Science.gov

Sample records for absorption cross-section spectra

  1. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  2. The determination of absorption cross sections and line profiles in vibrational overtone spectra with the use of intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bettermann, H.; Kleist, E.; Kok, R.

    1993-03-01

    This contribution presents quantitative absorption data concerning the 7 th CH overtone stretching vibrations of n-hexane and of methylcyclopentane. The transitions are adapted to Lorentzian and Gaussian line shapes. The bank shape analyses yield the spectral positions, absorption cross sections and linewidths of the investigated transitions.

  3. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  4. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  5. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  6. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  7. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  8. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  9. Accurate universal parameterization of absorption cross sections II--neutron absorption cross sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    1997-01-01

    A recent parameterization (here after referred as paper I, Ref. [4]) of absorption cross sections for any system of charged ions collisions including proton -nucleus collisions, is extended for neutron-nucleus collisions valid from approximately 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pair (charged and/or uncharged). The parameters are associated with the physics of the problem. At lower energies, the optical potential at the surface is important and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  10. Tables of nuclear cross sections for galactic cosmic rays: Absorption cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1985-01-01

    A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.

  11. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  12. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  13. Universal Parameterization of Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1997-01-01

    This paper presents a simple universal parameterization of total reaction cross sections for any system of colliding nuclei that is valid for the entire energy range from a few AMeV to a few AGeV. The universal picture presented here treats proton-nucleus collision as a special case of nucleus-nucleus collision, where the projectile has charge and mass number of one. The parameters are associated with the physics of the collision system. In general terms, Coulomb interaction modifies cross sections at lower energies, and the effects of Pauli blocking are important at higher energies. The agreement between the calculated and experimental data is better than all earlier published results.

  14. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  15. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  16. Absorption cross sections of the ClO dimer

    NASA Technical Reports Server (NTRS)

    Huder, K. J.; DeMore, W. B.

    1995-01-01

    The absorption cross sections of the ClO dimer, ClOOCl, are important to the photochemistry of ozone depletion in the Antarctic. In this work, new measurements were made of the dimer cross sections at 195 K. the results yield somewhat lower values in the long wavelength region, compared to those currently recommended in the NASA data evaluation (JPL 94-26). The corresponding solar photodissociation rates in the Antarctic are reduced by about 40%.

  17. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    DOE PAGESBeta

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sharpe, S. W.; Sams, R. L.; Johnson, T. J.

    2014-11-19

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) and is one of the primary contributors to annual global VOC emissions. Isoprene is produced primarily by vegetation as well as anthropogenic sources, and its OH- and O3-initiated oxidations are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, limiting the ability to quantify isoprene emissions via remote or in situ infrared detection. We thus report absorption cross sections and integrated band intensities for isoprene in the 600–6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298, and 323 Kmore » in a 19.94 cm path-length cell at 0.112 cm-1 resolution, using a Bruker IFS 66v/S Fourier transform infrared (FTIR) spectrometer. Composite spectra are derived from a minimum of seven isoprene sample pressures, each at one of three temperatures, and the number densities are normalized to 296 K and 1 atm.« less

  18. Updated ozone absorption cross section will reduce air quality compliance

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-12-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been re-evaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  19. Updated ozone absorption cross section will reduce air quality compliance

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-07-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been reevaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding fifty years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  20. UV-visible absorption cross sections of nitrous acid

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Kim, E. S.; Platt, U.; Bruno, P.; Perrino, C.; Febo, A.

    2000-06-01

    Nitrous acid, HONO, is a source of OH radicals in the polluted atmosphere. Although the atmospheric chemistry of HONO is qualitatively understood, not much quantitative information exists. The magnitude of the OH production by HONO photolysis depends on the spectrum of its absorption cross sections; therefore the knowledge of σ'HONO(λ) is essential. The spectrum of the differential cross sections σ'HONO(λ) is needed to detect HONO in the atmosphere by differential optical absorption spectroscopy (DOAS). Here we present measurements of the HONO UV-visible absorption cross sections with a spectral resolution better than 0.1 nm and a high signal-to-noise ratio. The maximum value of the absorption cross sections is σHONO (354 nm) = (5.19±0.26) × 10-19 cm2 and agrees well with literature data. Nevertheless, calculations based on data from this work and on literature data reveal that an uncertainty of ˜15% remains for the HONO photolysis rates. The new σHONO(λ) has been employed in DOAS measurements in Milan, Italy.

  1. Hadronic absorption cross sections of B{sub c}

    SciTech Connect

    Lodhi, M. A. K.; Akram, Faisal; Irfan, Shaheen

    2011-09-15

    The cross sections of B{sub c} absorption by {pi} mesons are calculated using a hadronic Lagrangian based on the SU(5) flavor symmetry. Calculated cross sections are found to be in the ranges 2-7 mb and 0.2-2 mb for the processes B{sub c}{sup +}{pi}{yields}DB and B{sub c}{sup +}{pi}{yields}D*B*, respectively, when the monopole form factor is included. These results could be useful in calculating the production rate of B{sub c} mesons in relativistic heavy ion collisions.

  2. Mass Spectra and Ion Collision Cross Sections of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Douglas, D. J.

    2011-02-01

    Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.

  3. Tunable diode laser measurements of CH3OOH absorption cross-sections near 1320 CM-1

    NASA Astrophysics Data System (ADS)

    Becker, K. H.; Brockmann, K. J.; Bechara, J.

    Infrared absorption spectra and absorption cross-sections in the C-H deformation band of CH3OOH near 1320 cm-1 have been measured with a tunable diode laser spectrometer. Methylhydroperoxide concentrations in a slowly flowing gas mixture were determined by UV absorption. Peak absorption cross-sections of the strongest lines observed were found to lie in the range (0.5 -1.5) × 10-18 cm² under near Doppler-limited conditions. The dependence of the peak absorption cross-sections on total air pressure in the range 2.5-90 torr was also investigated, and the possibility of CH3OOH atmospheric mixing ratio measurement with a tunable diode laser assessed.

  4. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Molina, M. J.

    1986-01-01

    The absorption cross sections of ozone have been measured in the wavelength range 185-350 nm and in the temperature range 225-298 K. The absolute ozone concentrations were established by measuring the pressure of pure gaseous samples in the 0.08to 300-torr range, and the UV spectra were recorded under conditions where less than 1 percent of the sample decomposed. The temperature dependence is significant for wavelengths longer than about 280 nm. The absorption cross-section values around 210 nm were found to be about 10 percent larger than the previously accepted values.

  5. High-resolution absorption cross sections of C2H6 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Buzan, Eric; Dulick, Michael; Bernath, Peter F.

    2015-11-01

    Infrared absorption cross sections near 3.3 μm have been obtained for ethane, C2H6. These were acquired at elevated temperatures (up to 773 K) using a Fourier transform infrared spectrometer and tube furnace with a resolution of 0.005 cm-1. The integrated absorption was calibrated using composite infrared spectra taken from the Pacific Northwest National Laboratory (PNNL). These new measurements are the first high-resolution infrared C2H6 cross sections at elevated temperatures.

  6. Absorption cross-sections of sodium diatomic molecules. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Fong, Zeng-Shevan

    1985-01-01

    The absorption cross sections of sodium dimers were studied using a heat pipe over operating in the non-heat-pipe mode. Three wavelength regions were observed. They are in the red, the green-blue, and the near ultraviolet regions. The absorption cross section depends on the wavelength of the incident light. Representative peak values for the v"=0 progression in the red and green-blue regions are 2.59 A sup 2 (average value) and 11.77 A sup 2 (T sub ave=624 K). The value for the C greater than X transitions is several tenths A sup 2. The cross sections were measured from absorption spectra taken as a function of temperature.

  7. Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.

    PubMed

    Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G

    2016-02-12

    Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value. PMID:26797727

  8. Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres

    NASA Astrophysics Data System (ADS)

    Hedges, Christina; Madhusudhan, Nikku

    2016-05-01

    Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross-sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross-sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross-sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution and completeness of broadening parameters - on molecular absorption cross-sections. We use H2O as a case study as it has the most complete absorption line data. For low-resolution spectra (R ≲ 100) for representative temperatures and pressures (T ˜ 500-3000 K, P ≲ 1 atm) of H2-rich exoplanetary atmospheres, we find the median difference in cross-sections (δ) introduced by various aspects of pressure broadening to be ≲1 per cent. For medium resolutions (R ≲ 5000), including those attainable with James Webb Space Telescope, we find that δ can be up to 40 per cent. For high resolutions (R ˜ 105), δ can be ≳100 per cent, reaching ≳1000 per cent for low temperatures (T ≲ 500 K) and high pressures (P ≳ 1 atm). The effect is higher still for self-broadening. We generate a homogeneous data base of absorption cross-sections of molecules of relevance to exoplanetary atmospheres for which high-temperature line lists are available, particularly H2O, CO, CH4, CO2, HCN, and NH3.

  9. Temperature Dependent Absorption Cross-sections of PFTBA

    NASA Astrophysics Data System (ADS)

    Godin, Paul J.; Conway, Stephanie; Hong, Angela; Mabury, Scott; Strong, Kimberly

    2014-06-01

    We present temperature-dependent absorption cross sections of perfluorotributylamine (PFTBA). PFTBA is a fully-fluorinated liquid commonly used in electronic reliability and quality testing. PFTBA vapour can be considered a potential greenhouse gas due being radiatively active in the mid-IR spectral region and having a long atmospheric lifetime. A recent paper by Hong et al.1 as well as comparisons with previous works for the ethylene calculationsc determined that PFTBA has the highest radiative efficiency of any compound detected in the atmosphere with a detected a mixing ratio of 0.18 parts per trillion by volume over Toronto, ON. Theoretical density functional theory (DFT) calculations are done using the B3LYP method and the 6-311G(d,p) basis set. The calculations have determined the optimized geometrical configuration and IR intensities and wavenumbers of the harmonic frequencies for both PFBAm (N(CF2CF2CF2CF3)3) and its congener (F3CN(CF2CF2CF2CF3)2). Experimental cross sections are derived from Fourier transform spectroscopy performed from 600-1450 cm-1 at a resolution of 0.02 cm-1 for room temperature and above. These experimental results are compared to compared to previous measurements of PFTBA made at room temperature by Young2.

  10. Derivation of water vapour absorption cross-sections in the red region

    NASA Technical Reports Server (NTRS)

    Lal, M.; Chakrabarty, D. K.

    1994-01-01

    Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).

  11. Modeling of gas absorption cross sections by use of principal-component-analysis model parameters.

    PubMed

    Bak, Jimmy

    2002-05-20

    Monitoring the amount of gaseous species in the atmosphere and exhaust gases by remote infrared spectroscopic methods calls for the use of a compilation of spectral data, which can be used to match spectra measured in a practical application. Model spectra are based on time-consuming line-by-line calculations of absorption cross sections in databases by use of temperature as input combined with path length and partial and total pressure. It is demonstrated that principal component analysis (PCA) can be used to compress the spectrum of absorption cross sections, which depend strongly on temperature, into a reduced representation of score values and loading vectors. The temperature range from 300 to 1000 K is studied. This range is divided into two subranges (300-650 K and 650-1000K), and separate PCA models are constructed for each. The relationship between the scores and the temperature values is highly nonlinear. It is shown, however, that because the score-temperature relationships are smooth and continuous, they can be modeled by polynomials of varying degrees. The accuracy of the data compression method is validated with line-by-line-calculated absorption data of carbon monoxide and water vapor. Relative deviations between the absorption cross sections reconstructed from the PCA model parameters and the line-by-line-calculated values are found to be smaller than 0.15% for cross sections exceeding 1.27 x 10(-21) cm(-1) atm(-1) (CO) and 0.20% for cross sections exceeding 4.03 x 10(-21) cm(-1) atm(-1) (H2O). The computing time is reduced by a factor of 10(4). PMID:12027171

  12. Infrared absorption cross sections for 1,1,1,2-tetrafluoroethane

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2015-01-01

    High-resolution infrared absorption cross sections for 1,1,1,2-tetrafluoroethane have been determined over the spectral range 750-1600 cm-1 from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a 26-cm-pathlength cell. Spectra of 1,1,1,2-tetrafluoroethane/dry synthetic air mixtures were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD) at a number of temperatures and pressures (22-761 Torr and 191-296 K) appropriate for atmospheric conditions. Intensities were calibrated using composite 1,1,1,2-tetrafluoroethane spectra taken from the Pacific Northwest National Laboratory (PNNL) IR database. This cross section dataset is intended to replace what is currently available in the HITRAN/GEISA databases.

  13. Direct Measurement of Polarized Absorption Cross-Section of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. Y.; Kikkawa, J. M.

    2004-03-01

    We use a combination of polarized Raman scattering and linear optical absorption to infer optical absorption cross-sections of single-wall carbon nanotube ensembles for visible light co- and cross-polarized with respect to the nanotube axes. These data reveal a strong linear absorption anisotropy, and provide a rapid method by which linear absorption spectra can be used to quantitatively measure the orientation of dispersed nanotubes, even in strongly absorbing media for which Raman approaches are complicated by anisotropic re-absorption processes. Comparison with theory demonstrates that local field depolarization plays a crucial role in affecting optical spectra of the nanotubes. This work supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  14. Quantitative infrared absorption cross sections of isoprene for atmospheric measurements

    SciTech Connect

    Brauer, Carolyn S.; Blake, Thomas A.; Guenther, Alex B.; Sharpe, Steven W.; Sams, Robert L.; Johnson, Timothy J.

    2014-11-19

    The OH- and O3- initiated oxidations of isoprene, which is one of the primary volatile organic compounds produced by vegetation, are a major source of atmospheric formaldehyde and other oxygenated organics, yet little quantitative IR data exists for isoprene. We thus report absorption coefficients and integrated band intensities for isoprene in the 600 - 6500 cm-1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm-1 resolution, using a Bruker 66V FTIR. Composite spectra are derived from a minimum of seven pressures at each temperature.

  15. Evidence of concentration dependence of the two-photon absorption cross section: Determining the "true" cross section value

    NASA Astrophysics Data System (ADS)

    Ajami, Aliasghar; Gruber, Peter; Tromayer, Maximilian; Husinsky, Wolfgang; Stampfl, Jürgen; Liska, Robert; Ovsianikov, Aleksandr

    2015-09-01

    The two-photon absorption (2PA) phenomenon is the basis of many unique applications involving suitable chromophores as photoinitiators. Ideally the 2PA cross section should, therefore, be a unique parameter, allowing quantification and comparing 2PA capabilities of different substances. In this report, the most straightforward and widespread method, the Z-scan technique, was used for determining the 2PA cross-section values of three different synthesized photoinitiators and one laser dye as a standard. It is demonstrated that the experimentally obtained values strongly depend on the molar concentration of a measured solution. A tenfold decrease in substance concentration can lead to the doubling of the 2PA cross-section. A similar concentration dependence was confirmed for all three investigated substances. Among the crucial implications of this observed behavior is the questionable possibility to compare the 2PA characteristics of different compounds based on the values reported in the literature. An example of another important consequence of this effect extends i.e. to the calculation of the dose necessary for killing the tumor cells in 2PA-based photodynamic therapy applications. The possible factors responsible for this contra-intuitive behavior are discussed and investigated. Finally, a reliable measurement protocol for comprehensive characterization of 2PA capability of different substances is proposed. Herewith an attempt to establish a standard method, which takes into account the concentration dependence, is made. This method provides means for faultless comparison of different compounds.

  16. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  17. Nucleon-nucleus interaction data base: Total nuclear and absorption cross sections

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Townsend, L. W.; Buck, W. W.; Chun, S. Y.; Hong, B. S.; Lamkin, S. L.

    1988-01-01

    Neutron total cross sections are represented for Li to Pu targets at energies above 0.1 MeV and less than 100 MeV using a modified nuclear Ramsauer formalism. The formalism is derived for energies above 100 MeV by fitting theoretical cross sections. Neutron absorption cross sections are represented by analytic expressions of similar form, but shape resonance phenomena of the Ramsauer effect is not present. Elastic differential cross sections are given as a renormalized impulse approximation. These cross section data bases are useful for nucleon transport applications.

  18. Temperature-dependent absorption cross-sections of perfluorotributylamine

    NASA Astrophysics Data System (ADS)

    Godin, Paul J.; Cabaj, Alex; Conway, Stephanie; Hong, Angela C.; Le Bris, Karine; Mabury, Scott A.; Strong, Kimberly

    2016-05-01

    Cross-sections of perfluorotributylamine (PFTBA) were derived from Fourier transform spectroscopy at 570-3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 298-344 K. These results were compared to theoretical density functional theory (DFT) calculations and to previous measurements of PFTBA made at room temperature. DFT calculations were performed using the B3LYP method and the 6-311G(d,p) basis set. We find good agreement between our experimentally derived results, DFT calculations, and previously published data. No significant temperature dependence in the PFTBA cross-sections was observed for the temperature range studied. We calculate an average integrated band strength of 7.81 × 10-16 cm/molecule for PFTBA over the spectral range studied. Radiative efficiencies (RE) and global warming potentials (GWP) for PFTBA were also derived. The calculated radiative efficiencies show no dependence on temperature and agree with prior publications. We find an average RE of 0.77 Wm-2 ppbv-1 and a range of GWP from 6874 to 7571 depending on the lifetime used. Our findings are consistent with previous studies and increase our confidence in the value of the GWP of PFTBA.

  19. Infrared absorption cross-sections and integrated absorption intensities of HFC-134 and HFC-143a vapour.

    NASA Astrophysics Data System (ADS)

    Smith, K.; Newnham, D.; Page, M.; Ballard, J.; Duxbury, G.

    1998-05-01

    Infrared absorption cross-sections and integrated absorption intensities of HFC-134 (1,1,2,2-tetrafluoroethane) and HFC-143a (1,1,1-trifluoroethane) vapour have been determined from laboratory measurements at six temperatures (203, 213, 233, 253, 273 and 297 K) for the region 560-1900 cm-1 (5.3-17.9 μm) at 0.03 cm-1 instrument resolution, by Fourier transform infrared spectroscopy. In addition, air-broadened spectra have been recorded at 297 K and pressures of 5, 20 and 100 kPa air. Inter-comparisons between this work and previous studies have been made where possible.

  20. Correlation analysis of optical absorption cross section and rate coefficient measurements in reacting systems

    SciTech Connect

    Hessler, J.P.; Ogren, P.J.

    1992-08-31

    A technique was developed for determining relative importance and correlation between reactions making up a complex kinetic system. This technique was used to investigate measurements of optical absorption cross sections and the correlation between cross sections and measured rate coefficients. It is concluded that (1) species, initial conditions, and temporal regions may be identified where cross sections may be measured without interference from the kinetic behavior of the observed species and (2) experiments designed to measure rate coefficients will always be correlated with the absorption cross section of the observed species. This correlation may reduce the accuracy of rate coefficient measurements.

  1. Temperature dependence of the ozone absorption cross section at the 253.7-nm mercury line

    NASA Technical Reports Server (NTRS)

    Barnes, J.; Mauersberger, K.

    1987-01-01

    The temperature dependence of the ozone absorption cross section at 253.7 nm has been measured between 195 and 351 K. The experimental technique employed circumvents the necessity to determine the absolute ozone concentration for each temperature measurement. Below 273 K the cross section increases approximately 0.6 percent, while toward higher temperatures the cross section decreases rapidly. In a comparison, good agreement with other recently made measurements is shown.

  2. Rapid and accurate broadband absorption cross-section measurement of human bodies in a reverberation chamber

    NASA Astrophysics Data System (ADS)

    Flintoft, Ian D.; Melia, Gregory C. R.; Robinson, Martin P.; Dawson, John F.; Marvin, Andy C.

    2015-06-01

    A measurement methodology for polarization and angle of incidence averaged electromagnetic absorption cross-section using a reverberation chamber is presented. The method is optimized for simultaneous rapid and accurate determination of average absorption cross-section over the frequency range 1-15 GHz, making it suitable for use in human absorption and exposure studies. The typical measurement time of the subject is about 8 min with a corresponding statistical uncertainty of about 3% in the measured absorption cross-section. The method is validated by comparing measurements on a spherical phantom with Mie series calculations. The efficacy of the method is demonstrated with measurements of the posture dependence of the absorption cross-section of a human subject and an investigation of the effects of clothing on the measured absorption which are important considerations for the practical design of experiments for studies on human subjects.

  3. Interstellar photoelectric absorption cross sections, 0.03-10 keV

    NASA Technical Reports Server (NTRS)

    Morrison, R.; Mccammon, D.

    1983-01-01

    An effective absorption cross section per hydrogen atom has been calculated as a function of energy in the 0.03-10 keV range using the most recent atomic cross section and cosmic abundance data. Coefficients of a piecewise polynomial fit to the numerical results are given to allow convenient application in automated calculations.

  4. Measurements of the Ultraviolet Fluorescence Cross Sections and Spectra of Bacillus Anthracis Simulants

    SciTech Connect

    Stephens, J.R.

    1998-09-01

    Measurements of the ultraviolet autofluorescence spectra and absolute cross sections of the Bacillus anthracis (Ba) simulants Bacillus globigii (Bg), Bacillus megaterium (Bm), Bacillus subtilis (Bs), and Bacillus cereus (Bc) were measured. Fluorescence spectra and cross sections of pine pollen (Pina echinata) were measured for comparison. Both dried vegetative cells and spores separated from the sporulated vegetative material were studied. The spectra were obtained by suspending a small number (<10) of particles in air in our Single Particle Spectroscopy Apparatus (SPSA), illuminating the particles with light from a spectrally filtered arc lamp, and measuring the fluorescence spectra of the particles. The illumination was 280 nm (20 nm FWHM) and the fluorescence spectra was measured between 300 and 450 nm. The fluorescence cross section of vegetative Bg peaks at 320 nm with a maximum cross section of 5 X 10{sup -14} cm{sup 2}/sr-nm-particle while the Bg spore fluorescence peaks at 310 nm with peak fluorescence of 8 X 10{sup -15} cm{sup 2}/sr-nm-particle. Pine pollen particles showed a higher fluorescence peaking at 355 nm with a cross section of 1.7 X 10{sup -13} cm{sup 2}/sr-nm-particle. Integrated cross sections ranged from 3.0 X 10{sup -13} for the Bg spores through 2.25 X 10{sup -12} (cm{sup 2}/sr-particle) for the vegetative cells.

  5. New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12)

    NASA Astrophysics Data System (ADS)

    Harrison, J. J.

    2015-08-01

    Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12) is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800-1270 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5-761 Torr and 190-294 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.

  6. New and improved infrared absorption cross sections for dichlorodifluoromethane (CFC-12)

    NASA Astrophysics Data System (ADS)

    Harrison, J. J.

    2015-03-01

    Despite its widespread commercial use throughout the twentieth century, primarily in the refrigeration industry, dichlorodifluoromethane (CFC-12) is now known to have the undesirable effect of depleting stratospheric ozone. As this long-lived molecule slowly degrades in the atmosphere, monitoring its vertical concentration profile using infrared sounders on satellite platforms crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of dichlorodifluoromethane over the spectral range 800-1270 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm-pathlength cell. Spectra of dichlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of temperatures and pressures (7.5-761 Torr and 190-294 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases.

  7. New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)

    NASA Astrophysics Data System (ADS)

    Harrison, Jeremy J.

    2016-06-01

    The most widely used hydrochlorofluorocarbon (HCFC) commercially since the 1930s has been chloro-difluoromethane, or HCFC-22, which has the undesirable effect of depleting stratospheric ozone. As this molecule is currently being phased out under the Montreal Protocol, monitoring its concentration profiles using infrared sounders crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of chlorodifluoromethane over the spectral range 730-1380 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of chlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD denotes the maximum optical path difference) over a range of temperatures and pressures (7.5-762 Torr and 191-295 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN (HIgh-resolution TRANsmission) and GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques) databases; in particular it provides coverage over a wider range of pressures and temperatures, has more accurate wavenumber scales, more consistent integrated band intensities, improved signal-to-noise, is free of channel fringing, and additionally covers the ν2 and ν7 bands.

  8. Optical Absorption Cross Section of Individual Multi-Walled Carbon Nanotubes in the Visible Region.

    PubMed

    Shahzad, Muhammad Imran; Shahzad, Nadia; Tagliaferro, Alberto

    2016-01-01

    The aim of the present work is to determine the optical absorption cross section for visible radiation of various types of multiwall carbon nanotubes (MWCNTs) having different dimensions through macroscopic optical measurements. This is achieved by dispersing MWCNTs in polydimethylsiloxane (PDMS) and preparing composite films. Different percentages (0.0% to 1.5%) of each MWCNTs type were mixed into the PDMS matrix using high speed mechanical stirring (~1000 rpm) and ultrasonication (~37 kHz) to reach optimal dispersion. By using doctor blading technique, 100 µm thick uniform films were produced on glass. They were then thermally cured and detached from the glass to get flexible and self-standing films. Field-Emission Scanning Electron Microscope (FESEM) analysis of cryo-fractured composite samples was used to check the dispersion of MWCNTs in PDMS, while Raman spectroscopy and FTIR were employed to rule out possible structural changes of the polymer in the composite that would have altered its optical properties. Total and specular reflection and transmission spectra were measured for all films. The absorption coefficient, which represents the fractional absorption per unit length and is proportional to the concentration of absorbing sites (i.e., MWCNTs at photon energies upon which PDMS is non-absorbing), was extracted. For each MWCNTs type, the absorption cross section of an individual MWCNT was obtained from the slope of absorption coefficient versus MWCNTs number density curve. It was found to be related with MWCNT volume. This method can be applied to all other nanoparticles as far as they can be dispersed in a host transparent matrix. PMID:27398474

  9. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  10. Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Etzkorn, Thomas; Klotz, Björn; Sørensen, Søren; Patroescu, Iulia V.; Barnes, Ian; Becker, Karl H.; Platt, Ulrich

    Absorption cross sections of 24 volatile and non-volatile derivatives of benzene in the ultraviolet (UV) and the infrared (IR) regions of the electromagnetic spectrum have been determined using a 1080 l quartz cell. For the UV a 0.5 m Czerny-Turner spectrometer coupled with a photodiode array detector (spectral resolution 0.15 nm) was used. IR spectra were recorded with an FT-IR spectrometer (Bruker IFS-88, spectral resolution 1 cm -1). Absolute absorption cross sections and the instrument function are given for the UV, while for the IR, absorption cross sections and integrated band intensities are reported. The study focused primarily on the atmospherically relevant methylated benzenes (benzene, toluene, o-xylene, m-xylene, p-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, styrene) and their ring retaining oxidation products (benzaldehyde, o-tolualdehyde, m-tolualdehyde, p-tolualdehyde, phenol, o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 2,6-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol and ( E,Z)- and ( E,E)-2,4-hexadienedial). The UV absorption cross sections reported here can be used for the evaluation of DOAS spectra (Differential Optical Absorption Spectroscopy) for measurements of the above compounds in the atmosphere and in reaction chambers, while the IR absorption cross sections will primarily be useful in laboratory studies on atmospheric chemistry, where FT-IR spectrometry is an important tool.

  11. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 °C

    NASA Astrophysics Data System (ADS)

    Grosch, H.; Sárossy, Z.; Egsgaard, H.; Fateev, A.

    2015-05-01

    Absorption cross-sections and their temperature dependency, especially in the UV spectral range, of organic compounds such as phenol and naphthalene are of great interest in atmospheric research and high temperature processes. Due to the challenges of producing premixed gases of known concentration, it is difficult to determine absorption cross-sections in experiments, especially at higher temperatures. In this paper, a gas flow of nitrogen with a stable but unknown concentration of phenol or naphthalene is produced, and their UV absorption spectra between 195 and 350 nm have been measured at higher resolution than before (0.019 nm) in a hot gas flow cell at temperatures of up to 500 °C/773 K. A Petersen column is used to sample the organic compounds in the gas mixture to determine their concentration by GC-MS. The absorption cross-sections are calculated with the use of the Lambert-Beer law. Consequently, the absorption cross-sections for phenol and naphthalene at room temperature, 423 K, 573 K and 773 K in the range of 195-360 nm are presented in this study.

  12. O2 absorption cross sections /187-225 nm/ from stratospheric solar flux measurements

    NASA Technical Reports Server (NTRS)

    Herman, J. R.; Mentall, J. E.

    1982-01-01

    The absorption cross sections of molecular oxygen are calculated in the wavelength range from 187 to 230 nm from solar flux measurements obtained within the stratosphere. Within the Herzberg continuum wavelength region the molecular oxygen cross sections are found to be about 30% smaller than the laboratory results of Shardanand and Rao (1977) from 200 to 210 nm and about 50% smaller than those of Hasson and Nicholls (1971). At wavelengths longer than 210 nm the cross sections agree with those of Shardanand and Rao. The effective absorption cross sections of O2 in the Schumann-Runge band region from 187 to 200 nm are calculated and compared to the empirical fit given by Allen and Frederick (1982). The calculated cross sections indicate that the transmissivity of the atmosphere may be underestimated by the use of the Allen and Frederic cross sections between 195 and 200 nm. The ozone column content between 30 and 40 km and the relative ozone cross sections are determined from the same solar flux data set.

  13. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    NASA Astrophysics Data System (ADS)

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene.

  14. ABSORPTION CROSS SECTION OF GASEOUS ACETYLENE AT 85 K IN THE WAVELENGTH RANGE 110-155 nm

    SciTech Connect

    Cheng, Bing-Ming; Chen, Hui-Fen; Lu, Hsiao-Chi; Chen, Hong-Kai; Alam, M. S.; Chou, Sheng-Lung; Lin, Meng-Yeh

    2011-09-01

    Absorption spectra and absorption cross sections of gaseous acetylene, C{sub 2}H{sub 2}, at 298 and 85 K were measured in the wavelength range 110-155 nm with a slit-jet system coupled to a synchrotron as a source of vacuum ultraviolet light. Using published spectral parameters of C{sub 2}H{sub 2}, we simulated the absorption profile for the Rydberg transition to state 4R{sub 0} in the range 124.6-125.1 nm, according to which the temperature of the jet-expanded sample at stagnation pressure 200 Torr is 85 {+-} 5 K. Our cross sections of C{sub 2}H{sub 2} are applicable for determining properties sensitive to temperature for diagnostic work on Saturn and Titan.

  15. Accurate universal parameterization of absorption cross sections III--light systems

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.

    1999-01-01

    Our prior nuclear absorption cross sections model [R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instr. and Meth. B 117 (1996) 347; R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 129 (1997) 11] is extended for light systems (A < or = 4) where either both projectile and target are light particles or one is light particle and the other is medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium and heavy systems. As a result the extended model can reliably be used in all studies where there is a need for absorption cross sections.

  16. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  17. Absorption cross sections of some atmospheric molecules for resonantly scattered O I 1304-A radiation

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1976-01-01

    Absorption cross sections for O2, N2, CO2, CH4, N2O, and CO have been measured at each of the lines of the atomic oxygen triplet at 1302, 1305, and 1306 A. Radiation resonantly scattered from oxygen atoms at a temperature of about 300 K was used for the line source. Absorber temperatures were also near 300 K. Direct application of the Lambert-Beer absorption equation yielded pressure-dependent cross sections for carbon monoxide at each line of the O I triplet. Reasons for this apparent dependence are presented and discussed.

  18. Relative high-resolution absorption cross sections of C2H6 at low temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, R. J.; Bernath, P. F.; Appadoo, D. R. T.

    2015-09-01

    Synchrotron radiation has been used to record absorption cross sections of ethane, C2H6, in the far-infrared with very high spectral resolution (up to 0.00096 cm-1). C2H6 is present in the atmospheres of the Gas Giant planets and Titan but the vapor pressure at relevant atmospheric temperatures (i.e., between 70 and 200 K) is low. This makes laboratory measurements difficult. We demonstrate the effectiveness of a unique "enclosive flow" cold cell, located at the Australian Synchrotron, that enables high-resolution absorption cross sections of gaseous C2H6 to be recorded at 90 K.

  19. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.

    2006-07-01

    The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.

  20. VizieR Online Data Catalog: Photoelectric absorption cross-sections (Balucinska-Church+, 1992)

    NASA Astrophysics Data System (ADS)

    Balucinska-Church, M.; McCammon, D.

    1994-03-01

    Polynomial fit coefficients have been obtained for the energy dependence of the photoelectric absorption cross sections of 17 astrophysically important elements. The aim of this work is to provide convenient fits to the photoelectric absorption cross sections for each of 17 elements separately, so that spectral modelling can be performed with an absorption term containing the abundances of some or all of the elements as adjustable parameters. The fits to the individual elements can also be used independently for calculating window transmissions, gas stopping efficiency, etc. The atomic absorption cross sections were taken from Henke et al. (1982). Polynomial fits have been made to the atomic absorption cross sections in the energy range of 0.03 -- 10 keV for seventeen elements: hydrogen, helium, carbon, nitrogen, oxygen, neon, sodium, magnesium, aluminium, silicon, sulphur, chlorine, argon, calcium, chromium, iron and nickel. In the case of elements with only the K-edge in this energy range, polynomial fits were made each side of the edge; with the L-edge also present three fits were made. Polynomials of up to degree 8 were required. The functions fit Henke's data points with a typical error of 2% and a maximum error of 7%, except for points below 40~eV for argon, calcium and sodium, where the errors are larger. The effective cross section per hydrogen atom for a particular set of elemental abundances may be simply calculated from the individual cross sections. A set of routines has been written in generic FORTRAN-77 to implement these polynomial fits. The file XSCTNS.FOR contains seventeen REAL functions that will return the photoelectric cross sections for H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Cl, A, Ca, Cr, Fe, and Ni in cm**2/g, given the photon energy in eV. The file TOTLXS.FOR contains a single function that returns the effective cross section in cm**2/H atom, given the photon energy in eV and a set of seventeen relative abundances in log10. If standard

  1. Cooperative enhancement versus additivity of two-photon-absorption cross sections in linear and branched squaraine superchromophores.

    PubMed

    Ceymann, Harald; Rosspeintner, Arnulf; Schreck, Maximilian H; Mützel, Carina; Stoy, Andreas; Vauthey, Eric; Lambert, Christoph

    2016-06-28

    The linear and nonlinear optical properties of a series of oligomeric squaraine dyes were investigated by one-photon absorption spectroscopy (1PA) and two-photon absorption (2PA) induced fluorescence spectroscopy. The superchromophores are based on two indolenine squaraine dyes with transoid (SQA) and cisoid configuration (SQB). Using these monomers, linear dimers and trimers as well as star-shaped trimers and hexamers with benzene or triphenylamine cores were synthesised and investigated. The red-shifted and intensified 1PA spectra of all superchromophores could well be explained by exciton coupling theory. In the linear chromophore arrangements we also found superradiance of fluorescence but not in the branched systems. Furthermore, the 2PA showed enhanced cross sections for the linear oligomers but only additivity for the branched systems. This emphasizes that the enhancement of the 2PA cross section in the linear arrangements is probably caused by orbital interactions of higher excited configurations. PMID:27264847

  2. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    NASA Astrophysics Data System (ADS)

    Cruz-Diaz, G. A.; Muñoz Caro, G. M.; Chen, Y.-J.; Yih, T.-S.

    2014-02-01

    Context. Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. Aims: The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. Methods: The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. Results: We found that, as expected, solid N2 has the lowest VUV-absorption cross section, which about three orders of magnitude lower than that of other species such as O2, which is also homonuclear. Methane (CH4) ice presents a high absorption near Ly-α (121.6 nm) and does not absorb below 148 nm. Estimating the ice absorption cross sections is essential for models of ice photoprocessing and allows estimating the ice photodesorption rates as the number of photodesorbed molecules per absorbed photon in the ice. Data can be found at http://ghosst.osug.fr/

  3. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  4. Energy-absorption capability and scalability of square cross section composite tube specimens

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1989-01-01

    Static crushing tests were conducted on graphite/epoxy and Kevlar/epoxy square cross section tubes to study the influence of specimen geometry on the energy-absorption capability and scalability of composite materials. The tube inside width-to-wall thickness (W/t) ratio was determined to significantly affect the energy-absorption capability of composite materials. As W/t ratio decreases, the energy-absorption capability increases nonlinearly. The energy-absorption capability of Kevlar epoxy tubes was found to be geometrically scalable, but the energy-absorption capability of graphite/epoxy tubes was not geometrically scalable.

  5. Energy-dependent parameterization of heavy-ion absorption cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1986-01-01

    An energy-dependent parameterization of the total absorption (reaction) cross sections for heavy ion (Z equal to or greater than 2) collisions at energies above 25 MeV per nucleon is presented. The formula will be especially useful in heavy-ion transport applications.

  6. Cross section calculations of astrophysical interest. [for theories of absorption and emission lines

    NASA Technical Reports Server (NTRS)

    Gerjuoy, E.

    1974-01-01

    Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.

  7. Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons

    NASA Technical Reports Server (NTRS)

    Bogart, Donald

    1951-01-01

    Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.

  8. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach.

    PubMed

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  9. Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach

    PubMed Central

    Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo

    2015-01-01

    The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990

  10. Nucleon and heavy-ion total and absorption cross section for selected nuclei

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Costner, C. M.

    1975-01-01

    Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.

  11. Temperature dependent absorption cross-sections of HNO3 and N2O5

    NASA Technical Reports Server (NTRS)

    Rattigan, Oliver V.; Harwood, Matthew H.; Jones, Rod L.; Cox, Richard A.

    1994-01-01

    Absorption cross-sections for HNO3 and N2O5 have been measured in the wavelength region 220-450 nm, using a dual beam diode array spectrometer with a spectral resolution of 0.3 nm. The results for both compounds are in good agreement with recommended values at room temperature. However, the cross-sections of both HNO3 and N2O5 show a marked reduction with decreasing temperature in the range 295-233 K. The calculated photolysis rate of HNO3 at the low temperatures and high solar zenith angles characteristic of the polar winter and spring is significantly lower than previously estimated.

  12. Total absorption cross sections of several gases of aeronomic interest at 584 A.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.; Loewenstein, M.

    1972-01-01

    Total photoabsorption cross sections have been measured at 584.3 A for N2, O2, Ar, CO2, CO, NO, N2O, NH3, CH4, H2, and H2S. A monochromator was used to isolate the He I 584 line produced in a helium resonance lamp, and thin aluminum filters were used as absorption cell windows, thereby eliminating possible errors associated with the use of undispersed radiation or windowless cells. Sources of error are examined, and limits of uncertainty are given. Previous relevant cross-sectional measurements and possible error sources are reviewed. Wall adsorption as a source of error in cross-sectional measurements has not previously been considered and is discussed briefly.

  13. Measurement of the ozone absorption cross-section at the 253.7 nm mercury line

    NASA Technical Reports Server (NTRS)

    Mauersberger, K.; Barnes, J.; Hanson, D.; Morton, J.

    1986-01-01

    The absorption cross-section of ozone at 253.7 nm is frequently used as a standard for the entire UV wavelength range. The presently accepted value is 1.147 x 10 to the -17th/sq cm, which is known with an uncertainty of about 2 percent. The cross-section has been recently measured by simultaneously monitoring the ozone pressure, the impurities in the ozone gas, the gas temperature, and the UV beam intensity. The cross-section at room temperature was found to be 1.137 x 10 to the -17th/sq cm having an uncertainty of + or - .7 percent. The improved accuracy will aid a number of ozone experiments including the in situ photometers and Solar Backscatter Ultraviolet instruments.

  14. Elastic and absorption cross sections for electron-nitrous oxide collisions

    NASA Astrophysics Data System (ADS)

    Lee, M.-T.; Iga, I.; Homem, M. G.; Machado, L. E.; Brescansin, L. M.

    2002-06-01

    In this work, we present a joint theoretical-experimental study on electron-N2O collisions in the intermediate energy range. More specifically, calculated and measured elastic differential, integral, and momentum-transfer cross sections, as well as calculated total and absorption cross sections are reported. The measurements were performed using a crossed electron-beam-molecular-beam geometry. The angular distribution of the scattered electrons was converted to absolute cross sections using the relative-flow technique. Theoretically, a complex optical potential is used to represent the electron-molecule interaction dynamics in the present calculation. The Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations. The comparison of the present calculated results with the measured results as well as with the existing experimental and theoretical data shows good agreement.

  15. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  16. Universality of high-energy absorption cross sections for black holes

    SciTech Connect

    Decanini, Yves; Esposito-Farese, Gilles; Folacci, Antoine

    2011-02-15

    We consider the absorption problem for a massless scalar field propagating in static and spherically symmetric black holes of arbitrary dimension endowed with a photon sphere. For this wide class of black holes, we show that the fluctuations of the high-energy absorption cross section are totally and very simply described from the properties (dispersion relation and damping) of the waves trapped near the photon sphere and therefore, in the eikonal regime, from the characteristics (orbital period and Lyapunov exponent) of the null unstable geodesics lying on the photon sphere. This is achieved by using Regge pole techniques. They permit us to make an elegant and powerful resummation of the absorption cross section and to extract then all the physical information encoded in the sum over the partial wave contributions. Our analysis induces moreover some consequences concerning Hawking radiation which we briefly report.

  17. Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer

    NASA Astrophysics Data System (ADS)

    Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus

    2014-06-01

    We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.

  18. Systematic determination of absolute absorption cross-section of individual carbon nanotubes

    PubMed Central

    Liu, Kaihui; Hong, Xiaoping; Choi, Sangkook; Jin, Chenhao; Capaz, Rodrigo B.; Kim, Jihoon; Wang, Wenlong; Bai, Xuedong; Louie, Steven G.; Wang, Enge; Wang, Feng

    2014-01-01

    Optical absorption is the most fundamental optical property characterizing light–matter interactions in materials and can be most readily compared with theoretical predictions. However, determination of optical absorption cross-section of individual nanostructures is experimentally challenging due to the small extinction signal using conventional transmission measurements. Recently, dramatic increase of optical contrast from individual carbon nanotubes has been successfully achieved with a polarization-based homodyne microscope, where the scattered light wave from the nanostructure interferes with the optimized reference signal (the reflected/transmitted light). Here we demonstrate high-sensitivity absorption spectroscopy for individual single-walled carbon nanotubes by combining the polarization-based homodyne technique with broadband supercontinuum excitation in transmission configuration. To our knowledge, this is the first time that high-throughput and quantitative determination of nanotube absorption cross-section over broad spectral range at the single-tube level was performed for more than 50 individual chirality-defined single-walled nanotubes. Our data reveal chirality-dependent behaviors of exciton resonances in carbon nanotubes, where the exciton oscillator strength exhibits a universal scaling law with the nanotube diameter and the transition order. The exciton linewidth (characterizing the exciton lifetime) varies strongly in different nanotubes, and on average it increases linearly with the transition energy. In addition, we establish an empirical formula by extrapolating our data to predict the absorption cross-section spectrum for any given nanotube. The quantitative information of absorption cross-section in a broad spectral range and all nanotube species not only provides new insight into the unique photophysics in one-dimensional carbon nanotubes, but also enables absolute determination of optical quantum efficiencies in important

  19. Exceptionally large two- and three-photon absorption cross-sections by OPV organometalation.

    PubMed

    Gao, Beibei; Mazur, Leszek M; Morshedi, Mahbod; Barlow, Adam; Wang, Huan; Quintana, Cristóbal; Zhang, Chi; Samoc, Marek; Cifuentes, Marie P; Humphrey, Mark G

    2016-07-01

    Oligo(p-phenylenevinylene)s (OPVs) containing up to 8 PV units and end-functionalized by ruthenium alkynyl groups have been prepared and their nonlinear absorption properties assessed using the Z-scan technique and employing low repetition rate femtosecond pulses. Exceptionally large two-photon absorption (ca. 12 500 GM at 725 nm) and three-photon absorption cross sections (ca. 1.6 × 10(-76) cm(6) s(2) at 1100 nm) are found for the 8PV-containing example, highlighting the potential of an "organometalation" approach to NLO-efficient organic materials. PMID:27297290

  20. Principal-components analysis of fluorescence cross-section spectra from pathogenic and simulant bacteria

    NASA Astrophysics Data System (ADS)

    Heaton, Harold I.

    2005-10-01

    Principal-components analysis of a new set of highly resolved (<1 nm) fluorescence cross-section spectra excited at 354.7 nm over the 370 646 nm band has been used to demonstrate the potential ability of UV standoff lidars to discriminate among particular biological warfare agents and simulants over short ranges. The remapped spectra produced by this technique from Bacillus globigii (Bg) and Bacillus anthracis (Ba) spores were sufficiently different to allow them to be cleanly separated, and the Ba spectra obtained from Sterne and Ames strain spores were distinguishable. These patterns persisted as the spectral resolution was subsequently degraded in processing from ˜1 to 34 nm. This is to the author's knowledge the first time that resolved fluorescence spectra from biological warfare agents have been speciated or shown to be distinguishably different from those normally used surrogates by optical spectroscopy.

  1. Absorption cross-section and decay rate of rotating linear dilaton black holes

    NASA Astrophysics Data System (ADS)

    Sakalli, I.; Aslan, O. A.

    2016-02-01

    We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.

  2. Absorption and dissociative photoionization cross sections of NH3 from 80 to 1120 A

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Haddad, G. N.; Kilcoyne, L. D.

    1987-01-01

    The total absorption, photoionization, and dissociative photoionization cross sections of ammonia have been measured from 80 to 1120 A. All possible fragment ions have been observed including doubly ionized ammonia. The absolute ionization efficiencies have also been measured in this spectral range. The appearance potentials of the fragment ions have been measured and are compared with the calculated appearance potentials derived from published heats of formation and ionization potentials of the fragments.

  3. Ultraviolet absorption cross-sections of some carbonyl compounds and their temperature dependence

    NASA Technical Reports Server (NTRS)

    Gillotay, D.; Simon, P. C.; Dierickx, L.

    1994-01-01

    Ultraviolet absorption cross-section of phosgene (CCl2O), trichloroacetylchloride (CCl3-CClO) and trichloroacetaldehyde (CCl3-CHO) have been measured between 170 and 320 nm for temperature ranging from 210 to 295 K with classical double beam equipment. These data are compared with other available determinations performed at room temperature. Photodissociation coefficients are estimated and their temperature dependence is discussed. Impact of the photodissociation on the total atmospheric destruction of these compounds is illustrated.

  4. New benzene absorption cross sections in the VUV, relevance for Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Capalbo, Fernando J.; Bénilan, Yves; Fray, Nicolas; Schwell, Martin; Champion, Norbert; Es-sebbar, Et-touhami; Koskinen, Tommi T.; Lehocki, Ivan; Yelle, Roger V.

    2016-02-01

    Benzene is an important molecule in Titan's atmosphere because it is a potential link between the gas phase and the organic solid phase. We measured photoabsorption in the ultraviolet by benzene gas at temperatures covering the range from room temperature to 215 K. We derived benzene absorption cross sections and analyzed them in terms of the transitions observed. No significant variation with measurement temperature was observed. We discuss the implications of our measurements for the derivation of benzene abundance profiles in Titan's thermosphere, by the Cassini/Ultraviolet Imaging Spectrograph (UVIS). The use of absorption cross sections at low temperature is recommended to avoid small systematic uncertainties in the profiles. We used our measurements, together with absorption cross sections from other molecules, to analyze four stellar occultations by Titan, measured by UVIS during flybys T21, T41, T41_II, and T53. We derived and compared benzene abundance profiles in Titan's thermosphere between approximately 530 and 1000 km, for different dates and geographical locations. The comparisons of our benzene profiles with each other, and with profiles from models of the upper atmosphere, point to a complex behavior that is not explained by current photochemical models.

  5. Effect of light state transitions on the apparent absorption cross section of Photosystem II in Chlorella

    SciTech Connect

    Falkowski, P.G.; Fujita, Yoshihiko

    1986-01-01

    The distribution of excitation energy between photosystems may profoundly affect the quantum yield of photosynthetic oxygen evolution. Excitation energy absorbed by pigment molecules is transferred to reaction centers, where it may potentially drive a photochemical event. To balance the photochemical events in PSII with those in PSI, excitation energy may be transferred between PSII and PSI. This type of energy transfer has been inferred primarily in the steady state quantum yield of oxygen evolution and/or fluorescence with changes in excitation wavelength. These so called ''state transitions'' have been attributed to changes in either the absorption cross section of PSII or ''spillover'' of excitation energy between the two photosystems. We report here on measurements of relative absorption cross sections of PSII under state I and state II light conditions. We simultaneously followed the yields of O/sub 2/ and the change in fluorescence yields, ..delta.. phi, as a function of flash energy using single turnover xenon flashes. Our data suggest that the effective absorption cross section of PSII does not change within +- 10% under physiological conditions in unpoisoned Chlorella pyrenoidosa. 13 refs., 3 figs.

  6. Determination of the Relative Two-photon Absorption Cross-section Between Xenon and Hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; McCarren, Dustin; Vandervort, Robert; Soderholm, Mark

    2014-10-01

    Two-photon Absorption Laser Induced Fluorescence (TALIF) is a non-perturbative method for measuring the density and temperature of neutral hydrogen in a fusion plasma. Calibration of a TALIF system, for absolute density measurements, requires a measurement of a known density of particles under controlled conditions. Since hydrogen is diatomic, hydrogen TALIF system calibration requires measurements of target cold monatomic gas with a two-photon transition from the ground state and fluorescence decay at accessible energies. Here we present single-sided TALIF (angular momentum change of 2) measurements of a new transition in xenon with absorption and emission wavelengths nearly identical to those of the hydrogen TALIF sequence (the n = 3 to n = 2 emission in hydrogen is at 656.27 nm whereas it is at 655.99 nm in xenon). The xenon calibration approach provides the first opportunity for absolute calibration of Doppler-free (angular momentum change of 0) hydrogen TALIF. We first measure the relative TALIF absorption cross section between xenon and krypton and then use the known cross section ratio between the krypton and hydrogen transitions to calculate the relative xenon-hydrogen cross section. Single isotope xenon samples are used to remove the confounding factors of isotopic and hyperfine splitting.

  7. An integral test of the inelastic cross sections of Pb and Mo using measured neutron spectra

    NASA Technical Reports Server (NTRS)

    Shook, D. F.; Fieno, D.; Ford, C. H.; Wrights, G. N.

    1972-01-01

    Comparison of measurements and calculations of fast neutron spectra from a radioactive neutron source inside spheres of Mo or Pb and from a cylindrical reactor containing a thick Pb or Mo reflector are used as a test of ENDF cross sections. The sphere leakage spectra were measured at a sphere-to-spectrometer distance of 2 meters using a 54 Ci spherical Am-Be neutron source. Reactor leakage spectrum measurements were made at the surface of the ZP-1 reactor when bare, with a Pb radial reflector 21 cm thick, and with a metallic Mo radial reflector 10 cm thick. In the case of the thin Mo sphere there is agreement between the calculation and measurement. The Pb calculation is much lower than the measurement except at the highest neutron energy. Two-dimensional calculations of reactor spectra result indicate that the reactor source is reasonably well known. Significant differences in leakage spectrum shape for both Mo and Pb reflectors suggest that there are large uncertainties in the inelastic cross sections for Pb and some for Mo.

  8. Total cross section for photon absorption by two protons in [sup 3]He

    SciTech Connect

    Emura, T.; Endo, S.; Huber, G.M.; Itoh, H.; Kato, S.; Koike, M.; Konno, O.; Lasiuk, B.; Lolos, G.J.; Maeda, K.; Maki, T.; Maruyama, K.; Miyamoto, H.; Naridomi, R.; Niki, K.; Ogata, T.; Rangacharyulu, C.; Sasaki, A.; Suda, T.; Sumi, Y.; Wada, Y.; Yamazaki, H. Department of Physics, Hiroshima University, Higashi-Hiroshima 724 Department of Physics, University of Regina, Regina, SK, S4S0A2 Department of Physics, Saga University, Saga 840 Institute for Nuclear Study, University of Tokyo, Tanashi, Tokyo 188 Laboratory of Nuclear Science, Tohoku University, Sendai 982 Department of Physics, University of Saskatchewan, Saskatoon, SK, S7N0W0 Department of Physics, Tohoku University, Sendai 980 University of Occupational and Environmental Health, Kitakyushi 807 College of General Education, Akita University, Akita, 010

    1994-07-18

    The [sup 3]He([gamma],[ital pp])[ital n] reaction was investigated in the photon energy range 200--500 MeV using the spectrometer TAGX, which has a solid angle for protons of [pi] sr. Two types of photon absorption, one by two protons and the other by three nucleons, were observed by looking at the undetected neutron momentum distributions. The total cross section for photon absorption by two protons shows that this process is consistent with the [ital E]2 transition.

  9. Measurements of the absorption cross section of (13)CHO(13)CHO at visible wavelengths and application to DOAS retrievals.

    PubMed

    Goss, Natasha R; Waxman, Eleanor M; Coburn, Sean C; Koenig, Theodore K; Thalman, Ryan; Dommen, Josef; Hannigan, James W; Tyndall, Geoffrey S; Volkamer, Rainer

    2015-05-14

    The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν < 0.5 cm(-1); Δλ < 0.01 nm). These shifts are used to investigate the selective detection of (12)C glyoxal (natural isotope abundance) and (13)C glyoxal by in situ cavity enhanced differential optical absorption spectroscopy (CE-DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information. PMID:25551419

  10. Near-UV absorption cross sections and trans/cis equilibrium of nitrous acid

    SciTech Connect

    Bongartz, A.; Kames, J.; Welter, F.; Schurath, U. )

    1991-02-07

    The A {sup 1}A{double prime} {l arrow} X {sup 1}A{prime} absorption spectrum of gaseous nitrous acid has been measured in the 300-400-nm range. Absolute cross sections were determined by a combination of gas-phase and wet chemical analysis. The cross sections of prominent bands are 25% larger than the recommended values of Stockwell and Calvert. The influence of spectral resolution on absolute and differential absorption cross sections was also investigated. The integrated band area of the n{pi}* transition yields an oscillator strength f = (8.90 {plus minus} 0.36) {times} 10{sup {minus}4}, less than the reported liquid phase value of 2 {times} 10{sup {minus}3}. The equilibrium constant K = p{sub trans}/p{sub cis}, based on the assumption that the oscillator strength of the n{pi}* transition is the same for both rotamers, was found to be 3.25 {plus minus} 0.30 at 277 K. This yields an energy difference {Delta}E between trans- and cis-HONO of -2,700 J mol{sup {minus}1} in the electronic ground state, and -6,000 J mol{sup {minus}1} in the excited state.

  11. Visible-ultraviolet absorption cross sections for NO2 as a function of temperature

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Cantrell, C. A.; Mcdaniel, A. H.; Shetter, R. E.; Madronich, S.

    1988-01-01

    A redetermination of the temperature dependence of the absorption cross-section (sigma) of NO2 in the visible-ultraviolet region was made in order to provide a more reliable data base for the calculation of NO2 photolysis rates in the atmosphere. Experiments over a wide range of temperatures and NO2 concentrations were conducted. The integral of a plot of sigma versus the inverse of the wavelength was essentially independent of temperature. Increasing temperature produced a shift of the spectrum toward longer wavelengths, resulting in a small negative temperature dependence of sigma over the 264-400 nm range and a small positive dependence over the 450-649 nm range. Increasing temperature produced broadening of individual spectral features, resulting in a systematic lowering of peaks and filling of valleys. Recommended cross sections are presented for use in tropospheric NO2 photolysis rate calculations.

  12. Measurement of (23)Na(n,2n) cross section in well-defined reactor spectra.

    PubMed

    Košťál, Michal; Švadlenková, Marie; Baroň, Petr; Milčák, Ján; Mareček, Martin; Uhlíř, Jan

    2016-05-01

    The present paper aims to compare the calculated and experimental reaction rates of (23)Na(n,2n)(22)Na in a well-defined reactor spectra of a special core assembled in the LR-0 reactor. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination. The resulting value averaged in spectra is 0.91±0.02µb. This cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010 and CENDL-3.1 nuclear data libraries. Generally the best C/E agreement, within 2%, was found using the ROSFOND-2010 data set, whereas the worst, as high as 40%, was found using the ENDF/B-VII.0. PMID:26894323

  13. Ultraviolet absorption cross sections of Cl sub 2 O sub 2 between 210 and 410 nm

    SciTech Connect

    Burkholder, J.B.; Orlando, J.J.; Howard, C.J. Univ. of Colorado, Boulder )

    1990-01-25

    The ultraviolet and infrared absorption cross sections of Cl{sub 2}O{sub 2} have been measured. The transient Cl{sub 2}O{sub 2} molecule was produced by using the gas-phase reaction ClO + ClO + M {yields} Cl{sub 2}O{sub 2} + M. Three independent ClO radical source reactions were used in this study: Cl + O{sub 3}, Cl + Cl{sub 2}O, and Cl + OClO. The Cl{sub 2}O{sub 2} UV absorption spectrum was recorded over the range 200-450 nm with a diode array spectrometer over the temperature range 205-250 K. The Cl{sub 2}O{sub 2} infrared absorption spectrum was recorded with a high-resolution Fourier transform spectrometer over the range 500-2,000 cm{sup {minus}1}. Both spectrometers were optically coupled to a fast flow multipass absorption cell. The UV absorption spectrum of Cl{sub 2}O{sub 2} is a structureless continuum with a peak at 245 nm. The measurable absorption extends out to 410 nm. The UV absorption cross section at the peak of the spectrum, 245 nm, was measured to be (6.5{sub {minus}0.5}{sup +0.8}) {times} 10{sup {minus}18} cm{sup 2}. Infrared absorption features centered at 560, 653, and 750 cm{sup {minus}1} have been assigned to the Cl{sub 2}O{sub 2} molecule. The present results are compared with other reported UV and IR measurements and the sources of discrepancies are discussed. The role of Cl{sub 2}O{sub 2} in atmospheric chemistry and in particular the Antarctic ozone hole are discussed.

  14. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  15. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  16. Absorption cross section for the 5νOH stretch of acetic acid and peracetic acid

    NASA Astrophysics Data System (ADS)

    Begashaw, I. G.; Collingwood, M.; Bililign, S.

    2009-12-01

    We report measurements of the absorption cross sections for the vibrational O-H stretch (5νOH) overtone transitions in glacial acetic acid and peracetic acid. The photochemistry that results from overtone excitation has been shown to lead to OH radical production in molecules containing O-H (HNO3, H2O2). In addition the overtone excitation has been observed to result in light initiated chemical reaction. A Cavity ring-down spectroscopy (CRDS) instrument comprising of an Nd:YAG pumped dye laser and 620nm high reflectivity mirrors (R=99.995%) was used to measure the cross sections. The dye laser wavelength was calibrated using water vapor spectrum and the HITRAN 2008 database. The instrument’s minimum detectable absorption is αmin =4.5 *10-9cm-1 Hz-1/2 at 2σ noise level near the peak of the absorption feature. This measurement is the first for acetic acid at this excitation level. Preliminary results for acetic acid show the peak occurs near 615nm. Procedures for separating the monomer and dimer contribution will be presented. We would like to acknowledge support from NSF award #0803016 and NOAA-EPP award #NA06OAR4810187.

  17. Heavy-ion total and absorption cross sections above 25 MeV/nucleon

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1983-01-01

    Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of heavy ion total and absorption cross sections at incident kinetic energies above 25 MeV/nucleon for use in cosmic ray high-energy heavy ion transport and shielding studies. Comparisons of predictions with nucleus-nucleus experimental data show excellent agreement except at the lowest energies, where the eikonal approximation may not be completely valid. Even at the lowest energies, however, agreement is typically within 20 percent.

  18. Accurate measurements of ozone absorption cross-sections in the Hartley band

    NASA Astrophysics Data System (ADS)

    Viallon, J.; Lee, S.; Moussay, P.; Tworek, K.; Petersen, M.; Wielgosz, R. I.

    2015-03-01

    Ozone plays a crucial role in tropospheric chemistry, is the third largest contributor to greenhouse radiative forcing after carbon dioxide and methane and also a toxic air pollutant affecting human health and agriculture. Long-term measurements of tropospheric ozone have been performed globally for more than 30 years with UV photometers, all relying on the absorption of ozone at the 253.65 nm line of mercury. We have re-determined this cross-section and report a value of 11.27 x 10-18 cm2 molecule-1 with an expanded relative uncertainty of 0.86% (coverage factor k= 2). This is lower than the conventional value currently in use and measured by Hearn (1961) with a relative difference of 1.8%, with the consequence that historically reported ozone concentrations should be increased by 1.8%. In order to perform the new measurements of cross-sections with reduced uncertainties, a system was set up to generate pure ozone in the gas phase together with an optical system based on a UV laser with lines in the Hartley band, including accurate path length measurement of the absorption cell and a careful evaluation of possible impurities in the ozone sample by mass spectrometry and Fourier transform infrared spectroscopy. This resulted in new measurements of absolute values of ozone absorption cross-sections of 9.48 x 10-18, 10.44 x 10-18 and 11.07 x 10-18 cm2 molecule-1, with relative expanded uncertainties better than 0.7%, for the wavelengths (in vacuum) of 244.06, 248.32, and 257.34 nm respectively. The cross-section at the 253.65 nm line of mercury was determined by comparisons using a Standard Reference Photometer equipped with a mercury lamp as the light source. The newly reported value should be used in the future to obtain the most accurate measurements of ozone concentration, which are in closer agreement with non-UV-photometry based methods such as the gas phase titration of ozone with nitrogen monoxide.

  19. Ultraviolet Raman spectra and cross-sections of the G-series nerve agents.

    PubMed

    Christesen, Steven D; Pendell Jones, Jay; Lochner, Joseph M; Hyre, Aaron M

    2008-10-01

    Ultraviolet (UV) Raman spectroscopy is being applied to the detection of chemical agent contamination of natural and man-made surfaces. In support of these efforts, we have measured the UV Raman signatures of the G-series nerve agents GA (tabun), GB (sarin), GD (soman), GF (cyclosarin), and the agent simulant diisopropyl methylphosphonate (DIMP) at 248 nm and 262 nm, as well as taking their UV Raman and UV absorption cross-sections. Of these chemicals, only GA exhibits any significant pre-resonance enhancement. We also show that reduction of the excitation wavelength from 262 nm to 248 nm effectively shifts the Raman spectrum away from a substantial sample fluorescence background, implying a significant improvement in detection capability. PMID:18926015

  20. Vibrational spectra of light and heavy water with application to neutron cross section calculations

    SciTech Connect

    Damian, J. I. Marquez; Granada, J. R.; Malaspina, D. C.

    2013-07-14

    The design of nuclear reactors and neutron moderators require a good representation of the interaction of low energy (E < 1 eV) neutrons with hydrogen and deuterium containing materials. These models are based on the dynamics of the material, represented by its vibrational spectrum. In this paper, we show calculations of the frequency spectrum for light and heavy water at room temperature using two flexible point charge potentials: SPC-MPG and TIP4P/2005f. The results are compared with experimental measurements, with emphasis on inelastic neutron scattering data. Finally, the resulting spectra are applied to calculation of neutron scattering cross sections for these materials, which were found to be a significant improvement over library data.

  1. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  2. Dicyanostilbene-derived two-photon fluorescence dyes with large two-photon absorption cross sections

    NASA Astrophysics Data System (ADS)

    Huang, Chibao; Lin, Changhua; Ren, Anxiang; Yang, Nianfa

    2011-12-01

    Four dicyanostilbene-derived two-photon fluorescence (TPF) dyes were synthesized as the model compounds to systematically study the effect of the dicyano and the terminal substituent on the two-photon absorption (TPA). These four compounds ( DSO, DCY, DTO and DPH) exhibit very large two-photon absorption cross sections ( δ). DCY (A- π-A) with the terminal cyano group has especially high fluorescence quantum yield (0.71) and relatively large δ (1480 GM), while DPH (D- π-A) with the substitutedamino group at its terminus possesses the largest δ (2800 GM) and the longest emission wavelength (620 nm). The idealest terminal substituent should not be the alkoxy group but the substitutedamino group. This class of dicyanostilbene dyes possess small molecule size, large δ (830-2800 GM), long-wavelength emission (459-620 nm) and large Stokes shift (80-206 nm), and are ideal chromophores for TPF labels and probes.

  3. Mega three-photon absorption cross-section enhancement in pseudoisocyanine J-aggregates.

    PubMed

    Cohanoschi, Ion; Barbot, Amel; Belfield, Kevin D; Yao, Sheng; Hernandez, Florencio E

    2005-12-15

    Herein we report an extraordinary three-photon absorption cross-section (sigma'3) enhancement in J-aggregates supramolecular systems. The much higher value of sigma'3 in PIC J-aggregate (2.5 x 10(-71) cm6 s2 ph(-2)) compared to typical values obtained in organic molecules (10(-80) cm6 s2 ph(-2)) is attributed to the strong molecular transition dipole moment coupling in the supramolecular assembly. Three-photon absorption of PIC J-aggregates and monomer aqueous solutions were measured using the well known open aperture Z-scan technique pumping with a 25 ps pulse laser-OPG system at 1720 nm. This novel result opens new expectations for applications of supramolecular systems in bioimaging and medicine. PMID:16392906

  4. Absorption cross section measurements of oxygen in the wavelength region 195-241 nm of the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Cheung, A. S.-C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E.; Guberman, S. L.

    1986-01-01

    The continuous absorption cross section of oxygen in the region 205-241 nm is studied as a function of path length and oxygen pressure. The technique used to study the continuous absorption cross section is described. Cross section measurements of oxygen in the wavelength region 193-205 nm obtained by Cheung et al. (1984) are applied in this experiment. The measured cross section is analyzed in terms of a Herzberg continuum and a pressure-dependent continuum. The total measured continuum cross section, the cross section involving two molecules of O2, and the Herzberg continuum absorption cross section values are calculated. It is observed that the Herzberg continuum cross section of oxygen values measured at 1 nm intervals in the region 195-241 nm, increase from 6.3 x 10 to the -24th sq cm at 195 nm to a maximum of 6.6 x 10 to the -24th sq cm at 201 nm and then decrease to 0.85 x 10 to the -24th sq cm at 241 nm. The Herzberg values are compared with data from previous investigations and the values correlate well.

  5. UV absorption cross sections between 290 and 380 nm of a series of furanaldehydes: Estimation of their photolysis lifetimes

    NASA Astrophysics Data System (ADS)

    Colmenar, Inmaculada; González, Sergio; Jiménez, Elena; Martín, Pilar; Salgado, Sagrario; Cabañas, Beatriz; Albaladejo, José

    2015-02-01

    Furanaldehydes, such as 2-furanaldehyde (also known as furfural), 3-furanaldehyde and 5-methyl-2-furanaldehyde, are aromatic aldehydes which can be present in the atmosphere as primary and secondary pollutants. The atmospheric removal initiated by sunlight for these species is not well-known in the solar actinic region (at λ > 290 nm), mainly due to the absence of data concerning the UV absorption cross sections (σλ) and photolysis frequencies (Ji(z,θ)). In this work σλ for the mentioned furanaldehydes have been determined between 290 and 380 nm at room temperature for the first time. Experiments were performed in an absorption jacketed Pyrex cell, employing a deuterium lamp as irradiation source and a CCD detector. The obtained absorption spectra exhibit absorption maxima around 320 nm with absolute absorption cross sections of 1.13, 0.75 and 1.14 × 10-19 cm2 molecule-1 for 2-furanaldehyde, 3-furanaldehyde and 5-methyl-2-furanaldehyde, respectively. The reported UV absorption cross sections were used to provide estimates of Ji(z,θ) and, therefore, estimates of the lifetime (τhν) due to this atmospheric removal process, under different solar radiation situations. Estimated τhν have been compared with the lifetimes due to the homogeneous reaction with the main diurnal tropospheric oxidants. The results obtained suggest that photolysis in the actinic region can be the main degradation pathway for these furanaldehydes when assuming a quantum yield (Φλ) of unity and the maximum solar actinic flux, while photolysis can compete with the reaction of OH radicals when assuming Φλ = 0.1. On the contrary, the removal of all three furanaldehydes by the reactions with OH radicals becomes more important than the UV photolysis under low solar actinic flux conditions independently of Φλ. If the emission source of these furanaldehydes also occurs during the nighttime NO3 radicals will dominate the elimination process of these species.

  6. Two-photon absorption cross section measurement in the gamma band system of nitric oxide

    SciTech Connect

    Burris, J.F. Jr.

    1982-01-01

    A dye laser with a single longitudinal mode and very stable spatial mode structure has been constructed. With this laser system a four-wave mixing experiment was done in the gamma bands of nitric oxide using two photon resonance. Another four-wave mixing experiment was done in nitrogen using coherent anti-Stokes Raman scattering (CARS) and the two signals ratioed. Using accurately known values of the Raman scattering cross section, the third order susceptibility in NO was determined without needing to know the spatial and temporal properties of the dye lasers. From this susceptibility, the two photon absorption cross section was calculated with the explicit dependence of sigma/sup (2)/ upon X/sup (3)/ shown. For the R/sub 22/ + S/sub 12/(J'' = 9 1/2) (A/sup 2/..sigma..+(v' = 0) -- X/sup 2/..pi..(v'' = 0)) line, sigma/sup (2)/ = (1.0 +/- 0.6) x 10/sup -38/cm/sup 4/g(2/sub 1/-Vertical Barsub f/ is the normalized lineshape. Branching ratios for the A/sup 2/..sigma..+(v' = n) ..-->.. X/sup 2/..omega..(v'' = n)(n = o,...9) transitions of NO were also measured, Franck-Condon factors calculated and the lifetime of the A state determined.

  7. SO_2 Absorption Cross Sections and N_2 VUV Oscillator Strengths for Planetary Atmosphere Studies

    NASA Astrophysics Data System (ADS)

    Smith, Peter L.; Stark, G.; Rufus, J.; Pickering, J. C.; Cox, G.; Huber, K. P.

    1998-09-01

    The determination of the chemical composition of the atmosphere of Io from Hubble Space Telescope observations in the 190-220 nm wavelength region requires knowledge of the photoabsorption cross sections of SO_2 at temperatures ranging from about 110 K to 300 K. We are engaged in a laboratory program to measure SO_2 absorption cross sections with very high resolving power (lambda /delta lambda =~ 450,000) and at a range of temperatures appropriate to the Io atmosphere. Previous photoabsorption measurements, with lambda /delta lambda =~ 100,000, have been unable to resolve the very congested SO_2 spectrum, and, thus, to elucidate the temperature dependence of the cross sections. Our measurements are being performed at Imperial College, London, using an ultraviolet Fourier transform spectrometer. We will present our recently completed room temperature measurements of SO_2 cross sections in the 190-220 nm region and plans for extending these to ~ 195 K. Analyses of Voyager VUV occultation measurements of the N_2-rich atmospheres of Titan and Triton have been hampered by the lack of fundamental spectroscopic data for N_2, in particular, by the lack of reliable f-values and line widths for electronic bands of N_2 in the 80-100 nm wavelength region. We are continuing our program of measurements of band oscillator strengths for the many (approximately 100) N_2 bands between 80 and 100 nm. We report new f-values, derived from data obtained at the Photon Factory (Tsukuba, Japan) synchrotron radiation facility with lambda /delta lambda =~ 130,000, of 37 bands in the 80-86 nm region and 21 bands in the 90-95 nm region. We have also begun the compilation of a searchable archive of N_2 data on the World Wide Web; see http://cfa-www.harvard. edu/amp/data/n2/n2home.html. The archive, covering the spectroscopy of N_2 between 80 and 100 nm, will include published and unpublished (14) N_2, (14) N(15) N, and (15) N_2 line lists and spectroscopic identifications, excited state energy

  8. Biexciton cascade emission reveals absolute absorption cross section of single semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ihara, Toshiyuki

    2016-06-01

    The sequential two-photon emission process known as biexciton cascade emission is a characteristic phenomenon that occurs in photoexcited semiconductor nanocrystals (NCs). This process occurs when a biexciton state is created in the NCs; thus, the occurrence of the process is related to the photoabsorption properties of the NCs. This paper presents a simple equation that connects the photoabsorption of single NCs and the biexciton cascade emission. The equation is found to be independent of the quantum yields of photoluminescence (PL). With this equation and using an analysis of second-order photon correlation, the absolute absorption cross section σ of the single NCs can be evaluated, obtaining values on the order of 10-14c m2 . This analysis shows that ionization during PL blinking does not affect the validity of the relation, indicating that the evaluation of σ , based on the equation, is applicable for various NCs with unique structures.

  9. Absorption and scattering cross-section extinction values of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu

    2016-08-01

    We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (<50 nm) the extinction grows as the cube of the diameter for all three wavelengths. For larger particles the extinction determined from absorbance exhibits a sixth order dependence on the diameters for 532 nm and 671 nm. This kind of behavior is typical of scattering processes that should dominate for large particles. For 405 nm the plasmonic resonant absorption dominates over scattering making difficult the observation of the sixth order dependence even for particles larger than 50 nm. The absorption cross-section measured by the photothermal method does not show the sixth order dependence. It depends on the cube of the particle's diameter for all nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.

  10. Absorption and scattering cross-section extinction values of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu

    2016-08-01

    We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (<50 nm) the extinction grows as the cube of the diameter for all three wavelengths. For larger particles the extinction determined from absorbance exhibits a sixth order dependence on the diameters for 532 nm and 671  nm. This kind of behavior is typical of scattering processes that should dominate for large particles. For 405 nm the plasmonic resonant absorption dominates over scattering making difficult the observation of the sixth order dependence even for particles larger than 50 nm. The absorption cross-section measured by the photothermal method does not show the sixth order dependence. It depends on the cube of the particle's diameter for all nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.

  11. Neutron capture cross section and capture gamma-ray spectra of 89Y

    NASA Astrophysics Data System (ADS)

    Katabuchi, Tatsuya; Okamiya, Tohomohiro; Yanagida, Shotaro; Mizumoto, Motoharu; Terada, Kazushi; Kimura, Atsushi; Iwamoto, Nobuyuki; Igashira, Masayuki

    2016-06-01

    The neutron capture cross section of 89Y was measured by the time-of-flight method in an energy range from 15 to 100 keV. A pulse-height weighting technique was applied to derive the capture yield. The absolute cross section was determined based on the standard reaciotn 197 Au(n, γ)198 Au reaction. The neutron capture γ-ray spectrum was derived by unfolding the pulse-height spectrum with detector response functions.

  12. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  13. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-01

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile. PMID:23928555

  14. Transport analysis of measured neutron leakage spectra from spheres as tests of evaluated high energy cross sections

    NASA Technical Reports Server (NTRS)

    Bogart, D. D.; Shook, D. F.; Fieno, D.

    1973-01-01

    Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.

  15. UV Absorption Cross Sections of Nitrous Oxide (N2O) and Carbon Tetrachloride (CCl4) Between 210 and 350 K and the Atmospheric Implications

    NASA Technical Reports Server (NTRS)

    Carlon, Nabilah Rontu; Papanastasiou, Dimitrios K.; Fleming, Eric L.; Jackman, Charles H.; Newman, Paul A.; Burkholder, James B.

    2010-01-01

    Absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) are reported at five atomic UV lines (184.95, 202.548, 206.200, 213.857, and 228.8 nm) at 27 temperatures in the range 210-350 K. In addition, UV absorption spectra of CCl4 are reported between 200-235 nm as a function of temperature (225-350 K). The results from this work are critically compared with results from earlier studies. For N2O, the present results are in good agreement with the current JPL recommendation enabling a reduction in the estimated uncertainty in the N2O atmospheric photolysis rate. For CCl4, the present cross section results are systematically greater than the current recommendation at the reduced temperatures most relevant to stratospheric photolysis. The new cross sections result in a 5-7% increase in the modeled CCl4 photolysis loss, and a slight decrease in the stratospheric lifetime, from 51 to 50 years, for present day conditions. The corresponding changes in modeled inorganic chlorine and ozone in the stratosphere are quite small. A CCl4 cross section parameterization for use in 37 atmospheric model calculations is presented.

  16. Measurements of the Absorption and Scattering Cross Sections for the Interaction of Solar Acoustic Waves with Sunspots

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Chou, Dean-Yi

    2016-05-01

    The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0–5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n. The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n, while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n. This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.

  17. Cyanine dyes with high absorption cross section as donor chromophores in energy transfer primers

    SciTech Connect

    Hung, Su-Chung; Ju, Jingyue; Mathies, R.A.; Glazer, A.N.

    1996-12-01

    Energy transfer (ET) fluorescent primers are significantly superior to single dye-labeled primers for DNA sequencing and multiplex genetic analyses. We describe here ET primers in which a donor chromophore with a large absorption cross section but a low fluorescence quantum yield is exploited to increase the Stokes-shifted fluorescence emission of acceptor dyes. The new ET primers have 3-({var_epsilon}-carboxy-pentyl)-3{prime}-ethyl-5,5{prime}-dimethyloxacarbocyanine (CYA; {var_epsilon}{sub M}{sup 488 nm} 142,000 M{sup -1} cm{sup -1}) at the 5{prime}-end as a common energy donor, and fluorescein or rhodamine derivatives (FAM, R6G, TAMRA, and ROX), attached to a modified thymidine 10 bases away within the primer sequence, as acceptors. With 488-nm excitation, the fluorescence emission intensity of these four ET primers is 1.4- to 24-fold stronger than that of the corresponding primers labeled only with the single acceptor dye. When compared with the corresponding ET primers with a fluorescein derivative (FAM; {var_epsilon}{sub M}{sup 488 nm} 60,000 M{sup -1} cm{sup -1}) as donor, the fluorescence emissions of primers with CYA as donor and FAM, R6G, TAMRA, and ROX as acceptors are respectively 0.8-, 1.0-, 1.7-, and 1.7-fold as intense. The low fluorescence quantum yield of the CYA donor resulted in distinct fluorescence signals for the DNA-sequencing fragments with much lower crosstalk between the four detection channels than that seen with ET primers based on a FAM donor. With single-stranded M13mp18 DNA as the template, the CYA ET primers provided DNA sequences on a four-color capillary sequencer with 100% accuracy in the first 500 bases. 15 refs., 7 figs., 1 tab.

  18. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  19. Improved absorption cross-sections of oxygen in the wavelength region 205-240 nm of the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Cheung, A. S.-C.; Esmond, J. R.; Parkinson, W. H.; Freeman, D. E.

    1988-01-01

    The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986) and Jenouvrier et al. (1986) are compared and analyzed. It is found that there is no discrepancy between the absolute values of these two sets of independent measurements. The values are combined in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205-240 nm. The results are compared with in situ and other laboratory measurements.

  20. QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION

    SciTech Connect

    Meiring, J. D.; Tripp, T. M.; Werk, J. K.; Prochaska, J. X.; Howk, J. C.; Jenkins, E. B.; Lehner, N.; Sembach, K. R.

    2013-04-10

    Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.

  1. Measuring the Optical Absorption Cross-sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging

    PubMed Central

    Cho, Eun Chul; Kim, Chulhong; Zhou, Fei; Cobley, Claire M.; Song, Kwang Hyun; Chen, Jingyi; Li, Zhi-Yuhan; Wang, Lihong V.; Xia, Younan

    2009-01-01

    This paper presents a method for measuring the optical absorption cross-sections (σa) of Au-Ag nanocages and Au nanorods. The method is based on photoacoustic (PA) imaging, where the detected signal is directly proportional to the absorption coefficient (μa) of the nanostructure. For each type of nanostructure, we firstly obtained μa from the PA signal by benchmarking against a linear calibration curve (PA signal vs. μa) derived from a set of methylene blue solutions with different concentrations. We then calculated σa by dividing the μa by the corresponding concentration of the Au nanostructure. Additonally, we obtained the extinction cross-section (σe, sum of absorption and scattering) from the extinction spectrum recorded using a conventional UV-vis-NIR spectrometer. From the measurements of σa and σe, we were able to easily derive both the absorption and scattering cross-sections for each type of gold nanostructure. The ratios of absorption to extinction obtained from experimental and theoretical approaches agreed well, demonstrating the potential use of this method in determining the optical absorption and scattering properties of gold nanostructures and other types of nanomaterials. PMID:19680423

  2. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  3. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  4. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  5. First-principles calculation of multiphoton absorption cross section of α-quartz under femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Dong; Jiang, Lan; Wang, Feng; Qu, Liangti; Lu, Yongfeng

    2016-05-01

    Time-dependent density functional theory-based first-principles calculations have been used to study the ionization process and electron excitation. The results show that the number of excited electrons follows the power law σ k I k at peak intensities of I < 5 × 1013 W/cm2, indicating that the multiphoton ionization plays a key role. The multiphoton absorption cross section of α-quartz σ k is further calculated to be 3.54 × 1011 cm-3 ps-1 (cm2/TW)6. Using the plasma model, the theoretical results of the damage threshold fluences are consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. By employing the calculated cross section value in the plasma model, the damage threshold fluences are theoretically estimated, being consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. The preliminary multiscale model shows great potential in the simulation of laser processing.

  6. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    NASA Astrophysics Data System (ADS)

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-01

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.

  7. Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra

    SciTech Connect

    Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick

    2013-09-07

    A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H{sub 2}, H{sub 2}O, NH{sub 3}, HF, CO, and CO{sub 2}.

  8. High-temperature measurements of VUV-absorption cross sections of CO2 and their application to exoplanets

    NASA Astrophysics Data System (ADS)

    Venot, O.; Fray, N.; Bénilan, Y.; Gazeau, M.-C.; Hébrard, E.; Larcher, G.; Schwell, M.; Dobrijevic, M.; Selsis, F.

    2013-03-01

    Context. Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Aims: Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We also investigate the influence of these new data on the photochemistry of some exoplanets. Methods: We performed these measurements with synchrotron radiation as a tunable VUV light source for the 115-200 nm range at 300, 410, 480, and 550 K. In the 195-230 nm range, we used a deuterium lamp and a 1.5 m Jobin-Yvon spectrometer and we worked at seven temperatures between 465 and 800 K. We implemented the measured cross section into a 1D photochemical model. Results: For λ > 170 nm, the wavelength dependence of ln(σCO2(λ,T) × 1/(Qv(T))) can be parametrized with a linear law. Thus, we can interpolate σCO2(λ,T) at any temperature between 300 and 800 K. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. Conclusions: The absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot

  9. Quantitative Decoupling of Excited-State Absorption Cross Section and Population via Pump-Probe Spectroscopy with a Strong Probe

    NASA Astrophysics Data System (ADS)

    Barker, Alex J.; Hodgkiss, Justin M.

    2015-08-01

    Photoinduced absorption signals measured by transient absorption spectroscopy are typically proportional to the product of absorption cross section (σ ) and excited-state density (N ). We show that this approximation does not hold at high probe-pulse intensities, and introduce the use of probe-intensity-dependent spectroscopy to decouple the two parameters. The singlet excited-state (S1→S2) absorption cross section of the conjugated polymer F8BT is measured to be 1.6 ×10-16 cm2±40 % at 800 nm and 3.7×10 -16 cm2±30 % at 900 nm, with no variation over the time window surveyed. The robustness of these parameters is established by observing that only N scales with excitation fluence and time delay, and conversely only σ is dependent on probe wavelength. The technique may be useful for quantifying salient parameters in many systems, such as branching yields in systems exhibiting singlet fission or triplet production, or cross sections required for photophysical models.

  10. Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements

    DOE PAGESBeta

    Brauer, C. S.; Blake, T. A.; Guenther, A. B.; Sams, R. L.; Johnson, T. J.

    2014-04-25

    Isoprene (C5H8, 2-methyl-1,3-butadiene) is a volatile organic compound (VOC) that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm−1 region. The pressure-broadened (1 atmosphere N2) spectra were recorded at 278, 298 and 323 K in amore » 19.94 cm path length cell at 0.112 cm−1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.« less

  11. High resolution absorption cross sections for the A2Pi-X2Pi system of ClO

    NASA Technical Reports Server (NTRS)

    Wine, P. H.; Ravishankara, A. R.; Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    High-resolution ultraviolet absorption cross-sections for the ClO molecule are obtained, with the aim of facilitating studies of ozone depletion resulting from the injection of chlorofluorocarbons into the atmosphere. The spectroscopic analysis, which involves a frequency-doubled tunable dye laser with a bandwidth of 0.015 A, is described. Studies of the rotational lines of the ClO A 2Pi 3/2-X2Pi 3/2 9-10 band were conducted. Peak cross-sections for the P and R lines of the 9-0 band are found to be 10.0, 9.6, 8.6, 10.6, 10.3, and 9.2 times ten to the negative seventeenth power cm squared, with estimated accuracy of plus or minus 25%. Problems in distinguishing between Cl-35 and Cl-37 absorption are also considered.

  12. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  13. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  14. High resolution absolute absorption cross sections of the B ̃(1)A'-X ̃(1)A' transition of the CH2OO biradical.

    PubMed

    Foreman, Elizabeth S; Kapnas, Kara M; Jou, YiTien; Kalinowski, Jarosław; Feng, David; Gerber, R Benny; Murray, Craig

    2015-12-28

    Carbonyl oxides, or Criegee intermediates, are formed from the gas phase ozonolysis of alkenes and play a pivotal role in night-time and urban area atmospheric chemistry. Significant discrepancies exist among measurements of the strong B ̃(1)A'-X ̃(1)A' electronic transition of the simplest Criegee intermediate, CH2OO in the visible/near-UV. We report room temperature spectra of the B ̃(1)A'-X ̃(1)A' electronic absorption band of CH2OO acquired at higher resolution using both single-pass broadband absorption and cavity ring-down spectroscopy. The new absorption spectra confirm the vibrational structure on the red edge of the band that is absent from ionization depletion measurements. The absolute absorption cross sections over the 362-470 nm range are in good agreement with those reported by Ting et al. Broadband absorption spectra recorded over the temperature range of 276-357 K were identical within their mutual uncertainties, confirming that the vibrational structure is not due to hot bands. PMID:26595457

  15. Review of ultraviolet absorption cross sections of a series of alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1990-01-01

    Solar photolysis is likely to contribute to the stratospheric destruction of those alternative fluorocarbons (HFC's) which have two or more chlorine atoms bonded to the same carbon atom. Two of the eight HFC's considered here fall into this category, namely HFC-123 and HFC141b. For these two species there is good agreement among the various measurements of the ultraviolet cross sections in the wavelength region which is important for atmospheric photodissociation, that is, around 200 nm. There is also good agreement for HFC-124, HFC-22 and HFC-142b. These are the three species which contain one chlorine atom per molecule. The agreement in the measurements is poor for the other species, i.e., those that do not contain chlorine, except in so far as to corroborate that solar photolysis should be negligible relative to destruction by hydroxyl radicals.

  16. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  17. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  18. Evaluation of the use of five laboratory determined ozone absorption cross sections in brewer and dobson retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Redondas, A.; Evans, R.; Stuebi, R.; Köhler, U.; Weber, M.

    2013-09-01

    The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson Spectrophotometers, in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process a TOC value is produced. Inherent in the algorithm is the use of a laboratory determined cross-section data set. We used five ozone cross section data sets: three Bass and Paur, Daumont, Malicet and Brion (DMB) and a new Institute of Environmental Physics (IUP), University of Bremen, set. The three Bass and Paur (1985) sets are: quadratic temperature coefficients from IGACO web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005), in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson are then calculated using the normal Brewer operative method which is essentially the same as used on Dobson. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments: we find the UIP data set changes the calculated TOC by -0.5%, the DBM data set changes the calculate TOC by -3.2%, and the IGQ4 data set at -45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. The application of a common Langley calibration and the IUP cross section the differences between Brewer and Dobson vanish whereas using Bass and Paur and DBM produce differences of 1.5% and 2% respectively. A

  19. Absorption enhancement by matching the cross-section of plasmonic nanowires to the field structure of tightly focused beams.

    PubMed

    Normatov, Alexander; Spektor, Boris; Leviatan, Yehuda; Shamir, Joseph

    2011-04-25

    Nanostructured materials, designed for enhanced light absorption, are receiving increased scientific and technological interest. In this paper we propose a physical criterion for designing the cross-sectional shape of plasmonic nanowires for improved absorption of a given tightly focused illumination. The idea is to design a shape which increases the matching between the nanowire plasmon resonance field and the incident field. As examples, we design nanowire shapes for two illumination cases: a tightly focused plane wave and a tightly focused beam containing a line singularity. We show that properly shaped and positioned silver nanowires that occupy a relatively small portion of the beam-waist area can absorb up to 65% of the total power of the incident beam. PMID:21643100

  20. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution

    SciTech Connect

    Moreno, J.; Dobryakov, A. L.; Hecht, S. E-mail: skovale@chemie.hu-berlin.de; Kovalenko, S. A. E-mail: skovale@chemie.hu-berlin.de; Ioffe, I. N.; Granovsky, A. A.

    2015-07-14

    1-photon (382 nm) and 2-photon (752 nm) excitations to the S{sub 1} state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S{sub 1} → S{sub n} due to resonant absorption of a third pump photon. Subsequent S{sub n} → S{sub 1} internal conversion (with τ{sub 1} = 1 ps) prepares a very hot S{sub 1} state which cools down with τ{sub 2} = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ{sup (2)} = 32 ⋅ 10{sup −50} cm{sup 4} s at 752 nm are evaluated from the bleach signal.

  1. Broadband transient absorption spectroscopy with 1- and 2-photon excitations: Relaxation paths and cross sections of a triphenylamine dye in solution

    NASA Astrophysics Data System (ADS)

    Moreno, J.; Dobryakov, A. L.; Ioffe, I. N.; Granovsky, A. A.; Hecht, S.; Kovalenko, S. A.

    2015-07-01

    1-photon (382 nm) and 2-photon (752 nm) excitations to the S1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S1 → Sn due to resonant absorption of a third pump photon. Subsequent Sn → S1 internal conversion (with τ1 = 1 ps) prepares a very hot S1 state which cools down with τ2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ(2) = 32 ṡ 10-50 cm4 s at 752 nm are evaluated from the bleach signal.

  2. Study of the nanosurface properties by analyzing its absorption and scattering cross-section

    NASA Astrophysics Data System (ADS)

    Bariakhtar, Irina

    The interest to study the nanoparticles absorbed on the dielectric or semiconductor substrate is caused by the multiple practical applications of these systems such as nanosensors, electronic devices and lately in PV elements for improving of their efficiency. The author suggests a method of examining the properties of the nanosurface with the absorbed nanoparticle by calculating the absorption and scattering of the electromagnetic field by such system based on construction of its effective electric susceptibility. It was built based on the Green's function approach. The computer simulations show good correspondence with the theory. It was shown that this approach can be applied to investigate the optical absorption and scattering on the nanoparticles on the substrate to be used in PV engineering.

  3. Absolute absorption cross sections of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Parkinson, W. H.; Freeman, D. E.

    1992-01-01

    An account is given of progress of work on absorption cross section measurements of ozone at 300 K, 228 K and 195 K in the wavelength region 185-240 nm. In this wavelength region, the penetration of solar radiation into the Earth's atmosphere is controlled by O2 and O3. The transmitted radiation is available to dissociate trace species such as halocarbons and nitrous oxide. We have recently measured absolute absorption cross sections of O3 in the wavelength region 240-350 nm (Freeman et al., 1985; Yoshino et al., 1988). We apply these proven techniques to the determination of the absorption cross section of O3 at 300 K, 228 K and 195 K throughout the wavelength region 185-240 nm. A paper titled 'Absolute Absorption Cross Section Measurements of Ozone in the Wavelength Region 185-254 nm and the Temperature Dependence' has been submitted for publication in the Journal of Geophysical Research.

  4. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  5. One-group fission cross sections for plutonium and minor actinides inserted in calculated neutron spectra of fast reactor cooled with lead-208 or lead-bismuth eutectic

    SciTech Connect

    Khorasanov, G. L.; Blokhin, A. I.

    2012-07-01

    The paper is dedicated to one-group fission cross sections of Pu and MA in LFRs spectra with the aim to increase these values by choosing a coolant which hardens neutron spectra. It is shown that replacement of coolant from Pb-Bi with Pb-208 in the fast reactor RBEC-M, designed in Russia, leads to increasing the core mean neutron energy. As concerns fuel Pu isotopes, their one-group fission cross sections become slightly changed, while more dramatically Am-241 one-group fission cross section is changed. Another situation occurs in the lateral blanket containing small quantities of minor actinides. It is shown that as a result of lateral blanket mean neutron energy hardening the one-group fission cross sections of Np-237, Am-241 and Am-243 increases up to 8-11%. This result allows reducing the time of minor actinides burning in FRs. (authors)

  6. Radiation and chemistry in the stratosphere - Sensitivity to O2 absorption cross sections in the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Froidevaux, L.; Yung, Y. L.

    1982-01-01

    It is suggested that the discrepancies between observed and modeled vertical profiles of such halocarbons as CFCl3, as well as the problem of simultaneously fitting N2O, CH4, CF2Cl2 and CFCl3 profiles with a single eddy diffusion model, are due to an overestimation of the molecular oxygen absorption cross sections in the 200-220 nm spectral region. The replacement of current O2 cross sections in this range with values that are in better agreement with results for the compounds cited leads to N2O, CF2Cl2 and CFCl3 concentration reductions of factors 0.70, 0.62 and 0.19, respectively. Profiles of CH4, H2 and CO remain unchanged, and the predicted concentration of HNO3 above 30 km is reduced by about 50% for yet another improved fit with observations. It is noted that the correction proposed produces a 30% ozone increase near the 20-25 km peak.

  7. Evaluation of the use of five laboratory-determined ozone absorption cross sections in Brewer and Dobson retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Redondas, A.; Evans, R.; Stuebi, R.; Köhler, U.; Weber, M.

    2014-02-01

    The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson spectrophotometers in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process, a TOC value is produced. Inherent to the algorithm is the use of a laboratory-determined cross-section data set. We used five ozone cross-section data sets: three data sets that are based on measurements of Bass and Paur; one derived from Daumont, Brion and Malicet (DBM); and a new set determined by Institute of Experimental Physics (IUP), University of Bremen. The three Bass and Paur (1985) sets are as follows: quadratic temperature coefficients from the IGACO (a glossary is provided in Appendix A) web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005) in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson instruments are then calculated using the normal Brewer operative method, which is essentially the same as that used for Dobson instruments. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments, we find the IUP data set changes the calculated TOC by -0.5%, the DBM data set changes the calculated TOC by -3.2%, and the IGQ4 data set at -45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used. We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. With the application of a common Langley

  8. Apparent PS II absorption cross-section and estimation of mean PAR in optically thin and dense suspensions of Chlorella.

    PubMed

    Klughammer, Christof; Schreiber, Ulrich

    2015-01-01

    Theoretical prediction of effective mean PAR in optically dense samples is complicated by various optical effects, including light scattering and reflections. Direct information on the mean rate of photon absorption by PS II is provided by the kinetics of the fluorescence rise induced upon onset of strong actinic illumination (O-I1 rise). A recently introduced kinetic multi-color PAM fluorometer was applied to study the relationship between initial slope and cell density in the relatively simple model system of suspensions of Chlorella. Use of a curve fitting routine was made which was originally developed for assessment of the wavelength-dependent absorption cross-section of PS II, σ II(λ), in dilute suspensions. The model underlying analysis of the O-I1 rise kinetics is outlined and data on the relationship between fitted values of σ II(λ) and PAR in dilute samples are presented. With increasing cell density, lowering of apparent cross-section, <σ>(λ), with respect to σ II(λ), relates to a decrease of effective mean PAR, (λ), relative to incident PAR(λ). When ML and AL are applied in the same direction, the decline of <σ>(λ)/σ II(λ) with increasing optical density is less steep than that of the theoretically predicted (λ)/PAR(λ). It approaches a value of 0.5 when the same colors of ML and AL are used, in agreement with theory. These observations open the way for estimating mean PAR in optically dense samples via measurements of <σ>(λ)/σ II(λ)). PMID:25218266

  9. Wavelengths, f-Values, and Cross Sections in the UV Spectra of Astrophysical Atoms, Ions, and Molecules

    NASA Technical Reports Server (NTRS)

    Crane, Phil (Technical Monitor); Raymond, John C.; Parkinson, W. H.

    2004-01-01

    Contents include the following: Improved UV wavelengths, energy levels, and f-values for iron group ions. Update of Kurucz database of wavelengths and f-values. Publication of improved UV photodissociation cross sections for H2O. UV photoabsorption cross sections for CO bands. Service Activities and Data Outreach.

  10. Estimation of the Mass Absorption Cross Section of the Organic Carbon Component of Aerosols in the Mexico City Metropolitan Area

    SciTech Connect

    Barnard, James C.; Volkamer, Rainer M.; Kassianov, Evgueni I.

    2008-11-19

    Data taken from the MCMA-2003 and the 2006 MILAGRO field campaigns are used to examine the absorption of solar radiation by the organic component of aerosols. Using irradiance data from an Multi-Filter Rotating Shadowband Radiometer (MFRSR) and an actinic flux spectroradiometer, we find aerosol single scattering albedo, ω-0,λ, as a function of wavelength, λ. We find that in near-UV spectral range (defined here as 250 nm to 400 nm) ω-0,λ is much lower compared to ω-0,λ at 500 nm suggesting enhanced absorption in the near-UV range. Absorption by elemental carbon, dust, or gas cannot account for this enhanced absorption leaving only the organic part of the aerosol to account for it. We use data from a surface deployed Aerodyne Aerosol Mass Spectrometer (AMS) along with the inferred ω-0,λ to estimate the Mass Absorption Cross-section (MAC) for the organic carbon. We find that the MAC is about 10.5 m2/g at 300 nm and falls close to zero at about 500 nm; values that are roughly consistent with other estimates of organic carbon MAC. These MAC values can be considered as “radiatively correct” because when used in radiative transfer calculations the calculated irradiances match the measured irradiances at the wavelengths considered here. The uncertainties of individual estimates are quite large, ±30% at 300 nm for the random error, and even larger for a worst-case estimate of the systematic error, ±80%. The error represents the unusual circumstance where no error cancellation is permitted, and is unlikely ever to be realized.

  11. Photonuclear absorption cross sections

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1989-01-01

    Neutron multiplicity in photonuclear reactions; invariance of classical electromagnetism; momentum transfer models in ion collisions; cosmic ray electromagnetic interactions; quadrupole excitations in nucleus-nucleus collisons and Y-89 interactions with relativistic nuclei; and the Weizsacker-Williams theory for nucleon emission via electromagnetic excitations in nucleus-nucleus collisions are discussed.

  12. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    SciTech Connect

    Ullmann, John Leonard; Kawano, Toshihiko; Bredeweg, Todd Allen; Baramsai, Bayarbadrakh; Couture, Aaron Joseph; Haight, Robert Cameron; Jandel, Marian; Mosby, Shea Morgan; O'Donnell, John M.; Rundberg, Robert S.; Vieira, David J.; Wilhelmy, Jerry B.; Becker, John A.; Wu, Ching-Yen; Krticka, Milan

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  13. Inclusive proton spectra and total reaction cross sections for proton-nucleus scattering at 800 MeV

    SciTech Connect

    McGill, J.A.

    1981-08-01

    Current applications of multiple scattering theory to describe the elastic scattering of medium energy protons from nuclei have been shown to be quite successful in reproducing the experimental cross sections. These calculations use the impulse approximation, wherein the scattering from individual nucleons in the nucleus is described by the scattering amplitude for a free nucleon. Such an approximation restricts the inelastic channels to those initiated by nucleon-nucleon scattering. As a first step in determining the nature of p + nucleus scattering at 800 MeV, both total reaction cross sections and (p,p') inclusive cross sections were measured and compared to the free p + p cross sections for hydrogen, deuterium, calcium 40, carbon 12, and lead 208. It is concluded that as much as 85% of all reactions in a nucleus proceed from interactions with a single nucleon in the nucleus, and that the impulse approximation is a good starting point for a microscopic description of p + nucleus interactions at 800 MeV.

  14. Classical Calculations of Scattering Signatures from a Gravitational Singularity or the Scattering and Absorption Cross-Sections of a Black Hole

    NASA Astrophysics Data System (ADS)

    Difilippo, Felix C.

    2012-09-01

    Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.

  15. High-resolution absorption cross section measurements of carbon monoxide at 20 K between 96.7 and 98.8 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, P. L.; Esmond, J. R.; Ito, K.; Stevens, M. H.

    1993-01-01

    Photoabsorption cross sections for five CO bands, at wavelengths between 96.7 and 98.8 nm, have been measured at high-resolution in a supersonic jet-cooled source at the Photon Factory synchrotron facility. New integrated cross sections are reported for the K-X, L(prime)-X, and L-X bands. Low-temperature spectra of the J-X and W-X bands, which were used in the determination of the absorbing CO column densities, are also presented. The rotational structures of the K-X, L(prime)-X, and L-X bands do not overlap in the low-temperature spectra, allowing for the first unambiguous determination of these band oscillator strengths. We also report revised room temperature measurements of integrated cross sections for the K-X, L(prime)-X, and L-X bands, in which distortions in the measured spectra due to insufficient instrumental resolution have been minimized; the revised room temperature integrated cross sections are consistent with the low-temperature results.

  16. Study of thermal decomposition mechanisms and absorption cross section of nitro-rich phenyl- and bis-series 1,2,3-triazoles.

    PubMed

    Chaudhary, A K; Rao, K S; Sudheer Kumar, A

    2016-02-01

    This paper reports the investigation of thermal decomposition mechanisms and evaluation of thermally released NO2 from two newly synthesized high-energy materials named 1-(4-nitrophenyl)-1H-1,2,3-triazole (S8) and 2,6-bis ((4-(nitromethyl)-1H-1,2,3-triazol-1-yl)methyl) pyridine (S9) using time-resolved pulsed photoacoustic (PA) pyrolysis technique. The PA spectra were recorded between the 30°C and 350°C range and by varying the pressure of compounds vapor using 532 nm wavelength of pulse duration 7 ns at 10 Hz repetition rate obtained from Q-switched Nd:YAG laser pulses. The PA results were cross verified with thermogravimetric-differential thermal analysis data. The quality factor "&=&Q"&=& of the PA cavity was measured to test the thermal stability of the compound. In addition, we have ascertained the molecular density, absorption cross sections of high-energy materials vapor in terms of NO2. The corresponding values are of the order of 0.1-1.2×10(20)  cm-3 and 0.5-6 kilobarn, respectively. These results once again confirm the close agreement between the radiative and nonradiative transitions data and established the role of NO2 during the thermal decomposition process. PMID:26836085

  17. Intense Upconversion Luminescence of CaSc2 O4 :Ho(3+) /Yb(3+) from Large Absorption Cross Section and Energy-Transfer Rate of Yb(3.).

    PubMed

    Li, Jing; Zhang, Jiahua; Hao, Zhendong; Chen, Li; Zhang, Xia; Luo, Yongshi

    2015-05-18

    Concentration-optimized CaSc2 O4 :0.2 % Ho(3+) /10 % Yb(3+) shows stronger upconversion luminescence (UCL) than a typical concentration-optimized upconverting phosphor Y2 O3 :0.2 % Ho(3+) /10 %  b(3+) upon excitation with a 980 nm laser diode pump. The (5) F4 +(5) S2 →(5) I8 green UCL around 545 nm and (5) F5 →(5) I8 red UCL around 660 nm of Ho(3+) are enhanced by factors of 2.6 and 1.6, respectively. On analyzing the emission spectra and decay curves of Yb(3+) : (2) F5/2 →(2) F7/2 and Ho(3+) : (5) I6 →(5) I8 , respectively, in the two hosts, we reveal that Yb(3+) in CaSc2 O4 exhibits a larger absorption cross section at 980 nm and subsequent larger Yb(3+) : (2) F5/2 →Ho(3+) : (5) I6 energy-transfer coefficient (8.55×10(-17) cm(3) s(-1) ) compared to that (4.63×10(-17) cm(3) s(-1) ) in Y2 O3 , indicating that CaSc2 O4 :Ho(3+) /Yb(3+) is an excellent oxide upconverting material for achieving intense UCL. PMID:25721224

  18. o-nitrobenzyl photolabile protecting groups with red-shifted absorption: syntheses and uncaging cross-sections for one- and two-photon excitation.

    PubMed

    Aujard, Isabelle; Benbrahim, Chouaha; Gouget, Marine; Ruel, Odile; Baudin, Jean-Bernard; Neveu, Pierre; Jullien, Ludovic

    2006-09-01

    We evaluated the o-nitrobenzyl platform for designing photolabile protecting groups with red-shifted absorption that could be photolyzed upon one- and two-photon excitation. Several synthetic pathways to build different conjugated o-nitrobenzyl backbones, as well as to vary the benzylic position, are reported. Relative to the reference 4,5-dimethoxy-2-nitrobenzyl group, several o-nitrobenzyl derivatives exhibit a large and red-shifted one-photon absorption within the near-UV range. Uncaging after one-photon excitation was studied by measuring UV-visible absorption and steady-state fluorescence emission on model caged ethers and esters. In the whole series investigated, the caged substrates were released cleanly upon photolysis. Quantum yields of uncaging after one-photon absorption lie within the 0.1-1 % range. We observed that these drop as the maximum wavelength absorption of the o-nitrobenzyl protecting group is increased. A new method based on fluorescence correlation spectroscopy (FCS) after two-photon excitation was used to measure the action uncaging cross section for two-photon excitation. The series of o-nitrobenzyl caged fluorescent coumarins investigated exhibit values within the 0.1-0.01 Goeppert-Mayer (GM) range. Such results are in line with the low quantum yields of uncaging associated with cross-sections of 1-50 GM for two-photon absorption. Although the cross-sections for one- and two-photon absorption of o-nitrobenzyl photolabile protecting groups can be readily improved, we emphasize the difficulty in enlarging the corresponding action uncaging cross-sections in view of the observed trend of their quantum yield of uncaging. PMID:16763952

  19. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  20. Reduced mass absorption cross section of black carbon under an extremely polluted condition in southern suburb of Beijing, China

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.

    2015-12-01

    Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.

  1. High-resolution absorption cross sections of carbon monoxide bands at 295 K between 91.7 and 100.4 nanometers

    NASA Technical Reports Server (NTRS)

    Stark, G.; Yoshino, K.; Smith, Peter L.; Ito, K.; Parkinson, W. H.

    1991-01-01

    Theoretical descriptions of the abundance and excitation of carbon monoxide in interstellar clouds require accurate data on the vacuum-ultraviolet absorption spectrum of the molecule. The 6.65 m spectrometer at the Photon Factory synchrotron light source was used to measure photoabsorption cross sections of CO features between 91.2 and 100.4 nm. These data were recorded at a resolving power of 170,000, more than 20 times greater than that used in previous work.

  2. Effect of the crystallinity of silver nanoparticles on surface plasmon resonance induced enhancement of effective absorption cross-section of dyes

    NASA Astrophysics Data System (ADS)

    Tanvi, Mahajan, Aman; Bedi, R. K.; Kumar, Subodh; Saxena, Vibha; Aswal, D. K.

    2015-02-01

    The effective absorption cross-section of dye, and therefore, the efficiency of dye-sensitized solar cell can be increased by surface plasmon resonance (SPR) of metal nanoparticles with enhanced dephasing time. Further, the dephasing time is proportional to the enhancement factor of electric field in the vicinity of nanoparticle surface, and is governed by size, shape, and dielectric constant of surrounding medium. In this paper, we demonstrate that crystallinity of silver nanoparticles plays an important role in enhancing the dephasing time of SPR. Our theoretical formulation indicates that the dephasing time is higher for single crystalline silver nanoparticles as compared to that of polycrystalline nanoparticles, which is attributed to the presence of scattering centers in the latter. This suggests that single crystalline silver nanoparticles are interesting candidates for the enhancement of effective absorption cross-section of dyes. In order to validate our theoretical formulation, we have synthesized single crystalline and polycrystalline silver nanoparticles and studied their effect on absorption cross-section of N719 dye. We observed that dye incorporated with single crystalline silver nanoparticles showed a significant enhancement as compared to polycrystalline silver nanoparticles (24.42% in solution, 21.01% in thin film form in single crystalline silver nanoparticles while 8.52% in solution, 7.97% in thin film form in polycrystalline silver nanoparticles, respectively).

  3. Iron deficiency in cyanobacteria causes monomerization of photosystem I trimers and reduces the capacity for state transitions and the effective absorption cross section of photosystem I in vivo.

    PubMed

    Ivanov, Alexander G; Krol, Marianna; Sveshnikov, Dmitry; Selstam, Eva; Sandström, Stefan; Koochek, Maryam; Park, Youn-Il; Vasil'ev, Sergej; Bruce, Doug; Oquist, Gunnar; Huner, Norman P A

    2006-08-01

    The induction of the isiA (CP43') protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43' proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43'-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43' does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43' as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo. PMID:16798943

  4. Absorption cross sections of surface-adsorbed H2O in the 295-370 nm region and heterogeneous nucleation of H2O on fused silica surfaces.

    PubMed

    Du, Juan; Huang, Li; Zhu, Lei

    2013-09-12

    We have determined absorption cross sections of a monolayer of H2O adsorbed on the fused silica surfaces in the 295-370 nm region at 293 ± 1 K by using Brewster angle cavity ring-down spectroscopy. Absorption cross sections of surface-adsorbed H2O vary between (4.66 ± 0.83) × 10(-20) and (1.73 ± 0.52) × 10(-21) cm(2)/molecule over this wavelength range, where errors quoted represent experimental scatter (1σ). Our experimental study provides direct evidence that surface-adsorbed H2O is an absorber of the near UV solar radiation. We also varied the H2O pressure in the surface study cell over the 0.01-17 Torr range and obtained probe laser absorptions at 295, 340, and 350 nm by multilayer of adsorbed H2O molecules until the heterogeneous nucleation of water occurred on fused silica surfaces. The average absorption cross sections of multilayer adsorbed H2O are (2.17 ± 0.53) × 10(-20), (2.48 ± 0.67) × 10(-21), and (2.34 ± 0.59) × 10(-21) cm(2)/molecule at 295, 340, and 350 nm. The average absorption cross sections of transitional H2O layer are (6.06 ± 2.73) × 10(-20), (6.48 ± 3.85) × 10(-21), and (8.04 ± 4.92) × 10(-21) cm(2)/molecule at 295, 340, and 350 nm. The average thin water film absorption cross sections are (2.39 ± 0.50) × 10(-19), (3.21 ± 0.81) × 10(-20), and (3.37 ± 0.94) × 10(-20) cm(2)/molecule at 295 nm, 340 nm, and 350 nm. Atmospheric implications of the results are discussed. PMID:23947798

  5. Cross sections and differential spectra for reactions of 2-20 MeV neutrons of /sup 27/Al

    SciTech Connect

    Blann, M.; Komoto, T.T.

    1988-01-01

    This report summarizes product yields, secondary n,p and ..cap alpha.. spectra, and ..gamma..-ray spectra calculated for incident neutrons of 2-20 MeV on /sup 27/Al targets. Results are all from the code ALICE, using the version ALISO which does weighting of results for targets which are a mix of isotopes. Where natural isotopic targets are involved, yields and n,p,..cap alpha.. spectra will be reported weighted over isotopic yields. Gamma-ray spectra, however, will be reported for the most abundant isotope.

  6. Size-dependent optical absorption modulation of Si/Ge and Ge/Si core/shell nanowires with different cross-sectional geometries.

    PubMed

    Luo, S; Yu, W B; He, Y; Ouyang, G

    2015-02-27

    We present an atomic-level and quantitative study of the absorption properties in Si/Ge and Ge/Si core/shell nanowires (CSNWs) along [110] direction with different cross-sectional geometries using the atomic bond relaxation method. We find that the strain existing in self-equilibrium state of CSNWs and associated with elastic energy originating from interface mismatch and surface relaxation affect the band shift and absorption properties. Compared to the CSNWs with tetragonal, hexagonal and circular shapes, the triangular CSNWs have the largest band gap shift at a fixed strain and the smallest absorption coefficient at a determinate incident light wavelength. The tunable absorption property, realized by controlling the size and geometry structure, could be helpful for nanoelectronic applications. PMID:25649268

  7. Toward Improving Atmospheric Models and Ozone Projections: Laboratory UV Absorption Cross Sections and Equilibrium Constant of ClOOCl

    NASA Astrophysics Data System (ADS)

    Wilmouth, D. M.; Klobas, J. E.; Anderson, J. G.

    2015-12-01

    Thirty years have now passed since the discovery of the Antarctic ozone hole, and despite comprehensive international agreements being in place to phase out CFCs and halons, polar ozone losses generally remain severe. The relevant halogen compounds have very long atmospheric lifetimes, which ensures that seasonal polar ozone depletion will likely continue for decades to come. Changes in the climate system can further impact stratospheric ozone abundance through changes in the temperature and water vapor structure of the atmosphere and through the potential initiation of solar radiation management efforts. In many ways, the rate at which climate is changing must now be considered fast relative to the slow removal of halogens from the atmosphere. Photochemical models of Earth's atmosphere play a critical role in understanding and projecting ozone levels, but in order for these models to be accurate, they must be built on a foundation of accurate laboratory data. ClOOCl is the centerpiece of the catalytic cycle that accounts for more than 50% of the chlorine-catalyzed ozone loss in the Arctic and Antarctic stratosphere every spring, and so uncertainties in the ultraviolet cross sections of ClOOCl are particularly important. Additionally, the equilibrium constant of the dimerization reaction of ClO merits further study, as there are important discrepancies between in situ measurements and lab-based models, and the JPL-11 recommended equilibrium constant includes high error bars at atmospherically relevant temperatures (~75% at 200 K). Here we analyze available data for the ClOOCl ultraviolet cross sections and equilibrium constant and present new laboratory spectroscopic results.

  8. TSAR: a program for automatic resonance assignment using 2D cross-sections of high dimensionality, high-resolution spectra.

    PubMed

    Zawadzka-Kazimierczuk, Anna; Koźmiński, Wiktor; Billeter, Martin

    2012-09-01

    While NMR studies of proteins typically aim at structure, dynamics or interactions, resonance assignments represent in almost all cases the initial step of the analysis. With increasing complexity of the NMR spectra, for example due to decreasing extent of ordered structure, this task often becomes both difficult and time-consuming, and the recording of high-dimensional data with high-resolution may be essential. Random sampling of the evolution time space, combined with sparse multidimensional Fourier transform (SMFT), allows for efficient recording of very high dimensional spectra (≥4 dimensions) while maintaining high resolution. However, the nature of this data demands for automation of the assignment process. Here we present the program TSAR (Tool for SMFT-based Assignment of Resonances), which exploits all advantages of SMFT input. Moreover, its flexibility allows to process data from any type of experiments that provide sequential connectivities. The algorithm was tested on several protein samples, including a disordered 81-residue fragment of the δ subunit of RNA polymerase from Bacillus subtilis containing various repetitive sequences. For our test examples, TSAR achieves a high percentage of assigned residues without any erroneous assignments. PMID:22806130

  9. Pre-equilibrium, Statistical Nuclear-Model Code System for Calculation Cross Sections and Emission Spectra, Version gn9cp8.

    2007-02-02

    Version 00 GNASH provides a flexible method by which reaction and level cross sections, isomer ratios, and emission spectra (neutron, gamma-ray, and charged-particle) resulting from particle- and photon-induced reactions can be calculated. The September 1991 release of GNASH incorporated an additional option for calculating gamma-ray strength functions and transmission coefficients by including the Kopecky-Uhl model. In addition, improvements were made to the output routines, particularly regarding gamma-ray strength function information. Major improvements in the 1995more » FKK-GNASH release include added capabilities: to read in externally calculated preequilibrium spectrum from, e.g., Feshbach-Kerman-Koonin theory, to do multiple preequilibrium calculations, to calculate appropriate spin distributions for nuclear states formed in preequilibrium reactions, and to do incident-photon calculations. In the 1998 release improvements were made in the accuracy of the exciton model and other calculations, and provision was made for including energy-dependent renormalization of the reaction cross section and energy-dependent exciton model parameterization (for data evaluation purposes). The sample problems provided here are the same as those that were given in the 1998 release; however, the calculations were run using the current version of GNASH (gn9cp8). The major differences between this version and the previous one released in 1998 are as follows: 1. A serious buffering error that affected stored state populations resulting when multiple reactions lead to the same compound nucleus is corrected. This error only affects cases with INPOPT=-1, normally used for high-energy calculations. It is the reason that the present outputs for the p + Zr90 test case (described below) are significantly different from the 1998 results for the same p + Zr90 test case. 2. Minor errors were corrected in estimating preequilibrium contributions to discrete states; interpolating the spin

  10. Wavelengths, f-Values, and Cross Sections in the UV Spectra of Astrophysical, Atoms, Ions, and Molecules

    NASA Technical Reports Server (NTRS)

    Raymond, John C.

    2005-01-01

    Data analysis for Fe III was completed in 2004. The new spectra give wavelengths and some energy levels for Fe III that are at least an order of magnitude more accurate than values in the literature. However, the data set is missing - because they are outside the wavelength range that we can study at Imperial College or with ancillary FT spectroscopy measurements at NIST - important transitions that would allow all energy levels to be determined with improved accuracy. We are assessing collaborations at other labs. We have made test runs with a number of cathodes (pure metals and alloys) in the Penning discharge source and selected four iron group (3d) elements, Cr, Mn, Co, and Ni, for further measurements. Cathodes of pure Cr and Co and an alloy of Ni were found to be best. Mn has not nm stably yet, and other cathode geometries or alloys may need to be assessed. Optimum Penning discharge (PD) lamp conditions (buffer gas, gas pressure, and current/voltage) were established for Co, and investigations are underway for Cr and Ni. Definitive measurements for Co await purchase of new mirrors and photomultiplier tubes that will improve signal to noise ratio. Our plan for the next year is to continue evaluating cathodes and operating conditions through March 05, and then to begin definitive measurements. The UV wavelength measurements made at Imperial College with the unique UV FT spectrometer will be complemented by visible and near IR range measurements at NIST in June and/or July. Approximately one year from now, we intend to visit Lund University to collaborate on lifetime measurements that will allow our branching ration data to be used to determine f-values.

  11. New Measurements of Reaction Cross Sections and Reduced Strong Absorption Radii of Neutron-Rich Exotic Nuclei in the Vicinity of Closed Shells N=20 and N=28

    NASA Astrophysics Data System (ADS)

    Khouaja, A.; Villari, A. C. C.; Benjelloun, M.; Hirata, D.; Savajols; Mittig, W.; Roussel-Chomaz, P.; Orr, N. A.; Pita, S.; Demonchy, C. E.; Giot, L.; Chartier, M.; Gillibert, A.; Baiborodin, D.; Penionzhkevich, Y.; Catford, W. N.; Lépine-Szily, A.; Dlouhy, Z.

    2005-09-01

    Mean energy integrated reaction cross-section measurements for various neutron-rich nuclei covering the region of closed shells N=20 and N=28 were performed, at intermediate energy (30 - 65 A.MeV), via direct method, where the Silicon detectors are used as an active target. Assuming that the energy dependence of the reaction cross-section is well described by the parametrization of S.Kox, the reduced strong absorption radius r02 is extracted for the first time, for 19 new nuclei, i.e. 27F, 27,30Ne, 33Na, 28,34-35Mg, 36-38Al, 38-40Si, 41-42P, 42-44S, 45Cl. Other 60 radii also measured in this experiment are compared to results from literature. The evolution of the reduced strong absorption radius is studied as a function of the neutrons excess. A new quadratic parametrization is therefore proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. According to this parametrization, the skin effect is well reproduced and anomalous behaviours are observed to the nuclei 23N, 29Ne, 33Na, 35Mg, 44S, 45Cl and 45Ar.

  12. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    SciTech Connect

    Puri, Sanjiv

    2015-08-28

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  13. Implications of the In-Situ Measured Mass Absorption Cross Section of Organic Aerosols in Mexico City on the Atmospheric Energy Balance, Satellite Retrievals, and Photochemistry

    SciTech Connect

    Dix, B.; Volkamer, R.; Barnard, J. C.

    2009-03-11

    The absorption of short wave incoming solar radiation by the organic component of aerosols has been examined by using data from the MCMA-2003 and the 2006 MILAGRO field campaigns. Both field efforts took place in and around Mexico City. Single Scattering Albedo (SSA) was derived as a function of wavelength (300-870 nm) by combining irradiance measurements from a Multi-Filter Rotating Shadowband Radiometer (MFRSR) and spectrally resolved actinic flux measurements by spectroradiometry with a radiative transfer model (TUV). In addition, organic aerosol mass measured by a surface deployed aerodyne aerosol mass spectrometer was used to estimate the Mass Absorption Cross-section (MAC) of Organic Carbon (OC). It was found that the MAC for OC is about 10.5 m{sup 2}/g at 300 nm and falls close to zero at about 500 nm; these values are roughly consistent with previous MAC estimates of OC, and present first in-situ observations of this quantity.

  14. Black carbon over Mexico: The effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios

    SciTech Connect

    Subramanian, R.; Kok, G. L.; Baumgardner, Darrel; Clarke, A. D.; Shinozuka, Y.; Campos, Teresa; Heizer, CG; Stephens, Britton; de Foy, B.; Voss, Paul B.; Zaveri, Rahul A.

    2010-01-13

    A single particle soot photometer (SP2) was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 Fg/m34 ) and over hill fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC suggests a CO background of around 65 ppbv, and a backgroundcorrected BC/COnet ratio of 2.89±0.89 (ng/m39 -STP)/ppbv (average ± standard deviation). This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC) of 10.9±2.1 m212 /g at 660 nm (or 13.1 m213 /g @ 550 nm, assuming MAC is inversely dependent on wavelength). This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.

  15. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  16. New trans-stilbene derivatives with large two-photon absorption cross-section and non-linear optical susceptibility values--a theoretical investigation.

    PubMed

    Kundi, Varun; Thankachan, Pompozhi Protasis

    2015-05-14

    A detailed theoretical study of linear and non-linear optical susceptibilities (NLOS), one- and two-photon absorption (OPA and TPA) properties for a series of push-pull trans-stilbene (TSB) derivatives with introduction of different electron donor (D) and acceptor (A) groups on either side of the TSB ring system is presented. The objective of the work is to design new TSB derivatives with large TPA cross-section values and to explore their linear and non-linear optical susceptibilities, OPA and TPA properties. We have used linear and quadratic response theory methods and CAM-B3LYP functional in conjunction with the 6-31+G* basis set for all property calculations. We have explained the results of the first hyperpolarizability and TP transition probability using two-state model (2SM) calculations, the results of which are in excellent agreement with the response theory methods. The TP tensor elements have been analysed to explain the large TP activity of molecules. Orbitals involved in the transition processes have been studied both qualitatively (molecular orbital pictures) and quantitatively (Λ-values) in order to explain the nature of charge transfer in different TSB derivatives. The study reveals that the novel derivatives TSBD-10, TSBD-11, TSBD-12 and TSBD-13 have large non-linear optical susceptibilities and TPA cross-section values, the largest being found for TSBD-13 (5560 G.M.). PMID:25894609

  17. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  18. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  19. Reaction cross-section and reduced strong absorption radius measurements of neutron-rich nuclei in the vicinity of closed shells N=20 and N=28

    NASA Astrophysics Data System (ADS)

    Khouaja, A.; Villari, A. C. C.; Benjelloun, M.; Hirata, D.; Auger, G.; Savajols, H.; Mittig, W.; Roussel-Chomaz, P.; Orr, N. A.; Saint-Laurent, M. G.; Pita, S.; Gillibert, A.; Chartier, M.; Demonchy, C. E.; Giot, L.; Baiborodin, D.; Penionzhkevich, Y.; Catford, W. N.; Lépine-Szily, A.; Dlouhy, Z.

    2006-12-01

    The energy-integrated reaction cross-sections of several neutron-rich nuclei ( 17-22N, 19-24O, 21-27F, 23-30Ne, 26-33Na, 28-35Mg, 31-38Al, 33-40Si, 36-42P, 39-44S, 42-45Cl, 45,46Ar), measured at intermediate energy (30-65 A MeV), via direct method, are presented. Silicon detectors have been used as the active target as well as for particles identification. The reduced strong absorption radii r02 are extracted and compared to the data available from the literature. New measurements for 19 nuclei ( 27F, 27,30Ne, 33Na, 28,34-35Mg, 36-38Al, 38-40Si, 41-42P, 42-44S, 45Cl) are revealed. From the study of the isospin dependence of the reduced strong absorption radius, a new quadratic parameterisation of the nuclear radii in the closed shell regions N=8 and N=28, is proposed. According to this parameterisation, the proton/neutron rich nuclei skin effect is well described and a new anomalous structure: halo-structure or large deformation is suggested for 35Mg and 44S nuclei.

  20. Large Femtosecond Two-Photon Absorption Cross-Sections of Fullerosome Vesicle Nanostructures Derived from Highly Photoresponsive Amphiphilic C60-Light-Harvesting Fluorene Dyad

    PubMed Central

    Wang, Min; Nalla, Venkatram; Jeon, Seaho; Mamidala, Venkatesh; Ji, Wei; Tan, Loon-Seng; Cooper, Thomas; Chiang, Long Y.

    2011-01-01

    We demonstrated ultrafast femtosecond nonlinear optical (NLO) absorption characteristics of bilayered fullerosome vesicle nanostructures derived from molecular self-assembly of amphiphilic oligo(ethylene glycolated) C60-(light-harvesting diphenylaminofluorene antenna). Fullerene conjugates were designed to enhance photoresponse in a femtosecond time scale by applying an isomerizable periconjugation linker between the C60 cage and diphenylaminofluorene antenna subunit in an intramolecular contact distance of only < 3.0 Å. Morphology of C60(>DPAF-EG12C1)-based fullerosome nanovesicles in H2O was characterized to consist of a bilayered shell with a sphere diameter of 20–70 nm and a chromophore shell-width of 9.0–10 nm, fitting well with a head-to-head packing configuration of the molecular length. At the estimated effective nanovesicle concentration as low as 5.5 × 10−8 MV (molecular molar concentration of 5.0 × 10−4 M) in H2O, two-photon absorption (2PA) phenomena were found to be the dominating photophysical events showing a large molar concentration-insensitive 2PA cross-section value equivalent to 8500 GM in a form of nanovesicles, on average. The observed NLO characteristics led to a sharp trend of efficient light-transmittance intensity reduction at the input laser intensity above 100 GW/cm2. PMID:22022620

  1. A Novel Algorithm Applied to Common Thermal-Optical Transmission Data for Determining Mass Absorption Cross Sections of Atmospheric Black Carbon: Applications to the Indian Outflow

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Sheesley, R. J.; Kirillova, E.; Gustafsson, O.

    2010-12-01

    High wintertime concentrations of black carbon aerosols (BCA) over South Asia and the Northern Indian Ocean are thought to have a large impact on the regional climate. Direct absorption of sunlight by BCAs causes heating of the atmosphere and cooling at the surface. To quantify such effects it is important to characterize a number of different properties of the aerosols. Here we present a novel application of the thermal-optical (OCEC) instrument in which the laser beam is used to obtain optical information about the aerosols. In particular, the novel algorithm accounts for non-carbon contributions to the light extinction. Combining these light extinction coefficients with the simultaneously constrained Elemental Carbon (EC) concentrations, the Mass Absorption Cross Section (MAC) is computed. Samples were collected during a continuous 14-month campaign Dec 2008 - Mar 2009 at Sinaghad in Western India and on Hanimaadhoo, the Northernmost Island in the Maldives. This data set suggests that the MAC of the BCAs are variable, sometimes by a factor of 3 compared to the mean. This observation adds to the complexity of calculating the radiative forcing for BCAs, reinforcing previous observations that parameters such as aerosol mixing state and sources need to be taken into account.

  2. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Jeys, T. H.

    2016-02-01

    Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (<2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.

  3. Reaction cross-sections and reduced strong absorption radii of nuclei in the vicinity of closed shells N = 20 and N = 28

    NASA Astrophysics Data System (ADS)

    Khouaja, A.; Villari, A. C. C.; Benjelloun, M.; Auger, G.; Baiborodin, D.; Catford, W.; Chartier, M.; Demonchy, C. E.; Dlouhy, Z.; Gillibert, A.; Giot, L.; Hirata, D.; Lépine-Szily, A.; Mittig, W.; Orr, N.; Penionzhkevich, Y.; Pitae, S.; Roussel-Chomaz, P.; Saint-Laurent, M. G.; Savajols, H.

    2005-09-01

    Energy integrated reaction cross-section measurements of around sixty neutron-rich nuclei covering the region of closed shells N = 20 and N = 28 were performed at intermediate energy (30-65 A . MeV) using direct method. In this experiment, silicon detectors were used as active targets. The reduced strong absorption radii, r02, for 19 new nuclei (27F, 27,30Ne, 33Na, 28, 34-35Mg, 36-38Al, 38-40Si, 41-42P, 42-44S and 45Cl) are deduced for the first time. An additional 60 radii, also measured in this experiment, are compared to results from literature. A new quadratic parametrization is proposed for the nuclear radius as a function of the isospin in the region of closed shells N = 8 and N = 28. According to this parametrization, the skin effect is well reproduced and anomalous behaviour on the radii are observed in 23N, 29Ne, 33Na, 35Mg, 44S, 45Cl and 45Ar nuclei.

  4. Large two-photon absorption cross sections of hemiporphyrazines in the excited state: the multiphoton absorption process of hemiporphyrazines with different central metals.

    PubMed

    Dini, Danilo; Calvete, Mario J F; Hanack, Michael; Amendola, Vincenzo; Meneghetti, Moreno

    2008-09-17

    A series of five hemiporphyrazines (Hps) with different coordinating central atoms (H2, GeCl2, InCl, Pt, Pb), and the acyclic derivative 1,3-bis-(6'-amino-4'-butoxy-2'-pyridylimino)-1,3-dihydroisoindoline have been synthesized and their multiphoton absorption properties examined at the second harmonic frequency of the Nd:YAG laser in the nanosecond time regime. Metal-free and platinum Hps display saturation of optical transmittance within incident fluence values of 6 J cm(-2). Comparison with other similar molecular structures like phthalocyanines and related molecules shows that Hps are strong nonlinear absorbers. The experimental curves of nonlinear transmission at 532 nm have been fitted by means of a three-level model with the occurrence of simultaneous two-photon absorption from an excited state. In the sole case of the InCl complex we found that a five-level model is needed because of the participation of triplet states. Contrary to phthalocyanines, naphthalocyanines, and porphyrins, a heavy central atom does not improve the nonlinear absorption properties since a different excited states dynamic is involved. The large nonlinear absorption of Hps combined with the very small absorption in the visible spectral range makes these molecules a very interesting class of molecules for nonlinear optical applications. PMID:18722439

  5. Measurement of the 238U neutron-capture cross section and gamma-emission spectra from 10 eV to 100 keV using the DANCE detector at LANSCE

    SciTech Connect

    Ullmann, John L; Couture, A J; Keksis, A L; Vieira, D J; O' Donnell, J M; Jandel, M; Haight, R C; Rundberg, R S; Kawano, T; Chyzh, A; Baramsai, B; Wu, C Y; Mitchell, G E; Becker, J A; Krticka, M

    2010-01-01

    A careful new measurement of the {sup 238}U(n,{gamma}) cross section from 10 eV to 100 keV has been made using the DANCE detector at LANSCE. DANCE is a 4{pi} calorimetric scintillator array consisting of 160 BaF{sub 2} crystals. Measurements were made on a 48 mg/cm{sup 2} depleted uranium target. The cross sections are in general good agreement with previous measurements. The gamma-ray emission spectra, as a function of gamma multiplicity, were also measured and compared to model calculations.

  6. Bibliography of photoabsorption cross-section data

    NASA Technical Reports Server (NTRS)

    Hudson, R. D.; Kieffer, L. J.

    1970-01-01

    This bibliography contains only references which report a measured or calculated photoabsorption cross section (relative or normalized) in regions of continuous absorption. The bibliography is current as of January 1, 1970.

  7. Average absorption cross-section of the human body measured at 1-12 GHz in a reverberant chamber: results of a human volunteer study

    NASA Astrophysics Data System (ADS)

    Flintoft, I. D.; Robinson, M. P.; Melia, G. C. R.; Marvin, A. C.; Dawson, J. F.

    2014-07-01

    The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1-12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m2 for an individual subject it falls with frequency over 1-6 GHz, and then rises slowly over the 6-12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human exposure

  8. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-02-01

    The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  9. Theoretical studies of absorption cross sections for the C~ 1B2-X~ 1A1 system of sulfur dioxide and isotope effects

    NASA Astrophysics Data System (ADS)

    Tokue, Ikuo; Nanbu, Shinkoh

    2010-01-01

    The C˜ B12-X˜ A11 photoexcitation of SO2 was studied to investigate excited-state dynamics and the effects of the initial vibrational state. Ultraviolet photoabsorption cross sections (σ's) of seven isotopologues (S32 O162, S33 O162, S34 O162, S36 O162, S32O16O17, S32O16O18, S34O16O18) were computed using the wave packet propagation technique based on the three-dimensional potential energy surfaces of the X˜ and C˜ states, which were calculated using the ab initio molecular orbital configuration interaction method. Numerous wave packet simulations were carried out under the adiabatic approximation and used to calculate the σ's of the seven isotopologues at 298 K; we concluded that the absorption spectrum of SO2 can be reliably modeled within the adiabatic framework based on the analysis of the time evolution of the wave packet. The calculated σ's are in reasonable agreement with the recent experiment in the 190-228 nm region, and the isotope shifts of the peaks for S33 O162 and S34 O162 relative to the corresponding peaks for S32 O162 are in good agreement with the observed data. Relative to the σ of S32 O162, isotopic substitution shows a significant increment for those of S34 O162 and S36 O162 in the 190-228 nm region. This trend is consistent with the observed data.

  10. Absorption spectra of cold dilute solid solutions

    SciTech Connect

    Holland, R.F.; Maier, W.B. II; Freund, S.; Beattie, W.H.

    1983-06-01

    Infrared absorption spectra have been obtained for some compounds trapped in crystalline solids by freezing liquid Xe, Kr, Ar, or CH/sub 4/ solutions. The optical quality of the solid solutions is good, and they have been cooled to approx.80 K in 1.35 cm sample thicknesses to study the absorption in fundamental vibrational bands of the solutes. In the cases discussed, the bands are narrow, with observed full widths at half-maximum absorbance 0.05--0.30 cm/sup -1/ greater than the instrumental resolution (0.18--0.29 cm/sup -1/). The spectra appear to be free of ''multiple site'' and solute aggregate absorptions. Spectra displaying isotropic splitting in bands of natural BCl/sub 3/, SeF/sub 6/, OsO/sub 4/, TiCl/sub 4/, and MoF/sub 6/ are presented, and band frequencies are compared with some results obtained in evaporative matrices, in the gas phase, and in liquid solutions. For this comparison we have obtained some spectra of SeF/sub 6/ and BCl/sub 3/ gas.

  11. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    NASA Astrophysics Data System (ADS)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-09-01

    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  12. Hydroxyl radical reaction rate coefficients as a function of temperature and IR absorption cross sections for CF3CH=CH2 (HFO-1243zf), potential replacement of CF3CH2F (HFC-134a).

    PubMed

    González, Sergio; Jiménez, Elena; Ballesteros, Bernabé; Martínez, Ernesto; Albaladejo, José

    2015-04-01

    CF3CH=CH2 (hydrofluoroolefin, HFO-1243zf) is a potential replacement of high global-warming potential (GWP) hydrofluorocarbon (HFC-134a, CF3CFH2). Both the atmospheric lifetime and the radiative efficiency of HFO-1243zf are parameters needed for estimating the GWP of this species. Therefore, the aim of this work is (i) to estimate the atmospheric lifetime of HFO-1243zf from the reported OH rate coefficients, k OH, determined under tropospheric conditions and (ii) to calculate its radiative efficiency from the reported IR absorption cross sections. The OH rate coefficient at 298 K also allows the estimation of the photochemical ozone creation potential (ε(POCP)). The pulsed laser photolysis coupled to a laser-induced fluorescence technique was used to determine k OH for the reaction of OH radicals with HFO-1243zf as a function of pressure (50-650 Torr of He) and temperature (263-358 K). Gas-phase IR spectra of HFO-1243zf were recorded at room temperature using a Fourier transform IR spectrometer between 500 and 4,000 cm(-1). At all temperatures, k OH did not depend on bath gas concentration (i.e., on the total pressure between 50 and 650 Torr of He). A slight but noticeable T dependence of k OH was observed in the temperature range investigated. The observed behavior is well described by the following Arrhenius expression: k OH(T) = (7.65 ± 0.26) × 10(-13) exp [(165 ± 10) / T] cm(3) molecule(-1) s(-1). Negligible IR absorption of HFO-1243zf was observed at wavenumbers greater than 1,700 cm(-1). Therefore, IR absorption cross sections, [Formula: see text], were determined in the 500-1,700 cm(-1) range. Integrated [Formula: see text] were determined between 650 and 1,800 cm(-1) for comparison purposes. The main diurnal removal pathway for HFO-1243zf is the reaction with OH radicals, which accounts for 64% of the overall loss by homogeneous reactions at 298 K. Globally, the lifetime due to OH reaction (τ OH) was estimated to be 8.7 days under

  13. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.

    2016-05-01

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  14. HIGH-RESOLUTION ELECTRON-IMPACT EMISSION SPECTRA AND VIBRATIONAL EMISSION CROSS SECTIONS FROM 330-1100 nm FOR N{sub 2}

    SciTech Connect

    Mangina, Rao S.; Ajello, Joseph M.; West, Robert A.; Dziczek, Dariusz

    2011-09-01

    Electron-impact emission cross sections for N{sub 2} were measured in the wavelength range of 330-1100 nm at 25 eV and 100 eV impact energies. Cross sections of several molecular emission bands of the first positive band system B {sup 3}{Pi}{sub g} {sup +}({nu}') {yields} A {sup 3}{Sigma}{sub g} {sup +}({nu}'') and the second positive band system C {sup 3}{Pi}{sub u} ({nu}') {yields} B {sup 3}{Pi}{sub g} ({nu}'') of N{sub 2}, the first negative band (1NB) system B {sup 2}{Sigma}{sub u} {sup +}({nu}') {yields} X {sup 2}{Sigma}{sub g} {sup +}({nu}'') and Meinel band system A {sup 2}{Pi}{sub u} ({nu}') {yields} X {sup 2}{Sigma}{sub g} {sup +}({nu}'') of N{sub 2} {sup +} ions as well as line emissions of N (N I) and N{sup +} (N II) in the visible-optical-near-IR wavelength range reported in this work were measured for the first time in a single experimental setup at high spectral resolving power ({lambda}/{Delta}{lambda} {approx} 10000) under single-collision-scattering geometry and optically thin conditions. Rotational emission lines of N{sub 2} and N{sub 2} {sup +} were observed for strong emission bands at a gas temperature of about 300 K. The absolute cross section of the strongest (0,0) vibrational band at 391.43 nm of 1NB was determined using the standard H{sub {alpha}} emission cross sections of H{sub 2} by electron impact at both 25 eV and 100 eV electron-impact energies, and the cross sections for the remainder of the emissions were determined using (0,0) 1NB value. A comparison of the present emission cross sections with the earlier published data from both electron energy loss and electron-impact-induced fluorescence emission is discussed.

  15. High-resolution absorption cross section measurements of supersonic jet-cooled carbon monoxide between 92.5 and 97.4 nanometers

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Stark, G.; Esmond, J. R.; Smith, P. L.; Ito, K.; Matsui, T.

    1995-01-01

    High-resolution photoabsorption cross sections for eight CO bands, at wavelengths between 92.5 nm and 97.4 nm, have been measured in a supersonic jet-cooled source (approximately equals 20 K) at the Photon Factory synchrotron radiation facility. New integrated cross sections are reported for four bands between 92.5 nm and 94.2 nm. A low-temperature spectrum of the W(1)-X(0) band (95.6 nm), which was used to determine the absorbing CO column densities, is also presented. Additional jet-cooled cross section measurements were made on the L(0)-X(0), K(0)-X(0), and W(0)-X(0) bands (96.7-97.4 nm) which verify previously published results. A self-consistent set of band oscillator strengths is presented for the eight bands studied.

  16. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect

    Youinou, Gilles Jean-Michel

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  17. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-06-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles < 75° with a well known photon path, we assume that the retrieved total column NO2 T can be represented as a sum of the NO2 stratospheric and tropospheric Ts multiplied by the corresponding stratospheric and tropospheric fractions of the total SCDNO2. We use Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T

  18. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  19. Study of the OH and Cl-initiated oxidation, IR absorption cross-section, radiative forcing, and global warming potential of four C4-hydrofluoroethers.

    PubMed

    Oyaro, Nathan; Sellevåg, Stig R; Nielsen, Claus J

    2004-11-01

    Infrared absorption cross-sections and OH and Cl reaction rate coefficients for four C4-hydrofluoroethers (CF3)2CHOCH3, CF3CH2OCH2CF3, CF3CF2CH2OCH3, and CHF2CF2CH2OCH3 are reported. Relative rate measurements at 298 K and 1013 hPa of OH and Cl reaction rate coefficients give k(OH+(CF3)2CHOCH3) = (1.27+/-0.13) x 10(-13), k(OH+CF3CH2OCH2CF3) = (1.51+/-0.24) x 10(-13), k(OH+CF3CF2CH2OCH3) = (6.42+/-0.33) x 10(-13), k(OH+CHF2CF2CH2OCH3) = (8.7 +/-0.5) x 10(-13), k(Cl+(CF3)2CHOCH3) = (8.4+/-1.3) x 10(-12), k(Cl+CF3CH2OCH2CF3) = (6.5+/-1.7) x 10(-13), k(Cl+CF3CF2CH2OCH3) = (4.0+/-0.8) x 10(-11), and k(Cl+CHF2CF2CH2OCH3) = (2.65+/-0.17) x 10(-11) cm3 molecule(-1) s(-1). The primary products of the OH and Cl reactions with the fluorinated ethers have been identified as esters, and OH and Cl reaction rate coefficients for one of these, CF3CH2OCHO, are reported: k(OH+CF3CH2OCHO) = (7.7+/-0.9) x 10(-14) and kCl+CF3CH2OCHO) = (6.3+/-1.9) x 10(-14) cm3 molecule(-1) s(-1) The rate coefficient for the Cl-atom reaction with CHF2CH2F is derived as k(Cl+CHF2CH2F) = (3.0+/-0.9) x 10(-14) cm3 molecule(-1) s(-1) at 298 K. The error limits include 3sigma from the statistical data analyses as well as the errors in the rate coefficients of the reference compounds employed. The tropospheric lifetimes of the hydrofluoroethers are estimated to be short tauOH((CF3)2CHOCH3) approximately 100 days, tauOH(CF3CH2OCH2CF3) approximately 80 days, tauOH(CF3CF2CH2OCH3) approximately 20 days, and tauOH(CHF2CF2CH2OCH3) approximately 14 days, and their global warming potentials are small compared to CFC-11. PMID:15575273

  20. Iron Deficiency in Cyanobacteria Causes Monomerization of Photosystem I Trimers and Reduces the Capacity for State Transitions and the Effective Absorption Cross Section of Photosystem I in Vivo1

    PubMed Central

    Ivanov, Alexander G.; Krol, Marianna; Sveshnikov, Dmitry; Selstam, Eva; Sandström, Stefan; Koochek, Maryam; Park, Youn-Il; Vasil'ev, Sergej; Bruce, Doug; Öquist, Gunnar; Huner, Norman P.A.

    2006-01-01

    The induction of the isiA (CP43′) protein in iron-stressed cyanobacteria is accompanied by the formation of a ring of 18 CP43′ proteins around the photosystem I (PSI) trimer and is thought to increase the absorption cross section of PSI within the CP43′-PSI supercomplex. In contrast to these in vitro studies, our in vivo measurements failed to demonstrate any increase of the PSI absorption cross section in two strains (Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803) of iron-stressed cells. We report that iron-stressed cells exhibited a reduced capacity for state transitions and limited dark reduction of the plastoquinone pool, which accounts for the increase in PSII-related 685 nm chlorophyll fluorescence under iron deficiency. This was accompanied by lower abundance of the NADP-dehydrogenase complex and the PSI-associated subunit PsaL, as well as a reduced amount of phosphatidylglycerol. Nondenaturating polyacrylamide gel electrophoresis separation of the chlorophyll-protein complexes indicated that the monomeric form of PSI is favored over the trimeric form of PSI under iron stress. Thus, we demonstrate that the induction of CP43′ does not increase the PSI functional absorption cross section of whole cells in vivo, but rather, induces monomerization of PSI trimers and reduces the capacity for state transitions. We discuss the role of CP43′ as an effective energy quencher to photoprotect PSII and PSI under unfavorable environmental conditions in cyanobacteria in vivo. PMID:16798943

  1. Influence of laser radiation on induced absorption spectra of pure quartz glass optical fibers

    NASA Astrophysics Data System (ADS)

    Dianov, Y. M.; Karpechev, V. N.; Korniyenko, L. S.; Rybaltovskiy, A. O.; Chernov, P. V.

    1986-01-01

    The influence of laser radiation on radiation color centers and their associated induced absorption in the spectra of irradiated glass optical fibers is investigated. The glass fiber specimens employed had 40 to 50 micron diameter cores made of day pure quartz glass. The optical fibers were 6 to 20 meters long, produced by chemical precipitation from the gaseous phase and clad with reflecting borosilicate glass. Spectral measurements of the induced absorption in the ultraviolet region were made using an FEU-71 photodetector and a sounding radiation source. The stimulated laser emission power in the cross section of the optical fiber was measured by a photodiode; the absorption spectra were recorded by the fragment method. Eight different types of color centers were isolated whose bands cover practically the entire observed absorption spectra. The connection found between color centers and a 340 nm absorption band, and color center with absorption in the infrared band, indicate that absorption in the ultraviolet band can have a significant influence on the amount of induced absorption in the infrared band.

  2. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    SciTech Connect

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-14

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  3. Two-photon absorption cross sections within equation-of-motion coupled-cluster formalism using resolution-of-the-identity and Cholesky decomposition representations: Theory, implementation, and benchmarks

    NASA Astrophysics Data System (ADS)

    Nanda, Kaushik D.; Krylov, Anna I.

    2015-02-01

    The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.

  4. Millimeter wave absorption spectra of biological samples

    SciTech Connect

    Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L.

    1980-01-01

    A solid-state computer-controlled system has been used to make swept-frequency measurements of absorption of biological specimens from 26.5 to 90.0 GHz. A wide range of samples was used, including solutions of DNA and RNA, and suspensions of BHK-21/C13 cells, Candida albicans, C krusei, and Escherichia coli. Sharp spectra reported by other workers were not observed. The strong absorbance of water (10--30 dB/mm) caused the absorbance of all aqueous preparations that we examined to have a water-like dependence on frequency. Reduction of incident power (to below 1.0 microW), elimination of modulation, and control of temperature to assure cell viability were not found to significantly alter the water-dominated absorbance. Frozen samples of BHK-21/C13 cells tested at dry ice and liquid nitrogen temperatures were found to have average insertion loss reduced to 0.2 dB/cm but still showed no reproducible peaks that could be attributed to absorption spectra. It is concluded that the special resonances reported by others are likely to be in error.

  5. Angle-differential observation of plasmon electrons in the double-differential cross-section spectra of fast-ion-induced electron ejection from C60

    NASA Astrophysics Data System (ADS)

    Kelkar, A. H.; Gulyás, L.; Tribedi, Lokesh C.

    2015-11-01

    We report on the measurement of double-differential distribution of soft electron emission from C60 fullerene, induced by a fast-moving Coulomb field of 76 MeV energy bare fluorine ions. A broad "plasmon-electron" peak, riding on the Coulomb-ionization continuum, is observed due to the deexcitation of the giant dipole plasmon resonance state in C60. The angular distribution of the plasmon electrons goes through a dip around 90°, which is contrary to that observed in ion-atom collisions measured in situ, indicating the alignment of the induced dipole moment along the projectile beam direction. A model based on the photoelectron angular distribution which is modified due to the ion-induced postcollisional interaction provides an excellent agreement with the observed asymmetric distribution. The distribution smoothly changes from a dip at 90° to a peak with the variation of ejected electron energy indicating transition from a collective plasmon behavior of the whole system to a single ion-atom interaction. The single-differential cross section was also derived, which preserves the signature of the collective excitation.

  6. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  7. Absorption spectra of irradiated XRCT radiochromic film

    NASA Astrophysics Data System (ADS)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.

    2006-06-01

    Gafchromic XRCT radiochromic film is a self-developing high sensitivity radiochromic film product which can be used for assessment of delivered radiation doses which could match applications such as computed tomography (CT) dosimetry. The film automatically changes colour upon irradiation changing from a yellow to green/brown colour. The absorption spectra of Gafchromic XRCT radiochromic film as measured with reflectance spectrophotometry have been investigated to analyse the dosimetry characteristics of the film. Results show two main absorption peaks produced from irradiation located at 636 nm and 585 nm. This is similar to EBT Gafchromic film. A high level of sensitivity is found for this film with a 1 cGy applied dose producing an approximate net optical density change of 0.3 at 636 nm. This high sensitivity combined with its relatively energy independent nature around the 100 kVp to 150 kVp x-ray energy range provides a unique enhancement in dosimetric measurement capabilities over currently available dosimetry films for CT applications.

  8. Determination of phytoplankton composition using absorption spectra.

    PubMed

    Martínez-Guijarro, R; Romero, I; Pachés, M; Del Río, J G; Martí, C M; Gil, G; Ferrer-Riquelme, A; Ferrer, J

    2009-05-15

    Characterisation of phytoplankton communities in aquatic ecosystems is a costly task in terms of time, material and human resources. The general objective of this paper is not to replace microscopic counts but to complement them, by fine-tuning a technique using absorption spectra measurements that reduces the above-mentioned costs. Therefore, the objective proposed in this paper is to assess the possibility of achieving a qualitative determination of phytoplankton communities by classes, and also a quantitative estimation of the number of phytoplankton cells within each of these classes, using spectrophotometric determination. Samples were taken in three areas of the Spanish Mediterranean coast. These areas correspond to estuary systems that are influenced by both continental waters and Mediterranean Sea waters. 139 Samples were taken in 7-8 stations per area, at different depths in each station. In each sample, the absorption spectrum and the phytoplankton classes (Bacyllariophyceae (diatoms), Cryptophyceae, Clorophyceae, Chrysophyceae, Prasynophyceae, Prymnesophyceae, Euglenophyceae, Cyanophyceae, Dynophyceae and the Synechococcus sp.) were determined. Data were analysed by means of the Partial Least Squares (PLS) multivariate statistical technique. The absorbances obtained between 400 and 750 nm were used as the independent variable and the cell/l of each phytoplankton class was used as the dependent variable, thereby obtaining models which relate the absorbance of the sample extract to the phytoplankton present in it. Good results were obtained for diatoms (Bacillarophyceae), Chlorophyceae and Cryptophyceae. PMID:19269434

  9. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry—a user's guide

    NASA Astrophysics Data System (ADS)

    Axner, Ove; Gustafsson, Jörgen; Omenetto, Nicolò; Winefordner, James D.

    2004-01-01

    This work summarizes and elucidates a number of fundamental concepts in atomic spectrometry regarding the 'strengths' of transitions between various energy levels and states in atoms. Although several of the expressions and rules for line strengths of transitions reported here can be found, in one way or another, in various books dealing with atomic structure, atomic spectrometry or quantum mechanics, the treatment in such books can be variously complex and difficult to follow for a non-experienced reader. In addition, detailed information about transition-specific 'strengths' of transitions used to be restricted to line strengths, whereas most experiments rather need transition-specific A-factors or transition-specific absorption cross-sections. This work therefore aims at pointing out the most important aspects of the concept of 'strengths' of transitions between various energy levels and states in atoms by presenting explicit expressions for not only relative and absolute line strengths but also oscillator strengths ( f-values), A-factors and absorption cross-sections, for transitions between fine structure levels within a multiplet as well as for hyperfine structure components within a line (i.e. between hyperfine structure levels), including their mutual relations, in a consistent and user-friendly manner. The work also recapitulates the most important summation rules for line strengths, oscillator strengths ( f-values), A-factors and absorption cross-sections for lines within multiplets and hyperfine structure components within lines. Many of the expressions are illustrated with clear and intelligible examples. For the sake of clarity and completeness, the work also comprises a short review of the nomenclature for atomic structure and transitions.

  10. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  11. Optical Model and Cross Section Uncertainties

    SciTech Connect

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  12. Neutron Capture Cross Section of 239Pu

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  13. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  14. The total charm cross section

    SciTech Connect

    Vogt, R

    2007-09-14

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that the uncertainty on the total charm cross section is difficult to quantify.

  15. X-Ray Absorption Spectra of Uranium by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hirohiko; Fujima, Kazumi; Taniguchi, Kazuo; Miyake, Chie; Imoto, Shosuke

    1981-08-01

    The X-ray absorption spectra of U, UO2 and UCl4 near the U OIV and OV thresholds have been measured by use of synchrotron radiation. The absorption peaks at about 100 eV and 110 eV are observed for all of these materials. However, the detailed structure of the spectra depend on the chemical state.

  16. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  17. Spectra, Emission Yields, Cross Sections, and Kinetic Energy Distributions of Hydrogen Atoms from H2 X 1Eg+-d 3IIu Excitation by Electron Impact

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Johnson, Paul V.; Malone, Charles P.; Ajello, Joseph M.

    2016-02-01

    Electron-impact excitation of H2 triplet states plays an important role in the heating of outer planet upper thermospheres. The {d}3{{{\\Pi }}}u state is the third ungerade triplet state, and the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ emission is the largest cascade channel for the a{}3{{{Σ }}}g+ state. Accurate energies of the d{}3{{{\\Pi }}}u-(v, J) levels are calculated from an ab initio potential energy curve. Radiative lifetimes of the {d}3{{{\\Pi }}}u(v, J) levels are obtained by an accurate evaluation of the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ transition probabilities. The emission yields are determined from experimental lifetimes and calculated radiative lifetimes and are further verified by comparing experimental and synthetic {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+ spectra at 20 eV impact energy. Spectral analysis revealed that multipolar components beyond the dipolar term are required to model the {X}1{{{Σ }}}g+-{d}3{{{\\Pi }}}u excitation, and significant cascade excitation occurs at the {d}3{{{\\Pi }}}u(v = 0,1) levels. Kinetic energy (Ek) distributions of H atoms produced via predissociation of the {d}3{{{\\Pi }}}u state and the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ cascade dissociative emission are obtained. Predissociation of the {d}3{{{\\Pi }}}u state produces H atoms with an average Ek of 2.3 ± 0.4 eV/atom, while the Ek distribution of the {d}3{{{\\Pi }}}u-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ channel is similar to that of the {X}1{{{Σ }}}g+-a{}3{{{Σ }}}g+-b{}3{{{Σ }}}u+ channel and produces H(1s) atoms with an average Ek of 1.15 ± 0.05 eV/atom. On average, each H2 excited to the {d}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits 3.3 ± 0.4 eV into the atmosphere, while each H2 directly excited to the a{}3{{{Σ }}}g+ state gives 2.2-2.3 eV to the atmosphere. The spectral distribution of the calculated a{}3{{{Σ }}}g+ -b{}3{{{Σ }}}u+ continuum emission due to the {X}1{{{Σ }}}g+-{d}3{{{\\Pi }}}u excitation is significantly different from

  18. Cross sections at hadron colliders

    SciTech Connect

    Paige, F.E.

    1982-01-01

    The predicted cross sections are given for new Z'/sup 0/ bosons, for the Drell-Yan continuum of ..mu../sup +/..mu../sup -/ pairs, for high p/sub T/ hadron jets, for high p/sub T/ single photons, and for the associated production of heavy quarks. These processes have been selected not to cover the most interesting physics, but to provide a representative selection of cross sections for which to compare various energies and luminosities.

  19. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3 + NO2 <--> N2O5 at atmospherically relevant conditions.

    PubMed

    Osthoff, Hans D; Pilling, Michael J; Ravishankara, A R; Brown, Steven S

    2007-11-21

    The reaction NO3 + NO2 <--> N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1). PMID:19462574

  20. 242Amm fission cross section

    NASA Astrophysics Data System (ADS)

    Browne, J. C.; White, R. M.; Howe, R. E.; Landrum, J. H.; Dougan, R. J.; Dupzyk, R. J.

    1984-06-01

    The neutron-induced fission cross section of 242Amm has been measured over the energy region from 10-3 eV to ~20 MeV in a series of experiments utilizing a linac-produced "white" neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to ~3 eV) and high energy (1 keV to ~20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of ~0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of ~5%. We confirmed that 242Amm has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results.

  1. Absorption Spectra of Magnesium Sulphite Hexahydrate Doped with Nickel

    NASA Astrophysics Data System (ADS)

    Petkova, Petya N.; Bunzarov, Zhelyu I.; Iliev, Ilia A.; Dimov, Todor N.

    2007-04-01

    In the work are presented absorption spectra of MgSO3.6H2O monocrystals doped with Ni. The spectra are measured in a wide spectral range (200 - 1200nm) at room temperature with polarized light. The impurity of Ni changes essentially the absorption of MgSO3.6H2O because it causes the appearance of additional spectral structures.

  2. Propionaldehyde infrared cross-sections and band strengths

    NASA Astrophysics Data System (ADS)

    Köroğlu, Batikan; Loparo, Zachary; Nath, Janardan; Peale, Robert E.; Vasu, Subith S.

    2015-02-01

    The use of oxygenated biofuels reduces the greenhouse gas emissions; however, they also result in increased toxic aldehyde by-products, mainly formaldehyde, acetaldehyde, acrolein, and propionaldehyde. These aldehydes are carcinogenic and/or toxic and therefore it is important to understand their formation and destruction pathways in combustion and atmospheric systems. Accurate information about their infrared cross-sections and integrated strengths are crucially needed for development of quantitative detection schemes and modeling tools. Critical to the development of such diagnostics are accurate characterization of the absorption features of these species. In this study, the gas phase infrared spectra of propionaldehyde (also called propanal, CH3-CH2-CHO), a saturated three carbon aldehyde found in the exhaust emissions of biodiesel or diesel fuels, was studied using high resolution Fourier Transform Infrared (FTIR) spectroscopy over the wavenumber range of 750-3300 cm-1 and at room temperature 295 K. The absorption cross sections of propionaldehyde were recorded at resolutions of 0.08 and 0.096 cm-1 and at seven different pressures (4-33 Torr). The calculated band-strengths were reported and the integrated band intensity results were compared with values taken from the Pacific Northwest National Laboratory (PNNL) database (showing less than 2% discrepancy). The peak positions of the 19 different vibrational bands of propionaldehyde were also compared with previous studies taken at a lower resolution of 1 cm-1. To the best of our knowledge, the current FTIR measurements provide the first highest resolution infrared cross section data for propionaldehyde.

  3. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  4. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  5. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    SciTech Connect

    Elokr, M. M.; Hassan, M. A.; Yaseen, A. M.; Elokr, R.

    2007-02-14

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  6. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  7. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  8. Ultraviolet absorption spectra of mercuric halides.

    NASA Technical Reports Server (NTRS)

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  9. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  10. Neutron Capture by Cadmium: Thermal Cross Sections and Resonance Integrals of ^106,108,110,112,114,116Cd

    NASA Astrophysics Data System (ADS)

    Gicking, Allison M.; Krane, Kenneth S.

    2011-10-01

    The neutron capture cross sections of the stable, even-mass Cd isotopes (A = 106, 108, 110, 112, 114, and 116) have been previously measured in sources of natural abundance or low enrichment, often making the results uncertain owing to the large absorption cross section of naturally occurring ^113Cd. Ambiguities in values of the isomeric branching ratios have also contributed to uncertainties in previous results. We have remeasured the Cd neutron capture cross sections using samples of greater than 90% isotopic enrichment irradiated in the OSU TRIGA reactor. Gamma-ray emission spectra were analyzed to determine the effective resonance integrals and thermal cross sections leading to eight radioactive ground and isomeric states in the Cd isotopes.

  11. Neutron cross section standards and instrumentation

    NASA Astrophysics Data System (ADS)

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  12. Photoabsorption cross sections of OH at 115-183 nm

    NASA Technical Reports Server (NTRS)

    Nee, J. B.; Lee, L. C.

    1984-01-01

    The absorption spectrum for OH was obtained in the 115-183 nm region. The OH radicals were produced by a pulse discharge of trace H2O in few torr of Ar. Absorption cross sections were obtained by calibration with absorption of the OH (X 2 Pi to A 2 Sigma +) transition. The features in the absorption spectrum are correlated with the excited states 1 2 Sigma -, D 2 Sigma -, 1 2 Delta, B 2 Sigma + and possibly others calculated by van Dishoeck, Langhoff, and Dalgarno. The measured cross sections are comparable with the calculated values.

  13. Probing molecular chirality by coherent optical absorption spectra

    SciTech Connect

    Jia, W. Z.; Wei, L. F.

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  14. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25-500 °C

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Freeman, K. G.; Davidson, D. F.; Hanson, R. K.

    2014-09-01

    Gas-phase mid-infrared (IR) absorption spectra (2500-3400 cm-1) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm-1. Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium-neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of Csbnd H bonds in the molecule.

  15. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  16. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  17. Momentum transfer cross sections for the heavy noble gases

    NASA Astrophysics Data System (ADS)

    McEachran, R. P.; Stauffer, A. D.

    2014-06-01

    We present momentum transfer cross sections for elastic electron scattering from argon, krypton and xenon atoms over the energy range from zero to 1 keV. These have been calculated using the Dirac equations with a relativistic complex optical potential which includes polarization of the target atom by the incident electron and allows for the absorption of some of the incident electron flux into channels representing excitation and ionization of the atom. In order to aid in plasma modelling calculations, we provide simple analytic fits to these cross sections as well as to the elastic scattering cross sections. Comparisons are made with previous experimental and theoretical results.

  18. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric-tropospheric column partitioning from visible direct-sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-12-01

    This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3-5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38° N/117.68° W); (2) Pullman, WA, USA (46.73° N/117.17° W); (3) Greenbelt, MD, USA (38.99° N/76.84° W); and (4) Cabauw, the Netherlands (51.97° N/4.93° E) during July 2007, June-July 2009, July-August and October 2011, November 2012-May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site.

  19. Recommended Dosimetry Cross Section Compendium.

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  20. Experimental nuclear cross sections for spacecraft shield analysis

    NASA Technical Reports Server (NTRS)

    Peelle, R. W.

    1972-01-01

    Experiments have been performed to validate and to supplement the intranuclear cascade model as a method for estimating cross sections of importance to spacecraft shield design. The experimental situation is inconclusive particularly for neutron-producing reactions, but is relatively sound for reaction cross sections and for proton spectra at several hundred MeV at medium forward angles. Secondary photon contributions are imprecisely known.

  1. A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.

    2009-01-01

    In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…

  2. The OH - absorption spectra of low doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kong, Yongfa; Zhang, Wanlin; Xu, Jingjun; Yan, Wenbo; Liu, Hongde; Xie, Xiang; Li, Xiaochun; Shi, Lihong; Zhang, Guangyin

    2004-07-01

    The OH - absorption spectra of low doped lithium niobate (LiNbO 3) crystals have been investigated. Though no apparent band shift is observed in these absorption spectra, their shapes are quite different. In order to analyze the information on the defect structure underlying these OH - absorption bands, the normalization and difference methods were employed. It was found that although the doping concentrations are under the thresholds the doping ions have apparent affect to the site occupation of OH - ions. The OH - vibrations related to Mg Li+ (Mg 2+ occupying Li-site) and In Li2+ are 3483 and 3484 cm -1 in LiNbO 3:Mg and LiNbO 3:In crystals, respectively. The absorption peak of LiNbO 3:Ti (2.5 mol%) crystal at 3487 cm -1 is mainly related to Ti Li3+-OH - and the 3489 cm -1 peak of LiNbO 3:Mg (5.0 mol%), Ti (10.0 mol%) related to Mg Li+-OH -, Ti Nb--OH - and Ti Li3+-OH -. Doping with Na improves the peak intensity near 3466 cm -1 and induces a new absorption peak at 3470 cm -1. The absorption bands of LiNbO 3 crystals codoped with trivalent ions are associated with the co-effect of the doped ions and have some different characteristics from mono-doped crystals.

  3. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  4. (Fast neutron cross section measurements)

    SciTech Connect

    Not Available

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months.

  5. The influence of thermolysis time on the absorption spectra of polyvinyl chloride in acetophenone

    NASA Astrophysics Data System (ADS)

    Rasmagin, S. I.; Krasovskii, V. I.; Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtoba, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The influence of thermolysis time on the absorption spectra of partially thermally dehydrochlorinated polyvinyl chloride in acetophenone solution is studied. Strong increase in the optical density Dλ of the dehydrochlorinated PVC samples is caused by the increasing amount N-C=C- and the length of chains of conjugated double bonds of carbon -C = C-. It is noted that the optical density Dλ first increases linearly with dehydrochlorination time and then reaches saturation. The estimation of amount of double conjugated carbon bonds in 1ml versus thermolysis time t is given, which varies between N-C=C- = 4.1017 - 7.4.1018 for t from 40 to 420 minutes. The effective capture cross section of a photon on conjugated double bonds of carbon for dehydrochlorinated PVC solution in acetophenone is estimated, which was about 10-17 cm2 . The analysis is done of the absorption curves «red» shift to longer wavelengths with growth of N-C=C- upon increase of thermolysis time. It is noted that the dependence of the optical density on the wavelength in this range is well described by a simple exponential function.

  6. Infrared absorption spectra of metal carbides, nitrides and sulfides

    NASA Technical Reports Server (NTRS)

    Kammori, O.; Sato, K.; Kurosawa, F.

    1981-01-01

    The infrared absorption spectra of 12 kinds of metal carbides, 11 kinds of nitrides, and 7 kinds of sulfides, a total of 30 materials, were measured and the application of the infrared spectra of these materials to analytical chemistry was discussed. The measurements were done in the frequency (wave length) range of (1400 to 400/cm (7 to 25 mu). The carbides Al4C3, B4C, the nitrides AlN, BN, Si3N4, WB, and the sulfides Al2S3, FeS2, MnS, NiS and PbS were noted to have specific absorptions in the measured region. The sensitivity of Boron nitride was especially good and could be detected at 2 to 3 micrograms in 300 mg of potassium bromide.

  7. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  8. Photoproduction total cross section and shower development

    NASA Astrophysics Data System (ADS)

    Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.

    2015-12-01

    The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  9. Theoretical investigations of absorption and fluorescence spectra of protonated pyrene.

    PubMed

    Chin, Chih-Hao; Lin, Sheng Hsien

    2016-05-25

    The equilibrium geometry and 75 vibrational normal-mode frequencies of the ground and first excited states of protonated pyrene isomers were calculated and characterized in the adiabatic representation by using the complete active space self-consistent field (CASSCF) method. Electronic absorption spectra of solid neon matrixes in the wavelength range 495-415 nm were determined by Maier et al. and they were analyzed using time-dependent density functional theory calculations (TDDFT). CASSCF calculations and absorption and emission spectra simulations by one-photon excitation equations were used to optimize the excited and ground state structures of protonated pyrene isomers. The absorption band was attributed to the S0 → S1 electronic transition in 1H-Py(+), and a band origin was used at 20580.96 cm(-1). The displaced harmonic oscillator approximation and Franck-Condon approximation were used to simulate the absorption spectrum of the (1) (1)A' ← X[combining tilde](1)A' transition of 1H-Py(+), and the main vibronic transitions were assigned for the first ππ* state. It shows that the vibronic structures were dominated by one of the eight active totally symmetric modes, with ν15 being the most crucial. This indicates that the electronic transition of the S1((1)A') state calculated in the adiabatic representation effectively includes a contribution from the adiabatic vibronic coupling through Franck-Condon factors perturbed by harmonic oscillators. The present method can adequately reproduce experimental absorption and fluorescence spectra of a gas phase. PMID:27181017

  10. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  11. Electron Photon Interaction Cross Sections

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  12. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  13. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  14. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  15. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  16. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  17. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  18. Medium Modified Nucleon-Nucleon Cross Sections in a Nucleus

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.

    1999-01-01

    A simple reliable formalism is presented for obtaining nucleon-nucleon cross sections within a nucleus in nuclear collisions for a given projectile and target nucleus combination at a given energy for use in transport, Monte Carlo and other calculations. The method relies on extraction of these values from experiments and has been tested for absorption experiments to give excellent results.

  19. Optical Absorption Spectra of Hydrous Wadsleyite to 32 GPa

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Goncharov, A. F.; Jacobsen, S. D.; Bina, C. R.; Frost, D. J.

    2009-05-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivity of the Earth's interior [e.g., 1]. Recent high-pressure studies show that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually could contribute to the heat flow in the Earth's interior [2]. In this study we use gem-quality single-crystals of hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, that were synthesized at 18 GPa and 1400 °C in a multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For absorption measurements a double-polished 50 μm sized single-crystal of wadsleyite was loaded in a diamond-anvil cell with neon as pressure medium. Optical absorption spectra were recorded at ambient conditions as well as up to 32 GPa from 400 to 50000 cm-1. At ambient pressure the absorption spectrum reveals two broad bands at - 10000 cm-1 and -15000 cm-1, and an absorption edge in the visible-ultraviolet range. With increasing pressure the absorption spectrum changes, both bands continuously shift to higher frequencies as has been observed for ringwoodite [2], but is contrary to earlier presumptions for wadsleyite [3]. Here, we will discuss band assignment along with the influence of iron, compare our results to previous absorption studies of mantle materials [2], and analyze possible implications for radiative conductivity of the transition zone. References: [1] Goncharov et al. (2008), McGraw Yearbook Sci. Tech., 242-245. [2] Keppler & Smyth (2005), Am. Mineral., 90 1209-1212. [3] Ross (1997), Phys. Chem. Earth, 22 113-118.

  20. The x-ray absorption spectra of water and ice

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Wu, Xifan; Car, Roberto

    2012-02-01

    We calculate the x-ray absorption spectra of liquid water at STP, hexagonal ice and amorphous low- and high-density ice at T=269K, using the static Coulomb-hole and screened exchange self energy approach ootnotetextW. Chen, X. Wu and R. Car, PRL 105, 017802 (2008) . We take the nuclear quantum effects into account by averaging over the Feynman path-integral replicas. We find that quantum disorder is particularly important in liquid water where it substantially improves the structure ootnotetextJ. Morrone and R. Car, PRL 101, 017801 (2008) Compared to Ref. 2, we use an improved screening model that includes the approximate local field correction ootnotetextM. Hybertsen and S. G. Louie, PRB 37, 2733 (1988). The resulting spectra are in significantly better agreement with experiments than in previous calculations.

  1. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  2. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  3. Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra

    SciTech Connect

    Groot, F. M. F. de

    2007-02-02

    This paper discusses the role of resonant inelastic X-ray scattering (RIXS) to unravel the nature of the states that are visible in the pre-edge region of the 3d metal K edges. The traditional pre-edge analysis into quadrupole transitions to the 3d-states plus dipole transitions to the 4p states is outlined, with special attention to the situation of TiO2. The general possibilities of RIXS are described, including the various possible cross-sections through the 2D RIXS plane. Recent developments in High-Energy Resolution Fluorescence Detection (HERFD) are discussed, that yield XANES-like spectra with unprecedented resolution. Using the 1s2p RIXS of LiCoO2 as example, the presence of an extra peak due to non-local dipole transitions is explained. The non-local nature of this dipole pre-edge peak is proven from its behavior in the 2D RIXS plane. The paper also discusses a range of selective X-ray absorption experiments, where the selectivity is towards (a) the spin-state, (b) the valence, (c) the neighbor atom and (d) the edge. In the outlook, a number of additional experimental routes is suggested, which shows that the use of RIXS, HERFD and selective XAS techniques is only just starting.

  4. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  5. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  6. Neutron capture cross section standards for BNL 325, Fourth Edition

    SciTech Connect

    Holden, N.E.

    1981-01-01

    This report evaluates the experimental data and recommends values for the thermal neutron cross sections and resonance integrals for the neutron capture reactions: /sup 55/Mn(n,..gamma..), /sup 59/Co(n,..gamma..) and /sup 197/Au(n,..gamma..). The failure of lithium and boron as standards due to the natural variation of the absorption cross sections of these elements is discussed. The Westcott convention, which describes the neutron spectrum as a thermal Maxwellian distribution with an epithermal component, is also discussed.

  7. NOTE: Visible absorption spectra of radiation exposed SIRAD dosimeters

    NASA Astrophysics Data System (ADS)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.

    2006-12-01

    SIRAD badge dosimeters are a new type of personal dosimeter designed to measure radiation exposure up to 200 R and give a visual qualitative measurement of exposure. This is performed using the active dosimeter window, which contains a radiochromic material amalgamated in the badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Measurements have been performed to analyse the absorption spectra of the active window, and results show that the window automatically turns a blue colour upon irradiation and produces two peaks in the absorption spectra located at 617 nm and 567 nm. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 at 50 R exposure and 0.31 at 200 R exposure when irradiated with a 6 MV x-ray energy beam. When compared to the calibration colour strips at 6 MV x-ray energy the film's OD response matches relatively well within 3.5%. An approximate 8% reduction in measured OD to exposure was seen for 250 kVp x-rays compared to 6 MV x-rays. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0 to 200 R.

  8. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  9. Can cross sections be accurately known for priori?

    SciTech Connect

    Pigni,M.T.; Dietrich, F.S.; Herman, M.; Oblozinsky, P.

    2008-06-24

    Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin of this oscillating structure. Specifically, we analyze the case of neutron reactions on {sup 56}Fe, for which total cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70 MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth V{sub v} by its expected uncertainty {+-}{Delta}V{sub v}. Inspecting the effect of this perturbation on the partial wave cross sections we found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves. Similar considerations can be extended for the third minimum, although it can be also explained in terms of the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the potential importance of these minima for practical applications as well as the implications of this work for the uncertainties in total and absorption cross sections.

  10. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  11. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  12. Coherent to incoherent cross section ratio for 59.54 keV gamma rays at scattering angle of 110°

    SciTech Connect

    Singh, M. P.; Singh, Bhajan; Sandhu, B. S.; Sharma, Amandeep

    2015-08-28

    The coherent (Rayleigh) to incoherent (Compton) scattering cross-section ratio of elements, in the range 13 ≤ Z ≤ 82, are determined experimentally for 59.54 keV incident gamma photons. An HPGe (High purity germanium) semiconductor detector is employed, at scattering angle of 110°, to record the spectra originating from interactions of incident gamma photons with the target under investigation. The intensity ratio of Rayleigh to Compton scattered peaks observed in the recorded spectra, and corrected for photo-peak efficiency of gamma detector and absorption of photons in the target and air, along with the other required parameters provides the differential cross-section ratio. The measured values of cross-section ratio are found to agree with theoretical predictions based upon non-relativistic form factor, relativistic form factor, modified form factor and S-matrix theory.

  13. Cross sections for actinide burner reactors

    SciTech Connect

    Difilippo, F.C.

    1991-01-01

    Recent studies have shown the feasibility of burning higher actinides (i.e., transuranium (TRU) elements excluding plutonium) in ad hoc designed reactors (Actinide Burner Reactors: ABR) which, because of their hard neutron spectra, enhance the fission of TRU. The transmutation of long-lived radionuclides into stable or short-lived isotopes reduces considerably the burden of handling high-level waste from either LWR or Fast Breeder Reactors (FBR) fuels. Because of the large concentrations of higher actinides in these novel reactor designs the Doppler effect due to TRU materials is the most important temperature coefficient from the point of view of reactor safety. Here we report calculations of energy group-averaged capture and fission cross sections as function of temperature and dilution for higher actinides in the resolved and unresolved resonance regions. The calculations were done with the codes SAMMY in the resolved region and URR in the unresolved regions and compared with an independent calculation. 4 refs., 2 figs., 2 tabs.

  14. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    SciTech Connect

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.

  15. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  16. Elastic photonuclear cross sections for bremsstrahlung from relativistic ions

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Rune E.; Sørensen, Allan H.; Uggerhøj, Ulrik I.

    2016-04-01

    In this paper, we provide a procedure to calculate the bremsstrahlung spectrum for virtually any relativistic bare ion with charge 6e or beyond, Z ⩾ 6 , in ultraperipheral collisions with target nuclei. We apply the Weizsäcker-Williams method of virtual quanta to model the effect of the distribution of nuclear constituents on the interaction of the ion with the radiation target. This leads to a bremsstrahlung spectrum peaking at 2 γ times the energy of the giant dipole resonance (γ is the projectile energy in units of its rest energy). A central ingredient in the calculation is the cross section for elastic scattering of photons on the ion. This is only available in the literature for a few selected nuclei and, usually, only in a rather restricted parameter range. Hence we develop a procedure applicable for all Z ⩾ 6 to estimate the elastic scattering. The elastic cross section is obtained at low to moderate photon energies, somewhat beyond the giant dipole resonance, by means of the optical theorem, a dispersion relation, and data on the total absorption cross section. The cross section is continued at higher energies by invoking depletion due to loss of coherence in the scattering. Our procedure is intended for any ion where absorption data is available and for moderate to high energies, γ ≳ 10 .

  17. Absorption and electroabsorption spectra of carotenoid cation radical and dication

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-05-01

    Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl 3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D 0→D 2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D 0→D 2 transition exhibits a negative change of molecular polarizability, Δ α=-1.2·10 -38 C·m 2/V (-105 A 3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D 1 and D 2 excited states. Absorption spectrum of astaxanthin dication is located at 715-717 nm, between those of D 0→D 2 in cation radical and S 0→S 2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δ α=2.89·10 -38 C·m 2/V (260 A 3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.

  18. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    PubMed

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics. PMID:26616067

  19. Cross Section Evaluations for Arsenic Isotopes

    SciTech Connect

    Pruet, J; McNabb, D P; Ormand, W E

    2005-03-10

    The authors present an evaluation of cross sections describing reactions with neutrons incident on the arsenic isotopes with mass numbers 75 and 74. Particular attention is paid to (n,2n) reactions. The evaluation for {sup 75}As, the only stable As isotope, is guided largely by experimental data. Evaluation for {sup 74}As is made through calculations with the EMPIRE statistical-model reaction code. Cross sections describing the production and destruction of the 26.8 ns isomer in {sup 74}As are explicitly considered. Uncertainties and covariances in some evaluated cross sections are also estimated.

  20. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  1. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 μm

    NASA Astrophysics Data System (ADS)

    Reed, Zachary D.; Hodges, Joseph T.

    2015-07-01

    The absorption spectrum of ethane was measured by frequency-stabilized cavity ring-down spectroscopy over the wave number range 5950-5967 cm-1. Spectra are reported for both pure ethane acquired at pressures near 3 Pa and mixtures of ethane in air at pressures ranging from 666 Pa to 101.3 kPa. Absorption cross sections are reported with a spectrum sampling period of 109 MHz and frequency resolution of 200 kHz. Atmospheric pressure cross sections agree fairly well with existing cross sections determined by FTS in nitrogen, but there are significant variations in cross sections at lower pressures. Source identification of fugitive methane emissions using spectroscopic measurements of the atmospheric ethane-to-methane ratio is also discussed.

  2. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  3. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  4. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  5. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  6. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  7. Reaction cross sections of unstable nuclei

    SciTech Connect

    Ozawa, Akira

    2006-11-02

    Experimental studies on reaction cross sections are reviewed. The recent developments of radioactive nuclear beams have enabled us to measure reaction cross-sections for unstable nuclei. Using Glauber-model analysis, effective nuclear matter density distributions of unstable nuclei can be studied. Recent measurements in RIBLL at IMP and RIPS at RIKEN are introduced. The effective matter density distributions for 14-18C are also mentioned.

  8. Path forward for dosimetry cross sections

    SciTech Connect

    Griffin, P.J.; Peters, C.D.

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data

  9. Infrared cross-sections and integrated band intensities of propylene: Temperature-dependent studies

    NASA Astrophysics Data System (ADS)

    Es-sebbar, Et-touhami; Alrefae, Majed; Farooq, Aamir

    2014-01-01

    Propylene, a by-product of biomass burning, thermal cracking of hydrocarbons and incomplete combustion of fossil fuels, is a ubiquitous molecule found in the environment and atmosphere. Accurate infrared (IR) cross-sections and integrated band intensities of propylene are essential for quantitative measurements and atmospheric modeling. We measured absolute IR cross-sections of propylene using Fourier Transform Infrared (FTIR) Spectroscopy over the wavenumber range of 400-6500 cm-1 and at gas temperatures between 296 and 460 K. We recorded these spectra at spectral resolutions ranging from 0.08 to 0.5 cm-1 and measured the integrated band intensities for a number of vibrational bands in certain spectral regions. We then compared the integrated band intensities measured at room temperature with values derived from the National Institute of Standards and Technology (NIST) and the Pacific Northwest National Laboratory (PNNL) databases. Our results agreed well with the results reported in the two databases with a maximum deviation of about 4%. The peak cross-sections for the primary bands decreased by about 20-54% when the temperature increased from 296 to 460 K. Moreover, we determined the integrated band intensities as a function of temperature for certain features in various spectral regions; we found no significant temperature dependence over the range of temperatures considered here. We also studied the effect of temperature on absorption cross-section using a Difference Frequency Generation (DFG) laser system. We compared the DFG results with those obtained from the FTIR study at certain wavenumbers over the 2850-2975 cm-1 range and found a reasonable agreement with less than 10% discrepancy.

  10. Predicting the Total Charm Cross Section

    SciTech Connect

    Vogt, R

    2008-05-29

    We discuss the energy dependence of the total charm cross section and some of its theoretical uncertainties including the quark mass, scale choice and the parton densities. Extracting the total charm cross section from data is a non-trivial task. To go from a finite number of measured D mesons in a particular decay channel to the total c{bar c} cross section one must: divide by the branching ratio for that channel; correct for the luminosity, {sigma}{sub D} = N{sub D}/Lt; extrapolate to full phase space from the finite detector acceptance; divide by two to get the pair cross section from the single Ds; and multiply by a correction factor to account for unmeasured charm hadrons. Early fixed-target data were at rather low p{sub T}, making the charm quark mass the most relevant scale. At proton and ion colliders, although the RHIC experiments can access the full pT range and thus the total cross section, the data reach rather high p{sub T}, p{sub T} >> m, making p{sub T} (m{sub T}) the most relevant scale. Here we focus on the total cross section calculation where the quark mass is the only relevant scale.

  11. QuickSite Cross Section Processing

    2003-05-27

    This AGEM-developed system produces cross sections by inputting data in both standard and custom file formats and outputting a graphic file that can be printed or further modified in a commercial graphic program. The system has evolved over several years in order to combine and visualize a changing set of field data more rapidly than was possible with commercially available cross section software packages. It uses some commercial packages to produce the input and tomore » modify the output files. Flexibility is provided by a dynamic set of programs that are customized to accept varying input and accomodate varying output requirements. There are two basic types of routines: conversion routines and cross section generation routines. The conversion routines convery various data files to logger file format which is compatible with a standard file format for LogPlot 98, a commonly used commercial log plotting program. The cross section routines generate cross sections and apply topography to these cross sections. All of the generation routines produce a standard graphic DXF file, which is the format used in AutoCAD and can then be modified in a number of available graphics programs.« less

  12. SU-E-I-43: Photoelectric Cross Section Revisited

    SciTech Connect

    Haga, A; Nakagawa, K; Kotoku, J; Horikawa, Y

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock

  13. Constraining The Reionization History With QSO Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. R.; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an Early Reionization Model (ERM) in which the intergalactic medium is reionized by PopIII stars at z~14, and (ii) a more standard Late Reionization Model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z~6. An example of simulated spectra is provided by FIG.1. From the analysis of current Lyα forest data at z<6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z>6, however, clear differences start to emerge which are best quantified by the dark gap width distribution. We find that 35 (zero) per cent of the lines of sight within 5.750Å in the rest frame of the QSO if re-ionization is not (is) complete at z>~6 (FIG.2). Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the lines of sight in the redshift range 6.0-6.6; in the same range, LRM predicts no peaks of width >0.8Å (FIG.3). We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z>6.

  14. FTR Set 500: a multigroup cross-section set for FTR analysis

    SciTech Connect

    Mann, F M

    1982-02-01

    FTR Set 500 is a 53-neutron-group, 20-photon-group, cross-section set based on ENDF/B-V cross sections and neutron spectra typical of the Fast Test Reactor (FTR). This report describes the specifications and processing of Set 500 and provides one-group values of this set for use in limited FTR analyses.

  15. Photoionization cross sections and oscillator strengths of neutral cesium

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Nadeem, Ali; Nawaz, M.

    2012-11-01

    The absolute photoionization cross sections from the 6p 2P1/2 excited state of cesium at threshold and above the threshold region have been measured using the saturation absorption technique. The photoionization cross section at the ionization threshold is determined as 22.6±3.6 Mb, whereas in the region above threshold its value ranges from 22 to 20 Mb for photoelectron energies up to 0.1 eV. A comparison of the photoionization cross sections with earlier reported theoretical and experimental data have been presented and are in good agreement within the uncertainty. In addition, the oscillator strengths of the 6p 2P1/2→n d 2D3/2 (21≤n≤60) Rydberg transitions of cesium have been calibrated using the threshold value of the photoionization cross section. A complete picture of the oscillator strengths from the present work and previously reported data from n=5-60 is presented.

  16. Flat gain cross-section of 1.5 mm amplifier in Er3+-doped oxyfluoride glass-ceramics

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Tikhomirov, V. K.; Seddon, A. B.; Rodríguez, V. D.

    2004-07-01

    Room temperature emission and absorption spectra corresponding respectively to the 4I13/2 4I15/2 transitions of the Er3+ in oxyfluoride glass-ceramics, 32(SiO2) 9(AlO1.5) 31.5(CdF2) 18.5(PbF2) 5.5(ZnF2): 3.5(ErF3) mol%, and its parent precursor glass, have been measured. The concentration of Er3+ ions has been estimated at 1.06 × 1021 ions/cm3 from a molar density measurement. The radiative lifetime rad of the emitting level 4I13/2 was obtained from the experimental absorption oscillator strength. The stimulated emission cross-section has been calculated based on the experimental spontaneous emission spectrum using the Füchtbauer-Ladenburg equation. Using the measured absorption and calculated stimulated emission cross-sections, the wavelength dependence of the net gain cross-section, as a function of population inversion of the excited 4I13/2 and ground 4I15/2 states, has been computed. In the glass-ceramic sample, gain was found to be almost flat in the range 1.50 to 1.56 μm, corresponding to S- and C-bands of telecommunications, for population inversion between 0.8 to 1.0.

  17. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  18. Molecular structures and absorption spectra assignment of corrole NH tautomers.

    PubMed

    Beenken, Wichard; Presselt, Martin; Ngo, Thien H; Dehaen, Wim; Maes, Wouter; Kruk, Mikalai

    2014-02-01

    The individual absorption spectra of the two NH tautomers of 10-(4,6-dichloropyrimidin-5-yl)-5,15-dimesitylcorrole are assigned on the basis of the Gouterman four-orbital model and a quantum chemical TD-DFT study. The assignment indicates that the red-shifted T1 tautomer is the one with protonated pyrrole nitrogen atoms N(21), N(22) and N(23), whereas the blue-shifted T2 tautomer has pyrrole nitrogen atoms N(21), N(22) and N(24) protonated. A wave-like nonplanar distortion of the macrocycle in the ground state is found for both NH tautomers, with the wave axis going through the pyrroles containing N(22) and N(24). The 7C plane determined by the least-squares distances to the carbon atoms C1, C4, C5, C6, C9, C16, and C19 is suggested as a mean corrole macrocycle plane for the analysis of out-of-plane distortions. The magnitude of these distortions is distinctly different for the two NH tautomers, leading to substantial perturbations of their acid-base properties, which are rationalized by the interplay of the degree of out-of-plane distortion of the macrocycle as a whole and the tendency of the pyrrole nitrogen atoms toward pyramidalization, with the former leading to a basicity increase whereas the latter enhances the acidity. PMID:24432802

  19. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J.W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  20. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  1. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  2. Undergraduate Measurements of Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Santonil, Z. C.; Crider, B. P.; Peters, E. E.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    Undergraduate students at the University of Dallas have investigated basic properties of nuclei through γ-ray and neutron spectroscopy following neutron scattering. The former has been used primarily for nuclear structure investigations, while the latter has been used to measure neutron scattering cross sections important for fission reactor applications. A series of (n,n') and (n,n'γ) measurements have been made on 54Fe and 56Fe to determine neutron cross sections for scattering to excited levels in these nuclei. The former provides the cross sections directly and the latter are used to deduce inelastic neutron scattering cross sections by measuring the γ-ray production cross sections to states not easily resolved in neutron spectroscopy. All measurements have been completed at the University of Kentucky Accelerator Laboratory using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. Students participate in accelerator operation, experimental setup, data acquisition, and data analyses. An overview of the research program and student contributions is presented.

  3. Reduction Methods for Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  4. Modeling the heavy ion upset cross section

    NASA Astrophysics Data System (ADS)

    Connell, L. W.; McDaniel, P. J.; Prinja, A. K.; Sexton, F. W.

    1995-04-01

    The standard Rectangular Parallelepiped (RPP) construct is used to derive a closed form expression for, sigma-bar (theta, phi, L) the directional-spectral heavy ion upset cross section. This is an expected value model obtained by integrating the point-value cross section model, sigma (theta, phi, L, E), also developed here, with the Weibull density function, f(E), assumed to govern the stochastic behavior of the upset threshold energy, E. A comparison of sigma-bar (theta, phi, L) with experimental data show good agreement, lending strong credibility to the hypothesis that E-randomness is responsible for the shape of the upset cross section curve. The expected value model is used as the basis for a new, rigorous mathematical formulation of the effective cross section concept. The generalized formulation unifies previous corrections to the inverse cosine scaling, collapsing to Petersen's correction, (cos theta - (h/l) sin theta)(sup -1), near threshold and Sexton's, (cos theta + (h/l) sin theta)(sup -1), near saturation. The expected value cross section model therefore has useful applications in both upset rate prediction and test data analysis.

  5. Report on 238Pu(n,x) surrogate cross section measurement

    SciTech Connect

    Burke, J T; Ressler, J J; Henderson, R A; Scielzo, N D; Escher, J E; Thompson, I J; Gostic, J; Bleuel, D; Weideking, M; Bernstein, L A

    2010-03-31

    The goal of this year's effort is to measure the {sup 238}Pu(n,f) and {sup 238}Pu(n,2n) cross section from 100 keV to 20 MeV. We designed a surrogate experiment that used the reaction {sup 239}Pu(a,a{prime}x) as a surrogate for {sup 238}Pu(n,x). The experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory in January 2010. A description of the experiment and status of the data analysis is given. In order to obtain a reliable {sup 238}Pu(n,x) cross section we designed the experiment using the surrogate ratio technique. This technique allows one to measure a desired, unknown, cross section relative to a known cross section. In the present example, the {sup 238}Pu(n,x) cross section of interest is determined relative to the known {sup 235}U(n,x) cross section. To increase confidence in the results, and to reduce overall uncertainties, we are also determining the {sup 238}Pu(n,x) cross section relative to the known {sup 234}U(n,x) cross section. The compound nuclei of interest for this experiment were produced using inelastic alpha scattering. For example, {sup 236}U(a,a{prime}x) served as a surrogate for {sup 235}U(n,x); analogous reactions were considered for the other cross sections. Surrogate experiments determine the probabilities for the decay of the compound nuclei into the various channels of interest (fission, gamma decay) by measuring particle-fission (p-f) or particle?gamma (p?g) reaction spectra. By comparing the decay probabilities associated with the unknown cross section to that of a known cross section it is possible to obtain the ratio of these cross sections and thus determine the unknown, desired cross section.

  6. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  7. The cross section for double Compton scattering

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1984-01-01

    Employing elementary methods in nonrelativistic quantum electrodynamics, the cross section for gamma sub 0 + e yields e + gamma + gamma is computed for arbitrary energy in the spectrum of the outgoing photons. The final result is given, differential in the energy of one of these photons, for the case where the incident photon is unpolarized and has energy E sub 0 much less than mc-squared, a polarization sum and angular integration being performed for the final-state photons. The cross section has a simple algebraic form resulting from contributions from the sum of squared direct and exchange amplitudes; interference terms from these amplitudes do not contribute to the angular-integrated cross section.

  8. Top differential cross section measurements (Tevatron)

    SciTech Connect

    Jung, Andreas W.

    2012-01-01

    Differential cross sections in the top quark sector measured at the Fermilab Tevatron collider are presented. CDF used 2.7 fb{sup -1} of data and measured the differential cross section as a function of the invariant mass of the t{bar t} system. The measurement shows good agreement with the standard model and furthermore is used to derive limits on the ratio {kappa}/M{sub Pl} for gravitons which decay to top quarks in the Randall-Sundrum model. D0 used 1.0 fb{sup -1} of data to measure the differential cross section as a function of the transverse momentum of the top-quark. The measurement shows a good agreement to the next-to-leading order perturbative QCD prediction and various other standard model predictions.

  9. Absolute photoionization cross-section of the methyl radical.

    SciTech Connect

    Taatjes, C. A.; Osborn, D. L.; Selby, T.; Meloni, G.; Fan, H.; Pratt, S. T.; Chemical Sciences and Engineering Division; SNL

    2008-01-01

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH{sub 3} photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; {sigma}{sub CH}(10.2 eV) = (5.7 {+-} 0.9) x 10{sup -18} cm{sup 2} and {sigma}{sub CH{sub 3}}(11.0 eV) = (6.0 {+-} 2.0) x 10{sup -18} cm{sup 2}. The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH{sub 3} and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.460 eV, (5.5 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.466 eV, and (4.9 {+-} 2.0) x 10{sup -18} cm{sup 2} at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  10. Constraining the reionization history with QSO absorption spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. Roy; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an early reionization model (ERM) in which the intergalactic medium is reionized by Pop III stars at z ~ 14, and (ii) a more standard late reionization model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z ~ 6. From the analysis of current Lyα forest data at z < 6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z > 6, however, clear differences start to emerge which are best quantified by the dark gap and peak width distributions. We find that 35 (0) per cent of the lines of sight (LOS) within 5.7 < z < 6.3 show dark gaps of widths >50Å in the rest frame of the QSO if reionization is not (is) complete at z >~ 6. Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the LOS in the redshift range 6.0-6.6 in the same range, LRM predicts no peaks of width >0.8Å. We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z > 6. We finally discuss strengths and limitations of our method.

  11. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  12. Revised cross section for RHIC dipole magnets

    SciTech Connect

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    Using the experience gained in designing and building Relativistic Heavy Ion Collider (RHIC) dipole prototype magnets an improved cross section has been developed. Significant features of this design include the use of only three wedges for field shaping and wedge cross sections which are sectors of an annulus. To aid in the understanding of the actual magnets, one has been sectioned, and detailed mechanical and photographic measurements made of the wire positions. The comparison of these measurements with the magnetic field measurements will is presented. 2 refs, 3 figs., 2 tabs.

  13. Cross sections of neutron-induced reactions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2010-10-15

    We study the properties of the neutron-nucleus total and reaction cross sections for several nuclei. We have applied an analytical model, the nuclear Ramsauer model, justified it from the nuclear reaction theory approach, and extracted the values of 12 parameters used in the model. The given parametrization has an advantage as phenomenological optical model potentials are limited up to 150-200 MeV. The present model provides good estimates of the total cross sections for several nuclei particularly at high energies.

  14. Improved cross section calculations for astrophysical applications

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    Modifications are proposed for the semiempirical equations and parameters of Silberberg and Tsao (1973) for partial cross section calculations of proton-nucleus reactions in cosmic rays. These modifications include: adjustment of general parameters; modification of energy dependence; effects of nuclear alpha-particle structure, deuteron emission, and even-charged products; peripheral reactions; fission reactions; averaging cross sections near boundaries of different parameters; elimination of certain special cases; and treatment of the Pt to Pb group that cannot yet be generalized to Z(t) less than 76.

  15. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  16. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  17. Resonance and absorption spectra of the Schwarzschild black hole for massive scalar perturbations: A complex angular momentum analysis

    SciTech Connect

    Decanini, Yves; Raffaelli, Bernard; Folacci, Antoine

    2011-10-15

    We reexamine some aspects of scattering by a Schwarzschild black hole in the framework of complex angular momentum techniques. More precisely, we consider, for massive scalar perturbations, the high-energy behavior of the resonance spectrum and of the absorption cross section by emphasizing analytically the role of the mass. This is achieved (i) by deriving asymptotic expansions for the Regge poles of the S-matrix and then for the associated weakly damped quasinormal frequencies and (ii) by taking into account the analytic structure of the greybody factors which allows us to extract by resummation the physical information encoded in the absorption cross section.

  18. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  19. Cross-sectional structural parameters from densitometry

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Whalen, Robert T.

    2002-01-01

    Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.

  20. Cross sections relevant to gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Dyer, P.; Bodansky, D.; Maxson, D. R.

    1978-01-01

    Gamma-ray production cross sections were measured for protons and alpha particles incident on targets consisting of nuclei of high cosmic abundance: C-12, N-14, O-16, Ne-20, Mg-24, Si-28 and Fe-56. Solid or gaseous targets were bombarded by monoenergetic beams of protons and alpha particles, and gamma rays were detected by two Ge(Li) detectors. The proton energy for each target was varied from threshold to about 24 MeV (lab); for alphas the range was from threshold to about 27 MeV. For most transitions, it was possible to measure the total cross section by placing the detectors at 30.5 deg and 109.9 deg where the fourth-order Legendre polynomial is zero. For the case of the 16O (E sub gamma = 6.13 MeV, multipolarity E3) cross sections, yields were measured at four angles. Absolute cross sections were obtained by integrating the beam current and by measuring target thicknesses and detector efficiencies. The Ge(Li) detector resolution was a few keV (although the peak widths were greater, due to Doppler broadening).

  1. Cross Sections From Scalar Field Theory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  2. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  3. Electron impact excitation cross sections for carbon

    NASA Astrophysics Data System (ADS)

    Ganas, P. S.

    1981-04-01

    A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p 2( 3P O) valence state.

  4. Photon interference effect in x-ray absorption spectra over a wide energy range

    NASA Astrophysics Data System (ADS)

    Nishino, Y.; Ishikawa, T.; Suzuki, M.; Kawamura, N.; Kappen, P.; Korecki, P.; Haack, N.; Materlik, G.

    2002-09-01

    We consider fundamental structures in x-ray absorption spectra over a wide energy range. We formulate the elastic scattering in addition to the photoelectric absorption in recently reported photon interference x-ray absorption fine structure (πXAFS). The simulations show excellent agreement with experimental x-ray absorption spectra for platinum and tungsten powders far above and below the L absorption edges. πXAFS can be as big as in the order of 10% of XAFS, and cannot be easily neglected in detailed analysis of XAFS and related phenomena.

  5. [Study for differential cross section of ring effect].

    PubMed

    Han, Dong; Chen, Liang-fu; Su, Lin; Tao, Jin-hua; Li, Shen-shen; Yu, Chao; Wang, Zi-feng

    2010-08-01

    The Ring effect is a significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with differential optical absorption spectroscopy technique. The Ring effect refers to the filling in of Fraunhofer lines, known as solar absorption lines, caused almost entirely by rotational Raman scattering. The inelastic component of the molecular scattering results in a net increase in radiance in the line because more radiation is shifted to the wavelength of an absorption line than shifted from this wavelength to other wavelengths. The rotational Raman scattering by N2 and Oz in the atmosphere is the main factor that leads to Ring effect. Basically, the Ring effect is considered as a pseudo-absorption process in retrieval of trace gas constituents in atmosphere. The solar spectrum measured by OMI/AURA is convolved with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum. This method has been suggested in order to obtain an effective differential Ring cross-section for the DOAS fitting process. The differential Ring spectrum could be used to improve the accuracy of the retrieval of the trace gases concentration. The results in this paper have been in basic agreement with the corresponding results calculated with RTM, and the R2 Statistic is 0. 966 3. PMID:20939324

  6. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  7. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  8. Extension of the Bgl Broad Group Cross Section Library

    NASA Astrophysics Data System (ADS)

    Kirilova, Desislava; Belousov, Sergey; Ilieva, Krassimira

    2009-08-01

    The broad group cross-section libraries BUGLE and BGL are applied for reactor shielding calculation using the DOORS package based on discrete ordinates method and multigroup approximation of the neutron cross-sections. BUGLE and BGL libraries are problem oriented for PWR or VVER type of reactors respectively. They had been generated by collapsing the problem independent fine group library VITAMIN-B6 applying PWR and VVER one-dimensional radial model of the reactor middle plane using the SCALE software package. The surveillance assemblies (SA) of VVER-1000/320 are located on the baffle above the reactor core upper edge in a region where geometry and materials differ from those of the middle plane and the neutron field gradient is very high which would result in a different neutron spectrum. That is why the application of the fore-mentioned libraries for the neutron fluence calculation in the region of SA could lead to an additional inaccuracy. This was the main reason to study the necessity for an extension of the BGL library with cross-sections appropriate for the SA region. Comparative analysis of the neutron spectra of the SA region calculated by the VITAMIN-B6 and BGL libraries using the two-dimensional code DORT have been done with purpose to evaluate the BGL applicability for SA calculation.

  9. Solar-wind Ion-driven X-Ray Emission from Cometary and Planetary Atmospheres: Measurements and Theoretical Predictions of Charge-Exchange Cross-sections and Emission Spectra for O6+ + H2O, Co, Co2, Ch4, N2, NO, N2O, and Ar

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Mahapatra, D. P.; Schultz, D. R.; Ralchenko, Yu.; Moradmand, A.; El Ghazaly, M. O. A.; Chutjian, A.

    2015-08-01

    Relevant to modeling and understanding X-ray emission from cometary and planetary atmospheres, total cross-sections for 1.17 and 2.33 keV/u O6+ colliding with H2O, CO, CO2, CH4, N2, NO, N2O, and Ar have been measured for the processes of single, double, and triple charge exchanges. Using these measurements as benchmarks, synthetic emission spectra spanning the X-ray, UV, and visible range have been calculated based on theoretical treatment of the transfer of between one and six electrons from the target neutrals to the projectile ion, followed by radiative and non-radiative decay of the highly excited states produced in these collisions. The results help add to the base of knowledge required to simulate ion-neutral processes in astrophysical environments; refine the present understanding of these fundamental atomic processes; and guide future observations, laboratory measurements, and theoretical predictions.

  10. Determination of band oscillator strengths of atmospheric molecules from high resolution vacuum ultraviolet cross section measurements

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.

    1986-01-01

    An account is given of progress in work on (1) the determination of band oscillator strengths of the Schumann-Runge absorption bands of (16)O2 and (18)O2 from cross section measurements conducted at 79 K; (2) the determination of the absolute absorption cross section of the Schumann-Runge bands of (16)O(18)O from optical depth measurements performed on mixtures of (16)O2, (18)O2 and (16)O(18)O at 79K; and (3) the influence of Schumann-Runge linewing contributions on the determination of the Herzberg continuum absorption cross section of (16)O2 in the wavelength region 194 to 204 nm. The experimental investigations are effected at high resolution with a 6.65 m scanning spectrometer which is, by virtue of its small instrumental width (EWHM = 0.0013 nm), uniquely suitable for cross section measurements of molecular bands with discrete rotational structure. Absolute cross sections, which are independent of the instrumental function and from which band oscillator strengths are directly determined, are measured for the absorption bands that are most predissociated. Such measurements are needed for (1) accurate calculations of the stratospheric production of atomic oxygen and heavy ozone formed following the photopredissociation of (18)O(16)O by solar radiation penetrating between the absorption lines of (16)O2; (2) elucidation of the mechanism of predissociation of the upper state of the Schumann-Runge bands; and (3) determination of the true shape of the Herzberg continuum cross section.

  11. Interpretation of NO2 absorption in twilight sky spectra

    NASA Astrophysics Data System (ADS)

    McMahon, B. B.

    1984-07-01

    A multiple scattering model has been developed to calculate nitrogen dioxide (NO2) absorption in the light from the zenith sky during twilight. Model studies show that this absorption is not very sensitive to the atmospheric temperature profile or to tropospheric NO2. The model was used to interpret some ground-based measurements of NO2 sky absorption. Values for the total stratospheric column amount vary from 2 to 12 x 10 to the 15th molec/sq cm, and the mean altitude of the stratospheric concentration profile is around 35 km. These observations are in broad agreement with those of other workers.

  12. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  13. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  14. Calculation of improved spallation cross sections

    NASA Technical Reports Server (NTRS)

    Tsao, C. H.; Silberberg, R.; Letaw, J. R.

    1985-01-01

    Several research groups have recently carried out highly precise measurements (to about 10 percent) of high-energy nuclear spallation cross sections. These measurements, above 5 GeV, cover a broad range of elements: V, Fe, Cu, Ag, Ta and Au. Even the small cross sections far off the peak of the isotopic distribution curves have been measured. The semiempirical calculations are compared with the measured values. Preliminary comparisons indicate that the parameters of our spallation relations (Silberberg and Tsao, 1973) for atomic numbers 20 to 83 need modifications, e.g. a reduced slope of the mass yield distribution, broader isotopic distributions, and a shift of the isotopic distribution toward the neutron-deficient side. The required modifications are negligible near Fe and Cu, but increase with increasing target mass.

  15. Inclusive jet cross section at D0

    SciTech Connect

    Bhattacharjee, M.

    1996-09-01

    Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.

  16. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  17. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  18. {sup 231}Pa photofission cross section

    SciTech Connect

    Soldatov, A.S.; Rudnikov, V.E.; Smirenkin, G.N.

    1995-12-01

    The measurements of the {sup 231}Pa yield and cross section photofission in the energy range 7-9 MeV are presented. These measurements are a continuation of similar measurements performed for the {gamma}-ray energy range 4.8-7 MeV. The entire collection of experimental data which combine the results obtained in the present work and in Ref. 1 was analyzed.

  19. How to Calculate Colourful Cross Sections Efficiently

    SciTech Connect

    Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank

    2008-09-03

    Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.

  20. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  1. Inclusive jet cross section measurement at CDF

    SciTech Connect

    Pagliarone, C.

    1996-08-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  2. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions andmore » extends up to several hundreds of MeV for the Heavy Ion induced reactions.« less

  3. Thermal neutron cross section of liquid and solid mesitylene

    NASA Astrophysics Data System (ADS)

    Cantargi, F.; Blostein, J. J.; Torres, L.; Granada, J. R.

    2006-08-01

    Total cross sections of mesitylene at 293 K and at 89 K were measured at the electron LINAC based pulsed neutron source of Centro Atómico Bariloche. Preliminary frequency spectra were proposed for liquid and solid mesitylene at those temperatures combining experimental and synthetic contributions. Scattering law data files were generated with the NJOY nuclear data processing system. Good agreement between experiments and calculations is found, which represents a primary validation of the scattering kernels which are now being used for the design and optimization of a cold moderator employing that material.

  4. Comprehensive Nuclear Model Code, Nucleons, Ions, Induced Cross-Sections

    SciTech Connect

    2002-09-27

    EMPIRE-II is a flexible code for calculation of nuclear reactions in the frame of combined op0tical, Multistep Direct (TUL), Multistep Compound (NVWY) and statistical (Hauser-Feshbach) models. Incident particle can be a nucleon or any nucleus (Heavy Ion). Isomer ratios, residue production cross sections and emission spectra for neutrons, protons, alpha- particles, gamma-rays, and one type of Light Ion can be calculated. The energy range starts just above the resonance region for neutron induced reactions and extends up to several hundreds of MeV for the Heavy Ion induced reactions.

  5. Absorption spectra of graphene nanoribbons in a composite magnetic field

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Wu, M. F.; Hsieh, C. T.

    2015-10-01

    The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks can be further classified into principal and secondary peaks. The spectral intensity and frequency of the absorption peaks depend sensitively on the strength and modulation period of the composite field. The transition channels of the absorption peaks are also analyzed. There exists an optical selection rule which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the spectral frequency of the absorption peaks with the field strength is explored.

  6. Quality Quantification of Evaluated Cross Section Covariances

    SciTech Connect

    Varet, S.; Dossantos-Uzarralde, P.

    2015-01-15

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the {sup 85}Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations.

  7. Cross Section and Analyzing Power Measurements for Neutron Scattering from Aluminum and Cobalt and Spin - Cross Section Calculations

    NASA Astrophysics Data System (ADS)

    Nagadi, Mahmoud Mohamud

    Differential cross sections and analyzing power data have been measured for ^{27} Al and ^{59}Co at 15.5 MeV. Cross section data was also measured for ^{59}Co at 10, 12, 14, 17, and 19 MeV using standard time-of-flight techniques at the Triangle Universities Nuclear Laboratory (TUNL). Absolute normalization of the sigma(theta) data was performed using n-p scattering measurements. Both sigma(theta) and rm A_{y}(theta) were corrected for finite geometry, attenuation, relative efficiency, and multiple scattering effects using Monte Carlo techniques. A large data base was formed from our data and the existing data on ^{27}Al and ^{59}Co. This data base was used to develop a Dispersive Optical Model (DOM) and a Coupled Channels Model (CCM). The DOM model describes the data quite well above 8 MeV for ^{27 }Al and ^{59}Co. However, for data below 8 MeV the model is not as satisfactory, perhaps because of angular momentum l-dependencies in the absorptive potential. The CCM improved the description of the data over the DOM, but still does not describe the data well at low energies. The DOM and CCM for ^{27} Al and ^{59}Co were used to describe the spin-spin cross section data for ^{27}Al and ^{59}Co. We obtained a good fit for the spin-spin cross section with both the DOM and CCM with the spin-spin real surface parameters of V _{rm ss} = 0.80 MeV, r _{rm ss} = 1.00 fm and a _{rm ss} = 0.654 for both ^{27}Al and ^{59}Co. A surprising relation between the spin-spin cross section and the derivative of the total cross section with respect to energy, was discovered: sigma_{ss } = c {dsigma_{T} over dE} where c is a constant related to the slope of the real central potential and spin-spin potential strength. This observation is not yet understood.

  8. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  9. Effects of lowly ionized ions on silicon K-shell absorption spectra

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Liang, G. Y.; Wang, F. L.; Zhong, J. Y.; Zhao, G.

    2016-05-01

    Context. In both astrophysical and laboratory plasmas, K-shell absorption spectra have become powerful diagnostic tools to investigate electron density and temperature. These spectra are also widely used to verify the opacity codes in laboratory settings. Aims: We report the effects of the low ionization silicon ions, namely from Si I to Si V, which have rarely been considered in previous models, on the K-shell silicon absorption spectra. Methods: The Si K-shell atomic data were calculated with the flexible atomic code, which is a fully relativistic atomic program with configuration interaction taken into consideration. Detailed level accounting models were employed to calculate the absorption spectra. Results: We calculate the Si absorption spectra in local thermodynamic equilibrium conditions with temperature and density ranges of 20-70 eV and ~1020 cm-3 to ~1022 cm-3, respectively, and show the contributions of the lowly ionized ions to the K-shell absorption spectra of silicon. We also investigate the effects of the different atomic data on the absorption spectra. We find good agreement between our results and these from OPLIB. Conclusions: We find that the contributions from these lowly ionized ions cannot be neglected at relative low temperatures. Accurate experimental measurements are needed to benchmark the theoretical calculations.

  10. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  11. A method for normalization of X-ray absorption spectra

    SciTech Connect

    Weng, T.-C.; Waldo, G.S.; Penner-Hahn, J.E.

    2010-07-20

    Accurate normalization of X-ray absorption data is essential for quantitative analysis of near-edge features. A method, implemented as the program MBACK, to normalize X-ray absorption data to tabulated mass absorption coefficients is described. Comparison of conventional normalization methods with MBACK demonstrates that the new normalization method is not sensitive to the shape of the background function, thus allowing accurate comparison of data collected in transmission mode with data collected using fluorescence ion chambers or solid-state fluorescence detectors. The new method is shown to have better reliability and consistency and smaller errors than conventional normalization methods. The sensitivity of the new normalization method is illustrated by analysis of data collected during an equilibrium titration.

  12. Spectral history correction of microscopic cross sections for the PBR using the slowing down balance

    SciTech Connect

    Hudson, N.; Rahnema, F.

    2006-07-01

    A method has been formulated to account for depletion effects on microscopic cross sections within a Pebble Bed Reactor (PBR) spectral zone without resorting to calls to the spectrum (cross section generation) code or relying upon table interpolation between data at different values of burnup. In this method, infinite medium microscopic cross sections, fine group fission spectra, and modulation factors are pre-computed at selected isotopic states. This fine group information is used with the local spectral zone nuclide densities to generate new cross sections for each spectral zone. The local spectrum used to generate these microscopic cross sections is estimated through the solution to the cell-homogenized, infinite medium slowing down balance equation during the flux calculation. This technique is known as Spectral History Correction (SHC), and it is formulated to specifically account for burnup within a spectral zone. It was found that the SHC technique accurately calculates local broad group microscopic cross sections with local burnup information. Good agreement is obtained with cross sections generated directly by the cross section generator. Encouraging results include improvement in the converged fuel cycle eigenvalue, the power peaking factor, and the flux. It was also found that the method compared favorably to the benchmark problem in terms of the computational speed. (authors)

  13. Systematic view of optical absorption spectra in the actinide series

    SciTech Connect

    Carnall, W.T.

    1985-01-01

    In recent years sufficient new spectra of actinides in their numerous valence states have been measured to encourage a broader scale analysis effort than was attempted in the past. Theoretical modelling in terms of effective operators has also undergone development. Well established electronic structure parameters for the trivalent actinides are being used as a basis for estimating parameters in other valence states and relationships to atomic spectra are being extended. Recent contributions to our understanding of the spectra of 4+ actinides have been particularly revealing and supportive of a developing general effort to progress beyond a preoccupation with modelling structure to consideration of the much broader area of structure-bonding relationships. We summarize here both the developments in modelling electronic structure and the interpretation of apparent trends in bonding. 60 refs., 9 figs., 1 tab.

  14. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  15. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  16. Vibronic Structures in Absorption and Fluorescence Spectra of Firefly Oxyluciferin in Aqueous Solutions.

    PubMed

    Hiyama, Miyabi; Noguchi, Yoshifumi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2015-01-01

    To elucidate the factors determining the spectral shapes and widths of the absorption and fluorescence spectra for keto and enol oxyluciferin and their conjugate bases in aqueous solutions, the intensities of vibronic transitions between their ground and first electronic excited states were calculated for the first time via estimation of the vibrational Franck-Condon factors. The major normal modes, overtones and combination tones in absorption and fluorescence spectra are similar for all species. The theoretical full widths at half maximum of absorption spectra are 0.4-0.7 eV and those for the fluorescence spectra are 0.4-0.5 eV, except for phenolate-keto that exhibits exceptionally sharp peak widths due to the dominance of the 0-0' or 0'-0 band. These spectral shapes and widths explain many relevant features of the experimentally observed spectra. PMID:25946599

  17. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  18. Infrared absorption spectra of methylidene radicals in solid neon.

    PubMed

    Lu, Hsiao-Chi; Lo, Jen-Iu; Lin, Meng-Yeh; Peng, Yu-Chain; Chou, Sheng-Lung; Cheng, Bing-Ming; Ogilvie, J F

    2014-07-28

    Infrared absorption lines of methylidene--(12)C(1)H, (13)C(1)H, and (12)C(2)H--dispersed in solid neon at 3 K, recorded after photolysis of methane precursors with vacuum-ultraviolet light at 121.6 nm, serve as signatures of these trapped radicals. PMID:24912563

  19. Excitation and Charge Exchange Phenomena in Astronomical Objects: Measurement of Cross Sections and Lifetimes

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Smith, S.; Lozano, J.; Cadez, I.; Greewnood, J.; Mawhovter, R.; Williams, I.; Niimura, M.

    2003-01-01

    This document addresses extreme ultraviolet radiation and X-ray emissions from comets, planets and heliospheric gases focusing on the measurement of charge-exchange cross sections and radiative lifetimes. Highly-charged heavy ions present in the solar wind, and their abundance relative to the total oxygen-ion abundance are detailed. The plan for the Jet Propulsion Laboratory high-charge ion facility is outlined detailing its ability to measure absolute collisional excitation cross sections, absolute charge-exchange cross sections, lifetimes of metastable ion levels, and X-ray emission spectra following charge changes.

  20. Energy-dependent excitation cross section measurements of the diagnostic lines of Fe XVII.

    PubMed

    Brown, G V; Beiersdorfer, P; Chen, H; Scofield, J H; Boyce, K R; Kelley, R L; Kilbourne, C A; Porter, F S; Gu, M F; Kahn, S M; Szymkowiak, A E

    2006-06-30

    By implementing a large-area, gain-stabilized microcalorimeter array on an electron beam ion trap, the electron-impact excitation cross sections for the dominant x-ray lines in the Fe XVII spectrum have been measured as a function of electron energy establishing a benchmark for atomic calculations. The results show that the calculations consistently predict the cross section of the resonance line to be significantly larger than measured. The lower cross section accounts for several problems found when modeling solar and astrophysical Fe XVII spectra. PMID:16907303

  1. Principles and procedures for determining absolute differential electron-molecule (atom) scattering cross sections

    NASA Technical Reports Server (NTRS)

    Nickel, J. C.; Zetner, P. W.; Shen, G.; Trajmar, S.

    1989-01-01

    Procedures and calibration techniques for measuring the absolute elastic and inelastic differential cross sections (DCS) for electron impact on molecular (atomic) species are described and illustrated by examples. The elastic DCS for the molecule under study is first determined by calibration against helium using the relative flow technique. The second step involves the production of energy-loss spectra for the instrument response function, the unfolding of overlapping inelastic structures and the normalization of inelastic intensities to the elastic cross sections. It is concluded that this method of determining absolute differential electron-molecule (atom) scattering cross sections is generally applicable and provides reliable results.

  2. Averaging cross section data so we can fit it

    SciTech Connect

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  3. The calculation of radar cross sections

    NASA Astrophysics Data System (ADS)

    Pizer, R.

    1980-04-01

    The FORTRAN program CHAOS, used for calculating cross sections is described including the physical approximations used to simplify Maxwell's equations. The scattering bodies are extended to both open and closed surfaces. The numerical methods used are supplied. The problems of wire junctions, of finite conductivity and the attaching of lumped loads to the structure are considered. Techniques for dealing with bodies having rotational or left-right symmetries are examined as well as the sparse matrix approximation and the complex frequency version of CHAOS. The formula used to calculate the impedance matrix elements, and the conventions adopted concerning coordinate systems and polarization are included.

  4. Deep inelastic neutron scattering from orthorhombic ordered HCl: Short-time proton dynamics and anomalous neutron cross sections

    SciTech Connect

    Senesi, R.; Colognesi, D.; Pietropaolo, A.; Abdul-Redah, T.

    2005-08-01

    Deep inelastic neutron scattering measurements from orthorhombic ordered HCl are presented and analyzed in order to clarify the problem of an anomalous deficit in the neutron-proton cross section found in previous experiments on various materials. A reliable model for the HCl short-time single-particle dynamics, including atomic vibrational anisotropies and deviations from the impulsive approximation, is set up. The model HCl response function is transformed into simulated time-of-flight spectra, taking carefully into account the effects of instrumental resolution and the filter absorption profile used for neutron energy analysis. Finally, the experimental values of the anomalous reduction factor for the neutron-proton cross section are extracted by comparing simulated and experimental data. Results show a 34% reduction of the H cross section, varying with the scattering angle in a range centered at 53 deg. In addition, the same approximate procedure used in earlier studies is also employed, providing results in reasonable agreement with the more rigorous ones, and confirming the substantial reliability of the past work on this subject.

  5. Analysis of absorption and scattering spectra for assessing apple fruit internal quality after harvest and storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties are useful for quantifying light interaction with plant tissue, as well as for quality assessment of horticultural products. The aim of this research was to measure the absorption and reduced scattering coefficient spectra of two cultivars of apple (Malus...

  6. The absorption spectra of the complexes of uranium (VI) with some β-diketones

    USGS Publications Warehouse

    Feinstein, H.I.

    1956-01-01

    The absorption spectra of the complexes of uranium (VI) with four β-dike tones were determined under various conditions of pH, concentration of uranium, and alcohol concentration. Under optimum conditions, the maximum molar absorptivity (31,200) is obtained using 2-furoyltrifluoroacetone. This compares with about 4,000 and 19,000 for the thiocyanate and dibenzoylmethane complexes, respectively.

  7. Data processing of absorption spectra from photoionized plasma experiments at Za)

    NASA Astrophysics Data System (ADS)

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-01

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  8. Determining neutrino absorption spectra at ultra-high energies

    SciTech Connect

    Scholten, O; Van Vliet, A R E-mail: A.R.van.Vliet@student.rug.nl

    2008-06-15

    A very efficient method for measuring the flux of ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low energy relic anti-neutrino background through the Z boson resonance. The position of the absorption peak is sensitive to the neutrino mass and the redshift of the source. A new generation of low frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  9. An iron absorption model of gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Kargatis, Vincent E.

    1994-01-01

    Most gamma-ray bursts (GRBs) exhibit deficits of X-rays below approximately 200 keV. Here we consider a spectral model in which the burst source is shielded by an optically thick layer of circumburster material (CBM) rich in iron-group elements whose photoelectric absorption opacity exceeds the Thomson opacity below approximately 120 keV. For power-law distributions of absorption depths along the lines of sight the absorbed spectrum can indeed mimic the typial GRB spectrum. This model predicts that (a) the spectrum should evolve monotonically from hard to soft during each energy release, which is observed in most bursts, especially in fast rise exponential decay bursts; (b) Fe spectral features near 7 keV may be present in some bursts; and (c) the ratio of burst distances to the CBM and to Earth should be approximately 10(exp -11) if the spectral evolution is purely due to Fe stripping by the photons.

  10. Electronic absorption spectra of some arylidene pyrazolone derivatives

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. R.; El-Kashef, H. S.; El-Hamide, R. Abd

    The u.v. and visible spectra of some 1 - phenyl - 3 - methyl - 4 - arylidene - 2 - pyrazolin - 5 - one derivatives are investigated in pure and mixed organic solvents as well as in aqueous buffer solutions. Electronic transitions have been identified as either locally excited or predominantly charge transfer states. Moreover, the spectra of the hydroxy derivatives in proton acceptor solvents (DMF, DMSO, ethanol) are characterized by an extra band located at longer wavelengths, which is ascribed to an intermolecular CT transition. This involves an electron transfer from the lone pair of electrons of the oxygen atom of the solvent molecules (ψ ol) to the antibonding orbital of the substituent OH group. The spectral shifts are discussed in terms of medium effects and in relation to molecular structure. The variation of absorbance with pH is utilized for the determination of p K a for the dimethylamino and hydroxy derivatives.

  11. Ab initio investigation of the autoionization process Ar*(4s {sup 3}P{sub 2}, {sup 3}P{sub 0})+Hg{yields}(Ar-Hg){sup +}+e{sup -}: Potential energy curves and autoionization widths, ionization cross sections, and electron energy spectra

    SciTech Connect

    Thiel, Linda; Hotop, Hartmut; Meyer, Wilfried

    2005-05-08

    Multireference configuration interaction (MRCI) calculations have been performed for the Ar*(4s {sup 3}P{sub 2,0})+Hg collision complex. Feshbach projection based on orbital occupancy defines the entrance channel resonance states and provides their potential energy curves as well as resonance-continuum coupling matrix elements, which are turned into an autoionization width function by Stieltjes imaging. Coupled cluster calculations with singles, doubles, and pertubative triples [CCSD(T)] give the exit channel potential of ArHg{sup +}. The Hg{sup 20+} core is treated by a scalar-relativistic effective core potential, reparametrized to reproduce experimental excitation and ionization energies. Spin-orbit interaction is included for the Ar* open 3p shell. The nuclear motion is treated within the local complex potential approximation. Ionization occurs for 85% ({sup 3}P{sub 0}) and 98% ({sup 3}P{sub 2}) of the symmetry allowed close collisions. Calculated ionization cross sections show good agreement with experimental data. The difference potential of the collision complex is remarkably flat down to internuclear separations of 8a{sub 0} and leads to very sharp peaks in theoretical electron energy spectra for single collision energies. After accounting for the experimental energy distribution and the resolution function of the spectrometer, a very satisfying agreement with experimental electron energy spectra is found, including subtle differences due to spin-orbit coupling. Theoretical input appears indispensable for an analysis of the measured data in terms of potential energy curves and autoionization width functions.

  12. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  13. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  14. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  15. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; Garcia, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P. E-mail: claudio@ivic.gob.ve E-mail: alohfink@astro.umd.edu E-mail: michael.c.witthoeft@nasa.gov E-mail: palmeri@umons.ac.be

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N{sub H} = 1.38 {+-} 0.01 Multiplication-Sign 10{sup 21} cm{sup -2}; an ionization parameter of log {xi} = -2.70 {+-} 0.023; an oxygen abundance of A{sub O}= 0.689{sup +0.015}{sub -0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A{sub O}=0.952{sup +0.020}{sub -0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines-K{alpha}, K{beta}, and K{gamma} in O I and O II and K{alpha} in O III, O VI, and O VII-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  16. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  17. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2011-09-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  18. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  19. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  20. Neutronic Cross Section Calculations on Fluorine Nucleus

    NASA Astrophysics Data System (ADS)

    Kara, A.; Tel, E.

    2013-06-01

    Certain light nuclei such as Lithium (Li), Beryllium (Be), Fluorine (F) (which are known as FLİBE) and its molten salt compounds (LiF, BeF2 and NaF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure. These molten salt compounds are also a good neutron moderator. In this study, cross sections of neutron induced reactions have been calculated for fluorine target nucleus. The new calculations on the excitation functions of 19F( n, 2n), 19F( n, p), 19F( n, xn), 19F( n, xp) have been made. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, 2n) and ( n, p) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The multiple pre-equilibrium mean free path constant from internal transition have been investigated for 19F nucleus. The obtained results have been discussed and compared with the available experimental data.

  1. Polarized absorption spectra of (2,2) carbon nanotubes aligned in channels of an AEL crystal

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zhai, Jianpang; Li, Irene Ling; Ruan, Shuangchen; Tang, Zikang

    2015-11-01

    We report polarized absorption spectra for the (2,2) tubes arrayed in the one-dimensional channels of an AlPO4-11 (AEL) single crystal. Strong polarization dependence is observed indicating a preferential optical dipole along the axis of carbon nanotubes. By correlating with the absorption spectra and First-principles local density function (LDA) calculation, the absorption peak at 2.95 eV is uniquely assigned to semiconducting type (2,2) tubes, and peaks at 2.67 and 2.40 eV are corresponding to metallic type (2,2) tubes.

  2. Infrared absorption spectra of pure and doped YAl3(BO3)4 single crystals

    NASA Astrophysics Data System (ADS)

    Kovács, L.; Mazzera, M.; Beregi, E.; Capelletti, R.

    2009-02-01

    Several weak absorption bands have been observed in the optical absorption spectra of pure and rare-earth-doped YAl3(BO3)4 single crystals in the 3350- 3650 cm-1 wave number region. Two of them, peaking at about 3377 cm-1 and 3580 cm-1 in the 8 K spectra, appear in most of the samples. They are tentatively attributed to the stretching mode of OH- ions incorporated in the crystal during the growth. An additional absorption band at about 5250 cm-1 at 8 K has also been detected in almost all samples. The temperature and polarization dependences of these bands, and their possible origin, are discussed.

  3. Influence of electric fields on absorption spectra of AAB-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Chiu, Chih-Wei; Chen, Rong-Bin

    2016-06-01

    The tight-binding model and gradient approximation are, respectively, used to calculate the band structures and the absorption spectra of AAB-stacked trilayer graphene (AAB-TLG). AAB stacking, the lowest symmetric geometric structure in trilayer systems, induces the most atomic interactions, and thus, complicates the energy dispersions and the joint density of states. AAB stacking enriches the optical absorption spectra [A(ω)], which dictate the characteristics of the electronic structure. A(ω) are changed by the static electric field, such as the intensity, frequency, and number of absorption structures. These results contrast sharply with those for TLG in other stacking configurations.

  4. Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?

    PubMed

    Tian, Yuxi; Scheblykin, Ivan G

    2015-09-01

    Organometal halide (OMH) perovskites have attracted lots of attention over the last several years due to their very promising performance as the materials for solar cells and light-emitting devices. Photophysical processes in these hybrid organic-inorganic semiconductors are still heavily debated. To know precise absorption spectra is absolutely necessary for quantitative understanding of the fundamental properties of OMH perovskites. We show that to measure the absorption of perovskite materials correctly is a difficult task which could be easily overlooked by the community. Many of the published absorption spectra exhibit a characteristic step-like featureless shape due to light scattering, high optical density of individual perovskite crystals and poor coverage of the substrate. We show how to recognize these artifacts, to avoid them, and to use absorption spectra of films for estimation of the surface coverage ratio. PMID:27120683

  5. Absorption spectra and speciation of plutonium(VI) with phosphate

    SciTech Connect

    Weger, H.T.; Reed, D.

    1996-02-01

    Plutonium(VI)-phosphate species in aqueous solution, at pH < 2.4, formed two species: PuO{sub 2}H{sub 2}PO{sub 4}{sup +} (characterized by an 835 nm absorption band) and the solid phase PuO{sub 2}(H{sub 2}PO{sub 4}){sub 2}. The stability constant {beta} for the PuO{sub 2}H{sub 2}PO{sub 4}{sup +} species was determined to be log {beta} = 2.1 {+-} 0.1 (ionic strength = 0.6--0.9 M) and log {beta}{sup T} = 2.6 {+-} 0.15 (zero ionic strength). Four Pu(VI)-phosphate species (absorption bands at 842, 846, 857, and 866 nm) formed at pH = 2.4 to 12.2 and are characterized by polynuclear behavior, the formation of precipitates, and colloidal properties. The 842 and 846 nm species are believed to be [PuO{sub 2}(HPO{sub 4}){sub m}]{sub n} and [PuO{sub 2}(NaPO{sub 4}){sub m}]{sub n}. The 857 and 866 nm species area as yet unidentified. The speciation of plutonium with phosphate is of interest to radionuclide migration studies because phosphate is present in many groundwaters and may be used as an actinide getter in nuclear waste disposal. An actinide getter is a complexing agent that forms insoluble phases with actinides, thereby reducing their migration.

  6. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  7. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ∼ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  8. Linewidths in excitonic absorption spectra of cuprous oxide

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  9. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  10. Resonance Analysis and Evaluation of the Uranium -235 Neutron-Induced Cross-Sections

    NASA Astrophysics Data System (ADS)

    Leal, Luiz Carlos

    Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding, and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the ^{235}U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Delta_3 -statistics of Dyson and Mehta, along with high -resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron -nucleus cross-sections. The result of the analysis consists of a set of resonance parameters which describe the ^{235}U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the ^{235}U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations.

  11. Correlation cross sections along the international border

    SciTech Connect

    Martiniuk, C.D. ); Le Fever, J.A.; Anderson, S.B. )

    1991-06-01

    The Manitoba-North Dakota (Canada-US) stratigraphic correlation project is a joint study between the Petroleum Branch of Manitoba Energy and Mines and the North Dakota Geological Survey. It is an attempt to correlate the differing stratigraphic terminologies established in the two jurisdictions by providing a reference cross section across the international boundary. The study involves the subsurface correlation of logs of the Paleozoic and Mesozoic sequences in the Manitoba and North Dakota portions of the Williston basin. The Paleozoic and Mesozoic sequences are subdivided for presentation into the following stratigraphic intervals: (a) Cambrian-Ordovician-Silurian, (b) Devonian, (c) Mississippian, (d) Jurassic, and (e) Cretaceous. Wireline logs show the actual stratigraphic correlations. A nomenclature chart is also presented from each sequence. In addition, the sections include a generalized description of lithologies, thicknesses, environments of deposition, and petroleum potential for each geographic area.

  12. Photofission cross section of /sup 232/Th

    SciTech Connect

    Zhang, H.X.; Yeh, T.R.; Lancman, H.

    1986-10-01

    The photofission cross section of /sup 232/Th was measured in the 5.8-12 MeV energy range with an average photon energy resolution of 600 eV. Intermediate structure was observed at 5.91, 5.97, and 6.31 MeV. The experimental fission probability and various properties of the intermediate structure were compared with calculated values based on a double-humped fission barrier as well as a triple-humped one. The results favor, though not decisively, the presence of a shallow third well in the barrier. Certain features of both barriers, a rather high first hump and a deep secondary well, are quite different from those predicted by current theoretical barrier calculations.

  13. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  14. Top cross section measurement at CDF

    SciTech Connect

    Compostella, Gabriele; /INFN, CNAF /Padua U.

    2010-01-01

    This paper describes the latest measurements of the t{bar t} pair production cross section performed by the CDF Collaboration analyzing p{bar p} collisions at a center-of-mass energy of 1.96 TeV from Fermilab Tevatron, as presented at the XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects. In order to test Standard Model predictions, several analysis methods are explored and all the top decay channels are considered, to better constrain the properties of the top quark and to search for possible sources of new physics affecting the pair production mechanism. Experimental results using an integrated luminosity up to 5.1 fb{sup -1} are presented.

  15. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  16. Geophysical Fluid Flow Cell (GFFC) Cross Section

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This drawing shows a cross-section view of the test cell at the heart of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. The middle and lower drawings depict the volume of the silicone oil layer that served as the atmosphere as the steel ball rotated and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)

  17. Collision cross sections for structural proteomics.

    PubMed

    Marklund, Erik G; Degiacomi, Matteo T; Robinson, Carol V; Baldwin, Andrew J; Benesch, Justin L P

    2015-04-01

    Ion mobility mass spectrometry (IM-MS) allows the structural interrogation of biomolecules by reporting their collision cross sections (CCSs). The major bottleneck for exploiting IM-MS in structural proteomics lies in the lack of speed at which structures and models can be related to experimental data. Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), which overcomes these twin challenges, providing accurate CCSs up to 10(6) times faster than alternative methods. This allows us to assess the CCS space presented by the entire structural proteome, interrogate ensembles of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists. PMID:25800554

  18. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    NASA Astrophysics Data System (ADS)

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-08-01

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (∼ 50 MeV to ∼ 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used in the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are available now. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results. Our current results indicate this is, in fact, the case.

  19. Total reaction cross sections in CEM and MCNP6 at intermediate energies

    DOE PAGESBeta

    Kerby, Leslie M.; Mashnik, Stepan G.

    2015-05-14

    Accurate total reaction cross section models are important to achieving reliable predictions from spallation and transport codes. The latest version of the Cascade Exciton Model (CEM) as incorporated in the code CEM03.03, and the Monte Carlo N-Particle transport code (MCNP6), both developed at Los Alamos National Laboratory (LANL), each use such cross sections. Having accurate total reaction cross section models in the intermediate energy region (50 MeV to 5 GeV) is very important for different applications, including analysis of space environments, use in medical physics, and accelerator design, to name just a few. The current inverse cross sections used inmore » the preequilibrium and evaporation stages of CEM are based on the Dostrovsky et al. model, published in 1959. Better cross section models are now available. Implementing better cross section models in CEM and MCNP6 should yield improved predictions for particle spectra and total production cross sections, among other results.« less

  20. Passive optical diagnostic of Xe-propelled Hall thrusters. I. Emission cross sections

    SciTech Connect

    Chiu Yuhui; Austin, Brad L.; Williams, Skip; Dressler, Rainer A.; Karabadzhak, George F.

    2006-06-01

    This paper presents a set of xenon apparent emission excitation cross sections for emission lines that have diagnostic value in the analysis of Xe-propelled Hall thruster plasmas. Emission cross sections are presented for three excitation processes involving ground-state xenon atoms: e{sup -}+Xe, Xe{sup +}+Xe, and Xe{sup 2+}+Xe. The cross sections are derived from luminescence spectra produced at single-collision conditions. Apparent emission excitation cross sections are tabulated for 12 visible and 8 near-infrared lines for electron energies ranging from 10 to 70 eV. In case of the near-infrared lines, radiation trapping effects are accounted for by measuring the detailed pressure dependence of the apparent emission cross sections and extrapolating to zero pressure. A semiempirical expression for the pressure dependence is derived that allows zero-pressure extrapolation from threshold to 70 eV. Ion-induced cross sections are reported for the same emission lines at an energy per unit charge E/q of 300 eV, chosen for typical Hall thruster operating voltages. Radiation trapping effects are negligible for the ion emission excitation cross sections between 0.1 and 2.0 mTorr in the present luminescence experiment.

  1. Preliminary cross section of Englebright Lake sediments

    USGS Publications Warehouse

    Snyder, Noah P.; Hampton, Margaret A.

    2003-01-01

    Overview -- The Upper Yuba River Studies Program is a CALFED-funded, multidisciplinary investigation of the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. Englebright Lake (Figure 1 on poster) is a narrow, 14-km-long reservoir located in the northern Sierra Nevada, northeast of Marysville, CA. The dam was completed in 1941 for the primary purpose of trapping sediment derived from mining operations in the Yuba River watershed. Possible management scenarios include lowering or removing Englebright Dam, which could cause the release of stored sediments and associated contaminants, such as mercury used extensively in 19th-century hydraulic gold mining. Transport of released sediment to downstream areas could increase existing problems including flooding and mercury bioaccumulation in sport fish. To characterize the extent, grain size, and chemistry of this sediment, a coring campaign was done in Englebright Lake in May and June 2002. More than twenty holes were drilled at 7 different locations along the longitudinal axis of the reservoir (Figure 4 on poster), recovering 6 complete sequences of post-reservoir deposition and progradation. Here, a longitudinal cross section of Englebright Lake is presented (Figure 5 on poster), including pre-dam and present-day topographic profiles, and sedimentologic sections for each coring site. This figure shows the deltaic form of the reservoir deposit, with a thick upper section consisting of sand and gravel overlying silt, a steep front, and a thinner lower section dominated by silt. The methodologies used to create the reservoir cross section are discussed in the lower part of this poster.

  2. FT-IR Measurements of Cross Sections of Cold C3H8 in the 7 - 15 µm for Titan

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Brown, L. R.; Toon, G. C.; Mantz, A. W.; Smith, M. A. H.

    2012-10-01

    To support atmospheric remote sensing of Titan, the absorption cross sections of N2-broadened C3H8 were obtained at temperatures between 145 and 296 K. For this, 17 spectra of pure- and N2-broadened propane were recorded in the 690 to 1550 cm-1 region using a Fourier transform spectrometer (Bruker IFS-125HR) at the Jet Propulsion Laboratory configured with a 20.38 cm long temperature-stabilized cryogenic absorption cell. The coolable cell was developed at Connecticut College and described previously [1]. We report the absorption cross sections at the various cold temperatures for nine strong propane bands (v26, v8, v21, v20, v7, v19, v18, v4, v24). In addition, we present results from ‘pseudo-line generation’, which includes positions, intensities, and effective lower state energies’ determined from high-resolution laboratory spectra, (see http://mark4sun.jpl.nasa.gov/data/spec/Pseudo/Readme). The resulting compilation will be compared to earlier work, including the C3H8+N2 spectra recorded at PNNL [2] and available line-by-line predictions [3,4]. Research described in this paper was performed at the Jet Propulsion Laboratory, and California Institute of Technology, Connecticut College, NASA Langley Research Center, under contracts and cooperative agreements with the National Aeronautics and Space Administration. References [1] K. Sung, A. W. Mantz, M. A. H. Smith, et al., J Mol Spectrosc 262, 122, 2010. [2] S. W. Sharpe, et al., Appl Spectrosc 58, 1452, 2004. [3] J. M. Flaud et al., Mol Phys 108, 699, 2010. [4] J. M. Flaud et al., J Chem Phys 114, 9361, 2001.

  3. Total and diffractive cross sections in enhanced Pomeron scheme

    SciTech Connect

    Ostapchenko, S.

    2010-06-01

    For the first time, a systematic analysis of the high energy behavior of total and diffractive proton-proton cross sections is performed within the Reggeon field theory framework, based on the resummation of all significant contributions of enhanced Pomeron diagrams to all orders with respect to the triple-Pomeron coupling. The importance of different classes of enhanced graphs is investigated, and it is demonstrated that absorptive corrections due to 'net'-like enhanced diagrams and due to Pomeron 'loops' are both significant and none of those classes can be neglected at high energies. A comparison with other approaches based on partial resummations of enhanced diagrams is performed. In particular, important differences are found concerning the predicted high energy behavior of total and single high mass diffraction proton-proton cross sections, with our values of {sigma}{sub pp}{sup tot} at {radical}(s)=14 TeV being some 25%-40% higher and with the energy rise of {sigma}{sub HM}{sup SD} saturating well below the LHC energy. The main causes for those differences are analyzed and explained.

  4. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  5. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra.

    PubMed

    Baldassarre, Maurizio; Li, Chenge; Eremina, Nadejda; Goormaghtigh, Erik; Barth, Andreas

    2015-01-01

    Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase. PMID:26184143

  6. Measured Emission Cross Sections of Fe XVII Xray Transitions

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin; Chen, Hui; Kahn, Steve; Kelley, Richard; May, Mark; Porter, Frederick S.; Scofield, James; Stahle, Caroline K.

    We have used the LLNL electron beam ion trap EBIT-I together with the NASA/GSFC engineering model Astro-E microcalorimeter detector system and a crystal spectrometer to measure the absolute excitation cross sections of Fe XVII L-shell x-ray transitions by normalizing to radiative recombination. The combination of high spectral resolution quantum efficiency and gain stability of the microcalorimeter have enabled measurements of the weak emission from radiative recombination. Owing to its large bandwidth the microcalorimeter instrument can also simultaneously measure photon emission from direct excitation. Concurrent measurements with a crystal spectrometer are used to resolve blends that may contaminate the Fe XVII line emission. We present cross sections of two of the strongest lines observed in many astrophysical sources the Fe XVII resonance and intercombination lines located at 15.01 and 15.26 angstroms respectively. Our results provide stringent tests for atomic data present in spectral modeling packages and can be used to interpret high-resolution spectra provided by the Chandra X-Ray Observatory XMM-Newton and in the near future Astro-E2. Work by the UC-LLNL was performed under auspices of DOE under contract No. W-7405-Eng-48 and supported by NASA SARA grants to LLNL GSFC and Columbia University

  7. Measured Emission Cross Sections of fe XVII Xray Transitions

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Boyce, Kevin; Chen, Hui; Kahn, Steve; Kelley, Richard; May, Mark; Porter, Frederick S.; Scofield, James; Stahle, Caroline K.

    We have used the LLNL electron beam ion trap EBIT-I together with the NASA/GSFC engineering model Astro-E microcalorimeter detector system and a crystal spectrometer to measure the absolute excitation cross sections of Fe XVII L-shell x-ray transitions by normalizing to radiative recombination. The combination of high spectral resolution quantum efficiency and gain stability of the microcalorimeter have enabled measurements of the weak emission from radiative recombination. Owing to its large bandwidth the microcalorimeter instrument can also simultaneously measure photon emission from direct excitation. Concurrent measurements with a crystal spectrometer are used to resolve blends that may contaminate the Fe XVII line emission. We present cross sections of two of the strongest lines observed in many astrophysical sources the Fe XVII resonance and intercombination lines located at 15.01 and 15.26 angstroms respectively. Our results provide stringent tests for atomic data present in spectral modeling packages and can be used to interpret high-resolution spectra provided by the Chandra X-Ray Observatory XMM-Newton and in the near future Astro-E2. Work by the UC-LLNL was performed under auspices of DOE under contract No. W-7405-Eng-48 and supported by NASA SARA grants to LLNL GSFC and Columbia University

  8. Compton scattering cross section for inner-shell electrons in the relativistic impulse approximation

    NASA Astrophysics Data System (ADS)

    Stutz, G. E.

    2014-01-01

    Total Compton scattering cross sections and inelastic scattering factors for bound electron states of several elements have been evaluated in the framework of the relativistic impulse approximation (RIA). The accuracy of different approximate expressions for the singly differential cross section within the RIA is discussed. Accurate evaluations of bound state scattering factors require the use of the full RIA expression. Compton scattering from K-shell electrons dominates over the photoelectric absorption at higher energies. Energy values at which the Compton interaction become the main process of creation of K-shell vacancies are assessed. The role of binding effects in Compton processes at lower energies are clearly evidenced by the computed total cross sections. Calculated K-shell ionization total cross sections, defined as the sum of the photoelectric absorption and the Compton scattering cross sections, are in good agreement with available experimental data. The total Compton cross section for the 2s atomic orbital exhibits a shoulder-like structure, which can be traced back to the node structure of the 2s wave function.

  9. NEANSC international evaluation cooperation SG10 activities on inelastic scattering cross sections for weakly absorbing fission-product nuclides

    SciTech Connect

    Kawai, Masayoshi; Chiba, Satoshi; Nakagawa, Tsuneo; Nakajima, Yutaka; Zukeran, Atsushi; Gruppelaar, H.; Hogenbirk, A.; Salvatores, M.; Dietze, K.

    1994-12-31

    An evaluation method of inelastic scattering cross sections of FP nuclides is investigated. The origins of the discrepancy found in the calculated and measured sample reactivity worths are also discussed emphasizing the effect of ambiguity in inelastic scattering cross sections and neutron spectra.

  10. Absorption spectra of typical space materials in the vacuum ultraviolet

    NASA Astrophysics Data System (ADS)

    Muscari, J. A.

    1981-01-01

    In order to develop a data base for potential optical degradation of space vacuum ultraviolet instruments, the collected volatile condensed material (CVCM) transmittance was measured in the wavelength region from 115 nm to 300 nm. The parent outgassing materials included: the adhesives, Ablebond 36-2, Trabond BB-2116, EA-9309, and Scotchweld 2216; the paints, Chemglaze Z-306, Z-306 over 9922 primer, Z-306 over AP-131 primer, Cat-A-Lac 463-3-8, 463-3-8 over primer, 3M Nextel 401-C10, and 401-C10 over 901-P1 primer; the resins, Fiberite 934, Solithane 113/C113-300 Formulation no. 1, and 113/C113-300 Formulation no. 8; the lubricants, Lube-Lok 4306 and RT/Duroid 5813; and the double-sided adhesive tape 3M-415. The effect of thermal vacuum conditioning of selected materials was also studied. The transmittance measurements were used to calculate the absorption coefficient for each of 28 different source materials versus wavelength.

  11. Photoionization research on atomic beams. 2: The photoionization cross section of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Comes, F. J.; Speier, F.; Elzer, A.

    1982-01-01

    An experiment to determine the absolute value of the photo-ionization cross section of atomic oxygen is described. The atoms are produced in an electrical discharge in oxygen gas with 1% hydrogen added. In order to prevent recombination a crossed beam technique is employed. The ions formed are detected by a time-of-flight mass spectrometer. The concentration of oxygen atoms in the beam is 57%. The measured photoionization cross section of atomic oxygen is compared with theoretical data. The results show the participation of autoionization processes in ionization. The cross section at the autoionizing levels detected is considerably higher than the absorption due to the unperturbed continuum. Except for wavelengths where autoionization occurs, the measured ionization cross section is in fair agreement with theory. This holds up to 550 A whereas for shorter wavelengths the theoretical values are much higher.

  12. NASA-Lewis experiences with multigroup cross sections and shielding calculations

    NASA Technical Reports Server (NTRS)

    Lahti, G. P.

    1972-01-01

    The nuclear reactor shield analysis procedures employed at NASA-Lewis are described. Emphasis is placed on the generation, use, and testing of multigroup cross section data. Although coupled neutron and gamma ray cross section sets are useful in two dimensional Sn transport calculations, much insight has been gained from examination of uncoupled calculations. These have led to experimental and analytic studies of areas deemed to be of first order importance to reactor shield calculations. A discussion is given of problems encountered in using multigroup cross sections in the resolved resonance energy range. The addition to ENDF files of calculated and/or measured neutron-energy-dependent capture gamma ray spectra for shielding calculations is questioned for the resonance region. Anomalies inherent in two dimensional Sn transport calculations which may overwhelm any cross section discrepancies are illustrated.

  13. Dipole-exchange spin wave spectrum in an anisotropic ferromagnetic waveguide with a rectangular cross section

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. Yu.; Popov, D. A.; Kalinikos, B. A.

    2014-09-01

    A theory has been constructed that strictly describes the spectrum of dipole-exchange spin waves in an arbitrarily magnetized anisotropic ferrite waveguide with a rectangular cross section. The theory takes into account the spatial inhomogeneity of the internal magnetic field in the waveguide cross section. The influence of parameters of the ferrite waveguide on the distribution of the internal magnetic field in the waveguide cross section is analyzed. The dispersion characteristics of two waveguide types most widely used in practice are investigated. The dipole-exchange spin wave spectra calculated for a transversely magnetized waveguide are presented and the distributions of the dynamic magnetization in the waveguide cross section for several types of volume and localized spin-wave modes are constructed.

  14. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  15. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  16. On two-parameter models of photon cross sections: Application to dual-energy CT imaging

    SciTech Connect

    Williamson, Jeffrey F.; Li Sicong; Devic, Slobodan; Whiting, Bruce R.; Lerma, Fritz A.

    2006-11-15

    The goal of this study is to evaluate the theoretically achievable accuracy in estimating photon cross sections at low energies (20-1000 keV) from idealized dual-energy x-ray computed tomography (CT) images. Cross-section estimation from dual-energy measurements requires a model that can accurately represent photon cross sections of any biological material as a function of energy by specifying only two characteristic parameters of the underlying material, e.g., effective atomic number and density. This paper evaluates the accuracy of two commonly used two-parameter cross-section models for postprocessing idealized measurements derived from dual-energy CT images. The parametric fit model (PFM) accounts for electron-binding effects and photoelectric absorption by power functions in atomic number and energy and scattering by the Klein-Nishina cross section. The basis-vector model (BVM) assumes that attenuation coefficients of any biological substance can be approximated by a linear combination of mass attenuation coefficients of two dissimilar basis substances. Both PFM and BVM were fit to a modern cross-section library for a range of elements and mixtures representative of naturally occurring biological materials (Z=2-20). The PFM model, in conjunction with the effective atomic number approximation, yields estimated the total linear cross-section estimates with mean absolute and maximum error ranges of 0.6%-2.2% and 1%-6%, respectively. The corresponding error ranges for BVM estimates were 0.02%-0.15% and 0.1%-0.5%. However, for photoelectric absorption frequency, the PFM absolute mean and maximum errors were 10.8%-22.4% and 29%-50%, compared with corresponding BVM errors of 0.4%-11.3% and 0.5%-17.0%, respectively. Both models were found to exhibit similar sensitivities to image-intensity measurement uncertainties. Of the two models, BVM is the most promising approach for realizing dual-energy CT cross-section measurement.

  17. Electron Elastic-Scattering Cross-Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  18. Electron cross section set for CHF{sub 3}

    SciTech Connect

    Morgan, W. Lowell; Winstead, Carl; McKoy, Vincent

    2001-08-15

    We describe the development of a consistent set of low-energy electron collision cross sections for trifluoromethane, CHF{sub 3}. First-principles calculations are used to obtain key elastic and inelastic cross sections. These are combined with literature values of the ionization cross section and with vibrational excitation cross sections obtained from the Born approximation to form a preliminary set, which is then adjusted to achieve consistency with measured swarm parameters. {copyright} 2001 American Institute of Physics.

  19. Characterization of radar cross section of carbon fiber composite materials

    NASA Astrophysics Data System (ADS)

    Riley, Elliot J.; Lenzing, Erik H.; Narayanan, Ram M.

    2015-05-01

    Carbon fiber composite (CFC) materials have been used for many structural applications for decades. Their electromagnetic properties are also of great interest and are being quantified by recent research. This research explores shielding effectiveness, antenna design, conductivity, reflection, and absorption properties. The work in this paper specifically characterizes the radar cross section (RCS) of CFC structures. Various CFC planar samples were created using a wet layup method and vacuum bagging techniques. These samples were then placed in an anechoic chamber and their RCS values were measured at normal incidence. These measured values were compared to those of aluminum samples made into the same shape as the CFC samples. All of the measurements were made over 7 - 12 GHz frequency range. The RCS of the CFC samples show some interesting results. The fiber direction in the CFC samples had great influence on the RCS. Theories and reasoning for the results are presented and discussed.

  20. Mental Visualization of Objects from Cross-Sectional Images

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2012-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…

  1. A simple approach to SEU cross section evaluation

    SciTech Connect

    Miroshkin, V.V.; Tverskoy, M.G.

    1998-12-01

    The simplified method for determination of proton induced SEU cross section is presented. The method is based on results of the analysis of experimental SEU cross sections initiated by fast nucleons. The possibility of SEU cross section measurement at single proton energy for SEU rate prediction is shown.

  2. Viscous Flow through Pipes of Various Cross-Sections

    ERIC Educational Resources Information Center

    Lekner, John

    2007-01-01

    An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…

  3. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  4. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    PubMed

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  5. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  6. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    PubMed

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra. PMID:27305856

  7. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  8. Normalization of experimental electron cross sections.

    NASA Astrophysics Data System (ADS)

    Avdonina, N.; Felfli, Z.; Msezane, A. Z.

    1997-10-01

    Absolute experimental electron-impact differential cross sections (DCSs) can be obtained through an extrapolation of the relative generalized oscillator strength (GOS) values at some given impact energy E to zero momentum transfer squared K^2, the optical oscillator strength (OOS) [1]. We propose to normalize the relative experimental DCS data to the corresponding OOS value by extrapolating the GOS to K^2 = 0 without involving the nonphysical region. This is possible only by simultaneously increasing E and decreasing K^2 so that K^2 = 0 corresponds to E = ∞. Thus is avoided a divergence of fracd(GOS)d(K^2) at K^2 = 0 [2]. Another advantage of our method is that, over a wide range of small K^2 values the contribution of higher order terms of the Born series to the GOS function is negligible, contrary to the constant E case in which even order K^2 terms are non-Born [2]. Thus first Born approximation can be used to normalize relative experimental DCSs to the OOS. This method is applicable to both the excitation and ionization of atomic and molecular targets by electron impact. The latter case generalizes the method of ref. [3]. ^*Supported by AFOSR, NSF and DoE Div. of Chemical Sciences, OBES. ^1 E. N. Lassettre et al., J. Chem. Phys \\underline50, (1829) ^2 W. M. Huo, J. Chem. Phys \\underline71, 1593 (1979) ^3 A. Saenz, W Weyrich and P. Froelich, J. Phys. B \\underline29, 97 (1996)

  9. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  10. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  11. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Murakami, T.; Iwase, H.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2006-02-15

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.

  12. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    SciTech Connect

    Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T.; Ronningen, R.M.; Ieki, K.; Gudowska, I.; Sobolevsky, N.

    2005-12-19

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.

  13. Zenith sky and molecular cross section measurements with the flight-model of the Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Voors, R.; Dobber, M.; Dirksen, R.; Mount, G.; Levelt, P.

    2003-04-01

    In August and September 2002 measurements with the OMI flight instrument were conducted by KNMI under flight-representative pressure and temperature environmental conditions. During this period two days of clear zenith sky measurements were peformed as well as three days of absorption gas cell measurements of ozone and nitrogen dioxide, the two most important Earth atmosphere gases that OMI will observe in orbit. The main objective of the zenith sky and absorption gas cell measurements is to verify instrument sensitivity, measurement capability and spectral characterisation with a geophysical source and gas retrieval feasibility for the future in-orbit Earth observations. Ozone and nitrogen dioxide atmospheric total slant column abundances were successfully measured during the zenith sky period. The total ozone column remained virtually constant, whereas the nitrogen dioxide slant columns displayed the expected low AM - high PM abundances. Evidence of local NOx pollution was evident in the data. The absorption gas cell measurements are also of good quality and confirm the assumption that trace gas retrievals from atmospheric spectra work equally well using either instrument convolved high resolution laboratory cross sections or direct absorption gas cell measurements with the OMI flight model itself. This is a non-trivial point, since the instrument slit function of OMI must be determined to very high precision across the entire CCD in order to properly convolve laboratory cross sections. The zenith sky and absorption gas cell measurements have shown that the OMI flight model is capable of measuring ozone and nitrogen dioxide from space with the required accuracies and that the anticipated Earth atmospheric trace gas retrieval techniques will work properly.

  14. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    NASA Astrophysics Data System (ADS)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  15. Electron-impact-ionization cross section for the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Hu, W.; Fang, D.; Wang, Y.; Yang, F.

    1994-02-01

    A distorted-wave Born exchange approximation was used to calculate the cross section for electron-impact ionization of the hydrogen atoms. Both the integral and energy-differential cross section were calculated. The results were compared with the latest experimental data and other theoretical calculations. Comparison shows that the calculations agree with differential cross-section measurements in general. For integral cross sections the calculation shows a better agreement with an earlier measurement [M.B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 3501 (1987)] in which the cross sections are normalized to the first Born approximation.

  16. Employee engagement within the NHS: a cross-sectional study

    PubMed Central

    Jeve, Yadava Bapurao; Oppenheimer, Christina; Konje, Justin

    2015-01-01

    Background: Employee engagement is the emotional commitment of the employee towards the organisation. We aimed to analyse baseline work engagement using Utrecht Work Engagement Scale (UWES) at a teaching hospital. Methods: We have conducted a cross-sectional study within the National Health Service (NHS) Teaching Hospital in the UK. All participants were working age population from both genders directly employed by the hospital. UWES has three constituting dimensions of work engagement as vigor, dedication, and absorption. We conducted the study using UWES-9 tool. Outcome measures were mean score for each dimension of work engagement (vigor, dedication, absorption) and total score compared with control score from test manual. Results: We found that the score for vigor and dedication is significantly lower than comparison group (P< 0.0001 for both). The score for absorption was significantly higher than comparison group (P< 0.0001). However, total score is not significantly different. Conclusion: The study shows that work engagement level is below average within the NHS employees. Vigor and dedication are significantly lower, these are characterised by energy, mental resilience, the willingness to invest one’s effort, and persistence as well as a sense of significance, enthusiasm, inspiration, pride, and challenge. The NHS employees are immersed in work. Urgent need to explore strategies to improve work engagement as it is vital for improving productivity, safety and patient experience PMID:25674571

  17. Secondary Neutron-Production Cross Sections from Heavy-IonInteractions between 230 and 600 MeV/nucleon

    SciTech Connect

    Heilbronn, L.H.; Zeitlin, C.J.; Iwata, Y.; Murakami, T.; Iwase,H.; Nakamura, T.; Nunomiya, T.; Sato, H.; Yashima, H.; Ronningen, R.M.; Ieki, K.

    2006-10-04

    Secondary neutron-production cross-sections have beenmeasured from interactions of 230 MeV/nucleon He, 400 MeV/nucleon N, 400MeV/nucleon Kr, 400 MeV/nucleon Xe, 500 MeV/nucleon Fe, and 600MeV/nucleon Ne interacting in a variety of elemental and compositetargets. We report the double-differential production cross sections,angular distributions, energy spectra, and total cross sections from allsystems. Neutron energies were measured using the time-of-flighttechnique, and were measured at laboratory angles between 5 deg and 80deg. The spectra exhibit behavior previously reported in otherheavy-ion-induced neutron production experiments; namely, a peak atforward angles near the energy corresponding to the beam velocity, withthe remaining spectra generated by preequilibrium and equilibriumprocesses. The double-differential spectra are fitted with amoving-source parameterization. Observations on the dependence of thetotal cross sections on target and projectile mass arediscussed.

  18. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  19. Measurements of neutron capture cross section for {sup 207,208}Pb

    SciTech Connect

    Segawa, M.; Toh, Y.; Harada, H.; Kitatani, F.; Koizumi, M.; Fukahori, T.; Iwamoto, N.; Iwamoto, O.; Oshima, M.; Hatsukawa, Y.; Nagai, Y.; Igashira, M.; Kamada, S.; Tajika, M.

    2014-05-02

    The neutron capture cross sections for {sup 207,208}Pb have been measured in the neutron energy region from 10 to 110 keV. The γ-rays cascaded from a capture state to the ground state or low-lying states of {sup 208,209}Pb were observed for the first time, using an anti-Compton Nal(Tl) spectrometer and a TOF method. The observed discrete γ-ray energy spectra enabled us to determine neutron capture cross sections for {sup 207,208}Pb with small systematic errors, since we could distinguish γ-ray of {sup 207,208}Pb(n,γ) reactions from background γ-ray with use of the γ-ray spectra. The obtained cross sections include both contributions of resonance and direct capture components different from the previous TOF measurements.

  20. An analysis of MCNP cross-sections and tally methods for low-energy photon emitters

    NASA Astrophysics Data System (ADS)

    DeMarco, John J.; Wallace, Robert E.; Boedeker, Kirsten

    2002-04-01

    Monte Carlo calculations are frequently used to analyse a variety of radiological science applications using low-energy (10-1000 keV) photon sources. This study seeks to create a low-energy benchmark for the MCNP Monte Carlo code by simulating the absolute dose rate in water and the air-kerma rate for monoenergetic point sources with energies between 10 keV and 1 MeV. The analysis compares four cross-section datasets as well as the tally method for collision kerma versus absorbed dose. The total photon attenuation coefficient cross-section for low atomic number elements has changed significantly as cross-section data have changed between 1967 and 1989. Differences of up to 10% are observed in the photoelectric cross-section for water at 30 keV between the standard MCNP cross-section dataset (DLC-200) and the most recent XCOM/NIST tabulation. At 30 keV, the absolute dose rate in water at 1.0 cm from the source increases by 7.8% after replacing the DLC-200 photoelectric cross-sections for water with those from the XCOM/NIST tabulation. The differences in the absolute dose rate are analysed when calculated with either the MCNP absorbed dose tally or the collision kerma tally. Significant differences between the collision kerma tally and the absorbed dose tally can occur when using the DLC-200 attenuation coefficients in conjunction with a modern tabulation of mass energy-absorption coefficients.

  1. Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Kim, Han Sung; Pia, Maria Grazia; Basaglia, Tullio; Batic, Matej; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo

    2016-04-01

    Several total and partial photoionization cross section calculations, based on both theoretical and empirical approaches, are quantitatively evaluated with statistical analyses using a large collection of experimental data retrieved from the literature to identify the state of the art for modeling the photoelectric effect in Monte Carlo particle transport. Some of the examined cross section models are available in general purpose Monte Carlo systems, while others have been implemented and subjected to validation tests for the first time to estimate whether they could improve the accuracy of particle transport codes. The validation process identifies Scofield's 1973 non-relativistic calculations, tabulated in the Evaluated Photon Data Library(EPDL), as the one best reproducing experimental measurements of total cross sections. Specialized total cross section models, some of which derive from more recent calculations, do not provide significant improvements. Scofield's non-relativistic calculations are not surpassed regarding the compatibility with experiment of K and L shell photoionization cross sections either, although in a few test cases Ebel's parameterization produces more accurate results close to absorption edges. Modifications to Biggs and Lighthill's parameterization implemented in Geant4 significantly reduce the accuracy of total cross sections at low energies with respect to its original formulation. The scarcity of suitable experimental data hinders a similar extensive analysis for the simulation of the photoelectron angular distribution, which is limited to a qualitative appraisal.

  2. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Fillion, J.-H.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Jochims, H. W.; Leach, S.

    2003-07-01

    The absorption cross section and the ionization quantum yield of H2O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first tilde A 2A 1 and to the second tilde B 2B 2 excited states of H2O+. Comparison with D2O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  3. Absolute cross sections for electronic excitation of pyrimidine by electron impact.

    PubMed

    Regeta, Khrystyna; Allan, Michael; Mašín, Zdeněk; Gorfinkiel, Jimena D

    2016-01-14

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π-π(∗) excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented. PMID:26772566

  4. Effects of Nuclear Cross Sections at Different Energies on Space Radiation Exposure from Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Li, Zi-Wei; Adams, James H., Jr.

    2007-01-01

    Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.

  5. Evaluation of Compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra

    PubMed Central

    Ashoor, Mansour; Asgari, Afrouz; Khorshidi, Abdollah; Rezaei, Ali

    2015-01-01

    Purpose: Estimation of Compton attenuation and the photoelectric absorption coefficients were explored at various depths. Methods: A new method was proposed for estimating the depth based on the convolution of two exponential functions, namely convolution of scattering and primary functions (CSPF), which the convolved result will conform to the photopeak region of energy spectrum with the variable energy-window widths (EWWs) and a theory on the scattering cross-section. The triple energy-windows (TEW) and extended triple energy-windows scatter correction (ETEW) methods were used to estimate the scattered and primary photons according to the energy spectra at various depths due to a better performance than the other methods in nuclear medicine. For this purpose, the energy spectra were employed, and a distinct phantom along with a technetium-99 m source was simulated by Monte Carlo method. Results: The simulated results indicate that the EWW, used to calculate the scattered and primary counts in terms of the integral operators on the functions, was proportional to the depth as an exponential function. The depth will be calculated by the combination of either TEW or ETEW and proposed method resulting in the distinct energy-window. The EWWs for primary photons were in good agreement with those of scattered photons at the same as depths. The average errors between these windows for both methods TEW, and ETEW were 7.25% and 6.03% at different depths, respectively. The EWW value for functions of scattered and primary photons was reduced by increasing the depth in the CSPF method. Conclusions: This coefficient may be an index for the scattering cross-section. PMID:26170567

  6. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  7. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  8. Current-wave spectra coupling project. Volume I. Hurricane fields and cross sections, surface winds and currents, significant waves and wave spectra for potential OTEC sites: (A) Keahole Point, Hawaii, 100 year hurricane; (B) Punta Tuna, Puerto Rico, 100 year hurricane; (C) New Orleans, Louisiana, 100 year hurricane; (D) West Coast of Florida, 100 year hurricane; and for (E) Hurricane Camille (1969) off Louisiana Coast

    SciTech Connect

    Bretschneider, C.L.

    1980-06-01

    This volume is an extension of and consists of several modifications to the earlier report by Bretschneider (April 1979) on the subject of hurricane design wind, wave and current criteria for the four potential OTEC sites. The 100-year hurricane criteria for the design of OTEC plants is included. The criteria, in addition to the maximum conditions of winds, waves and surface current, include: hurricane fields for wind speed U/sub s/ and significant wave height H/sub s/; hurricane fields for modal wave period f/sub 0//sup -1/ and maximum energy density S/sub max/ of the wave spectrum; the corresponding Ekman wind-driven surface current V/sub s/; tabulated cross-sections for U/sub s/, H/sub s/, f/sub 0//sup -1/ and S/sub max/ through max U/sub s/ and through max H/sub s/ along traverses at right angles to and along traverses parallel to the forward movement of the hurricane; most probable maximum wave height and the expected corresponding wave period, based on statistical analysis of maximum wave heights from five hurricanes; design wave spectra for maximum U/sub s/ and also maximum H/sub s/, since maximum U/sub s/ and maximum H/sub s/ do not occur simultaneously; the envelope of wave spectra through maximum U/sub s/ and through maximum H/sub s/ along traverses parallel to the forward movement of the hurricane; the above same determinations for Hurricane Camille (1969) as for the four OTEC locations; and alternative methods (suggested) for obtaining design wave spectra from the joint probability distribution functions for wave height and period given by Longuet-Higgins (1975) and C.N.E.X.O. after Arhan, et al (1976).

  9. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  10. Absorption Spectra and Absorption Coefficients for Methane in the 750-940 nm region obtained by Intracavity Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Cao, H.

    2000-10-01

    Methane spectral features are prominent in the reflected sunlight spectra from the outer planets and some of their major satellites and can provide useful information on the atmospheres of those bodies. Methane bands occurring in the visible to near-IR region are particularly important because for many of these planetary bodies, methane bands occurring in the IR are saturated. Spectral observations of these bodies also are being made at increasingly higher resolution. In order to interpret the planetary spectra, laboratory data for methane obtained at appropriate sample conditions and spectral resolution are required. Since the visible to near-IR spectrum of methane is intrinsically weak, sensitive techniques are required to perform the laboratory measurements. We have employed the intracavity laser spectroscopy (ILS) technique to record methane spectrum in the visible to near-IR region. New results for room temperature methane in the 10,635 - 13,300 cm-1 region and for liquid nitrogen temperature (77 K) methane in the 10,860 - 11,605 cm-1 region will be presented. Spectra throughout the more strongly absorbing sections will be shown. These spectra are acquired at a resolution of 400,000 - 500,000 and are calibrated using iodine reference spectra acquired from an extra-cavity cell at nearly the same time as when the methane data are recorded. From the spectra, absorption coefficients are determined and these are presented as averages over 1 Å and 1 cm-1 intervals. In order to obtain the results, spectra are deconvolved for the instrument function using a Fourier transform technique. The validity of the approach is verified from studies of isolated oxygen lines in the A band occurring around 760 nm. Good agreement is observed between the intensity values determined from the FT deconvolution and integration method and those derived by fitting the observed line profiles to Voigt line-shapes convoluted with the instrument function. The methane results are compared

  11. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    SciTech Connect

    Ma, HuiLi; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 ; Zhao, Yi; Liang, WanZhen

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI{sup −})), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI{sup −} although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm{sup −1} agrees well with the experimental measurement.

  12. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Ma, HuiLi; Zhao, Yi; Liang, WanZhen

    2014-03-01

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI-)), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI- although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm-1 agrees well with the experimental measurement.

  13. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  14. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  15. Theoretical collision-induced rototranslational absorption spectra for the outer planets - H2-CH4 pairs

    NASA Astrophysics Data System (ADS)

    Borysow, A.; Frommhold, L.

    1986-05-01

    Computations of the rototranslational absorption spectra of H2-CH4 molecular complexes are presented which are based on the classical multipole expansion; spectral profiles are obtained from an exact quantum formalism. The interaction potential is based on laboratory measurements of H2-CH4 pairs at 195 and 297K. The computed spectra provide the most reliable temperature dependence of the absorption coefficient as a function of frequency that can be made under the present circumstances. A theoretical description of the H2CH4 dimer features is given in the isotropic potential approximation. This work is significant for the modeling of the far-infrared absorption of the outer planets' atmospheres, where H2 and CH4 are present.

  16. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure. PMID:27510989

  17. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    SciTech Connect

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-15

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of {+-}14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 {mu}m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within {+-}25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  18. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma.

    PubMed

    Knapp, P F; Hansen, S B; Pikuz, S A; Shelkovenko, T A; Hammer, D A

    2012-07-01

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 μm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma. PMID:22852690

  19. Alpha Induced Reaction Cross Section Calculations of Tantalum Nucleus

    NASA Astrophysics Data System (ADS)

    Tel, E.; Ugur, F. A.; Gokce, A. A.

    2013-04-01

    The fusion energy is attractive as an energy source because the fusion will not produce CO2 or SO2 and so fusion will not contribute to environmental problems, such as particulate pollution and excessive CO2 in the atmosphere. The fusion reaction does not produce radioactive nuclides and it is not self-sustaining, as is a fission reaction when a critical mass of fissionable material is assembled. Since the fusion reaction is easily and quickly quenched the primary sources of heat to drive such an accident are heat from radioactive decay and heat from chemical reactions. Both the magnitude and time dependence of the generation of heat from radioactive decay can be controlled by proper selection and design of materials. Tantalum is one of the candidate materials for the first wall of fusion reactors and for component parts of irradiation chambers. Accurate experimental cross-section data of alpha induced reactions on Tantalum are also of great importance for thermonuclear reaction rate determinations since the models used in the study of stellar nucleosynthesis are strongly dependent on these rates (Santos et al. in J Phys G 26:301, 2000). In this study, neutron-production cross sections for target nuclei 181Ta have been investigated up to 100 MeV alpha energy. The excitation functions for (α, xn) reactions (x = 1, 2, 3) have been calculated by pre-equilibrium reaction mechanism. And also neutron emission spectra for 181Ta (α, xn) reactions at 26.8 and 45.2 MeV have been calculated. The mean free path multiplier parameters has been investigated. The pre-equilibrium results have been calculated by using the hybrid model, the geometry dependent hybrid (GDH) model. Calculation results have been also compared with the available measurements in literature.

  20. Ft-Ir Measurements of Cold Cross Sections of Benzene (C_6H_6) for Cassini/cirs

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Brown, Linda; Toon, Geoffrey C.

    2014-06-01

    Titan's stratosphere is abundant in hydrocarbons (CxHy) producing highly complicated and crowded features in the spectra of Cassini/CIRS. Among these, benzene (C_6H_6) is the heaviest hydrocarbon ever seen in the Titan and cold planets. For this reason, a series of pure and N_2-broadened C6H6 spectra were recorded in the 640 to 1540 wn region at gas temperatures down to 231 K using a Fourier transform spectrometer (Bruker IFS-125HR) at the Jet Propulsion Laboratory. We report temperature dependent absorption cross sections for three strong fundamental bands (νb{4}, νb{14}, νb{13}). We also derived pseudo-line parameters, which include mean intensities and effective lower state energies on a 0.005 wn frequency grid, obtained by fitting all the laboratory spectra simultaneously. For the pseudoline generation, details can be found in a JPL MK-IV website, http://mark4sun.jpl.nasa.gov/data/spec/Pseudo). The resulting pseudolines of the strong bands reproduce observed cross sections to within ˜3 %. These new results are compared to earlier work, including the C6H6+N2 spectra recorded at PNNL. S. W. Sharpe, et al., Appl Spectrosc 58, 1452-1461 (2004); C. P. Rinsland, et al. JQSRT, 109, 2511-2522 (2008). Research described in this paper was performed at the Jet Propulsion Laboratory and California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  1. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    ERIC Educational Resources Information Center

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  2. Determination of the cross section for nuclear reactions in complex nuclear decay chains.

    PubMed

    Adam, J; Balabekyan, A; Pronskikh, V S; Kalinnikov, V G; Mrázek, J

    2002-04-01

    In the present paper decays of genetically connected nuclei are considered and equations for their independent cross sections are derived. An optimisation parameter is proposed for an experiment where spectra of the residual nuclei are studied by the induced activity method. This parameter depends on irradiation time, delay time and spectrum measurement time. PMID:11999159

  3. Description of alpha-nucleus interaction cross sections for cosmic ray shielding studies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1993-01-01

    Nuclear interactions of high-energy alpha particles with target nuclei important for cosmic ray studies are discussed. Models for elastic, quasi-elastic, and breakup reactions are presented and compared with experimental data. Energy-dependent interaction cross sections and secondary spectra are presented based on theoretical models and the limited experimental data base.

  4. A Code to Produce Cell Averaged Cross Sections for Fast Critical Assemblies and Fast Power Reactors.

    1987-05-14

    Version 00 SLAROM solves the neutron integral transport equations to determine the flux distribution and spectra in a fast reactor lattice and calculates cell averaged effective cross sections. The code uses multigroup data of the type in DLC-111/JFS that use Bondarenko factors for resonance effects.

  5. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  6. Experimental verification of theoretical cross sections for FIB PIXE

    NASA Astrophysics Data System (ADS)

    Streib, Kenneth L.; Alford, Terry L.; Mayer, James W.

    2006-08-01

    X-ray production cross sections were found for films of Cr, Cu, Ge, Ag, W and Au, using incident H+ and Be+ ions at energies from 300 keV to 3.5 MeV. These experimental cross section results were compared with the cross section results obtained using software which calculates inner shell ionization and X-ray production cross sections. The software uses the ECPSSR-UA approach to finding X-ray production cross sections. This program was found to be useful for predicting cross sections for H+ and Be+ ions at the energies in this study. The software was then used to predict results for Li+, Be+ and B+ ions at 280 keV, energies available in the Arizona State University focused ion beam laboratory.

  7. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  8. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig P.; Prendergast, David

    2015-09-01

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2.

  9. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra.

    PubMed

    Schwartz, Craig P; Prendergast, David

    2015-09-21

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2. PMID:26395677

  10. IR absorption and Raman spectra of single crystals of stable germanium isotopes

    NASA Astrophysics Data System (ADS)

    Gavva, V. A.; Kotereva, T. V.; Lipskiy, V. A.; Nezhdanov, A. V.

    2016-02-01

    The Raman and IR absorption spectra of single crystals of germanium isotopes 72Ge, 73Ge, 74Ge, and 76Ge in the region of phonon absorption and interband electronic transitions are studied at room temperature. The dependence of the Raman peak position on the atomic mass has the form ν ~ M -1/2. The shifts of the phonon absorption peaks of individual isotopes with respect to germanium of natural isotopic composition natGe are determined. With increasing average atomic mass of germanium, these peaks shift to longer wavelengths. In the region of interband electronic transitions, the intrinsic absorption edge of 76Ge is observed to shift by 1 meV to higher energies with respect to Ge of natural isotopic composition. For isotopes with atomic masses close to that of natural germanium (72Ge,73Ge, 74Ge), we found no significant difference in the band gap width at room temperature.

  11. Charge exchange cross sections for the Io plasma torus

    NASA Astrophysics Data System (ADS)

    McGrath, M. A.; Johnson, R. E.

    1989-03-01

    An impact parameter method for calculating cross sections as a function of incident ion energy is used in conjunction with an improved exchange energy formulation to update several of the charge exchange cross sections currently used in Io plasma torus modeling. New cross sections for S(+) + S(2+) yielding S(2+) + S(+) and Na(+) on neutral targets, useful in analyzing the fast Na jets observed at Io, are also calculated.

  12. Analytical formulation of the quantum electromagnetic cross section

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2016-05-01

    It has been found that the quantum radar cross section (QRCS) equation can be written in terms of the Fourier transform of the surface atom distribution of the object. This paper uses this form to provide an analytical formulation of the quantum radar cross section by deriving closed form expressions for various geometries. These expressions are compared to the classical radar cross section (RCS) expressions and the quantum advantages are discerned from the differences in the equations. Multiphoton illumination is also briefly discussed.

  13. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  14. Single event upset cross sections at various data rates

    SciTech Connect

    Reed, R.A.; Marshall, C.J.; McMorrow, D.; Carts, M.A.; Marshall, P.W.; Buchner, S.; La Macchia, M.; Mathes, B.

    1996-12-01

    The authors present data which show that Single Event Upset (SEU) cross section varies linearly with frequency for most devices tested. They show that the SEU cross section can increase dramatically away from a linear relationship when the test setup is not optimized, or when testing near the maximum operating frequency. They also observe non-linear behavior in some complex circuit topologies. Knowledge of the relationship between SEU cross section and frequency is important for estimates of on-orbit SEU rates.

  15. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  16. High E{sub T} jet cross sections at CDF

    SciTech Connect

    Flaugher, B.; CDF Collaboration

    1996-08-01

    The inclusive jet cross section for {ital p}{ital {anti p}} collisions at {radical}s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the {Sigma} E{sub T} cross section at {radical}s = 1.8 TeV and the central inclusive jet cross section at {radical}s = 0.630 TeV will also be shown.

  17. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  18. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications. PMID:27168298

  19. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  20. Positive Scattering Cross Sections using Constrained Least Squares

    SciTech Connect

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-09-27

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.

  1. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  2. Documentation of Uncertainties in Experimental Cross Sections for EXFOR

    SciTech Connect

    Otuka, N.; Smith, D.L.

    2014-06-15

    Documentation of uncertainties and covariances in experimental nuclear reaction cross sections has been assessed. Following consideration of the importance of covariances for nuclear data in various nuclear applications, and presentation of a simple numerical example to demonstrate this point, the minimum basic concepts (mean, covariance, standard derivation, partial uncertainties, micro- and macro-correlation coefficients) are introduced. A deterministic approach to propagating the covariances in primary measured parameters (e.g., counts) to the derived cross sections is discussed, using a neutron-induced activation cross section measurement as an example. Finally, various approaches to documentation (publication, compilation) of experimental cross sections to facilitate their use in future evaluations are mentioned.

  3. Electron-Impact Total Ionization Cross Sections of Hydrocarbon Ions

    PubMed Central

    Irikura, Karl K.; Kim, Yong-Ki; Ali, M. A.

    2002-01-01

    The Binary-Encounter-Bethe (BEB) model for electron-impact total ionization cross sections has been applied to CH2+, CH3+, CH4+, C2H2+, C2H4+, C2H6+ and H3O+. The cross sections for the hydrocarbon ions are needed for modeling cool plasmas in fusion devices. No experimental data are available for direct comparison. Molecular constants to generate total ionization cross sections at arbitrary incident electron energies using the BEB formula are presented. A recent experimental result on the ionization of H3O+ is found to be almost 1/20 of the present theory at the cross section peak.

  4. Derivation of reaction cross sections from experimental elastic backscattering probabilities

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Gomes, P. R. S.

    2013-10-01

    The relationship between the backward elastic scattering probabilities and the reaction cross sections is derived. This is a very simple and useful method to extract reaction cross sections for heavy-ion systems. We compare the results of our method with those that use the traditional full elastic scattering angular distributions for several systems at energies near and above the Coulomb barrier. From the calculated reaction and capture cross sections that use the present method, we derive the cross sections of other mechanisms for weak nearly spherical systems.

  5. DBCC Software as Database for Collisional Cross-Sections

    NASA Astrophysics Data System (ADS)

    Moroz, Daniel; Moroz, Paul

    2014-10-01

    Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.

  6. A New Signal Processing Technique for Neutron Capture Cross Section Measurement Based on Pulse Width Analysis

    NASA Astrophysics Data System (ADS)

    Katabuchi, T.; Matsuhashi, T.; Terada, K.; Mizumoto, M.; Hirose, K.; Kimura, A.; Furutaka, K.; Hara, K. Y.; Harada, H.; Hori, J.; Igashira, M.; Kamiyama, T.; Kitatani, F.; Kino, K.; Kiyanagi, Y.; Koizumi, M.; Nakamura, S.; Oshima, M.; Toh, Y.

    2014-05-01

    A fast data acquisition method based on pulse width analysis was developed for γ-ray spectroscopy with an NaI(Tl) detector. The new method was tested in experiments with standard γ-ray sources and pulsed neutron beam from a spallation neutron source. Pulse height spectra were successfully reconstructed from pulse width distribution by use of an energy calibration curve. The 197Au(n, γ)198Au cross section was measured by this method to test the viability. The obtained experimental cross section showed a good agreement with a calculation using the resonance parameters of JENDL-4.0.

  7. Cross sections for low-energy inelastic H+Li collisions

    SciTech Connect

    Belyaev, Andrey K.; Barklem, Paul S.

    2003-12-01

    We report calculations for the low-energy near-threshold inelastic collision cross sections between the Li(2s,2p,3s,3p)+H(1s) states. Results are obtained by solving the coupled-channel equations. Order-of-magnitude estimates for higher states have been made with the multichannel Landau-Zener model. Potentials and couplings from H. Croft et al [J. Phys. B 32, 81 (1999)] are employed. The calculated cross sections are much smaller than ones predicted by the classical Thomsom atom formula currently employed in astrophysics. This result is important for the interpretation of stellar spectra.

  8. AFCI-2.0 Neutron Cross Section Covariance Library

    SciTech Connect

    Herman, M.; Herman, M; Oblozinsky, P.; Mattoon, C.M.; Pigni, M.; Hoblit, S.; Mughabghab, S.F.; Sonzogni, A.; Talou, P.; Chadwick, M.B.; Hale, G.M.; Kahler, A.C.; Kawano, T.; Little, R.C.; Yount, P.G.

    2011-03-01

    materials and fission products, and 20 actinides. Covariances are given in 33-energy groups, from 10?5 eV to 19.6 MeV, obtained by processing with LANL processing code NJOY using 1/E flux. In addition to these 110 files, the library contains 20 files with nu-bar covariances, 3 files with covariances of prompt fission neutron spectra (238,239,240-Pu), and 2 files with mu-bar covariances (23-Na, 56-Fe). Over the period of three years several working versions of the library have been released and tested by ANL and INL reactor analysts. Useful feedback has been collected allowing gradual improvements of the library. In addition, QA system was developed to check basic properties and features of the whole library, allowing visual inspection of uncertainty and correlations plots, inspection of uncertainties of integral quantities with independent databases, and dispersion of cross sections between major evaluated libraries. The COMMARA-2.0 beta version of the library was released to ANL and INL reactor analysts in October 2010. The final version, described in the present report, was released in March 2011.

  9. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  10. Studies on external electric field effects on absorption and fluorescence spectra of NADH

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Takakazu; Islam, Md. Serajul; Li, Liming; Yasuda, Masahide; Ohta, Nobuhiro

    2014-03-01

    Electric field effects on absorption and fluorescence spectra have been investigated for NADH that is a representative autofluorescent chromophore in cells. The change in electric dipole moment following absorption is significant in the electroabsorption spectrum, indicating charge transfer character in the excited state. The fluorescence intensity decreases in the presence of an electric field, which arises from the field-induced increase in the rate of the non-radiative process. The blue shift of the fluorescence spectrum and the increase in the fluorescence lifetime of NADH are measured in yeast cells, which is discussed in terms of a local electric field around NADH.

  11. Absorption spectra of monolayer MoS2 in high magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Duen; Her, Jim-Long; Takeyama, Shojiro; Matsuda, Yasuhiro; Wang, Kai-Hsuan

    2015-03-01

    We have measured the absorption spectra of monolayer MoS2 film at several temperatures in pulsed high magnetic fields up to 52 T. At room temperature, the observed spectrum dominated by two main peaks, which are located at 660 nm and 606 nm. These peaks are ascribed to excition and trion absorption peaks respectively [1]. At low temperature (4.2 K), two peaks show the blue shift to 633 nm and 588 nm, respectively. Irrespective of the temperature, applying magnetic field does not show pronounced influence on the peaks even in 52 T.

  12. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  13. PHOTOELECTRIC CROSS-SECTIONS OF GAS AND DUST IN PROTOPLANETARY DISKS

    SciTech Connect

    Bethell, T. J.; Bergin, Edwin A.

    2011-10-10

    We provide simple polynomial fits to the X-ray photoelectric cross-sections (0.03 keV < E < 10 keV) for mixtures of gas and dust found in protoplanetary disks. Using the solar elemental abundances of Asplund et al., we treat the gas and dust components separately, facilitating the further exploration of evolutionary processes such as grain settling and gain growth. We find that blanketing due to advanced grain growth (a{sub max} > 1 {mu}m) can reduce the X-ray opacity of dust appreciably at E{sub X} {approx} 1 keV, coincident with the peak of typical T Tauri X-ray spectra. However, the reduction of dust opacity by dust settling, which is known to occur in protoplanetary disks, is probably a more significant effect. The absorption of 1-10 keV X-rays is dominated by gas opacity once the dust abundance has been reduced to about 1% of its diffuse interstellar value. The gas disk establishes a floor to the opacity at which point X-ray transport becomes insensitive to further dust evolution. Our choice of fitting function follows that of Morrison and McCammon, providing a degree of backward compatibility.

  14. Cross Sections for Inner-Shell Ionization by Electron Impact

    SciTech Connect

    Llovet, Xavier; Powell, Cedric J.; Salvat, Francesc; Jablonski, Aleksander

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  15. Photoneutron cross section measurements on Sm isotopes

    NASA Astrophysics Data System (ADS)

    Filipescu, D.; Utsunomiya, H.; Camera, F.; Nyhus, H. T.; Renstrøm, T.; Gheorghe, I.; Glodariu, T.; Tesileanu, O.; Goriely, S.; Lui, Y. W.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-05-01

    The Extreme Light Infrastructure - Nuclear Physics, one of the three pillars of the Extreme Light Infrastructure Pan-European initiative, is a new large scale facility dedicated to nuclear physics with extreme electromagnetic fields. ELI-NP will host two 10 PW lasers and a very brilliant Gamma beam system with unprecedented intensity and energy resolution parameters. We propose to perform photon induced nuclear reactions using the very brilliant γ-ray beams provided by the Gamma beam system to examine in detail the photon absorption process and its decay modes. Here the experimental program related to nuclear research on reactions above the neutron separation threshold, which is under preparation at ELI-NP, is presented.

  16. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  17. Energy dependence of breakup cross sections of the halo nucleus {sup 8}B and effective interactions

    SciTech Connect

    Bertulani, C.A.; Lotti, P.; Sagawa, H.

    1998-01-01

    We study the energy dependence of the cross sections for nucleon removal of {sup 8}B projectiles. It is shown that the Glauber model calculations with nucleon-nucleon t-matrix reproduce well the energy dependence of the breakup cross sections of {sup 8}B. A distorted wave Born approximation (DWBA) model for the breakup cross section is also proposed and results are compared with those of the Glauber model. We show that to obtain an agreement between the DWBA calculations, the Glauber formalism, and the experimental data, it is necessary to modify the energy behavior of the effective interaction. In particular, the breakup potential has a quite different energy dependence than the strong absorption potential. {copyright} {ital 1998} {ital The American Physical Society}

  18. Differential cross sections for electron-impact excitation of the electronic states of N sub 2

    SciTech Connect

    Brunger, M.J.; Teubner, P.J.O. )

    1990-02-01

    Differential cross sections for the electron-impact excitation of the first ten electronic states of N{sub 2} have been determined at five incident energies ranging from 15 to 50 eV. These differential cross sections were obtained for the scattering range 10{degree}--90{degree} by analyzing electron-energy-loss spectra in N{sub 2} at a number of fixed scattering angles within that range. The present study represents a comprehensive remeasurement of the earlier work of Cartwright and co-workers (Phys. Rev. A 16, 1013 (1977)) and was undertaken with a view to resolving certain anomalies which have been reported in the literature when the earlier cross-section set has been applied to model calculations of swarm parameters.

  19. Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.

    2000-11-27

    Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less

  20. Differential (p,p') and (p,d) Cross Sections of 89Y and 92Zr

    NASA Astrophysics Data System (ADS)

    Wakeling, Molly; Burke, Jason; Koglin, Johnathon; McClory, John

    2016-03-01

    Differential cross sections for the (p,p') and (p,d) reactions on 89Y and 92Zr were measured using a 28.5-MeV proton beam at the 88-inch cyclotron at Lawrence Berkeley National Laboratory. Angular distributions were obtained for the ground state and several excited states of each isotope using silicon detector telescopes over angles 10° to 140° in the reaction plane. Angular distributions for unresolved higher-energy states up to 22 MeV were also obtained. These data were obtained by fitting a Gaussian function to each peak in the energy spectra using the ROOT toolkit and integrating the number of counts under each peak. The cross sections will be included in nuclear structure models so that neutron and other particle reaction cross sections can be predicted for other isotopes, including eventually those farther from stability and those whose half-lives are too short to measure experimentally.