emissivity per H I atom is varying strongly across the nebula. The xWCO values (equiv N(H_2)/W((12) CO)) found in the Draco nebula are typically in the range 0.34 < xWCO < 0.52 10(20) cm(-2) (K km s(-1) )(-1) , similar to other cirrus clouds. We find a very low xWCO ratio of 0.17 cm(-2) (K km s(-1) )(-1) at the edge of the Draco nebula towards low galactic coordinates where

  6. Estimation of high-resolution dust column density maps. Empirical model fits

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Montillaud, J.

    2013-09-01

    Context. Sub-millimetre dust emission is an important tracer of column density N of dense interstellar clouds. One has to combine surface brightness information at different spatial resolutions, and specific methods are needed to derive N at a resolution higher than the lowest resolution of the observations. Some methods have been discussed in the literature, including a method (in the following, method B) that constructs the N estimate in stages, where the smallest spatial scales being derived only use the shortest wavelength maps. Aims: We propose simple model fitting as a flexible way to estimate high-resolution column density maps. Our goal is to evaluate the accuracy of this procedure and to determine whether it is a viable alternative for making these maps. Methods: The new method consists of model maps of column density (or intensity at a reference wavelength) and colour temperature. The model is fitted using Markov chain Monte Carlo methods, comparing model predictions with observations at their native resolution. We analyse simulated surface brightness maps and compare its accuracy with method B and the results that would be obtained using high-resolution observations without noise. Results: The new method is able to produce reliable column density estimates at a resolution significantly higher than the lowest resolution of the input maps. Compared to method B, it is relatively resilient against the effects of noise. The method is computationally more demanding, but is feasible even in the analysis of large Herschel maps. Conclusions: The proposed empirical modelling method E is demonstrated to be a good alternative for calculating high-resolution column density maps, even with considerable super-resolution. Both methods E and B include the potential for further improvements, e.g., in the form of better a priori constraints.

  7. Analysis of Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Weaver, Clark J.; Riris, Haris; Mao, Jianping; Sun, Xiaoli; Allan, Graham R.; Hasselbrack, William; Browell, Edward V.

    2011-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS space mission [1]. It uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1575 nm band, O2 extinction in the Oxygen A-band, surface height and backscatter profile. The lasers are precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver measures the energies of the laser echoes from the surface along with the range profile of scattering in the path. The column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off-line signals via the integrated path differential absorption (IPDA) technique. The time of flight of the laser pulses is used to estimate the height of the scattering surface and to reject laser photons scattered in the atmosphere. We developed an airborne lidar to demonstrate an early version of the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar stepped the pulsed laser's wavelength across the selected CO2 line with 20 wavelength steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a NIR photomultiplier and is recorded on every other reading by a photon counting system [2]. During August 2009 we made a series of 2.5 hour long flights and measured the atmospheric CO2 absorption and line shapes using the 1572.33 nm CO2 line. Measurements were made at stepped altitudes from 3-13 km over locations in the US, including the SGP ARM site in Oklahoma, central Illinois, north-eastern North Carolina, and over the Chesapeake Bay and the eastern shore of Virginia. Although the received signal energies were weaker than expected for ASCENDS, clear CO2 line shapes were observed at all altitudes, and some measurements were made

  8. Column densities resulting from shuttle sublimator/evaporator operation. [optical density of nozzle flow containing water vapor

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.

    1973-01-01

    The proposed disposal of H2O from the shuttle fuel cell operation by ejecting it in vapor form through a supersonic nozzle at the rate of 100 lb/day has been investigated from the point of view of the possible interference to astronomical experiments. If the nozzle is located at the tail and directed along the shuttle longitudinal axis, the resulting column density will be less than 10 to th 12th power molecules/sq cm at viewing angles larger than 48 deg above the longitudinal axis. The molecules in the trail will diffuse rapidly. The column density contribution from molecules expelled on the previous orbit is 1.3 x 10 to the 8th power molecules/sq cm. This contribution diminishes by the inverse square root of the number of orbits since the molecules were expelled. The molecular backscatter from atmospheric molecules is also calculated. If the plume is directed into the flight path, the column density along a perpendicular is found to be 1.5 x 10 to the 11th power molecules/sq cm. The return flux is estimated to be of the order of 10 to the 12th power molecules/sq cm/sec at the stagnation point. With reasonable care in design of experiments to protect them from the backscatter flux of water molecules, the expulsion of 100 lb/day does not appear to create an insurmountable difficulty for the shuttle experiments.

  9. FAR-INFRARED DUST TEMPERATURES AND COLUMN DENSITIES OF THE MALT90 MOLECULAR CLUMP SAMPLE

    SciTech Connect

    Guzmán, Andrés E.; Smith, Howard A.; Sanhueza, Patricio; Contreras, Yanett; Rathborne, Jill M.; Jackson, James M.; Hoq, Sadia

    2015-12-20

    We present dust column densities and dust temperatures for ∼3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm{sup −2}, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  10. Relationship between the column density distribution and evolutionary class of molecular clouds as viewed by ATLASGAL

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Kainulainen, J.; Stutz, A.; Henning, Th.; Beuther, H.

    2015-09-01

    We present the first study of the relationship between the column density distribution of molecular clouds within nearby Galactic spiral arms and their evolutionary status as measured from their stellar content. We analyze a sample of 195 molecular clouds located at distances below 5.5 kpc, identified from the ATLASGAL 870 μm data. We define three evolutionary classes within this sample: starless clumps, star-forming clouds with associated young stellar objects, and clouds associated with H ii regions. We find that the N(H2) probability density functions (N-PDFs) of these three classes of objects are clearly different: the N-PDFs of starless clumps are narrowest and close to log-normal in shape, while star-forming clouds and H ii regions exhibit a power-law shape over a wide range of column densities and log-normal-like components only at low column densities. We use the N-PDFs to estimate the evolutionary time-scales of the three classes of objects based on a simple analytic model from literature. Finally, we show that the integral of the N-PDFs, the dense gas mass fraction, depends on the total mass of the regions as measured by ATLASGAL: more massive clouds contain greater relative amounts of dense gas across all evolutionary classes. Appendices are available in electronic form at http://www.aanda.org

  11. Validation of Carbon Monoxide and Methane Vertical Column Densities Retrieved from SCIAMACHY Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Hochstaffl, Philipp; Hamidouche, Mourad; Schreier, Franz; Gimeno Garcia, Sebastian; Lichtenberg, Günter

    2016-04-01

    Carbon monoxide and methane are key species of Earth's atmosphere, highly relevant for climate and air quality. Accordingly, a large number of spaceborne sensors are observing these species in the microwave, thermal and near infrared. For the analysis of short wave infrared spectra measured by SCIAMACHY aboard the ENVISAT satellite and similar instrument(s) we had developed the Beer InfraRed Retrieval Algorithm: BIRRA is a separable least squares fit of the measured radiance with respect to molecular column densities and auxiliary parameters (optional: surface albedo, baseline, slit function width, and wavenumber shift). BIRRA has been implemented in the operational SCIAMACHY L1 to 2 processor for the retrieval of CO and CH4 from channel 8 (2.3 mue) and 6 (1.6 mue), respectively. Our tests are based on separate comparisons with existing space or ground-based measurements of carbon monoxide and methane column densities. In this poster intercomparisons of CO and CH4 columns estimated from SCIAMACHY with coincident and co-located retrievals provided by ground-based Fourier transform infrared spectroscopy are provided. More specifically, we have used data from several NDACC (Network for the Detection of Atmospheric Composition Change) and TCCON (Total Carbon Column Observing Network) stations. Our strategy for quality check of these products and the selection of specific geographical areas will be discussed.

  12. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  13. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    SciTech Connect

    Notholt, J. ); Schrems, O. )

    1994-06-22

    The authors report column density measurements of N[sub 2]O, CH[sub 4], HF, HCl, O[sub 3], NO[sub 2] and HNO[sub 3], made from Ny-Alesund (79[degrees]N), using a ground-based FTIR instrument. The data was collected in March 1992, over a time interval where the site was inside, and then outside the polar vortex.

  14. A minimum column density of 1 g cm(-2) for massive star formation.

    PubMed

    Krumholz, Mark R; McKee, Christopher F

    2008-02-28

    Massive stars are very rare, but their extreme luminosities make them both the only type of young star we can observe in distant galaxies and the dominant energy sources in the Universe today. They form rarely because efficient radiative cooling keeps most star--forming gas clouds close to isothermal as they collapse, and this favours fragmentation into stars of one solar mass or lower. Heating of a cloud by accreting low-mass stars within it can prevent fragmentation and allow formation of massive stars, but the necessary properties for a cloud to form massive stars-and therefore where massive stars form in a galaxy--have not yet been determined. Here we show that only clouds with column densities of at least 1 g cm(-2) can avoid fragmentation and form massive stars. This threshold, and the environmental variation of the stellar initial mass function that it implies, naturally explain the characteristic column densities associated with massive star clusters and the difference between the radial profiles of Halpha and ultraviolet emission in galactic disks. The existence of a threshold also implies that the initial mass function should show detectable variation with environment within the Galaxy, that the characteristic column densities of clusters containing massive stars should vary between galaxies, and that star formation rates in some galactic environments may have been systematically underestimated.

  15. Molecular column densities in selected model atmospheres. [chemical analysis of carbon stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Beebe, R. F.; Sneden, C.

    1974-01-01

    From an examination of predicted column densities, the following conclusions were drawn: (1) The SiO ought to be visible in carbon stars which were generated from triple alpha burning, but absent from carbon stars generated from the CNO bi-cycle. (2) Variation in the observed relative strengths of TiO and ZrO is indicative of real differences in the ratio Ti/Zr. (3) The TiO/ZrO ratio shows a small variation as C/O and effective temperature is changed. (4) Column density of silicon dicarbide (SiC2) is sensitive to abundance, temperature, and gravity; hence all relationships between the strength of SiC2 and other stellar parameters will show appreciable scatter. There is however, a substantial luminosity effect present in the SiC2 column densities. (5) Unexpectedly, SiC2 is anti-correlated with C2. (6) The presence of SiC2 in a carbon star eliminates the possibility of these stars having temperatures greater than or equal to 3000 K, or being produced through the CNO bi-cycle.

  16. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2012-08-10

    The pressure drop and temperature drop on columns packed with 3- and 5-micron particles were measured using neat CO(2) at a flow rate of 5 mL/min, at temperatures from 20°C to 100°C, and outlet pressures from 80 to 300 bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath either bare or covered with foam insulation. The results show that the pressure drop depends on the outlet pressure, the operating temperature, and the thermal environment. A temperature drop was observed for all conditions studied. The temperature drop was relatively small (less than 3°C) for combinations of low temperature and high pressure. Larger temperature drops and density drops occurred at higher temperatures and low to moderate pressures. Covering the column with thermal insulation resulted in larger temperature drops and corresponding smaller density drops. At 20°C the temperature drop was never more than a few degrees. The largest temperature drops occurred for both columns when insulated at 80°C and 80 bar, reaching a maximum value of 21°C for the 5-micron column, and 26°C for the 3-micron column. For an adiabatic column, the temperature drop depends on the pressure drop, the thermal expansion coefficient, and the density and the heat capacity of the mobile phase fluid, and can be described by a simple mathematical relationship. For a fixed operating temperature and outlet pressure, the temperature drop increases monotonically with the pressure drop.

  17. Green bank telescope observations of low column density H I around NGC 2997 and NGC 6946

    SciTech Connect

    Pisano, D. J.

    2014-03-01

    Observations of ongoing H I accretion in nearby galaxies have only identified about 10% of the fuel necessary to sustain star formation in these galaxies. Most of these observations have been conducted using interferometers and may have missed lower column density, diffuse, H I gas that may trace the missing 90% of gas. Such gas may represent the so-called cold flows predicted by current theories of galaxy formation to have never been heated above the virial temperature of the dark matter halo. As a first attempt to identify such cold flows around nearby galaxies and complete the census of H I down to N {sub H} {sub I} ∼ 10{sup 18} cm{sup –2}, I used the Robert C. Byrd Green Bank Telescope (GBT) to map the circumgalactic (r ≲ 100-200 kpc) H I environment around NGC 2997 and NGC 6946. The resulting GBT observations cover a 4 deg{sup 2} area around each galaxy with a 5σ detection limit of N{sub H} {sub I} ∼ 10{sup 18} cm{sup –2} over a 20 km s{sup –1} line width. This project complements absorption line studies, which are well-suited to the regime of lower N{sub H} {sub I}. Around NGC 2997, the GBT H I data reveal an extended H I disk and all of its surrounding gas-rich satellite galaxies, but no filamentary features. Furthermore, the H I mass as measured with the GBT is only 7% higher than past interferometric measurements. After correcting for resolution differences, the H I extent of the galaxy is 23% larger at the N{sub H} {sub I} = 1.2 × 10{sup 18} cm{sup –2} level as measured by the GBT. On the other hand, the H I observations of NGC 6946 reveal a filamentary feature apparently connecting NGC 6946 with its nearest companions. This H I filament has N{sub H} {sub I} ∼ 5 × 10{sup 18} cm{sup –2} and an FWHM of 55 ± 5 km s{sup –1} and was invisible in past interferometer observations. The properties of this filament are broadly consistent with being a cold flow or debris from a past tidal interaction between NGC 6946 and its satellites.

  18. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C.; Hasselbrack, W.; Sun, X.

    2009-01-01

    We have developed a lidar technique for measuring the tropospheric C02 concentrations as a candidate for NASA's planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a C02 absorption line in the 1570 nm band, 02 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the C02 line and an 02 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the C02 and 02 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the C02 measurement from the NASA Glenn Lear 25 aircraft. The airborne lidar steps the pulsed laser's wavelength across a selected C02 line with 20 steps per scan. The line scan rate is 450 Hz and laser pulse widths are I usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric C02 column measurements using the 1571.4, 1572.02 and 1572.33 nm C02 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These nights were coordinated with DOE investigators who Hew an in-situ C02 sensor on a Cessna aircraft under the path. The increasing C02 line absorptions with

  19. Pulsed Airborne Lidar measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km altitudes

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Weaver, C. J.; Hasselbrack, W. E.; Sun, X.

    2009-12-01

    We have developed a lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA’s planned ASCENDS mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are stepped in wavelength across the CO2 line and an O2 line region during the measurement. The receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser’s wavelength across a selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, laser pulse energy is 25 uJ and laser pulse widths are 1 usec. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during October and December 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin and broken clouds. Atmospheric CO2 column measurements using the 1571.4, 1572.02 and 1572.33 nm CO2 lines. Two flights were made above the DOE SGP ARM site at altitudes from 3-8 km. These flights were coordinated with DOE investigators who flew an in-situ CO2 sensor on a Cessna aircraft under the path. The

  20. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Ramanathan, Anand; Hasselbrack, William E.; Mao, Jianping; Weaver, Clark; Browell, Edward V.

    2012-01-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to greater than 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the Iidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected -linear change of the peak DOD with altitude. For measurements at altitudes greater than 6 km the random errors were approximately 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as wen as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly

  1. Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Riris, H.; Allan, G. R.; Ramanathan, A.; Hasselbrack, W.; Mao, J.; Weaver, C. J.; Browell, E. V.

    2012-12-01

    We have previously demonstrated an efficient pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. Our team participated in the 2010 ASCENDS airborne campaigns we flew airborne version of the CO2 and O2 lidar on the NASA DC-8. The CO2 lidar measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan and 300 scans per second. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 line shapes were observed at all altitudes. Our post-flight analysis estimated the lidar range and pulse energies at each wavelength every second. We then solved for the best-fit CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak. We compared these to CO2 DODs calculated from spectroscopy based on HITRAN 2008 and the conditions from airborne in-situ readings. Analysis of the 2010 measurements over the Pacific Ocean and Lamont OK shows the expected ~linear change of the peak DOD with altitude. For measurements at altitudes > 6 km the random errors were ~ 0.3 ppm for 80 sec averaging times. After the 2010 flights we improved the airborne lidar's scan uniformity, calibration and receiver sensitivity. Our team participated in the seven ASCENDS science flights during late July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, snow patches on mountain tops, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity

  2. Total ozone column distribution over peninsular Malaysia from scanning imaging absorption spectrometer for atmospheric cartography (SCIAMACHY)

    NASA Astrophysics Data System (ADS)

    Tan, K. C.; Lim, H. S.; MatJafri, M. Z.

    2012-10-01

    Increasing of atmospheric ozone concentrations have received great attention around the whole because of its characteristic, in order to degrade air quality and brings hazard to human health and ecosystems. Ozone, one of the most pollutants source and brings a variety of adverse effects on plant life and human being. Continuous monitoring on ozone concentrations at atmosphere provide information and precautions for the high ozone level, which we need to be established. Satellite observation of ozone has been identified that it can provide the precise and accurate data globally, which sensitive to the small regional biases. We present measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) included on the European environmental satellite ENVISAT, launched on 1st of March 2002. Main objective of this study is to examine the ozone distribution over Peninsular Malaysia using SCIAMACHY level-2 of total ozone column WFMD version 1.0 with spatial resolution 1° x 1.25°. Maps of time averaged (yearly, tri-monthly) ozone was generated and analyzed over Peninsular Malaysia for the year 2003 using PCI Geomatica 10.3 image processing software. It was retrieved using the interpolation technique. The concentration changes within boundary layer at all altitude levels are equally sensitive through the SCIAMACHY nearinfrared nadir observations. Hence, we can make observation of ozone at surface source region. The results successfully identify the area with highest and lowest concentration of ozone at Peninsular Malaysia using SCIAMACHY data. Therefore, the study is suitable to examine the distribution of ozone at tropical region.

  3. Increase in SO2 and NO2 column density during ozone-hole event at Antarctica

    NASA Astrophysics Data System (ADS)

    Peshin, S. K.; Chakrabarty, D. K.

    A Brewer spectrophotometer was installed at Maitri 70 7 o S 11 7 o E in the Antarctica in July 1999 by the India Meteorological Department It began taking routine observations of O 3 SO 2 and NO 2 column density and UV-flux at ground from September 1999 We present here the results of analysis of these observations made from September 1999 to December 2003 during ozone-hole event We have chosen two species SO 2 which is below the ozone-depleted region and NO 2 which is above the ozone-depleted region We found an increase in SO 2 column during ozone-hole event An increase in NO 2 column was also found during this event but not identical with that of SO 2 The increase in SO 2 was found to be in phase with the increase in UV-flux at the ground level During ozone-hole event the SO 2 column increased from a value less than 0 5 to sim 2 5 DU NO 2 column increased from a value less than 0 1 to sim 1DU and UV-flux at ground increased from a value less than 40 to sim 200mW m -2 SO 2 lies mainly in the upper troposphere The increase in SO 2 is due to the penetration and increase of UV-B flux in the troposphere under ozone-depleted condition of the stratosphere during ozone-hole event The increase in NO 2 is due to the seasonal variation of NO in the stratosphere

  4. Determining interstellar hydrogen and deuterium column densities by means of the Lyman channel of the SPECTRUM UV Rowland spectrograph: a pre-launch feasibility study

    NASA Astrophysics Data System (ADS)

    Franchini, Mariagrazia; Morossi, Carlo; Vladilo, G.

    1996-10-01

    Our current knowledge of production and destruction of light elements in astrophysical processes suggests that deuterium is produced during Big Bang nucleosynthesis and destroyed when cycled through stars. Primordial deuterium abundance can be determined by measuring the D/H ratio in a variety of astrophysical environments with different degrees of chemical evolution: the D/H ratio of unprocessed material directly gives the primordial value, while the ratio in processed material is expected to be lower and consistent with the predictions of galactic chemical evolution models. Here we focus our attention on deuterium abundance determinations of chemically processed material such as the interstellar gas in our Galaxy. Up to now, most of the determinations of deuterium abundance have been performed in the solar system or in local interstellar clouds. However, the overall accuracy of the measurements in local clouds is still insufficient to probe evolutionary trends. New D/H measurements in clouds at different locations in our Galaxy would be necessary to establish this issue, while interstellar measurements in nearby galaxies would give further constraints on the deuterium evolution in different galactic environments. With this goal in mind we have evaluated the capability of the Lyman channel of the SPECTRUM UV Rowland spectrography in determining deuterium column density in distant interstellar clouds. Three packages have been used to obtain realistic predicted spectra and to derive `observed' column densities: (1) the MIDAS package `CLOUD', to generate theoretical interstellar absorption profiles; (2) the `Synth' package developed in the IRAF environment by two of the authors to simulate spectroscopic observations of point sources obtainable with an astronomical spectrograph, (3) the FITLYMAN package inside the Lyman context of MIDAS to derive `observed' column densities from predicted spectra. The minimum exposure times, t(subscript min), required to obtain a

  5. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  6. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical

  7. The structure of galactic HI in directions of low total column density

    NASA Technical Reports Server (NTRS)

    Lockman, F. J.; Jahoda, K.; Mccammon, D.

    1985-01-01

    A detailed 21 cm study of areas of that have the smallest known amount of HI in the northern sky was performed. These observations were corrected for stray radiation. The region of main interest, around alpha = 10(h)45(m), delta = 57 deg 20', has a minimium N(HI) of 4.5 x 10 to the 19th power/sq cm. Spectra taken at 21' resolution over a field 4 x 3 deg in this direction show up to four HI line components. Two, near 0 and -50 km/s, are ubiquitous. There is also a narrow component at -10 km/s attributable to a diffuse cloud covering half of the field, and scattered patches of HI at v -100 km/s. the low and intermediate velocity components have a broad line width and are so smoothly distributed across the region that it is unlikely that they contain significant unresolved angular structure. Eight other low column density directions were also observed. Their spectra typically have several components, but the total column density is always 7 x 10 to the 19th power/sq cm and changes smoothly along a 2 deg strip. Half of the directions show narrow lines arising from weak diffuse HI clouds that contain 0.5 to 3.0 x 10 to the 19th power/sq cm.

  8. Revising the slant column density retrieval of nitrogen dioxide observed by the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Marchenko, S.; Krotkov, N. A.; Lamsal, L. N.; Celarier, E. A.; Swartz, W. H.; Bucsela, E. J.

    2015-06-01

    Nitrogen dioxide retrievals from the Aura/Ozone Monitoring Instrument (OMI) have been used extensively over the past decade, particularly in the study of tropospheric air quality. Recent comparisons of OMI NO2 with independent data sets and models suggested that the OMI values of slant column density (SCD) and stratospheric vertical column density (VCD) in both the NASA OMNO2 and Royal Netherlands Meteorological Institute DOMINO products are too large, by around 10-40%. We describe a substantially revised spectral fitting algorithm, optimized for the OMI visible light spectrometer channel. The most important changes comprise a flexible adjustment of the instrumental wavelength shifts combined with iterative removal of the ring spectral features; the multistep removal of instrumental noise; iterative, sequential estimates of SCDs of the trace gases in the 402-465 nm range. These changes reduce OMI SCD(NO2) by 10-35%, bringing them much closer to SCDs retrieved from independent measurements and models. The revised SCDs, submitted to the stratosphere-troposphere separation algorithm, give tropospheric VCDs ˜10-15% smaller in polluted regions, and up to ˜30% smaller in unpolluted areas. Although the revised algorithm has been optimized specifically for the OMI NO2 retrieval, our approach could be more broadly applicable.

  9. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2008-12-01

    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  10. The Carina Nebula and Gum 31 molecular complex - I. Molecular gas distribution, column densities, and dust temperatures

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Burton, Michael; Green, Anne; Braiding, Catherine; Molinari, Sergio; Wong, Graeme; Blackwell, Rebecca; Elia, Davide; Schisano, Eugenio

    2016-03-01

    We report high-resolution observations of the 12CO(1-0) and 13CO(1-0) molecular lines in the Carina Nebula and the Gum 31 region obtained with the 22-m Mopra telescope as part of The Mopra Southern Galactic Plane CO Survey. We cover 8 deg2 from l = 285° to 290°, and from b = -1.5° to +0.5°. The molecular gas column density distributions from both tracers have a similar range of values. By fitting a grey-body function to the observed infrared spectral energy distribution from Herschel maps, we derive gas column densities and dust temperatures. The gas column density has values in the range from 6.3 × 1020 to 1.4 × 1023 cm-2, while the dust temperature has values in the range from 17 to 43 K. The gas column density derived from the dust emission is approximately described by a lognormal function for a limited range of column densities. A high-column-density tail is clearly evident for the gas column density distribution, which appears to be a common feature in regions with active star formation. There are regional variations in the fraction of the mass recovered by the CO emission lines with respect to the total mass traced by the dust emission. These variations may be related to changes in the radiation field strength, variation of the atomic to molecular gas fraction across the observed region, differences in the CO molecule abundance with respect to H2, and evolutionary stage differences of the molecular clouds that compose the Carina Nebula-Gum 31 complex.

  11. Separation of arginase isoforms by capillary zone electrophoresis and isoelectric focusing in density gradient column.

    PubMed

    Pedrosa, M M; Legaz, M E

    1995-04-01

    Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.

  12. NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update

    NASA Technical Reports Server (NTRS)

    Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.

    2009-01-01

    The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.

  13. Evaluation of high resolution simulated and OMI retrieved tropospheric NO2 column densities over Southeastern Europe

    NASA Astrophysics Data System (ADS)

    Zyrichidou, I.; Koukouli, M. E.; Balis, D. S.; Kioutsioukis, I.; Poupkou, A.; Katragkou, E.; Melas, D.; Boersma, K. F.; van Roozendael, M.

    2013-03-01

    High resolution model estimates (10 × 10 km2) of tropospheric NO2 column amounts from the Comprehensive Air Quality Model (CAMx) for the Balkan Peninsula are compared with OMI/Aura measurements (13 × 24 km2 at nadir) for the year April 2009 to March 2010. The Balkan area contributes significantly to the NO2 burden in European air and so numerous urban, industrial and rural regions are studied aiming to investigate the consistency of both satellite retrievals and model predictions at high spatial resolution. It has already been shown that OMI can detect the tropospheric column of NO2 over polluted Balkan cities due to its fine horizontal resolution and instrument sensitivity (Zyrichidou et al., 2009). In this study the improved OMI DOMINO v2.0 satellite retrievals showed that over South-Eastern Europe the monthly mean NO2 tropospheric column density fluctuated between 2.0 and 5.7 ± 1.1 × 1015 molecules/cm2 over urban areas, 1.6-5.0 ± 0.7 × 1015 molecules/cm2 over large industrial complexes and 1.1-2.2 ± 0.4 × 1015 molecules/cm2 over rural areas for the year studied. The Comprehensive Air Quality Model with extensions (CAMx) version 4.40 is a publicly available open-source computer modeling system for the integrated assessment of gaseous and particulate air pollution. The anthropogenic emissions used in CAMx for the Greek domain being studied were compiled employing bottom-up approaches (road transport sector, off-road machinery, etc.) as well as other national registries and international databases. The rest of the Balkan domain has natural and anthropogenic emissions based on the TNO emission inventory of 2003. The high-resolution CAMx simulations reveal consistent spatial and temporal patterns with the OMI/Aura data. The annual spatial correlation coefficient between OMI and CAMx computed in this high spatial resolution analysis is of the order of 0.6, somewhat improved over those estimated in Zyrichidou et al. (2009) (R ≈ 0.5). However, in such a

  14. Airborne Laser Absorption Spectrometer Measurements of CO2 Column Mixing Ratios: Source and Sink Detection in the Atmospheric Environment

    NASA Astrophysics Data System (ADS)

    Menzies, Robert T.; Spiers, Gary D.; Jacob, Joseph C.

    2016-06-01

    The JPL airborne Laser Absorption Spectrometer instrument has been flown several times in the 2007-2011 time frame for the purpose of measuring CO2 mixing ratios in the lower atmosphere. The four most recent flight campaigns were on the NASA DC-8 research aircraft, in support of the NASA ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission formulation studies. This instrument operates in the 2.05-μm spectral region. The Integrated Path Differential Absorption (IPDA) method is used to retrieve weighted CO2 column mixing ratios. We present key features of the CO2LAS signal processing, data analysis, and the calibration/validation methodology. Results from flights in various U.S. locations during the past three years include observed mid-day CO2 drawdown in the Midwest, also cases of point-source and regional plume detection that enable the calculation of emission rates.

  15. Atmospheric Backscatter Profiles at 1572nm from Pulsed Lidar Measurments of CO2 Column Absorption from the 2011 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Sun, X.; Ramanathan, A.; Mao, J.; Abshire, J. B.

    2012-12-01

    We present height-resolved backscatter profiles from the NASA Goddard Space Flight Center's CO2 sounder lidar, rich in detail, which shows clear evidence of multiple backscatter layers, clouds, and aerosols allowing for the identification of the Planetary Boundary Layer (PBL). This data is recorded as a consequence of our pulsed lidar measurements of the CO2 column absorption. The CO2 Sounder is a pulsed lidar for active remote measurements of CO2 abundance from an airborne platform and is one candidate for the lidar on the NASA ASCENDS mission. The lidar uses a scanning, pulsed laser and fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure CO2 absorption at 1572.335 nm, lineshape, range to scattering surface and backscatter profiles. The laser is scanned across the absorption feature measuring at 30 discrete wavelengths/scan and ~300 scans/sec. The time-resolved return signal, with a temporal resolution of 8ns, is detected by a photon-counting PMT fiber coupled to a modified commercial, 2m focal length f10 Schmidt-Cassegrain telescope. The column density for CO2 is estimated from the differential optical depth (DOD) of the scanned absorption line using an integrated-path differential absorption (IPDA) technique and the optical path from the time of flight. A backscatter profile of the measured column is recorded for every pulse of every scan and integrated for 1 second. The backscatter profiles we will show are determined from the receivers photon counting record using a cross-correaltion technique (sliding inner product) with a vertical resolution of better than 300m, set by the 1μs pulse width from the MOPA. The range to the surface can be determined to a few meters. Major benefits of a pulsed technique using time-resolved detection to measure lineshape, is the unambiguous detection of the ground return, intervening clouds, aerosols and information on the vertical distribution of CO2. This technique can uniquely identify the

  16. 3D printed elastic honeycombs with graded density for tailorable energy absorption

    NASA Astrophysics Data System (ADS)

    Bates, Simon R. G.; Farrow, Ian R.; Trask, Richard S.

    2016-04-01

    This work describes the development and experimental analysis of hyperelastic honeycombs with graded densities, for the purpose of energy absorption. Hexagonal arrays are manufactured from thermoplastic polyurethane (TPU) via fused filament fabrication (FFF) 3D printing and the density graded by varying cell wall thickness though the structures. Manufactured samples are subject to static compression tests and their energy absorbing potential analysed via the formation of energy absorption diagrams. It is shown that by grading the density through the structure, the energy absorption profile of these structures can be manipulated such that a wide range of compression energies can be efficiently absorbed.

  17. SCDM-k: Localized orbitals for solids via selected columns of the density matrix

    NASA Astrophysics Data System (ADS)

    Damle, Anil; Lin, Lin; Ying, Lexing

    2017-04-01

    The recently developed selected columns of the density matrix (SCDM) method (Damle et al. 2015, [16]) is a simple, robust, efficient and highly parallelizable method for constructing localized orbitals from a set of delocalized Kohn-Sham orbitals for insulators and semiconductors with Γ point sampling of the Brillouin zone. In this work we generalize the SCDM method to Kohn-Sham density functional theory calculations with k-point sampling of the Brillouin zone, which is needed for more general electronic structure calculations for solids. We demonstrate that our new method, called SCDM-k, is by construction gauge independent and a natural way to describe localized orbitals. SCDM-k computes localized orbitals without the use of an optimization procedure, and thus does not suffer from the possibility of being trapped in a local minimum. Furthermore, the computational complexity of using SCDM-k to construct orthogonal and localized orbitals scales as O (Nlog ⁡ N) where N is the total number of k-points in the Brillouin zone. SCDM-k is therefore efficient even when a large number of k-points are used for Brillouin zone sampling. We demonstrate the numerical performance of SCDM-k using systems with model potentials in two and three dimensions.

  18. Impact of Spectroscopic Line Parameters on Carbon Monoxide Column Density Retrievals from Shortwave Infrared Nadir Observations

    NASA Astrophysics Data System (ADS)

    Schmidt, Denise; Gimeno Garcia, Sebastian; Schreier, Franz; Lichtenberg, Gunter

    2015-11-01

    Among the various input data required for the retrieval of atmospheric state parameters from infrared remote sensing observations molecular spectroscopy line data have a central role, because their quality is critical for the quality of the final product. Here we discuss the impact of the line parameters on vertical column densities (VCD) estimated from short wave infrared nadir observations. Using BIRRA (the Beer InfraRed Retrieval Algorithm) comprising a line-by-line radiative transfer code (forward model) and a separable nonlinear least squares solver for inversion we retrieve carbon monoxide from observations of SCIAMACHY aboard Envisat. Retrievals using recent versions of HITRAN und GEISA have been performed and the results are compared in terms of residual norms, molecular density scaling factors, their corresponding errors, and the final VCD product. The retrievals turn out to be quite similar for all three databases, so a definite recommendation in favor of one of these databases is difficult for the considered spectral range around 2.3 μm. Nevertheless, HITRAN 2012 appears to be advantageous when evaluating the different quality criteria.

  19. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Ibuki, T.

    2010-04-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the region of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  20. Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities at surface monitoring sites

    NASA Astrophysics Data System (ADS)

    Kobayashi, N.; Inoue, G.; Kawasaki, M.; Yoshioka, H.; Minomura, M.; Murata, I.; Nagahama, T.; Matsumi, Y.; Tanaka, T.; Morino, I.; Ibuki, T.

    2010-08-01

    Remotely operable compact instruments for measuring atmospheric CO2 and CH4 column densities were developed in two independent systems: one utilizing a grating-based desktop optical spectrum analyzer (OSA) with a resolution enough to resolve rotational lines of CO2 and CH4 in the regions of 1565-1585 and 1674-1682 nm, respectively; the other is an application of an optical fiber Fabry-Perot interferometer (FFPI) to obtain the CO2 column density. Direct sunlight was collimated via a small telescope installed on a portable sun tracker and then transmitted through an optical fiber into the OSA or the FFPI for optical analysis. The near infrared spectra of the OSA were retrieved by a least squares spectral fitting algorithm. The CO2 and CH4 column densities deduced were in excellent agreement with those measured by a Fourier transform spectrometer with high resolution. The rovibronic lines in the wavelength region of 1570-1575 nm were analyzed by the FFPI. The I0 and I values in the Beer-Lambert law equation to obtain CO2 column density were deduced by modulating temperature of the FFPI, which offered column CO2 with the statistical error less than 0.2% for six hours measurement.

  1. On the errors in measuring the particle density by the light absorption method

    SciTech Connect

    Ochkin, V. N.

    2015-04-15

    The accuracy of absorption measurements of the density of particles in a given quantum state as a function of the light absorption coefficient is analyzed. Errors caused by the finite accuracy in measuring the intensity of the light passing through a medium in the presence of different types of noise in the recorded signal are considered. Optimal values of the absorption coefficient and the factors capable of multiplying errors when deviating from these values are determined.

  2. A Broad Bank Lidar for Precise Atmospheric CO2 Column Absorption Measurement from Space

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Huang, W.

    2010-01-01

    Accurate global measurement of carbon dioxide column with the aim of discovering and quantifying unknown sources and sinks has been a high priority for the last decade. In order to uncover the "missing sink" that is responsible for the large discrepancies in the budget the critical precision for a measurement from space needs to be on the order of 1 ppm. To better understand the CO2 budget and to evaluate its impact on global warming the National Research Council (NRC) in its recent decadal survey report (NACP) to NASA recommended a laser based total CO2 mapping mission in the near future. That's the goal of Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission - to significantly enhance the understanding of the role of CO2 in the global carbon cycle. Our current goal is to develop an ultra precise, inexpensive new lidar system for column measurements of CO2 changes in the lower atmosphere that uses a Fabry-Perot interferometer based system as the detector portion of the instrument and replaces the narrow band laser commonly used in lidars with a high power broadband source. This approach reduces the number of individual lasers used in the system and considerably reduces the risk of failure. It also tremendously reduces the requirement for wavelength stability in the source putting this responsibility instead on the Fabry- Perot subsystem.

  3. On-column double-beam laser absorption detection for capillary electrophoresis

    SciTech Connect

    Xue, Y.; Yeung, E.S. )

    1993-08-01

    Double-beam laser absorption detection in capillary electrophoresis (CE) has been developed. This is based on the direct subtraction of reference and signal photocurrents by an electronic circuit, under feedback control, to reduce background noise. A simple equation for calculating concentrations has been proposed and was confirmed by experimental results. A practical noise-to-signal ratio of 1 [times] 10[sup [minus]5] in intensity is achieved. This is 5 times lower than that of commercial CE systems. For absorbance detection, as low as 2 [times] 10[sup [minus]8] M malachite green can be detected. This corresponds to a 25-fold improvement of detection limit over commercial systems. This gain in detectability results from both a reduction in intensity fluctuations (noise) and an increase in the effective absorption path length (signal). 22 refs., 6 figs.

  4. Atmospheric Backscatter Profiles at 765nm and 1572nm from Pulsed Lidar Measurements of CO2 and O2 Column Absorption from the 2013 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Rodriguez, M.; Ramanathan, A.; Sun, X.; Mao, J.; Abshire, J. B.

    2013-12-01

    We present height-resolved, range corrected, backscatter profiles from NASA GSFC's two-channel (CO2 & O2) sounder, an Integrated Path Differential Absorption (IPDA) lidar, which measures simultaneously both carbon dioxide & oxygen column absorptions. These backscatter profiles show clear evidence of multiple backscattering layers, clouds & aerosols, which allows for the identification of the Planetary Boundary Layer (PBL). The backscatter measurements enable sampling of the vertical distribution of CO2 in the atmosphere when broken & thin clouds are present & may help identify sources & sinks within the PBL as opposed to natural variations in the vertical distribution of CO2. The CO2 Sounder is an airborne pulsed lidar for active remote measurements of CO2 abundance & is a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days & Seasons). The O2 channel measures atmospheric pressure in the same air column to calculate the dry mixing ratio of CO2. The lidars use a scanning, pulsed laser & fiber amplifier in a Master Oscillator Power Amplifier configuration to measure lineshape, range to scattering surface & backscatter profiles. The CO2 channel operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles the output from ~1530nm to the O2 A-band absorption around 765nm. Both lasers are scanned across the absorption feature of interest sampling the line at a fixed number of discrete wavelengths per scan around ~300 scans per second. The time-resolved return signal is detected by photon-counting detectors with a temporal resolution of a few nanoseconds. The CO2 channel uses a PMT while the O2 channel uses Single Photon Counting Modules. The detectors are fiber coupled to a 2m f10 Schmidt-Cassegrain telescope. The column density of the gas of interest is estimated from the differential optical depths of the scanned absorption using the IPDA technique & the optical path from the time of flight. A backscatter

  5. Comparison of MAX-DOAS NO2 slant column densities and DOAS fit properties during MADCAT

    NASA Astrophysics Data System (ADS)

    Beirle, Steffen; Remmers, Julia; Wagner, Thomas

    2014-05-01

    The 'Multi Axis Doas - Comparison campaign for Aerosols and Trace gases' (MADCAT) took place at MPI-C in Mainz/Germany in summer 2013. MAX-DOAS instruments from ten institutes were operated simultaneously in order to investigate the crucial settings of instrumental properties, calibration, and algorithms, for a) the retrieval of slant column densities (SCDs) of various trace gases (NO2, HCHO, CHOCHO, H2O) and O4 as tracer for photon path lengths and b) the retrieval of tropospheric profiles. Here we focus on the first step, i.e. the retrieval of SCDs, for NO2. The DOAS analysis for NO2 was done independently by the different groups, but based on concerted DOAS retrieval setups for the UV and vis spectral ranges. We present intercomparisons of NO2 SCDs for different elevation angles from the different instruments. A statistical analysis of the deviations of each dataset with respect to the ensemble mean was performed. In addition, further DOAS fit results, like intensity offsets, the fit coefficients for water vapour and the ring effect, etc. are compared.

  6. Sulfur dioxide (SO2) vertical column density measurements by Pandora spectrometer over the Canadian oil sands

    NASA Astrophysics Data System (ADS)

    Fioletov, Vitali E.; McLinden, Chris A.; Cede, Alexander; Davies, Jonathan; Mihele, Cristian; Netcheva, Stoyka; Li, Shao-Meng; O'Brien, Jason

    2016-07-01

    Vertical column densities (VCDs) of SO2 retrieved by a Pandora spectral sun photometer at Fort McKay, Alberta, Canada, from 2013 to 2015 were analysed. The Fort McKay site is located in the Canadian oil sands region, approximately 20 km north of two major SO2 sources (upgraders), with total emission of about 45 kt yr-1. Elevated SO2 VCD values were frequently recorded by the instrument, with the highest values of about 9 Dobson Units (DU; DU = 2.69 × 1016 molecules cm-2). Comparisons with co-located in situ measurements demonstrated that there was a very good correlation between VCDs and surface concentrations in some cases, while in other cases, elevated VCDs did not correspond to high surface concentrations, suggesting the plume was above the ground. Elevated VCDs and surface concentrations were observed when the wind direction was from south to southeast, i.e. from the direction of the two local SO2 sources. The precision of the SO2 measurements, estimated from parallel measurements by two Pandora instruments at Toronto, is 0.17 DU. The total uncertainty of Pandora SO2 VCD, estimated using measurements when the wind direction was away from the sources, is less than 0.26 DU (1σ). Comparisons with integrated SO2 profiles from concurrent aircraft measurements support these estimates.

  7. Analysis of Pulsed Lidar Measurements of Atmospheric CO2 Column Absorption in the ASCENDS 2011 and 2013 Airborne Campaigns

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Ramanathan, A.; Mao, J.; Riris, H.; Allan, G. R.; Hasselbrack, W.; Weaver, C. J.; Browell, E. V.

    2013-12-01

    We have developed a pulsed, wavelength-resolved IPDA lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's ASCENDS mission. The CO2 lidar flies on NASA's DC-8 aircraft and measures the atmospheric backscatter profiles and shape of the 1572.33 nm absorption line using 250 mW average laser power, 30 wavelength samples per scan with 300 scans per second. Our post-flight analysis estimates the lidar range and pulse energies at each wavelength every second. We then solve for the optimum CO2 absorption line shape, and calculated the Differential Optical Depth (DOD) at the line peak and the column average CO2 concentrations. We compared these to radiative transfer calculations based on the HITRAN 2008 database, the atmospheric conditions, and the CO2 concentrations sampled by in-situ sensors on the aircraft. Our team participated in the ASCENDS science flights during July and August 2011. These flights were made over a wide variety of surface and cloud conditions near the US, including over the central valley of California, over several mountain ranges, over both broken and solid stratus cloud deck over the Pacific Ocean, over thin and broken clouds above the US Southwest and Iowa, and over forests near the WLEF tower in Wisconsin. Most flights had 5-6 altitude steps to > 12 km, and clear CO2 absorption line shapes were recorded. Analyses show the retrievals of lidar range and CO2 column absorption, as well as estimates of CO2 mixing ratio worked well when measuring over topography with rapidly changing height and reflectivity, through thin clouds and to stratus cloud tops. For regions where the CO2 concentration was relatively constant, the measured CO2 absorption profile (averaged for 50 sec) matched the predicted profile to better than 1% RMS error for all flight altitudes. For 10 second averaging, the scatter in the retrievals was typically 2-3 ppm and was limited by signal shot noise (i.e. the signal photon count). For flight

  8. Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.

    PubMed

    Matvejev, V; Zizi, M; Stiens, J

    2012-12-06

    Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on

  9. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    PubMed

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  10. Measurements of spectrally integrated atmospheric transmittance in the O2 Schumann-Runge bands and derived oxygen column densities - 76-102 km

    NASA Technical Reports Server (NTRS)

    Longmire, M. S.; Bartoe, J.-D. F.; Brown, C. M.; Brueckner, G. E.; Tousey, R.

    1979-01-01

    Atmospheric transmittances integrated over wavelength intervals corresponding approximately to the (15-0) through (4-0) Schumann-Runge bands of O2 have been determined from EUV solar spectra (wavelengths between 1768 and 1948 A) photographed at seven altitudes between 102 and 76 km with a rocket-borne spectrograph having a resolution of 0.07 A. The observed transmittances are compared with atmospheric transmittances predicted from three models of the O2 absorption cross section. The predicted transmittances have also been used to derive column densities of atmospheric O2 from the observations. The results are compared with values calculated from the U.S. Standard Atmosphere (1976) and with oxygen column densities determined by Prinz and Brueckner (1977) from EUV solar spectra of the Schumann-Runge continuum (wavelength below 1750 A) and of the H-Lyman alpha line (1216 A) recorded on the same films used in the present research. The comparisons test the utility of the models for studies of atmospheric photochemistry, suggest which models may be best for this purpose, and indicate how the models can be improved.

  11. Column preconcentration and electrothermal atomic absorption spectrometric determination of rhodium in some food and standard samples.

    PubMed

    Taher, Mohammad Ali; Pourmohammad, Fatemeh; Fazelirad, Hamid

    2015-12-01

    In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra-trace amounts of rhodium after adsorption of its 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015-0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values.

  12. Collisionless absorption of light waves incident on overdense plasmas with steep density gradients

    SciTech Connect

    Yang, T.Y.B.; Kruer, W.L.; Langdon, A.B.

    1995-07-31

    Collisionless absorption of laser light incident on overdense plasmas with steep density gradients is studied analytically and numerically. For the normal incidence case, it is shown that both sheath inverse bremsstrahlung and the anomalous skin effect are limiting cases of the same collisionless absorption mechanism. Using particle-in-cell (PIC) plasma simulations, the effects of finite sheath-transit time and finite density gradient are investigated. The analyses are extended to oblique incident cases. For p-polarized obliquely incident light, the results are significantly different from those for the normal incidence case. Most noticeable is the absorption enhancement for the p-polarized light due to the interaction of the electrons with the normal (parallel to the density gradient) component of the laser electric field in the sheath region.

  13. OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Cheol; Lee, Pius; Judd, Laura; Pan, Li; Lefer, Barry

    2016-03-01

    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The NASA Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that the OMI footprint-pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20-30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCDs using spatial information from the fine-scale model to adjust the spatial distribution, and also applied averaging kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with the correlation

  14. OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Judd, L.; Pan, L.; Lefer, B.

    2015-10-01

    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The National Aeronautics and Space Administration Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that OMI footprint pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20-30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCD using spatial information from the fine-scale model to adjust the spatial distribution, and also applied Averaging Kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK

  15. Observational discrimination between modes of shock propagation in interstellar clouds: Predictions of CH+ and SH+ column densities in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.

    1986-01-01

    Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.

  16. A Herschel-SPIRE survey of the Mon R2 giant molecular cloud: analysis of the gas column density probability density function

    NASA Astrophysics Data System (ADS)

    Pokhrel, R.; Gutermuth, R.; Ali, B.; Megeath, T.; Pipher, J.; Myers, P.; Fischer, W. J.; Henning, T.; Wolk, S. J.; Allen, L.; Tobin, J. J.

    2016-09-01

    We present a far-IR survey of the entire Mon R2 giant molecular cloud (GMC) with Herschel-Spectral and Photometric Imaging REceiver cross-calibrated with Planck-High Frequency Instrument data. We fit the spectral energy distributions of each pixel with a greybody function and an optimal beta value of 1.8. We find that mid-range column densities obtained from far-IR dust emission and near-IR extinction are consistent. For the entire GMC, we find that the column density histogram, or column density probability distribution function (N-PDF), is lognormal below ˜1021 cm-2. Above this value, the distribution takes a power law form with an index of -2.15. We analyse the gas geometry, N-PDF shape, and young stellar object (YSO) content of a selection of subregions in the cloud. We find no regions with pure lognormal N-PDFs. The regions with a combination of lognormal and one power-law N-PDF have a YSO cluster and a corresponding centrally concentrated gas clump. The regions with a combination of lognormal and two power-law N-PDF have significant numbers of typically younger YSOs but no prominent YSO cluster. These regions are composed of an aggregate of closely spaced gas filaments with no concentrated dense gas clump. We find that for our fixed scale regions, the YSO count roughly correlates with the N-PDF power-law index. The correlation appears steeper for single power-law regions relative to two power-law regions with a high column density cut-off, as a greater dense gas mass fraction is achieved in the former. A stronger correlation is found between embedded YSO count and the dense gas mass among our regions.

  17. Trend analysis of satellite-observed tropospheric NO2 vertical column densities over East Asia for 2005-2014

    NASA Astrophysics Data System (ADS)

    Muto, T.; Irie, H.; Itahashi, S.

    2015-12-01

    Nitrogen dioxide (NO2) plays a central role in the troposphere as a toxic substance for the respiratory system and a precursor for ozone and aerosols. Furthermore, the OH concentration is dependent on the NO2 concentration. While trend analysis for tropospheric NO2 concentrations in several specific regions all over the world was made in literature for period until 2011, the latest trends after 2011 have not been reported yet. The time period after 2011 is of interest, because it corresponds to the 12th 5-year-plan regulating NOx emissions in China and the period with the power substitution of thermal power generation for the nuclear power generation in Japan. In this study, we first compared satellite-observed tropospheric NO2 VCDs (Vertical Column Densities) with those observed by ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments installed at Chiba University in order to clarify whether or not there is degradation in OMI and GOME-2 NO2 VCDs data after 2011. We concluded that there is no significant degradation in OMI and GOME-2 data, since the comparison results are similar to those reported by previous validation studies. Based on the results, tropospheric NO2 VCD trends over Central Eastern China (CEC; 30-40°N, 110.0-123.0°E) and Japan (JPN; 33.5-37.0°N, 133.0-141.0°E) regions were estimated using the regression analysis for annual mean values. Although an increase in NO2 VCDs occurred at a rate of 6%(8%) per year in OMI (GOME-2) data from 2005(2007) to 2011 over CEC, we found a decrease at a rate of 10%(11%) per year from 2011 to 2014. This reduction may be a result from the regulation of NOx emissions from coal fired power generation, iron foundry, cement plant, etc., and installation of the denitrification units during the period of 12th 5-year-plan. For JPN, both OMI and GOME-2 data sets showed that the NO2 VCDs decreased at a rate of 4% per year before 2011. The decreasing trends continued until 2014, with a

  18. Point defect absorption by grain boundaries in α -iron by atomic density function modeling

    NASA Astrophysics Data System (ADS)

    Kapikranian, O.; Zapolsky, H.; Patte, R.; Pareige, C.; Radiguet, B.; Pareige, P.

    2015-12-01

    Using the atomic density function theory (ADFT), we examine the point defect absorption at [110] symmetrical tilt grain boundaries in body-centered cubic iron. It is found that the sink strength strongly depends on misorientation angle. We also show that the ADFT is able to reproduce reasonably well the elastic properties and the point defect formation volume in α -iron.

  19. Study of growth of dot and column in porous silicon samples of various thicknesses prepared at a constant current density

    NASA Astrophysics Data System (ADS)

    Gill, Fateh Singh; Panwar, Varij; Gupta, Himanshu; Kalra, G. S.; Chawla, Shanta; Kumar, R.; Mehra, R. M.

    2015-09-01

    Porous silicon is considered to be composed either of spherical shaped interconnected silicon quantum dots or combination of quantum dots and columns. This paper presents a study of a series of porous silicon films of various thicknesses, prepared at a 20 mA current density by the electrochemical etching technique. The photoluminescence spectra of the series samples were monitored. Further, we used a photoluminescence fitting model by Singh and John (John-Singh) in its extended form by Elhouichet to estimate the percentage of dots and columns; their average diameters and corresponding variances. The shape of experimental photoluminescence spectra fits well with John-Singh model. As a result, the analytical curves drawn using the fitting parameters showed the decrease in mean crystallite diameter of columns and dot while increase in variance of column and decrease in variance of dots. Hence, more homogenous dots are formed. Thus, it results in the formation of a more ordered nanocrystalline structure with more porosity. It verified the quantum assumptions. The discrepancy in the PL behavior of a sample is well explained by the model.

  20. Heating of a Magnetized High Density Hydrogen Plasma Column Around the ICR Frequency

    NASA Astrophysics Data System (ADS)

    Graswinckel, M. F.; Guadamuz, S.; Koch, R.; Maggiora, R.; Van De Pol, M.; Vietti, G.; Van Rooij, G.

    2011-12-01

    A single and double loop antenna system are investigated in the ICR frequency range (5-25 MHz) to enable control of the plasma temperature in a 1-10 cm diameter, 1020 m-3 hydrogen plasma column in B = 0.8T Wave propagation is evaluated on basis of damping lengths derived from the dispersion relation. The antenna is numerically analyzed with the TOPCYL code. Simulation results are compared with measured loading resistances and good agreement was found for the vacuum and saltwater column cases. Hydrogen plasma loading resistances determined from network analyzer measurements are typically higher than those predicted from simulation. This points to coupling of RF power to additional loss mechanisms. High RF power operation (1 kW) of the antenna increased the power deposited on the plasma endplate and accelerated the plasma, but the plasma temperature near the endplate remained constant.

  1. A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Markowitz, A. G.; Krauß, F.; Miniutti, G.; Longinotti, A. L.; Guainazzi, M.; de La Calle Pérez, I.; Malkan, M.; Elvis, M.; Miyaji, T.; Hiriart, D.; López, J. M.; Agudo, I.; Dauser, T.; Garcia, J.; Kreikenbohm, A.; Kadler, M.; Wilms, J.

    2015-12-01

    Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of active galactic nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims: Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV broad line region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods: We examine six Suzaku and 12 Swift observations from a 2008 campaign spanning five weeks. We use a model accounting for the complex spectral interplay of three absorbers with different levels of ionization. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR to X-ray spectral energy distribution (SED) to test for reddening by dust. Results: The 2008 absorption event is due to moderately-ionized (log ξ ~ 1.2-1.4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions: The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.

  2. Refractive index enhancement with vanishing absorption in short, high-density vapor cells

    NASA Astrophysics Data System (ADS)

    Simmons, Z. J.; Proite, N. A.; Miles, J.; Sikes, D. E.; Yavuz, D. D.

    2012-05-01

    It has recently been predicted and experimentally demonstrated that the refractive index of a vapor may be enhanced while maintaining vanishing absorption by using the interference of two Raman transitions, one absorptive and one amplifying in nature. In this paper, we present a detailed experimental study of this technique in a 1-mm-long rubidium (Rb) vapor cell with densities exceeding 1014 cm-3. We study the optimization of the achieved refractive index as various experimental parameters are varied and discuss a number of limitations of the current experiments. We also present a detailed discussion of possible experimental improvements and future prospects of this technique.

  3. Can formaldehyde column densities be used to estimate near-surface ozone in urban areas?

    NASA Astrophysics Data System (ADS)

    Schroeder, Jason

    2016-04-01

    Understanding pollutant exposure for populations in urban areas requires air quality monitoring at a finer scale than can be reasonably provided by surface networks. Satellite measurements of short-lived trace gases could potentially help shape our understanding of the distribution of near-surface ozone throughout entire regions, thus aiding the development of more effective mitigation strategies. In this work, the extensive vertical profiling performed by aircraft in support of NASA's DISCOVER-AQ field campaign is used to examine the relationship between formaldehyde column measurements and near-surface ozone. At large spatial and temporal scales, a fairly strong relationship exists between column formaldehyde and near-surface ozone, but this relationship often weakens at smaller spatial and temporal scales. The cause of these small-scale discrepancies was determined to be an artifact of the difference in lifetimes between ozone and formaldehyde. While ozone has a long lifetime (multiple days) and tends to accumulate throughout the day, formaldehyde has a very short lifetime (a couple hours) and tends to reflect the local hydrocarbon oxidation environment. In Maryland, where biogenic emissions dominate the hydrocarbon mix, a stronger correlation between ozone and formaldehyde was seen than in Texas, where anthropogenic emissions dominated the hydrocarbon mix. This is because in Maryland, while ozone was accumulating throughout the day, formaldehyde was also increasing in conjunction with changes in biogenic emissions. When data are segregated spatially and averaged over the duration of each campaign, a clear trend can be seen between column formaldehyde and surface ozone measurements. While not useful for day-to-day monitoring, this could be useful for long-term exposure estimates and could help facilitate the re-distribution of surface monitoring sites.

  4. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.

    2005-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  5. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.

    2006-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  6. Absorption of lithium in montmorillonite: a density functional theory (DFT) study.

    PubMed

    Wungu, Triati Dewi Kencana; Aspera, Susan Menez; David, Melanie Yadao; Dipojono, Hermawan Kresno; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    The absorption of lithium in montmorillonite [LiSi8(Al3Mg)O20(OH)4] was investigated using Density Functional Theory (DFT). The final position of lithium after absorption was found to be in good agreement with an experimental observation where lithium atom migrated from the interlayer into the vacant octahedral site of montmorillonite. The lithium absorbed on montmorillonite was held together by a very strong attraction between ions and exhibited an insulating behavior as depicted from the density of states curve. Due to the presence of lithium in the octahedral site of montmorillonite, the OH group reoriented itself perpendicular to the ab plane and an electron of lithium was transferred in order to compensate the existing net charge of montmorillonite caused by isomorphous substitutions. Relative small charge transfer was observed between lithium and montmorillonite.

  7. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  8. Determination of the labeling density of fluorophore-biomolecule conjugates with absorption spectroscopy.

    PubMed

    Grabolle, Markus; Brehm, Robert; Pauli, Jutta; Dees, Franziska M; Hilger, Ingrid; Resch-Genger, Ute

    2012-02-15

    Dye-biomolecule conjugation is frequently accompanied by considerable spectral changes of the dye's absorption spectrum that limit the use of the common photometrical method for the determination of labeling densities. Here, we describe an improvement of this method using the integral absorbance of the dye instead of its absorbance at the long wavelength maximum to determine the concentration of the biomolecule-coupled dye. This approach is illustrated for three different cyanine dyes conjugated to the antibody IgG.

  9. Formaldehyde Column Density Measurements as a Suitable Pathway to Estimate Near-Surface Ozone Tendencies from Space

    NASA Technical Reports Server (NTRS)

    Schroeder, Jason R.; Crawford, James A.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Mueller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; Blake, Donald R.; Diskin, Glenn; Estes, Mark; Thompson, Anne M.; Lefer, Barry L.; Long, Russell; Matteson, Eric

    2016-01-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for approx.28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (+/-20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  10. Formaldehyde column density measurements as a suitable pathway to estimate near-surface ozone tendencies from space

    NASA Astrophysics Data System (ADS)

    Schroeder, Jason R.; Crawford, James H.; Fried, Alan; Walega, James; Weinheimer, Andrew; Wisthaler, Armin; Müller, Markus; Mikoviny, Tomas; Chen, Gao; Shook, Michael; Blake, Donald R.; Diskin, Glenn; Estes, Mark; Thompson, Anne M.; Lefer, Barry L.; Long, Russell; Mattson, Eric

    2016-11-01

    In support of future satellite missions that aim to address the current shortcomings in measuring air quality from space, NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign was designed to enable exploration of relationships between column measurements of trace species relevant to air quality at high spatial and temporal resolution. In the DISCOVER-AQ data set, a modest correlation (r2 = 0.45) between ozone (O3) and formaldehyde (CH2O) column densities was observed. Further analysis revealed regional variability in the O3-CH2O relationship, with Maryland having a strong relationship when data were viewed temporally and Houston having a strong relationship when data were viewed spatially. These differences in regional behavior are attributed to differences in volatile organic compound (VOC) emissions. In Maryland, biogenic VOCs were responsible for 28% of CH2O formation within the boundary layer column, causing CH2O to, in general, increase monotonically throughout the day. In Houston, persistent anthropogenic emissions dominated the local hydrocarbon environment, and no discernable diurnal trend in CH2O was observed. Box model simulations suggested that ambient CH2O mixing ratios have a weak diurnal trend (±20% throughout the day) due to photochemical effects, and that larger diurnal trends are associated with changes in hydrocarbon precursors. Finally, mathematical relationships were developed from first principles and were able to replicate the different behaviors seen in Maryland and Houston. While studies would be necessary to validate these results and determine the regional applicability of the O3-CH2O relationship, the results presented here provide compelling insight into the ability of future satellite missions to aid in monitoring near-surface air quality.

  11. Column CO2 Measurement From an Airborne Solid-State Double-Pulsed 2-Micron Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Singh, U. N.; Yu, J.; Petros, M.; Refaat, T. F.; Remus, R.; Fay, J.; Reithmaier, K.

    2014-01-01

    NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micrometers IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  12. Ground-based FTIR measurements of vertical column densities of several trace gases above Spitsbergen

    NASA Astrophysics Data System (ADS)

    Notholt, J.; Schrems, O.

    During the EASOE campaign ground-based FTIR measurements have been performed in March 1992 at Ny-Ålesund (Spitsbergen, 79°N, 12°E) to derive column amounts of several trace gases. For the first part of the measurement campaign Ny-Ålesund was situated inside the polar vortex. The obtained concentrations of N2O, CH4 and HF inside the vortex are consistent with subsidence. The ratio of HClstrat/HF varied from about 2.0 inside to about 2.8 outside the vortex. Inside the vortex low values for NO2 and high values for HNO3 were found. The O3 concentrations inside the vortex are slightly lower than what was observed outside the vortex.

  13. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  14. Very low density lipoproteins in intestinal lymph: role in triglyceride and cholesterol transport during fat absorption

    PubMed Central

    Ockner, Robert K.; Hughes, Faith B.; Isselbacher, Kurt J.

    1969-01-01

    The role of nonchylomicron very low density lipoproteins (VLDL, Sf 20-400) in the transport of triglyceride and cholesterol was studied during lipid absorption. Various long chain fatty acids were infused intraduodenally in the form of mixed fatty acid—mono-olein-taurocholate micelles; control animals received saline or taurocholate. As compared with controls, all fatty acids (palmitic, oleic, linoleic) resulted in significant increases in chylomicron (Sf > 400) triglyceride. In addition, palmitic acid resulted in a twofold increase in VLDL triglyceride, whereas with the absorption of oleic or linoleic acid VLDL triglyceride did not change significantly. Differences in triglyceride fatty acid composition between chylomicrons and VLDL were observed during lipid absorption. Although the absolute amount of endogenous cholesterol in intestinal lymph was not significantly affected by lipid absorption under these conditions, its lipoprotein distribution differed substantially among the lipid-infused groups. During palmitate absorption, VLDL cholesterol was similar to that in the taurocholate-infused controls, and was equal to chylomicron cholesterol. In contrast, during oleate and linoleate absorption the VLDL cholesterol fell markedly, and was less than half of the chylomicron cholesterol in these groups. The half-time of plasma survival of VLDL cholesterol-14C was found to be twice that of chylomicron cholesterol-14C. These studies demonstrate that dietary long chain fatty acids differ significantly in their effects upon the transport of triglyceride and cholesterol by lipoproteins of rat intestinal lymph. These findings, together with the observed differences in rates of removal of chylomicrons and VLDL from plasma, suggest that variations in lipoprotein production at the intestinal level may be reflected in differences in the subsequent metabolism of absorbed dietary and endogenous lipids. PMID:5355348

  15. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    NASA Astrophysics Data System (ADS)

    Campana, S.; Bernardini, M. G.; Braito, V.; Cusumano, G.; D'Avanzo, P.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2014-07-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of gamma-ray burst afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power-law shape with index 2.4. However, for real instruments, this value depends on their low-energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 105-106 counts in the 0.3-10 keV band are needed to constrain the redshift with 10 per cent accuracy. As a test case, we discuss the XMM-Newton observation of GRB 090618 at z = 0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  16. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations.

  17. Image of Fomalhaut Dust Ring at 350 Microns: The Relative Column Density Map Shows Pericenter-Apocenter Asymmetry

    NASA Technical Reports Server (NTRS)

    Marsh, K. A.; Velusamy, T.; Dowell, C. D.; Grogan, K.; Beichman, C. A.

    2005-01-01

    We have imaged the circumstellar disk of Fomalhaut at 350 mm wavelength, using SHARC II (Submillimeter High Angular Resolution Camera II) at the Caltech Submillimeter Observatory. The spatial resolution of the raw images (9") has been enhanced by a factor of 3 using the HiRes deconvolution procedure. We find that at this wavelength and signal-to-noise ratio (approx.12), the observed morphology is that of a simple inclined ring (i approx. 70 deg), with little or no other apparent structure--this is the first observation that shows clearly the ring morphology of the disk. We have combined our 350 mm data with Spitzer Space Telescope images at 24, 70, and 160 mm in order to estimate the two-dimensional spatial variation of relative column density ("tau map") using our DISKFIT procedure. The tau map is based on the following physical assumptions: (1) the wavelength variation of opacity is the same throughout the disk, (2) the radial variation of dust temperature is dictated by the energy balance of individual grains in the stellar radiation field, and (3) the vertical scale height of the disk follows a power-law radial variation. The results confirm the ringlike morphology but also show that the geometric center is displaced from the star by about 8 AU and that the ring has an apocentric enhancement of approximately 14% in integrated column density. If we interpret the displacement in terms of elliptical orbital motion due to gravitational perturbation by an unseen planet, then the implied forced eccentricity is 0.06; dynamical modeling then predicts an apocentric density enhancement consistent with that inferred from the tau map.

  18. Modeling the absorption of intense, short laser pulses in steep density gradients

    SciTech Connect

    Alley, W.E.

    1991-01-28

    A subroutine which calculates the absorption of short pulse electromagnetic radiation in a material has been installed into the laser fusion modeling program called LASNEX. Calculational results show the necessity for NLTE physics to account for ionization, the development of non-exponential density profiles for the expanding plasma and movement of the critical point toward the surface which results in Doppler shifts of the reflected light. Comparison of calculations of local scale lengths with experiments shows not only good agreement but the correct scaling with intensity. 8 refs., 5 figs.

  19. A summary of transition probabilities for atomic absorption lines formed in low-density clouds

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Smith, W. H.

    1973-01-01

    A table of wavelengths, statistical weights, and excitation energies is given for 944 atomic spectral lines in 221 multiplets whose lower energy levels lie below 0.275 eV. Oscillator strengths were adopted for 635 lines in 155 multiplets from the available experimental and theoretical determinations. Radiation damping constants also were derived for most of these lines. This table contains the lines most likely to be observed in absorption in interstellar clouds, circumstellar shells, and the clouds in the direction of quasars where neither the particle density nor the radiation density is high enough to populate the higher levels. All ions of all elements from hydrogen to zinc are included which have resonance lines longward of 912 A, although a number of weaker lines of neutrals and first ions have been omitted.

  20. Forward cw CO/sub 2/-laser scattering on a high density plasma column

    SciTech Connect

    Lachambre, J.L.; Decoste, R.; Robert, A.; Noel, P.

    1983-09-01

    Wave-number and frequency spectra S(k,..omega..) associated with spontaneous electrostatic fluctuations in a high-density (5 x 10/sup 21/ m/sup -3/) current-driven plasma are measured using forward CO/sub 2/-laser scattering with homodyne detection. Scattering measurements during the quiescent plateau phase of the discharge show fluctuation levels several orders of magnitude above the thermal level with k/sup -4/ and ..omega../sup -2/ spectral amplitude dependences. The fluctuations are found to be isotropic in a plane transverse to the magnetic axis with S(k/sub parallel/,..omega..)<

  1. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase.

    PubMed

    Poe, Donald P; Veit, Devon; Ranger, Megan; Kaczmarski, Krzysztof; Tarafder, Abhijit; Guiochon, Georges

    2014-01-03

    The pressure, temperature and density drops along SFC columns eluted with a CO2/methanol mobile phase were measured and compared with theoretical values. For columns packed with 3- and 5-μm particles the pressure and temperature drops were measured using a mobile phase of 95% CO2 and 5% methanol at a flow rate of 5mL/min, at temperatures from 20 to 100°C, and outlet pressures from 80 to 300bar. The density drop was calculated based on the temperature and pressure at the column inlet and outlet. The columns were suspended in a circulating air bath, either bare or covered with foam insulation. The experimental measurements were compared to theoretical results obtained by numerical simulation. For the convective air condition at outlet pressures above 100bar the average difference between the experimental and calculated temperature drops and pressure drops were 0.1°C and 0.7% for the bare 3-μm column, respectively, and were 0.6°C and 4.1% for the insulated column. The observed temperature drops for the insulated columns are consistent with those predicted by the Joule-Thomson coefficients for isenthalpic expansion. The dependence of the temperature and the pressure drops on the Joule-Thomson coefficient and kinematic viscosity are described for carbon dioxide mobile phases containing up to 20% methanol.

  2. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  3. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory.

    PubMed

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T

    2005-07-01

    The absorption spectra of the N-(2,5-di-tert-butylphenyl) phthalimide (1-), N-(2,5-di-tert-butylphenyl)-1,8-naphthalimide (2-) and N-(2,5-di-tert-butylphenyl)-perylene-3,4-dicarboximide (3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45,000 cm(-1)). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0-->D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  4. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T.

    2005-07-01

    The absorption spectra of the N-(2,5-di- tert-butylphenyl) phthalimide ( 1-), N-(2,5-di- tert-butylphenyl)-1,8-naphthalimide ( 2-) and N-(2,5-di- tert-butylphenyl)-perylene-3,4-dicarboximide ( 3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45000 cm -1). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0→ D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  5. The Density and Mass of Unshocked Ejecta in Cassiopeia A through Low Frequency Radio Absorption

    NASA Astrophysics Data System (ADS)

    DeLaney, Tracey; Kassim, Namir E.; Rudnick, Lawrence; Perley, R. A.

    2014-04-01

    Characterizing the ejecta in young supernova remnants is a requisite step toward a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9'' and 18.''5 resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 cm-3 and a total mass of 0.39 M ⊙ with uncertainties of a factor of ~2. This is a significant improvement over the 100 cm-3 upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a number of factors including temperature and geometry. However using reasonable values for each, our unshocked mass estimate agrees with predictions from dynamical models. We also consider the presence, or absence, of cold iron- and carbon-rich ejecta and how these affect our calculations. Finally we reconcile the intrinsic absorption from unshocked ejecta with the turnover in Cas A's integrated spectrum documented decades ago at much lower frequencies. These and other recent observations below 100 MHz confirm that spatially resolved thermal absorption, when extended to lower frequencies and higher resolution, will offer a powerful new tool for low frequency astrophysics.

  6. Exospheric hydrogen density estimates from absorption dips in GOES solar irradiance measurements

    NASA Astrophysics Data System (ADS)

    Machol, J. L.; Loto'aniu, P. T. M.; Snow, M. A.; Viereck, R. A.; Woodraska, D.; Jones, A. R.; Bailey, J. J.; Gruntman, M.; Redmon, R. J.

    2015-12-01

    We use extreme ultraviolet (EUV) measurements of solar irradiance from GOES satellites to derive daily hydrogen (H) density distributions of the terrestrial upper atmosphere. GOES satellites are in geostationary orbit and measure solar irradiance in a wavelength band around the Lyman-alpha line. When the satellite is on the night-side of the Earth looking through the atmosphere at the Sun, the irradiance exhibits absorption/scattering loss. Using these daily dips in the measured irradiance, we can estimate a simple hydrogen density distribution for the exosphere based on the integrated scattering loss along the line of sight towards the Sun. We show preliminary results from this technique and compare the derived exospheric H density distributions with other data sets for different solar, geomagnetic and atmospheric conditions. The GOES observations will be available for many years into the future and so potentially can provide continuous monitoring of exospheric H density for use in full atmospheric models. These measurements may also provide a means to validate, calibrate and improve other exospheric models. Improved models will help with the understanding of the solar-upper atmospheric coupling and the decay of the ions in the magnetospheric ring current during geomagnetic storms. Long-term observations of trends can be used to monitor impacts of climate change and improved satellite drag models will help satellite operator adjust satellite orbits during geomagnetic storms. We discuss planned improvements to this technique.

  7. The effect of high column density systems on the measurement of the Lyman-α forest correlation function

    SciTech Connect

    Font-Ribera, Andreu; Miralda-Escudé, Jordi E-mail: miralda@icc.ub.edu

    2012-07-01

    We present a study of the effect of High Column Density (HCD) systems on the Lyα forest correlation function on large scales. We study the effect both numerically, by inserting HCD systems on mock spectra for a specific model, and analytically, in the context of two-point correlations and linear theory. We show that the presence of HCDs substantially contributes to the noise of the correlation function measurement, and systematically alters the measured redshift-space correlation function of the Lyα forest, increasing the value of the density bias factor and decreasing the redshift distortion parameter β{sub α} of the Lyα forest. We provide simple formulae for corrections on these derived parameters, as a function of the mean effective optical depth and bias factor of the host halos of the HCDs, and discuss the conditions under which these expressions should be valid. In practice, precise corrections to the measured parameters of the Lyα forest correlation for the HCD effects are more complex than the simple analytical approximations we present, owing to non-linear effects of the damped wings of the HCD systems and the presence of three-point terms. However, we conclude that an accurate correction for these HCD effects can be obtained numerically and calibrated with observations of the HCD-Lyα cross-correlation. We also discuss an analogous formalism to treat and correct for the contaminating effect of metal lines overlapping the Lyα forest spectra.

  8. Time-resolved postdischarge absolute silicon monoxide density measurement by resonant absorption spectroscopy in a nonthermal atmospheric plasma

    SciTech Connect

    Motret, Olivier; Coursimault, Fabien; Pouvesle, Jean-Michel

    2006-11-01

    In this study we present the technique of resonant absorption spectroscopy diagnostic developed to estimate the density of silicon monoxide (SiO) molecules during the postdischarge of an atmospheric dielectric barrier discharge plasma. The ultraviolet (0,0) rovibrational band of the SiO(A {sup 1}{pi}-X {sup 1}{sigma}{sup +}) electronic transition was investigated. Effective values of absorption coefficient and absorption cross section for the rotational transitions under consideration were calculated. The SiO concentration was estimated by comparison between experimental and computed spectra. The self-absorption in the probe reactor was taken into account in the computed spectra.

  9. Absorption and resonance Raman study of the pyromellitic diahydride anion via density functional theory

    NASA Astrophysics Data System (ADS)

    Andruniow, T.; Pawlikowski, M.

    2000-05-01

    The electronic structure of the low-energy states of the pyromellitic diahydride (PMDA) anion is investigated in terms of the VWN (Vosco-Wilk-Nusair) the BP (Becke-Perdew) and the B3LYP density functional (DF) methods employed with 6-31G * basis sets. All the methods are shown to reproduce correctly the absorption and resonance Raman spectra in the region corresponding to the low-energy 1 2Au→1 2B3g transition. The discrepancies between the theory and experiment are attributed to a (weak) Dushinsky effect predominately due to a mixing of the ν3=1593 cm -1 and ν4=1342 cm -1 vibrations in the 1 2B3 g state of the PMDA radical.

  10. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory†

    PubMed Central

    Derricotte, Wallace D.; Evangelista, Francesco A.

    2015-01-01

    Orthogonality constrained density functional theory (OCDFT) is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree–Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine. PMID:25690350

  11. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  12. Column number density expressions through M = 0 and M = 1 point source plumes along any straight path

    NASA Astrophysics Data System (ADS)

    Woronowicz, Michael

    2016-11-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path.

  13. Tropospheric Nitrogen Dioxide Column Density Trends Seen from the 10-year Record of OMI Measurements over East Asia

    NASA Astrophysics Data System (ADS)

    Irie, H.; Muto, T.; Itahashi, S.; Kurokawa, J. I.

    2015-12-01

    The Ozone Monitoring Instrument (OMI) aboard the Aura satellite recorded the 10-year (2005-2014) of tropospheric nitrogen dioxide (NO2) vertical column density (VCD) data. The data set taken over East Asia was analyzed to estimate linear trends on national and grid bases for two periods of 2005-2011 and 2011-2014. The most striking features are leveling-off or decreasing trends seen in NO2 VCDs over China for 2011-2014 after continuous increases for 2005-2011. In particular, a significant reduction by ~14% occurred from 2013 through 2014, attaining to the level of 2009. The grid-basis trend analysis implies that the turnaround seen in the trends occurred on a province or larger spatial scale and was likely due mainly to the technical improvement such as the widespread use of de-NOx units. Another prominent features are seen in Japan, where NO2 VCDs decreased at a rate of ~4% per year from 2005 to 2011. The rate was almost unchanged between the two periods 2005-2011 and 2011-2014, while the significant power substitution of thermal power generation for the nuclear power generation took place in Japan after 2011, when a massive earthquake occurred off the Pacific coast of northern Japan. This reflects a less contribution of NOx emissions from the power plant sector than that from the transport sector in the Pacific Belt Zone lying over metropolitan areas.

  14. Satellite-observed NO2, SO2, and HCHO Vertical Column Densities in East Asia: Recent Changes and Comparisons with Regional Model

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Lee, P.; Kim, S.; Mok, J.; Yoo, H. L.; Bae, C.; Kim, B. U.; Lim, Y. K.; Woo, J. H.; Park, R.

    2015-12-01

    This study reports the recent changes in tropospheric NO2, SO2, and HCHO vertical column densities (VCD) in East Asia observed from multiple satellites, highlighting especially the annual trend changes of NO2 and SO2 over Beijing-Tianjin-Hebei (BTH) region of China since 2010. Tropospheric VCD data from Global Ozone Monitoring Experiment (GOME), SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY), Ozone Monitoring Instrument (OMI) and GOME-2, retrieved from the Royal Netherlands Meteorological Institute (KNMI) and OMI National Aeronautics and Space Administration (NASA) standard products, are utilized to investigate the annual trends of NO2, SO2, and HCHO VCDs from 2001 to 2015. They are also compared with simulations from Community Multi-scale Air Quality Model (CMAQ) based forecast system by the Integrated Multi-scale Air Quality System for Korea (IMAQS-K) of Ajou University. Until 2011, the changes in NO2 VCD over East Asian countries agree well with the findings of previous research, including the impact of the economic downturn during 2008-2009 and the subsequent quick recovery in China. After peaking in 2011, the NO2 VCD observations from active instruments (OMI and GOME-2) over China started to show a slower decreasing trend, mostly led by the rapid changes in the BTH region in northern China. On the other hand, SO2 started to decline earlier, from 2007, but inclined back from 2010 to 2012, and then back to declining trend since 2012. While satellite observations show dramatic recent changes, the model could not reproduce those changes mostly due to its use of fixed emission inventory. We conclude that rapid update of latest emission inventory is necessary for an accurate forecast of regional air quality in east Asia, especially for upcoming international sports events in PyeongChang (Korea), Tokyo (Japan) and Beijing (China) in 2018, 2020 and 2022, respectively.

  15. Regional modeling of tropospheric NO2 vertical column density over East Asia during the period 2000-2010: comparison with multisatellite observations

    NASA Astrophysics Data System (ADS)

    Itahashi, S.; Uno, I.; Irie, H.; Kurokawa, J.-I.; Ohara, T.

    2014-04-01

    Satellite observations of the tropospheric NO2 vertical column density (VCD) are closely correlated to, and thus can be used to estimate, surface NOx emissions. In this study, the NO2 VCD simulated by a regional chemical transport model with emissions data from the updated Regional Emission inventory in ASia (REAS) version 2.1 were validated through comparison with multisatellite observations during the period 2000-2010. Rapid growth in NO2 VCD (~11% year-1) driven by the expansion of anthropogenic NOx emissions was identified above the central eastern China (CEC) region, except for the period during the economic downturn. In contrast, slightly decreasing trends (~2% year-1) were identified above Japan accompanied by a decline in anthropogenic emissions. To systematically compare the modeled NO2 VCD, we estimated sampling bias and the effect of applying the averaging kernel information, with particular focus on the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) data. Using the updated REAS, the modeled NO2 VCD reasonably reproduced annual trends observed by multisatellites, suggesting that the rate of increase of NOx emissions estimated by the updated REAS inventory would be robust. Province-scale revision of emissions above CEC is needed to further refine emission inventories. Based on the close linear relationship between modeled and observed NO2 VCD and anthropogenic NOx emissions, NOx emissions in 2009 and 2010, which were not covered by the updated REAS inventory, were estimated. NOx emissions from anthropogenic sources in China in 2009 and 2010 were determined to be 26.4 and 28.5 Tg year-1, respectively, indicating that NOx emissions increased more than twofold between 2000 and 2010. This increase reflected the strong growth of anthropogenic emissions in China following the rapid recovery from the economic downturn from late 2008 until mid-2009. Our method consists of simple estimations from satellite observations and

  16. Plasmon resonances of Ag(001) and Ag(111) studied by power density absorption and photoyield

    NASA Astrophysics Data System (ADS)

    Raseev, Georges

    2013-09-01

    This paper models the surface and bulk plasmon resonances in photoabsorption and photoelectron spectra (PES) of the Ag(001) and the Ag(111) surfaces in the region of 2.8-10 eV excited with a p or transverse magnetic linearly polarized laser incident at 45°. Using the recently developed vector potential from electron density-coupled integro-differential equations (VPED-CIDE, [1,2]) model, we calculate the electron escaping probability from the power density absorption, Feibelman's parameter d⊥, the reflectance and the Fermi PE cross section. In the PES experiment the work function is lowered from 4.5 to 2.8 eV by adsorption of sodium. In our model, this lowering is introduced by adding a phenomenological term to the DFT-LDA model potential of Chulkov et al. [3]. For both Ag(001) and Ag(111), the calculated observables display two plasmon resonances, the multipole surface at 3.70 eV and the bulk at 3.90 eV, in fair agreement with the experimental PES of Barman et al. [4,5] and the reflectance. Except for the Fermi PE cross section of Ag(001) which does not display the multipole surface plasmon resonance at 3.70 eV. This poor result is probably due to a poor calculation of the conduction band wave functions obtained from the Schrödinger equation using the modified DFT-LDA model potential of Chulkov et al.

  17. Titanium density analysed by optical absorption and emission spectroscopy in a dc magnetron discharge

    NASA Astrophysics Data System (ADS)

    Gaillard, M.; Britun, N.; Kim, Yong M.; Han, Jeon G.

    2007-02-01

    This paper presents an optical diagnostic examination of dc planar magnetron discharge used for titanium deposition at 30 mTorr in argon bulk gas. The results were obtained by optical absorption (OAS) and emission (OES) spectroscopy for two distances from the target without substrate. The absolute density of titanium in the ground and metastable states at 4 cm from the target ranged, respectively, between 8 × 1010 cm-3 and 1012 cm-3 and between 6 × 1010 cm-3 and 3 × 1011 cm-3, in the range 0.2-1.0 A. OES results were used to prepare an assumed interpretation in terms of differences in loss mechanisms, mainly by either diffusion towards the walls for all particles at 8 cm from the target or collision losses for non-radiative species at 4 cm from the target, except for the titanium ground state. This was confirmed by our results of the argon metastable density measurement at 4 cm which was constant at around 7 × 1010 cm-3 with discharge current.

  18. Two photon absorption laser induced fluorescence measurements of neutral density in a helicon plasma

    SciTech Connect

    Galante, M. E.; Magee, R. M.; Scime, E. E.

    2014-05-15

    We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5 MW/cm{sup 2}), narrow bandwidth (0.1 cm{sup −1}) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2 cm, a time resolution of 10 ns, and a measurement cadence of 20 Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1 ms. Additionally, we find that neutral hydrogen atoms are born with 0.08 eV temperatures, not 2 eV as is typically assumed.

  19. Spectral Signature of Column Solar Radiation Absorption During the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Revision

    SciTech Connect

    O'Hirok, William; Gautier, Catherine; Ricchiazzi, Paul

    1999-11-01

    Spectral and broadband shortwave radiative flux data obtained from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) are compared with 3-D radiative transfer computations for the cloud field of October 30, 1995. Because the absorption of broadband solar radiation in the cloudy atmosphere deduced from observations and modeled differ by 135 Wm{sup -2}, we performed a consistency analysis using spectral observations and the model to integrate for wavelengths between the spectral observations. To match spectral measurements, aerosols need a reduction in both single scattering albedo (from 0.938 to 0.82) and asymmetry factor (from 0.67 to 0.61), and cloud droplets require a three-fold increase in co-albedo. Even after modifying the model inputs and microphysics the difference in total broadband absorption is still of the order of 75Wm{sup -2}. Finally, an unexplained absorber centered around 1.06 {micro}m appears in the comparison that is much too large to be explained by dimers.

  20. REVERSAL CYCLIC LOADING TEST OF REINFORCED CONCRETE COLUMN WITH HIGH DENSITY LONGITUDINAL REINFORCEMENT CONFINED BY SPIRAL REINFORCEMENT

    NASA Astrophysics Data System (ADS)

    Ohba, Mitsuaki; Sato, Akiko; Ishibashi, Tadayoshi

    In case of that column diameter is restricted by the narrow construction space, Concrete filled steel tube column is used. Authors developed new arrangement of bars that the range of longitudinal reinforcement ratio is from 14.8% to 24.7% and the longitudinal reinforcements are reinforced by spiral reinforcement. For the confirmation of the damage form and the deformation performance of the column with new bar arrangement at the earthquake, static reversal cyclic loading test was carried out. The parameters are longitudinal reinforcement ratio, shear span ratio and strength ratio. As the result, the damage form showed different trends due to longitudinal reinforcement ratio, shear span ratio and flexural strength and shear strength ratio. And specimens with the new bar arrangement had a good ductility with rotation angle of the column more than 1/10 and no rapid decline of strength. And, it is possible to evaluate ultimate bending capacity by considering the damage situation at maximum load.

  1. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    PubMed

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  2. Absorption Spectra and Photoreactivity of p-Aminobenzophenone by Time-dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Cheng, Xue-mei; Huang, Yao; Ma, Jian-yi; Li, Xiang-yuan

    2007-06-01

    The absorption spectral properties of para-aminobenzophenone (p-ABP) were investigated in gas phase and in solution by time-dependent density functional theory. Calculations suggest that the singlet states vary greatly with the solvent polarities. In various polar solvents, including acetonitrile, methanol, ethanol, dimethyl sulfoxide, and dimethyl formamide, the excited S1 states with charge transfer character result from π → π* transitions. However, in nonpolar solvents, cyclohexane, and benzene, the S1 states are the result of n → π* transitions related to local excitation in the carbonyl group. The excited T1 states were calculated to have ππ* character in various solvents. From the variation of the calculated excited states, the band due to π → π* transition undergoes a redshift with an increase in solvent polarity, while the band due to n → π* transition undergoes a blueshift with an increase in solvent polarity. In addition, the triplet yields and the photoreactivities of p-ABP in various solvents are discussed.

  3. PMSE strength during enhanced D region electron densities: Faraday rotation and absorption effects at VHF frequencies

    NASA Astrophysics Data System (ADS)

    Chau, Jorge L.; Röttger, Jürgen; Rapp, Markus

    2014-10-01

    In this paper we study the effects of absorption and Faraday rotation on measurements of polar mesosphere summer echoes (PMSE). We found that such effects can produce significant reduction of signal-to-noise ratio (SNR) when the D region electron densities (Ne) are enhanced, and VHF radar systems with linearly polarized antennas are used. In particular we study the expected effects during the strong solar proton event (SPE) of July 2000, also known as the Bastille day flare event. During this event, a strong anti-correlation between the PMSE SNR and the D-region Ne was found over three VHF radar sites at high latitudes: Andøya, Kiruna, and Svalbard. This anti-correlation has been explained (a) in terms of transport effects due to strong electric fields associated to the SPE and (b) due to a limited amount of aerosol particles as compared to the amount of D-region electrons. Our calculations using the Ne profiles used by previous researchers explain most, if not all, of the observed SNR reduction in both time (around the SPE peak) and altitude. This systematic effect, particularly the Faraday rotation, should be recognized and tested, and possibly avoided (e.g., using circular polarization), in future observations during the incoming solar maximum period, to contribute to the understanding of PMSE during enhanced D region Ne.

  4. Selective speciation of inorganic antimony on tetraethylenepentamine bonded silica gel column and its determination by graphite furnace atomic absorption spectrometry.

    PubMed

    Mendil, Durali; Bardak, Hilmi; Tuzen, Mustafa; Soylak, Mustafa

    2013-03-30

    A speciation system for antimony (III) and antimony (V) ions that based on solid phase extraction on tetraethylenepentamine bonded silica gel has been established. Antimony was determined by graphite furnace atomic absorption spectrometry (GF-AAS). Analytical conditions including pH, sample volume, etc., were studied for the quantitative recoveries of Sb (III) and Sb (V). Matrix effects on the recovery were also investigated. The recovery values and detection limit for antimony (III) at optimal conditions were found as >95% and 0.020 μg L(-1), respectively. Preconcentration factor was calculated as 50. The capacity of adsorption for the tetraethylenepentamine bonded silica gel was 7.9 mg g(-1). The validation was checked by analysis of NIST SRM 1573a Tomato laves and GBW 07605 Tea certified reference materials. The procedure was successfully applied to speciation of antimony in tap water, mineral water and spring water samples. Total antimony was determined in refined salt, unrefined salt, black tea, rice, tuna fish and soil samples after microwave digestion and presented enrichment method combination.

  5. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    PubMed Central

    Bianchin, Joyce Nunes; Martendal, Edmar; Carasek, Eduardo

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precision were 3.4 μg L−1 and 3.8% (n = 6, 15 μg L−1), respectively. The enrichment factor and the linear working range were, respectively, 21 and 10–50 μg L−1. Results for recovery tests using different water samples were between 96 and 107%. The proposed methodology was applied with success for the determination of Ag in water used to wash clothes impregnated with silver nanoparticles, supplied by a factory located in Santa Catarina, Brazil. PMID:21804766

  6. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\gt 17.2 requires a broken power law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory

  7. VizieR Online Data Catalog: HI4PI spectra and column density maps (HI4PI team+, 2016)

    NASA Astrophysics Data System (ADS)

    Hi4PI Collaboration; Ben Bekhti, N.; Floeer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M. R.; Dedes, L.; Ford, H. A.; Gibson, B. K.; Haud, U.; Janowiecki, S.; Kalberla, P. M. W.; Lockman, F. J.; McClure-Griffiths, N. M.; Murphy, T.; Nakanishi, H.; Pisano, D. J.; Staveley-Smith, L.

    2016-09-01

    The HI4PI data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s0°; -470km/scolumn density distribution, both, in a (1) HealPIX-grid binary table (nside=1024, Galactic coordinates, Ring indexing scheme), and (2) Standard FITS 2D images in four map projections, AIT, CAR, MOL, and SFL. Various velocity intervals were applied to calculate NHI. Equatorial and Galactic coordinate systems are provided. (16 data files).

  8. Metastable argon atom density in complex argon/acetylene plasmas determined by means of optical absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Sushkov, Vladimir; Herrendorf, Ann-Pierra; Hippler, Rainer

    2016-10-01

    Optical emission and absorption spectroscopy has been utilized to investigate the instability of acetylene-containing dusty plasmas induced by growing nano-particles. The density of Ar(1s5) metastable atoms was derived by two methods: tunable diode laser absorption spectroscopy and with the help of the branching ratio method of emitted spectral lines. Results of the two techniques agree well with each other. The density of Ar(1s3) metastable atoms was also measured by means of optical emission spectroscopy. The observed growth instability leads to pronounced temporal variations of the metastable and other excited state densities. An analysis of optical line ratios provides evidence for a depletion of free electrons during the growth cycle but no indication for electron temperature variations.

  9. Density functional calculations of the vibronic structure of electronic absorption spectra.

    PubMed

    Dierksen, Marc; Grimme, Stefan

    2004-02-22

    Calculations of the vibronic structure in electronic spectra of large organic molecules based on density functional methods are presented. The geometries of the excited states are obtained from time-dependent density functional (TDDFT) calculations employing the B3LYP hybrid functional. The vibrational functions and transition dipole moment derivatives are calculated within the harmonic approximation by finite difference of analytical gradients and the transition dipole moment, respectively. Normal mode mixing is taken into account by the Duschinsky transformation. The vibronic structure of strongly dipole-allowed transitions is calculated within the Franck-Condon approximation. Weakly dipole-allowed and dipole-forbidden transitions are treated within the Franck-Condon-Herzberg-Teller and Herzberg-Teller approximation, respectively. The absorption spectra of several organic pi systems (anthracene, pentacene, pyrene, octatetraene, styrene, azulene, phenoxyl) are calculated and compared with experimental data. For dipole-allowed transitions in general a very good agreement between theory and experiment is obtained. This indicates the good quality of the optimized geometries and harmonic force fields. Larger errors are found for the weakly dipole-allowed S0 --> S1 transition of pyrene which can tentatively be assigned to TDDFT errors for the relative energies of excited states close to the target state. The weak bands of azulene and phenoxyl are very well described within the Franck-Condon approximation which can be explained by the large energy gap (>1.2 eV) to higher-lying excited states leading to small vibronic couplings. Once corrections are made for the errors in the theoretical 0-0 transition energies, the TDDFT approach to calculate vibronic structure seems to outperform both widely used ab initio methods based on configuration interaction singles or complete active space self-consistent field wave functions and semiempirical treatments regarding accuracy

  10. The ultraviolet absorption spectrum of the quasar PKS 0405-12 and the local density of Lyman-alpha absorption systems

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Jannuzi, Buell T.; Schneider, Donald P.; Hartig, George F.

    1993-01-01

    A sample of 32 absorption lines has been identified in the ultraviolet spectrum of the z = 0.57 quasar PKS 0405-12. Data cover the wavelength range 1190-3260 A. There are 10 extragalactic Ly-alpha absorption lines in the complete sample, all with observed equivalent widths greater than or equal to 0.40 A; three of the Ly-alpha lines have Ly-beta counterparts. The number of Ly-alpha lines observed in the spectrum of PKS 0405-12 is within 1 sigma of the number predicted on the basis of previous HST observations of 3C 273 and of H1821 + 643. Combining the HST observations of 3C 273, H1821 + 643, and PKS 0405-12, we estimate the local number density of Ly-alpha systems with rest equivalent widths larger than 0.32 A to be about 15 +/- 4 Ly-alpha lines per unit redshift. Ground-based images reveal a rich field of galaxies in the direction of PKS 0405-12, including many galaxies with the brightnesses and sizes expected if they belong to a cluster associated with the quasar. The quasar spectrum does not show any evidence for absorption at the redshift of the emission lines, indicating a covering factor of less than unity for the halos of galaxies in the cluster around PKS 0405 - 12.

  11. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm(-2)d(-1), while during counter-current operation biomass productivity decreased to 8.7±0.5gm(-2)d(-1) as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation.

  12. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    of Arsenic- Water Complexes Using Density Functional Theory June 3, 2016 Approved for public release; distribution is unlimited. L. Huang S.g...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic- Water Complexes Using... water molecules should be associated with response features that are intermediate between that of isolated molecules and that of a bulk system. DFT and

  13. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    PubMed

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (<10% by weight), the polaron signal rises gradually over ∼1 ps with most polarons generated after 200 fs, while for higher acceptor concentrations (>10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  14. Validation of SCIAMACHY Ozone Column Densities and Profiles Using Ground-Based FTIR and Millimeter Wave Measurements

    NASA Astrophysics Data System (ADS)

    Kopp, G.; Blumenstock, Th.; Brinksma, E.; Eskes, H.; Griesfeller, A.; Hase, F.; Hochschild, G.; Kramer, I.; Mikuteit, S.; Raffalski, U.; van der A, R.

    2004-08-01

    Ground-based FTIR and millimeter wave measurements of the Institute of Meteorology and Climate Research (IMK), Forschungszentrum Karlsruhe, and the Swedish Institute of Space Physics (IRF) are used for validation of SCIAMACHY ozone measurements. FTIR and millimeter wave measurements used for this study were routinely carried out between 2002 and 2004 at IRF at Kiruna, Sweden. In addition IMK carried out millimeter wave measurements on Mount Zugspitze in the Alps in 2003. SCIAMACHY level 2 NRT-products of 2002 are only validated by FTIR data since millimeter wave observations started in late 2002 when SCIAMACHY data were unavailable. For the years 2003 and early 2004 total ozone column abundances retrieved with the TOSOMI algorithm of the Royal Netherlands Meteorological Institute (Koninklijk Nederlands Meteorologisch Instituut, KNMI) are validated by the FTIR and microwave measurements. Finally, ozone limb profiles between July and November 2002 taken from the current SCIA Level 2 Off-Line masterset are validated by the FTIR measurements at Kiruna

  15. Absorption Spectra of Fe, Mn, and Mg Water Complexes Calculated Using Density Functional Theory

    DTIC Science & Technology

    2013-08-20

    the calculated absorption spectra of isolated molecules can help to identify intramolecular vibrational modes of various materials. A series of...Transformation A molecule in 3-dimensions has a total of 3N-6 normal mode vibrations . The Schrodinger equation for the harmonic...oscillations of these normal modes has known solutions. The quantum mechanical spectrum of each of these vibrations is given in the harmonic approximation

  16. Studies of the differential absorption rocket experiment. [to measure atmospheric electron density

    NASA Technical Reports Server (NTRS)

    Ginther, J. C.; Smith, L. G.

    1975-01-01

    Investigations of the ionosphere, in the rocket program of the Aeronomy Laboratory, include a propagation experiment, the data from which may be analyzed in several modes. This report considers in detail the differential absorption experiment. The sources of error and limitations of sensitivity are discussed. Methods of enhancing the performance of the experiment are described. Some changes have been made in the system and the improvement demonstrated. Suggestions are made for further development of the experiment.

  17. The physical properties of giant molecular cloud complexes in the outer Galaxy - Implications for the ratio of H2 column density to (C-12)O intensity

    NASA Technical Reports Server (NTRS)

    Sodroski, T. J.

    1991-01-01

    The physical properties of 35 giant molecular cloud complexes in the outer Galaxy were derived from the Goddard-Columbia surveys of the Galactic plane region (Dame et al., 1987). The spatial and radial velocity boundaries for the individual cloud complexes were estimated by analyzing the spatial and velocity structure of emission features in the (C-12)O surveys, and the distance to each cmplex was determined kinematically on the assumption of a flat rotation curve. The ratio of the H2 column density to the (C-12)O intensity for the outer Galaxy complexes was found to be about 6.0 x 10 to the 20th molecules/sq cm K per km/sec, which is by a factor of 2-3 greater than the value derived by other auhtors for the inner Galaxy complexes. This increase in the H2 column density/(C-12)O intensity with the distance from with the Galactic center is consistent with predictions of the optically thick cloudlet model of giant molecular cloud complexes.

  18. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  19. Comet P/Giacobini-Zinner electron and H2O column densities from ICE and ground-based observations

    NASA Technical Reports Server (NTRS)

    Meyer-Vernet, N.; Strauss, Michael A.; Steinberg, J. L.; Spinrad, Hyron; Mccarthy, Patrick J.

    1986-01-01

    An H2O(+) emission profile extracted from an optical CCD spectrogram obtained during the ICE/Giacobini-Zinner encounter is compared to the electron density profile deduced from in-situ measurements by the ratio experiment aboard ICE. It is concluded that the electrons and the H2O(+) ions are distributed similarly 9600 km tailward from the cometary nucleus; that the ratio of number densities of H2O(+) ions to electrons is 1/4 at this point; and that the width of the plasma sheet is 16,000 km.

  20. D-region electron densities obtained by differential absorption and phase measurements with a 3-MHz-Doppler radar

    NASA Astrophysics Data System (ADS)

    Singer, W.; Latteck, R.; Friedrich, M.; Dalin, P.; Kirkwood, S.; Engler, N.; Holdsworth, D.

    2005-08-01

    A Doppler radar at 3.17 MHz has been installed close to the Andøya Rocket Range as part of the ALOMAR observatory at Andenes, Norway (69.3°N, 16.0°E) in summer 2002 to improve the ground based capabilities for measurements of small scale features and electron number densities in the mesosphere. The main feature of the new radar is the transmitting/receiving antenna which is arranged as a Mills Cross of 29 crossed half-wave dipoles with a minimum beam width of about 7°. The modular transceiver system provides high flexibility in beam forming and pointing as well as in switching of the polarisation between ordinary and extraordinary mode on transmission and reception. Doppler winds and electron number densities can be measured between about 55 km and 90 km with a time resolution of 9 minutes. The electron number density profiles derived with differential absorption (DAE) and differential phase (DPE) measurements are in remarkable good agreement. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes in 2004/2005, the response of D-region electron densities to geomagnetic disturbances and solar proton events. The results are compared with rocket measurements from Andenes and with observations from EISCAT VHF radar at Tromsø.

  1. Ground state bromine atom density measurements by two-photon absorption laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Sirse, N.; Foucher, M.; Chabert, P.; Booth, J.-P.

    2014-12-01

    Ground state bromine atom detection by two-photon absorption laser-induced fluorescence (TALIF) is demonstrated. The (4p5) {^2Po3/2} bromine atoms are excited by two-photon absorption at 252.594 nm to the (5p) {^4So3/2} state and detected by 635.25 nm fluorescence to the (5s) 4P5/2 state. The atoms are generated in a radio-frequency inductively-coupled plasma in pure HBr. The excitation laser also causes some photodissociation of HBr molecules, but this can be minimized by not focussing the laser beam, still giving adequate signal levels. We determined the natural lifetime of the emitting (5p) {^4So3/2} state, τf^Br*=30.9 +/- 1.4 ns and the rate constant for quenching of this state by collision with HBr molecules, k_HBrQ = 1.02 +/- 0.07× 10-15 m3 s-1 .

  2. Balloon-Borne Submillimeter Polarimetry of the Vela C Molecular Cloud: Systematic Dependence of Polarization Fraction on Column Density and Local Polarization-Angle Dispersion

    NASA Astrophysics Data System (ADS)

    Fissel, Laura M.; Ade, Peter A. R.; Angilè, Francesco E.; Ashton, Peter; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Diego Soler, Juan; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2016-06-01

    We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μm data smoothed to a resolution of 2.‧5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p \\propto {{\\boldsymbol{N}}}-0.45 {{\\boldsymbol{S}}}-0.60, where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations.

  3. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    PubMed Central

    2014-01-01

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998

  4. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection-Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies.

    PubMed

    Dostert, Karl-Heinz; O'Brien, Casey P; Riedel, Wiebke; Savara, Aditya; Liu, Wei; Oehzelt, Martin; Tkatchenko, Alexandre; Schauermann, Swetlana

    2014-12-04

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection-absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111).

  5. Bias and uncertainty in the absorption emission measurement of atomic sodium density in the SSME exit plane

    NASA Technical Reports Server (NTRS)

    Bauman, Leslie E.

    1990-01-01

    The measurement of atomic sodium concentration in the TTB 019 firing of April 1990 is significant in that it represents the first measurement of density at the exit plane of the space shuttle main engine. The knowledge of the sodium density, combined with the certainty that the exit plane of the plume is optically thin at the sodium D-line wavelengths, provides essential information for evaluation of diagnostic techniques using sodium atoms, such as resonant Doppler velocimetry for temperature, pressure, and velocity through high resolution fluorescent lineshape analysis. The technique used for the sodium atom line transmission (SALT) measurements is that of resonant absorption emission using a hollow cathode lamp as the reference source. Through the use of two-dimensional kinetic (TDK) predictions of temperature and density for the flight engine case and radiative transfer calculations, this line-of-sight spectrally integrated transmission indicates a sodium atom concentration, i.e., mole fraction, of 0.91e-10. The subject of this paper is the assumptions and measurement uncertainties tied into the calculation. Because of the narrow shape of the source emission, the uncertainties in the absorption profile could introduce considerable bias in the measurement. The following were investigated: (1) the inclusion of hyperfine splitting of the D-lines in the calculation; (2) the use of the flight engine predictions of plume temperature and density versus those for the large throat engine; (3) the assumption of a Gaussian, i.e., Doppler, distribution for the source radiance with a temperature of 400 K; (4) the use of atomic collisional shift and width values for the work by Jongerius; and (5) a Doppler shift for a 7 degree outward velocity vector at the plume edge. Also included in the study was the bias introduced by an uncertainty in the measurement of the D1/D2 line ratio in the source.

  6. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    NASA Astrophysics Data System (ADS)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  7. Understanding measured water rotational temperatures and column densities in the very innermost coma of Comet 73P/Schwassmann-Wachmann 3 B

    NASA Astrophysics Data System (ADS)

    Fougere, N.; Combi, M. R.; Tenishev, V.; Rubin, M.; Bonev, B. P.; Mumma, M. J.

    2012-09-01

    Direct sublimation of a comet nucleus surface is usually considered to be the main source of gas in the coma of a comet. However, evidence from a number of comets including the recent spectacular images of Comet 103P/Hartley 2 by the EPOXI mission indicates that the nucleus alone may not be responsible for all, or possibly at times even most, of the total amount of gas seen in the coma. Indeed, the sublimation of icy grains, which have been injected into the coma, appears to constitute an important source. We use the fully-kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J., 685, 659-677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J., 732) to reproduce the measurements of column density and rotational temperature of water in Comet 73P-B/Schwassmann-Wachmann 3 obtained with a very high spatial resolution of ∼30 km using IRCS/Subaru in May 2006 (Bonev, B.P., Mumma, M.J., Kawakita, H., Kobayashi, H., Villanueva, G.L. [2008]. Icarus, 196, 241-248). For gas released solely from the cometary nucleus at a heliocentric distance of 1 AU, modeled rotational temperatures start at 110 K close to the surface and decrease to only several tens of degrees by 10-20 nucleus radii. However, the measured decay of both rotational temperature and column density with distance from the nucleus is much slower than predicted by this simple model. The addition of a substantial (distributed) source of gas from icy grains in the model slows the decay in rotational temperature and provides a more gradual drop in column density profiles. Together with a contribution of rotational heating of water molecules by electrons, the combined effects allow a much better match to the IRCS/Subaru observations. From the spatial distributions of water abundance and temperature measured in 73P/SW3-B, we have identified and quantified multiple mechanisms of release. The application of this tool to other comets may

  8. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  9. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  10. Evidence for two modes of water release in Comet 103P/Hartley 2: Distributions of column density, rotational temperature, and ortho-para ratio

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho P.; Villanueva, Geronimo L.; Paganini, Lucas; DiSanti, Michael A.; Gibb, Erika L.; Keane, Jacqueline V.; Meech, Karen J.; Mumma, Michael J.

    2013-02-01

    This paper presents long-slit spectra of H2O emission from the inner coma of Comet 103P/Hartley 2, acquired with NIRSPEC/Keck 2 during the comet's close approach to Earth in 2010. On UT 19.6 October 2010 the slit was oriented nearly orthogonal to the projected (in the plane of the sky) Sun-comet line, and the H2O rotational temperature and column density showed similar spatial distributions as a function of projected distance from the nucleus. On UT 22.5 October, the slit was oriented along the Sun-comet line, and the rotational temperatures revealed pronounced asymmetry while the column densities were nearly symmetric about the nucleus. We suggest this dichotomy reflects two qualitatively different mechanisms of volatile release, which introduce distinct rotational distributions in the sublimated material. Future modeling can test this hypothesis. We also report new retrievals of water nuclear spin species (ortho, para) in this comet, and we present the ortho-to-para ratio (OPR) for various projected nucleocentric distances. Our most precise individual measurement is OPR = 2.59 ± 0.13, corresponding to a nuclear spin temperature (Tspin) of 31 ± 3 K. A weighted mean of five independent measurements provides OPR = 2.79 ± 0.13 (T=37-4+8K). Hartley 2 is the first comet for which the OPR has been measured in multiple apparitions. Our values (in 2010) are in good agreement with those obtained two apparitions earlier by the Infrared Space Observatory. Since the comet lost a substantial amount of material between 1998 and 2010, we see no evidence for variation of the OPR with depth in the nucleus. Further discussion of the advantages, assumptions, and biases introduced by various approaches when quantifying nuclear spin species (observing techniques, models and model parameters, sources of uncertainty) would likely aid in interpreting the OPRs measured in cometary volatiles.

  11. Application of tandem column solid phase extraction and flame atomic absorption spectrometry for the determination of inorganic and organically bound forms of iron in wine.

    PubMed

    Pohl, Pawel; Prusisz, Bartlomiej

    2009-03-15

    A tandem column solid phase extraction (SPE) procedure has been devised to examine the fractionation of Fe in wine. Wine was filtered through a 0.45 microm filter and then, the filtrate was driven through an adsorbing Amberlite XAD-7HP column followed by a cation exchange Dowex 50 W-x8-200 column. Three different Fe groupings are discriminated and assessed, including hydrophobic species of Fe bound to phenolic substances and related species (phenolic fraction), cationic species comprising simple Fe ions and labile Fe forms (cationic fraction), in addition to anionic and/or neutral Fe complexes with organic acids (residual fraction). The suitability of the procedure has been evaluated analyzing four bottled red wines. The results obtained were verified using another tandem column assemblage in which an adsorbing Amberlite XAD-16 column was exchanged by the Amberlite XAD-7HP column. The fractionation pattern ascertained for Fe in analyzed wines is discussed in reference to previously published works. In addition, a conditioning treatment and preparation of Amberlite XAD resins have been revised.

  12. Ultraviolet interstellar absorption lines from low-z galaxies

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1997-05-01

    The importance of studying absorption lines from z<<0.1 galaxies are discussed. The Mg II λλ2796 and 2803 Å doublet absorption is sensitive to low column density gas and has been used to search for absorption lines from low-z galaxies. Recent studies of abundances and depletion patterns toward the Small Magellanic Cloud (Welty et al. 1997) and the NGC 1705 sightline (Sahu & Blades, 1997) are reviewed.

  13. X-ray absorption spectroscopy of titanium oxide by time dependent density functional calculations.

    PubMed

    Fronzoni, G; De Francesco, R; Stener, M; Causà, M

    2006-05-25

    The potentiality of the time dependent density functional theory (TDDFT) for the description of core excitation spectra (XAS) in transition metal oxides is analyzed, considering the rutile form of TiO(2) as a test case. Cluster models are adopted to mimic the bulk, embedded within an array of point charges to simulate the Madelung potential. All of the edges, titanium and oxygen K and titanium L edges, are considered, and the TDDFT results are compared with the experimental data in order to assess the performance of the theoretical approach in dealing with this complex class of compounds. Satisfactory results have been obtained for the Ti and O K edges, while in the case of the Ti L edge some discrepancies with the experiment are still present. The configuration mixing explicitly included in the TDDFT model strongly influences the distribution of the 2p metal oscillator strength. The origin of the spectral features is investigated with the help of the partial density of the virtual states (PDOS) calculated for each core hole considered, which can be qualitatively compared with the theoretical spectra calculated in the Kohn-Sham one-electron approach.

  14. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    ERIC Educational Resources Information Center

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  15. Synthetic observations of molecular clouds in a galactic centre environment - I. Studying maps of column density and integrated intensity

    NASA Astrophysics Data System (ADS)

    Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Ragan, Sarah E.; Klessen, Ralf S.

    2016-02-01

    We run numerical simulations of molecular clouds, adopting properties similar to those found in the central molecular zone (CMZ) of the Milky Way. For this, we employ the moving mesh code AREPO and perform simulations which account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of gas and dust. We perform simulations using an initial density of n0 = 103 cm-3 and a mass of 1.3 × 105 M⊙. Furthermore, we vary the virial parameter, defined as the ratio of kinetic and potential energy, α = Ekin/|Epot|, by adjusting the velocity dispersion. We set it to α = 0.5, 2.0 and 8.0, in order to analyse the impact of the kinetic energy on our results. We account for the extreme conditions in the CMZ and increase both the interstellar radiation field (ISRF) and the cosmic ray flux (CRF) by a factor of 1000 compared to the values found in the solar neighbourhood. We use the radiative transfer code RADMC-3D to compute synthetic images in various diagnostic lines. These are [C II] at 158 μm, [O I] (145 μm), [O I] (63 μm), 12CO (J = 1 → 0) and 13CO (J = 1 → 0) at 2600 and 2720 μm, respectively. When α is large, the turbulence disperses much of the gas in the cloud, reducing its mean density and allowing the ISRF to penetrate more deeply into the cloud's interior. This significantly alters the chemical composition of the cloud, leading to the dissociation of a significant amount of the molecular gas. On the other hand, when α is small, the cloud remains compact, allowing more of the molecular gas to survive. We show that in each case the atomic tracers accurately reflect most of the physical properties of both the H2 and the total gas of the cloud and that they provide a useful alternative to molecular lines when studying the interstellar medium in the CMZ.

  16. Self-absorption Effects In Experimental Methods Used To Determine Electron Density And Gas Temperature In An Argon Microwave Plasma (SWP) Generated At Atmospheric Pressure

    SciTech Connect

    Santiago, I.; Munoz, J.; Calzada, M. D.

    2008-10-22

    In this work a procedure was applied to verify that self-absorption does not affect the spectral lines used in the experimental determination of the electron density and the gas temperature in surface wave discharges at atmospheric pressure. Therefore, the values of electron density and gas temperature obtained are not perturbed by this phenomenon.

  17. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex.

    PubMed

    Schaefer, Markus K; Hechavarría, Julio C; Kössl, Manfred

    2015-01-01

    Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (<50 ms) latency sinks, associated with thalamocortical projections, sinks with longer latencies have received less attention. Here, we analyzed laminar CSD patterns for the first 600 ms after stimulus onset in the primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks-beginning at 50 ms post stimulus latency-is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control.

  18. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    SciTech Connect

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-11

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  19. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    NASA Astrophysics Data System (ADS)

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-01

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  20. Band gap reduction in InNxSb1-x alloys: Optical absorption, k . P modeling, and density functional theory

    NASA Astrophysics Data System (ADS)

    Linhart, W. M.; Rajpalke, M. K.; Buckeridge, J.; Murgatroyd, P. A. E.; Bomphrey, J. J.; Alaria, J.; Catlow, C. R. A.; Scanlon, D. O.; Ashwin, M. J.; Veal, T. D.

    2016-09-01

    Using infrared absorption, the room temperature band gap of InSb is found to reduce from 174 (7.1 μm) to 85 meV (14.6 μm) upon incorporation of up to 1.13% N, a reduction of ˜79 meV/%N. The experimentally observed band gap reduction in molecular-beam epitaxial InNSb thin films is reproduced by a five band k . P band anticrossing model incorporating a nitrogen level, EN, 0.75 eV above the valence band maximum of the host InSb and an interaction coupling matrix element between the host conduction band and the N level of β = 1.80 eV. This observation is consistent with the presented results from hybrid density functional theory.

  1. Broadband antireflection and absorption enhancement of ultrathin silicon solar microcells enabled with density-graded surface nanostructures

    SciTech Connect

    Chan, Lesley; Kang, Dongseok; Lee, Sung-Min; Li, Weigu; Hunter, Hajirah; Yoon, Jongseung

    2014-06-02

    Density-graded surface nanostructures are implemented on ultrathin silicon solar microcells by silver-nanoparticle-catalyzed wet chemical etching to enable near-zero surface reflection over a broad wavelength range of incident solar spectrum as well as non-zeroth order diffraction and light trapping for longer wavelength photons, thereby achieving augmented photon absorption for ultrathin silicon microcells in a simple, cost-effective manner. The increase of absorbed photon flux through the “black silicon (b-Si)” surface translates directly into the corresponding enhancement of photovoltaic performance, where 5.7-μm b-Si microcells with the rational design of device configuration exhibit improved energy conversion efficiency by 148% and 50% with and without a diffuse backside reflector, respectively, compared to devices from the bare silicon without b-Si implementation. Systematic studies on nanostructured morphology, optical and electrical properties of b-Si microcells, together with semi-empirical numerical modeling of photon absorption, provide key aspects of underlying materials science and physics.

  2. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels

    PubMed Central

    Cohen, Jonathan C.; Pertsemlidis, Alexander; Fahmi, Saleemah; Esmail, Sophie; Vega, Gloria L.; Grundy, Scott M.; Hobbs, Helen H.

    2006-01-01

    An approach to understand quantitative traits was recently proposed based on the finding that nonsynonymous (NS) sequence variants in certain genes are preferentially enriched at one extreme of the population distribution. The NS variants, although individually rare, are cumulatively frequent and influence quantitative traits, such as plasma lipoprotein levels. Here, we use the NS variant technique to demonstrate that genetic variation in NPC1L1 contributes to variability in cholesterol absorption and plasma levels of low-density lipoproteins (LDLs). The ratio of plasma campesterol (a plant sterol) to lathosterol (a cholesterol precursor) was used to estimate relative cholesterol absorption in a population-based study. Nonsynonymous sequence variations in NPC1L1 were five times more common in low absorbers (n = 26 of 256) than in high absorbers (n = 5 of 256) (P < 0.001). The rare variants identified in low absorbers were found in 6% of 1,832 African-Americans and were associated with lower plasma levels of LDL cholesterol (LDL-C) (96 ± 36 mg/dl vs. 105 ± 36 mg/dl; P = 0.005). These data, together with prior findings, reveal a genetic architecture for LDL-C levels that does not conform to current models for quantitative traits and indicate that a significant fraction of genetic variance in LDL-C is due to multiple alleles with modest effects that are present at low frequencies in the population. PMID:16449388

  3. Column chromatographic pre-concentration of iron(III) in alloys and biological samples with 1-nitroso-2-naphthol-3,6-disulphonate and benzyldimethyltetradecylammonium-perchlorate adsorbent supported on naphthalene using atomic absorption spectrometry.

    PubMed

    Miura, J; Arima, S; Satake, M

    1990-09-01

    The solid ion-pair material produced from the reaction between benzyldimethyltetradecylammonium chloride (BDTA) and sodium perchlorate on naphthalene provides the basis for a simple, rapid and selective technique for pre-concentrating iron from up to 500 ml of aqueous solution. Iron reacts with disodium 1-nitroso-2-naphthol-3,6-disulphonate (Nitroso-R salt) to form a water-soluble coloured chelate anion. The iron chelate anion forms a water-insoluble, stable iron-Nitroso-R-BDTA complex on naphthalene packed in a column. Trace amounts of iron are quantitatively retained on naphthalene in the pH range 3.5-7.5 and at a flow-rate of 1-2 ml min-1. The solid mass is dissolved out from the column with 5 ml of N,N-dimethylformamide and iron is determined by means of an atomic absorption spectrometer at 248 nm. The calibration graph is linear for concentrations of iron over the range of 0.5-20 micrograms in 5 ml of final solution. The standard deviation and relative standard deviation were calculated. The detection limit of the method was 0.0196 micrograms ml-1 of iron. The sensitivity for 1% absorption was 0.072 microgram ml-1 (0.165 microgram ml-1 by direct atomic absorption spectrometry of aqueous solution). The proposed method was applied to the determination of iron in standard alloys and biological samples.

  4. New concepts for the comparison of tropospheric NO2 column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Petetin, H.; Zhang, Q.; Beekmann, M.; Wagner, T.

    2015-07-01

    We compare tropospheric column densities (vertically integrated concentrations) of NO2 from three data sets for the metropolitan area of Paris during two extensive measurement campaigns (25 days in summer 2009 and 29 days in winter 2010) within the European research project MEGAPOLI. The selected data sets comprise a regional chemical transport model (CHIMERE) as well as two observational data sets: ground-based mobile Multi-AXis-Differential Optical Absorption Spectroscopy (car-MAX-DOAS) measurements and satellite measurements from the Ozone Monitoring Instrument (OMI). On most days, car-MAX-DOAS measurements were carried out along large circles (diameter ~ 35 km) around Paris. The car-MAX-DOAS results are compared to coincident data from CHIMERE and OMI. All three data sets have their specific strengths and weaknesses, especially with respect to their spatiotemporal resolution and coverage as well as their uncertainties. Thus we compare them in two different ways: first, we simply consider the original data sets. Second, we compare modified versions making synergistic use of the complementary information from different data sets. For example, profile information from the regional model is used to improve the satellite data, observations of the horizontal trace gas distribution are used to adjust the respective spatial patterns of the model simulations, or the model is used as a transfer tool to bridge the spatial scales between car-MAX-DOAS and satellite observations. Using the modified versions of the data sets, the comparison results substantially improve compared to the original versions. In general, good agreement between the data sets is found outside the emission plume, but inside the emission plumes the tropospheric NO2 vertical column densities (VCDs). are systematically underestimated by the CHIMERE model and the satellite observations (compared to the car-MAX-DOAS observations). One major result from our study is that for satellite validation close to

  5. Complexation of Neptunium(V) with Glutaroimide Dioxime: A Study by Absorption Spectroscopy, Microcalorimetry, and Density Functional Theory Calculations.

    PubMed

    Ansari, Seraj A; Bhattacharyya, Arunasis; Zhang, Zhicheng; Rao, Linfeng

    2015-09-08

    Complexation of NpO2(+) ions with glutaroimide dioxime (H2L), a cyclic imide dioxime ligand that has been shown to form strong complexes with UO2(2+) in aqueous solutions, was studied by absorption spectroscopy and microcalorimetry in 1.0 M NaClO4 aqueous solutions. NpO2(+) forms two successive complexes, NpO2(HL)(aq) and NpO2(HL)2(-) (where HL(-) stands for the partially deprotonated glutaroimide dioxime ligand), with stability constants of log β111 = 17.8 ± 0.1 and log β122 = 33.0 ± 0.2, respectively. The complexation is both enthalpy- and entropy-driven, with negative enthalpies (ΔH111 = -52.3 ± 1.0 kJ/mol and ΔH122 = -96.1 ± 1.4 kJ/mol) and positive entropies (ΔS111 = 164 ± 3 J/mol/K and ΔS122 = 310 ± 4 J/mol/K). The thermodynamic parameters suggest that, similar to complexation of UO2(2+), the ligand coordinates with NpO2(+) in a tridentate mode, via the two oxygen atoms of the oxime groups and the nitrogen atom of the imide group. Density functional theory calculations have helped to interpret the optical absorption properties of the NpO2(HL)2(-) complex, by showing that the cis and trans configurations of the complex have very similar energies so that both configurations could be present in the aqueous solutions. It is the noncentrosymmetric cis configuration that makes the 5f → 5f transition allowable so that the NpO2(HL)2(-) complex absorbs in the near-IR region.

  6. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p–carboxyl, C 2p–side chain, and C 2p–carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  7. L-Asparagine crystals with wide gap semiconductor features: optical absorption measurements and density functional theory computations.

    PubMed

    Zanatta, G; Gottfried, C; Silva, A M; Caetano, E W S; Sales, F A M; Freire, V N

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences Δa, Δb, Δc between theory and experiment were as small as 0.020, 0.051, and 0.022 Å, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z → Γ and Z → β transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to α3 → Γ, α1 → Γ, and α2 → Γ transitions, respectively. Δ-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2p-carboxyl, C 2p-side chain, and C 2p-carboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical

  8. Evidence for Two Modes of Water Release in Comet 103P/Hartley 2: Distributions of Column Density, Rotational Temperature, and Ortho-Para Ratio

    NASA Astrophysics Data System (ADS)

    Bonev, Boncho; Villanueva, G. L.; Paganini, L.; DiSanti, M. A.; Gibb, E. L.; Keane, J. V.; Meech, K. J.; Combi, M. R.; Mumma, M. J.

    2012-10-01

    We acquired high-resolution near-infrared spectra of H2O emission from comet 103P/Hartley-2 using NIRSPEC at Keck 2. Long-slit spectroscopy can directly probe the inner comae of comets via spectrally and spatially resolved measurements. This capability strengthens the quantitative view of conditions within the closest 200 km from the cometary nucleus, thereby providing direct constraints for models of density and temperature distributions in this collisionally dominated region of the coma. The near-Earth approach of comet 103P/Hartley 2 in 2010 presented an especially interesting opportunity to investigate the near-nucleus region of an active comet with substantial extended (vs. nuclear) release of water. We present spatially resolved measurements of rotational temperature and column density and discuss insights into the nature of volatile release. We also present spatially resolved measurements of the H2O ortho-para ratio (OPR). We compare these measurements with OPRs retrieved by various techniques during the 1998 and 2010 apparitions. We gratefully acknowledge support by the NSF Astronomy and Astrophysics Research Grants Program (PI/co-PI Bonev/Gibb), by the NASA Astrobiology Institute (PI: Meech, PI: Mumma), by the NASA Postdoctoral Program (Fellow: Paganini), and by NASA's Planetary Astronomy (PI: DiSanti; PI: Mumma; PI: Villanueva), Planetary Atmospheres (PI: Combi; PI: DiSanti; PI: Villanueva), and Discovery (PI: Meech) Programs. NOAO (through the Telescope System Instrumentation Program funded by NSF) and the University of Hawaii granted Keck-2 telescope time for this investigation.

  9. On Lunar Exospheric Column Densities and Solar Wind Access Beyond the Terminator from ROSAT Soft X-Ray Observations of Solar Wind Charge Exchange

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Snowden, S. L.; Sarantos, M.; Benna, M.; Carter, J. A.; Cravens, T. E.; Farrell, W. M.; Fatemi, S.; Hills, H. Kent; Hodges, R. R.; Holmstrom, M.; Kuntz, K. D.; Porter, F. Scott; Read, A.; Robertson, I. P.; Sembay, S. F.; Sibeck, D. G.; Stubbs, T. J.; Travnicek, P.; Walsh, B. M.

    2014-01-01

    We analyze the Rontgen satellite (ROSAT) position sensitive proportional counter soft X-ray image of the Moon taken on 29 June 1990 by examining the radial profile of the surface brightness in three wedges: two 19 deg wedges (one north and one south) 13-32 deg off the terminator toward the dark side and one wedge 38 deg wide centered on the antisolar direction. The radial profiles of both the north and the south wedges show significant limb brightening that is absent in the 38 deg wide antisolar wedge. An analysis of the soft X-ray intensity increase associated with the limb brightening shows that its magnitude is consistent with that expected due to solar wind charge exchange (SWCX) with the tenuous lunar atmosphere based on lunar exospheric models and hybrid simulation results of solar wind access beyond the terminator. Soft X-ray imaging thus can independently infer the total lunar limb column density including all species, a property that before now has not been measured, and provide a large-scale picture of the solar wind-lunar interaction. Because the SWCX signal appears to be dominated by exospheric species arising from solar wind implantation, this technique can also determine how the exosphere varies with solar wind conditions. Now, along with Mars, Venus, and Earth, the Moon represents another solar system body at which SWCX has been observed.

  10. Effect of temperature-dependent cross sections on O4 slant column density estimation by a space-borne UV-visible hyperspectral sensor

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Takemura, Toshihiko; Kim, Jhoon

    2017-03-01

    The sensitivities of oxygen dimer (O4) slant column densities (SCDs) were examined by applying temperature-dependent O4 cross sections using the radiative transfer model (RTM) calculation with the linearized pseudo-spherical vector discrete ordinate radiative transfer model. For the sensitivity study, we used a newly developed cross section database in place of the database used in the operational algorithm. Newly investigated O4 cross section databases for 203 K and 293 K were used for the radiance simulation by interpolating temperature for each atmospheric layer based on the vertical profile of standard atmosphere in the RTM. The effect of the temperature-dependent cross sections was a significant O4 SCD increase of 8.3% with dependence on satellite and solar viewing geometries. Furthermore, the O4 SCD generally increased by an estimated 3.9% based on the observation geometries of the Ozone Monitoring Instrument. For the long-term comparison, the O4 SCD estimated from the temperature-dependent cross sections corrects 20% of the total underestimation of O4 SCD between the observation and simulation. Although the surface pressure variation and background aerosol effect also correct the O4 SCD discrepancy, the effect of temperature-dependent cross sections was more important than the effects of surface pressure variation and background aerosols. Therefore, temperature dependence of the cross section in the RTM calculation is essential for the accurate simulation of O4 SCD.

  11. Preparation and characterization of magnetic nanoparticles for the on-line determination of gold, palladium, and platinum in mine samples based on flow injection micro-column preconcentration coupled with graphite furnace atomic absorption spectrometry.

    PubMed

    Ye, Juanjuan; Liu, Shuxia; Tian, Miaomiao; Li, Wanjun; Hu, Bin; Zhou, Weihong; Jia, Qiong

    2014-01-01

    A simple and highly selective procedure for on-line determination of trace levels of Au, Pd, and Pt in mine samples has been developed using flow injection-column adsorption preconcentration coupled with graphite furnace atomic absorption spectrophotometry (FI-column-GFAAS). The precious metals were adsorbed on the as-synthesized magnetic nanoparticles functionalized with 4'-aminobenzo-15-crown-5-ether packed into a micro-column and then eluted with 2% thiourea + 0.1 mol L(-1) HCl solution prior to the determination by GFAAS. The properties of the magnetic adsorbents were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Various experimental parameters affecting the preconcentration of Au, Pd, and Pt were investigated and optimized. Under the optimal experimental conditions, the detection limits of the developed technique were 0.16 ng mL(-1) for Au, 0.28 ng mL(-1) for Pd, and 1.01 ng mL(-1) for Pt, with enrichment factors of 24.3, 13.9, and 17.8, respectively. Precisions, evaluated as repeatability of results, were 1.1%, 3.9%, and 4.4% respectively for Au, Pd, and Pt. The developed method was validated by the analysis of Au, Pd, and Pt in certified reference materials and mine samples with satisfactory results.

  12. Density and lifetime evaluation of weakly ionized plasma for laser-triggered lightning by means of laser absorption

    NASA Astrophysics Data System (ADS)

    Yamaura, Michiteru

    2006-10-01

    The potential ability of lasers to control lightning can be improved by using a train of pulses with sub-millisecond separations [1-2]. Laser-triggered experiments in a small-scale (10 mm gap) atmospheric discharge facility show that the triggering is dramatically enhanced when a five-pulse train of sub-Joule energy is used instead of a single pulse. This effect increases rapidly as the pulse interval is reduced. In order to evaluate the trigger effect quantitatively, the plasma density produced by a pulsed KrF excimer laser with high repetition rate of kHz order was measured by means of laser absorption [3-4]. It appears that at a sub-millisecond pulse interval, sufficient positive and negative ions survive in subsequent pulses, thus enabling easy deionization. Hence, significant plasma build-up occurs from one pulse to the next. However, this persistence of ions would appear to imply that the rate of recombination (effectively a charge transfer between ions) is considerably lower than previously believed. References [1] M.Yamaura, et al: J.Appl.Phys. 95, 6007 (2004). [2] M.Yamaura,et al : Appl.Phys Lett. 86 131502 (2005). [3] M.Yamaura: J.Appl.Phys.98 043101 (2005) [4] M.Yamaura,et al : Appl.Phys Lett. 88 to be appeared in June (2006)

  13. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an air atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, Jim; Gogna, Gurusharan; Daniels, Stephen

    2016-09-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is used to measure atomic oxygen number density [O] in an air Atmospheric Pressure Plasma Jet (APPJ). A novel technique based on photolysis of O2 is used to calibrate the TALIF system ensuring the same species (O) is probed during calibration and measurement. As a result, laser intensity can be increased outside the TALIF quadratic laser power region without affecting calibration reliability as any high intensity saturation effects will be identical for calibration and experiment. Higher laser intensity gives stronger TALIF signals helping overcome weak TALIF signals often experienced at atmospheric pressure due to collisional quenching. O2 photo-dissociation and two-photon excitation of the resulting [O] are both achieved within the same laser pulse. The photolysis [O] is spatially non-uniform and time varying. To allow valid comparison with [O] in a plasma, spatial and temporal correction factors are required. Knowledge of the laser pulse intensity I0(t), and wavelength allows correction factors to be found using a rate equation model. The air flow into the jet was fixed and the RF power coupled into the system varied. The resulting [O] was found to increase with RF power.

  14. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  15. Picosecond-TALIF and VUV absorption measurements of absolute atomic nitrogen densities from an RF atmospheric pressure plasma jet with He/O2/N2 gas mixtures

    NASA Astrophysics Data System (ADS)

    West, Andrew; Niemi, Kari; Schröter, Sandra; Bredin, Jerome; Gans, Timo; Wagenaars, Erik

    2015-09-01

    Reactive Oxygen and Nitrogen species (RONS) from RF atmospheric pressure plasma jets (APPJs) are important in biomedical applications as well as industrial plasma processing such as surface modification. Atomic oxygen has been well studied, whereas, despite its importance in the plasma chemistry, atomic nitrogen has been somewhat neglected due to its difficulty of measurement. We present absolute densities of atomic nitrogen in APPJs operating with He/O2/N2 gas mixtures in open air, using picosecond Two-photon Absorption Laser Induced Fluorescence (ps-TALIF) and vacuum ultra-violet (VUV) absorption spectroscopy. In order to apply the TALIF technique in complex, He/O2/N2 mixtures, we needed to directly measure the collisional quenching effects using picosecond pulse widths (32ps). Traditional calculated quenching corrections, used in nanosecond TALIF, are inadequate due to a lack of quenching data for complex mixtures. Absolute values for the densities were found by calibrating against a known density of Krypton. The VUV absorption experiments were conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Atomic nitrogen densities were on the order of 1020 m-3 with good agreement between TALIF and VUV absorption. UK EPSRC grant EP/K018388/1.

  16. Dependence of the optical absorption and Na+ binding energies of coumarin-crown ethers on the size and attachment position of ether ring: density functional investigation.

    PubMed

    Kasapbasi, Esra; Yurtsever, Mine

    2013-01-01

    The crowned coumarin complexes are well known compounds for their ion recognition abilities. They undergo photophysical changes upon cation binding. On the basis of density functional theory calculations, we examined the sodium cation (Na+) binding energies of coumarin-crown ethers based on 15-Crown-5 (15 C5) and 18-Crown-6 (18 C6) as well as the optical absorptions of coumarin-crown ethers based on 12-Crown-4 (12 C4), 15 C5 and 18 C6. We explored why the attachment of crown ether ring to coumarin affects the Na+ binding energies of coumarin-crown ethers and also why the optical absorption of coumarin is modified by the crown ethers. Our study reveals that the Na+ ion binding energies of coumarin-crown ethers depend strongly on the size of the crown ether ring and also on the attachment position of the ether ring on coumarin. These factors affect the intramolecular charge transfer and overall stability of the complexes. The absorptions of the coumarin and ether ring parts of coumarin-crown ether are red shifted from those of isolated coumarin and crown ether, respectively. The red-shift of the coumarin ester group absorption is much stronger depending on the attachment position of the ether ring to coumarin. The absorption intensity of the coumarin part in coumarin-crown ethers is reduced for the benzene group absorption, but is enhanced for the ester group absorption.

  17. Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles

    NASA Astrophysics Data System (ADS)

    Balachandra Swamy, A. C.

    EXTENDED ABSTRACT Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles A.C.Balachandra swmay & Late C.S.G.K. Setty Absorption of radio waves in the ionosphere is of great practical importance for radio communication and navigation systems. The first attempt to measure the absolute magnitude of the radiowave absorption were made by appletion and Ratcliffe (1930) using the frequency change method for medium frequency waves reflected from the E-region. They concluded from their experiment that the main part of the attenuation occurred below the reflection level and named the absorption region, D-region of the ionosphere. One of the basic properties of the ionosphere is the absorption of high Frequency Radiowaves. HF radiowave absorption results mainly from collisions between electrons (which are set into forced oscillations by the electric field of the wave) and neutral air particles, the RF energy abstracted from the wave being converted into thermal energy. The radiowave absorption in the ionosphere depends on electron density and collision frequency. The most important absorbing regions are the D-region and the lower E-region (50-100 Km.) The regular diurnal variation of the electron density in this height range is caused mainly by the changes in the depth of penetration of solar XUV radiations with solar zenith angle under quiet solar conditions. In 1937 Dellinger J.H.identified fade outs in high frequency radio circuits as due to abnormal ionospheric absorption associated with solar flares. The onset of the fade out was usually rapid and the duration was typically tens of minutes like that of the visible flare, because of the sudden onset, the immediate effects of solar flares are known collectively as sudden Ionospheric Disturbances (STD). The phenomenon discovered by Dellinger is usually called a short Wave Fadeout(SWF). Since the SWF is due to abnormal absorption

  18. Column Store for GWAC: A High-cadence, High-density, Large-scale Astronomical Light Curve Pipeline and Distributed Shared-nothing Database

    NASA Astrophysics Data System (ADS)

    Wan, Meng; Wu, Chao; Wang, Jing; Qiu, Yulei; Xin, Liping; Mullender, Sjoerd; Mühleisen, Hannes; Scheers, Bart; Zhang, Ying; Nes, Niels; Kersten, Martin; Huang, Yongpan; Deng, Jinsong; Wei, Jianyan

    2016-11-01

    The ground-based wide-angle camera array (GWAC), a part of the SVOM space mission, will search for various types of optical transients by continuously imaging a field of view (FOV) of 5000 degrees2 every 15 s. Each exposure consists of 36 × 4k × 4k pixels, typically resulting in 36 × ∼175,600 extracted sources. For a modern time-domain astronomy project like GWAC, which produces massive amounts of data with a high cadence, it is challenging to search for short timescale transients in both real-time and archived data, and to build long-term light curves for variable sources. Here, we develop a high-cadence, high-density light curve pipeline (HCHDLP) to process the GWAC data in real-time, and design a distributed shared-nothing database to manage the massive amount of archived data which will be used to generate a source catalog with more than 100 billion records during 10 years of operation. First, we develop HCHDLP based on the column-store DBMS of MonetDB, taking advantage of MonetDB’s high performance when applied to massive data processing. To realize the real-time functionality of HCHDLP, we optimize the pipeline in its source association function, including both time and space complexity from outside the database (SQL semantic) and inside (RANGE-JOIN implementation), as well as in its strategy of building complex light curves. The optimized source association function is accelerated by three orders of magnitude. Second, we build a distributed database using a two-level time partitioning strategy via the MERGE TABLE and REMOTE TABLE technology of MonetDB. Intensive tests validate that our database architecture is able to achieve both linear scalability in response time and concurrent access by multiple users. In summary, our studies provide guidance for a solution to GWAC in real-time data processing and management of massive data.

  19. Inter-Comparison of Nitrogen Dioxide Column Densities Retrieved by Ground-Based Max-Doas Under Different Instrumental Conditions Over Mainz

    NASA Astrophysics Data System (ADS)

    Bruchkouski, I.; Dziomin, V.; Ortega, I.; Volkamer, R.; Krasouski, A.

    2013-12-01

    This study is dedicated to the instrumental differences between ground-based MAX-DOAS measurement devices. Our MAX-DOAS instrument, which has been developed at the National Ozone Monitoring Research & Education Center of the Belarusian State University for the purpose of nitrogen dioxide and other atmospheric trace gases monitoring over Belarus, features a rotating mirror and a telescope directly connected to the spectrometer with a two-dimensional CCD detector. Using a mirror instead of an optical fibre makes it possible to change the field of view of the telescope, and the whole instrument is rather compact and all its components are placed outdoors in the open air. However, this makes it quite difficult to ensure a top-quality thermostabilization. In the course of the MAX-DOAS campaign, which took place in the Max Planck Institute for Chemistry in Mainz, Germany in summer of 2013, we had a great opportunity to compare our instrument with other devices of different types. In the present study we make a comparison of nitrogen dioxide slant column densities (SCDs) during several days obtained by our instrument with that measured by the device from the Department of Chemistry and Biochemistry, University of Colorado (Boulder), which has a thermostabilization level of about 0.01 degrees Celsius. We investigate the influence of the spectrometer parts thermostabilization on nitrogen dioxide SCDs retrieval. Furthermore, it was possible to modify the telescope field of view for our instrument from 0.005 to 1.3 degrees, so we performed nitrogen dioxide SCDs retrieval for different fields of view at the same angle of elevation. We analyze these measurement results and obtain an optimal field of view with the aim to achieve the highest possible signal to noise ratio.

  20. Inter-relation between D-region electron densities from 3-MHz Doppler radar observations, riometer absorption, and the empirical model IMAZ at 69N

    NASA Astrophysics Data System (ADS)

    Singer, Werner; Gausa, Michael; Latteck, Ralph; Honary, Farideh; Friedrich, Martin

    Electron densities of the lower ionosphere are estimated using the Saura MF Doppler radar data since summer 2003. The radar is located near Andenes, Norway (69.3N, 16.0E) and operates at 3.17 MHz. The experiment utilizes partial reflections of ordinary and extraordinary component waves from scatterers in the altitude range 50-90 km to estimate electron number densities from differential absorption (DAE) and differential phase (DPE) measurements. Height profiles of electron density are obtained between about 55 km and 90 km with a height resolution of 1 km. The diurnal and seasonal variability of electron densities as well as the response of D-region electron densities to solar activity storms, solar proton events, and geomagnetic disturbances have been estimated. The imaging riometer AIRIS near Andenes monitors excessive radio wave absorption due to precipitating energetic particles. The vertical beam of the Saura MF radar coincides with the volume observed with the vertical AIRIS beam. The data from both systems allow the verification of the lower part of the neural network-based ionospheric model for the Auroral zone IMAZ-2. The model provides electron density profiles between 60 and 140 km for a given riometer absorption, time, and ionospheric state. It is based on electron density profiles from EISCAT UHF/VHF radars for altitudes above about 85 km and high-latitude rocket measurements, but the data below 70 km is almost exclusively due to sounding rockets. Comparisons of the IMAZ model with measured electron density profiles are discussed for different levels of solar activity and various particle precipitation events.

  1. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2014-10-15

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}←X{sup ~1}A{sub 1} system and B{sup 2}Δ−X{sup 2}Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF{sub 2}, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  2. Absolute CF2 density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF4/Ar plasmas

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Yao; Xu, Yong; Liu, Yong-Xin; Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min; Wang, You-Nian

    2014-10-01

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF2 radical density in dual-frequency capacitively coupled CF4/Ar plasmas, using the CF2 A ˜ 1 B 1 ← X ˜ 1 A 1 system of absorption spectrum. The rotational temperature of ground state CF2 and excited state CF was also estimated by using A ˜ 1 B 1 ← X ˜ 1 A 1 system and B 2 Δ - X 2 Π system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar*(3P2) and Ar*(3P0) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100 K higher than those of ground state CF2, and about 200 K higher than the translational gas temperatures. The dependences of the radical CF2 density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF2 radical and the gas heating mechanisms have also been discussed.

  3. X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac-Kohn-Sham density matrix.

    PubMed

    Kadek, Marius; Konecny, Lukas; Gao, Bin; Repisky, Michal; Ruud, Kenneth

    2015-09-21

    The solution of the Liouville-von Neumann equation in the relativistic Dirac-Kohn-Sham density matrix formalism is presented and used to calculate X-ray absorption cross sections. Both dynamical relaxation effects and spin-orbit corrections are included, as demonstrated by calculations of the X-ray absorption of SF6 near the sulfur L2,3-edges. We also propose an analysis facilitating the interpretation of spectral transitions from real-time simulations, and a selective perturbation that eliminates nonphysical excitations that are artifacts of the finite basis representation.

  4. Relationship Between Column-Density and Surface Mixing Ratio: Statistical Analysis of O3 and NO2 Data from the July 2011 Maryland DISCOVER-AQ Mission

    NASA Technical Reports Server (NTRS)

    Flynn, Clare; Pickering, Kenneth E.; Crawford, James H.; Lamsol, Lok; Krotkov, Nickolay; Herman, Jay; Weinheimer, Andrew; Chen, Gao; Liu, Xiong; Szykman, James; Tsay, Si-Chee; Loughner, Christipher

    2014-01-01

    To investigate the ability of column (or partial column) information to represent surface air quality, results of linear regression analyses between surface mixing ratio data and column abundances for O3 and NO2 are presented for the July 2011 Maryland deployment of the DISCOVER-AQ mission. Data collected by the P-3B aircraft, ground-based Pandora spectrometers, Aura/OMI satellite instrument, and simulations for July 2011 from the CMAQ air quality model during this deployment provide a large and varied data set, allowing this problem to be approached from multiple perspectives. O3 columns typically exhibited a statistically significant and high degree of correlation with surface data (R(sup 2) > 0.64) in the P- 3B data set, a moderate degree of correlation (0.16 < R(sup 2) < 0.64) in the CMAQ data set, and a low degree of correlation (R(sup 2) < 0.16) in the Pandora and OMI data sets. NO2 columns typically exhibited a low to moderate degree of correlation with surface data in each data set. The results of linear regression analyses for O3 exhibited smaller errors relative to the observations than NO2 regressions. These results suggest that O3 partial column observations from future satellite instruments with sufficient sensitivity to the lower troposphere can be meaningful for surface air quality analysis.

  5. 2-micron triple-pulse integrated path differential absorption lidar development for simultaneous airborne column measurements of carbon dioxide and water vapor in the atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-05-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  6. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  7. Modelling the role of electron attachment rates on column density ratios for C n H-/C n H (n=4,6,8) in dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Gianturco, F. A.; Grassi, T.; Wester, R.

    2016-10-01

    The fairly recent detection of a variety of anions in the interstellar molecular clouds have underlined the importance of realistically modelling the processes governing their abundance. To pursue this task, our earlier calculations for the radiative electron attachment (REA) rates for C4H-, C6H-, and C8H- are employed in the present work, within a broad network of other concurrent reactions, to generate the corresponding column density ratios of anion/neutral (A/N) relative abundances. The latter are then compared with those obtained in recent years from observational measurements. The calculations involved the time-dependent solutions of a large network of chemical processes over an extended time interval and included a series of runs in which the values of REA rates were repeatedly scaled over several orders of magnitude. Macroscopic parameters for the Clouds’ modelling were also varied to cover a broad range of physical environments. It was found that, within the range and quality of the processes included in the present network,and selected from state-of-the-art astrophysical databases, the REA values required to match the observed A/N ratios needed to be reduced by orders of magnitude for C4H- case, while the same rates for C6H- and C8H- only needed to be scaled by much smaller factors. The results suggest that the generally proposed formation of interstellar anions by REA mechanism is overestimated by current models for the C4H- case, for which is likely to be an inefficient path to formation. This path is thus providing a rather marginal contribution to the observed abundances of C4H-, the latter being more likely to originate from other chemical processes in the network, as we discuss in some detail in the present work. Possible physical reasons for the much smaller differences against observations found instead for the values of the (A/N) ratios in two other, longer members of the series are put forward and analysed within the evolutionary modelling

  8. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  9. A study of electron density profiles in relation to ionization sources and ground-based radio wave absorption measurements, part 2

    NASA Technical Reports Server (NTRS)

    Gnanalingam, S.; Kane, J. A.

    1975-01-01

    The D-region ion production functions are used to calculate the relationship between radio wave absorption and the flux level of X-rays in the 1-8A wavelength band. In order to bring this calculation into agreement with the empirically established relationship, it was found necessary to reduce by, a factor of about 5, the Meira nitric oxide densities below 90 km.

  10. New concepts for the comparison of tropospheric NO2 column densities derived from car-MAX-DOAS observations, OMI satellite observations and the regional model CHIMERE during two MEGAPOLI campaigns in Paris 2009/10

    NASA Astrophysics Data System (ADS)

    Shaiganfar, R.; Beirle, S.; Petetin, H.; Zhang, Q.; Beekmann, M.; Wagner, T.

    2015-03-01

    We compare tropospheric column densities (vertically integrated concentrations) of NO2 from three data sets for the metropolitan area of Paris during two extensive measurement campaigns (25 days in summer 2009 and 29 days in winter 2010) within the European research project MEGAPOLI. The selected data sets comprise a regional chemical transport model (CHIMERE) as well as two observational data sets: ground based mobile Multi-AXis-Differential Optical Absorption Spectroscopy (car-MAX-DOAS) measurements and satellite measurements from the Ozone Monitoring Instrument (OMI). On most days, car-MAX-DOAS measurements were carried out along large circles (diameter ~35 km) around Paris. The car-MAX-DOAS results are compared to coincident data from CHIMERE and OMI. All three data sets have their specific strengths and weaknesses, especially with respect to their spatio-temporal resolution and coverage as well as their uncertainties. Thus we compare them in two different ways: first, we simply consider the original data sets. Second, we compare modified versions making synergistic use of the complementary information from different data sets. For example, profile information from the regional model is used to improve the satellite data, observations of the horizontal trace gas distribution are used to adjust the respective spatial patterns of the model simulations, or the model is used as a transfer tool to bridge the spatial scales between car-MAX-DOAS and satellite observations. Using the modified versions of the data sets, the comparison results substantially improve compared to the original versions. In general, good agreement between the data sets is found outside the emission plume, but inside the emission plumes the tropospheric NO2 VCDs are systematically underestimated by the CHIMERE model and the satellite observations (compared to the car-MAX-DOAS observations). One major result from our study is that for satellite validation close to strong emission sources (like

  11. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Reininger, Charlotte; Woodfield, Kellie; Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M.; Farnsworth, Paul B.

    2014-10-01

    The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm- 3 and 0.011 × 1012 cm- 3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm- 3 and 0.97 × 1012 cm- 3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges.

  12. High steady-state column density of I(2P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements

    NASA Astrophysics Data System (ADS)

    Katsoprinakis, G. E.; Chatzidrosos, G.; Kypriotakis, J. A.; Stratakis, E.; Rakitzis, T. P.

    2016-09-01

    Steady-state column densities of 1017 cm‑2 of I(2P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I(2P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e2) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density 127I(2P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density 129I(2P3/2).

  13. High steady-state column density of I(2P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements

    PubMed Central

    Katsoprinakis, G. E.; Chatzidrosos, G.; Kypriotakis, J. A.; Stratakis, E.; Rakitzis, T. P.

    2016-01-01

    Steady-state column densities of 1017 cm−2 of I(2P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I(2P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e2) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density 127I(2P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density 129I(2P3/2). PMID:27629914

  14. High steady-state column density of I((2)P3/2) atoms from I2 photodissociation at 532 nm: Towards parity non-conservation measurements.

    PubMed

    Katsoprinakis, G E; Chatzidrosos, G; Kypriotakis, J A; Stratakis, E; Rakitzis, T P

    2016-09-15

    Steady-state column densities of 10(17) cm(-2) of I((2)P3/2) atoms are produced from photodissociation of I2 vapour at 290.5 K using 5 W of 532 nm laser light. Recombination of the I((2)P3/2) atoms at the cell walls is minimized by coating the cell surface with a hydrophobic silane (dimethyldichlorosilane/DMDCS). Operation at room temperature, and at an I2 vapour pressure of ~0.2 mbar, without using a buffer gas, allows relatively low Lorentz and Doppler widths of ~2π × 1.5 (FWHM) and ~2π × 150 (HW at 1/e(2)) Mrad/s, respectively, at the M1 transition of atomic iodine at 1315 nm. These high column densities and low linewidths are favorable for parity nonconservation optical rotation measurements near this M1 transition. Furthermore, as the cell is completely sealed, this method of production of high-density (127)I((2)P3/2) atoms is also compatible with using iodine radioisotopes, such as for the production of high-density (129)I((2)P3/2).

  15. Burdach's column.

    PubMed

    Pearce, J M S

    2006-01-01

    After the Greek physicians Herophilus and Galen, the major anatomical advances in the anatomy of the spinal cord were made possible by the microtome devised by Benedikt Stilling in January 1842. This enabled him to cut the frozen, thin sections and examine them, unstained,with the microscope. The technique founded future investigation of the cord's anatomy. Brown-Séquard, Türck, Clarke, Lissauer, Goll, and Flechsig all contributed. An important result of these progressing anatomical experiments was the identification of the posterior columns. In 1826, the German physiologist Karl Friedrich Burdach (1776-1847) described, from macroscopic study, the fasciculus cuneatus, known as the tract of Burdach: the lateral portion of the posterior columns of the cord that terminate in the nucleus cuneatus of the medulla.

  16. Ground based MAX-DOAS measurements of the total water vapor column and comparison with model results and satellite observations

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Mies, K.; Beirle, S.

    2012-04-01

    Multi-AXis- (MAX-) DOAS instruments observe scattered sun light under different, mostly slant elevation angles. From such measurements the tropospheric profile or column density of many atmospheric trace gases like e.g. NO2 or HCHO can be derived. Here we analyse the total atmospheric column density of water vapor from MAX-DOAS measurements made at Mainz, Germany in 2011. We performed measurements in the red spectral range, where water vapor shows some very characteristic and strong absorption features. The determination of the atmospheric water vapor column density (the so called vertical column density, VCD) is performed in three steps: first the slant column density of H2O is analysed from the measured spectra of scattered sun light. Second, a correction for the saturation of the H2O absorption is performed, which arises from the fact that the narrow H2O absorption lines are not resolved by our instrument. Third, the geometric approximation is applied to deterine the H2O VCD from the retrieved H2O slant column densities. In contrast to observations at shorter wavelengths, the application of the geometric approximation should lead to smaller errors because of the much weaker Rayleigh-scattering by air moilecules in the red spectral range. Also the effects of clouds are expected to be relatively mall, at least for mid and high level clouds. Information on the cloud properties can be derived from the simultaneously measured absorption of the oxygen molecule (O2) and oxygen dimer (O4). We compare our MAX-DOAS H2O VCD to indepenent data sets like satellite observations and model simulations.

  17. Self-consistent particle-in-cell modelling of short pulse absorption and transport for high energy density physics experiments

    NASA Astrophysics Data System (ADS)

    Ramsay, M. G.; Arber, T. D.; Sircombe, N. J.

    2016-03-01

    In order for detailed, solid density particle-in-cell (PIC) simulations to run within a reasonable time frame, novel approaches to modelling high density material must be employed. For the purposes of modelling high intensity, short pulse laser-plasma interactions, however, these approaches must be consistent with retaining a full PIC model in the low-density laser interaction region. By replacing the standard Maxwell field solver with an electric field update based on a simplified Ohm's law in regions of high electron density, it is possible to access densities at and above solid without being subject to the standard grid and time step constraints. Such a model has recently been implemented in the PIC code EPOCH. We present the initial results of a detailed two-dimensional simulation performed to compare the adapted version of the code with recent experimental results from the Orion laser facility.

  18. Development of a new green non-dispersive ionic liquid microextraction method in a narrow glass column for determination of cadmium prior to couple with graphite furnace atomic absorption spectrometry.

    PubMed

    Naeemullah; Kazi, Tasneem Gul; Tuzen, Mustafa; Shah, Faheem; Afridi, Hassan Imran; Citak, Demirhan

    2014-02-17

    Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L(-1) and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be <5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method. Application of the model method was productively performed by analysis of Cd in real surface water samples (tap and sea).

  19. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2015-09-03

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  20. Evolution of solitary density waves in stellar winds of early-type stars: A simple explanation of discrete absorption component behavior

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Klein, Larry; Altner, Bruce

    1994-01-01

    We model the evolution of a density shell propagating through the stellar wind of an early-type star, in order to investigate the effects of such shells on UV P Cygni line profiles. Unlike previous treatments, we solve the mass, momentum, and energy conservation equations, using an explicit time-differencing scheme, and present a parametric study of the density, velocity, and temperature response. Under the assumed conditions, relatively large spatial scale, large-amplitude density shells propagate as stable waves through the supersonic portion of the wind. Their dynamical behavior appears to mimic propagating 'solitary waves,' and they are found to accelerate at the same rate as the underlying steady state stellar wind (i.e., the shell rides the wind). These hydrodynamically stable structures quantitatively reproduce the anomalous 'discrete absorption component' (DAC) behavior observed in the winds of luminous early-type stars, as illustrated by comparisons of model predictions to an extensive International Ultraviolet Explorer (IUE) time series of spectra of zeta Puppis (O4f). From these comparisons, we find no conclusive evidence indicative of DACs accelerating at a significantly slower rate than the underlying stellar wind, contrary to earlier reports. In addition, these density shells are found to be consistent within the constraints set by the IR observations. We conclude that the concept of propagating density shells should be seriously reconsidered as a possible explanation of the DAC phenomenon in early-type stars.

  1. High density H2 associative absorption on Titanium alpha-borozene (Ti2B6H6): An ab-initio case study

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Alireza; Tymzcak, C. J.

    2011-03-01

    Hydrogen is considered as a clean energy carrier that could be a future replacement for our addiction to fossil fuels. However, in order to have hydrogen economy at its highest efficiently we need to store hydrogen at high volumetric and gravimetric density. Using the all electron hybrid density functional theory, we have designed a benzene-like-molecule, Ti2B6H6, which has the promise of achieving this goal. Our results show that the molecule can associatively absorb the hydrogen up to ten percent by weight of hydrogen, which exceeds the 2015 US department of energy target. In this presentation we will discuss the mechanisms of H2 absorption and possible applications of this novel molecule. This research is funded by the Welch Foundation under Grant J. 1675 and the Texas Southern University High Performance Computing Center.

  2. In Situ X-ray Absorption Fine Structure Studies on the Effect of pH on Pt Electronic Density during Aqueous Phase Reforming of Glycerol

    SciTech Connect

    Karim, Ayman M.; Howard, Christopher J.; Roberts, Benjamin Q.; Kovarik, Libor; Zhang, Liang; King, David L.; Wang, Yong

    2012-10-30

    In situ x-ray absorption spectroscopy (XAS) results on correlating the Pt local coordination and electronic structure with the Pt/C catalyst activity and selectivity during aqueous reforming of glycerol at different pH are reported. The results show that both low and high pH favor C-O cleavage over that of C-C. However, the selectivity towards C-O bond cleavage was higher under the acidic conditions. XANES measurements under reaction conditions showed that low pH increased the Pt electron density while the effect of basic conditions was minimal. ΔXANES was used to estimate the coverage of adsorbates under reaction conditions and the results suggest a change in the adsorbates coverage by the acidic conditions, resulting in higher electron density on Pt

  3. Charge transfer optical absorption and fluorescence emission of 4-(9-acridyl)julolidine from long-range-corrected time dependent density functional theory in polarizable continuum approach

    NASA Astrophysics Data System (ADS)

    Kityk, A. V.

    2014-07-01

    A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω≈0.245 Bohr-1) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr-1. Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening.

  4. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice.

    PubMed

    Van Willige, R W G; Linssen, J P H; Legger-Huysman, A; Voragen, A G J

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic films after dark storage at 20 degrees C. Owing to absorption, the amount of flavour compounds in the model solution exposed to LDPE decreased substantially. From the model flavour solution valencene was almost completely absorbed by LDPE, followed to a lesser extent by decanal, hexyl acetate, octanal and nonanone. Less flavour compounds were absorbed from the model solution by PC and PET. In contrast to LDPE, valencene was absorbed in the lowest amounts and decanal in the highest. Limonene was readily absorbed from orange juice by LDPE, while myrcene, valencene, pinene and decanal were absorbed in smaller quantities. Only three flavour compounds were absorbed from orange juice by PC and PET in very small amounts: limonene, myrcene and decanal. Although the flavour content between controls and polymer-treated samples differed substantially, the loss of flavour compounds due to absorption by LDPE, PC and PET did not influence taste perception of a model solution and orange juice significantly up to 29 days of dark storage at 20 degrees C as determined by triangular taste panel tests.

  5. Transition from exo- to endo- Cu absorption in CuSin clusters: A Genetic Algorithms Density Functional Theory (DFT) Study

    PubMed Central

    Oña, Ofelia B.; Ferraro, Marta B.; Facelli, Julio C.

    2010-01-01

    The characterization and prediction of the structures of metal silicon clusters is important for nanotechnology research because these clusters can be used as building blocks for nano devices, integrated circuits and solar cells. Several authors have postulated that there is a transition between exo to endo absorption of Cu in Sin clusters and showed that for n larger than 9 it is possible to find endohedral clusters. Unfortunately, no global searchers have confirmed this observation, which is based on local optimizations of plausible structures. Here we use parallel Genetic Algorithms (GA), as implemented in our MGAC software, directly coupled with DFT energy calculations to show that the global search of CuSin cluster structures does not find endohedral clusters for n < 8 but finds them for n ≥ 10. PMID:21785526

  6. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  7. Prediction of High-Valent Iron K-edge Absorption Spectra by Time-Dependent Density Functional Theory

    PubMed Central

    Chandrasekaran, P.; Stieber, S. Chantal E.; Collins, Terrence J.; Que, Lawrence; Neese, Frank; DeBeer, Serena

    2011-01-01

    In recent years a number of high-valent iron intermediates have been identified as reactive species in iron-containing metalloproteins. Inspired by the interest in these highly reactive species, chemists have synthesized Fe(IV) and Fe(V) model complexes with terminal oxo or nitrido groups, as well as a rare example of an Fe(VI)-nitrido species. In all these cases, X-ray absorption spectroscopy has played a key role in the identification and characterization of these species, with both the energy and intensity of the pre-edge features providing spectroscopic signatures for both the oxidation state and the local site geometry. Here we build on a time-dependent DFT methodology for the prediction of Fe K- pre-edge features, previously applied to ferrous and ferric complexes, and extend it to a range of Fe(IV), Fe(V) and Fe(VI) complexes. The contributions of oxidation state, coordination environment and spin state to the spectral features are discussed. These methods are then extended to calculate the spectra of the heme active site of P450 Compound II and the non-heme active site of TauD. The potential for using these methods in a predictive manner is highlighted. PMID:21956429

  8. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats.

    PubMed

    Feng, Xin; Lyu, Ying; Wu, Zhenghao; Fang, Yuehui; Xu, Hao; Zhao, Pengling; Xu, Yajun; Feng, Haotian

    2014-04-01

    Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium

  9. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  10. Studies on effective atomic numbers for photon energy absorption and electron density of some narcotic drugs in the energy range 1 keV-20 MeV

    NASA Astrophysics Data System (ADS)

    Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.

    2013-04-01

    Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.

  11. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  12. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  13. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  14. The O(3P) and N(4S) density measurement at 225 km by ultraviolet absorption and fluorescence in the Apollo-Soyuz test project

    NASA Technical Reports Server (NTRS)

    Kaufman, F.; Rawling, W. T.; Donahue, T. M.; Anderson, J. G.; Hudson, R. D.

    1976-01-01

    The densities of O(3P) and N(4S) at 225 km were determined during the Apollo Soyuz Test Project by a resonance absorption/fluorescence technique in which OI and NI line radiation produced and collimated on board the Apollo was reflected from the Soyuz back to the Apollo for spectral analysis. The two spacecraft maneuvered so that a range of observation angles of plus or minus 15 deg with respect to the normal to the orbital velocity vector was scanned. The measurements were made at night on two consecutive orbits at spacecraft separations of 150 and 500 m. The resulting relative counting rates as function of observation angle were compared to calculated values to determine the oxygen value. This value agrees with mass spectrometric measurements made under similar conditions. The nitrogen value is in good agreement with other measurements and suggests a smaller diurnal variation than is predicted by present models.

  15. Tuning superior solar cell performance of carrier mobility and absorption in perovskite CH3NH3GeCl3: A density functional calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Qing; Wu, Li-Juan; Liu, Biao; Wang, Ling-Zhi; He, Peng-Bin; Cai, Meng-Qiu

    2016-05-01

    The solar cell based on hybrid organic-inorganic halide perovskite has received considerable attention. One of the most important issues in the pursuit of further developments in this area is to obtain both a high carrier mobility and an excellent ability of light adsorption. In this paper, we investigate the electronic structure and electronic effective masses of the new non-toxic material CH3NH3GeCl3 by first-principle calculations. The results show that the absorption efficiency of CH3NH3GeCl3 is more superior to that of CH3NH3PbI3 in short wavelength region. We trace this result to the ferroelectricity caused by the more serious octahedral GeCl6- distortion. We also discover a new relationship between the carrier effective masses anisotropy and the anisotropy of electronic density of states along three principal directions. Moreover, while applied the isotropic compressive pressure, the absorption efficiency and carrier mobility of CH3NH3GeCl3 in orthorhombic phase are improved greatly due to changes of electronic structure. We speculate that these are general results of tuning of the carrier mobility by controlling the band gap and the electronic occupation along different directions, to obtain both a high carrier mobility and an excellent ability of light adsorption.

  16. Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory derived NO emission from soil samples

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Behrendt, T.; Badawy, M. M.; Wagner, T.; Qi, Y.; Wu, Z.; Meixner, F. X.

    2014-07-01

    We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW-China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis center, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis' (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol-Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three dimensional NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modeled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural

  17. Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory-derived NO emission from soil samples

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Behrendt, T.; Badawy, M. M.; Wagner, T.; Qi, Y.; Wu, Z.; Meixner, F. X.

    2015-01-01

    We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis centre, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three-dimensional (3-D) NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modelled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory-derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural

  18. Carbon X-ray absorption spectra of fluoroethenes and acetone: a study at the coupled cluster, density functional, and static-exchange levels of theory.

    PubMed

    Fransson, Thomas; Coriani, Sonia; Christiansen, Ove; Norman, Patrick

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger π-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to π∗-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate π∗-peak separations due to spectral compressions, a characteristic which is inherent to this

  19. The lipid composition of high-density lipoprotein affects its re-absorption in the kidney by proximal tubule epithelial cells.

    PubMed Central

    Breznan, Dalibor; Veereswaran, Vasanthi; Viau, France J; Neville, Tracey A-M; Sparks, Daniel L

    2004-01-01

    The kidney is believed to play a major role in the clearance of apoA-I (apolipoprotein A-I) and HDL (high-density lipoprotein) particles from the bloodstream. Proximal tubule epithelial cells of the kidney appear to prevent the loss of these proteins in the urine by re-absorbing them from the urinary filtrate. Experiments were undertaken to investigate the factors that regulate the renal re-absorption of apoA-I and small HDL in a transformed human proximal tubule epithelial (HKC-8) cell line. Fluorescent microscopic studies show that HKC-8 cells can readily bind and take up HDL particles. Intracellular localization of fluorescently labelled native HDL shows its accumulation in endocytotic vesicles, in a perinuclear region after 1 h. Binding studies reveal a saturable cell association of (125)I-HDL with the HKC-8 cell surface after 2 h. HKC-8 cells do not degrade apoA-I or other HDL-apoproteins. The specific cell association of lipid-free apoA-I is approx. 2-fold less than that observed for native HDL. Similarly, reconstituted HDL prepared from HDL-apoproteins and pure phospholipids also exhibits a low cell association with the HKC-8 cells. In contrast, reconstituted HDL prepared with the extracted lipids of HDL and pure apoA-I exhibits an even higher cell association than that observed with the native lipoprotein. A detailed characterization of the major lipid classes in reconstituted HDL shows that only cholesteryl ester increases the cell association of the recombinant particles. These results show that the cholesteryl ester content of HDL may play an important role in the re-absorptive salvage of HDL by the proximal tubule cells of the kidney. PMID:14711371

  20. Carbon X-ray absorption spectra of fluoroethenes and acetone: A study at the coupled cluster, density functional, and static-exchange levels of theory

    SciTech Connect

    Fransson, Thomas; Norman, Patrick; Coriani, Sonia; Christiansen, Ove

    2013-03-28

    Near carbon K-edge X-ray absorption fine structure spectra of a series of fluorine-substituted ethenes and acetone have been studied using coupled cluster and density functional theory (DFT) polarization propagator methods, as well as the static-exchange (STEX) approach. With the complex polarization propagator (CPP) implemented in coupled cluster theory, relaxation effects following the excitation of core electrons are accounted for in terms of electron correlation, enabling a systematic convergence of these effects with respect to electron excitations in the cluster operator. Coupled cluster results have been used as benchmarks for the assessment of propagator methods in DFT as well as the state-specific static-exchange approach. Calculations on ethene and 1,1-difluoroethene illustrate the possibility of using nonrelativistic coupled cluster singles and doubles (CCSD) with additional effects of electron correlation and relativity added as scalar shifts in energetics. It has been demonstrated that CPP spectra obtained with coupled cluster singles and approximate doubles (CC2), CCSD, and DFT (with a Coulomb attenuated exchange-correlation functional) yield excellent predictions of chemical shifts for vinylfluoride, 1,1-difluoroethene, trifluoroethene, as well as good spectral features for acetone in the case of CCSD and DFT. Following this, CPP-DFT is considered to be a viable option for the calculation of X-ray absorption spectra of larger {pi}-conjugated systems, and CC2 is deemed applicable for chemical shifts but not for studies of fine structure features. The CCSD method as well as the more approximate CC2 method are shown to yield spectral features relating to {pi}*-resonances in good agreement with experiment, not only for the aforementioned molecules but also for ethene, cis-1,2-difluoroethene, and tetrafluoroethene. The STEX approach is shown to underestimate {pi}*-peak separations due to spectral compressions, a characteristic which is inherent to this

  1. A SURVEY OF METAL LINES AT HIGH REDSHIFT. II. SDSS ABSORPTION LINE STUDIES-O VI LINE DENSITY, SPACE DENSITY, AND GAS METALLICITY AT z{sub abs} {approx} 3.0

    SciTech Connect

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-15

    We have analyzed a large data set of O VI absorber candidates found in the spectra of 3702 Sloan Digital Sky Survey (SDSS) quasars, focusing on a subsample of 387 active galactic nuclei sight lines with an average S/N {>=}5.0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W{sub r} {>=} 0.19 A for the O VI 1032 A component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density {Delta}N/{Delta}z for redshifts z{sub abs} {>=} 2.8. With extensive Monte Carlo simulations, we quantify the losses of absorbers due to blending with the ubiquitous Ly{alpha} forest lines and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber, and the measured signal-to-noise ratio (S/N) of the spectrum by modeling typical Lyman forest spectra. These correction factors allow us to derive the 'incompleteness and S/N-corrected' redshift number densities of O VI absorbers: {Delta}N{sub O{sub VI,c}}/{Delta}z{sub c} (2.8 < z < 3.2) = 4.6 {+-} 0.3, {Delta}N{sub O{sub VI,c}}/{Delta}z{sub c} (3.2 < z < 3.6) = 6.7 {+-} 0.8, and {Delta}N{sub O{sub VI,c}}/{Delta}z{sub c} (3.6 < z < 4.0) = 8.4 {+-} 2.9. We can place a secure lower limit for the contribution of O VI to the closure mass density at the redshifts probed here: {Omega}{sub O{sub VI}}(2.8 < z < 3.2) {>=} 1.9 x 10{sup -8} h {sup -1}. We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionization fraction, O{sub VI}/O, and adopting the Anders and Grevesse solar abundance values, we derive the mean metallicity of the gas probed in our search: {zeta}(2.8 < z < 3.2) {>=} 3.6 x 10{sup -4} h, in good agreement with other

  2. Radiation pressure confinement - IV. Application to broad absorption line outflows

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari; Stern, Jonathan

    2014-12-01

    A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000-10 000 km s-1. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor f < 10-3. What produces such a small f? Here, we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times 1022 cm-2, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, and can be used to test the validity of RPC as a solution for the overionization problem. The ionization structure of the outflow implies that if the outflow is radiatively driven, then broad absorption line quasars should have L/L_Eddgtrsim 0.1.

  3. High current–density anodic electrodissolution in flow–injection systems for the determination of aluminium, copper and zinc in non–ferroalloys by flame atomic absorption spectrometry

    PubMed Central

    Giacomozzi, César Augusto; de Queiróz, Roldão R. U.; Souza, Ivan Gonçalves

    1999-01-01

    An automatic procedure with a high current-density anodic electrodissolution unit (HDAE) is proposed for the determination of aluminium, copper and zinc in non-ferroalloys by flame atomic absorption spectrometry, based on the direct solid analysis. It consists of solenoid valve-based commutation in a flow-injection system for on-line sample electro-dissolution and calibration with one multi-element standard, an electrolytic cell equipped with two electrodes (a silver needle acts as cathode, and sample as anode), and an intelligent unit. The latter is assembled in a PC-compatible microcomputer for instrument control, and for data acquisition and processing. General management of the process is achieved by use of software written in Pascal. Electrolyte compositions, flow rates, commutation times, applied current and electrolysis time were investigated. A 0.5 mol l-1 HN03 solution was elected as electrolyte and 300 A/cm2 as the continuous current pulse. The performance of the proposed system was evaluated by analysing aluminium in Al-alloy samples, and copper/zinc in brass and bronze samples, respectively. The system handles about 50 samples per hour. Results are precise (R.S.D. < 2%) and in agreement with those obtained by ICP-AES and spectrophotometry at a 95% confidence level. PMID:18924839

  4. Optical absorption spectra of boron clusters Bn (n = 2-5) for application in nano scintillator - a time dependent density functional theory study

    NASA Astrophysics Data System (ADS)

    Shivade, Rajendra K.; Chakraborty, Brahmananda

    2016-09-01

    Boron nano-clusters of various shapes and sizes have potential applications as scintillating detector and hydrogen storage material. Using time dependent density functional theory (TDDFT) as implemented in CASIDA we have studied the linear optical absorption spectra for boron clusters B n ( n = 2-5) and compared with previously reported results using Hatree-Fock (H-F) based method where the spectrum is limited to 8 eV due to exclusion of excitation into very high energy unoccupied orbital. The optical spectra fall in the visible and near UV region and are very much dependent on the shape of the isomer. We have obtained additional peaks for B2 linear, B3 triangular, B4 rhombus and square shaped isomers beyond 8 eV which were missing in the previous H-F based study and has significance as they fall below the ionization potential. We correlate the optical spectrum with the shape of the Kohn-Sham orbitals and HUMO-LUMO gap and assess comparative stability of various B n ( n = 2-5) clusters in terms of HUMO-LUMO gap, bond-length and relative energy. TDDFT computed optical spectroscopy correlated with Kohn-Sham orbitals and HUMO-LUMO gap and its comparison with H-F based method may give significant knowledge regarding geometry and optical properties of B n ( n = 2-5) clusters enabling to distingush between various isomers of B n clusters.

  5. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  6. Adsorption of isophorone and trimethyl-cyclohexanone on Pd(111): A combination of infrared reflection absorption spectroscopy and density functional theory studies

    NASA Astrophysics Data System (ADS)

    Dostert, Karl-Heinz; O'Brien, Casey P.; Liu, Wei; Riedel, Wiebke; Savara, Aditya; Tkatchenko, Alexandre; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-08-01

    Understanding the interaction of α,β-unsaturated carbonyl compounds with late transition metals is a key prerequisite for rational design of new catalysts with desired selectivity towards C = C or C = O bond hydrogenation. The interaction of the α,β-unsaturated ketone isophorone and the saturated ketone TMCH (3,3,5-trimethylcyclohexanone) with Pd(111) was investigated in this study as a prototypical system. Infrared reflection-absorption spectroscopy (IRAS) and density functional theory calculations including van der Waals interactions (DFT + vdWsurf) were combined to form detailed assignments of IR vibrational modes in the range from 3000 cm- 1 to 1000 cm- 1 in order to obtain information on the binding of isophorone and TMCH to Pd(111) as well as to study the effect of co-adsorbed hydrogen. IRAS measurements were performed with deuterium-labeled (d5-) isophorone, in addition to unlabeled isophorone and unlabeled TMCH. Experimentally observed IR absorption features and calculated vibrational frequencies indicate that isophorone and TMCH molecules in multilayers have a mostly unperturbed structure with random orientation. At sub-monolayer coverages, strong perturbation and preferred orientations of the adsorbates were found. At low coverage, isophorone interacts strongly with Pd(111) and adsorbs in a flat-lying geometry with the C = C and C = O bonds parallel, and a CH3 group perpendicular, to the surface. At intermediate sub-monolayer coverage, the C = C bond is strongly tilted, while the C = O bond remains flat-lying, which indicates a prominent perturbation of the conjugated π system. Pre-adsorbed hydrogen leads to significant changes in the adsorption geometry of isophorone, which suggests a weakening of its binding to Pd(111). At low coverage, the structure of the CH3 groups seems to be mostly unperturbed on the hydrogen pre-covered surface. With increasing coverage, a conservation of the in-plane geometry of the conjugated π system was observed in the

  7. Spectrophotometry of six broad absorption line QSOs

    NASA Technical Reports Server (NTRS)

    Junkkarinen, Vesa T.; Burbidge, E. Margaret; Smith, Harding E.

    1987-01-01

    Spectrophotometric observations of six broad absorption-line QSOs (BALQSOs) are presented. The continua and emission lines are compared with those in the spectra of QSOs without BALs. A statistically significant difference is found in the emission-line intensity ratio for (N V 1240-A)/(C IV 1549-A). The median value of (N V)/(C IV) for the BALQSOs is two to three times the median for QSOs without BALs. The absorption features of the BALQSOs are described, and the column densities and limits on the ionization structure of the BAL region are discussed. If the dominant ionization mechanism is photoionization, then it is likely that either the ionizing spectrum is steep or the abundances are considerably different from solar. Collisional ionization may be a significant factor, but it cannot totally dominate the ionization rate.

  8. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  9. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2012-05-01

    We report two epochs of Chandra-ACIS X-ray imaging spectroscopy of the nearby bright Type IIn supernova SN 2010jl, taken around two months and then a year after the explosion. The majority of the X-ray emission in both spectra is characterized by a high temperature ({approx}> 10 keV) and is likely to be from the forward shocked region resulting from circumstellar interaction. The absorption column density in the first spectrum is high ({approx}10{sup 24} cm{sup -2}), more than three orders of magnitude higher than the Galactic absorption column, and we attribute it to absorption by circumstellar matter. In the second epoch observation, the column density has decreased by a factor of three, as expected for shock propagation in the circumstellar medium. The unabsorbed 0.2-10 keV luminosity at both epochs is {approx}7 Multiplication-Sign 10{sup 41} erg s{sup -1}. The 6.4 keV Fe line clearly present in the first spectrum is not detected in the second spectrum. The strength of the fluorescent line is roughly that expected for the column density of circumstellar gas, provided the Fe is not highly ionized. There is also evidence for an absorbed power-law component in both spectra, which we attribute to a background ultraluminous X-ray source.

  10. Measurements of helium 23S metastable atom density in low-pressure glow discharge plasmas by self-absorption spectroscopy of HeI 23S-23P transition

    NASA Astrophysics Data System (ADS)

    Shikama, Taiichi; Ogane, Shuhei; Ishii, Hidekazu; Iida, Yohei; Hasuo, Masahiro

    2014-08-01

    The helium 23S metastable atom densities are experimentally evaluated by self-absorption spectroscopy of the HeI 23S-23P transition spectra in two kinds of cylindrical glow discharge plasmas, which have different radii and are operated under different pressures of 300 and 20 Pa. The spectra are measured by using an interference spectroscopy system with a wavelength resolution of about 60 pm, and the relative intensities of the fine structure transitions are analyzed. It is found that the method is in principle applicable to plasmas with the pressure up to about the atmospheric pressure and electron density on the order of up to 1022 m-3. For a plasma with an absorption length of 10 mm and a spatially uniform temperature of 300 K, the method is sensitive to the metastable atom density roughly from 1016 to 1019 m-3.

  11. Effect of Water Vapor Absorption on Measurements of Atmospheric Nitrate Radical by LP-DOAS

    NASA Astrophysics Data System (ADS)

    Li, Su-wen; Liu, Wen-qing; Xie, Pin-hua; Yang, Yi-jun; Chen, De-bao; Li, Zheng

    2008-10-01

    During the measurement of atmospheric nitrate radical by long-path differential optical absorption spec-troscopy, water vapor strong absorption could affect the measurement of nitrate radical and detection limits of system. Under the tropospheric condition, the optical density of water vapor absorption is non-linearly dependent on column density. An effective method was developed to eliminate the effect of water vapor absorption. Reference spectra of water vapor based on the daytime atmospheric absorption spectra, when fitted together with change of cross section with water vapor column densities, gave a more accurate fitting of water vapor absorptions, thus its effect on the measurements of nitrate radical could be restricted to a minimum and detection limits of system reached 3.6 ppt. The modified method was applied during an intensive field campaign in the Pearl River Delta, China. The NO3 concentration in polluted air masses varied from 3.6 ppt to 82.5 ppt with an average level of 23.6±1.8 ppt.

  12. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Kruehler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele; Zafar, Tayyaba; Gorosabel, Javier

    2013-05-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N{sub H{sub X}}) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A{sub V} ). This correlation explains the connection between dark bursts and bursts with high N{sub H{sub X}} values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N{sub H{sub X}}/A{sub V} is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well

  13. Anisotropy in the thermal hysteresis of resistivity and charge density wave nature of single crystal SrFeO3-δ: X-ray absorption and photoemission studies.

    PubMed

    Hsieh, S H; Solanki, R S; Wang, Y F; Shao, Y C; Lee, S H; Yao, C H; Du, C H; Wang, H T; Chiou, J W; Chin, Y Y; Tsai, H M; Chen, J-L; Pao, C W; Cheng, C-M; Chen, W-C; Lin, H J; Lee, J F; Chou, F C; Pong, W F

    2017-12-01

    The local electronic and atomic structures of the high-quality single crystal of SrFeO3-δ (δ~0.19) were studied using temperature-dependent x-ray absorption and valence-band photoemission spectroscopy (VB-PES) to investigate the origin of anisotropic resistivity in the ab-plane and along the c-axis close to the region of thermal hysteresis (near temperature for susceptibility maximum, Tm~78 K). All experiments herein were conducted during warming and cooling processes. The Fe L 3,2-edge X-ray linear dichroism results show that during cooling from room temperature to below the transition temperature, the unoccupied Fe 3d e g states remain in persistently out-of-plane 3d 3z(2)-r(2) orbitals. In contrast, in the warming process below the transition temperature, they change from 3d 3z(2)-r(2) to in-plane 3d x(2)-y(2) orbitals. The nearest-neighbor (NN) Fe-O bond lengths also exhibit anisotropic behavior in the ab-plane and along the c-axis below Tm. The anisotropic NN Fe-O bond lengths and Debye-Waller factors stabilize the in-plane Fe 3d x(2)-y(2) and out-of-plane 3d 3z(2)-r(2) orbitals during warming and cooling, respectively. Additionally, a VB-PES study further confirms that a relative band gap opens at low temperature in both the ab-plane and along the c-axis, providing the clear evidence of the charge-density-wave nature of SrFeO3-δ (δ~0.19) single crystal.

  14. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  15. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  16. High covalence in CuSO4 and the radicalization of sulfate: an X-ray absorption and density functional study.

    PubMed

    Szilagyi, Robert K; Frank, Patrick; DeBeer George, Serena; Hedman, Britt; Hodgson, Keith O

    2004-12-27

    Sulfur K-edge X-ray absorption spectroscopy (XAS) of anhydrous CuSO(4) reveals a well-resolved preedge transition feature at 2478.8 eV that has no counterpart in the XAS spectra of anhydrous ZnSO(4) or copper sulfate pentahydrate. Similar but weaker preedge features occur in the sulfur K-edge XAS spectra of [Cu(itao)SO(4)] (2478.4 eV) and [Cu[(CH(3))(6)tren]SO(4)] (2477.7 eV). Preedge features in the XAS spectra of transition metal ligands are generally attributed to covalent delocalization of a metal d-orbital hole into a ligand-based orbital. Copper L-edge XAS of CuSO(4) revealed that 56% of the Cu(II) 3d hole is delocalized onto the sulfate ligand. Hybrid density functional calculations on the two most realistic models of the covalent delocalization pathways in CuSO(4) indicate about 50% electron delocalization onto the sulfate oxygen-based 2p orbitals; however, at most 14% of that can be found on sulfate sulfur. Both experimental and computational results indicated that the high covalence of anhydrous CuSO(4) has made sulfate more like the radical monoanion, inducing an extensive mixing and redistribution of sulfur 3p-based unoccupied orbitals to lower energy in comparison to sulfate in ZnSO(4). It is this redistribution, rather than a direct covalent interaction between Cu(II) and sulfur, that is the origin of the observed sulfur XAS preedge feature. From pseudo-Voigt fits to the CuSO(4) sulfur K-edge XAS spectrum, a ground-state 3p character of 6% was quantified for the orbital contributing to the preedge transition, in reasonable agreement with the DFT calculation. Similar XAS fits indicated 2% sulfur 3p character for the preedge transition orbitals in [Cu(itao)SO(4)] and [Cu[(CH(3))(6)tren]SO(4)]. The covalent radicalization of ligands similar to sulfate, with consequent energy redistribution of the virtual orbitals, represents a new mechanism for the induction of ligand preedge XAS features. The high covalence of the Cu sites in CuSO(4) was found to be

  17. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  18. New detections of Galactic molecular absorption systems toward ALMA calibrator sources

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Kohno, Kotaro; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2016-02-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6, and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO-to-H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  19. Search for correlated UV and x ray absorption of NGC 3516

    NASA Technical Reports Server (NTRS)

    Martin, Christopher; Halpern, Jules P.; Kolman, Michiel

    1991-01-01

    NGC 3516, a low-luminosity Seyfert galaxy, is one of a small fraction of Seyfert galaxies that exhibit broad absorption in a resonance line. In order to determine whether the UV and x ray absorption in NGC 3516 are related, 5 IUE observations were obtained, quasi-simultaneously with 4 Ginga observations. The results are presented and discussed. The following subject areas are covered: short-term UV variability; emission lines; galactic absorption lines; the C IV, N V, and Si IV absorption features; lower limit on the carbon column density; estimate of the distance from the absorber to the continuum source; variability in the continuum and absorption; a comparison with BAL QSO's; and the x ray-UV connection.

  20. Formaldehyde Absorption toward W51

    SciTech Connect

    Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.

    1988-04-01

    We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.

  1. On the identification of deuterium lines in QSO absorption systems

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Takahara, F.

    1996-07-01

    The ambiguity of identification of deuterium lines in QSO absorption systems is considered, under the assumption that the D I and H I absorption lines are formed in turbulent media with a finite correlation length of the stochastic velocity field. The relative shift of the D I and H I lines is shown to vary over the range +/-(4-8) km s^- 1^ for a cloud model with hydrogen column density N_HI_ = 10^17^ cm^-2^, the ratio D/H = 10^-4^, and kinetic temperature T_kin_ = 10^4^ K. The variations in the relative shift of the deuterium lines are fundamental in character and result from the stochastic nature of the formation of absorption lines in turbulent media

  2. Inelastic column behavior

    NASA Technical Reports Server (NTRS)

    Duberg, John E; Wilder, Thomas W , III

    1952-01-01

    The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.

  3. High Resolution Spectra of Low Redshift Damped Lyalpha Absorption Systems

    NASA Astrophysics Data System (ADS)

    Cohen, R. D.; Beaver, E. A.; Junkkarinen, V. T.; Lyons, R. W.; Smith, H. E.

    1998-05-01

    We have been able to form a fairly complete picture of the galaxy responsible for the z_a=0.395 absorption line system in PKS 1229--021 by combining Keck HIRES and LRIS spectroscopy with observations taken with the Hubble Space Telescope. The image of the absorber is consistent with the inclined disk of a moderately luminous spiral galaxy. We have not been able to detect the continuum from this galaxy spectroscopically, but our LRIS spectra show emission from [O II] lambda3727 which can be interpreted to be indicative of star formation at the rate of a few M_⊙ per year. The HIRES spectra clearly show an ``edge--leading'' absorption profile. Prochaska and Wolfe have predicted that the velocity of the center of mass of the absorbing galaxy should fall near one edge of the absorption profile if the damped Lyalpha systems are due to the rotating disks of spiral galaxies. The [O II] emission velocity is consistent with this, but there is some ambiguity due to the doublet nature of the [O II] emission. Although the absorption lines of the abundant elements are saturated in the components which correspond to the H I absorption, we have been able to measure accurate column densities for Ca II, Ti II, and Mn II for comparison with the H I column density determined from low resolution HST/FOS spectra. The abundances are compatible with approximately 0.1 of solar, with little or no dust, but they are also consistent with lines of sight toward zeta Oph through warm interstellar clouds. HIRES observations of the z_a=0.692 absorption line system in 3CR 286 will also be discussed, after the data are fully analyzed. This work is part of the Goddard High Resolution Spectrograph Guaranteed Time Observations and is supported by NASA grant NAG5--1858 and the NSF.

  4. Distillation Column Modeling Tools

    SciTech Connect

    2001-09-01

    Advanced Computational and Experimental Techniques will Optimize Distillation Column Operation. Distillation is a low thermal efficiency unit operation that currently consumes 4.8 quadrillion BTUs of energy...

  5. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  6. The HI absorption "Zoo"

    NASA Astrophysics Data System (ADS)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    ) detections, which are associated with gas-rich mergers, we find three new cases of profiles with blueshifted broad wings (with FW20 ≳ 500 km s-1) in high radio power AGN. These detections are good candidates for being HI outflows. Together with the known cases of outflows already included in the sample (3C 293 and 3C 305), the detection rate of H I outflows is 5% in the total radio AGN sample. Because of the effects of spin temperature and covering factor of the outflowing gas, this fraction could represent a lower limit. However, if the relatively low detection rate is confirmed by more detailed observations, it would suggest that, if outflows are a characteristic phenomenon of all radio AGN, they would have a short depletion timescale compared to the lifetime of the radio source. This would be consistent with results found for some of the outflows traced by molecular gas. Using stacking techniques, in our previous paper we showed that compact radio sources have higher τ, FWHM, and column density than extended sources. In addition, here we find that blueshifted and broad/asymmetric lines are more often present among compact sources. In good agreement with the results of stacking, this suggests that unsettled gas is responsible for the larger stacked FWHM detected in compact sources. Therefore in such sources the H I is more likely to be unsettled. This may arise as a result of jet-cloud interactions, as young radio sources clear their way through the rich ambient gaseous medium. Appendices are available in electronic form at http://www.aanda.org

  7. Numerical investigation of the propagation of light-induced detonation waves during the absorption of high-power laser radiation in air at elevated density

    NASA Astrophysics Data System (ADS)

    Pirogov, S. Yu.; Belyanin, D. G.; Yur'ev, A. S.; Tipaev, V. V.; Filatov, A. V.

    2010-12-01

    Spatiotemporal gasdynamic plasma structures formed in quiescent air of elevated density by high-power unfocused laser radiation absorbed in the light-induced detonation (LID) wave regime have been numerically studied using a model of inviscid, equilibrium emitting air. Laser radiation intensity and air density serve as parameters of the model. Dependences of the velocity of LID wave on the laser radiation intensity at elevated air densities are presented.

  8. EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY

    SciTech Connect

    Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan; Ferland, Gary

    2015-12-01

    We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsic Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.

  9. Column flotation '88

    SciTech Connect

    Sastry, K.V.S.

    1988-01-01

    This book contains 34 selections. Some of the titles are: Column flotation of ultrafine coal: experience at BHP-Utah Coal Limited's Riverside mine; Measurement of rate data in flotation columns; Factors influencing the structure of a 3-phase coal flotation froth; and Microbubble flotation of fine coal.

  10. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  11. Modeling of column flotation

    SciTech Connect

    Luttrell, G.H.; Adel, G.T.; Yoon, R.H.

    1987-01-01

    Many investigators believe that column flotation cells offer significant advantages over standard mechanical machines for the flotation of fine particles. However, because of their unique design and operation, conventional techniques for flotation cell scale-up and design cannot be applied to columns. In an attempt to help alleviate this problem, a population balance model based on first principles has been developed for fine particle flotation in a column. Two different terms have been considered in the model, i.e., transport and rate. Transport terms, incorporating fluid flow and buoyancy, are used to describe the movement of air bubbles, unattached particles and bubble-particle aggregates along the length of the column. Rate terms, which describe the bubble-particle attachment process, have been derived from first principle considerations. Because the model is based on first principles, it can be useful for the design, control, optimization and scale-up of column flotation cells. 9 refs., 12 figs.

  12. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  13. JCE Feature Columns

    NASA Astrophysics Data System (ADS)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  14. Velocity resolved [C ii], [C i], and CO observations of the N159 star-forming region in the Large Magellanic Cloud: a complex velocity structure and variation of the column densities

    NASA Astrophysics Data System (ADS)

    Okada, Yoko; Requena-Torres, Miguel Angel; Güsten, Rolf; Stutzki, Jürgen; Wiesemeyer, Helmut; Pütz, Patrick; Ricken, Oliver

    2015-08-01

    particular between the different species. At most positions the [C ii] emission line profile is substantially wider than that of CO and [C i]. We estimated the fraction of the [C ii] integrated line emission that cannot be fitted by the CO line profile to be 20% around the CO cores, and up to 50% at the area between the cores, indicating a gas component that has a much larger velocity dispersion than the ones probed by the CO and [C i] emission. We derived the relative contribution from C+, C, and CO to the column density in each velocity bin. The result clearly shows that the contribution from C+ dominates the velocity range far from the velocities traced by the dense molecular gas. Spatially, the region located between the CO cores of N159 W and E has a higher fraction of C+ over the whole velocity range. We estimate the contribution of the ionized gas to the [C ii] emission using the ratio to the [N ii] emission, and find that the ionized gas contributes ≤19% to the [C ii] emission at its peak position, and ≤15% over the whole observed region. Using the integrated line intensities, we present the spatial distribution of I[CII]/IFIR. Conclusions: This study demonstrates that the [C ii] emission in the LMC N159 region shows significantly different velocity profiles from that of CO and [C i] emissions, emphasizing the importance of velocity resolved observations in order to distinguish different cloud components.

  15. A survey of local interstellar hydrogen from OAO-2 observations of Lyman alpha absorption

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Jenkins, E. B.

    1972-01-01

    The Wisconsin far ultraviolet spectrometer aboard OAO-2 observed the wavelength region near 1216 A for 69 stars of spectral type B2 or earlier. From the strength of the observed interstellar L sub alpha absorption, atomic hydrogen column densities were derived over distances averaging 300 pc away from the sun. The OAO data were compared to synthetic ultraviolet spectra, originally derived from earlier higher resolution rocket observations, which were computer processed to simulate the effects of absorption by different amounts of hydrogen followed by the instrumental blending.

  16. Infrared measurements of column abundances of several trace gases in the Antarctic atmosphere

    NASA Technical Reports Server (NTRS)

    Murcray, F. J.; Murcray, F. H.; Murcray, D. G.

    1988-01-01

    Atmospheric emission measurements were made in 1978 from an LC 130 aircraft from Point Mugu, CA, to McMurdo Station, Antarctica, and from McMurdo over the Antarctic continent on several different flights. These included a number of flights over the South Pole. In December 1980, infrared solar spectra were obtained from the ground at South Pole Station. Infrared solar spectra were also obtained from South Pole during late November and early December of 1986. These latter measurements were extended to cover additional spectral regions to obtain column densities of a number of additional constituents. The results obtained from these measurement series are reviewed and, where measurements were made during both periods, compared. Spectral absorption or emission features due to HNO3, NO, NO2, HCl, (H-16)2O, (H-18)2O, HDO, CH4, and N2O were used to obtain data on the total column abundances for these compounds.

  17. Development of an Airborne Triple-Pulse 2-Micron Integrated Path Differential Absorption Lidar (IPDA) for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben

    2016-01-01

    This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.

  18. Optimally focused cold atom systems obtained using density-density correlations

    SciTech Connect

    Putra, Andika; Campbell, Daniel L.; Price, Ryan M.; Spielman, I. B.; De, Subhadeep

    2014-01-15

    Resonant absorption imaging is a common technique for detecting the two-dimensional column density of ultracold atom systems. In many cases, the system's thickness along the imaging direction greatly exceeds the imaging system's depth of field, making the identification of the optimally focused configuration difficult. Here we describe a systematic technique for bringing Bose-Einstein condensates (BEC) and other cold-atom systems into an optimal focus even when the ratio of the thickness to the depth of field is large: a factor of 8 in this demonstration with a BEC. This technique relies on defocus-induced artifacts in the Fourier-transformed density-density correlation function (the power spectral density, PSD). The spatial frequency at which these artifacts first appear in the PSD is maximized on focus; the focusing process therefore both identifies and maximizes the range of spatial frequencies over which the PSD is uncontaminated by finite-thickness effects.

  19. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  20. Nuclear reactor control column

    DOEpatents

    Bachovchin, Dennis M.

    1982-01-01

    The nuclear reactor control column comprises a column disposed within the nuclear reactor core having a variable cross-section hollow channel and containing balls whose vertical location is determined by the flow of the reactor coolant through the column. The control column is divided into three basic sections wherein each of the sections has a different cross-sectional area. The uppermost section of the control column has the greatest cross-sectional area, the intermediate section of the control column has the smallest cross-sectional area, and the lowermost section of the control column has the intermediate cross-sectional area. In this manner, the area of the uppermost section can be established such that when the reactor coolant is flowing under normal conditions therethrough, the absorber balls will be lifted and suspended in a fluidized bed manner in the upper section. However, when the reactor coolant flow falls below a predetermined value, the absorber balls will fall through the intermediate section and into the lowermost section, thereby reducing the reactivity of the reactor core and shutting down the reactor.

  1. Column continuous transition functions

    NASA Astrophysics Data System (ADS)

    Li, Yangrong

    2007-04-01

    A column continuous transition function is by definition a standard transition function P(t) whose every column is continuous for t[greater-or-equal, slanted]0 in the norm topology of bounded sequence space l[infinity]. We will prove that it has a stable q-matrix and that there exists a one-to-one relationship between column continuous transition functions and increasing integrated semigroups on l[infinity]. Using the theory of integrated semigroups, we give some necessary and sufficient conditions under which the minimal q-function is column continuous, in terms of its generator (of the Markov semigroup) as well as its q-matrix. Furthermore, we will construct all column continuous Q-functions for a conservative, single-exit and column bounded q-matrix Q. As applications, we find that many interesting continuous-time Markov chains (CTMCs), say Feller-Reuter-Riley processes, monotone processes, birth-death processes and branching processes, etc., have column continuity.

  2. Ultraviolet absorption lines associated with the Vela supernova remnant

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.; Wallerstein, G.; Silk, J.

    1976-01-01

    Two stars behind the Vela supernova remnant and two stars offset from the remnant have been observed with the UV spectrometer aboard the Copernicus satellite. Over 200 interstellar atomic and molecular absorption features between 1000 and 1400 A have been identified and measured for radial velocity and equivalent width. In many cases, additional information was obtained by studying the detailed shapes of the recorded profiles. Most of the stars show several absorption components, with clouds of the highest radial velocity appearing in the spectra of stars behind the remnant. For each component, column densities were derived using velocity dispersion parameters which yielded the most self-consistent results. Qualitatively, the gas toward the remnant exhibits a number of unusual properties, when compared with normal interstellar material. First, abnormally high radial velocities were evident. Second, the degree of ionization of some elements suggested the existence of ionizing processes significantly more potent than those found in general regions of space. Finally, an investigation of electron densities shows that much of the gas, especially that at high velocity, must exist in the form of relatively thin sheets or filaments. If cosmic abundances prevail, the column densities of high-velocity excited material suggest that H-alpha emission measures could be as large as 100 sq cm/cu pc.

  3. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    SciTech Connect

    Kanekar, N.; Gupta, A.; Carilli, C. L.; Stocke, J. T.; Willett, K. W.

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.

  4. A Blind Green Bank Telescope Millimeter-wave Survey for Redshifted Molecular Absorption

    NASA Astrophysics Data System (ADS)

    Kanekar, N.; Gupta, A.; Carilli, C. L.; Stocke, J. T.; Willett, K. W.

    2014-02-01

    We present the methodology for "blind" millimeter-wave surveys for redshifted molecular absorption in the CO/HCO+ rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z >~ 0.85. It is critical that the survey is "blind," i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H2 column densities >~ 3 × 1021 cm-2 in absorption at 5σ significance (using CO-to-H2 and HCO+-to-H2 conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H2) >~ 3 × 1021 cm-2.

  5. High-resolution absorption spectroscopy of the OH 2Π3/2 ground state line

    NASA Astrophysics Data System (ADS)

    Wiesemeyer, H.; Güsten, R.; Heyminck, S.; Jacobs, K.; Menten, K. M.; Neufeld, D. A.; Requena-Torres, M. A.; Stutzki, J.

    2012-06-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Π3/2, J = 5/2 ← 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 1014 cm-2, which corresponds to a fractional abundance of 10-7 to 10-8, which is comparable to that of H2O. The absorption spectra of both species have similar velocity components, and the ratio of the derived H2O to OH column densities ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of 18OH.

  6. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  7. A combined strategy of mass fragmentation, post-column cobalt complexation and shift in ultraviolet absorption spectra to determine the uridine 5'-diphospho-glucuronosyltransferase metabolism profiling of flavones after oral administration of a flavone mixture in rats.

    PubMed

    Li, Qiang; Wang, Liping; Dai, Peimin; Zeng, Xuejun; Qi, Xiaoxiao; Zhu, Lijun; Yan, Tongmeng; Wang, Ying; Lu, Linlin; Hu, Ming; Wang, Xinchun; Liu, Zhongqiu

    2015-05-22

    The use of dietary flavones is becoming increasingly popular for their prevention of cancers, cardiovascular diseases, and other diseases. Despite many pharmacokinetic studies on flavone mixtures, the position(s) of glucuronidation sites on the flavone skeleton in vivo remain(s) uncertain because of the lack of a convenient method to differentiate the isomers in biological samples. Accordingly, this study aimed to develop a new strategy to identify the position of the mono-O-glucuronide of flavones in vivo and to simultaneously determine the parent agent and its major metabolites responsible for complex pharmacokinetic characteristics. The novel strategy involves accurate mass measurements of flavone glucuronides, their [Co(II) (flavone glucuronide-H) (4,7-diphenyl-1,10-phenanthroline)2](+) complexes generated via the post-column addition of CoBr2 and 4,7-diphenyl-1,10-phenanthroline, and their mass spectrometric fragmentation by UPLC-DAD-Q-TOF and the comparison of retention times with biosynthesized standards of different isomers that were identified by analyzing the shift in UV spectra compared with the spectra of their respective aglycones. We successfully generated a metabolite profiling of flavones in rat plasma after oral administration of a flavone mixture from Dracocephalum moldavica L., which was used here as the model to demonstrate the strategy. Twelve flavone glucuronides, which were glucuronidated derivatives of acacetin, apigenin, luteolin, diosmetin, chrysoeriol and cirsimaritin, were detected and identified. Glucuronidation of the flavone skeleton at the 3'-/7-position was more prevalent, however, luteolin 4'-glucuronide levels exceeded luteolin 7-glucuronide levels. Based on the UDP-glucuronosyltransferase (UGT) metabolism profiling of flavones in rat plasma, six main compounds (tilianin, acacetin 7-glucuronide, apigenin 7-glucuronide, luteolin 3'-glucuronide, acacetin, and apigenin) were selected as pharmacokinetic markers. Pharmacokinetic

  8. Impact of energy-related pollutants on chromosome structure. Progress report, January 1-December 31, 1980. IQUID COLUMN CHROMATOGRAPHY; ABSORPTION SPECTRA; COMPUTER CODES; DICHROISM; EQUIPMENT INTERFACES; MICROPROCESSORS; SPECTROPHOTOMETERS; ; CARBON 13; COMPLEXES; NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Not Available

    1980-01-01

    Methods for rapidly analyzing methylated and ethylated nucleosides and bases by high pressure liquid chromatography were investigated. Deoxyribonucleotides were alkylated with alkyl iodides and dialkyl sulfates. Several unreported products of the reactions of methyl and ethyl iodide in dimethylsulfoxide were found and are being characterized. The Cary 219 UV-Vis spectrophotometer was interfaced to a microcomputer and several utility programs were written. Preliminary absorption and circular dichroism studies of the binding of ethidium to DNA and nucleosome cores showed binding to cores to be quite different from binding to DNA. Free radical and additional reactions of bisulfite with DNA in chromatin were examined. Free radical attack was minimal. Some conversion of cytosine to uracil was noted, but protein crosslinking to DNA was not detected. The first valid natural abundance /sup 13/C nmr spectra of double-stranded DNA and double-stranded DNA complexed with ethidium were obtained. These spectra suggested that DNA undergoes considerable internal motion. The data show that 13-C nmr studies of the conformational and motional properties of native DNA and of complexes of native DNA with small molecules are practical and promising. Studies of subnucleosomes derived from nucleosomes were completed. Based on these studies, a model of the linear arrangement of histone C-terminal and N-terminal chain regions along nucleosome DNA was proposed. The use of staphylococcal protease to probe histone conformations in nucleosomes was explored. Preliminary data indicate that H3 is much more susceptible to protease than other core histones, and is cleaved in its hydrophobic domain. A procedure for fractionating chromatin was alos developed. (ERB)

  9. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study.

    PubMed

    Baryshnikov, Gleb V; Bondarchuk, Sergey V; Minaeva, Valentina A; Ågren, Hans; Minaev, Boris F

    2017-02-01

    A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor-acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission. Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs.

  10. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    PubMed

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-07

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  11. Improving the accuracy of S02 column densities and emission rates obtained from upward-looking UV-spectroscopic measurements of volcanic plumes by taking realistic radiative transfer into account

    USGS Publications Warehouse

    Kern, Christoph; Deutschmann, Tim; Werner, Cynthia; Sutton, A. Jeff; Elias, Tamar; Kelly, Peter J.

    2012-01-01

    Sulfur dioxide (SO2) is monitored using ultraviolet (UV) absorption spectroscopy at numerous volcanoes around the world due to its importance as a measure of volcanic activity and a tracer for other gaseous species. Recent studies have shown that failure to take realistic radiative transfer into account during the spectral retrieval of the collected data often leads to large errors in the calculated emission rates. Here, the framework for a new evaluation method which couples a radiative transfer model to the spectral retrieval is described. In it, absorption spectra are simulated, and atmospheric parameters are iteratively updated in the model until a best match to the measurement data is achieved. The evaluation algorithm is applied to two example Differential Optical Absorption Spectroscopy (DOAS) measurements conducted at Kilauea volcano (Hawaii). The resulting emission rates were 20 and 90% higher than those obtained with a conventional DOAS retrieval performed between 305 and 315 nm, respectively, depending on the different SO2 and aerosol loads present in the volcanic plume. The internal consistency of the method was validated by measuring and modeling SO2 absorption features in a separate wavelength region around 375 nm and comparing the results. Although additional information about the measurement geometry and atmospheric conditions is needed in addition to the acquired spectral data, this method for the first time provides a means of taking realistic three-dimensional radiative transfer into account when analyzing UV-spectral absorption measurements of volcanic SO2 plumes.

  12. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  13. VizieR Online Data Catalog: Interstellar Ca I absorption (Welty+, 2003)

    NASA Astrophysics Data System (ADS)

    Welty, D. E.; Hobbs, L. M.; Morton, D. C.

    2003-07-01

    We present high-resolution (FWHM~0.3-1.5km/s) spectra, obtained with the AAT UHRF, the McDonald Observatory 2.7m coude spectrograph, and/or the KPNO coude feed, of interstellar Ca I absorption toward 30 Galactic stars. Comparisons of the column densities of Ca I, Ca II, K I, and other species - for individual components identified in the line profiles and also when integrated over entire lines of sight - yield information on relative electron densities and depletions (dependent on assumptions regarding the ionization equilibrium). (2 data files).

  14. Eruption column physics

    SciTech Connect

    Valentine, G.A.

    1997-03-01

    In this paper the author focuses on the fluid dynamics of large-scale eruption columns. The dynamics of these columns are rooted in multiphase flow phenomena, so a major part of the paper sets up a foundation on that topic that allows one to quickly assess the inherent assumptions made in various theoretical and experimental approaches. The first part is centered on a set of complex differential equations that describe eruption columns, but the focus is on a general understanding of important physical processes rather than on the mathematics. The author discusses briefly the relative merits and weaknesses of different approaches, emphasizing that the largest advances in understanding are made by combining them. He then focuses on dynamics of steady eruption columns and then on transient phenomena. Finally he briefly reviews the effects of varying behavior of the ambient medium through which an eruption column moves. These final sections will emphasize concepts and a qualitative understanding of eruption dynamics. This paper relies on principles of continuum mechanics and transport processes but does not go into detail on the development of those principles. 36 refs., 36 figs., 3 tabs.

  15. APM Z >=4 QSO Survey: Spectra and Intervening Absorption Systems

    NASA Astrophysics Data System (ADS)

    Storrie-Lombardi, L. J.; McMahon, R. G.; Irwin, M. J.; Hazard, C.

    1996-09-01

    The APM multicolor survey for bright z > 4 objects, covering 2500 deg^2^ of sky to m_r_ ~ 19, resulted in the discovery of 31 quasars with z ~> 4. High signal-to-noise optical spectrophotometry at 5 A resolution has been obtained for the 28 quasars easily accessible from the northern hemisphere. These spectra have been surveyed to create new samples of high-redshift Lyman-limit systems, damped Lyα absorbers, and metal absorption systems (e.g., C IV and Mg II). In this paper we present the spectra, together with line lists of the detected absorption systems. The QSOs display a wide variety of emission- and absorption-line characteristics, with five exhibiting broad absorption lines and one with extremely strong emission lines (BR 2248 - 1242). Eleven candidate damped Lyα absorption systems have been identified covering the redshift range 2.8 <= z <= 4.4 (eight with z > 3.5). An analysis of the measured redshifts of the high-ionization emission lines with the low-ionization lines shows them to be blueshifted by 430 +/- 60 km s^-1^. In a previous paper (by Storrie-Lombardi et al.) we discussed the redshift evolution of the Lyman limit systems cataloged here. In subsequent papers we will discuss the properties of the Lyα forest absorbers and the redshift and column density evolution of the damped Lyα absorbers.

  16. Probing the Southern Fermi Bubble in Ultraviolet Absorption

    NASA Astrophysics Data System (ADS)

    Karim, Md. Tanveer; Fox, Andrew; Jenkins, Edward B.

    2017-01-01

    The Fermi Bubbles are two giant gamma-ray emitting lobes, extending 55° below and above the Galactic Center, that were discovered in 2010. While the Northern Bubble has been extensively studied in ultraviolet (UV) absorption, little is known about the UV properties of the Southern Bubble. We use UV absorption-line spectra from the Hubble Space Telescope Cosmic Origins Spectrograph (HST/COS) to probe the Southern Fermi Bubble using two sightlines to background AGN, one passing inside the Bubble (RBS 1768) and one passing just outside (RBS 2000). We used VPFIT, a Voigt profile fitting program to detect the existence of high-velocity absorption components and to measure the column density of different metal ions. We detected two high-velocity absorption components in both sightlines; one at vLSR = -150 km s-1 and one at vLSR = 160 km s-1. We determined that the component at vLSR = 160 km s-1 is due to the Magellanic Stream. Absorption is seen in ions of silicon, carbon and aluminium. The discovery that the high-velocity component is present in both sightlines shows that cool gas can extend further from the Galactic plane than the gamma-ray emitting regions. This could indicate past outflow activity prior to the creation of the Southern Bubble. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.

  17. COMPARING SPATIAL DISTRIBUTIONS OF SOLAR PROMINENCE MASS DERIVED FROM CORONAL ABSORPTION

    SciTech Connect

    Gilbert, Holly; Kilper, Gary; Kucera, Therese; Alexander, David

    2011-01-20

    In a previous study, Gilbert et al. derived the column density and total mass of solar prominences using a new technique, which measures how much coronal radiation in the Fe XII (195 A) spectral band is absorbed by prominence material, while considering the effects of both foreground and background radiation. In the present work, we apply this method to a sample of prominence observations in three different wavelength regimes: one in which only H{sup 0} is ionized (504 A < {lambda} < 911 A), a second where both H{sup 0} and He{sup 0} are ionized (228 A < {lambda} < 504 A), and finally at wavelengths where H{sup 0}, He{sup 0}, and He{sup +} are all ionized ({lambda} < 228 A). This approach, first suggested by Kucera et al., permits the separation of the contributions of neutral hydrogen and helium to the total column density in prominences. Additionally, an enhancement of the technique allowed the calculation of the two-dimensional (2D) spatial distribution of the column density from the continuum absorption in each extreme-ultraviolet observation. We find the total prominence mass is consistently lower in the 625 A observations compared to lines in the other wavelength regimes. There is a significant difference in total mass between the 625 A and 195 A lines, indicating the much higher opacity at 625 A is causing a saturation of the continuum absorption and thus, a potentially large underestimation of mass.

  18. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS

    SciTech Connect

    Heung, L.; Sessions, H.; Xiao, S.

    2010-08-31

    The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2.

  20. Columns in Clay

    ERIC Educational Resources Information Center

    Leenhouts, Robin

    2010-01-01

    This article describes a clay project for students studying Greece and Rome. It provides a wonderful way to learn slab construction techniques by making small clay column capitols. With this lesson, students learn architectural vocabulary and history, understand the importance of classical architectural forms and their influence on today's…

  1. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  2. Mini-columns for Conducting Breakthrough Experiments. Design and Construction

    SciTech Connect

    Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas

    2015-06-11

    Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or Kd values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.

  3. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  4. Absorption-line spectrum of GC 1556 + 335 - ejected or intervening material

    SciTech Connect

    Morris, S.L.; Weymann, R.J.; Foltz, C.B.; Turnshek, D.A.; Shectman, S.

    1986-11-01

    Two rich C IV absorption complexes in the radio-loud QSO GC 1556 + 335 are described. Column densities for seven of the redshift systems in these complexes are measured, and limits on the distances between the QSO and absorbing clouds are derived using ionization parameters estimated from matching photoionization models to the observations and a density estimated from an upper limit to the C II(asterisk) column density in the z = 1.65367 redshift system. These limits show that GC 1556 + 335 is not a typical member of the BALQSO class. Two alternative models are discussed in which the absorption complexes are caused by material either entrained into a radio jet from the QSO or contained in two clusters of galaxies along the line of sight. It is suggested that the emission associated with the complexes may be detectable, and that a study of the velocity field and geometry of such emission might be decisive in determining the mechanism responsible for the absorption. 40 references.

  5. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    SciTech Connect

    Werk, Jessica K.; Prochaska, J. Xavier; Tripp, Todd M.; O'Meara, John M.; Peeples, Molly S.

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  6. Tracking the complex absorption in NGC 2110 with two Suzaku observations

    SciTech Connect

    Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard; Bamba, Aya; Fukazawa, Yasushi; Okajima, Takashi; Terashima, Yuichi; Ueda, Yoshihiro

    2014-05-10

    We present spectral analysis of two Suzaku observations of the Seyfert 2 galaxy, NGC 2110. This source has been known to show complex, variable absorption which we study in depth by analyzing these two observations set 7 yr apart and by comparing them to previously analyzed observations with the XMM-Newton and Chandra observatories. We find that there is a relatively stable, full-covering absorber with a column density of ∼3× 10{sup 22} cm{sup –2}, with an additional patchy absorber that is likely variable in both column density and covering fraction over timescales of years, consistent with clouds in a patchy torus or in the broad line region. We model a soft emission line complex, likely arising from ionized plasma and consistent with previous studies. We find no evidence for reflection from an accretion disk in this source with contribution from neither relativistically broadened Fe Kα line emission, nor from a Compton reflection hump.

  7. Geometric structure, electronic structure and optical absorption properties of one-dimensional thiolate-protected gold clusters containing a quasi-face-centered-cubic (quasi-fcc) Au-core: a density-functional theoretical study.

    PubMed

    Ma, Zhongyun; Wang, Pu; Pei, Yong

    2016-09-29

    Based on the recently reported atomic structures of thiolate-protected Au28(SR)20, Au36(SR)24, Au44(SR)28, and Au52(SR)32 clusters, a family of homogeneous, linear, thiolate-protected gold superstructures containing novel quasi-face-centered-cubic (quasi-fcc) Au-cores is theoretically envisioned, denoted as the Au20+8N(SR)16+4N cluster. By means of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations, a unified view of the geometric structure, electronic structure, magic stable size and size-dependent NIR absorption properties of Au20+8N(SR)16+4N clusters is provided. We find that the Au20+8N(SR)16+4N clusters demonstrate oscillating transformation energies dependent on N. The odd-N clusters show more favorable (negative) reaction energies than the even-N clusters. The magic stability of recently reported Au28(SR)20, Au36(SR)24, Au44(SR)28, Au52(SR)32 and Au76(SR)44 clusters can be addressed from the relative reaction energies and geometric distortion of Au-cores. A novel 4N + 4 magic electron-number is suggested for the Au20+8N(SR)16+4N cluster. Using the polyhedral skeletal electron pair theory (PSEPT) and the extended Hückel molecular orbital (EHMO) calculations, we suggest that the magic 4N + 4 electron number is correlated with the quasi-fcc Au-cores, which can be viewed as double helical tetrahedron-Au4 chains. The size-dependent optical absorption properties of Au20+8N(SR)16+4N clusters are revealed based on TD-DFT calculations. We propose that these clusters are potential candidates for the experimental synthesis of atomically precise one-dimensional ligand protected gold superstructures with tunable NIR absorption properties.

  8. Oxygen Absorption in Cooling Flows.

    PubMed

    Buote

    2000-04-01

    The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC, we have detected strong absorption over energies approximately 0.4-0.8 keV intrinsic to the central approximately 1&arcmin; of the galaxy NGC 1399, the group NGC 5044, and the cluster A1795. These systems have among the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below approximately 0.4 keV, the most reasonable model for the absorber is warm, collisionally ionized gas with T=105-106 K in which ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT and also is consistent with the negligible atomic and molecular H inferred from H i and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass dropout in these and other cooling flows can be verified by Chandra and X-Ray Multimirror Mission.

  9. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity.

    PubMed

    Dey, Abhishek; Jenney, Francis E; Adams, Michael W W; Johnson, Michael K; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2007-10-17

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results

  10. X-ray absorption of Ba1 - xKxBiO3 and BaPb1 - yBiyO3: Competition between bipolaronic and charge-density wave states

    NASA Astrophysics Data System (ADS)

    Merz, M.; Nücker, N.; Schuppler, S.; Arena, D.; Dvorak, J.; Idzerda, Y. U.; Ustinovich, S. N.; Soldatov, A. G.; Shiryaev, S. V.; Barilo, S. N.

    2005-10-01

    Bulk-sensitive O 1s near-edge X-ray absorption spectroscopy on Ba1 - xKxBiO3 and BaPb1 - yBiyO3 single crystals shows for undoped BaBiO3 a distinct charge-density wave derived band slightly above the Fermi level; upon K doping it is effectively reduced and competes with bipolaronic hole states whose spectral weight increases with K content. For Pb doping, on the other hand, a wide Pb-O band is formed near EF while the intensity of the bipolaronic hole band remains unaffected. The data suggest a crucial role of hole bipolarons for bismuthate superconductivity.

  11. Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence.

    PubMed

    Jin, Zhen; Yang, Meng; Chen, Shao-Hua; Liu, Jin-Huai; Li, Qun-Xiang; Huang, Xing-Jiu

    2017-02-21

    Herein, we revealed that the electrochemical behaviors on the detection of heavy metal ions (HMIs) would largely rely on the exposed facets of SnO2 nanoparticles. Compared to the high-energy {221} facet, the low-energy {110} facet of SnO2 possessed better electrochemical performance. The adsorption/desorption tests, density-functional theory (DFT) calculations, and X-ray absorption fine structure (XAFS) studies showed that the lower barrier energy of surface diffusion on {110} facet was critical for the superior electrochemical property, which was favorable for the ions diffusion on the electrode, and further leading the enhanced electrochemical performance. Through the combination of experiments and theoretical calculations, a reliable interpretation of the mechanism for electroanalysis of HMIs with nanomaterials exposed by different crystal facets has been provided. Furthermore, it provides a deep insight into understanding the key factor to improve the electrochemical performance for HMIs detection, so as to design high-performance electrochemical sensors.

  12. The origin of the unusual broad and intense visible absorption of tetrathiafulvalene-annulated zinc porphyrazine: a density functional theory study.

    PubMed

    Tao, Wei; Kan, Yu-He; Wu, Shui-Xing; Li, Hai-Bin; Yan, Li-Kai; Sun, Shi-Ling; Su, Zhong-Min

    2012-03-01

    The vertical excitation energies of tetrathiafulvalene (TTF)-annulated zinc porphyrazine (ZnPzTTF) were investigated using time-dependent density functional theory (TDDFT) calculations and compared to the experimental UV-vis spectra. To examine the effects of the aza substitutions and TTF groups on the molecular properties, zinc complexes of porphyrin (ZnP), porphyrazine (ZnPz) and tetraTTF-annulated porphyrin (ZnPTTF) were also selected for comparison. It was shown that numerous electronic transitions with TTF-to-porphyrin or porphyrazine charge transfer character exist and the Q band of ZnPzTTF is dominated by TTF-to-porphyrazine charge transfer transition mixed with porphyrazine core unit itself except for classic porphyrazine π→π* transitions. The Q band of ZnPzTTF mixes with other configurations, which breaks down the Gouterman's classic four-orbital model for the spectral interpretation. The data suggest that TDDFT/SAOP performs best for Q and B bands of ZnPzTTF with the maximum error in excitation energy being 0.17 eV. The CAM-B3LYP, ωB97XD and M06-2X calculations qualitatively predict that the low-lying electronic transitions of ZnPzTTF with TTF-to-porphyrazine charge transfer character located below the Q band. The broad and intense red-shifted Q band suggests that ZnPzTTF can be a candidate for dye-sensitized solar cells.

  13. A variable P v broad absorption line and quasar outflow energetics

    NASA Astrophysics Data System (ADS)

    Capellupo, D. M.; Hamann, F.; Barlow, T. A.

    2014-10-01

    Broad absorption lines (BALs) in quasar spectra identify high-velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kinetic energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift ze = 2.56), aided by the first detection of P V λλ1118, 1128 BAL variability in a quasar. In particular, P V absorption at velocities where the C IV trough does not reach zero intensity implies that the C IV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log NH ≳ 22.3 cm-2. Variability in the P V and saturated C IV BALs strongly disfavours changes in the ionization as the cause of the BAL variability, but supports models with high column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km s-1 and a radial distance from the central black hole of ≲ 3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ˜4100 M⊙, the kinetic energy ˜4 × 1054 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ˜0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasar's host galaxy.

  14. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  15. Novel absorption detection techniques for capillary electrophoresis

    SciTech Connect

    Xue, Yongjun

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the μM level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  16. The hard X-ray emission spectra from accretion columns in intermediate polars

    NASA Technical Reports Server (NTRS)

    Yi, Insu; Vishniac, Ethan T.

    1994-01-01

    We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass

  17. A population of very diffuse Lyman-α clouds as the origin of the He+ absorption signal in the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Hu, E. M.; Cowie, L. L.

    1995-05-01

    KNOWLEDGE of the physical state of the relatively uniform component of the intergalactic medium (the 'substrate') is critical to understanding the propagation of ionizing radiation and dynamical energy through intergalactic space, and for establishing the boundary conditions for the formation of the intergalactic gas clouds and galaxies that are assumed to have condensed from it. Uniformly distributed hydrogen, and, even more so, He+ will produce characteristic smooth absorption in the spectra of high-redshift quasars1-4, but at low spectral resolution it is difficult to distinguish such an absorption trough from the cumulative effect of absorption by the Lyman-α 'forest' of clouds. We report the detection of a population of weak 'forest' clouds with column density down to 2 x 1012 cm-2, and show that absorption in these clouds can account for a recent measurement1 of strong He+ absorption without necessarily having to invoke a diffuse intergalactic medium.

  18. Variability of the broad absorption lines in the QSO UM 232

    NASA Technical Reports Server (NTRS)

    Barlow, Thomas A.; Junkkarinen, Vesa T.; Burbidge, E. Margaret

    1989-01-01

    Low-resolution spectra of UM 232 taken in 1978, 1979, and 1988 at Lick Observatory are presented. Large changes in the Si IV lambda 1397, CIV lambda 1549, and Al III lambda 1857 broad absorption lines are apparent. The decrease in column density in all three ions and an observed brightening of the QSO suggests that these changes are due to an increase in the ionization level driven by an increase in the central source luminosity. This mechanism has been proposed by Smith and Penston to explain small changes in the absorption spectrum of the QSO 1246-057. The spectra of UM 232 show that the fractional decrease in optical depth is smaller at higher outflow velocies. The structure of the broad absorption-line region (BALR) is investigted by estimating an ionization parameter for each ion species as a function of velocity.

  19. Analysis of microwave leaky modes propagating through laser plasma filaments column waveguide

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2012-12-15

    A plasma column waveguide formed by a bundle of closely spaced plasma filaments induced by the propagation of ultrafast laser pulses in air and revived by a longer infrared laser pulse is shown to support microwave radiation. We consider values of both the plasma electron density and microwave frequency for which the refractive index of plasma is lower than the refractive index of air; therefore, a leaky plasma waveguide can be realized in extremely high frequency band. The guiding mechanism does not require high conductance of the plasma and can be easily excited by using commercial femtosecond laser sources. A theoretical study of leaky mode characteristics of isotropic and homogeneous plasma column waveguides is investigated with several values of plasma and waveguide structure parameters. The microwave transmission loss was found to be mainly caused by the microwave leakage through the air-plasma interface and is weakly dependent on the plasma absorption. In spite of losses of microwaves caused by leakage and plasma absorption, it is shown to be much lower than both that accompanying to surface waves attaching to single conducting plasma wire and the free space propagation over distances in the order of the filament length, which opens exciting perspectives for short distance point to point wireless transmission of pulsed-modulated microwaves.

  20. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Obland, M. D.; Ismail, S.; Meadows, B.; Browell, E. V.

    2014-12-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper.

  1. Synthesis of Ion Microbeam Column

    NASA Astrophysics Data System (ADS)

    Mui, Peter Hon-Fung

    1995-01-01

    Electrostatic lenses have traditionally been designed by analyzing and combining different electrode configurations. Computational complexity typically limits such systems to a few geometrically simple elements, where the component interactions are neglected and not exploited to combat the various aberrations. Recently, Szilagyi and Szep have demonstrated that an axially symmetric column of circular plates, with the electrode potentials optimized for focusing, can surpass the typical conventional designs by many times in performance. Following the footsteps of pioneers like Burfoot and Hawkes, we partition the plates in order to transcend the limitations set by Scherzer's theorem on the chromatic and spherical aberrations of axially symmetric structures. Two algorithms, one based upon integral asymptotics and one upon the Levinson algorithm. for Toeplitz matrix inversion, are developed to complement the charge-density method in analyzing the new column structures. Various optimization schemes are combined to avoid shallow minima at a reasonable computational cost. With each plate partitioned into four sectors, we show that the interactions between the monopole and the quadrupole components can increase the output current density by more than 400% over the axially symmetric structure. By adjusting the sector potentials, we can realize systems capable of both focusing and deflecting the beam. In comparison to some existing designs, our systems excel in both performance and compactness, sometimes by many hundred percents. We then further partition the plates to generate the "octupole" deflectors and correctors. We show that the "octupole" deflectors can drastically slow down the beam degradation with deflection distance and that the correctors can further increase the output current density by more than 300%. Finally, we apply linear system theories to the study of the first-order properties of optical systems with different symmetries. We showed, without resorting to

  2. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  3. Matching High-z Observations of Damped Ly-α Absorption Systems

    NASA Astrophysics Data System (ADS)

    Hamer, Jacob; Maller, Ariyeh; Somerville, Rachel S.

    2016-01-01

    Damped Lyman Alpha Absorption systems, the highest column density quasar absorption systems, can place tight constraints on models of galaxy formation. While many current models can match the properties of these objects at z ~ 2-3, all current models severely underestimate their abundances at z~5. We study the ability of a semi-analytic model to match the line density of damped systems and find that serious changes to the model must be made. If gas disks give rise to these systems, then more baryons must be in HI than is currently assumed in the model, either because fewer stars are formed or less gas is ejected by supernova. In addition, the disks must be much larger than assumed in the model. Alternatively, gas outflows could account for much of the cross section, placing constraints on the physics of supernova feedback.

  4. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  5. Time Variable Associated Absorption in the QSO UM 675

    NASA Astrophysics Data System (ADS)

    Hamann, F. W.; Barlow, T. A.; Beaver, E. A.; Burbidge, E. M.; Cohen, R. D.; Junkkarinen, V. T.; Lyons, R. W.

    1994-05-01

    We discuss dramatic changes in the z_a ~ z_e absorption system of the z_e = 2.15 QSO UM 675 (Q0150-203). The C IV lambda 1550 and N V lambda 1240 doublets at z_a = 2.1344 strengthened by a factor of ~ 3 between the observations of Sargent, Boksenberg and Steidel (1988, ApJS, 68, 539; measured November 1981) and our earliest measurements (November and December 1990). During this time, C IV in the z_a = 2.0083 system may also have strengthened. The variability of other lines in these systems is unknown. Continued monitoring is in progress. We consider several models of the z_a ~ z_e absorption environment, and conclude that the absorbing clouds are close to the QSO and photoionized by the QSO continuum. The variability timescale (<~2.9 yrs rest) requires gas densities gap 4000 cm(-3) to allow changes in the ionization balance. This minimum density, and the high ionization needed to produce the Ne VIII lambda 774 and O VI lambda 1035 absorptions reported previously (E. M. Burbidge et al., 1993, BAAS, 24, 1135), requires clouds <~200 pc from the QSO. The full range of absorption line ionizations (including C III lambda 977 and N III lambda 989) implies that the clouds are segregated, spanning a factor of gap 10 in distance or gap 100 in density. Across these regions the H I fraction varies from ~ 10(-3) to ~ 10(-6) . The total hydrogen column ranges from a few times 10(18) cm(-2) in the low ionization gas to ~ 10(20) cm(-2) where the Ne VIII lines form. The Lyman continuum is expected to be optically thin throughout, consistent with the measured absence of a Lyman edge. The metal abundances are roughly solar or above. Implications of these results are discussed. This work is supported by NASA grant NAG 5-1630.

  6. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  7. Description of the ground-state covalencies of the bis(dithiolato) transition-metal complexes from X-ray absorption spectroscopy and time-dependent density-functional calculations.

    PubMed

    Ray, Kallol; Debeer George, Serena; Solomon, Edward I; Wieghardt, Karl; Neese, Frank

    2007-01-01

    The electronic structures of [M(L(Bu))(2)](-) (L(Bu)=3,5-di-tert-butyl-1,2-benzenedithiol; M=Ni, Pd, Pt, Cu, Co, Au) complexes and their electrochemically generated oxidized and reduced forms have been investigated by using sulfur K-edge as well as metal K- and L-edge X-ray absorption spectroscopy. The electronic structure content of the sulfur K-edge spectra was determined through detailed comparison of experimental and theoretically calculated spectra. The calculations were based on a new simplified scheme based on quasi-relativistic time-dependent density functional theory (TD-DFT) and proved to be successful in the interpretation of the experimental data. It is shown that dithiolene ligands act as noninnocent ligands that are readily oxidized to the dithiosemiquinonate(-) forms. The extent of electron transfer strongly depends on the effective nuclear charge of the central metal, which in turn is influenced by its formal oxidation state, its position in the periodic table, and scalar relativistic effects for the heavier metals. Thus, the complexes [M(L(Bu))(2)](-) (M=Ni, Pd, Pt) and [Au(L(Bu))(2)] are best described as delocalized class III mixed-valence ligand radicals bound to low-spin d(8) central metal ions while [M(L(Bu))(2)](-) (M=Cu, Au) and [M(L(Bu))(2)](2-) (M=Ni, Pd, Pt) contain completely reduced dithiolato(2-) ligands. The case of [Co(L(Bu))(2)](-) remains ambiguous. On the methodological side, the calculation led to the new result that the transition dipole moment integral is noticeably different for S(1s)-->valence-pi versus S(1s)-->valence-sigma transitions, which is explained on the basis of the differences in radial distortion that accompany chemical bond formation. This is of importance in determining experimental covalencies for complexes with highly covalent metal-sulfur bonds from ligand K-edge absorption spectroscopy.

  8. The anomalous X-ray absorption spectrum of Vela X-1

    NASA Technical Reports Server (NTRS)

    Kallman, T. R.; White, N. E.

    1982-01-01

    The HEAO 2 satellite's Solid State Spectrometer and Monitor Proportional Counter was used to observe one orbit of the massive X-ray binary Vela X-1. Using spectral fits to the data as a function of orbital phase, the column density and state of the material along the line of sight to the X-ray source has been inferred. The spectrum near orbital phase 0.2 compares favorably with absorption by neutral material with a column density corresponding to plausible values of stellar wind velocity law and total primary mass loss rate. Spectra at later orbital phases, which show unexpected strong absorption features near 2.0 and 2.5 keV, are interpreted as due to absorption by material with suppressed opacity below 2.0 keV. The opacity required to produce the observed features implies either the presence of an intense soft X-ray flux, or altered elemental abundances in the gas near Vela X-1.

  9. GAS AND DUST ABSORPTION IN THE DoAr 24E SYSTEM

    SciTech Connect

    Kruger, Andrew J.; Richter, Matthew J.; Seifahrt, Andreas; Carr, John S.; Najita, Joan R.; Moerchen, Margaret M.; Doppmann, Greg W.

    2012-11-20

    We present findings for DoAr 24E, a binary system that includes a classical infrared companion. We observed the DoAr 24E system with the Spitzer Infrared Spectrograph (IRS), with high-resolution, near-infrared spectroscopy of CO vibrational transitions, and with mid-infrared imaging. The source of high extinction toward infrared companions has been an item of continuing interest. Here we investigate the disk structure of DoAr 24E using the column densities, temperature, and velocity profiles of two CO absorption features seen toward DoAr 24Eb. We model the spectral energy distributions found using T-ReCS imaging and investigate the likely sources of extinction toward DoAr 24Eb. We find the lack of silicate absorption and small CO column density toward DoAr 24Eb suggest that the mid-infrared continuum is not as extinguished as the near-infrared, possibly due to the mid-infrared originating from an extended region. This, along with the velocity profile of the CO absorption, suggests that the source of high extinction is likely due to a disk or disk wind associated with DoAr 24Eb.

  10. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-12-10

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  11. The lateral column lengthening and medial column stabilization procedures.

    PubMed

    Chi, T D; Toolan, B C; Sangeorzan, B J; Hansen, S T

    1999-08-01

    The results of medial column stabilization, lateral column lengthening, and combined medial and lateral procedures were reviewed in the treatment of adult acquired flatfoot secondary to posterior tibialis tendon insufficiency. All bony procedures were accompanied by transfer of the flexor digitorum longus tendon to the medial cuneiform or stump of the posterior tibialis tendon and tendoachilles lengthening or gastrocnemius recession. Medial column fusion was performed for naviculocuneiform and cuneiform first metatarsal sag; lateral column lengthening was performed for calcaneovalgus deformity with a flat pitch angle; and combined procedures were performed for complex combined deformities. At 1 to 4 year followup of 65 feet, 88% of the feet that had lateral column lengthening, 80% that had medial column stabilization, and 88% of the feet that had medial and lateral procedures had a decrease in pain or were pain free. The lateral talar first metatarsal angle improved by 16 degrees in the patients in the lateral column lengthening group, 20 degrees in the patients in the medial column stabilization group, and 24 degrees in the patients in the combined medial and lateral procedures group. The anteroposterior talonavicular coverage angle improved by 14 degrees in the patients in the lateral column lengthening group, 10 degrees in the patients in the medial column stabilization group, and 14 degrees in the patients in the combined medial and lateral procedures group. These techniques effectively correct deformity without disrupting the essential joints of the hindfoot and midfoot.

  12. Physical Properties of the Interstellar Medium Using High-resolution Chandra Spectra: O K-edge Absorption

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W.

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = -2.90 and oxygen abundance of A O = 0.70. The latter is given relative to the standard by Grevesse & Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N O = 9.2 × 1017 cm-2) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  13. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  14. A Hot Gaseous Galaxy Halo Candidate with Mg X Absorption

    NASA Astrophysics Data System (ADS)

    Qu, Zhijie; Bregman, Joel N.

    2016-12-01

    The hot gas in galaxy halos may account for a significant fraction of missing baryons in galaxies, and some of these gases can be traced by high ionization absorption systems in QSO UV spectra. Using high S/N Hubble Space Telescope/Cosmic Origins Spectrograph spectra, we discovered a high ionization state system at z = 1.1912 in the sightline toward LBQS 1435-0134, and two-component absorption lines are matched for Mg x, Ne viii, Ne vi, O vi, Ne v, O v, Ne iv, O iv, N iv, O iii, and H i. Mg x, detected for the first time (5.8σ), is a particularly direct tracer of hot galactic halos, as its peak ion fraction occurs near 106.1 K, about the temperature of a virialized hot galaxy halo of mass ˜ 0.5{M}* . With Mg x and Ne viii, a photoionization model cannot reproduce the observed column densities with path lengths of galaxy halos. For collisional ionization models, one or two-temperature models do not produce acceptable fits, but a three-temperature model or a power-law model can produce the observed results. In the power-law model, {dN}/{dT}={10}4.4+/- 2.2-[Z/X]{T}1.55+/- 0.41 with temperatures in the range of {10}4.39+/- 0.13 {{K}}\\lt T\\lt {10}6.04+/- 0.05 {{K}}, the total hydrogen column density is 8.2× {10}19(0.3 {Z}⊙ /Z) {{cm}}-2 and the positive power-law index indicates most of the mass is at the high temperature end. We suggest that this absorption system is a hot volume-filled galaxy halo rather than interaction layers between the hot halo and cool clouds. The temperature dependence of the column density is likely due to the local mixture of multiple phase gases.

  15. Column atmospheric water vapor retrievals from airborne imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1989-01-01

    High-spatial-resolution column atmospheric water vapor amounts were derived from spectral data collected by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). The quantitative derivation is made by curve fitting observed spectra with calculated spectra in the 1.14- and 0.94-micron water-vapor band absorption regions with a nonlinear least-squares technique. The precision of the retrieved column water vapor is approximately 5 percent. The derived column water vapor amounts are independent of the absolute surface reflectance. Curve fitting of spectra near 1 micron from areas covered with vegetation indicates that both the amount of atmospheric water vapor and the moisture content of vegetation can be retrieved simultaneously. It should be possible to measure column water vapor over land areas from satellite altitude with the proposed high-resolution imaging spectrometer or even the moderate-resolution imaging spectrometer.

  16. METHOD TO TEST ISOTOPIC SEPARATION EFFICIENCY OF PALLADIUM PACKED COLUMNS

    SciTech Connect

    Heung, L; Gregory Staack, G; James Klein, J; William Jacobs, W

    2007-06-27

    The isotopic effect of palladium has been applied in different ways to separate hydrogen isotopes for many years. At Savannah River Site palladium deposited on kieselguhr (Pd/k) is used in a thermal cycling absorption process (TCAP) to purify tritium for over ten years. The need to design columns for different throughputs and the desire to advance the performance of TCAP created the need to evaluate different column designs and packing materials for their separation efficiency. In this work, columns with variations in length, diameter and metal foam use, were tested using an isotope displacement method. A simple computer model was also developed to calculate the number of theoretical separation stages using the test results. The effects of column diameter, metal foam and gas flow rate were identified.

  17. HCO{sup +} AND HCN J = 3-2 ABSORPTION TOWARD THE CENTER OF CENTAURUS A

    SciTech Connect

    Muller, Sebastien; Dinh-V-Trung

    2009-05-01

    We have investigated the presence of dense gas toward the radio source Cen A by looking at the absorption of the HCO{sup +} and HCN (3-2) lines in front of the bright continuum source with the Submillimeter Array. We detect narrow HCO{sup +} (3-2) absorption, and tentatively HCN (3-2), close to the systemic velocity. For both molecules, the J = 3 - 2 absorption is much weaker than for the J = 1 - 0 line. From simple excitation analysis, we conclude that the gas density is of the order of a few 10{sup 4} cm{sup -3} for a column density N(HCO{sup +})/{delta}V of 3 x 10{sup 12} cm{sup -2} km{sup -1} s and a kinetic temperature of 10 K. In particular, we find no evidence for molecular gas density higher than a few 10{sup 4} cm{sup -3} on the line of sight to the continuum source. We discuss the implications of our finding on the nature of the molecular gas responsible for the absorption toward Cen A.

  18. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2<~z<~3

    NASA Astrophysics Data System (ADS)

    Adelberger, Kurt L.; Shapley, Alice E.; Steidel, Charles C.; Pettini, Max; Erb, Dawn K.; Reddy, Naveen A.

    2005-08-01

    Absorption-line spectroscopy of 23 background QSOs and numerous background galaxies has let us measure the spatial distribution of metals and neutral hydrogen around 1044 UV-selected galaxies at redshifts 1.8<~z<~3.3. The typical galaxy is surrounded to radii r~40 proper kpc by gas that has a large velocity spread (Δv>260 km s-1) and produces very strong absorption lines (NCIV>>1014 cm-2) in the spectra of background objects. These absorption lines are almost as strong as those produced by a typical galaxy's own interstellar gas. Absorption with an average column density of NCIV~=1014 cm-2 extends out to ~80 kpc, a radius large enough to imply that most strong intergalactic C IV absorption is associated with star-forming galaxies like those in our sample. Our measurement of the galaxy-C IV spatial correlation function shows that even the weakest detectable C IV systems are found in the same regions as galaxies; we find that the cross-correlation length increases with C IV column density and is similar to the galaxy autocorrelation length (r0~4 h-1 Mpc) for NCIV>~1012.5 cm-2. Distortions in the redshift-space galaxy-C IV correlation function on small scales may imply that some of the C IV systems have large peculiar velocities. Four of the five detected O VI absorption systems in our sample lie within 400 proper kpc of a known galaxy. Strong Lyα absorption is produced by the intergalactic gas within 1 h-1 comoving Mpc of most galaxies, but for a significant minority (~1/3) the absorption is weak or absent. This is not observed in smooth-particle hydrodynamic simulations that omit the effects of ``feedback'' from galaxy formation. We were unable to identify any statistically significant differences in age, dust reddening, environment, or kinematics between galaxies with weak nearby H I absorption and the rest, although galaxies with weak absorption may have higher star formation rates. Galaxies near intergalactic C IV systems appear to reside in relatively dense

  19. Desulfurization of coal by microbial column flotation

    SciTech Connect

    Ohmura, Naoya; Saiki, Hiroshi . Dept. of Biotechnology)

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics. Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 [mu]L/L kerosene) with the reduction of pyrite sulfur content from11% (feed coal) to 3.9% (product coal). An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7.

  20. Why Hexagonal Basalt Columns?

    PubMed

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-09

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  1. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  2. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    SciTech Connect

    Dey, Abhishek; Hocking, Rosalie K.; Larsen, Peter; Borovik, Andrew S.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC, SSRL

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  3. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  4. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  5. Sources of Variability in the Stratospheric Column of Nitrogen Dioxide

    NASA Technical Reports Server (NTRS)

    Douglass, Anne; Gleason, James; Chin, Mian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Instruments such as the Global Ozone Monitoring Experiment (GOME, on the European Remote Sensing Satellite (ERS-2), launched 1995), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY, on ENVISAT, to be launched July 2001) and the Ozone Monitoring Instrument (OMI on EOS Aura, to be launched 2003) make measurements of the total column of NO2. There is interest in separating the stratospheric and tropospheric contributions to the column, as the tropospheric column provides a measure of pollution. We are using a 3D chemistry and transport model driven by winds from the Goddard Space Flight Center Data Assimilation System to examine variability in the stratospheric NO2 column. Model results for NOx = NO + NO2 + 2N2O5 will be shown to compare well with sunset observations from the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite, and to exhibit similar temporal and spatial dependence. Partitioning between NO, NO2, and N2O5 is also shown to compare well with observations. This good agreement supports the use of simulated fields in the stratosphere to derive the tropospheric column from the total column. Preliminary comparisons of the tropospheric column with model simulations for the troposphere will also be shown.

  6. Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements

    NASA Astrophysics Data System (ADS)

    Landgraf, Jochen; aan de Brugh, Joost; Scheepmaker, Remco; Borsdorff, Tobias; Hu, Haili; Houweling, Sander; Butz, Andre; Aben, Ilse; Hasekamp, Otto

    2016-10-01

    The Tropospheric Monitoring Instrument (TROPOMI) spectrometer is the single payload of the Copernicus Sentinel 5 Precursor (S5P) mission. It measures Earth radiance spectra in the shortwave infrared spectral range around 2.3 µm with a dedicated instrument module. These measurements provide carbon monoxide (CO) total column densities over land, which for clear sky conditions are highly sensitive to the tropospheric boundary layer. For cloudy atmospheres over land and ocean, the column sensitivity changes according to the light path through the atmosphere. In this study, we present the physics-based operational S5P algorithm to infer atmospheric CO columns satisfying the envisaged accuracy ( < 15 %) and precision ( < 10 %) both for clear sky and cloudy observations with low cloud height. Here, methane absorption in the 2.3 µm range is combined with methane abundances from a global chemical transport model to infer information on atmospheric scattering. For efficient processing, we deploy a linearized two-stream radiative transfer model as forward model and a profile scaling approach to adjust the CO abundance in the inversion. Based on generic measurement ensembles, including clear sky and cloudy observations, we estimated the CO retrieval precision to be ≤ 11 % for surface albedo ≥ 0.03 and solar zenith angle ≤ 70°. CO biases of ≤ 3 % are introduced by inaccuracies in the methane a priori knowledge. For strongly enhanced CO concentrations in the tropospheric boundary layer and for cloudy conditions, CO errors in the order of 8 % can be introduced by the retrieval of cloud parameters of our algorithm. Moreover, we estimated the effect of a distorted spectral instrument response due to the inhomogeneous illumination of the instrument entrance slit in the flight direction to be < 2 % with pseudo-random characteristics when averaging over space and time. Finally, the CO data exploitation is demonstrated for a TROPOMI orbit of simulated shortwave infrared

  7. Spatially Resolved HCN Absorption Features in the Circumnuclear Region of NGC 1052

    NASA Astrophysics Data System (ADS)

    Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Kameno, Seiji; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon

    2016-10-01

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s-1, redshifted by 149 and 212 km s-1 with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 1015-1016 cm-2, assuming an excitation temperature of 100-230 K. The absorption features show high optical depth localized on the receding jet side, where the free-free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.

  8. Buckling of a holey column.

    PubMed

    Pihler-Puzović, D; Hazel, A L; Mullin, T

    2016-09-14

    We report the results from a combined experimental and numerical investigation of buckling in a novel variant of an elastic column under axial load. We find that including a regular line of centred holes in the column can prevent conventional, global, lateral buckling. Instead, the local microstructure introduced by the holes allows the column to buckle in an entirely different, internal, mode in which the holes are compressed in alternate directions, but the column maintains the lateral reflection symmetry about its centreline. The internal buckling mode can be accommodated within a smaller external space than the global one; and it is the preferred buckling mode over an intermediate range of column lengths for sufficiently large holes. For very short or sufficiently long columns a modification of the classical, global, lateral buckling is dominant.

  9. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  10. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  11. X-RAY ABSORPTION OF HIGH-REDSHIFT QUASARS

    SciTech Connect

    Eitan, Assaf; Behar, Ehud E-mail: behar@physics.technion.ac.il

    2013-09-01

    The soft X-ray photoelectric absorption of high-z quasars has been known for two decades, but has no unambiguous astrophysical context. We construct the largest sample to date of 58 high-redshift quasars (z > 0.45) selected from the XMM-Newton archive based on a high photon count criterion (>1800). We measure the optical depth {tau} at 0.5 keV and find that 43% of the quasars show significant absorption. We aim to find which physical parameters of the quasars, e.g., redshift, radio luminosity, radio loudness, or X-ray luminosity, drive their observed absorption. We compare the absorption behavior with redshift with the pattern expected if the diffuse intergalactic medium (IGM) is responsible for the observed absorption. We also compare the absorption with a comparison sample of gamma-ray burst (GRB) X-ray afterglows. Although the z > 2 quasar opacity is consistent with diffuse IGM absorption, many intermediate-z (0.45 < z < 2) quasars are not sufficiently absorbed for this scenario, and are appreciably less absorbed than GRBs. Only 10/37 quasars at z < 2 are absorbed, and only 5/30 radio-quiet quasars are absorbed. We find a weak correlation between {tau} and z, and an even weaker correlation between {tau} and radio luminosity. These findings lead to the conclusion that although a diffuse IGM origin for the quasar absorption is unlikely, the optical depth does seem to increase with redshift, roughly as (1 + z){sup 2.2{+-}0.6}, tending to {tau} Almost-Equal-To 0.4 at high redshifts, similar to the high-z GRBs. This result can be explained by an ionized and clumpy IGM at z < 2, and a cold, diffuse IGM at higher redshift. If, conversely, the absorption occurs at the quasar, and owing to the steep L{sub x} {proportional_to}(1 + z){sup 7.1{+-}0.5} correlation in the present sample, the host column density scales as N{sub H}{proportional_to}L{sub x}{sup 0.7{+-}0.1}.

  12. EMERGENCE OF A BROAD ABSORPTION LINE OUTFLOW IN THE NARROW-LINE SEYFERT 1 GALAXY WPVS 007

    SciTech Connect

    Leighly, Karen M.; Casebeer, Darrin A.; Hamann, Fred; Grupe, Dirk

    2009-08-10

    We report results from a 2003 Far Ultraviolet Spectroscopic Explorer (FUSE) observation and reanalysis of a 1996 Hubble Space Telescope (HST) observation of the unusual X-ray transient Narrow-line Seyfert 1 galaxy WPVS 007. The HST Faint Object Spectrograph (FOS) spectrum revealed mini-BALs (broad absorption lines) with V {sub max} {approx} 900 km s{sup -1} and FWHM {approx}550 km s{sup -1}. The FUSE spectrum showed that an additional BAL outflow with V {sub max} {approx} 6000 km s{sup -1} and FWHM {approx}3400 km s{sup -1} had appeared. WPVS 007 is a low-luminosity object in which such a high-velocity outflow is not expected; therefore, it is an outlier on the M{sub V} /v {sub max} relationship. Template spectral fitting yielded apparent ionic columns, and a Cloudy analysis showed that the presence of P V requires a high-ionization parameter log(U) {>=} 0 and high-column density log(N {sub H}) {>=} 23 assuming solar abundances and a nominal spectral energy distribution (SED) for low-luminosity NLS1s with {alpha} {sub ox} = -1.28. A recent long Swift observation revealed the first hard X-ray detection and an intrinsic (unabsorbed) {alpha} {sub ox} {approx} -1.9. Using this SED in our analysis yielded lower column density constraints (log(N {sub H}) {>=} 22.2 for Z = 1, or log(N {sub H}) {>=} 21.6 if Z = 5). The X-ray weak continuum, combined with X-ray absorption consistent with the UV lines, provides the best explanation for the observed Swift X-ray spectrum. The large column densities and velocities implied by the UV data in any of these scenarios could be problematic for radiative acceleration. We also point out that since the observed P V absorption can be explained by lower total column densities using an intrinsically X-ray weak spectrum, we might expect to find P V absorption preferentially more often (or stronger) in quasars that are intrinsically X-ray weak.

  13. Interstellar Mg II and C IV absorption by 1 1/2 galaxies along the sightline to MrK 205

    NASA Technical Reports Server (NTRS)

    Bowen, David V.; Blades, J. Chris

    1993-01-01

    The first results of our HST survey designed to search for Mg 2 and C 4 absorption lines from the disks and halos of low-redshift galaxies using background QSO's and supernovae as probes are presented. Our survey utilizes the high resolution of the Goddard High Resolution Spectrograph enabling us to calculate the column densities and doppler parameters of individual components within an absorption complex, and hence determine the physical conditions of the absorbing gas. Observing the complexity of the absorption line profiles i.e., the velocity distribution and total velocity extent of the constituent components, offers an important description of the kinematics of the absorbing gas, and hence an understanding of its origin. Focus is on one sight line in particular, that towards Mrk 205, which passes 3-5 kpc from the intervening galaxy NGC 4319. Mg 2 and C 4 absorption from both local Milky Way halo gas and from NGC 4319 is detected.

  14. Dorsal column stimulator applications

    PubMed Central

    Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián

    2012-01-01

    Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533

  15. Total Carbon Column Observing Network (TCCON) Data Archive

    DOE Data Explorer

    Total Carbon Column Observing Network (TCCON) Team

    2017-03-28

    The Total Carbon Column Observing Network (TCCON) is a network of ground-based Fourier Transform Spectrometers that record direct solar absorption spectra of the atmosphere in the near-infrared. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2, CH4, N2O, HF, CO, H2O, and HDO, are retrieved. This is the entire TCCON Data Archive which contains multiple iterations (e.g., GGG2014) of the data sets from the individual TCCON stations.

  16. UNSHIFTED METASTABLE He I* MINI-BROAD ABSORPTION LINE SYSTEM IN THE NARROW-LINE TYPE 1 QUASAR SDSS J080248.18+551328.9

    SciTech Connect

    Ji, Tuo; Zhou, Hongyan; Jiang, Peng; Wang, Tinggui; Wang, Huiyuan; Liu, Wenjuan; Yang, Chenwei; Ge, Jian; Hamann, Fred; Komossa, S.; Yuan, Weimin; Zuther, Jens; Lu, Honglin; Zuo, Wenwen

    2015-02-10

    We report the identification of an unusual absorption-line system in the quasar SDSS J080248.18+551328.9 and present a detailed study of the system, incorporating follow-up optical and near-IR spectroscopy. A few tens of absorption lines are detected, including He I*, Fe II*, and Ni II*, which arise from metastable or excited levels, as well as resonant lines in Mg I, Mg II, Fe II, Mn II, and Ca II. All of the isolated absorption lines show the same profile of width Δv ∼ 1500 km s{sup –1} centered at a common redshift as that of the quasar emission lines, such as [O II], [S II], and hydrogen Paschen and Balmer series. With narrow Balmer lines, strong optical Fe II multiplets, and weak [O III] doublets, its emission-line spectrum is typical for that of a narrow-line Seyfert 1 galaxy (NLS1). We have derived reliable measurements of the gas-phase column densities of the absorbing ions/levels. Photoionization modeling indicates that the absorber has a density of n {sub H} ∼ (1.0-2.5) × 10{sup 5} cm{sup –3} and a column density of N {sub H} ∼ (1.0-3.2) × 10{sup 21} cm{sup –2} and is located at R ∼100-250 pc from the central supermassive black hole. The location of the absorber, the symmetric profile of the absorption lines, and the coincidence of the absorption- and emission-line centroid jointly suggest that the absorption gas originates from the host galaxy and is plausibly accelerated by stellar processes, such as stellar winds and/or supernova explosions. The implications for the detection of such a peculiar absorption-line system in an NLS1 are discussed in the context of coevolution between supermassive black hole growth and host galaxy buildup.

  17. Discovery of neutral hydrogen 21 centimeter absorption at redshift 0.25 toward PKS 1413+135

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Perlman, Eric S.; Stocke, John T.

    1992-01-01

    A strong H I 21-cm absorption line is identified toward PKS 1413+135 at the redshift of the host galaxy and argued to indicate that the IR-optical cutoff of the BL Lac object's spectrum is caused by extinction. The BL Lac object is shown to have strong neutral 21-cm absorption at the redshift range z = 0.24671 +/- 0.00001, and the implied H I column density is derived. The H I covering factor is assumed to be not more than 0.1, suggesting that a high degree of extinction exists in the galaxy. The host galaxy is theorized to be a spiral of type later than S0 based on the redshift of the H I absorption line and the host. The statistical and observational conclusions are found to support the theories of Stock et al. (1992) regarding the red spectrum of the object.

  18. Automatic connector joins structural columns

    NASA Technical Reports Server (NTRS)

    Jacquemin, G. G.

    1980-01-01

    Connector snap-locks over toothed bolthead mounted on column end, forming rigid joint that will not bend or twist. Connector is used in conventional construction to install temporary structures or as mechanical coupler. Up to nine receptacles can be clustered in one node to join up to nine converging columns.

  19. An Undergraduate Column Chromatography Experiment.

    ERIC Educational Resources Information Center

    Danot, M.; And Others

    1984-01-01

    Background information, list of materials needed, and procedures used are provided for an experiment designed to introduce undergraduate students to the theoretical and technical aspects of column chromatography. The experiment can also be shortened to serve as a demonstration of the column chromatography technique. (JN)

  20. Comparison of column flotation cells

    SciTech Connect

    Honaker, R.Q.; Mohanty, M.K.; Ho, K.

    1995-08-01

    Six commercial column flotation technologies, i.e., Canadian, Flotaire, Jameson, Microcel, Packed-Column, and Turbo-air, were tested for the treatment of Illinois Basin fine coal and the results from each column compared based on separation performance and throughout capacity. The separation performance achieved by each cell approached and, in some cases, exceeded the ultimate performance predicted by release analysis. A comparison of the test results indicates differences in the selectivity obtained by each flotation column on the basis of both ash and sulfur rejection. This finding may be due to variations in cell hydrodynamics and the ability to support a deep froth phase among the different column cells. In addition, throughput capacity of each cell was found to differ, apparently due to the differences in the bubble-particle attachment environment, bubble size, and bubble population. Variations in the operating characteristics, such as reagent additions, aeration rate and wash water rate, were also noted and summarized in this publication.

  1. Mush Column Magma Chambers

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  2. Soil column leaching of pesticides.

    PubMed

    Katagi, Toshiyuki

    2013-01-01

    In this review, I address the practical and theoretical aspects of pesticide soil mobility.I also address the methods used to measure mobility, and the factors that influence it, and I summarize the data that have been published on the column leaching of pesticides.Pesticides that enter the unsaturated soil profile are transported downwards by the water flux, and are adsorbed, desorbed, and/or degraded as they pass through the soil. The rate of passage of a pesticide through the soil depends on the properties of the pesticide, the properties of the soil and the prevailing environmental conditions.Because large amounts of many different pesticides are used around the world, they and their degradates may sometimes contaminate groundwater at unacceptable levels.It is for this reason that assessing the transport behavior and soil mobility of pesticides before they are sold into commerce is important and is one indispensable element that regulators use to assess probable pesticide safety. Both elementary soil column leaching and sophisticated outdoor lysimeter studies are performed to measure the leaching potential for pesticides; the latter approach more reliably reflects probable field behavior, but the former is useful to initially profile a pesticide for soil mobility potential.Soil is physically heterogeneous. The structure of soil varies both vertically and laterally, and this variability affects the complex flow of water through the soil profile, making it difficult to predict with accuracy. In addition, macropores exist in soils and further add to the complexity of how water flow occurs. The degree to which soil is tilled, the density of vegetation on the surface, and the type and amounts of organic soil amendments that are added to soil further affect the movement rate of water through soil, the character of soil adsorption sites and the microbial populations that exist in the soil. Parameters that most influence the rate of pesticide mobility in soil are

  3. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  4. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  5. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  6. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    PubMed Central

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process. PMID:26120588

  7. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes.

    PubMed

    Friese, Daniel H; Bast, Radovan; Ruud, Kenneth

    2015-05-20

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon absorption processes are largely determined by the one-photon absorption strength, whereas all even-photon absorption strengths are largely dominated by the two-photon absorption strength, in both cases modulated by powers of the polarizability of the final excited state. We demonstrate how to selectively enhance a specific multiphoton absorption process.

  8. A top-down approach to determine carbon monoxide (CO) emissions in the Mexico Megacity using ground based FTIR solar and lunar absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stremme, Wolfgang; Ortega, Ivan; Garcia, Agustin; Grutter, Michel

    2010-05-01

    The carbon monoxide (CO) total column has been measured by ground based solar and lunar FTIR absorption spectroscopy with 0.5 cm-1 resolution since October 2007 at the UNAM Campus in Mexico City (19,33°N, 99.18°W). The CO column density is retrieved using the SFIT2 retrieval code based on the optimal estimation theory (Rodgers 1976). The time series of the CO-column retrievals show different diurnal behaviours compared to the surface CO concentration. This is explained by the change in the vertical distribution which is dominated by the evolution of the mixing layer height (MLH). The CO column shows a diurnal and weekly pattern depending on the wind speed and traffic, but is not directly dependent on the mixing layer height. A comparison of the measured CO-column, CO-surface concentration and the reconstructed MLH with results from regional MCCM (Grell et al , 2000) model will be presented. Based on the information of the vertical structure, the surface wind fields and surface CO concentrations that are provided by LIDAR measurements, the meteorological and air quality networks, it is possible to estimate the horizontal CO-transport. The CO surface emissions can therefore be calculated from the CO column growth rate. For horizontal homogeneous conditions, the CO column density growth-rate directly gives the surface emission. A first top-down CO emission estimation is presented and compared with the official inventory (bottom-up approach) and other estimations used in recent studies on Mexico City. Monitoring of CO columns in megacities provides new information of the anthropogenic emissions on a regional scale and helps to link the understanding of the CO budget from local to the global scale.

  9. Field Results from Three Campaigns to Validate the Performance of the Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Measuring Carbon Dioxide and Methane in the Atmospheric Column

    NASA Technical Reports Server (NTRS)

    Miller, J. Houston; Clarke, Greg B.; Melroy, Hilary; Ott, Lesley; Steel, Emily Wilson

    2014-01-01

    In a collaboration between NASA GSFC and GWU, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrallyresolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. In the last year, the instrument was deployed for field measurements at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument has been observed. In the latest work the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. An overview of the measurement campaigns and the data retrieval algorithm for the calculation of column concentrations will be presented. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. For temperature, pressure, and humidity profiles with altitude we use the Modern-Era Retrospective Analysis for Research and Applications (MERRA) data. Spectral simulation is accomplished by integrating short-path segments along the trajectory using the SpecSyn spectral simulation suite developed at GW. Column concentrations are extracted by minimizing residuals between observed and modeled spectrum using the Nelder-Mead simplex algorithm. We will also present an assessment of uncertainty in the reported concentrations from assumptions made in the meteorological data, LHR instrument and tracker noise, and radio

  10. Employing anatomical knowledge in vertebral column labeling

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Summers, Ronald M.

    2009-02-01

    The spinal column constitutes the central axis of human torso and is often used by radiologists to reference the location of organs in the chest and abdomen. However, visually identifying and labeling vertebrae is not trivial and can be timeconsuming. This paper presents an approach to automatically label vertebrae based on two pieces of anatomical knowledge: one vertebra has at most two attached ribs, and ribs are attached only to thoracic vertebrae. The spinal column is first extracted by a hybrid method using the watershed algorithm, directed acyclic graph search and a four-part vertebra model. Then curved reformations in sagittal and coronal directions are computed and aggregated intensity profiles along the spinal cord are analyzed to partition the spinal column into vertebrae. After that, candidates for rib bones are detected using features such as location, orientation, shape, size and density. Then a correspondence matrix is established to match ribs and vertebrae. The last vertebra (from thoracic to lumbar) with attached ribs is identified and labeled as T12. The rest of vertebrae are labeled accordingly. The method was tested on 50 CT scans and successfully labeled 48 of them. The two failed cases were mainly due to rudimentary ribs.

  11. Assessing the absorption of new pharmaceuticals.

    PubMed

    Hidalgo, I J

    2001-11-01

    The advent of more efficient methods to synthesize and screen new chemical compounds is increasing the number of chemical leads identified in the drug discovery phase. Compounds with good biological activity may fail to become drugs due to insufficient oral absorption. Selection of drug development candidates with adequate absorption characteristics should increase the probability of success in the development phase. To assess the absorption potential of new chemical entities numerous in vitro and in vivo model systems have been used. Many laboratories rely on cell culture models of intestinal permeability such as, Caco-2, HT-29 and MDCK. To attempt to increase the throughput of permeability measurements, several physicochemical methods such as, immobilized artificial membrane (IAM) columns and parallel artificial membrane permeation assay (PAMPA) have been used. More recently, much attention has been given to the development of computational methods to predict drug absorption. However, it is clear that no single method will sufficient for studying drug absorption, but most likely a combination of systems will be needed. Higher throughput, less reliable methods could be used to discover 'loser' compounds, whereas lower throughput, more accurate methods could be used to optimize the absorption properties of lead compounds. Finally, accurate methods are needed to understand absorption mechanisms (efflux-limited absorption, carrier-mediated, intestinal metabolism) that may limit intestinal drug absorption. This information could be extremely valuable to medicinal chemists in the selection of favorable chemo-types. This review describes different techniques used for evaluating drug absorption and indicates their advantages and disadvantages.

  12. Detection of Lyman continuum absorption in the BL Lacertae object PKS 0735+178

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.

    1981-01-01

    The detection of the Lyman edge in the BL Lac object PKS 0735+178 at the absorption red shift determined by optical measurements leads to a lower limit for the column density of atomic hydrogen, N(H I) not less than 4(17)/sq cm. The Lyman-alpha absorption line appears to have been detected, but only an approximate upper limit can be obtained from the data, of the order of 2(19)/sq cm. This amount of atomic hydrogen is less than that for a line of sight through the disk of a normal spiral galaxy. It is suggested that the absorbing material exists either in the halo of a galaxy or in the tenuous, extended, gaseous disk of a galaxy.

  13. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  14. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  15. Oxygen, neon, and iron X-ray absorption in the local interstellar medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, Efraín; García, Javier A.; Kallman, Timothy R.; Mendoza, Claudio

    2016-04-01

    Aims: We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods: By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results: We have determined the absorbing material distribution as a function of source distance and galactic latitude-longitude. Conclusions: Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  16. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.

    2005-01-01

    A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.

  17. Seismic behavior of lightweight concrete columns

    NASA Astrophysics Data System (ADS)

    Rabbat, B. G.; Daniel, J. I.; Weinmann, T. L.; Hanson, N. W.

    1982-09-01

    Sixteen full-scale, column-beam assemblies, which represented a portion of a frame subjected to simulated seismic loading, were tested. Controlled test parameters included concrete type, column size, amount of main column steel, size and spacing of column confining hoops, and magnitude of column axial load. The columns were subjected to constant axial load and slow moment reversals at increasing inelastic deformations. Test data showed that properly designed lightweight concrete columns maintained ductility and strength when subjected to large inelastic deformations from load reversals. Confinement requirements for normal weight concrete columns were shown to be applicable to lightweight concrete columns up to thirty percent of the design strength.

  18. Molecular absorption features in translucent clouds

    NASA Astrophysics Data System (ADS)

    Krelowski, Jacek

    2007-12-01

    Interstellar clouds, composed of neutral hydrogen, consist about 90% of the total mass of interstellar medium. Their absorption spectra contain: continuous extinction, atomic lines, molecular features and the unidentified diffuse interstellar bands (DIBs). The latter are also believed to be carried by some, rather complex molecules. A vast majority of DIBs is characterized by small central depths. This is why they became observable only since the solid state detectors are widely applied in astrophysics. It is to be emphasized that interstellar absorptions, seen along the same line of sight, may be in fact originated in several, different environments (clouds). The extensive database of echelle spectra allowed to prove that the CaII column density evidently correlates with parallaxes of OB-3 stars in contrast to other interstellar species. Thus CaII is quite evenly distributed in the interstellar medium while other species (NaI, KI, CaI, CH, CN, DIB carriers) are not. This fact is of basic importance as the ob- served spectra cannot be physically interpreted if they mix features originated in different clouds, i.e. in different environments. The abundance ratios of interstellar molecules (identified and DIB carriers) differ from cloud to cloud due to different physical processes which govern their formation. High resolution, high S/N spectra, prove that also profiles of diffuse bands vary from cloud to cloud - this fact strongly supports a molecular origin of these, still nidentified, features and motivates investigation of their relations to other molecules; they can reveal physical conditions which facilitate formation of the DIB carriers and lead to their identification.

  19. A correlation between the H I 21-cm absorption strength and impact parameter in external galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Reeves, S. N.; Allison, J. R.; Sadler, E. M.

    2016-07-01

    By combining the data from surveys for H I 21-cm absorption at various impact parameters in near-by galaxies, we report an anti-correlation between the 21-cm absorption strength (velocity integrated optical depth) and the impact parameter. Also, by combining the 21-cm absorption strength with that of the emission, giving the neutral hydrogen column density, N_{H I}, we find no evidence that the spin temperature of the gas (degenerate with the covering factor) varies significantly across the disc. This is consistent with the uniformity of spin temperature measured across the Galactic disc. Furthermore, comparison with the Galactic N_{H I} distribution suggests that intervening 21-cm absorption preferentially arises in discs of high inclinations (near face-on). We also investigate the hypothesis that 21-cm absorption is favourably detected towards compact radio sources. Although there is insufficient data to determine whether there is a higher detection rate towards quasar, rather than radio galaxy, sight-lines, the 21-cm detections intervene objects with a mean turnover frequency of < ν _{_TO}rangle ≈ 5× 108 Hz, compared to < ν _{_TO}rangle ≈ 1× 108 Hz for the non-detections. Since the turnover frequency is anti-correlated with radio source size, this does indicate a preferential bias for detection towards compact background radio sources.

  20. A parametric study of fine coal cleaning using column flotation

    SciTech Connect

    Parekh, B.K.; Groppo, J.G.; Bland, A.E.

    1986-01-01

    Recovery of fine coal is becoming an important and integral part of coal cleaning plants. Conventional froth flotation, which is commonly used in the coal industry, is inefficient at cleaning fine coal which contains large amounts of ultrafine ash or clays. The Kentucky Center for Energy Research Laboratory (KCERL) has been investigating an alternative method, counter-current column flotation, which is widely used in the mineral industry. Through an advanced cell design and counter-current wash of the froth, column flotation can produce a low-ash, clean coal product without sacrificing combustible recovery. An experimental program was conducted using a 2-inch internal diameter Canadian column flotation cell to examine the effect of various operating parameters on clean coal recovery and quality. The study investigated six operational parameters: feed rate, frother concentration, air flow rate, column height, pulp density and wash water rate.

  1. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-01-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the Differential Optical Absorption Spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS dataset acquired with a Multi-AXis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from the 10 June to the 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to

  2. Tropospheric nitrogen dioxide column retrieval from ground-based zenith-sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Tack, F.; Hendrick, F.; Goutail, F.; Fayt, C.; Merlaud, A.; Pinardi, G.; Hermans, C.; Pommereau, J.-P.; Van Roozendael, M.

    2015-06-01

    We present an algorithm for retrieving tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs) from ground-based zenith-sky (ZS) measurements of scattered sunlight. The method is based on a four-step approach consisting of (1) the differential optical absorption spectroscopy (DOAS) analysis of ZS radiance spectra using a fixed reference spectrum corresponding to low NO2 absorption, (2) the determination of the residual amount in the reference spectrum using a Langley-plot-type method, (3) the removal of the stratospheric content from the daytime total measured slant column based on stratospheric VCDs measured at sunrise and sunset, and simulation of the rapid NO2 diurnal variation, (4) the retrieval of tropospheric VCDs by dividing the resulting tropospheric slant columns by appropriate air mass factors (AMFs). These steps are fully characterized and recommendations are given for each of them. The retrieval algorithm is applied on a ZS data set acquired with a multi-axis (MAX-) DOAS instrument during the Cabauw (51.97° N, 4.93° E, sea level) Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI) held from 10 June to 21 July 2009 in the Netherlands. A median value of 7.9 × 1015 molec cm-2 is found for the retrieved tropospheric NO2 VCDs, with maxima up to 6.0 × 1016 molec cm-2. The error budget assessment indicates that the overall error σTVCD on the column values is less than 28%. In the case of low tropospheric contribution, σTVCD is estimated to be around 39% and is dominated by uncertainties in the determination of the residual amount in the reference spectrum. For strong tropospheric pollution events, σTVCD drops to approximately 22% with the largest uncertainties on the determination of the stratospheric NO2 abundance and tropospheric AMFs. The tropospheric VCD amounts derived from ZS observations are compared to VCDs retrieved from off-axis and direct-sun measurements of the same MAX-DOAS instrument as well as to data

  3. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  4. Periodic explosions by positive feedback in a rising foam column

    PubMed Central

    Zener, Clarence; Noriega, Jaime

    1982-01-01

    An aqueous foam rising adiabatically in a column suffers a drop in temperature. Under appropriate conditions, such a column periodically explodes. We here trace this explosion to the tight thermal coupling between the foam and its enclosing glass column. When the surface surfactant concentration is unbuffered by micelles, a positive feedback exists between the flow of heat from the walls into the foam and the thermal conductivity of the foam itself. In our highly expanded foam, heat is conducted through the foam cells' interior primarily by the heat-pipe effect. Such an effect is retarded by a dense layer of surfactant molecules. Heat absorption causes cell expansion, which, in a foam unbuffered by micelles, causes a reduction in surface concentration of surfactant molecules and, hence, in an increase in thermal conductivity. This interpretation of our observed periodic explosions is in agreement with all of our observations. PMID:16593192

  5. X-ray absorption toward the red quasar 3C 212

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Mathur, Smita; Wilkes, Belinda J.

    1994-01-01

    A Roentgen Satellite (ROSAT) X-ray spectrum of the z = 1.049 'red quasar' 3C 212 has a strong low-energy cutoff. The spectrum can be fitted with a power law (of energy index 1.4(+0.8, -0.6) with low-energy photoelectric absorption in excess of the Galactic value that, if at the redhsift of the quasar, would have a column density of (0.9(+0.8, -0.6)) x 10(exp 22) atoms/sq cm. Possible sites for the absorption are a nuclear torus, an intervening damped Lyman-alpha system, or intracluster material (e.g., a cooling flow) around the quasar. The implied absorbing column density is sufficient to redden a normal quasar spectrum to the observed steep optical slope. The observed continuum, if dereddened by this amount, can produce the observed emission line fluxes and ratios. The absence of the graphite lambda-2175 feature in 3C 212 however, requires dust different from the local Milky Way composition, or an intervening absorber with z less than 0.4. Alternative acceptable fits to the X-ray spectrum are (1) a blackbody with a temperature of 0.7 keV (in the quasar frame) modified only by Galactic absorption, and (2) an optically thin thermal plasma with excess absorption. Although a blackbody spectrum would be unprecedented, the model is consistent with all the available X-ray and optical data and cannot be ruled out. We discuss possible observations that can discriminate among the above models.

  6. Composite Spectra of Broad Absorption Line Quasars in SDSS-III BOSS

    NASA Astrophysics Data System (ADS)

    Herbst, Hanna; Hamann, Fred; Paris, Isabelle; Capellupo, Daniel M.

    2017-01-01

    We present preliminary results from a study of broad absorption line (BAL) quasars in the SDSS-III BOSS survey. We’re particularly interested in BALs because they arise from quasar outflows, which may be a source of feedback to the host galaxy. We analyze median composite spectra for BOSS QSOs in the redshift range 2.1 to 3.4 sorted by the strength of the BAL absorption troughs, parameterized by the Balnicity Index (BI), to study trends in the emission and absorption properties of BAL quasars. The wavelength coverage and high number of quasars observed in the BOSS survey allow us to examine BALs in the Lyman forest. Our main preliminary results when sorting the quasars by BI are 1) doublet absorption lines such as P V 1128A show a 1:1 ratio across all BI, indicating large column densities at all BI. This suggests that weaker BAL troughs result from smaller covering fractions rather than lower column densities. 2) The He II emission line, which is a measure of the far-UV/near-UV hardness of the ionizing continuum, is weaker in the larger BI composite spectra, indicating a far-UV spectral softening correlated with BI. This is consistent with the radiatively-driven BAL outflows being helped by intrinsically weaker ionizing continuum shapes (e.g., Baskin, Laor, and Hamann 2013). We also find a trend for slightly redder continuum slopes in the larger BI composite spectra, suggesting that the slope differences in the near-UV are also intrinsic.

  7. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  8. Self-regenerating column chromatography

    DOEpatents

    Park, W.K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  9. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  10. Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends

    SciTech Connect

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.; Browning, G.J.

    1998-05-01

    Very little information is available concerning the effect of acid gas loading on the physical properties of amine-treating solutions flowing through the absorption and regeneration columns used in gas processing. The densities and viscosities of partially carbonated monoethanolamine (MEA), diethanolamine (DEA), and N-methyldiethanolamine (MDEA) solutions were measured at 298 K. With increasing carbon dioxide loadings, significant increases in both density and viscosity were observed. These results were combined with literature data to produce correlations for alkanolamine solution density and viscosity as a function of amine concentration, carbon dioxide loading, and temperature. The resulting single-amine correlations were used to predict the densities and viscosities of DEA + MDEA and MEA + MDEA blends. Predictions are compared with data measured for these blends.

  11. Telescoping columns. [parabolic antenna support

    NASA Technical Reports Server (NTRS)

    Mazur, J. T. (Inventor)

    1980-01-01

    An extendable column is described which consists of several axially elongated rigid structural sections nested within one another. Each section includes a number of rotatably attached screws running along its length. The next inner section includes threaded lugs oriented to threadingly engage the screws. The column is extended or retracted upon rotation of the screws. The screws of each section are selectively rotated by a motor and an engagement mechanism.

  12. High Dust Depletion in two Intervening Quasar Absorption Line Systems with the 2175 Å Extinction Bump at z ~ 1.4

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Prochaska, J. Xavier; Wang, Junfeng; Zhou, Hongyan; Wang, Tinggui

    2010-12-01

    We present the column densities of heavy elements and dust depletion studies in two strong Mg II absorption systems at z ~ 1.4 displaying the 2175 Å dust extinction feature. Column densities are measured from low-ionization absorption lines using an Apparent Optical Depth Method on the Keck/ESI spectra. We find that the dust depletion patterns resemble that of cold diffuse clouds in the Milky Way (MW). The values, [Fe/Zn] ≈-1.5 and [Si/Zn]<-0.67, are among the highest dust depletion measured for quasar absorption line systems. In another 2175 Å absorber at z = 1.64 toward the quasar SDSS J160457.50+220300.5, Noterdaeme et al. reported a similar dust depletion measurement ([Fe/Zn] = -1.47 and [Si/Zn] = -1.07) and detected C I and CO absorption lines on its VLT/UVES spectrum. We conclude that heavy dust depletion (i.e., a characteristic of cold dense clouds in MW) is required to produce a pronounced 2175 Å extinction bump. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  14. The neutral hydrogen cosmological mass density at z = 5

    NASA Astrophysics Data System (ADS)

    Crighton, Neil H. M.; Murphy, Michael T.; Prochaska, J. Xavier; Worseck, Gábor; Rafelski, Marc; Becker, George D.; Ellison, Sara L.; Fumagalli, Michele; Lopez, Sebastian; Meiksin, Avery; O'Meara, John M.

    2015-09-01

    We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, Ω_{H I}. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on Ω_{H I}. We find Ω _{H I}=0.98^{+0.20}_{-0.18}× 10^{-3} at = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that Ω_{H I} can be described by the functional form Ω _{H I}(z)∝ (1+z)^{0.4}. This gradual decrease from z = 5 to 0 is consistent with the bulk of H I gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds.

  15. Finding and characterising WHIM structures using the luminosity density method

    NASA Astrophysics Data System (ADS)

    Nevalainen, Jukka; Liivamägi, L. J.; Tempel, E.; Branchini, E.; Roncarelli, M.; Giocoli, C.; Heinämäki, P.; Saar, E.; Bonamente, M.; Einasto, M.; Finoguenov, A.; Kaastra, J.; Lindfors, E.; Nurmi, P.; Ueda, Y.

    2016-10-01

    We have developed a new method to approach the missing baryons problem. We assume that the missing baryons reside in a form of Warm Hot Intergalactic Medium, i.e. the WHIM. Our method consists of (a) detecting the coherent large scale structure in the spatial distribution of galaxies that traces the Cosmic Web and that in hydrodynamical simulations is associated to the WHIM, (b) mapping its luminosity into a galaxy luminosity density field, (c) using numerical simulations to relate the luminosity density to the density of the WHIM, (d) applying this relation to real data to trace the WHIM using the observed galaxy luminosities in the Sloan Digital Sky Survey and 2dF redshift surveys. In our application we find evidence for the WHIM along the line of sight to the Sculptor Wall, at redshifts consistent with the recently reported X-ray absorption line detections. Our indirect WHIM detection technique complements the standard method based on the detection of characteristic X-ray absorption lines, showing that the galaxy luminosity density is a reliable signpost for the WHIM. For this reason, our method could be applied to current galaxy surveys to optimise the observational strategies for detecting and studying the WHIM and its properties. Our estimates of the WHIM hydrogen column density N H in Sculptor agree with those obtained via the X-ray analysis. Due to the additional N H estimate, our method has potential for improving the constrains of the physical parameters of the WHIM as derived with X-ray absorption, and thus for improving the understanding of the missing baryons problem.

  16. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  17. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  18. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  19. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  20. Lyα EMISSION FROM GREEN PEAS: THE ROLE OF CIRCUMGALACTIC GAS DENSITY, COVERING, AND KINEMATICS

    SciTech Connect

    Henry, Alaina; Scarlata, Claudia; Martin, Crystal L.; Erb, Dawn

    2015-08-10

    We report Hubble Space Telescope/Cosmic Origins Spectrograph observations of the Lyα emission and interstellar absorption lines in a sample of 10 star-forming galaxies at z ∼ 0.2. Selected on the basis of high equivalent width optical emission lines, the sample, dubbed “Green Peas,” make some of the best analogs for young galaxies in an early universe. We detect Lyα emission in all ten galaxies, and 9/10 show double-peaked line profiles suggestive of low H i column density. We measure Lyα/Hα flux ratios of 0.5–5.6, implying that 5%–60% of Lyα photons escape the galaxies. These data confirm previous findings that low-ionization metal absorption (LIS) lines are weaker when Lyα escape fraction and equivalent width are higher. However, contrary to previously favored interpretations of this trend, increased Lyα output cannot be the result of a varying H i covering: the Lyman absorption lines (Lyβ and higher) show a covering fraction near unity for gas with N{sub H} {sub i} ≳ 10{sup 16} cm{sup −2}. Moreover, we detect no correlation between Lyα escape and the outflow velocity of the LIS lines, suggesting that kinematic effects do not explain the range of Lyα/Hα flux ratios in these galaxies. In contrast, we detect a strong anticorrelation between the Lyα escape fraction and the velocity separation of the Lyα emission peaks, driven primarily by the velocity of the blue peak. As this velocity separation is sensitive to H i column density, we conclude that Lyα escape in these Green Peas is likely regulated by the H i column density rather than outflow velocity or H i covering fraction.

  1. The Absorption Spectrum of PKS 1756+237

    NASA Astrophysics Data System (ADS)

    Bauer, J. M.; Roth, K. C.; Jim, K. T. C.

    1998-05-01

    We are involved in a program to investigate the relationship between damped Lyalpha absorption systems and the interstellar medium of our own galaxy and nearby galaxies. This ultimately requires the proper identification of the systems responsible for the absorption so that a connection may be drawn between the absorption characteristics and the physical characteristics of the absorber, such as galaxy morphology, size, brightness, and separation from the QSO line of sight (see Jim & Roth, Kolhatkar et al., and Roth et al. also presenting here). PKS 1756+237 is a relatively bright QSO (m_V~18.0) with an emission redshift of z=1.721. There are two strong intervening absorption line systems at redshifts of 1.426 and 1.673. Both systems exhibit strong low-ionization lines, and so are believed to originate in the inner regions of galactic systems at some stage of formation. We obtained two hours of high quality HIRES spectra on the Keck 10m telescope for this QSO in May, 1997. The 6.5 km/s (0.09 Angstroms FWHM) resolution of this data is a ten-fold improvement over existing data, providing kinematic information as well as significantly improved column density measurements. Preliminary analysis of the data suggests the existence of significant Ni II abundance at z=1.67, possibly indicating a damped absorber system. The spectra cover the C II and Si II lines, enabling us to search for associated fine-structure excitation. These spectra also cover several additional low and high-ionization species from which we derive abundance and kinematic information. Images of this QSO, acquired at the UH 2.2m telescope using the QUIRC infrared and Tek2048 optical cameras with UH's tip-tilt system, show possible candidates for absorber systems.

  2. Quantifying the Magnitude of Anomalous Solar Absorption

    SciTech Connect

    Ackerman, Thomas P.; Flynn, Donna M.; Marchand, Roger T.

    2003-05-16

    The data set from ARESE II, sponsored by the Atmospheric Radiation Measurement Program, provides a unique opportunity to understand solar absorption in the atmosphere because of the combination of three sets of broadband solar radiometers mounted on the Twin Otter aircraft and the ground based instruments at the ARM Southern Great Plains facility. In this study, we analyze the measurements taken on two clear sky days and three cloudy days and model the solar radiative transfer in each case with two different models. On the two clear days, the calculated and measured column absorptions agree to better than 10 Wm-2, which is about 10% of the total column absorption. Because both the model fluxes and the individual radiometer measurements are accurate to no better than 10 Wm-2, we conclude that the models and measurements are essentially in agreement. For the three cloudy days, the model calculations agree very well with each other and on two of the three days agree with the measurements to 20 Wm-2 or less out of a total column absorption of more than 200 Wm-2, which is again agreement at better than 10%. On the third day, the model and measurements agree to either 8% or 14% depending on which value of surface albedo is used. Differences exceeding 10% represent a significant absorption difference between model and observations. In addition to the uncertainty in absorption due to surface albedo, we show that including aerosol with an optical depth similar to that found on clear days can reduce the difference between model and measurement by 5% or more. Thus, we conclude that the ARESE II results are incompatible with previous studies reporting extreme anomalous absorption and can be modeled with our current understanding of radiative transfer.

  3. NE VIII lambda 774 and time variable associated absorption in the QSO UM 675

    NASA Technical Reports Server (NTRS)

    Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.

    1995-01-01

    We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the z(sub a) approximately equal z(sub e) absorption system of the z(sub e) = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at z(sub a) = 2.1340 (shifted approximately 1500 km/s from z(sub e) strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other z(sub a) approximately equal z(sub e) absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 10(exp 18)/sq cm in the low-ionization gas to approximately 10(exp 20)/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link z(sub a) approximately equal to z(sub e) systems with X-ray 'wamr absorbers. We show that the

  4. NE VIII lambda 774 and time variable associated absorption in the QSO UM 675

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.

    1995-04-01

    We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the za approximately equal ze absorption system of the ze = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at za = 2.1340 (shifted approximately 1500 km/s from ze strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other za approximately equal ze absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 1018/sq cm in the low-ionization gas to approximately 1020/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link za approximately equal to ze systems with X-ray 'wamr absorbers. We show that the Ne VIII absorbing gas would itself produce measurable warm

  5. Critical Density Interaction Studies

    SciTech Connect

    Young, P; Baldis, H A; Cheung, P; Rozmus, W; Kruer, W; Wilks, S; Crowley, S; Mori, W; Hansen, C

    2001-02-14

    Experiments have been performed to study the propagation of intense laser pulses to high plasma densities. The issue of self-focusing and filamentation of the laser pulse as well as developing predictive capability of absorption processes and x-ray conversion efficiencies is important for numerous programs at the Laboratory, particularly Laser Program (Fast Ignitor and direct-drive ICF) and D&NT (radiography, high energy backlighters and laser cutting). Processes such as resonance absorption, profile modification, linear mode conversion, filamentation and stimulated Brillouin scattering can occur near the critical density and can have important effects on the coupling of laser light to solid targets. A combination of experiments have been used to study the propagation of laser light to high plasma densities and the interaction physics of intense laser pulses with solid targets. Nonparaxial fluid codes to study nonstationary behavior of filamentation and stimulated Brillouin scattering at high densities have also been developed as part of this project.

  6. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  7. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  8. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  9. Effect of Clouds on the Calculated Vertical Distribution of Shortwave Absorption in the Tropics

    SciTech Connect

    McFarlane, Sally A.; Mather, James H.; Ackerman, Thomas P.; Liu, Zheng

    2008-09-23

    High vertical resolution profiles of cloud properties were obtained from cloud radars operated by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus in the Tropical Western Pacific (TWP). Broadband flux calculations using a correlated k-distribution model were performed to estimate the effect of clouds on the total column and vertical distribution of shortwave absorption at these tropical sites. Sensitivity studies were performed to examine the role of precipitable water vapor, cloud vertical location, optical depth, and particle size on the SW column absorption. On average, observed clouds had little impact on the calculated total SW column absorption at the two sites, but a significant impact on the vertical distribution of SW absorption. Differences in the column amount, vertical profiles, and diurnal cycle of SW absorption at the two sites were due primarily to differences in cirrus cloud frequency.

  10. Infrared absorption of H_2_O toward massive young stars.

    NASA Astrophysics Data System (ADS)

    van Dishoeck, E. F.; Helmich, F. P.

    1996-11-01

    We present ISO-SWS observations of absorption lines of gas-phase water within its bending vibrational mode at 6μm toward four massive young stars, which cover a range in physical parameters. Hot water with an excitation temperature >200K is detected toward GL 2136 and GL 4176, in addition to GL 2591 discussed by Helmich et al. (1996A&A...315L.173H). The abundance of water with respect to H_2_ is high in these regions, ~(2-3)x10^-5^, and comparable to the solid H_2_O abundance. In contrast, no gas-phase water absorption lines are seen toward NGC 7538 IRS9. The amount of gas-phase water is correlated with the column density of warm gas along the line of sight. Infrared observations of a larger variety of sources may provide insight into the relative importance of evaporation of grain mantles vs. high temperature gas-phase chemistry in producing the observed high abundance of H_2_O.

  11. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  12. Goddard high-resolution spectrograph observations of narrow discrete stellar wind absorption features in the ultraviolet spectrum of the O7.5 III star Xi Persei

    NASA Technical Reports Server (NTRS)

    Shore, Steven N.; Altner, Bruce; Bolton, C. T.; Cardelli, Jason A.; Ebbets, Dennis C.

    1993-01-01

    We report the observation of transient narrow absorption components (NACs) in the stellar wind of the O giant Xi Per. Two sets of GHRS observations of the Si IV ultraviolet resonance doublet have been obtained. These features are extremely weak, with column densities of approximately 10 exp 12/sq cm and optical depths of order 0.1. The features are narrow, less than 30 km/s, and seem to occur in groups. If the NACs are due to the 1393 A component, they represent previously undetected low-velocity discrete absorption components at V(rad) below -600 km/s. If they are high-velocity features on the 1402 A doublet component, they may represent the decay phase of the discrete absorption components at the terminal velocity. In either case, they are a new aspect of the NAC phenomenon that could not have been detected with previous ultraviolet spectrographs.

  13. Revised Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J

    2006-04-11

    following an interruption of flow to the column were calculated. The transient calculations were terminated after the maximum resin bed temperature reached the Technical Standard of 60 C, which was set to prevent significant resin degradation. The LANL column differs from the FWR column in that it has a significantly smaller radius, 3.73 cm nominal versus approximately 28 cm. It follows that natural convection removes heat much more effectively from the LANL column, so that the column may reach thermal equilibrium. Consequently, the calculations for a flow interruption were extended until an approach to thermal equilibrium was observed. The LANL ion exchange process also uses a different resin than was used in the FWR column. The LANL column uses Reillex HPQ{trademark} resin, which is more resistant to attack by nitric acid than the Ionac 641{trademark} resin used in the FWR column. Heat generation from the resin oxidation reaction with nitric acid is neglected in this analysis since LANL will be treating the resin to remove the LTE prior to loading the resin in the columns. Calculations were performed using a finite difference computer code, which incorporates models for absorption and elution of plutonium and for forced and natural convection within the resin bed. Calculations for normal column operation during loading were performed using an initial temperature and a feed temperature equal to the ambient air temperature. The model for the normal flow calculations did not include natural convection within the resin bed. The no flow calculations were started with the temperature and concentration profiles at the end of the loading stage, when there would be a maximum amount of plutonium either adsorbed on the resin or in the feed solution in the column.

  14. Evidence for active galactic nucleus feedback in the broad absorption lines and reddening of MRK 231 {sup ,}

    SciTech Connect

    Leighly, Karen M.; Baron, Eddie; Lucy, Adrian B.; Terndrup, Donald M.; Dietrich, Matthias; Gallagher, Sarah C.

    2014-06-20

    We present the first J-band spectrum of Mrk 231, which reveals a large He I* λ10830 broad absorption line with a profile similar to that of the well-known Na I broad absorption line. Combining this spectrum with optical and UV spectra from the literature, we show that the unusual reddening noted by Veilleux et al. is explained by a reddening curve like those previously used to explain low values of total-to-selective extinction in Type Ia supernovae. The nuclear starburst may be the origin and location of the dust. Spatially resolved emission in the broad absorption line trough suggests nearly full coverage of the continuum emission region. The broad absorption lines reveal higher velocities in the He I* lines (produced in the quasar-photoionized H II region) compared with the Na I and Ca II lines (produced in the corresponding partially ionized zone). Cloudy simulations show that a density increase is required between the H II and partially ionized zones to produce ionic column densities consistent with the optical and IR absorption line measurements and limits, and that the absorber lies ∼100 pc from the central engine. These results suggest that the He I* lines are produced in an ordinary quasar BAL wind that impacts upon, compresses, and accelerates the nuclear starburst's dusty effluent (feedback in action), and the Ca II and Na I lines are produced in this dusty accelerated gas. This unusual circumstance explains the rarity of Na I absorption lines; without the compression along our line of sight, Mrk 231 would appear as an ordinary iron low-ionization, broad absorption line quasar.

  15. Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?

    NASA Astrophysics Data System (ADS)

    Gu, Liyi; Mao, Junjie; Costantini, Elisa; Kaastra, Jelle

    2016-10-01

    By revisiting the Suzaku and XMM-Newton data of the North Polar Spur, we discovered that the spectra are inconsistent with the traditional model consisting of pure thermal emission and neutral absorption. The most prominent discrepancies are the enhanced O vii and Ne ix forbidden-to-resonance ratios, and a high O viii Lyβ line relative to other Lyman series. A collisionally ionized absorption model can naturally explain both features, while a charge exchange component can only account for the former. By including the additional ionized absorption, the plasma in the North Polar Spur can be described by a single-phase collisional ionization equilibrium (CIE) component with a temperature of 0.25 keV, and nitrogen, oxygen, neon, magnesium, and iron abundances of 0.4-0.8 solar. The abundance pattern of the North Polar Spur is well in line with those of the Galactic halo stars. The high nitrogen-to-oxygen ratio reported in previous studies can be migrated to the large transmission of the O viii Lyα line. The ionized absorber is characterized by a balance temperature of 0.17-0.20 keV and a column density of 3-5 × 1019 cm-2. Based on the derived abundances and absorption, we speculate that the North Polar Spur is a structure in the Galactic halo, so that the emission is mostly absorbed by the Galactic interstellar medium in the line of sight.

  16. Microparticle column geometry in acoustic stationary fields.

    PubMed

    Hancock, Andrew; Insana, Michael F; Allen, John S

    2003-01-01

    Particles suspended in a fluid will experience forces from stationary acoustic fields. The magnitude of the force depends on the time-averaged energy density of the field and the material properties of the particles and fluid. Forces acting on known particles smaller than 20 microm were studied. Within a 500 kHz acoustic beam generated by a plane-piston circular source, observations were made of the geometry of the particle column that is formed. Varying the acoustic energy altered the column width in a manner predicted by equations for the primary acoustic radiation force from scattering of particles in the long-wavelength limit. The minimum pressures required to trap gas, solid, and liquid particles in a water medium at room temperature were also estimated to within 12%. These results highlight the ability of stationary acoustic fields from a plane-piston radiator to impose nano-Newton-scale forces onto fluid particles with properties similar to biological cells, and suggest that it is possible to accurately quantify these forces.

  17. Chromatographic properties PLOT multicapillary columns.

    PubMed

    Nikolaeva, O A; Patrushev, Y V; Sidelnikov, V N

    2017-03-10

    Multicapillary columns (MCCs) for gas chromatography make it possible to perform high-speed analysis of the mixtures of gaseous and volatile substances at a relatively large amount of the loaded sample. The study was performed using PLOT MCCs for gas-solid chromatography (GSC) with different stationary phases (SP) based on alumina, silica and poly-(1-trimethylsilyl-1-propyne) (PTMSP) polymer as well as porous polymers divinylbenzene-styrene (DVB-St), divinylbenzene-vinylimidazole (DVB-VIm) and divinylbenzene-ethylene glycol dimethacrylate (DVB-EGD). These MCCs have the efficiency of 4000-10000 theoretical plates per meter (TP/m) and at a column length of 25-30cm can separate within 10-20s multicomponent mixtures of substances belonging to different classes of chemical compounds. The sample amount not overloading the column is 0.03-1μg and depends on the features of a porous layer. Examples of separations on some of the studied columns are considered.

  18. Suspension of Drops of a Liquid in a Column of Water.

    ERIC Educational Resources Information Center

    Ahmad, Jamil

    1995-01-01

    Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)

  19. Calcium H&K and sodium D absorption induced by the interstellar and circumgalactic media of the Milky Way

    NASA Astrophysics Data System (ADS)

    Murga, Maria; Zhu, Guangtun; Ménard, Brice; Lan, Ting-Wen

    2015-09-01

    We map out calcium II and sodium I absorption (Fraunhofer H, K & D lines) induced by both the interstellar medium and the circumgalactic medium of the Milky Way. Our measurements cover more than 9000 deg2 and make use of about 300 000 extragalactic spectra from the Sloan Digital Sky Survey. We present absorption maps for these two species and then compare their distributions to those of neutral hydrogen and dust. We show that the abundance of Na I with respect to neutral hydrogen stays roughly constant in different environments, while that of Ca II decreases with hydrogen column density. Studying how these tracers vary as a function of velocity, we show that, on average, the NNaI/NCaII ratio decreases at higher velocity with respect to the local standard of rest, similar to the local Routly-Spitzer effect but seen on Galactic scale. We show that it is likely caused by higher gas/dust density at lower velocity. Finally, we show that Galactic Ca II and Na I absorption needs to be taken into account for precision photometry and, more importantly, for photometric redshift estimation with star-forming galaxies. Our maps of Ca II and Na I absorption are publicly available.

  20. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  1. Cyclic performance of concrete-filled steel batten built-up columns

    NASA Astrophysics Data System (ADS)

    Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.

    2016-03-01

    Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.

  2. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  3. The structure of the absorption spectra of the quasars Q 0420-388 and Q 1101-264

    NASA Astrophysics Data System (ADS)

    Chernomordik, V. V.

    1988-08-01

    The spectra of the quasars Q 0420-388 and Q 1101-264 are studied in the framework of the shock-wave model of the Lyman-alpha forest in the spectra of distant quasars, in which the origin of Lyman-alpha absorption lines is related to absorption zones in the shells of metagalactic shock waves. It is shown that more that 50 percent of the narrow Lyman-alpha abosrption lines are components of doublets, or pairs of nearby lines with the same equivalent widths. This is in good agreement with the predictions of the shock-wave model. The expected H I column density distribution of the Lyman-alpha lines is calculated and is found to be in agreement with the findings of Atwood et al. (1985).

  4. Self-absorption theory applied to rocket measurements of the nitric oxide (1, 0) gamma band in the daytime thermosphere

    NASA Technical Reports Server (NTRS)

    Eparvier, F. G.; Barth, C. A.

    1992-01-01

    Observations of the UV fluorescent emissions of the NO (1, 0) and (0, 1) gamma bands in the lower-thermospheric dayglow, made with a sounding rocket launched on March 7, 1989 from Poker Flat, Alaska, were analyzed. The resonant (1, 0) gamma band was found to be attenuated below an altitude of about 120 km. A self-absorption model based on Holstein transmission functions was developed for the resonant (1, 0) gamma band under varying conditions of slant column density and temperature and was applied for the conditions of the rocket flight. The results of the model agreed with the measured attenuation of the band, indicating the necessity of including self-absorption theory in the analysis of satellite and rocket limb data of NO.

  5. Transition from column to micropinch regime in Z-pinches

    SciTech Connect

    Engel, A.; Lebert, R.; Koshelev, K. N.; Sidelnikov, Yu. V.; Gavrilescu, C.; Neff, W.

    1997-05-05

    Plasma focus and Z-pinches are known to be intensive sources of K-ion radiation. This radiation is observed in two different regimes of compression: column and micropinch. Appearance of these regimes depends on combination of discharge circuit parameter and element composition of plasma. Column regime is typical for low current discharges operating in low Z gases. Micropinch regime, which represents a development of ''neck'' type instabilities in a presence of strong radiation losses, is typical for heavy ion plasma, i.e. vacuum spark or plasma focus with admixture of heavy gases. Transition from column to micropinch mode has been investigated experimentally. It was found that appearance of either regime can be quantitatively described by a distinction parameter depending on pinch current, particle density and used element.

  6. Glycolipid class profiling by packed-column subcritical fluid chromatography.

    PubMed

    Deschamps, Frantz S; Lesellier, Eric; Bleton, Jean; Baillet, Arlette; Tchapla, Alain; Chaminade, Pierre

    2004-06-18

    The potential of packed-column subcritical fluid chromatography (SubFC) for the separation of lipid classes has been assessed in this study. Three polar stationary phases were checked: silica, diol, and poly(vinyl alcohol). Carbon dioxide (CO2) with methanol as modifier was used as mobile phase and detection performed by evaporative light scattering detection. The influence of methanol content, temperature, and pressure on the chromatographic behavior of sphingolipids and glycolipids were investigated. A complete separation of lipid classes from a crude wheat lipid extract was achieved using a modifier gradient from 10 to 40% methanol in carbon dioxide. Solute selectivity was improved using coupled silica and diol columns in series. Because the variation of eluotropic strength depending on the fluid density changes, a normalized separation factor product (NSP) was used to select the nature, the number and the order of the columns to reach the optimum glycolipid separation.

  7. Column

    ERIC Educational Resources Information Center

    Education in Chemistry, 1973

    1973-01-01

    Articles are included concerning industry and schools, science and mathematics award scheme, teaching and research, safety, inservice training, Ugandan chemistry, plastics, and 19th century Nuffield. (DF)

  8. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    SciTech Connect

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos; Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L.; Cox, Nick L. J.; Foley, Ryan J.; Karakas, Amanda I.; Patat, F.; Sternberg, A.; Williams, R. E.; Gal-Yam, A.; Leonard, D. C.; Stritzinger, Maximilian; Folatelli, Gastón; and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  9. A high spectral resolution VLA search for H I absorption towards A496, A1795, and A2584

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Gallimore, Jack F.; Baum, Stefi A.

    1995-01-01

    In this paper, we present the results of a Very Large Array (VLA) search for H I absorption with high spectral resolution (1.6 km/s) towards A496, A1795, A2584, and A2597. These observations are well matched to the properties of cold, optically thick H I clouds, where the line width is given by the width of an individual cloud rather than the dispersion in an ensemble of clouds. We do not detect any H I absorption with narrow linewidths in these clusters. Our limits mainly apply to clouds which are larger than a few tenths parsec-i.e., if the clouds are much smaller than the background radio source and have a low covering factor in velocity space, they could still escape detection. The estimated limits on column density (for clouds in this regime of parameter space) are 2-3 orders of magnitude less than the 10(exp 21)/sq cm required to explain the x-ray absorption seen in some cooling flow clusters. The combination of our high spectral resolution H I absorption searches with the existing lower spectral resolution H I absorption searches and the searches for H I emission makes it unlikely that atomic hydrogen is the dominant component of the cold x-ray absorbing gas in the inter-cloud medium (ICM).

  10. A search for ultraviolet circumstellar gas absorption features in alpha Piscis Austrinus (Fomalhaut), a possible Beta Pictoris-like system

    NASA Technical Reports Server (NTRS)

    Cheng, K.-P.; Bruhweiler, Fred C.; Kondo, Yoji

    1994-01-01

    Archival high-dispersion International Ultraviolet Explorer (IUE) spectra have been used to search for circumstellar gas absorption features in alpha PsA (A3 V), a nearby (6.7 pc) proto-planetary system candidate. Recent sub-millimeter mapping observations around the region of alpha PsA indicate a spatially resolved dust disk like the one seen around Beta Pic. To determine how closely this putative disk resembles that of Beta Pic, we have searched for signatures of circumstellar gaseous absorption in all the available IUE high-dispersion data of alpha PsA. Examination of co-added IUE spectra shows weak circumstellar absorptions from excited levels in the resonance multiplet of Fe II near 2600 A. We also conclude that the sharp C I feature near 1657 A, previously identified as interstellar absorption toward alpha PsA, likely has a circumstellar origin. However, because the weakness of these absorption features, we will consider the presence of circumstellar gas as tentative and should be verified by using the Goddard High-Resolution Spectrograph aboard the Hubble Space Telescope. No corresponding circumstellar absorption is detected in higher ionization Fe III and Al III. Since the collisionally ionized nonphotospheric Al III resonance absorption seen in Beta Pic is likely formed close to the stellar surface, its absence in the UV spectra of alpha PsA could imply that, in contrast with Beta Pic, there is no active gaseous disk infall onto the central star. In the alpha PsA gaseous disk, if we assume a solar abundance for iron and all the iron is in the form of Fe II, plus a disk temperature of 5000 K, the Fe II UV1 absorption at 2611.8743 A infers a total hydrogen column density along the line of sight through the circumstellar disk of N(H) approximately equals 3.8 x 10(exp 17)/cm.

  11. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 1021 cm-2 an ionization parameter of log ξ = -2.70 ± 0.023; an oxygen abundance of A_O= 0.689^{+0.015}_{-0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A_O=0.952^{+0.020}_{-0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  12. The Nature of Associated Absorption and the UV--X-ray Connection in 3C 288.1

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Netzer, H.; Shields, J. C.

    1999-12-01

    We discuss new Hubble Space Telescope spectroscopy of the radio-loud quasar, 3C 288.1. The data cover 590 Angstroms to 1610 Angstroms in the quasar rest frame. They reveal a wealth of associated absorption lines (AALs) with no accompanying Lyman-limit absorption. The metallic AALs range in ionization from CIII and NIII to NeVIII and MgX. We use these data and photoionization models to derive the following properties of the AAL gas: 1) There are multiple ionization zones within the AAL region, spanning a factor of at least 50 in ionization parameter. 2) The overall ionization is consistent with the ``warm'' X-ray continuum absorbers measured in Seyfert 1 nuclei and other QSOs. However, 3) the column densities implied by the AALs in 3C 288.1 are too low to produce significant bound-free absorption at any UV--X-ray wavelengths. Substantial X-ray absorption would require yet another zone, having either a much higher ionization or much lower velocity dispersion than the main AAL region. 4) The total hydrogen column density in the AAL gas is log NH (cm-2) = 20.2. 5) The metallicity is roughly half solar. 6) The AALs have deconvolved widths of 900 km/s and their centroids are consistent with no shift from the quasar systemic velocity (conservatively within +/-1000 km/s). 7) There are no direct indicators of the absorber's location in our data, but the high ionization and high metallicity both suggest a close physical relationship to the quasar and/or its host galaxy. Finally, the UV continuum shape gives no indication of a ``blue bump'' at higher energies. There is a distinct break of unknown origin at 1030 Angstroms , and the decline toward higher energies (with spectral index α = -1.73, for fν ν α ) is even steeper than a single power-law interpolation from 1030 Angstroms to soft X-rays.

  13. The Nature of Associated Absorption and the Ultraviolet-X-Ray Connection in 3C 288.1

    NASA Astrophysics Data System (ADS)

    Hamann, Frederick W.; Netzer, Hagai; Shields, Joseph C.

    2000-06-01

    We discuss new Hubble Space Telescope spectroscopy of the radio-loud quasar 3C 288.1. The data cover ~590 to ~1610 Å in the quasar rest frame. They reveal a wealth of associated absorption lines (AALs) with no accompanying Lyman-limit absorption. The metallic AALs range in ionization from C III and N III to Ne VIII and Mg X. We use these data and photoionization models to derive the following properties of the AAL gas: (1) There are multiple ionization zones within the AAL region, spanning a factor of at least ~50 in ionization parameter. (2) The overall ionization is consistent with the ``warm'' X-ray continuum absorbers measured in Seyfert 1 nuclei and other QSOs. (3) However, the column densities implied by the AALs in 3C 288.1 are too low to produce significant bound-free absorption at any UV-X-ray wavelengths. Substantial X-ray absorption would require yet another zone, having a much higher ionization or a much lower velocity dispersion than the main AAL region. (4) The total hydrogen column density in the AAL gas is logNH(cm-2)~20.2. (5) The metallicity is roughly half solar. (6) The AALs have deconvolved widths of ~900 km s-1, and their centroids are consistent with no shift from the quasar systemic velocity (conservatively, within +/-1000 km s-1). (7) There are no direct indicators of the absorber's location in our data, but the high ionization and high metallicity both suggest a close physical relationship to the quasar/host galaxy environment. Finally, the UV continuum shape gives no indication of a ``blue bump'' at higher energies. There is a distinct break of unknown origin at ~1030 Å, and the decline toward higher energies (with spectral index α~-1.73, for fν~να) is even steeper than a single power-law interpolation from 1030 Å to soft X-rays.

  14. Simultaneous soft and hard X-ray spectroscopy of AM Herculis with EXOSAT: Discovery of photospheric absorption features

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Heise, John; Teeseling, Andre Van

    1994-01-01

    We present 0.1-10 keV spectroscopic observations of AM Herculis obtained with the Transmission Grating Spectrometers and Medium Energy experiments on EXOSAT, taken when the object was in its 'reversed X-ray mode.' The observation covers over six binary orbits without interruption, enabling us to analyze the phase and intensity dependence of both the hard and the soft spectrum simultaneously. We resolve the optically thick soft X-ray spectrum, and find definite evidence for time- and phase-dependent photospheric absorption structure arising in the white dwarf atmosphere. We present a simple empirical analysis of the combined soft and hard X-ray spectra, to examine whether the effect of a better determination of the column density of neutral absorbing material, afforded by our data, would solve the problem of the large relative soft X-ray overluminosity previously observed in AM Her. We find that a single absorbing column fits the entire spectrum, and that the column densities implied are indeed substantially lower than previously estimated. However, during half the binary orbit we still determine a strong lower limit to the soft-to-hard luminosity ratio of L(sub soft)/L(sub hard) is greater than or approximately equal to 10, in conflict with the simple radiative shock models for the accretion region. We argue that this indicates the need to reexamine the luminosity problem using explicit models for the emission spectrum based on a full solution of the atmospheric radiative transfer problem.

  15. Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) Observations of Bromine Monoxide (BrO) at Barrow, Alaska: An Instrumental Inter-Comparison

    NASA Astrophysics Data System (ADS)

    Carlson, D. A.; Donohoue, D.; Simpson, W. R.; Friess, U.; Sihler, H.; Platt, U.

    2009-12-01

    Differential optical absorption spectroscopy (DOAS) measures atmospheric slant column densities of gases by fitting ambient skylight spectra, referenced to a zenith spectrum, to laboratory-measured molecular absorption cross sections. In the Multiple-Axis (MAX)-DOAS method, measurement spectra are recorded with a narrow-field telescope aimed at low elevation angles to enhance sensitivity to boundary-layer trace gases. MAX-DOAS instruments are particularly well suited for low-power measurements at remote sites because the calibration relies on well-established absorption cross sections and the sun is used as the light source (saving power). For example, MAX-DOAS has proven very useful for observing bromine monoxide (BrO) in the Arctic springtime troposphere, when unique chemistry leads to relatively high mixing ratios (tens of pptv) in the boundary layer. Although MAX-DOAS has been successful in many studies, there has seldom been a chance to intercompare multiple MAX-DOAS instruments to discern the overall data quality, in particular not for tropospheric BrO. This data quality can be affected by instrumental differences within the various spectrometers as well as radiative-transfer differences between the skylight in the various view directions of the different instruments. To evaluate the agreement and underlying causes for differences between different MAX-DOAS systems, concurrent observations of BrO slant column densities from multiple instruments were compared. Observations are from the spring of 2009 at Barrow, Alaska. The resulting correlation plots show good general agreement in BrO slant column densities (slopes within error of unity) and attest to the quality of each of the MAX-DOAS systems. The oxygen collisional dimer, O4, and the fit residual RMS were also examined to understand light path differences and spectral fitting issues, respectively.

  16. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  17. Stability of elastically supported columns

    NASA Technical Reports Server (NTRS)

    Niles, Alfred S; Viscovich, Steven J

    1942-01-01

    A criterion is developed for the stiffness required of elastic lateral supports at the ends of a compression member to provide stability. A method based on this criterion is then developed for checking the stability of a continuous beam-column. A related method is also developed for checking the stability of a member of a pin-jointed truss against rotation in the plane of the truss.

  18. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  19. Ion collisions and the Z-pinch precursor column

    NASA Astrophysics Data System (ADS)

    Sherlock, M.; Chittenden, J. P.; Lebedev, S. V.; Haines, M. G.

    2004-04-01

    During the early stages of a wire array Z-pinch implosion, low density plasma streams toward the axis by virtue of the Lorentz force. This streaming precursor plasma may initially be highly collisionless with respect to ion-ion collisions and therefore cannot be modeled using standard fluid theory. The hybrid method in this paper models both collisional and collisionless behavior with ions exchanging energy and momentum with other ions via a Monte Carlo algorithm equivalent to a small-angle kinetic solution and with an electron fluid via a frictional force. It is shown that the axial stagnation of the plasma flow occurs once the density becomes sufficiently high to initiate a nonlinear rise in electron-ion energy exchange, resulting in the thermal equilibration between radiatively cooling electrons and hot, thermalized ions. This then gives rise to a dense, long-lived precursor column on axis, as observed experimentally. The column is held in place by the kinetic pressure of the streaming precursor plasma, which is balanced by the thermal pressure of the plasma in the column at the column's edge.

  20. H I emission and absorption in nearby, gas-rich galaxies - II. Sample completion and detection of intervening absorption in NGC 5156

    NASA Astrophysics Data System (ADS)

    Reeves, S. N.; Sadler, E. M.; Allison, J. R.; Koribalski, B. S.; Curran, S. J.; Pracy, M. B.; Phillips, C. J.; Bignall, H. E.; Reynolds, C.

    2016-04-01

    We present the results of a survey for intervening 21 cm H I absorption in a sample of 10 nearby, gas-rich galaxies selected from the H I Parkes All-Sky Survey (HIPASS). This follows the six HIPASS galaxies searched in previous work and completes our full sample. In this paper, we searched for absorption along 17 sightlines with impact parameters between 6 and 46 kpc, making one new detection. We also obtained simultaneous H I emission-line data, allowing us to directly relate the absorption-line detection rate to the H I distribution. From this, we find the majority of the non-detections in the current sample are because sightline does not intersect the H I disc of the galaxy at sufficiently high column density, but that source structure is also an important factor. The detected absorption-line arises in the galaxy NGC 5156 (z = 0.01) at an impact parameter of 19 kpc. The line is deep and narrow with an integrated optical depth of 0.82 km s-1. High-resolution Australia Telescope Compact Array (ATCA) images at 5 and 8 GHz reveal that the background source is resolved into two components with a separation of 2.6 arcsec (500 pc at the redshift of the galaxy), with the absorption likely occurring against a single component. We estimate that the ratio of the spin temperature and covering factor, TS/f, is approximately 950 K in the outer disc of NGC 5156, but further observations using very long baseline interferometry would allow us to accurately measure the covering factor and spin temperature of the gas.

  1. Anomalous absorption of laser light on ion acoustic fluctuations

    NASA Astrophysics Data System (ADS)

    Rozmus, Wojciech; Bychenkov, Valery Yu.

    2016-10-01

    Theory of laser light absorption due to ion acoustic turbulence (IAT) is discussed in high Z plasmas where ion acoustic waves are weakly damped. Our theory applies to the whole density range from underdense to critical density plasmas. It includes an absorption rate for the resonance anomalous absorption due to linear conversion of electromagnetic waves into electron plasma oscillations by the IAT near the critical density in addition to the absorption coefficient due to enhanced effective electron collisionality. IAT is driven by large electron heat flux through the return current instability. Stationary spectra of IAT are given by weak plasma turbulence theory and applied in description of the anomalous absorption in the inertial confinement fusion plasmas at the gold walls of a hohlraum. This absorption is anisotropic in nature due to IAT angular anisotropy and differs for p- and s-polarization of the laser radiation. Possible experiments which could identify the resonance anomalous absorption in a laser heated plasma are discussed.

  2. Method for packed column separations and purifications

    DOEpatents

    Holman, David A.; Bruckner-Lea, Cynthia J.; Brockman, Fred J.; Chandler, Darrell P.

    2006-08-15

    The invention encompasses a method of packing and unpacking a column chamber. A mixture of a fluid and a matrix material are introduced through a column chamber inlet so that the matrix material is packed within a column chamber to form a packed column. The column chamber having the column chamber inlet or first port for receiving the mixture further has an outlet port and an actuator port. The outlet port is partially closed for capturing the matrix material and permitting the fluid to flow therepast by rotating relative one to the other of a rod placed in the actuator port. Further rotation relative one to the other of the rod and the column chamber opens the outlet and permits the matrix material and the fluid to flow therethrough thereby unpacking the matrix material from the column chamber.

  3. Temperature programmable microfabricated gas chromatography column

    DOEpatents

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-12-23

    A temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by the integration of a resistive heating element and temperature sensing on the microfabricated column. Additionally, means are provided to thermally isolate the heated column from their surroundings. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  4. Interstellar absorptions and shocked clouds towards the supernova remnant RX J0852.0-4622

    NASA Astrophysics Data System (ADS)

    Pakhomov, Yu. V.; Chugai, N. N.; Iyudin, A. F.

    2012-08-01

    We present the results from a survey of interstellar absorptions towards the supernova remnant (SNR) RX J0852.0-4622. The distribution of K I absorbers along the distance of the background stars is indicative of a local region (d < 600 pc) strongly depopulated by K I line-absorbing clouds. This fact is supported by the behaviour of the interstellar extinction. We find four high-velocity Ca II components with velocities of >100 km s-1 towards three stars and we identify these with shocked clouds of the Vela SNR. We reveal and measure the acceleration of two shocked clouds on the approaching and receding sides of the Vela SNR along the same line of sight. The acceleration, velocity and Ca II column density of the clouds are used to probe their parameters. The total hydrogen column density of both accelerating clouds is found to be similar (˜6 × 1017 cm-2), which indicates that there is possibly a significant number of small-sized clouds in the vicinity of the Vela SNR. Based on observations collected at the European Southern Observatory, Chile, 080.D-0012(A)

  5. Magnetic Turbulence and Line Broadening in Simulations of Lyman-Alpha Absorption

    NASA Astrophysics Data System (ADS)

    Gurvich, Alex; Burkhart, Blakesley K.; Bird, Simeon

    2016-01-01

    We use the Illustris cosmological AREPO simulations to study the effects of gas turbulence and magnetic fields on measurements from the Lyman-Alpha forest. We generate simulated Lyman-Alpha spectra and plot the distributions of Column Density (CDD) and Doppler Width (b) both by adhering to the canonical method of fitting Voigt profiles to absorption lines and by directly measuring the column density and equivalent widths from snapshot data .We investigate the effects of additional unresolved gas turbulence in Illustris by adding an additional broadening term to the line profiles to mimic turbulent broadening. When we do this, we find a measurable effect in the CDD and an offset in the mean of the b distribution corresponding to the additional turbulence. We also compare different MHD runs in AREPO we find that the CDD can measurably differentiate between magnetic seed field at redshifts as low as z=0.1, but we do not find that the b distribution is affected at a detectable level. Our work suggests that the effects of turbulence and magnetic fields from z=2-0.1 can potentially be measured with these diagnostics. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  6. The Nature of the Vela Supernova Remnant as Revealed by O VI and C IV Absorption

    NASA Technical Reports Server (NTRS)

    Lines, Nichols J.; Slavin, J.; Anderson, C.

    2001-01-01

    Highly ionized gas, in particular C IV and O VI, is produced in the interstellar medium in regions with hot (T approx. 10(exp 6) K) X-ray emitting gas and at the boundaries where hot gas and cooler (T approx. 10(exp 4) K) gas interact. Supernova remnant shocks produce most of the hot gas in the ISM and, if they are in the correct range of speeds, should produce observable quantities of C IV and O VI absorption. In turn, the column densities of these ions are potentially powerful diagnostics of the shock speed and interstellar environment in which the SNR is evolving. With the advent of FUSE, the power of this diagnostic technique is now available. We have FUSE data toward 8 stars behind the Vela SNR, and have developed a data reduction and analysis method that produces reasonably reliable O VI column densities, in spite of the complexities of the FUSE spectra in this region. In order to gain insight into the observational results, the Vela SNR evolution was modelled using Piecewise Parabolic Method numerical hydrodynamics code. The code is 1-D and incorporates non-equilibrium ionization, radiative cooling, thermal conduction and magnetic pressure.

  7. Erratum: "Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium, the Chandra Grating Spectra of XTE J1817-330" (2013, Apj, 768, 60)

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, Timothy R.; Witthoeft, Michael C.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    In the published version of this paper, there are some minor inaccuracies in the absorption-line wavelengths listed in Table 4 as a result of a faulty reduction procedure of the Obs6615 spectrum. The shifts have been detected in a comparison with the wavelengths listed for this spectrum in the Chandra Transmission Grating Catalog and Archive (TGCat8). They are due to incorrect centroid positions of the zero-order image in both reductions as determined by the tgdetect utility which, when disentangled, yield the improved line positions of the amended Table 4 given below. It must also be pointed out that other quantitative findings of the original paper: 1. Table 5, p. 9: the column density (NH), ionization parameter, oxygen abundance of the warmabs model and the normalization and photon index of the power-law model; 2. Table 6, p. 9: the hydrogen column density of the warmabs fit; 3. Table 7, p. 9: the present oxygen equivalent widths of XTE J1817-330; and 4. Table 8, p. 10: the present oxygen column densities of XTE J1817-330 derived from both the curve of growth and warmabs model fit have been revised in the new light and are, within the estimated uncertainty ranges, in good accord with the new rendering.

  8. The Development of Diode Laser Infrared Absorption Spectroscopy as a Plasma Diagnostic.

    NASA Astrophysics Data System (ADS)

    McClain, Robert Leslie

    A high resolution infrared spectrometer based on a tunable lead salt diode laser has been interfaced to both a DC glow discharge and to the downstream region of an ECR plasma etcher. In each case high sensitivity is achieved by multi-passing the infrared beam, using a Herriott type optical arrangement consisting of two facing spherical mirrors. In the DC discharge a 1 m long by 15 cm diameter section of the positive column is sampled using typically 42 passes between 10 cm mirrors roughly 2 m apart. In the ECR device a region approximately 50 cm downstream from the ECR layer of a 0-1 kW ASTeX source is sampled. Effective path lengths of about 9 m are achieved with 30 passes. The abundance of CF_2 in discharges of CF_4 and mixtures of CF _4 and either 0_2 or CHF_3 has been obtained by measuring the fractional absorption in several rotational lines of the upsilon_3 band (asymmetric stretch) near 1095 cm^{-1} (9.1 mu). Rotational temperatures are determined only approximately, but are close to room temperature as expected. The derived concentration of CF_2 is 1.75 times 10^{11} cm ^{-3} in a CF_4 plasma in the ECR etcher at 800 W excitation and 2 mTorr pressure, while in the DC discharge positive column at 20 mTorr and 40 mA it is 1.11 times 10^{12} cm^ {-3}. Dependence on pressure and excitation has been determined over a limited range. In the ECR etcher, the concentration of CF_3 has been determined from the measured fractional absorption of a selected R-branch transition of the upsilon _3 band at 1266.714 cm^{ -1}. The density is 9.5 times 10^{11} cm ^{-3} in a CF_4 plasma at 2 mTorr and 800 W. The CF_3 density has also been monitored over a limited range of excitation power, pressure, and gas composition. Absorption lines of the parent species CF_4 are also easily observed and followed, and those of the polymerization product C_2F _6 were detected in the DC discharge. In the ECR plasma, which uses a quartz liner in the source to mitigate sputtering, strong

  9. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    -isolated neutral PAHs and related molecules should be useful for the search for these species in dense clouds on the basis of observed absorption band positions. Furthermore, these data permit determination of column densities to better than a factor of 3 for PAHs in dense clouds. Column density determination of detected aromatics to better than a factor of 3 will, however, require good knowledge about the nature of the matrix in which the PAH is embedded and laboratory studies of relevant samples.

  10. Al III, Si IV, and C IV absorption toward zeta Ophiuchi: Evidence for photionized and collisionally ionized gas

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Savage, Blair D.; Jenkins, Edward B.

    1994-01-01

    We present Goddard High-Resolution Spectrograph observations at 3.5 km/s resolution and signal-to-noise ratios of 30 to 60 for the Al III, Si IV, and N V absorption lines in the far-ultraviolet spectrum of the O9.5 V star zeat Ophiuchi. The measurement reveal three types of highly ionized gas along the 140 pc line of sight. (1) Narrow components of Al III (b = 4.3 km/s, the mean value of (v(helio)) = -7.8 km/s; b = 3.2 km/s, the mean value of (v(sub helio)) = -14.4 km/s) and Si IV (b = 5.3 km/s, the mean value of (v(sub helio)) = -15.0 km/s) trace photionized gas in the expanding H II region surrounding zeta Oph. The observed magnitude and direction of the velocity offset between the Al III and Si IV profiles can be explained by models of H II regions that incorporate expansion. Narrow C IV absorption associated with the H II region is not detected. Predictions of the expected amounts of Si IV and C IV overestimate the column densities of these ions by factors of 30 and more than 10, respectively. The discrepancy may be due to the effects of elemental depletions in the gas and/or to the interaction of the stellar wind with surrounding matter. (2) Broad (b = 15 to 18 km/s) and weak Si IV and C IV absorption components are detected near the mean value of (v(sub helio)) = -26 km/s. The high-ionization species associated with these absorption components are probably produced by electron collisional ionization in a heated gas. This absorption may be physically related to the zeta Oph bow shock ot to a cloud complex situated within the local interstellar medium at d less than 60 pc. The C IV to Si IV column density ratio in this gas is 8, a factor of 6 less than conductive interface models predict, but this discrepancy may be removed by considering the effects of self-photoionization within the cooling gas in the model calculations. (3) A broad (b = 13 km/s) and weak C IV absorption feature detected at the mean value of (v(sub helio)) = -61 km/s is not seen in other

  11. VizieR Online Data Catalog: QSO B0218+357 molecular absorption lines (Wallstroem+, 2016)

    NASA Astrophysics Data System (ADS)

    Wallstroem, S. H. J.; Muller, S.; Guelin, M.

    2016-08-01

    ASCII files of the absorption spectra presented in Figure 2. The files are named after the molecule or isotopologue. Column 1 is velocity, column 2 is intensity (normalized to 1), Velocities are in a heliocentric frame, with zabs=0.68466 (11 data files).

  12. Cloud geometry effects on atmospheric solar absorption

    SciTech Connect

    Fu, Q.; Cribb, M.C.; Barker, H.W.; Krueger, S.K.; Grossman, A.

    2000-04-15

    A 3D broadband solar radiative transfer scheme is formulated by integrating a Monte Carlo photon transport algorithm with the Fu-Liou radiation model. It is applied to fields of tropical mesoscale convective clouds and subtropical marine boundary layer clouds that were generated by a 2D cloud-resolving model. The effects of cloud geometry on the radiative energy budget are examined by comparing the full-resolution Monte Carlo results with those from the independent column approximation (ICA) that applies the plane-parallel radiation model to each column. For the tropical convective cloud system, it is found that cloud geometry effects always enhance atmospheric solar absorption regardless of solar zenith angle. In a large horizontal domain (512 km), differences in domain-averaged atmospheric absorption between the Monte Carlo and the ICA are less than 4 W m{sup {minus}2} in the daytime. However, for a smaller domain (e.g., 75 km) containing a cluster of deep convective towers, domain-averaged absorption can be enhanced by more than 20 W m{sup {minus}2}. For a subtropical marine boundary layer cloud system during the stratus-to-cumulus transition, calculations show that the ICA works very well for domain-averaged fluxes of the stratocumulus cloud fields even for a very small domain (4.8 km). For the trade cumulus cloud field, the effects of cloud sides and horizontal transport of photons become more significant. Calculations have also been made for both cloud systems including black carbon aerosol and a water vapor continuum. It is found that cloud geometry produces no discernible effects on the absorption enhancement due to the black carbon aerosol and water vapor continuum. The current study indicates that the atmospheric absorption enhancement due to cloud-related 3D photon transport is small. This enhancement could not explain the excess absorption suggested by recent studies.

  13. Dry-Column Flash Chromatography

    NASA Astrophysics Data System (ADS)

    Shusterman, Alan J.; McDougal, Patrick G.; Glasfeld, Arthur

    1997-10-01

    Dry-column flash chromatography is a safe, powerful, yet easily learned preparative chromatography technique. It has proven useful in research, and an adaptation of the technique for use in large teaching laboratories (general chemistry, organic chemistry) is described here. The student version is similar to vacuum filtration, uses the same compact, readily available glassware, and inexpensive and safe solvents (ethyl acetate and hexane) and adsorbent (Merck grade 60 silica gel). The technique is sufficiently simple and powerful that a beginning student can successfully resolve diastereomers on sample scales ranging from 100 mg to >1 g.

  14. Electromagnetically induced absorption via incoherent collisions

    SciTech Connect

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-10-15

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  15. Comparison of ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) and satellite DOAS measurements of NO2 distribution over Ulaanbaatar (Mongolia) during summer 2013

    NASA Astrophysics Data System (ADS)

    Böhnke, Sebastian; Behrendt, Thomas; Bruse, Michael; Meixner, Franz X.; Mamtimin, Buhalqem

    2014-05-01

    Cities are immense sources of air pollutants; however, emission inventories in many of them still are highly uncertain, particularly in developing countries. Ulaanbaatar is the most populous and polluted area in Mongolia. Tropospheric NO2 is proved to be harmful to both, the atmospheric environment and human health. It might be meaningful and important to observe pollutant concentrations in an area-integrated form (satellite observations) to create a sound data basis for air quality control measures. In our study, we preliminary present the results of both satellite and ground-based Differential Optical Absorption Spectroscopy (DOAS) measurements of vertical column densities (VCDs) of NO2 in Ulaanbaatar (urban area). As a ground validation tool, the MAX-DOAS measurements carried out in Ulaanbaatar (Mongolia) summer 2013 and are applied at 3 different sites in the west of Ulaanbaatar (106.73° E / 47.83° N), the city center (106.92° E / 47.92° N) and in the east (107.12° E / 47.87° N). Additionally, Automatic Weather Stations (AWS) have been set up and ozone was measured by UV absorption technique also at the 3 sites. Preliminary results show that the NO2 column densities increase during sunset and decrease after sunrise, which is most likely caused by a longer light path resulting from high solar zenith angles (SZA). The maximum DSCDs (Differential Slant Column Densities) are observed around sunset and sunrise (up to 10^17 molec cm-², mainly a measurement effect as stated above). The daily minima of the vertical column densities (VCD) appear in the morning and in the afternoon (DSCD ~2×10^15 molec cm-²) while, around noon, a second maximum can be observed (DSCD ~4×10^16 molec cm-²). Satellite data show mean VCDs of about 3×10^15 molec cm-² in July and a varying agreement with MAX-DOAS measurements.

  16. Volcanoes in the Classroom: Simulating an Eruption Column

    NASA Astrophysics Data System (ADS)

    Harpp, K. S.; Geist, D. J.; Koleszar, A. M.

    2005-12-01

    Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this

  17. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  18. Absorption of acoustic waves by sunspots. II - Resonance absorption in axisymmetric fibril models

    NASA Technical Reports Server (NTRS)

    Rosenthal, C. S.

    1992-01-01

    Analytical calculations of acoustic waves scattered by sunspots which concentrate on the absorption at the magnetohydrodynamic Alfven resonance are extended to the case of a flux-tube embedded in a uniform atmosphere. The model is based on a flux-tubes of varying radius that are highly structured, translationally invariant, and axisymmetric. The absorbed fractional energy is determined for different flux-densities and subphotospheric locations with attention given to the effects of twist. When the flux is highly concentrated into annuli efficient absorption is possible even when the mean magnetic flux density is low. The model demonstrates low absorption at low azimuthal orders even in the presence of twist which generally increases the range of wave numbers over which efficient absorption can occur. Resonance absorption is concluded to be an efficient mechanism in monolithic sunspots, fibril sunspots, and plage fields.

  19. The ion acoustic decay instability, and anomalous laser light absorption for the OMEGA upgrade, large scale hot plasma application to a critical surface diagnostic, and instability at the quarter critical density. Final report

    SciTech Connect

    Mizuno, K.; DeGroot, J.S.; Seka, W.

    1996-11-01

    It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.

  20. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: timothy.r.kallman@nasa.gov

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  1. ISMabs: A Comprehensive X-Ray Absorption Model for the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Gatuzz, E.; García, J.; Kallman, T. R.; Mendoza, C.; Gorczyca, T. W.

    2015-02-01

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  2. TEMPORAL VARIABILITY OF INTERSTELLAR Na I ABSORPTION TOWARD THE MONOCEROS LOOP

    SciTech Connect

    Dirks, Cody; Meyer, David M. E-mail: davemeyer@northwestern.edu

    2016-03-01

    We report the first evidence of temporal variability in the interstellar Na i absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coudé feed spectra from this sight line taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the ∼1.3 mas yr{sup −1} proper motion of HD 47240 and an SNR distance of 1.6 kpc, this variation would imply ∼10 au fluctuations within the SNR shell. Similar variations have been previously reported in the Vela SNR, suggesting a connection between the expanding SNR gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient interstellar medium.

  3. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period.

  4. X-Ray Modeling of the Intrinsic Absorption in NGC 4151

    NASA Astrophysics Data System (ADS)

    Denes Couto, Jullianna; Kraemer, Steven; Turner, T. Jane; Crenshaw, D. Michael

    2017-01-01

    We have investigated the relationship between the long term X-ray spectral variability in the Seyfert 1.5 galaxy NGC 4151 and its intrinsic absorption, by comparing our 2014 simultaneous ultraviolet/X-Ray observations taken with Hubble STIS Echelle and Chandra HETGS with archival observations from Chandra, XMM-Newton and Suzaku. The observations were divided into "high" and "low" states, with the low states showing strong and unabsorbed extended emission at energies below 2 keV. Our X-ray model consists of a broken powerlaw, neutral reflection and the two dominant absorption components identified by Kraemer et al (2005), X-High and D+Ea, which are present in all epochs. The model fittings suggest that the absorbers are very stable, with the principal changes in the intrinsic absorption resulting from variations in the ionization state of the gas in response to the variable strength of the ionizing continuum. However, the low states show evidence of larger column densities in one or both of the absorbers. Among plausible explanations for the column increase, we discuss the possibility of an expanding/contracting X-ray corona. X-High is consistent with being part of a magnetohydrodynamic (MHD) wind, while D+Ea is possibly radiatively driven, which suggests that at a sufficiently large radial distance there could be a break point between MHD-dominated and radiatively driven outflows. Preliminary results on the analysis of the AGN mass outflow rates and kinematics of the ionized gas in the extended emission region of NGC 4151 will also be presented.

  5. New aspects of absorption line formation in intervening turbulent clouds - I. General principles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.

    1997-07-01

    We study the formation of absorption lines in intervening clouds with stochastic velocity fields, accounting for the fact that actually only one line of sight is observed. Our results show that the introduction of the finite velocity correlation length leads to a new type of absorption line profiles which are asymmetric in general, may have different shifts of the centres of gravity, and look like barely resolved blends, i.e. could be interpreted in a standard Voigt fitting analysis as being caused by several independent clouds with different physical parameters. Numerical results are presented for the HI Lyalpha line with N_Hi=10^12,10^14,10^15 and 10^16cm^-2, T_kin=10^4 K, and different sets of turbulent parameters. The intensity fluctuations within the line profile caused by `turbulent noise' are investigated and the confidence belts for the absorption lines are calculated. We conclude that an exact measurement of the column densities of the absorbing atoms N_a from the observed values of the optical depths tau lambda is actually impossible for the case of the correlated velocity field. One can only determine a range of values within which N_a is to be found with a certain probability.

  6. Identification of a galaxy responsible for a high-redshift Lyman-α absorption system

    NASA Astrophysics Data System (ADS)

    Djorgovski, S. G.; Pahre, M. A.; Bechtold, J.; Elston, R.

    1996-07-01

    DAMPEDLyman-α systems are high-column-density intergalactic clouds of hydrogen, the existence of which is inferred from absorption lines appearing in the emission spectra of distant quasars. The galaxies believed to be responsible for these absorption systems have been suggested as possible progenitors of the normal disk galaxies observed in the local Universe1. Indeed, Lyman-α systems appear to contain a substantial fraction of the baryons known to exist in galaxies today2,3. Here we report the optical detection of a galaxy (designated DLA2233 + 131) associated with a known4 damped Lyman-α absorption system at a redshift of z = 3.150. The properties of this galaxy correspond closely to those expected of a young disk galaxy in the early stages of formation, and show no evidence for an active nucleus. This finding gives strong support to the idea that damped Lyman-α systems represent a population of young galaxies at high red-shifts.

  7. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the interg