Sample records for absorption cycle cooling

  1. The economics of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    Analytic procedure evaluates cost of combining absorption-cycle chiller with solar-energy system in residential or commercial application. Procedure assumes that solar-energy system already exists to heat building and that cooling system must be added. Decision is whether to cool building with conventional vapor-compression-cycle chiller or to use solar-energy system to provide heat input to absorption chiller.

  2. Triple-effect absorption chiller cycle: A step beyond double-effect cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeVault, R.C.

    1990-01-01

    Many advanced'' absorption cycles have been proposed during the current century. Of the hundreds of absorption cycles which have been patented throughout the world, all commercially manufactured products for air conditioning buildings have been variations of just two basic absorption cycles: single-effect and condenser-coupled double-effect cycles. The relatively low cooling coefficients of performance (COPs) inherent in single-effect and double-effect cycles limits the economic applicability of absorption air conditioners (chillers) in the United States. A triple-effect absorption chiller cycle is discussed. This cycle uses two condensers and two absorbers to achieve the triple effect.'' Depending on the absorption fluids selected, thismore » triple-effect cycle is predicted to improve cooling COPs by 18% to 60% compared with the equivalent double-effect cycle. This performance improvement is obtained without increasing the total amount of heat-transfer surface area needed for the heat exchangers. A comparison between the calculated performances of a double-effect cycle and a triple-effect cycle (both using ammonia-water (NH{sub 3}/H{sub 2}O) as the absorption fluid pair) is presented. The triple-effect cycle is predicted to have an 18% higher cooling COP (1.41 compared with 1.2 for a double-effect), lower pressure (47.70 atm (701 psi) instead of 68.05 atm (1000 psi)), significantly reduced pumping power (less than one-half that of the double-effect cycle), and potentially lower construction cost (33% less total heat exchange needed). Practical implications for this triple-effect cycle are discussed. 16 refs., 5 figs., 1 tab.« less

  3. Carbon Dioxide Absorption Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    2002-01-01

    A carbon dioxide absorption heat pump cycle is disclosed using a high pressure stage and a super-critical cooling stage to provide a non-toxic system. Using carbon dioxide gas as the working fluid in the system, the present invention desorbs the CO2 from an absorbent and cools the gas in the super-critical state to deliver heat thereby. The cooled CO2 gas is then expanded thereby providing cooling and is returned to an absorber for further cycling. Strategic use of heat exchangers can increase the efficiency and performance of the system.

  4. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    NASA Technical Reports Server (NTRS)

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  5. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  6. Optimization of absorption air-conditioning for solar energy applications

    NASA Technical Reports Server (NTRS)

    Perry, E. H.

    1976-01-01

    Improved performance of solar cooling systems using the lithium bromide water absorption cycle is investigated. Included are computer simulations of a solar-cooled house, analyses and measurements of heat transfer rates in absorption system components, and design and fabrication of various system components. A survey of solar collector convection suppression methods is presented.

  7. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less

  8. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  9. How gas cools (or, apples can fall up)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This primer on gas cooling systems explains the basics of heat exchange within a refrigeration system, the principle of reverse-cycle refrigeration, and how a gas-engine-driven heat pump can provide cooling, additional winter heating capacity, and hot water year-round. Gas cooling equipment available or under development include natural gas chillers, engine-driven chillers, and absorption chillers. In cogeneration systems, heat recovered from an engine's exhaust and coolant may be used in an absorption chiller to provide air-conditioning. Gas desiccant cooling systems may be used in buildings and businesses that are sensitive to high humidity levels.

  10. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  11. Power generating system and method utilizing hydropyrolysis

    DOEpatents

    Tolman, R.

    1986-12-30

    A vapor transmission cycle is described which burns a slurry of coal and water with some of the air from the gas turbine compressor, cools and cleans the resulting low-Btu fuel gas, burns the clean fuel gas with the remaining air from the compressor, and extracts the available energy in the gas turbine. The cycle lends itself to combined-cycle cogeneration for the production of steam, absorption cooling, and electric power.

  12. Branched GAX cycle gas fired heat pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.; Anand, G.; Papar, R.A.

    1996-12-31

    GAX absorption heat pump cycles are characterized by the Generator Absorber Heat eXchange (GAX) between the high temperature end of the absorber and the low temperature end of the generator. The improved thermodynamic performance of the basic GAX cycle coupled with its mechanical simplicity has attracted substantial interest in using this cycle for gas-cooling. However, to be competitive in a cooling dominated market, the cycle has to achieve high cooling performance and also low installed cost. The Branched GAX (BGAX) cycle promises higher cooling performance using similar components as the basic GAX cycle and an additional solution pump. By increasingmore » the solution flow rate at the hot end of the absorber, the BGAX cycle makes more complete use of the temperature overlap. As a result, less external heat is supplied and higher COPs are obtained. A breadboard prototype of the BGAX cycle has been developed and is now operating. A novel thermosyphon cooled absorber eliminates the need for the outdoor hydronic loop, and reduces cost by 10%. Other component improvements yield another 10% cost reduction. The breadboard prototype has operated for more than 200 hours. Gas cooling COP = 0.87 has been consistently achieved at 30.6 C (87 F) ambient conditions. At the 35 C (95 F) ambient capacity rating condition, a cooling load of 4.5 refrigeration tons was achieved at a cycle COP = 0.95.« less

  13. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  14. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  15. Laser Cooling the Diatomic Molecule CaH

    NASA Astrophysics Data System (ADS)

    Velasquez, Joe, III; Di Rosa, Michael

    2014-06-01

    To laser-cool a species, a closed (or nearly closed) cycle is required to dissipate translational energy through many directed laser-photon absorption and subsequent randomly-directed spontaneous emission events. Many atoms lend themselves to such a closed-loop cooling cycle. Attaining laser-cooled molecular species is challenging because of their inherently complex internal structure, yet laser-cooling molecules could lead to studies in interesting chemical dynamics among other applications. Typically, laser-cooled atoms are assembled into molecules through photoassociation or Feschbach resonance. CaH is one of a few molecules whose internal structure is quite atom-like, allowing a nearly closed cycle without the need for many repumping lasers. We will also present our work-to-date on laser cooling this molecule. We employ traditional pulsed atomic/molecular beam techniques with a laser vaporization source to generate species with well-defined translational energies over a narrow range of velocity. In this way, we can apply laser-cooling to most species in the beam along a single dimension (the beam's axis). This project is funded by the LDRD program of the Los Alamos National Laboratory.

  16. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Blanco, Horacio; Vineyard, Edward

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  17. Feasibility and operating costs of an air cycle for CCHP in a fast food restaurant

    DOE PAGES

    Perez-Blanco, Horacio; Vineyard, Edward

    2016-05-06

    This work considers the possibilities of an air-based Brayton cycle to provide the power, heating and cooling needs of fast-food restaurants. A model of the cycle based on conventional turbomachinery loss coefficients is formulated. The heating, cooling and power capabilities of the cycle are extracted from simulation results. Power and thermal loads for restaurants in Knoxville, TN and in International Falls, MN, are considered. It is found that the cycle can meet the loads by setting speed and mass flow-rate apportionment between the power and cooling functional sections. The associated energy costs appear elevated when compared to the cost ofmore » operating individual components or a more conventional, absorption-based CHP system. Lastly, a first-order estimate of capital investments is provided. Suggestions for future work whereby the operational costs could be reduced are given in the conclusions.« less

  18. Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process

    DOE PAGES

    Xiao, Xin; Sessions, Henry T.; Heung, L. Kit

    2015-02-01

    The recent Thermal Cycling Absorption Process (TCAP) advances at Savannah River Site (SRS) include compressor-free concept for heating/cooling, push and pull separation using an active inverse column, and compact column design. The new developments allow significantly higher throughput and better reliability from 1/10th of the current production system’s footprint while consuming 60% less energy. Various versions are derived in the meantime for external customers to be used in fusion energy projects and medical isotope production.

  19. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  20. The development of a solar-powered residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  1. Moderate temperature control technology for a lunar base

    NASA Technical Reports Server (NTRS)

    Swanson, Theodore D.; Sridhar, K. R.; Gottmann, Matthias

    1993-01-01

    A parametric analysis is performed to compare different heat pump based thermal control systems for a Lunar Base. Rankine cycle and absorption cycle heat pumps are compared and optimized for a 100 kW cooling load. Variables include the use or lack of an interface heat exchanger, and different operating fluids. Optimization of system mass to radiator rejection temperature is performed. The results indicate a relatively small sensitivity of Rankine cycle system mass to these variables, with optimized system masses of about 6000 kg for the 100 kW thermal load. It is quantitaively demonstrated that absorption based systems are not mass competitive with Rankine systems.

  2. Development of a high-efficiency, gas-fired, absorption heat pump for residental and small-commercial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, B.A.

    1990-09-01

    The purpose of the total project is to develop a gas-fired absorption heat pump for residential and small-commercial applications that will produce at least 1.6 Btu of heating and 0.7 Btu of cooling per Btu of heat content in the gas being burned. The primary technology advances that can be used to attain the new goals are higher efficiency cycles, increased flue efficiency, and better fluids. Flue efficiency technology is well developed, and fan-assisted combustion systems with condensing heat exchangers can limit flue and insulation losses to the 10% range. If this 10% loss assumption is made, the resulting targetmore » cycle COPs are 1.78 in heating mode and 0.78 in cooling mode at the ARI rating conditions. The objective of Phase 1 was to analyze working fluids and absorption-cycle concepts that are capable of performing at the target COPs and are potentially competitive with existing space-conditioning products in cost, operating life, and reliability. Six advanced cycles were evaluated with ammonia/water as the fluid pair. Then additional analysis was performed with other fluid pairs to determine whether cycle ranking would change depending on which fluid was used. It was concluded that the preferred cycle/fluid was the generator-absorber heat exchange (GAX) cycle using ammonia/water as the fluid pair. A cost estimate made by an independent manufacturing engineering firm for a residential heat pump based on the cycle/fluid combination determined that the GAX heat pump could be cost competitive with existing products. 20 refs., 28 figs., 2 tabs.« less

  3. Solar powered absorption cycle heat pump using phase change materials for energy storage

    NASA Technical Reports Server (NTRS)

    Middleton, R. L.

    1972-01-01

    Solar powered heating and cooling system with possible application to residential homes is described. Operating principles of system are defined and illustration of typical energy storage and exchange system is provided.

  4. Phase I, open-cycle absorption solar cooling. Part IV. Executive summary analysis and resolution of critical issues and recommendations for Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.D.

    The objective of this project is to advance lower cost solar cooling technology with the feasibility analysis, design and evaluation of proof-of-concept open cycle solar cooling concepts. The work is divided into three phases, with planned completion of each phase before proceeding with the following phase: Phase I - performance/economic/environmental related analysis and exploratory studies; Phase II - design and construction of an experimental system, including evaluative testing; Phase III - extended system testing during operation and engineering modifications as required. For Phase I, analysis and resolution of critical issues were completed with the objective of developing design specifications formore » an improved prototype OCA system.« less

  5. Adsorption Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kai; Vineyard, Edward Allan

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less

  6. Design and operation of a solar heating and cooling system for a residential size building

    NASA Technical Reports Server (NTRS)

    Littles, J. W.; Humphries, W. R.; Cody, J. C.

    1978-01-01

    The first year of operation of solar house is discussed. Selected design information, together with a brief system description is included. The house was equipped with an integrated solar heating and cooling system which uses fully automated state-of-the art. Evaluation of the data indicate that the solar house heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner.

  7. Waste-heat-powered icemaker for isolated fishing villages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.

    1995-08-01

    A high-lift absorption refrigeration cycle called the ``vapor exchange`` cycle has been applied to the problem of producing refrigeration from low-temperature waste heat. Diesel engine jacket cooling water at 75 C is used as the heat source to produce 10 tons per day of flake ice for a remote community. The icemaker has successfully operated for two fishing seasons at Kotzebue, Alaska.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser.more » The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel feature of the cycle is recovery of the solution heat energy exiting the desorber by process water (a process-solution heat exchanger ) rather than the absorber exiting solution (the conventional solution heat exchanger ). This approach has enabled heating the process water from an inlet temperature of 15 C to 57 C (conforming to the DOE water heater test standard) and interfacing the process water with absorbent on the opposite side of a single metal sheet encompassing the absorber, process-solution heat exchanger, and desorber. The system under development has a 3.2 kW water heating capacity and a target thermal coefficient of performance (COP) of 1.6.« less

  9. Experiences in solar cooling systems

    NASA Astrophysics Data System (ADS)

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  10. Improvement of the COP of the LiBr-Water Double-Effect Absorption Cycles

    NASA Astrophysics Data System (ADS)

    Shitara, Atsushi

    Prevention of the global warming has called for a great necessity for energy saving. This applies to the improvement of the COP of absorption chiller-heaters. We started the development of the high efficiency gas-fired double-effect absorption chiller-heater using LiBr-H2O to achieve target performance in short or middle term. To maintain marketability, the volume of the high efficiency machine has been set below the equal to the conventional machine. The absorption cycle technology for improving the COP and the element technology for downsizing the machine is necessary in this development. In this study, the former is investigated. In this report, first of all the target performance has been set at cooling COP of 1.35(on HHV), which is 0.35 higher than the COP of 1.0 for conventional machines in the market. This COP of 1.35 is practically close to the maximum limit achievable by double-effect absorption chiller-heater. Next, the design condition of each element to achieve the target performance and the effect of each mean to improve the COP are investigated. Moreover, as a result of comparing the various flows(series, parallel, reverse)to which the each mean is applied, it has been found the optimum cycle is the parallel flow.

  11. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias

    1992-01-01

    In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia-water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW. For the Rankine cycle, a search of several commonly used commercial refrigerants provided R11 and R717 as possible working fluids. Hence, the Rankine-cycle analysis has been performed for both R11 and R717. Two different configurations were considered for the system--one in which the heat pump is directly connected to the rejection loop and another in which a heat exchanger connects the heat pump to the rejection loop. For a marginal increase in mass, the decoupling of the rejection loop and the radiator from the heat pump provides greater reliability of the system and better control. Hence, the decoupled system is the configuration of choice. The optimal TCS mass for a 100 kW cooling load at 270 K was 5940 kg at a radiator temperature of 362 K. R11 was the working fluid in the heat pump, and R717 was the transport fluid in the rejection loop. Two TCS's based on an absorption-cycle heat pump were considered, one with an ammonia-water mixture and the other with a lithium bromide-water mixture as the working fluid. A complete cycle analysis was performed for these systems. The system components were approximated as heat exchangers with no internal pressure drop for the mass estimate. This simple approach underpredicts the mass of the systems, but is a good 'optimistic' first approximation to the TCS mass in the absence of reliable component mass data. The mass estimates of the two systems reveal that, in spite of this optimistic estimate, the absorption heat pumps are not competitive with the Rankine-cycle heat pumps. Future work at the systems level will involve similar analyses for the Brayton- and Stirling-cycle heat pumps. The analyses will also consider the operation of the pump under partial-load conditions. On the component level, a capillary evaporator will be designed, built, and tested in order to investigate its suitability in lunar base TCS and microgravity two-phase applications.

  12. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    NASA Astrophysics Data System (ADS)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  13. Candidate chemical systems for air cooled solar powered, absorption air conditioner design. Part I. Organic absorbent systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biermann, W. J.

    1978-01-01

    All the available experimental evidence suggests that the optimum ''organic'' absorbent/refrigerant combination would be a methane derivative with a single hydrogen atom with chlorine and fluorine atoms in the other sites, as refrigerant. This would be hydrogen bonded to an absorbent molecule containing the group =NC/sup -/O, with the substituent groups being such that no steric hindrance took place. Cycle analyses showed that the ratio of internal heat transfer to cooling would be large, probably impractically so in view of the high coefficient of performance needed for solar driven cooling and the additional handicap of heat rejection to the atmosphere.more » A more promising approach would be to reduce the internal heat transfer per unit of space cooling by selecting a refrigerant with a high latent heat of vaporization and selecting an absorbent with suitable properties.« less

  14. A Preliminary Study on Designing and Testing of an Absorption Refrigeration Cycle Powered by Exhaust Gas of Combustion Engine

    NASA Astrophysics Data System (ADS)

    Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson

    2017-03-01

    In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.

  15. Application analysis of solar total energy systems to the residential sector. Volume III, conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The objective of the work described in this volume was to conceptualize suitable designs for solar total energy systems for the following residential market segments: single-family detached homes, single-family attached units (townhouses), low-rise apartments, and high-rise apartments. Conceptual designs for the total energy systems are based on parabolic trough collectors in conjunction with a 100 kWe organic Rankine cycle heat engine or a flat-plate, water-cooled photovoltaic array. The ORC-based systems are designed to operate as either independent (stand alone) systems that burn fossil fuel for backup electricity or as systems that purchase electricity from a utility grid for electrical backup.more » The ORC designs are classified as (1) a high temperature system designed to operate at 600/sup 0/F and (2) a low temperature system designed to operate at 300/sup 0/F. The 600/sup 0/F ORC system that purchases grid electricity as backup utilizes the thermal tracking principle and the 300/sup 0/F ORC system tracks the combined thermal and electrical loads. Reject heat from the condenser supplies thermal energy for heating and cooling. All of the ORC systems utilize fossil fuel boilers to supply backup thermal energy to both the primary (electrical generating) cycle and the secondary (thermal) cycle. Space heating is supplied by a central hot water (hydronic) system and a central absorption chiller supplies the space cooling loads. A central hot water system supplies domestic hot water. The photovoltaic system uses a central electrical vapor compression air conditioning system for space cooling, with space heating and domestic hot water provided by reject heat from the water-cooled array. All of the systems incorporate low temperature thermal storage (based on water as the storage medium) and lead--acid battery storage for electricity; in addition, the 600/sup 0/F ORC system uses a therminol-rock high temperature storage for the primary cycle. (WHK)« less

  16. Comparative life cycle assessment of standard and green roofs.

    PubMed

    Saiz, Susana; Kennedy, Christopher; Bass, Brad; Pressnail, Kim

    2006-07-01

    Life cycle assessment (LCA) is used to evaluate the benefits, primarily from reduced energy consumption, resulting from the addition of a green roof to an eight story residential building in Madrid. Building energy use is simulated and a bottom-up LCA is conducted assuming a 50 year building life. The key property of a green roof is its low solar absorptance, which causes lower surface temperature, thereby reducing the heat flux through the roof. Savings in annual energy use are just over 1%, but summer cooling load is reduced by over 6% and reductions in peak hour cooling load in the upper floors reach 25%. By replacing the common flat roof with a green roof, environmental impacts are reduced by between 1.0 and 5.3%. Similar reductions might be achieved by using a white roof with additional insulation for winter, but more substantial reductions are achieved if common use of green roofs leads to reductions in the urban heat island.

  17. Performance modeling of optical refrigerators

    NASA Astrophysics Data System (ADS)

    Mills, Gary; Mord, Allan

    2006-02-01

    Optical refrigeration using anti-Stokes fluorescence in solids has several advantages over more conventional techniques including low mass, low volume, low cost and no vibration. It also has the potential of allowing miniature cryocoolers on the scale of a few cubic centimeters. It has been the topic of analysis and experimental work by several organizations. In 2003, we demonstrated the first optical refrigerator. We have developed a comprehensive system-level performance model of optical refrigerators. Our current version models the refrigeration cycle based on the fluorescent material emission and absorption data at ambient and reduced temperature for the Ytterbium-ZBLAN glass (Yb:ZBLAN) cooling material. It also includes the heat transfer into the refrigerator cooling assembly due to radiation and conduction. In this paper, we report on modeling results which reveal the interplay between size, power input, and cooling load. This interplay results in practical size limitations using Yb:ZBLAN.

  18. Experimental investigation of an ammonia-based combined power and cooling cycle

    NASA Astrophysics Data System (ADS)

    Tamm, Gunnar Olavi

    A novel ammonia-water thermodynamic cycle, capable of producing both power and refrigeration, was proposed by D. Yogi Goswami. The binary mixture exhibits variable boiling temperatures during the boiling process, which leads to a good thermal match between the heating fluid and working fluid for efficient heat source utilization. The cycle can be driven by low temperature sources such as solar, geothermal, and waste heat from a conventional power cycle, reducing the reliance on high temperature sources such as fossil fuels. A theoretical simulation of the cycle at heat source temperatures obtainable from low and mid temperature solar collectors showed that the ideal cycle could produce power and refrigeration at a maximum exergy efficiency, defined as the ratio of the net work and refrigeration output to the change in availability of the heat source, of over 60%. The exergy efficiency is a useful measure of the cycle's performance as it compares the effectiveness of different cycles in harnessing the same source. An experimental system was constructed to demonstrate the feasibility of the cycle and to compare the experimental results with the theoretical simulations. In this first phase of experimentation, the turbine expansion was simulated with a throttling valve and a heat exchanger. Results showed that the vapor generation and absorption condensation processes work experimentally. The potential for combined turbine work and refrigeration output was evidenced in operating the system. Analysis of losses led to modifications in the system design, which were implemented to yield improvements in heat exchange, vapor generation, pump performance and overall stability. The research that has been conducted verifies the potential of the power and cooling cycle as an alternative to using conventional fossil fuel technologies. The research that continues is to further demonstrate the concept and direct it towards industry. On the large scale, the cycle can be used for industrial power production or as a central power plant for a community, with refrigeration produced as required by the application. On the small scale, an affordable residential or commercial unit could allow independent electricity generation for the home or business while also cooling it.

  19. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    NASA Astrophysics Data System (ADS)

    Widyolar, Bennett K.

    A solar thermal cooling system using novel non-tracking External Compound Parabolic Concentrators (XCPC) has been built at the University of California, Merced and operated for two cooling seasons. Its performance in providing power for space cooling has been analyzed. This solar cooling system is comprised of 53.3 m2 of XCPC trough collectors which are used to power a 23 kW double effect (LiBr) absorption chiller. This is the first system that combines both XCPC and absorption chilling technologies. Performance of the system was measured in both sunny and cloudy conditions, with both clean and dirty collectors. It was found that these collectors are well suited at providing thermal power to drive absorption cooling systems and that both the coinciding of available thermal power with cooling demand and the simplicity of the XCPC collectors compared to other solar thermal collectors makes them a highly attractive candidate for cooling projects.

  20. Thermal analysis of regenerative-cooled pylon in multi-mode rocket based combined cycle engine

    NASA Astrophysics Data System (ADS)

    Yan, Dekun; He, Guoqiang; Li, Wenqiang; Zhang, Duo; Qin, Fei

    2018-07-01

    Combining pylon injector with rocket is an effective method to achieve efficient mixing and combustion in the RBCC engine. This study designs a fuel pylon with active cooling structure, and numerically investigates the coupled heat transfer between active cooling process in the pylon and combustion in the combustor in different modes. Effect of the chemical reaction of the fuel on the flow, heat transfer and physical characteristics is also discussed. The numerical results present a good agreement with the experimental data. Results indicate that drastic supplementary combustion caused by rocket gas and secondary combustion caused by the fuel injection from the pylon result in severe thermal load on the pylon. Although regenerative cooling without cracking can reduce pylon's temperature below the allowable limit, a high-temperature area appears in the middle and nail section of the pylon due to the coolant's insufficient convective heat transfer coefficient. Comparatively, endothermic cracking can provide extra chemical heat sink for the coolant and low velocity contributes to prolong the reaction time to increase the heat absorption from chemical reaction, which further lowers and unifies the pylon surface temperature.

  1. Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardono, B.; Nelson, R.M.

    The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less

  2. Solar heating and cooling.

    PubMed

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  3. Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, Ty; Turchi, Craig

    2014-09-01

    A comparison of three supercritical CO2 Brayton cycles: the simple cycle, recompression cycle and partial-cooling cycle indicates the partial-cooling cycle is favored for use in concentrating solar power (CSP) systems. Although it displays slightly lower cycle efficiency versus the recompression cycle, the partial-cooling cycle is estimated to have lower total recuperator size, as well as a lower maximum s-CO2 temperature in the high-temperature recuperator. Both of these effects reduce recuperator cost. Furthermore, the partial-cooling cycle provides a larger temperature differential across the turbine, which translates into a smaller, more cost-effective thermal energy storage system. The temperature drop across the turbinemore » (and by extension, across a thermal storage system) for the partial-cooling cycle is estimated to be 23% to 35% larger compared to the recompression cycle of equal recuperator conductance between 5 and 15 MW/K. This reduces the size and cost of the thermal storage system. Simulations by NREL and Abengoa Solar indicate the partial-cooling cycle results in a lower LCOE compared with the recompression cycle, despite the former's slightly lower cycle efficiency. Advantages of the recompression cycle include higher thermal efficiency and potential for a smaller precooler. The overall impact favors the use of a partial-cooling cycle for CSP compared to the more commonly analyzed recompression cycle.« less

  4. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  5. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  6. Measured performance of a 3-ton LiBr absorption water chiller and its effect on cooling system operation

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1976-01-01

    A 3-ton lithium bromide absorption water chiller was tested for a number of conditions involving hot-water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It is concluded that a 3-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  7. Astigmatic Herriott cell for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Sheik-Bahae, Mansoor

    2017-01-01

    Cooling rare-earth-doped crystals to the lowest temperature possible requires enhanced resonant absorption and high-purity crystals. Since resonant absorption decreases as the crystal is cooled, the only path forward is to increase the number of roundtrips that the laser makes inside the crystal. To achieve even lower temperatures than previously reported, we have employed an astigmatic Herriott cell to improve laser absorption at low temperatures. Preliminary results indicate improvement over previous designs. This cavity potentially enables us to use unpolarized high-power fiber lasers, and to achieve much higher cooling power for practical applications.

  8. Maisotsenko cycle applications for multistage compressors cooling

    NASA Astrophysics Data System (ADS)

    Levchenko, D.; Yurko, I.; Artyukhov, A.; Baga, V.

    2017-08-01

    The present study provides the overview of Maisotsenko Cycle (M-Cycle) applications for gas cooling in compressor systems. Various schemes of gas cooling systems are considered regarding to their thermal efficiency and cooling capacity. Preliminary calculation of M-cycle HMX has been conducted. It is found that M-cycle HMX scheme allows to brake the limit of the ambient wet bulb temperature for evaporative cooling. It has demonstrated that a compact integrated heat and moisture exchange process can cool product fluid to the level below the ambient wet bulb temperature, even to the level of dew point temperature of the incoming air with substantially lower water and energy consumption requirements.

  9. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    NASA Astrophysics Data System (ADS)

    Ghaebi, Hadi; Abbaspour, Ghader

    2018-05-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  10. Crack-free conditions in welding of glass by ultrashort laser pulse.

    PubMed

    Miyamoto, Isamu; Cvecek, Kristian; Schmidt, Michael

    2013-06-17

    The spatial distribution of the laser energy absorbed by nonlinear absorption process in bulk glass w(z) is determined and thermal cycles due to the successive ultrashort laser pulse (USLP) is simulated using w(z) based on the transient thermal conduction model. The thermal stress produced in internal melting of bulk glass by USLP is qualitatively analyzed based on a simple thermal stress model, and crack-free conditions are studied in glass having large coefficient of thermal expansion. In heating process, cracks are prevented when the laser pulse impinges into glass with temperatures higher than the softening temperature of glass. In cooling process, shrinkage stress is suppressed to prevent cracks, because the embedded molten pool produced by nonlinear absorption process behaves like an elastic body under the compressive stress field unlike the case of CW-laser welding where the molten pool having a free surface produced by linear absorption process is plastically deformed under the compressive stress field.

  11. Overview of Resources for Geothermal Absorption Cooling for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Gluesenkamp, Kyle R; Mehdizadeh Momen, Ayyoub

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  12. The development of a solar residential heating and cooling system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The MSFC solar heating and cooling facility was assembled to demonstrate the engineering feasibility of utilizing solar energy for heating and cooling buildings, to provide an engineering evaluation of the total system and the key subsystems, and to investigate areas of possible improvement in design and efficiency. The basic solar heating and cooling system utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating, and an absorption cycle air conditioner for space cooling. A complete description of all systems is given. Development activities for this test system included assembly, checkout, operation, modification, and data analysis, all of which are discussed. Selected data analyses for the first 15 weeks of testing are included, findings associated with energy storage and the energy storage system are outlined, and conclusions resulting from test findings are provided. An evaluation of the data for summer operation indicates that the current system is capable of supplying an average of 50 percent of the thermal energy required to drive the air conditioner. Preliminary evaluation of data collected for operation in the heating mode during the winter indicates that nearly 100 percent of the thermal energy required for heating can be supplied by the system.

  13. Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH

    NASA Astrophysics Data System (ADS)

    Moore, Keith; Lane, Ian C.

    2018-05-01

    Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are analysed in detail. The lifetimes of the A2Π1/2, H2Δ3/2 and E2Π1/2 states are calculated (136 ns, 5.8 μs and 46 ns respectively) for the first time, while the theoretical value for B2 Σ1/2+ is in good agreement with experiments. Using a simple rate model the numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are determined, and it is clearly demonstrated that the A2Π - X2Σ+ transition is superior to B2Σ+ - X2Σ+ , where multiple tiny decay channels degrade its efficiency. Further possible improvements to the cooling method are proposed.

  14. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    NASA Astrophysics Data System (ADS)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  15. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...

  16. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...

  17. 40 CFR 86.1335-90 - Cool-down procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cold cycle exhaust emission test may begin after a cool-down only when the engine oil and water... Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1335-90 Cool-down procedure. (a) This cool-down procedure applies to Otto-cycle and diesel engines...

  18. Welding High Strength Modern Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Goodall, Graeme Robertson

    The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20 °C with increased cooling time.

  19. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, A.; Sienicki, J. J.; Lv, Q.

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO 2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO 2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO 2 Brayton cycle is that it enablesmore » dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately« less

  20. Design and Economic Analysis of a Heating/Absorption Cooling System Operating with Municipal Solid Waste Digester: A Case Study of Gazi University

    NASA Astrophysics Data System (ADS)

    Coşar, Gökhan; Pooyanfar, Mirparham; Amirabedin, Ehsan; Topal, Hüseyin

    2013-12-01

    Recovering energy from municipal solid waste (MSW) is one of the most important issues of energy management in developed countries. This raises even more interest as world fossil fuel reserves diminish and fuel prices rise. Being one of main processes of waste disposal, anaerobic digestion can be used as a means to reduce fossil fuel and electricity consumption as well as reducing emissions. With growing demand for cooling in Turkey, especially during warm seasons and considering the energy costs, utilizing heat-driven absorption cooling systems coupled with an anaerobic digester for local cooling purposes is a potentially interesting alternative for electricity driven compression cooling. The aim of this article is to study the viability of utilizing biogas obtained from MSW anaerobic digestion as the main fuel for heating facilities of Gazi University, Turkey and also the energy source for an absorption cooling system designed for the central library of the aforementioned campus. The results prove that the suggested system is sustainably and financially appealing and has the potential to replace the conventional electricity driven cooling systems with a reasonable net present worth; moreover, it can notably reduce carbon dioxide emissions.

  1. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model

    NASA Astrophysics Data System (ADS)

    Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore

    2013-03-01

    This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.

  2. Waste heat recovery options in a large gas-turbine combined power plant

    NASA Astrophysics Data System (ADS)

    Upathumchard, Ularee

    This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat recovery during the power plant's life span. Furthermore, the recommendation from this research will be submitted to the Electricity Generating Authority of Thailand (EGAT) for implementation. This study will also be used as an example for other power plants in Thailand to consider waste energy utilization to improve plant efficiency and sustain fuel resources in the future.

  3. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  4. Wet cooling towers: rule-of-thumb design and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeper, Stephen A.

    1981-07-01

    A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature,more » power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.« less

  5. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

  6. High sensitivity background absorption measurements in semiconductors

    NASA Astrophysics Data System (ADS)

    Giannini, Nathan; Silva, Junior R.; Wang, Chengao; Albrecht, Alexander R.; Melgaard, Seth D.; Sheik-Bahae, Mansoor

    2015-03-01

    Laser cooling in InGaP|GaAs double heterostructures (DHS) has been a sought after goal. Even though very high external quantum efficiency (EQE) has been achieved, background absorption has remained a bottleneck in achieving net cooling. The purpose of this study is to gain more insight into the source of the background absorption for InGaP|GaAs DHS as well as GaAs|AlGaAs DBRs by employing an excite-probe thermal Z-scan measurement.

  7. Improving crystal size distribution by internal seeding combined cooling/antisolvent crystallization with a cooling/heating cycle

    NASA Astrophysics Data System (ADS)

    Lenka, Maheswata; Sarkar, Debasis

    2018-03-01

    This work investigates the effect of internal seeding and an initial cooling/heating cycle on the final crystal size distribution (CSD) during a combined cooling/antisolvent crystallization of L-asparagine monohydrate from it's aqueous solution using isopropyl-alcohol as antisolvent. Internal seeds were generated by one-pot addition of various amounts of antisolvent to the crystallizer. It was then followed by a cooling/heating cycle to dissolve the fines produced and thus obtain a suitable initial seed. A combined cooling/antisolvent crystallization was then followed by employing a linear cooling profile with simultaneous addition of antisolvent with a constant mass flow rate to promote the growth of the internally generated seeds. The amount of initial antisolvent influences the characteristics of the internal seeds generated and the effect of initial amount of antisolvent on the final CSD is investigated. It was found that the introduction of a single cooling/heating cycle significantly improves the reproducibility of final CSD as well as the mean size. Overall, the study indicates that the application of internal seeding with a single cooling/heating cycle for fines dissolution is an effective technique to tailor crystal size distribution.

  8. Radiative energy balance of the Venus mesosphere

    NASA Astrophysics Data System (ADS)

    Haus, R.; Goering, H.

    1990-03-01

    An accurate radiative transfer model for line-by-line gaseous absorption, as well as for cloud absorption and multiple scattering, is used in the present calculation of solar heating and thermal cooling rates for standard temperature profiles and temperatures yielded by the Venera 15 Fourier Spectrometer Experiment. A strong dependency is noted for heating and cooling rates on cloud-structure variations. The Venus mesosphere is characterized by main cloud-cover heating and overlying-haze cooling. These results are applicable to Venus atmosphere dynamical models.

  9. Current fluctuations in quantum absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Segal, Dvira

    2018-05-01

    Absorption refrigerators transfer thermal energy from a cold bath to a hot bath without input power by utilizing heat from an additional "work" reservoir. Particularly interesting is a three-level design for a quantum absorption refrigerator, which can be optimized to reach the maximal (Carnot) cooling efficiency. Previous studies of three-level chillers focused on the behavior of the averaged cooling current. Here, we go beyond that and study the full counting statistics of heat exchange in a three-level chiller model. We explain how to obtain the complete cumulant generating function of the refrigerator in a steady state, then derive a partial cumulant generating function, which yields closed-form expressions for both the averaged cooling current and its noise. Our analytical results and simulations are beneficial for the design of nanoscale engines and cooling systems far from equilibrium, with their performance optimized according to different criteria, efficiency, power, fluctuations, and dissipation.

  10. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  11. A lightweight ambient air-cooling unit for use in hazardous environments.

    PubMed

    Chen, Y T; Constable, S H; Bomalaski, S H

    1997-01-01

    Recent research demonstrated (a) the effectiveness of intermittent conditioned air cooling during rest breaks to significantly reduce cumulative heat storage and (b) that longer work sessions were possible for individuals wearing chemical defense ensembles. To further advance this concept, a strategy for implementing continuous air cooling was conceived; ambient air cooling was added during work cycles and conditioned air cooling was delivered during rest periods. A compact battery-powered beltpack cooling unit (3.9 kg) designed and made at the U.S. Air Force Armstrong Laboratory was used to deliver 5.7 L/sec filtered ambient air during work cycles: 4.7 L/sec to the body and 1 L/sec to the face. Five experimental cycles were conducted in a thermally controlled chamber under warm conditions (32 degrees C, 40% relative humidity) with (1) no cooling-intermittent work, (2) intermittent cooling, (3) continuous cooling during intermittent exercise, and (4) no cooling-continuous work and (5) ambient air cooling during continuous exercise. Intermittent, conditioned, and continuous air cooling resulted in significant reductions in rectal temperature, mean skin temperature, and heart rate as compared with the no-cooling trials. The continuous air-cooling trial significantly improved thermal comfort and sweat evaporation. Results suggest that ambient air delivered during work cycles by a lightweight portable unit (in conjunction with conditioned air delivered during rest periods), can definitely improve personal comfort, reduce skin temperature, and decrease the cumulative fatigue common to repeated work/rest cycles in selected military and industrial applications in which individuals work in chemical defense ensembles.

  12. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    NASA Astrophysics Data System (ADS)

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic absorption chiller model is presented. The transient FORTRAN model is grounded on time-dependent mass, species, and energy conservation equations. Due to the vast computational costs of the high-fidelity model, a low-fidelity absorption chiller model is formulated and calibrated to mimic the behavior of the high-fidelity model. Stratified chilled-water storage tank performance is characterized using Computational Fluid Dynamics (CFD). The geometry employed in the CFD model represents a 5-million-gallon storage tank currently in use at a North Carolina college campus. Simulation results reveal the laminar numerical model most closely aligns with actual tank charging and discharging data. A subsequent parametric study corroborates storage tank behavior documented throughout literature and industry. Two absorption chiller configurations are considered. The first involves bypassing lowpressure steam from the low-pressure turbine to absorption chillers during periods of excess reactor capacity in order to keep reactor power constant. Simulation results show steam conditions downstream of the turbine control valves are a strong function of turbine load, and absorption chiller performance is hindered by reduced turbine impulse pressures at reduced turbine demands. A more suitable configuration entails integrating the absorption chillers into a flash vessel system that is thermally coupled to a sensible heat storage system. The sensible heat storage system is able to maintain reactor thermal output constant at 100% and match turbine output with several different electric demand profiles. High-pressure condensate in the sensible heat storage system is dropped across a let-down orifice and flashed in an ideal separator. Generated steam is sent to a bank of absorption chillers. Simulation results show enough steam is available during periods of reduced turbine demand to power four large absorption chillers to charge a 5-million-gallon stratified chilled-water storage tank, which is used to offset cooling loads in an adjacent facility. The coupled TES systems operating in conjunction with an SMR comprise the foundation of a tightly coupled NHES.

  13. Absorber modeling for NGCC carbon capture with aqueous piperazine.

    PubMed

    Zhang, Yue; Freeman, Brice; Hao, Pingjiao; Rochelle, Gary T

    2016-10-20

    A hybrid system combining amine scrubbing with membrane technology for carbon capture from natural gas combined cycle (NGCC) power plants is proposed in this paper. In this process, the CO 2 in the flue gas can be enriched from 4% to 18% by the membrane, and the amine scrubbing system will have lower capture costs. Aqueous piperazine (PZ) is chosen as the solvent. Different direct contact cooler (DCC) options, multiple absorber operating conditions, optimal intercooling designs, and different cooling options have been evaluated across a wide range of inlet CO 2 . Amine scrubbing without DCC is a superior design for NGCC carbon capture. Pump-around cooling at the bottom of the absorber can effectively manage the temperature of the hot flue gas, and still be effective for CO 2 absorption. The absorber gas inlet must be designed to avoid excessive localized temperature and solvent evaporation. When the inlet CO 2 increases from 4% to 18%, total absorber CAPEX decreases by 60%; another 10% of the total absorber CAPEX can be saved by eliminating the DCC. In-and-out intercooling works well for high CO 2 , while pump-around intercooling is more effective for low CO 2 . Dry cooling requires more packing and energy but appears to be technically and economically feasible if cooling water availability is limited.

  14. Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group

    2017-01-01

    The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.

  15. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Lee, Cheonkyu; Baek, Seungwhan; Jeong, Sangkwon

    2018-07-01

    Liquid nitrogen (LN2) is commonly used as the coolant of a high temperature superconductor (HTS) power cable. The LN2 is continuously cooled by a subcooler to maintain an appropriate operating temperature of the cable. This paper proposes two Joule-Thomson (JT) refrigeration cycles for subcooling the LN2 coolant by using nitrogen itself as the working fluid. Additionally, an innovative HTS cooling cycle, of which the cable coolant and the refrigerant are unified and supplied from the same source, is suggested and analyzed in detail. Among these cycles, the highest COP is obtained in the JT cycle with a vacuum pump (Cycle A) which is 0.115 at 78 K, and the Carnot efficiency is 32.8%. The integrated HTS cooling cycle (Cycle C) can reach the maximum COP of 0.087, and the Carnot efficiency of 24.8%. Although Cycle C has a relatively low cycle efficiency when compared to that of the separated refrigeration cycle, it can be a good alternative in engineering applications, because the assembled hardware has few machinery components in a more compact configuration than the other cycles.

  16. Review of the absorption spectra of solid O2 and N2 as they relate to contamination of a cooled infrared telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1977-01-01

    During contamination studies for the liquid helium cooled shuttle infrared telescope facility, a literature search was conducted to determine the absorption spectra of the solid state of homonuclear molecules of O2 and N2, and ascertain what laboratory measurements of the solid have been made in the infrared. With the inclusion of one unpublished spectrum, the absorption spectrum of the solid oxygen molecule has been thoroughly studied from visible to millimeter wavelengths. Only two lines appear in the solid that do not also appear in the gas or liquid. A similar result is implied for the solid nitrogen molecule because it also is homonuclear. The observed infrared absorption lines result from lattice modes of the alpha phase of the solid, and disappear at the warmer temperatures of the beta, gamma, and liquid phases. They are not observed from polycrystalline forms of O2, while strong scattering is. Scattering, rather than absorption, is considered to be the principal natural contamination problem for cooled infrared telescopes in low earth orbit.

  17. Absorption Heat Pump Cycles

    NASA Astrophysics Data System (ADS)

    Kunugi, Yoshifumi; Kashiwagi, Takao

    Various advanced absorption cycles are studied, developed and invented. In this paper, their cycles are classified and arranged using the three categories: effect, stage and loop, then an outline of the cycles are explained on the Duehring diagram. Their cycles include high COP cycles for refrigerations and heat pumps, high temperature lift cycles for heat transformer, absorption-compression hybrid cycles and heat pump transformer cycle. The highest COPi is attained by the seven effect cycle. In addition, the cycles for low temperature are invented and explained. Furthermore the power generation • refrigeration cycles are illustrated.

  18. Passive radiative cooling design with broadband optical thin-film filters

    NASA Astrophysics Data System (ADS)

    Kecebas, Muhammed Ali; Menguc, M. Pinar; Kosar, Ali; Sendur, Kursat

    2017-09-01

    The operation of most electronic semiconductor devices suffers from the self-generated heat. In the case of photovoltaic or thermos-photovoltaic cells, their exposure to sun or high temperature sources make them get warm beyond the desired operating conditions. In both incidences, the solution strategy requires effective radiative cooling process, i.e., by selective absorption and emission in predetermined spectral windows. In this study, we outline two approaches for alternative 2D thin film coatings, which can enhance the passive thermal management for application to electronic equipment. Most traditional techniques use a metallic (silver) layer because of their high reflectivity, although they display strong absorption in the visible and near-infrared spectrums. We show that strong absorption in the visible and near-infrared spectrums due to a metallic layer can be avoided by repetitive high index-low index periodic layers and broadband reflection in visible and near-infrared spectrums can still be achieved. These modifications increase the average reflectance in the visible and near-infrared spectrums by 3-4%, which increases the cooling power by at least 35 W/m2. We also show that the performance of radiative cooling can be enhanced by inserting an Al2O3 film (which has strong absorption in the 8-13 μm spectrum, and does not absorb in the visible and near-infrared) within conventional coating structures. These two approaches enhance the cooling power of passive radiative cooling systems from the typical reported values of 40 W/m2-100 W/m2 and 65 W/m2 levels respectively.

  19. Experimental study of refrigeration performance based on linear Fresnel solar thermal photovoltaic system

    NASA Astrophysics Data System (ADS)

    Song, Jinghui; Yuan, Hui; Xia, Yunfeng; Kan, Weimin; Deng, Xiaowen; Liu, Shi; Liang, Wanlong; Deng, Jianhua

    2018-03-01

    This paper introduces the working principle and system constitution of the linear Fresnel solar lithium bromide absorption refrigeration cycle, and elaborates several typical structures of absorption refrigeration cycle, including single-effect, two-stage cycle and double-effect lithium bromide absorption refrigeration cycle A 1.n effect absorption chiller system based on the best parameters was introduced and applied to a linear Fresnel solar absorption chiller system. Through the field refrigerator performance test, the results show: Based on this heat cycle design and processing 1.n lithium bromide absorption refrigeration power up to 35.2KW, It can meet the theoretical expectations and has good flexibility and reliability, provides guidance for the use of solar thermal energy.

  20. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    NASA Astrophysics Data System (ADS)

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and condenser and outlet chilled water temperatures of the evaporator.

  1. The development of a residential heating and cooling system using NASA derived technology

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.; Mcdanal, A. J.; Sims, W. H.

    1972-01-01

    A study to determine the technical and economic feasibility of a solar-powered space heating, air-conditioning, and hot water heating system for residential applications is presented. The basic system utilizes a flat-plate solar collector to process incident solar radiation, a thermal energy storage system to store the collected energy for use during night and heavily overcast periods, and an absorption cycle heat pump for actually heating and cooling the residence. In addition, heat from the energy storage system is used to provide domestic hot water. The analyses of the three major components of the system (the solar collector, the energy storage system, and the heat pump package) are discussed and results are presented. The total system analysis is discussed in detail, including the technical performance of the solar-powered system and a cost comparison between the solar-powered system and a conventional system. The projected applicability of the system to different regions of the nation is described.

  2. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  3. Solid oxide fuel cell/gas turbine trigeneration system for marine applications

    NASA Astrophysics Data System (ADS)

    Tse, Lawrence Kar Chung; Wilkins, Steven; McGlashan, Niall; Urban, Bernhard; Martinez-Botas, Ricardo

    2011-03-01

    Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost. This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation. It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens. The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.

  4. Discovery of a cool expanding shell at -1200 kilometers per second around V471 Tauri

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Bruhweiler, Fred C.; Mullan, Dermott; Carpenter, Ken

    1989-01-01

    High-resolution IUE spectra of V471 Tauri reveal the presence of a very-high-velocity cool expanding gas in the line of sight to the binary system with an expansion velocity of -1200 km/s. The summed strength of the coadded absorption is 125 mA + or - 25 mA, with FWHM = 30 km/s. It is suggested that the observed absorption may be related to the narrow coadded absorption at -590 km/s noted by Bruhweiler and Sion (1966). The large expansion velocity suggests a possible association with an ancient nova outburst.

  5. Pulsed Film Cooling on a Turbine Blade Leading Edge

    DTIC Science & Technology

    2009-09-01

    LEADING EDGE 1. Introduction Gas turbine engines are based on the Brayton cycle in which atmospheric air is compressed, heated via combustion...generation. Because the working fluid is in an open loop, a cooling process is absent from the Brayton cycle. The ideal Brayton cycle (one in which...Technology, Taylor & Francis, 2000. Harrison, K. and Bogard, D., “CFD Predictions of Film Cooling Adiabatic Effectiveness for Cylindrical Holes Embedded

  6. Mg II Chromospheric Emission Line Bisectors Of HD39801 And Its Relation With The Activity Cycle

    NASA Astrophysics Data System (ADS)

    García García, Leonardo Enrique; Pérez Martínez, M. Isabel

    2016-07-01

    Betelgeuse is a cool star of spectral type M and luminosity class I. In the present work, the activity cycle of Betelgeuse was obtained from the integrated emission flux of the Mg II H and K lines, using more than 250 spectra taken from the International Ultraviolet Explorer (IUE) online database. Of which it was found, based on a Lomb Scargle periodogram, a cycle of 16 years, along with 2 sub-cycles with a period of the order of 0.60 and 0.65 years, which may be due to turbulence or possible stellar flares. In addition, an analysis of line asymmetry was made by means of the chromospheric emission line bisectors, due to the strong self-absorption observed in this lines, the blue and red wings were analyzed independently. In order to measure such asymmetry, a "line shift" was calculated, from which several cycles of variability were obtained from a Lomb Scargle periodogram, spanning from few months to 4 years. In the sense, the most significant cycle is about 0.44 and 0.33 years in the blue and red wing respectively. It is worth noting, that the rotation period of the star doesn't play an important role in the variability of the Mg II lines. This technique provides us with a new way to study activity cycles of evolved stars.

  7. X-Ray spectroscopy of cooling flows

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea

    1996-01-01

    Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.

  8. Effect of air velocity and direction for indirect evaporative cooling in tropical area

    NASA Astrophysics Data System (ADS)

    Ayodha Ajiwiguna, Tri; Nugraha Rismi, Fadhlin; Ramdlan Kirom, Mukhammad

    2017-06-01

    In this research, experimental study of heat absorption rate caused by indirect evaporative cooling is performed by varying the velocity and direction of air. The ambient is at average temperature and relative humidity of 28.7 °C and 78% respectively. The experiment is conducted by attaching wet medium on the top of material reference plate with the dimension of 14 x 8 cm with 5 mm thickness. To get evaporative cooling effect, the air flow is directed to the wet medium with velocity from 1.6 m/s to 3.4 m/s with the increment of 0.2 m/s. The direction of air is set 0° (parallel), 45° (inclined), and 90° (perpendicular) to the wet medium surface. While the experiment is being performed, the air temperature, top and bottom of plate temperature are measured simultaneously after steady state condition is established. Based on the measurement result, heat absorption is calculated by analysing the heat conduction on the material reference. The result shows that the heat absorption rate is increased by higher velocity. Perpendicular direction of air flow results the highest cooling capacity compared with other direction. The maximum heat absorption rate is achieved at 13.9 Watt with 3.4 m/s velocity and perpendicular direction of air.

  9. Transient Load Following and Control Analysis of Advanced S-CO2 Power Conversion with Dry Air Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisseytsev, Anton; Sienicki, James J.

    2016-01-01

    Supercritical carbon dioxide (S-CO2) Brayton cycles are under development as advanced energy converters for advanced nuclear reactors, especially the Sodium-Cooled Fast Reactor (SFR). The use of dry air cooling for direct heat rejection to the atmosphere ultimate heat sink is increasingly becoming a requirement in many regions due to restrictions on water use. The transient load following and control behavior of an SFR with an S-CO2 cycle power converter utilizing dry air cooling have been investigated. With extension and adjustment of the previously existing control strategy for direct water cooling, S-CO2 cycle power converters can also be used for loadmore » following operation in regions where dry air cooling is a requirement« less

  10. Dilution cycle control for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  11. Conceptual design and exergy analysis of an integrated structure of natural gas liquefaction and production of liquid fuels from natural gas using Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Niasar, Malek Shariati; Amidpour, Majid

    2018-01-01

    In this paper, utilizing absorption refrigeration system as an alternative to compression refrigeration system of MFC refrigeration cycle in an integrated superstructure with the main aim of reduction in required energy is investigated. High-energy consumption in such units is reduced because of the removal of a stage of the compression system, while the possibility of using waste energy through employing of absorption refrigeration system can be provided. A superstructure including cogeneration of heating, cooling and power for LNG production and liquid fuels using Fischer-Tropsch synthesis are investigated. Exergy analysis shows that the greatest amount of exergy destruction of equipment is related to the compressors by 28.99% and the lowest exergy destruction is related to the gas turbine by 0.17%. Integrated structure has overall thermal efficiency of 90% and specific power of 0.1988 kW h/(kg LNG)-1.

  12. Evaluation of absorption cycle for space station environmental control system application

    NASA Technical Reports Server (NTRS)

    Sims, W. H.; Oneill, M. J.; Reid, H. C.; Bisenius, P. M.

    1972-01-01

    The study to evaluate an absorption cycle refrigeration system to provide environmental control for the space stations is reported. A zero-gravity liquid/vapor separator was designed and tested. The results were used to design a light-weight, efficient generator for the absorption refrigeration system. It is concluded that absorption cycle refrigeration is feasible for providing space station environmental control.

  13. Defect-mediated photoluminescence up-conversion in cadmium sulfide nanobelts (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Morozov, Yurii; Kuno, Masaru K.

    2017-02-01

    The concept of optical cooling of solids has existed for nearly 90 years ever since Pringsheim proposed a way to cool solids through the annihilation of phonons via phonon-assisted photoluminescence (PL) up-conversion. In this process, energy is removed from the solid by the emission of photons with energies larger than those of incident photons. However, actually realizing optical cooling requires exacting parameters from the condensed phase medium such as near unity external quantum efficiencies as well as existence of a low background absorption. Until recently, laser cooling has only been successfully realized in rare earth doped solids. In semiconductors, optical cooling has very recently been demonstrated in cadmium sulfide (CdS) nanobelts as well as in hybrid lead halide perovskites. For the former, large internal quantum efficiencies, sub-wavelength thicknesses, which decrease light trapping, and low background absorption, all make near unity external quantum yields possible. Net cooling by as much as 40 K has therefore been possible with CdS nanobelts. In this study, we describe a detailed investigation of the nature of efficient anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature-dependent PL up-conversion and optical absorption studies on individual NBs together with frequency-dependent up-converted PL intensity spectroscopies suggest that ASPL in CdS nanobelts is defect-mediated through involvement of defect levels below the band gap.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isfahani, RN; Moghaddam, S

    An experimental study on absorption characteristics of water vapor into a thin lithium bromide (LiBr) solution flow is presented. The LiBr solution flow is constrained between a superhydrophobic vapor permeable wall and a solid surface that removes the heat of absorption. As opposed to conventional falling film absorbers, in this configuration, the solution film thickness and velocity can be controlled independently to enhance the absorption rate. The effects of water vapor pressure, cooling surface temperature, solution film thickness, and solution flow velocity on the absorption rate are studied. An absorption rate of approximately 0.006 kg/m(2) s was measured at amore » LiBr solution channel thickness and flow velocity of 100 mu m and 5 mm/s, respectively. The absorption rate increased linearly with the water vapor driving potential at the test conditions of this study. It was demonstrated that decreasing the solution film thickness and increasing the solution velocity enhance the absorption rate. The high absorption rate and the inherently compact form of the proposed,absorber facilitate development of compact small-scale waste heat or solar-thermal driven cooling systems. Published by Elsevier Ltd.« less

  15. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  16. Modeling syngas-fired gas turbine engines with two dilutants

    NASA Astrophysics Data System (ADS)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  17. System and method for regulating EGR cooling using a Rankine cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Timothy C.; Morris, Dave

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  18. System and method for regulating EGR cooling using a rankine cycle

    DOEpatents

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  19. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions.

    PubMed

    Kay, D; Taaffe, D R; Marino, F E

    1999-12-01

    The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximately 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0+/-8.8 W x m(-2) to 153+/-13.1 W x m(-2) (mean +/- s(mean)) after pre-cooling, while total body sweat fell from 1.7+/-0.1 l x h(-1) to 1.2+/-0.1 l h(-1) (P < 0.05). The distance cycled increased from 14.9+/-0.8 to 15.8+/-0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.

  20. Membrane-Based Absorption Refrigeration Systems: Nanoengineered Membrane-Based Absorption Cooling for Buildings Using Unconcentrated Solar & Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.

  1. A study of the cool gas in the Large Magellanic Cloud. I. Properties of the cool atomic phase - a third H i absorption survey

    NASA Astrophysics Data System (ADS)

    Marx-Zimmer, M.; Herbstmeier, U.; Dickey, J. M.; Zimmer, F.; Staveley-Smith, L.; Mebold, U.

    2000-02-01

    The cool atomic interstellar medium of the Large Magellanic Cloud (LMC) seems to be quite different from that in the Milky Way. In a series of three papers we study the properties of the cool atomic hydrogen in the LMC (Paper I), its relation to molecular clouds using SEST-CO-observations (Paper II) and the cooling mechanism of the atomic gas based on ISO-[\\CII]-investigations (Paper III). In this paper we present the results of a third 21 cm absorption line survey toward the LMC carried out with the Australia Telescope Compact Array (ATCA). 20 compact continuum sources, which are mainly in the direction of the supergiant shell LMC 4, toward the surroundings of 30 Doradus and toward the eastern steep \\HI\\ boundary, have been chosen from the 1.4 GHz snapshot continuum survey of Marx et al. We have identified 20 absorption features toward nine of the 20 sources. The properties of the cool \\HI\\ clouds are investigated and are compared for the different regions of the LMC taking the results of Dickey et al. (survey 2) into account. We find that the cool \\HI\\ gas in the LMC is either unusually abundant compared to the cool atomic phase of the Milky Way or the gas is clearly colder (\\Tc\\ ~ 30 K) than that in our Galaxy (\\Tc\\ ~ 60 K). The properties of atomic clouds toward 30 Doradus and LMC 4 suggest a higher cooling rate in these regions compared to other parts of the LMC, probably due to an enhanced pressure near the shock fronts of LMC 4 and 30 Doradus. The detected cool atomic gas toward the eastern steep \\HI\\ boundary might be the result of a high compression of gas at the leading edge. The Australia Telescope is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.

  2. Properties of quasi-periodic oscillations in accreting magnetic white dwarfs

    NASA Technical Reports Server (NTRS)

    Wu, Kinwah; Chanmugam, G.; Shaviv, G.

    1992-01-01

    Previous studies of time-dependent accretion onto magnetic white dwarfs, in which the cooling was assumed to be due to bremsstrahlung emission, have shown that the accretion shock undergoes oscillations. However, when cyclotron cooling is also included, the oscillations are damped for sufficiently strong magnetic fields. Here we demonstrate that the oscillations can be sustained by accretion-fluctuation-induced excitations. The frequency of the QPOs are shown to increase quadratically with the magnetic field strength. We interpret the oscillations as a two-phase process in which bremsstrahlung cooling dominates in one half-cycle and cyclotron cooling in the other. Such a process may have very different consequences compared to a single-phase process where the functional form of the cooling is essentially the same throughout the cycle. If in the two-phase process damping occurs mainly in the cyclotron cooling half-cycle, there will be a universal effective damping factor which tends to suppress all oscillation modes indiscriminately. The oscillations of the accretion shock also could be a limit cycle process in which the system vacillates between two branches.

  3. Modeling of a solar-assisted hybrid absorption/desiccant system for applications in Puerto Rico and the Caribbean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, H.R.; Gonzalez, J.E.; Khan, A.Y.

    1996-11-01

    This study is concerned with the feasibility of different arrangements of solar-assisted air conditioning systems for applications in Puerto Rico. The thermodynamic performance of an absorption system alone and coupled to a liquid or a solid desiccant dehumidification system was investigated under variable cooling load conditions. The dynamic modeling was based on heat and mass balances for the systems components. Simulations for climatic conditions in Puerto Rico show that average solar fractions of more than 85% can be achieved with both the absorption system and the hybrid systems for medium size cooling loads. Results indicate that higher coefficients of performancemore » are obtained when the solar assisted absorption system is not coupled to a desiccant dehumidification system.« less

  4. Enhanced cooling of Yb:YLF using astigmatic Herriott cell (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Tonelli, Mauro; Sheik-Bahae, Mansoor

    2017-02-01

    Optical refrigeration of solids requires crystals with exceptional qualities. Crystals with external quantum efficiencies (EQE) larger than 99% and background absorptions of 4×10-4cm-1 have been cooled to cryogenic temperatures using non resonant cavities. Estimating the cooling efficiency requires accurate measurements of the above mentioned quantities. Here we discuss measurements of EQE and background absorption for two high quality Yb:YLF samples. For any given sample, to reach minimum achievable temperatures heat generated by fluorescence must be removed from the surrounding clamshell and more importantly, absorption of the laser light must be maximized. Since the absorption coefficient drops at lower temperatures the only option is to confine laser light in a cavity until almost 100% of the light is absorbed. This can be achieved by placing the crystal between a cylindrical and spherical mirror to form an astigmatic Herriott cell. In this geometry light enters through a hole in the middle of the spherical mirror and if the entrance angle is correct, it can make as many round trips as required to absorb all the light. At 120 K 60 passes and 150 passes at 100K ensures more than 95% absorption of the laser light. 5 and 10% Yb:YLF crystals placed in such a cell cool to sub 90K temperatures. Non-contact temperature measurements are more challenging for such a geometry. Reabsorption of fluorescence for each pass must be taken into account for accurate temperature measurements by differential luminescence thermometry (DLT). Alternatively, we used part of the spectrum that is not affected by reabsorption.

  5. IUE observations of the atmospheric eclipsing binary system Zeta Aurigae

    NASA Technical Reports Server (NTRS)

    Champman, R. D.

    1980-01-01

    IUE observations of the eclipsing binary system Zeta Aurigae made prior to and during the eclipse of the relatively small B8 V star by the cool supergiant star (spectral type K2 II) are reported. Spectral lines produced by the absorption of B star radiation in the atmosphere of the K star during eclipse can be used as a probe of the extended K star atmosphere, due to the negligible cool star continuum in the 1200-3200 A region. Spectra taken prior to eclipse are found to be similar to those of the single B8 V star 64 Ori, with the exception of very strong multi-component absorption lines of Si II, Si IV, C IV and the Mg resonance doublet with strong P Cygni profiles, indicating a double shell. Absorption lines including those corresponding to Al II, Al III, Cr II, Mn II, Fe II, Ni II and Ca II are observed to increase in strength and number as the eclipse progresses, with high-ionization-potential lines formed far from the K star, possibly in a shock wave, and low-ionization potential lines, formed in cool plasma, probably a cool wind, nearer to the K star. Finally, an emission-line spectra with lines corresponding to those previously observed in absorption is noted at the time the B-star continuum had disappeared.

  6. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  7. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  8. An Intense Slit Discharge Source of Jet-Cooled Molecular Ions and Radicals (T(sub rot) less than 30 K)

    NASA Technical Reports Server (NTRS)

    Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.

    1996-01-01

    A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).

  9. Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None,

    1981-09-01

    Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

  10. Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.

    2017-02-01

    Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.

  11. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  12. An Active Broad Area Cooling Model of a Cryogenic Propellant Tank with a Single Stage Reverse Turbo-Brayton Cycle Cryocooler

    NASA Technical Reports Server (NTRS)

    Guzik, Monica C.; Tomsik, Thomas M.

    2011-01-01

    As focus shifts towards long-duration space exploration missions, an increased interest in active thermal control of cryogenic propellants to achieve zero boil-off of cryogens has emerged. An active thermal control concept of considerable merit is the integration of a broad area cooling system for a cryogenic propellant tank with a combined cryocooler and circulator system that can be used to reduce or even eliminate liquid cryogen boil-off. One prospective cryocooler and circulator combination is the reverse turbo-Brayton cycle cryocooler. This system is unique in that it has the ability to both cool and circulate the coolant gas efficiently in the same loop as the broad area cooling lines, allowing for a single cooling gas loop, with the primary heat rejection occurring by way of a radiator and/or aftercooler. Currently few modeling tools exist that can size and characterize an integrated reverse turbo-Brayton cycle cryocooler in combination with a broad area cooling design. This paper addresses efforts to create such a tool to assist in gaining a broader understanding of these systems, and investigate their performance in potential space missions. The model uses conventional engineering and thermodynamic relationships to predict the preliminary design parameters, including input power requirements, pressure drops, flow rate, cycle performance, cooling lift, broad area cooler line sizing, and component operating temperatures and pressures given the cooling load operating temperature, heat rejection temperature, compressor inlet pressure, compressor rotational speed, and cryogenic tank geometry. In addition, the model allows for the preliminary design analysis of the broad area cooling tubing, to determine the effect of tube sizing on the reverse turbo-Brayton cycle system performance. At the time this paper was written, the model was verified to match existing theoretical documentation within a reasonable margin. While further experimental data is needed for full validation, this tool has already made significant steps towards giving a clearer understanding of the performance of a reverse turbo-Brayton cycle cryocooler integrated with broad area cooling technology for zero boil-off active thermal control.

  13. During air cool process aerosol absorption detection with photothermal interferometry

    NASA Astrophysics Data System (ADS)

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  14. A Novel Approach to Thermal Design of Solar Modules: Selective-Spectral and Radiative Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Dubey, Rajiv; Chattopadhyay, Shashwata

    2016-11-21

    For commercial solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 degrees C higher than the ambient. In the long run, extreme self-heating may erode efficiency and shorten lifetime, thereby, dramatically reducing the total energy output by almost ~10% Therefore, it is critically important to develop effective and practical cooling methods to combat PV self-heating. In this paper, we explore two fundamental sources of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical and thermal properties of the solar module to eliminatemore » the parasitic absorption (selective-spectral cooling) and enhance the thermal emission to the cold cosmos (radiative cooling). The proposed technique should cool the module by ~10 degrees C, to be reflected in significant long-term energy gain (~ 3% to 8% over 25 years) for PV systems under different climatic conditions.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  16. Evidence for a cool wind from the K2 dwarf in the detached binary V471 Tauri

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Sion, E. M.; Bruhweiler, F. C.; Carpenter, K. G.

    1989-01-01

    Evidence for mass loss from the K2 dwarf in V471 Tauri is found in the form of discrete absorption features in lines of various elements (Mg, Fe, Cr, Mn) and ionization stages (Mg I, Mg II, Fe I, Fe II). Resonant Mg II absorption indicates a mass loss rate of at least 10 to the -11th solar masses per year. The wind appears to be cool (no more than a few times 10,000 K).

  17. Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K.

    PubMed

    Melgaard, Seth; Seletskiy, Denis; Polyak, Victor; Asmerom, Yemane; Sheik-Bahae, Mansoor

    2014-04-07

    Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.

  18. Combined cycle plants: Yesterday, today, and tomorrow (review)

    NASA Astrophysics Data System (ADS)

    Ol'khovskii, G. G.

    2016-07-01

    Gas turbine plants (GTP) for a long time have been developed by means of increasing the initial gas temperature and improvement of the turbo-machines aerodynamics and the efficiency of the critical components air cooling within the framework of a simple thermodynamic cycle. The application of watercooling systems that were used in experimental turbines and studied approximately 50 years ago revealed the fundamental difficulties that prevented the practical implementation of such systems in the industrial GTPs. The steam cooling researches have developed more substantially. The 300 MW power GTPs with a closedloop steam cooling, connected in parallel with the intermediate steam heating line in the steam cycle of the combined cycle plant (CCP) have been built, tested, and put into operation. The designs and cycle arrangements of such GTPs and entire combined cycle steam plants have become substantially more complicated without significant economic benefits. As a result, the steam cooling of gas turbines has not become widespread. The cycles—complicated by the intermediate air cooling under compression and reheat of the combustion products under expansion and their heat recovery to raise the combustion chamber entry temperature of the air—were used, in particular, in the domestic power GTPs with a moderate (700-800°C) initial gas turbine entry temperature. At the temperatures being reached to date (1300-1450°C), only one company, Alstom, applies in their 240-300 MW GTPs the recycled fuel cycle under expansion of gases in the turbine. Although these GTPs are reliable, there are no significant advantages in terms of their economy. To make a forecast of the further improvement of power GTPs, a brief review and assessment of the water cooling and steam cooling of hot components and complication of the GTP cycle by the recycling of fuel under expansion of gases in the turbine has been made. It is quite likely in the long term to reach the efficiency for the traditional GTPs of approximately 43% and 63% for PGUs at the initial gas temperature of 1600°C and less likely to increase the efficiency of these plants up to 45% and 65% by increasing the gas temperature up to 1700°C or by application of the steam cooling in the recycled fuel cycle.

  19. Measurement of sound absorption in the air. [data procesing

    NASA Technical Reports Server (NTRS)

    Meredith, R.; Badavi, F.; Becher, J.

    1981-01-01

    The large temperature gradient in each section of the resonance tube resulting from the liquid nitrogen coolant necessitated a design modification to the cooling system. A timer and four solenoid valves were installed so that the coolant flow can be reversed periodically. The hardware and software for controlling the analog to digital converter and conversion rate were completed, and the system is operational. A duty cycle control circit was implemented so that on the sixteenth conversion a relay shuts off the vibration exciter used to generate the sound wave. Thus the starting point of each decay curve is exactly known. This information is necessary for evaluating the g digital decay information. The data acquisition and digital decay evaluation programs are described.

  20. Influence of solar variability on the infrared radiative cooling of the thermosphere from 2002 to 2014.

    PubMed

    Mlynczak, Martin G; Hunt, Linda A; Mertens, Christopher J; Thomas Marshall, B; Russell, James M; Woods, Thomas; Earl Thompson, R; Gordley, Larry L

    2014-04-16

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO 2 , 15 µm) and by nitric oxide (NO, 5.3 µm) has been observed for 12 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite. For the first time we present a record of the two most important thermospheric infrared cooling agents over a complete solar cycle. SABER has documented dramatic variability in the radiative cooling on time scales ranging from days to the 11 year solar cycle. Deep minima in global mean vertical profiles of radiative cooling are observed in 2008-2009. Current solar maximum conditions, evidenced in the rates of radiative cooling, are substantially weaker than prior maximum conditions in 2002-2003. The observed changes in thermospheric cooling correlate well with changes in solar ultraviolet irradiance and geomagnetic activity during the prior maximum conditions. NO and CO 2 combine to emit 7 × 10 18 more Joules annually at solar maximum than at solar minimum. First record of thermospheric IR cooling rates over a complete solar cycleIR cooling in current solar maximum conditions much weaker than prior maximumVariability in thermospheric IR cooling observed on scale of days to 11 years.

  1. Mixed refrigerant cycle with neon, hydrogen, and helium for cooling sc power transmission lines

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Dittmar, N.; Haberstroh, Ch; Quack, H.

    2017-02-01

    The use of superconductors in very long power transmission lines requires a reliable and effective cooling. Since the use of cryocoolers does not appear feasible for very long distances, a cryogenic refrigeration cycle needs to be developed. For cooling superconducting cables based on MgB2 (T c = 39 K), liquid hydrogen (LH2) is the obvious cooling agent. For recooling LH2, one would need a refrigeration cycle providing temperatures at around 20 K. For this purpose, one could propose the use of a helium refrigeration cycle. But the very low molecular weight of helium restricts the use of turbo compressors, which limits the overall efficiency. In order to increase the molecular weight of the refrigerant a mixture of cryogens could be used, allowing the use of a turbo compressor. Temperatures below the triple point of neon are achieved by phase separation. This paper presents a possible layout of a refrigeration cycle utilizing a three component mixture of neon, hydrogen, and helium.

  2. Performance comparison of single-stage mixed-refrigerant Joule-Thomson cycle and reverse Brayton cycle for cooling 80 to 120 K temperature-distributed heat loads

    NASA Astrophysics Data System (ADS)

    Wang, H. C.; Chen, G. F.; Gong, M. Q.; Li, X.

    2017-12-01

    Thermodynamic performance comparison of single-stage mixed-refrigerant Joule-Thomson cycle (MJTR) and pure refrigerant reverse Brayton cycle (RBC) for cooling 80 to 120 K temperature-distributed heat loads was conducted in this paper. Nitrogen under various liquefaction pressures was employed as the heat load. The research was conducted under nonideal conditions by exergy analysis methods. Exergy efficiency and volumetric cooling capacity are two main evaluation parameters. Exergy loss distribution in each process of refrigeration cycle was also investigated. The exergy efficiency and volumetric cooling capacity of MJTR were obviously superior to RBC in 90 to 120 K temperature zone, but still inferior to RBC at 80 K. The performance degradation of MJTR was caused by two main reasons: The high fraction of neon resulted in large entropy generation and exergy loss in throttling process. Larger duty and WLMTD lead to larger exergy losses in recuperator.

  3. Structure and magnetic/electrochemical properties of Cu-doped BiFeO3 nanoparticles prepared by a simple solution method

    NASA Astrophysics Data System (ADS)

    Khajonrit, Jessada; Phumying, Santi; Maensiri, Santi

    2016-06-01

    BiFe1- x Cu x O3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles were prepared by a simple solution method. The prepared nanoparticles were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method analysis using the Barret-Joyner-Halenda (BJH) model, and X-ray absorption spectroscopy (XAS). Magnetization properties were obtained using a vibrating sample magnetometer (VSM) at room temperature. Magnetization was clearly enhanced by increasing Cu content and decreasing particle size. Zero-field-cooled (ZFC) and field-cooled (FC) temperature-dependent magnetization measurements showed that blocking temperature increased with increasing Cu content. Electrochemical properties were investigated by cyclic voltammetry (CV) and the galvanostatic charge-discharge (GCD) method. The performance of the fabricated supercapacitor was improved for the BiFe0.95Cu0.05O3 electrode. The highest specific capacitance was 568.13 F g-1 at 1 A g-1 and the capacity retention was 77.13% after 500 cycles.

  4. Performance evaluation on cool roofs for green remodeling

    NASA Astrophysics Data System (ADS)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  5. Laser cooling of BaF

    NASA Astrophysics Data System (ADS)

    Bo, Yan; Bu, Wenhao; Chen, Tao; Lv, Guitao

    2017-04-01

    In this poster, we report our recently experimental progresses in laser cooling of BaF molecule. Our theoretic calculation shows BaF is a good candidate for laser cooling: quasi-cycling transitions, good wavelengths (around 900nm) for the main transitions. We have built a 4K cryogenic machine, laser ablate the target to make BaF molecules. The precise spectroscopy of BaF is measured and the laser cooling related transitions are identified. The collision between BaF and 4K He is carefully characterized. The quasi-cycling transition is demonstrated. And laser cooling experiment is going on.

  6. Rotating diffuser for pressure recovery in a steam cooling circuit of a gas turbine

    DOEpatents

    Eldrid, Sacheverel Q.; Salamah, Samir A.; DeStefano, Thomas Daniel

    2002-01-01

    The buckets of a gas turbine are steam-cooled via a bore tube assembly having concentric supply and spent cooling steam return passages rotating with the rotor. A diffuser is provided in the return passage to reduce the pressure drop. In a combined cycle system, the spent return cooling steam with reduced pressure drop is combined with reheat steam from a heat recovery steam generator for flow to the intermediate pressure turbine. The exhaust steam from the high pressure turbine of the combined cycle unit supplies cooling steam to the supply conduit of the gas turbine.

  7. Energy Supply Alternatives for Picatinny Arsenal, NJ

    DTIC Science & Technology

    1992-09-01

    condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at...60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at 150 MVA with a 0.85 Power Factor...condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated

  8. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-06

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.

  9. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  10. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    DOE PAGES

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-09-21

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. In this paper, we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. Whenmore » placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Lastly, our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.« less

  11. High duty cycle hard soldered kilowatt laser diode arrays

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenheim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom

    2010-02-01

    High-brightness laser diode arrays operating at a duty cycle of 10% - 20% are in ever-increasing demand for the optical pumping of solid state lasers and directed energy applications. Under high duty-cycle operation at 10% - 20%, passive (conductive) cooling is of limited use, while micro-coolers using de-ionized cooling water can considerably degrade device reliability. When designing and developing actively-cooled collimated laser diode arrays for high duty cycle operation, three main problems should be carefully addressed: an effective local and total heat removal, a minimization of packaging-induced and operational stresses, and high-precision fast axis collimation. In this paper, we present a novel laser diode array incorporating a built-in tap water cooling system, all-hard-solder bonded assembly, facet-passivated high-power 940 nm laser bars and tight fast axis collimation. By employing an appropriate layout of water cooling channels, careful choice of packaging materials, proper design of critical parts, and active optics alignment, we have demonstrated actively-cooled collimated laser diode arrays with extended lifetime and reliability, without compromising their efficiency, optical power density, brightness or compactness. Among the key performance benchmarks achieved are: 150 W/bar optical peak power at 10% duty cycle, >50% wallplug efficiency and <1° collimated fast axis divergence. A lifetime of >0.5 Ghots with <2% degradation has been experimentally proven. The laser diode arrays have also been successfully tested under harsh environmental conditions, including thermal cycling between -20°C and 40°C and mechanical shocks at 500g acceleration. The results of both performance and reliability testing bear out the effectiveness and robustness of the manufacturing technology for high duty-cycle laser arrays.

  12. Solar cycle variability of nonmigrating tides in the infrared cooling of the thermosphere

    NASA Astrophysics Data System (ADS)

    Nischal, N.; Oberheide, J.; Mlynczak, M. G.; Marsh, D. R.

    2017-12-01

    Nitric Oxide (NO) at 5.3 μm and Carbon dioxide (CO2) at 15 μm are the major infrared emissions responsible for the radiative cooling of the thermosphere. We study the impact of two important diurnal nonmigrating tides, the DE2 and DE3, on NO and CO2 infrared emissions over a complete solar cycle (2002-2013) by (i) analyzing NO and CO2 cooling rate data from SABER and (ii) photochemical modeling using dynamical tides from a thermospheric empirical tidal model, CTMT. Both observed and modeled results show that the NO cooling rate amplitudes for DE2 and DE3 exhibit strong solar cycle dependence. NO 5.3 μm cooling rate tides are relatively unimportant for the infrared energy budget during solar minimum but important during solar maximum. On the other hand DE2 and DE3 in CO2 show comparatively small variability over a solar cycle. CO2 15 μm cooling rate tides remain, to a large extent, constant between solar minimum and maximum. This different responses by NO and CO2 emissions to the DE2 and DE3 during a solar cycle comes form the fact that the collisional reaction rate for NO is highly sensitive to the temperature comparative to that for CO2. Moreover, the solar cycle variability of these nonmigrating tides in thermospheric infrared emissions shows a clear QBO signals substantiating the impact of tropospheric weather system on the energy budget of the thermosphere. The relative contribution from the individual tidal drivers; temperature, density and advection to the observed DE2 and DE3 tides does not vary much over the course of the solar cycle, and this is true for both NO and CO2 emissions.

  13. Heating and cooling of the earth's plasma sheet

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.

    1990-01-01

    Magnetic-field models based on pressure equilibrium in the quiet magnetotail require nonadiabatic cooling of the plasma as it convects inward or a decrease of the flux tube content. Recent in situ observations of plasma density and temperature indicate that, during quiet convection, the flux tube content may actually increase. Thus the plasma must be cooled during quiet times. The earth plasma sheet is generally significantly hotter after the expansion phase of a substorm than before the plasma sheet thinning begins and cools during the recovery phase. Heating mechanisms such as reconnection, current sheet acceleration, plasma expansion, and resonant absorption of surface waves are discussed. It seems that all mechanisms are active, albeit in different regions of the plasma sheet. Near-earth tail signatures of substorms require local heating as well as a decrease of the flux tube content. It is shown that the resonant absorption of surface waves can provide both.

  14. Concentrating Solar Power Projects - Olivenza 1 | Concentrating Solar Power

    Science.gov Websites

    Manufacturer: Siemens Turbine Description: 5 extractions Output Type: Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description: Cooling Towers

  15. Response of the Water Cycle of West Africa and Atlantic to Radiative Forcing by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, Kyu-Myong; Sud, Yogesh C.; Walker, Gregory L.

    2010-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence in support of the "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summer, as a result of large-scale atmospheric feed back triggered by absorbing dust aerosols, rainfall and cloudiness are enhanced over the West Africa/Easter Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean. region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while long wave has the opposite response. The elevated dust layer warms the air over Nest Africa and the eastern Atlantic. The condensation heating associated with the induced deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface energy fluxes, resulting in cooling of the Nest African land and the eastern Atlantic, and a warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at 0.95 or higher.

  16. A closed cycle cascade Joule Thomson refrigerator for cooling Josephson junction magnetometers

    NASA Technical Reports Server (NTRS)

    Tward, E.; Sarwinski, R.

    1985-01-01

    A closed cycle cascade Joule Thomson refrigerator designed to cool Josephson Junction magnetometers to liquid helium temperature is being developed. The refrigerator incorporates 4 stages of cooling using the working fluids CF4 and He. The high pressure gases are provided by a small compressor designed for this purpose. The upper stages have been operated and performance will be described.

  17. 53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW LOOKING S.E. AT THE CATALYZER BUILDINGS, COOLING SHEDS AND ABSORPTION BUILDINGS IN THE BACKGROUND. MAY 29, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  18. Collision-Induced Infrared Absorption by Hydrogen-Helium gas mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2010-10-01

    The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars ^[1]. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2--H2, H2--He, and H2--H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin ^[2]. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely ^[2], so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures ^[2]. [1] L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 [2] Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, ``Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin'', International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201

  19. Crystal-field effects in fluoride crystals for optical refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehlen, Markus P

    2010-01-01

    The field of optical refrigeration of rare-earth-doped solids has recently seen an important breakthrough. The cooling of a YLiF{sub 4} (YLF) crystal doped with 5 mol% Yb3+ to 155 K by Seletskiy et al [NPhot] has surpassed the lowest temperatures ({approx}170 K for {approx}100 mW cooling capacity) that are practical with commercial multi-stage thermoelectric coolers (TEC) [Glaister]. This record performance has advanced laser cooling into an application relevant regime and has put first practical optical cryocoolers within reach. The result is also relevant from a material perspective since for the first time, an Yb3+-doped crystal has outperformed an Yb3+-doped glass.more » The record temperature of 208 K was held by the Yb3+-doped fluorozirconate glass ZBLAN. Advanced purification and glass fabrication methods currently under development are expected to also advance ZBLAN:Yb3+ to sub-TEC temperatures. However, recent achievements with YLF:Yb3+ illustrate that crystalline materials may have two potentially game-changing advantajes over glassy materials. First, the crystalline environment reduces the inhomogeneous broadening of the Yb3+ electronic transitions as compared to a glassy matrix. The respective sharpening of the crystal-field transitions increases the peak absorption cross section at the laser excitation wavelength and allows for more efficient pumping of the Yb3+ ions, particularly at low temperatures. Second, many detrimental impurities present in the starting materials tend to be excluded from the crystal during its slow growth process, in contrast to a glass where all impurities present in the starting materials are included in the glass when it is formed by temperature quenching a melt. The ultra high purity required for laser cooling materials [PRB] therefore may be easier to realize in crystals than in glasses. Laser cooling occurs by laser excitation of a rare-earth ion followed by anti-Stokes luminescence. Each such laser-cooling cycle extracts thermal energy from the solid and carries it away as high-entropy light, thereby cooling the material. In the ideal case, the respective laser-cooling power is given by the pump wavelength ({lambda}{sub p}), the mean fluorescence wavelength ({bar {lambda}}{sub L}), and the absorption coefficient (a{sub r}) of the pumped transition. These quantities are solely determined by crystal field interactions. On one hand, a large crystal-field splitting offers a favorably large difference of {lambda}{sub p} - {bar {lambda}}{sub L} and thus a high cooling efficiency {eta}{sub cool} = ({lambda}{sub p} - {bar {lambda}}{sub L})/{bar {lambda}}{sub L}. On the other hand, a small crystal-field splitting offers a high thermal population (n{sub i}) of the initial state of the pumped transition, giving a high pump absorption coefficient and thus high laser cooling power, particularly at low temperatures. A quantitative description of crystal-field interactions is therefore critical to the understanding and optimization of optical refrigeration. In the case of Yb3+ as the laser cooling ion, however, development of a crystal-field model is met with substantial difficulties. First, Yb3+ has only two 4/multiplets, {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2}, which lead to at most 7 crystal-field levels. This makes it difficult, and in some cases impossible, to evaluate the crystal-field Hamiltonian, which has at least 4 parameters for any Yb3+ point symmety lower than cubic. Second, {sup 2}F{sub 7/2}{leftrightarrow}{sup 2}F{sub 5/2} transitions exhibit an exceptionally strong electron-phonon coupling compared to 4f transitions of other rare earths. This makes it difficult to distinguish electronic from vibronic transitions in the absorption and luminescence spectra and to reliably identify the crystal-field levels. Yb3+ crystal-field splittings reported in the literature should thus generally be viewed with caution. This paper explores the effects of crystal-field interactions on the laser cooling performance of Yb3+-doped fluoride crystals. It is shown that the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets of Yb3+ can be estimated from crystal-field splittings of other rare-earth-doped fluoride crystals. This approach takes advantage of an extensive body of experimental work from which Yb3+ doped fluoride crystals with favorable laser cooling properties might be identified. Section 2 reviews the crystal-field splitting of the 4f electronic states and introduces the crystal-field strength as a means to predict the total crystal-field splitting of the {sup 2}F{sub 7/2} and {sup 2}F{sub 5/2} multiplets. Section 3 illustrates the effect of the total {sup 2}F{sub 7/2} crystal field splitting on the laser cooling power. Finally, Section 4 compiles literature data on crystal-field splittings in fluoride crystals from which the {sup 2}F{sub 7/2} splitting is predicted.« less

  20. Analysis of advanced conceptual designs for single-family-size absorption chillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macriss, R.A.; Zawacki, T.S.; Kouo, M.T.

    1978-01-01

    The objective of this research study is the development of radically new fluid systems, specifically tailored to the needs and requirements of solar-absorption cooling for single-family-size residences. Progress is reported.

  1. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  2. Enhancement radiative cooling performance of nanoparticle crystal via oxidation

    NASA Astrophysics Data System (ADS)

    Jia, Zi-Xun; Shuai, Yong; Li, Meng; Guo, Yanmin; Tan, He-ping

    2018-03-01

    Nanoparticle-crystal is a promising candidate for large scale metamaterial fabrication. However, in radiative cooling application, the maximum blackbody radiation wavelength locates far from metal's plasmon wavelength. In this paper, it will be shown if the metallic nanoparticle crystal can be properly oxidized, the absorption performance within room temperature blackbody radiation spectrum can be improved. Magnetic polariton and surface plasmon polariton have been explained for the mechanism of absorption improvement. Three different oxidation patterns have been investigated in this paper, and the results show they share a similar enhancing mechanism.

  3. Chemical heat pump

    DOEpatents

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  4. Simulation of a double-effect LiBr/H{sub 2}O absorption cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardono, B.; Nelson, R.

    1996-10-01

    Since commercially-available, double-effect, absorption cooling systems give relatively high performance for using solar energy or other medium-temperature sources, their performance was simulated and studied. To evaluate the cooling system performance, two objective functions were established: the system performance (COP) and the system cost. The system cost was used as the objective function to determine the optimum design of the system, while the COP was used to evaluate the effects of each variable on the system performance. The system optimization shows that there is an economic optimum heat-transfer area for each heat exchanger. Further study shows that this is a globalmore » minimum cost of the system. The best COPs that could be achieved by changing the heat-transfer areas and the inlet hot water temperature vary between 1.4 and 1.5. Higher COPs of approximately 1.6 were achieved if higher chilled water inlet temperatures or lower cooling water temperatures are used. These conditions are not desirable since higher chilled water inlet temperatures are not useful for cooling, and lower cooling water inlet temperatures are not usually available.« less

  5. Quantum speed limit constraints on a nanoscale autonomous refrigerator

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Chiranjib; Misra, Avijit; Bhattacharya, Samyadeb; Pati, Arun Kumar

    2018-06-01

    Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.

  6. Enhanced absorption cycle computer model

    NASA Astrophysics Data System (ADS)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  7. Apparatus and methods for supplying auxiliary steam in a combined cycle system

    DOEpatents

    Gorman, William G.; Carberg, William George; Jones, Charles Michael

    2002-01-01

    To provide auxiliary steam, a low pressure valve is opened in a combined cycle system to divert low pressure steam from the heat recovery steam generator to a header for supplying steam to a second combined cycle's steam turbine seals, sparging devices and cooling steam for the steam turbine if the steam turbine and gas turbine lie on a common shaft with the generator. Cooling steam is supplied the gas turbine in the combined cycle system from the high pressure steam turbine. Spent gas turbine cooling steam may augment the low pressure steam supplied to the header by opening a high pressure valve whereby high and low pressure steam flows are combined. An attemperator is used to reduce the temperature of the combined steam in response to auxiliary steam flows above a predetermined flow and a steam header temperature above a predetermined temperature. The auxiliary steam may be used to start additional combined cycle units or to provide a host unit with steam turbine cooling and sealing steam during full-speed no-load operation after a load rejection.

  8. Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) for in situ Atmospheric Measurements of N(sub 2)0, CH(sub 4), CO, HCl, and NO(sub 2) from Balloon or RPA Platforms

    NASA Technical Reports Server (NTRS)

    Scott, D.; Herman, R.; Webster, C.; May, R.; Flesch, G.; Moyer, E.

    1998-01-01

    The Airborne Laser Infrared Absorption Spectrometer II (ALIAS-II) is a lightweight, high-resolution (0.0003 cm-1), scanning, mid-infrared absorption spectrometer based on cooled (80 K) lead-salt tunable diode laser sources.

  9. Triple effect absorption chiller utilizing two refrigeration circuits

    DOEpatents

    DeVault, Robert C.

    1988-01-01

    A triple effect absorption method and apparatus having a high coefficient of performance. Two single effect absorption circuits are combined with heat exchange occurring between a condenser and absorber of a high temperature circuit, and a generator of a low temperature circuit. The evaporators of both the high and low temperature circuits provide cooling to an external heat load.

  10. Science and software support for spacecraft solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Hessameddin, G.; Becher, J.

    1982-01-01

    The temperature dependence of absorption coefficients of ozone was studied between 7567 A and 3630 A. When the gas was cooled from room temperature to -108 C, an overall increase in the absorption coefficients was noticed. The maximum increase of 5% occurred at lambda = 6020 A. In general, the absorption is linearly dependent on temperature.

  11. Thermal modeling of a secondary concentrator integrated with an open direct-absorption molten-salt volumetric receiver in a beam-down tower system

    NASA Astrophysics Data System (ADS)

    Lahlou, Radia; Armstrong, Peter; Grange, Benjamin; Almheiri, Saif; Calvet, Nicolas; Slocum, Alexander; Shamim, Tariq

    2016-05-01

    An upward-facing three-dimensional secondary concentrator, herein termed Final Optical Element (FOE), is designed to be used in a beam-down tower in combination with an open volumetric direct-absorption molten-salt receiver tank acting simultaneously as a thermal energy storage system. It allows reducing thermal losses from the open receiver by decreasing its aperture area while keeping minimal spillage losses. The FOE is exposed to high solar fluxes, a part of which is absorbed by its reflector material, leading to material degradation by overheating. Consequently, the FOE may require active cooling. A thermal model of the FOE under passive cooling mechanism is proposed as a first step to evaluate its sensitivity to some design parameters. Then, it will be used to evaluate the requirements for the active cooling system. The model provides insights on the FOE thermal behavior and highlights the effectiveness of a design modification on passive cooling enhancement. First prototype tests under reduced flux and with no active cooling will be used for model adjustment.

  12. Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow

    NASA Astrophysics Data System (ADS)

    Martowibowo, Sigit Yoewono; Kaswadi, Agung

    2017-03-01

    The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conventional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: T M = 180 °C; P inj = 20 MPa; P hold = 16 MPa and t hold = 8 s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid.

  13. Laser cooling of molecules by zero-velocity selection and single spontaneous emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooi, C. H. Raymond

    2010-11-15

    A laser-cooling scheme for molecules is presented based on repeated cycle of zero-velocity selection, deceleration, and irreversible accumulation. Although this scheme also employs a single spontaneous emission as in [Raymond Ooi, Marzlin, and Audretsch, Eur. Phys. J. D 22, 259 (2003)], in order to circumvent the difficulty of maintaining closed pumping cycles in molecules, there are two distinct features which make the cooling process of this scheme faster and more practical. First, the zero-velocity selection creates a narrow velocity-width population with zero mean velocity, such that no further deceleration (with many stimulated Raman adiabatic passage (STIRAP) pulses) is required. Second,more » only two STIRAP processes are required to decelerate the remaining hot molecular ensemble to create a finite population around zero velocity for the next cycle. We present a setup to realize the cooling process in one dimension with trapping in the other two dimensions using a Stark barrel. Numerical estimates of the cooling parameters and simulations with density matrix equations using OH molecules show the applicability of the cooling scheme. For a gas at temperature T=1 K, the estimated cooling time is only 2 ms, with phase-space density increased by about 30 times. The possibility of extension to three-dimensional cooling via thermalization is also discussed.« less

  14. JT90 thermal barrier coated vanes

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.

    1982-01-01

    The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.

  15. Controlled rate cooling of fungi using a stirling cycle freezer.

    PubMed

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  16. Navy Expeditionary Technology Transition Program (NETTP)

    DTIC Science & Technology

    2012-03-02

    water vapor from feed air using a zeolite membrane •Temperature/Humidity levels can be met in warm, humid climates without reheating •Allows higher...UNCLASSIFIED, Distribution Unlimited Modular Thermal Hub •Small, efficient absorption cooling •Energy source: Combustion, low- grade waste heat, solar... thermal energy •Reversible operation enables space cooling and heating, and water heating •Modular cooling and heating unit •Monolithic packaging offers

  17. Enhanced electrocaloric cooling in ferroelectric single crystals by electric field reversal

    NASA Astrophysics Data System (ADS)

    Ma, Yang-Bin; Novak, Nikola; Koruza, Jurij; Yang, Tongqing; Albe, Karsten; Xu, Bai-Xiang

    2016-09-01

    An improved thermodynamic cycle is validated in ferroelectric single crystals, where the cooling effect of an electrocaloric refrigerant is enhanced by applying a reversed electric field. In contrast to the conventional adiabatic heating or cooling by on-off cycles of the external electric field, applying a reversed field is significantly improving the cooling efficiency, since the variation in configurational entropy is increased. By comparing results from computer simulations using Monte Carlo algorithms and experiments using direct electrocaloric measurements, we show that the electrocaloric cooling efficiency can be enhanced by more than 20% in standard ferroelectrics and also relaxor ferroelectrics, like Pb (Mg1 /3 /Nb2 /3)0.71Ti0.29O3 .

  18. LDR cryogenics

    NASA Technical Reports Server (NTRS)

    Nast, T.

    1988-01-01

    A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.

  19. Interrelations between random walks on diagrams (graphs) with and without cycles.

    PubMed

    Hill, T L

    1988-05-01

    Three topics are discussed. A discrete-state, continuous-time random walk with one or more absorption states can be studied by a presumably new method: some mean properties, including the mean time to absorption, can be found from a modified diagram (graph) in which each absorption state is replaced by a one-way cycle back to the starting state. The second problem is a random walk on a diagram (graph) with cycles. The walk terminates on completion of the first cycle. This walk can be replaced by an equivalent walk on a modified diagram with absorption. This absorption diagram can in turn be replaced by another modified diagram with one-way cycles back to the starting state, just as in the first problem. The third problem, important in biophysics, relates to a long-time continuous walk on a diagram with cycles. This diagram can be transformed (in two steps) to a modified, more-detailed, diagram with one-way cycles only. Thus, the one-way cycle fluxes of the original diagram can be found from the state probabilities of the modified diagram. These probabilities can themselves be obtained by simple matrix inversion (the probabilities are determined by linear algebraic steady-state equations). Thus, a simple method is now available to find one-way cycle fluxes exactly (previously Monte Carlo simulation was required to find these fluxes, with attendant fluctuations, for diagrams of any complexity). An incidental benefit of the above procedure is that it provides a simple proof of the one-way cycle flux relation Jn +/- = IIn +/- sigma n/sigma, where n is any cycle of the original diagram.

  20. A Comparison of 2 Practical Cooling Methods on Cycling Capacity in the Heat

    PubMed Central

    Cuttell, Saul A.; Kiri, Victor; Tyler, Christopher

    2016-01-01

    Context:  Cooling the torso and neck can improve exercise performance and capacity in a hot environment; however, the proposed mechanisms for the improvements often differ. Objective:  To directly compare the effects of cooling the neck and torso region using commercially available devices on exercise capacity in a hot environment (temperature = 35°C ± 0.1°C, relative humidity = 50.1% ± 0.7%). Design:  Crossover study. Setting:  Laboratory. Patients or Other Participants:  Eight recreationally active, nonheat-acclimated men (age = 24 ± 4 years, height = 1.82 ± 0.10 m, mass = 80.3 ± 9.7 kg, maximal power output = 240 ± 25 W). Intervention(s):  Three cycling capacity tests at 60% maximal power output to volitional exhaustion: 1 with no cooling (NC), 1 with vest cooling (VC), and 1 with a neck cooling collar (CC). Main Outcome Measure(s):  Time to volitional exhaustion, rectal temperature, mean skin temperature, torso and neck skin temperature, body mass, heart rate, rating of perceived exertion, thermal sensation, and feeling scale were measured. Results:  Participants cycled longer with VC (32.2 ± 9.5 minutes) than NC (27. 6 ± 7.6 minutes; P = .03; d = 0.54) or CC (30.0 ± 8.8 minutes; P = .02; d = 0.24). We observed no difference between NC and CC (P = .12; d = 0.31). Neck and torso temperature and perceived thermal sensation were reduced with the use of cooling modalities (P < .001), but no other variables were affected. Conclusions:  Cycling capacity in the heat improved when participants used a commercially available cooling vest, but we observed no benefit from wearing a commercially available CC. The vest and the collar did not alter the heart rate, rectal temperature, skin temperature, or sweat-loss responses to the cycling bout. PMID:27571045

  1. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  2. Transient analysis and energy optimization of solar heating and cooling systems in various configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calise, F.; Dentice d'Accadia, M.; Palombo, A.

    2010-03-15

    In this paper, a transient simulation model of solar-assisted heating and cooling systems (SHC) is presented. A detailed case study is also discussed, in which three different configurations are considered. In all cases, the SHC system is based on the coupling of evacuated solar collectors with a single-stage LiBr-H{sub 2}O absorption chiller, and a gas-fired boiler is also included for auxiliary heating, only during the winter season. In the first configuration, the cooling capacity of the absorption chiller and the solar collector area are designed on the basis of the maximum cooling load, and an electric chiller is used asmore » the auxiliary cooling system. The second layout is similar to the first one, but, in this case, the absorption chiller and the solar collector area are sized in order to balance only a fraction of the maximum cooling load. Finally, in the third configuration, there is no electric chiller, and the auxiliary gas-fired boiler is also used in summer to feed the absorption chiller, in case of scarce solar irradiation. The simulation model was developed using the TRNSYS software, and included the analysis of the dynamic behaviour of the building in which the SHC systems were supposed to be installed. The building was simulated using a single-lumped capacitance model. An economic model was also developed, in order to assess the operating and capital costs of the systems under analysis. Furthermore, a mixed heuristic-deterministic optimization algorithm was implemented, in order to determine the set of the synthesis/design variables that maximize the energy efficiency of each configuration under analysis. The results of the case study were analyzed on monthly and weekly basis, paying special attention to the energy and monetary flows of the standard and optimized configurations. The results are encouraging as for the potential of energy saving. On the contrary, the SHC systems appear still far from the economic profitability: however, this is notoriously true for the great majority of renewable energy systems. (author)« less

  3. Cooling system for radiator and condenser of vehicles with an air conditioner and method of operating the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Y.; Obata, Y.; Takeoka, T.

    1987-04-21

    A cooling system is described for radiator and condenser of vehicles with an air conditioner having a first blower and a second blower for cooling the radiator and the condenser so as to cool the engine cooling water and so as to condense the coolant, and a cooling cycle operation switch which comprises: (a) engine cooling water temperature switch (SW1) connected between a power supply and the first blower and turned on and off in accordance with high and low temperature conditions of the engine cooling water; (b) relay switching means for controlling the first and second blowers in accordancemore » with the on-off conditions of the cooling cycle operation switch; and (c) a control circuit having an on-off switch and a solenoid and connected between the relay switching means and either the first blower or the second blower, the solenoid of the control circuit being connected to switches (SW3, SW4 and SW5) for electrical equipment such as headlights, wipers; whereby, when any one of the switches for the electrical equipment of the vehicle is turned off, the first and second blowers are operated at normal speed through the relay switching means and the control circuit, upon the operation of the cooling cycle operation switch, while when any one of the switches for the electrical equipment is turned on, the first blower is on-off controlled through the engine cooling water temperature switch (SW1) and the second blower remains operated through the relay switching means.« less

  4. Optimisation of multi-layer rotationally moulded foamed structures

    NASA Astrophysics Data System (ADS)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4%, and 16% compared with FAC.

  5. Cycle simulation of the low-temperature triple-effect absorption chiller with vapor compression unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Lee, H.

    1999-07-01

    The construction of a triple-effect absorption chiller machine using the lithium bromide-water solution as a working fluid is strongly limited by corrosion problems caused by the high generator temperature. In this work, three new cycles having the additional vapor compression units were suggested in order to lower the generator temperature of a triple-effect absorption chiller. Each new cycle has one compressor located at the different position which was used to elevate the pressure of the refrigerant vapor. Computer simulations were carried out in order to examine both the basic triple-effect cycle and three new cycles. All types of triple-effect absorptionmore » chiller cycles were found to be able to lower the temperature of high-temperature generator to the more favorable operation range. The COPs of three cycles calculated by considering the additional compressor works showed a small level of decrease or increase compared with that of the basic triple-effect cycle. Consequently, a low-temperature triple-effect absorption chiller can be possibly constructed by adapting one of three new cycles. A great advantage of these new cycles over the basic one is that the conventionally used lithium bromide-water solution can be successfully used as a working fluid without the danger of corrosion.« less

  6. Quasars Probing Quasars. VII. The Pinnacle of the Cool Circumgalactic Medium Surrounds Massive z ~ 2 Galaxies

    NASA Astrophysics Data System (ADS)

    Prochaska, J. Xavier; Lau, Marie Wingyee; Hennawi, Joseph F.

    2014-12-01

    We survey the incidence and absorption strength of the metal-line transitions C II 1334 and C IV 1548 from the circumgalactic medium (CGM) surrounding z ~ 2 quasars, which act as signposts for massive dark matter halos M halo ≈ 1012.5 M ⊙. On scales of the virial radius (r vir ≈ 160 kpc), we measure a high covering fraction fC = 0.73 ± 0.10 to strong C II 1334 absorption (rest equivalent width W 1334 >= 0.2 Å), implying a massive reservoir of cool (T ~ 104 K) metal enriched gas. We conservatively estimate a metal mass exceeding 108 M ⊙. We propose that these metals trace enrichment of the incipient intragroup/intracluster medium that these halos eventually inhabit. This cool CGM around quasars is the pinnacle among galaxies observed at all epochs, as regards covering the fraction and average equivalent width of H I Lyα and low-ion metal absorption. We argue that the properties of this cool CGM primarily reflect the halo mass, and that other factors such as feedback, star-formation rate, and accretion from the intergalactic medium are secondary. We further estimate that the CGM of massive, z ~ 2 galaxies accounts for the majority of strong Mg II absorption along random quasar sightlines. Last, we detect an excess of strong C IV 1548 absorption (W 1548 >= 0.3 Å) over random incidence to the 1 Mpc physical impact parameter and measure the quasar-C IV cross-correlation function: ξ C \\scriptsize{IV-Q}(r) = (r/r_0)-γ with r0 = 7.5+2.8-1.4 h-1 Mpc and γ = 1.7+0.1-0.2. Consistent with previous work on larger scales, we infer that this highly ionized C IV gas traces massive (1012 M ⊙) halos.

  7. [Effect of addition of instant corn flour on rheological characteristics of wheat flour and breadmaking III].

    PubMed

    Martínez, F; el-Dahs, A A

    1993-12-01

    The instant corn flour prepared by the hydrothermal process using corn grits soaked in water at room temperature (28-30 degrees C) for 5 hours and steaming for 1 minute at 118 degrees C presented characteristics similar to that of flours prepared with grits soaked in water at temperature higher than room temperature and different steaming time (5 and 15 minutes). The addition of instant corn flour up of a 25% mixture with wheat flour reduced the peak of maximum viscosity during the heating cycle; however, the final viscosity during the cooling cycle was increased. The water absorption was increased with the increase of substitution in the level of wheat flour. Extensibility, maximum resistance and values of area were reduced with an increase in the level of instant corn flour in the mixture. However, extension resistance and proportional number were increased. Bread prepared from a mixture of instant corn flour and wheat flour showed higher weight with low loaf volume, color and texture of the crumb related to bread wheat.

  8. Comparison of band model calculations of upper atmospheric cooling rates for the 15-micrometer carbon dioxide band

    NASA Technical Reports Server (NTRS)

    Boughner, R. E.

    1985-01-01

    Within the atmosphere of the earth, absorption and emission of thermal radiation by the 15-micron CO2 bands are the largest contributors to infrared cooling rates in the stratosphere. Various techniques for calculating cooling rates due to these bands have been described. These techniques can be classified into one of two categories, including 'exact' or line-by-line calculations and other methods. The latter methods are based on broad band emissivity and band absorptance formulations. The present paper has the objective to present comparisons of the considered computational approaches. It was found that the best agreement with the exact line-by-line calculations of Fels and Schwarzkopf (1981) could be obtained by making use of a new Doppler band model which is described in the appendix of the paper.

  9. Non-Venting Thermal and Humidity Control for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Mike; Chen, Weibo; Bue, Grant

    2011-01-01

    Future EVA suits need processes and systems to control internal temperature and humidity without venting water to the environment. This paper describes an absorption-based cooling and dehumidification system as well as laboratory demonstrations of the key processes. There are two main components in the system: an evaporation cooling and dehumidification garment (ECDG) that removes both sensible heat and latent heat from the pressure garment, and an absorber radiator that absorbs moisture and rejects heat to space by thermal radiation. This paper discusses the overall design of both components, and presents recent data demonstrating their operation. We developed a design and fabrication approach to produce prototypical heat/water absorbing elements for the ECDG, and demonstrated by test that these elements could absorb heat and moisture at a high flux. Proof-of-concept tests showed that an ECDG prototype absorbs heat and moisture at a rate of 85 W/ft under conditions that simulate operation in an EVA suit. The heat absorption was primarily due to direct absorption of water vapor. It is possible to construct large, flexible, durable cooling patches that can be incorporated into a cooling garment with this system. The proof-of-concept test data was scaled to calculate area needed for full metabolic loads, thus showing that it is feasible to use this technology in an EVA suit. Full-scale, lightweight absorber/radiator modules have also been built and tested. They can reject heat at a flux of 33 W/ft while maintaining ECDG operation at conditions that will provide a cool and dry environment inside the EVA suit.

  10. The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements

    NASA Astrophysics Data System (ADS)

    Catoire, Valéry; Robert, Claude; Chartier, Michel; Jacquet, Patrick; Guimbaud, Christophe; Krysztofiak, Gisèle

    2017-09-01

    An infrared absorption spectrometer called SPIRIT (SPectromètre Infra-Rouge In situ Toute altitude) has been developed for airborne measurements of trace gases in the troposphere. At least three different trace gases can be measured simultaneously every 1.6 s using the coupling of a single Robert multipass optical cell with three Quantum Cascade Lasers (QCLs), easily interchangeable to select species depending on the scientific objectives. Absorptions of the mid-infrared radiations by the species in the cell at reduced pressure (<40 hPa), with path lengths adjustable up to 167.78 m, are quantified using an HgCdTe photodetector cooled by Stirling cycle. The performances of the instrument are assessed: a linearity with a coefficient of determination R 2 > 0.979 for the instrument response is found for CO, CH4, and NO2 volume mixing ratios under typical tropospheric conditions. In-flight comparisons with calibrated gas mixtures allow to show no instrumental drift correlated with atmospheric pressure and temperature changes (when vertical profiling) and to estimate the overall uncertainties in the measurements of CO, CH4, and NO2 to be 0.9, 22, and 0.5 ppbv, respectively. In-flight precision (1 σ) for these species at 1.6 s sampling is 0.3, 5, and 0.3 ppbv, respectively.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, A. J.

    In a method of the type where petrol is recovered from a mixture of petrol vapor and air by absorption of the petrol in a cooled petroleum distillate, a petroleum distillate having a boiling point range higher than that of the petrol is used, and this petroleum distillate is in sequence cooled by heat exchange with a cold reservoir, brought into direct contact with the petrol/air mixture to absorb petrol, transferred to a buffer tank and transferred from the buffer tank to a stripping means which may be a distillation column. By combining cooling condensation and absorption of the petrolmore » vapor and controlling the amount of cooled petroleum distillate brought into contact with the petrol/air mixture so that the petrol concentration in the petroleum distillate transferred to the buffer tank is substantially constant, an unprecedented optimum control of the petrol absorbing process can be obtained both in peak load and in average load operations. A system for carrying out the method is advantageous in that only the absorption means need be dimensioned for peak load operation, while the other components, such as the distillation column or a heat exchanger with associated conduits can be dimensioned for average loads, a buffer tank being provided to temporarily receive the petroleum distillate which owing to the above-mentioned control has a substantially constant, maximum petrol concentration so that the system can cope with peak loads with a surprisingly small buffer tank.« less

  12. Forced heat loss from body surface reduces heat flow to body surface.

    PubMed

    Berman, A

    2010-01-01

    Heat stress is commonly relieved by forced evaporation from body surfaces. The mode of heat stress relief by heat extraction from the periphery is not clear, although it reduces rectal temperature. Radiant surface temperature (Ts) of the right half of the body surface was examined by thermovision in 4 lactating Holstein cows (30 kg of milk/d) during 7 repeated cycles of forced evaporation created by 30s of wetting followed by 4.5 min of forced airflow. Wetting was performed by an array of sprinklers (0.76 m(3)/h), and forced airflow (>3m/s velocity) over the right side of the body surface was produced by fans mounted at a height of 3m above the ground. Sprinkling wetted the hind legs, rump, and chest, but not the lower abdomen side, front legs, or neck. The animals were maintained in shade at an air temperature of 28 degrees C and relative humidity of 47%. Coat thickness was 1 to 2mm, so Ts closely represented skin temperature. Mean Ts of 5 x 20cm areas on the upper and lower hind and front legs, rump, chest, abdomen side, and neck were obtained by converting to temperature their respective gray intensity in single frames obtained at 10-s intervals. Little change occurred in Ts during the first wetting (0.1+/-0.6 degrees C), but it decreased rapidly thereafter (1.6+/-0.6 degrees C in the fifth wetting). The Ts also decreased, to a smaller extent, in areas that remained dry (0.7+/-1.0 degrees C). In all body sites, a plateau in Ts was reached by 2 min after wetting. The difference between dry and wet areas in the first cooling cycle was approximately 1.2 degrees C. The Ts of different body areas decreased during consecutive cooling cycles and reached a plateau by 3 cooling cycles in dry sites (front leg, neck, abdomen side), by 5 cooling cycles in the hind leg, and 7 cooling cycles in the rump and chest. The reduction in mean Ts produced by 7 cycles was 4.0 to 6.0 degrees C in wetted areas and 1.6 to 3.7 degrees C in sites that were not wetted. Initial rectal temperature was 38.9+/-0.1 degrees C; it remained unchanged during first 5 cooling cycles, decreased by 0.1 degrees C after 7 cooling cycles, and decreased to 38.4+/-0.06 degrees C after 8 to 10 cooling cycles, with no additional subsequent decrease. The concomitant reduction in Ts in dry and wet areas suggests an immediate vasoconstrictor response associated with heat extraction and later development of a cooler body shell. The reduction in rectal temperature represents a response involving transfer of heat from the body core to the body shell. This response mode requires consideration in settings of heat stress relief. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Observations of Space Weather and Space Climate Over the Past 15 Years From SABER (And Longer!)

    NASA Technical Reports Server (NTRS)

    Mlynczak, Marty; Hunt, Linda; Russell, James M., III

    2016-01-01

    The global infrared (IR) energy budget of the thermosphere has been reconstructed back 70 years (to 1947). IR cooling, integrated over a solar cycle, is relatively constant over the 5 complete cycles (19 -23) studied. Result implies that solar energy (particles and photons) has similar, small (< 7%) variation from one cycle to next. From Earth's upper atmosphere perspective, solar cycles are really more similar than different, over their length. No consistent relationship between peak of IR cooling and sunspot number peak. Results submitted to GRL 8/2016.

  14. Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia

    DTIC Science & Technology

    2002-04-01

    fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of

  15. Computation of Collision-Induced Absorption by Simple Molecular Complexes, for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2012-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of various types of planets and cool stars, such as late stars, low-mass stars, brown dwarfs, cool white dwarf stars, the ambers of the smaller, burnt out main sequence stars, exoplanets, etc., and therefore of special astronomical interest The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. First results for H_2-He complexes have already been applied to astrophysical models have shown great improvements in these models. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 X. Li, K. L. C. Hunt, F. Wang, M. Abel, and L. Frommhold, Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin, Int. J. of Spect., vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin, J. Phys. Chem. A, 115, 6805-6812, 2011} L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, Infrared absorption by collisional H_2-He complexes at temperatures up to 9000 K and frequencies from 0 to 20000 cm-1, J. Chem. Phys., 136, 044319, 2012 D. Saumon, M. S. Marley, M. Abel, L. Frommhold, and R. S. Freedman, New H_2 collision-induced absorption and NH_3 opacity and the spectra of the coolest brown dwarfs, Astrophysical Journal, 2012

  16. Thermal behavior in the cracking reaction zone of scramjet cooling channels at different channel aspect ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Silong; Feng, Yu; Jiang, Yuguang; Qin, Jiang; Bao, Wen; Han, Jiecai; Haidn, Oskar J.

    2016-10-01

    To study the thermal behavior in the cracking reaction zone of regeneratively cooled scramjet cooling channels at different aspect ratios, 3-D model of fuel flow in terms of the fuel's real properties and cracking reaction is built and validated through experiments. The whole cooling channel is divided into non-cracking and cracking reaction zones. Only the cracking reaction zone is studied in this article. The simulation results indicate that the fuel conversion presents a similar distribution with temperature because the fuel conversion in scramjet cooling channels is co-decided by the temperature and velocity but the temperature plays the dominate role. For the cases given in this paper, increasing the channel aspect ratio will increase the pressure drop and it is not beneficial for reducing the wall temperature because of the much severer thermal stratification, larger conversion non-uniformity, the corresponding M-shape velocity profile which will cause local heat transfer deterioration and the decreased chemical heat absorption. And the decreased chemical heat absorption caused by stronger temperature and conversion non-uniformities is bad for the utilization of chemical heat sink, chemical recuperation process and the ignition performance.

  17. Concentrating Solar Power Projects - Enerstar | Concentrating Solar Power |

    Science.gov Websites

    Capacity (Net): 50.0 MW Turbine Manufacturer: Man-Turbo Turbine Description: 3 extractions Output Type : Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description

  18. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  19. Solid-state optical refrigeration to sub-100 Kelvin regime

    DOE PAGES

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; ...

    2016-02-05

    We report that since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈91K from room temperature.

  20. Solid-state optical refrigeration to sub-100 Kelvin regime

    PubMed Central

    Melgaard, Seth D.; Albrecht, Alexander R.; Hehlen, Markus P.; Sheik-Bahae, Mansoor

    2016-01-01

    Since the first demonstration of net cooling twenty years ago, optical refrigeration of solids has progressed to outperform all other solid-state cooling processes. It has become the first and only solid-state refrigerator capable of reaching cryogenic temperatures, and now the first solid-state cooling below 100 K. Such substantial progress required a multi-disciplinary approach of pump laser absorption enhancement, material characterization and purification, and thermal management. Here we present the culmination of two decades of progress, the record cooling to ≈ 91 K from room temperature. PMID:26847703

  1. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  2. Optimum working fluids for solar powered Rankine cycle cooling of buildings

    NASA Astrophysics Data System (ADS)

    Wali, E.

    1980-01-01

    A number of fluids were screened for their operational reliability and thermal stability as working fluids for domestic solar Rankine cycle cooling. The results indicate that the halogenated compound R-113, followed by the fluorinated compound FC-88, is best suited for safe Rankine cycle operation. Further dynamic investigations are, however, needed to study the thermal stability of these fluids in the presence and absence of lubricants in copper, steel, and alloy conduits

  3. The effect of cooling management on blood flow to the dominant follicle and estrous cycle length at heat stress.

    PubMed

    Honig, Hen; Ofer, Lior; Kaim, Moshe; Jacobi, Shamay; Shinder, Dima; Gershon, Eran

    2016-07-15

    The use of ultrasound imaging for the examination of reproductive organs has contributed substantially to the fertility management of dairy cows around the world. This method has many advantages such as noninvasiveness and immediate availability of information. Adding Doppler index to the ultrasound imaging examination, improved the estimation of blood volume and flow rate to the ovaries in general and to the dominant follicle in particular. The aim of this study was to examine changes in the blood flow to the dominant follicle and compare them to the follicular development throughout the cycle. We further set out to examine the effects of different types of cooling management during the summer on the changes in blood flow to the dominant follicle. For this purpose, 24 Israeli-Holstein dairy cows, under heat stress, were randomly assigned one of two groups: one was exposed to five cooling sessions per day (5CS) and the other to eight cooling sessions per day (8CS). Blood flow to the dominant follicle was measured daily using Doppler index throughout the estrous cycle. No differences in the preovulatory dominant follicle diameter were detected between the two cooling management regimens during the cycle. However, the length of the first follicular wave was significantly longer, whereas the second follicular wave was nonsignificantly shorter in the 5CS group as compared to the 8CS group. In addition, no difference in blood flow was found during the first 18 days of the cycle between the two groups. However, from Day 20 until ovulation a higher rate of blood flow was measured in the ovaries of cows cooled 8 times per day as compared to the 5CS group. No differences in progesterone levels were noted. Finally, the estrous cycle length was shorter in the 8CS group as compared to the 5CS group. Our data suggest that blood flow to the dominant follicle and estrous cycle length is affected by heat stress. Using the appropriate cooling management during heat stress can enhance the blood flow to the ovary and may contribute to improved fertility in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Influence of carrier density on the electronic cooling channels of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Limmer, T.; Houtepen, A. J.; Niggebaum, A.; Tautz, R.; Da Como, E.

    2011-09-01

    We study the electronic cooling dynamics in a single flake of bilayer graphene by femtosecond transient absorption probing the photon-energy range 0.25-1.3 eV. From the transients, we extract the carrier cooling curves for different initial temperatures and densities of the photoexcited electrons and holes. Two regimes of carrier cooling, dominated by optical and acoustic phonons emission, are clearly identified. For increasing carrier density, the crossover between the two regimes occurs at larger carrier temperatures, since cooling via optical phonons experiences a bottleneck. Acoustic phonons, which are less sensitive to saturation, show an increasing contribution at high density.

  5. Flat Tile Armour Cooled by Hypervapotron Tube: a Possible Technology for ITER

    NASA Astrophysics Data System (ADS)

    Schlosser, J.; Escourbiac, F.; Merola, M.; Schedler, B.; Bayetti, P.; Missirlian, M.; Mitteau, R.; Robin-Vastra, I.

    Carbon fibre composite (CFC) flat tile armours for actively cooled plasma facing components (PFC’s) are an important challenge for controlled fusion machines. Flat tile concepts, water cooled by tubes, were studied, developed, tested and finally operated with success in Tore Supra. The components were designed for 10 MW/m2 and mock-ups were successfully fatigue tested at 15 MW/m2, 1000 cycles. For ITER, a tube-in-tile concept was developed and mock-ups sustained up to 25 MW/m2 for 1000 cycles without failure. Recently flat tile armoured mock-ups cooled by a hypervapotron tube successfully sustained a cascade failure test under a mean heat flux of 10 MW/m2 but with a doubling of the heat flux on some tiles to simulate missing tiles (500 cycles). This encouraging results lead to reconsider the limits for flat tile concept when cooled by hypervapotron (HV) tube. New tests are now scheduled to investigate these limits in regard to the ITER requirements. Experimental evidence of the concept could be gained in Tore Supra by installing a new limiter into the machine.

  6. Numerical modeling of heat transfer during hydrogen absorption in thin double-layered annular ZrCo beds

    NASA Astrophysics Data System (ADS)

    Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang

    2018-06-01

    In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.

  7. Asymmetric absorption and emission of energy by a macroscopic mechanical oscillator in a microwave circuit optomechanical system

    NASA Astrophysics Data System (ADS)

    Harlow, Jennifer; Palomaki, Tauno; Kerckhoff, Joseph; Teufel, John; Simmonds, Raymond; Lehnert, Konrad

    2012-02-01

    We measure the asymmetry in rates for emission and absorption of mechanical energy in an electromechanical system composed of a macroscopic suspended membrane coupled to a high-Q, superconducting microwave resonant circuit. This asymmetry is inherently quantum mechanical because it arises from the inability to annihilate the mechanical ground state. As such, it is only appreciable when the average mechanical occupancy approaches one. This measurement is now possible due to the recent achievement of ground state cooling of macroscopic mechanical oscillators [1,2]. Crucially, we measure the thermal cavity photon occupancy and account for it in our analysis. Failure to correctly account for the interference of these thermal photons with the mechanical signal can lead to a misinterpretation of the data and an overestimate of the emission/absorption asymmetry. [4pt] [1] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, ``Sideband Cooling Micromechanical Motion to the Quantum Ground State,'' Nature, 475, 359-363 (2011).[0pt] [2] Jasper Chan, et al, ``Laser cooling of a nanomechanical oscillator into its quantum ground state,'' Nature, 478, 89-92 (2011).

  8. Apparatus for the liquefaction of natural gas and methods relating to same

    DOEpatents

    Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA

    2007-05-22

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  9. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.

    2005-11-08

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  10. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2005-05-03

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.

  11. Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same

    DOEpatents

    Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.

    2003-06-24

    An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.

  12. Emissions-critical charge cooling using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  13. Dynamic temperature response of electrocaloric multilayer capacitors

    NASA Astrophysics Data System (ADS)

    Kwon, Beomjin; Roh, Im-Jun; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang; Kang, Chong-Yun

    2014-05-01

    We measure and model the dynamic temperature response of electrocaloric (EC) multilayer capacitors (MLCs) which have been recently highlighted as novel solid-state refrigerators. The MLC temperature responses depend on the operation voltage waveform, thus we consider three types of voltage waveforms, which include square, triangular, and trapezoidal. Further, to implement an effective refrigeration cycle, the waveform frequency and duty cycle should be carefully chosen. First, our model is fitted to the measurements to evaluate an effective EC power and thermal properties, and calculates an effective cooling power for an EC MLC. The prediction shows that for a MLC with a thermal relaxation time for cooling, trc, a square voltage waveform with a duty cycle of 0 < d ≤ 0.3 and a period of trc < P ≤ 1.4trc provides the maximum cooling power. This work will help to improve the implementing methods for EC refrigeration cycles.

  14. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  15. Costs and description of a solar-energy system--Austin, Texas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Heating and cooling system uses Fresnel lens concentrating collectors. Major system components are 36 collectors, 1,500 gallon thermal storage tank, absorption cooler, cooling tower, heating coil, pumps, heat exchanger, and backup heating and air conditioning. Final report includes detailed breakdown of component and installation costs for seven project subsystems.

  16. Solar-Heated and Cooled Office Building--Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Final report documents solar-energy system installed in office building to provide space heating, space cooling and domestic hot water. Collectors mounted on roof track Sun and concentrate rays on fluid-circulating tubes. Collected energy is distributed to hot-water-fired absorption chiller and space-heating and domestic-hot-water preheating systems.

  17. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  18. Novel precooling strategy enhances time trial cycling in the heat.

    PubMed

    Ross, Megan L R; Garvican, Laura A; Jeacocke, Nikki A; Laursen, Paul B; Abbiss, Chris R; Martin, David T; Burke, Louise M

    2011-01-01

    To develop and investigate the efficacy of a new precooling strategy combining external and internal techniques on the performance of a cycling time trial (TT) in a hot and humid environment. Eleven well-trained male cyclists undertook three trials of a laboratory-based cycling TT simulating the course characteristics of the Beijing Olympic Games event in a controlled hot and humid environment (32°C-35°C at 50%-60% relative humidity). The trials, separated by 3-7 d, were undertaken in a randomized crossover design and consisted of the following: 1) CON-no treatment apart from the ad libitum consumption of cold water (4°C), 2) STD COOL-whole-body immersion in cold (10°C) water for 10 min followed by wearing a cooling jacket, or 3) NEW COOL-combination of consumption of 14 g of ice slurry ("slushie") per kilogram body mass made from a commercial sports drink while applying iced towels. There was an observable effect on rectal temperature (T(rec)) before the commencement of the TT after both precooling techniques (STD COOL < NEW COOL < CON, P < 0.05), but pacing of the TT resulted in similar T(rec), HR, and RPE throughout the cycling protocol in all trials. NEW COOL was associated with a 3.0% increase in power (approximately 8 W) and a 1.3% improvement in performance time (approximately 1:06 min) compared with the CON trial, with the true likely effects ranging from a trivial to a large benefit. The effect of the STD COOL trial compared with the CON trial was "unclear." This new precooling strategy represents a practical and effective technique that could be used by athletes in preparation for endurance events undertaken in hot and humid conditions.

  19. Nitrogen expander cycles for large capacity liquefaction of natural gas

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung

    2014-01-01

    Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.

  20. Collision-Induced Infrared Absorption by Collisional Complexes in Dense Hydrogen-Helium Gas Mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2011-06-01

    The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010

  1. Photoacoustic measurement of ammonia in the atmosphere: influence of water vapor and carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooth, R.A.; Verhage, A.J.L.; Wouters, L.W.

    1990-09-01

    The photoacoustic determination of the ammonia concentration in atmospheric air by absorption of CO{sub 2} laser radiation at 9.22 {mu}m is influenced by the presence of H{sub 2}O and CO{sub 2}. Kinetic cooling due to the coupling of excited CO{sub 2} and N{sub 2} levels causes important changes in phase and amplitude of the photoacoustic signal. Theoretical background is presented to deduce the correct NH{sub 3} concentration from the signal. The experimental setup used to perform field measurements is described. Adhesion of NH{sub 3} to the walls of the resonant photoacoustic cell was investigated. Temperature effects are treated. Field datamore » of NH{sub 3} and H{sub 2}O concentrations are presented. Key words: Photoacoustics, ammonia, kinetic cooling, trace gas measurements, ammonia adhesion, acoustic resonance, CO{sub 2} laser radiation, water vapor absorption, carbon dioxide absorption.« less

  2. Analytical Models of Exoplanetary Atmospheres. V. Non-gray Thermal Structure with Coherent Scattering

    NASA Astrophysics Data System (ADS)

    Mohandas, Gopakumar; Pessah, Martin E.; Heng, Kevin

    2018-05-01

    We apply the picket fence treatment to model the effects brought about by spectral lines on the thermal structure of irradiated atmospheres. The lines may be due to pure absorption processes, pure coherent scattering processes, or some combination of absorption and scattering. If the lines arise as a pure absorption process, the surface layers of the atmosphere are cooler, whereas this surface cooling is completely absent if the lines are due to pure coherent isotropic scattering. The lines also lead to a warming of the deeper atmosphere. The warming of the deeper layers is, however, independent of the nature of line formation. Accounting for coherent isotropic scattering in the shortwave and longwave continuum results in anti-greenhouse cooling and greenhouse warming on an atmosphere-wide scale. The effects of coherent isotropic scattering in the line and continuum operate in tandem to determine the resulting thermal structure of the irradiated atmosphere.

  3. Cold atomic hydrogen in the inner galaxy

    NASA Technical Reports Server (NTRS)

    Dickey, J. M.; Garwood, R. W.

    1986-01-01

    The VLA is used to measure 21 cm absorption in directions with the absolute value of b less than 1 deg., the absolute value of 1 less than 25 deg. to probe the cool atomic gas in the inner galaxy. Abundant H I absorption is detected; typical lines are deep and narrow, sometimes blending in velocity with adjacent features. Unlike 21 cm emission not all allowed velocities are covered: large portions of the l-v diagram are optically thin. Although not similar to H I emission, the absorption shows a striking correspondence with CO emission in the inner galaxy: essentially every strong feature detected in one survey is seen in the other. The provisional conclusion is that in the inner galaxy most cool atomic gas is associated with molecular cloud complexes. There are few or no cold atomic clouds devoid of molecules in the inner galaxy, although these are common in the outer galaxy.

  4. Cryogenic Absorption Cells Operating Inside a Bruker IFS-125HR: First Results for 13CH4 at 7 Micrometers

    NASA Technical Reports Server (NTRS)

    Sung, K.; Mantz, A. W.; Smith, M. A. H.; Brown, L. R.; Crawford, T. J.; Devi, V. M.; Benner, D. C.

    2010-01-01

    New absorption cells designed specifically to achieve stable temperatures down to 66 K inside the sample compartment of an evacuated Bruker IFS-125HR Fourier transform spectrometer (FTS) were developed at Connecticut College and tested at the Jet Propulsion Laboratory (JPL). The temperature stabilized cryogenic cells with path lengths of 24.29 and 20.38 cm were constructed of oxygen free high conductivity (OFHC) copper and fitted with wedged ZnSe windows using vacuum tight indium seals. In operation, the temperature-controlled cooling by a closed-cycle helium refrigerator achieved stability of 0.01 K. The unwanted absorption features arising from cryodeposits on the cell windows at low temperatures were eliminated by building an internal vacuum shroud box around the cell which significantly minimized the growth of cryodeposits. The effects of vibrations from the closed-cycle helium refrigerator on the FTS spectra were characterized. Using this set up, several high-resolution spectra of methane isotopologues broadened with nitrogen were recorded in the 1200-1800 per centimeter spectral region at various sample temperatures between 79.5 and 296 K. Such data are needed to characterize the temperature dependence of spectral line shapes at low temperatures for remote sensing of outer planets and their moons. Initial analysis of a limited number of spectra in the region of the R(2) manifold of the v4 fundamental band of 13CH4 indicated that an empirical power law used for the temperature dependence of the N2-broadened line widths would fail to fit the observed data in the entire temperature range from 80 to 296 K; instead, it follows a temperature-dependence similar to that reported by Mondelain et al. [17,18]. The initial test was very successful proving that a high precision Fourier transform spectrometer with a completely evacuated optical path can be configured for spectroscopic studies at low temperatures relevant to the planetary atmospheres.

  5. A Lithium Bromide Absorption Chiller with Cold Storage

    DTIC Science & Technology

    2011-01-15

    Research ABSTRACT A LiBr -based absorption chiller can use waste heat or solar energy to produce useful space cooling for small buildings...high wa- ter consumption for heat rejection to the ambient. To alleviate these issues, a novel LiBr - based absorption chiller with cold storage is...proposed in this study. The cold storage includes tanks for storing liquid water and LiBr solution, associated piping, and control devices. The cold

  6. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    PubMed

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  7. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    PubMed Central

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  8. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  9. Design and fabrication of a 3-D printable counter-low/precipitation heat exchanger for use with a novel off-grid solid state refrigeration system

    NASA Astrophysics Data System (ADS)

    Ryan, Sean Thomas

    Off-grid refrigeration technologies are currently limited to either vapor-compression cycles driven by photovoltaics or solar thermal absorption cycles. Rebound Technologies has recently developed a novel off-grid refrigeration system called Sunchill(TM) for agricultural applications in humid environments in the developing world. The Sunchill(TM) refrigeration system utilizes the daily high and low temperatures to drive a 24 hour refrigeration cycle. Cooling is provided by the dissolution of an endothermic salt, sodium carbonate decahydrate. Once the salt is solvated and cooling is delivered to freshly harvest crops, the system is "recharged" in a multi-step process that relies on a solar collector, an air-gap membrane unit and a heat exchanger. The heat exchanger, which is the focus of this thesis, is required to remove 36.6 MJ of heat over a twelve hour period in order to "recharge" the system. The heat exchanger is also required to transfer heat from a fresh water stream to a cold brine solution to generate the cold water necessary to submerse and cool harvested crops. To provide a sustainable technology to the target community, the feasibility of fabricating the heat exchanger via the low cost 3-D printing method of fused filament fabrication (FFF) was examined. This thesis presents the design, development, and manufacturing considerations that were performed in support of developing a waterproof, counter-flow, 3-D printable heat exchanger. Initial geometries and performance were modeled by constructing a linear thermal resistance network with truncating temperatures of 30°C (saturated brine temperature) and 18°C (average daily low temperature). The required surface area of the heat exchanger was found to be 20.46 m2 to remove the required 36.6 MJ of heat. Iterative print tests were conducted to arrive at the wall thickness, hexagon shape, and double wall structure of the heat exchanger. A laboratory-scale heat exchanger was fabricated using a Lulzbot Taz 4 printer from acrylonitrile butadiene styrene (ABS) polymer. Performance was verified empirically for the laboratory-scale unit. A heat transfer rate of 22.8 W was obtained at a flow rate of 0.00075 kg/s. The results of this thesis demonstrate the feasibility of manufacturing low cost heat exchangers using additive manufacturing techniques.

  10. The Formation and Physical Origin of Highly Ionized Cooling Gas

    NASA Astrophysics Data System (ADS)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.; Norman, Colin A.

    2017-10-01

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O VI, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O VI is regularly observed around star-forming low-z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O VI absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  11. The Formation and Physical Origin of Highly Ionized Cooling Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordoloi, Rongmon; Wagner, Alexander Y.; Heckman, Timothy M.

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explainedmore » by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.« less

  12. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  13. A Noninvasive In Vivo Glucose Sensor Based on Mid-Infrared Quantum Cascade Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Werth, Alexandra; Liakat, Sabbir; Xu, Laura; Gmachl, Claire

    Diabetes affects over 387 million people worldwide; a number which grows every year. The most common method of measuring blood glucose concentration involves a finger prick which for some can be a harrowing process. Therefore, a portable, accurate, noninvasive glucose sensor can significantly improve the quality of life for many of these diabetics who draw blood multiple times a day to monitor their glucose levels. We have implemented a noninvasive, mobile glucose sensor using a mid-infrared (MIR) quantum cascade laser (QCL), integrating sphere, and thermal electrically (TE) cooled detector. The QCL is scanned from 8 - 10 microns wavelength over which are distinct absorption features of glucose molecules with little competition of absorption from other molecules found in the blood and interstitial fluid. The obtained absorption spectra are analyzed using a neural network algorithm which relates the small changes in absorption to the changing glucose concentration. The integrating sphere has increased the signal-to-noise ratio from a previous design, allowing us to use the TE-cooled detector which increases mobility without loss of accuracy.

  14. The Production of Cold Gas Within Galaxy Outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Evan

    2017-03-01

    I present a suite of three-dimensional simulations of the evolution of initially hot material ejected by starburst-driven galaxy outflows. The simulations are conducted in a comoving frame that moves with the material, tracking atomic/ionic cooling, Compton cooling, and dust cooling and destruction. Compton cooling is the most efficient of these processes, while the main role of atomic/ionic cooling is to enhance density inhomogeneities. Dust, on the other hand, has little effect on the outflow evolution, and is rapidly destroyed in all the simulations except for the case with the smallest mass flux. I use the results to construct a simplemore » steady-state model of the observed UV/optical emission from each outflow. The velocity profiles in this case are dominated by geometric effects, and the overall luminosities are extremely strong functions of the properties of the host system, as observed in ultra-luminous infrared galaxies (ULIRGs). Furthermore the luminosities and maximum velocities in several models are consistent with emission-line observations of ULIRGs, although the velocities are significantly greater than observed in absorption-line studies. It may be that absorption line observations of galaxy outflows probe entrained cold material at small radii, while emission-line observations probe cold material condensing from the initially hot medium at larger distances.« less

  15. Will growing forests make the global warming problem better or worse?

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Gibbard, S.; Bala, G.; Wickett, M. E.; Phillips, T. J.

    2005-12-01

    Carbon storage in forests has been promoted as a means to slow global warming. However, forests affect climate not only through the carbon cycle; forests also affect both the absorption of solar radiation and evapotranspiration. Previously, it has been shown that boreal forests have the potential to warm the planet, offsetting the benefits of carbon storage in boreal forests (Betts, Nature 408, 187-190, 2000). Here, we show that direct climate effects of forest growth in mid-latitudes also have the potential to offset benefits of carbon storage. This suggests that mid-latitude afforestation projects must be evaluated very carefully, taking direct climate effects into account. In contrast, low-latitude tropical forests appear to cool the planet both by storing carbon and by increasing evapotranspiration; thus, slowing or reversing tropical deforestation is a win/win strategy from both carbon storage and direct climate perspectives. Evaluation of costs and benefits of afforestation depends on the time scales under consideration. On the shortest time scale, each unit of CO2 taken up by a plant is removed from the atmosphere. However, over centuries most of this CO2 taken up from the atmosphere by plants is replaced by outgassing from the ocean. On the longest time scales, atmospheric carbon dioxide content is controlled by the carbonate-silicate cycle, so the amount of carbon stored in a forest is not relevant to long-term climate change. While atmospheric CO2 impacts of afforestation diminish over time, the direct effects on climate (and silicate weathering) persist, so these effects become more important as the time scale of concern lengthens. In some cases, afforestation is predicted to lead to cooling on the time scale of decades followed by warming on the time scale of centuries. Our study involves simulations using the NCAR CAM3 atmospheric general circulation model with a slab ocean to perform idealized (and extreme) land-cover change simulations. We explore the time-dependent carbon-cycle/climate implications of these results using a schematic model of the long-term carbon cycle and climate.

  16. Stirling Air Conditioner for Compact Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less

  17. Performance Investigation of a Solar Heat Driven Adsorption Chiller under Two Different Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Choudhury, Biplab; Chatterjee, Pradip Kumar; Habib, Khairul; Saha, Bidyut Baran

    2018-06-01

    The demand for cooling, especially in the developing economies, is rising at a fast rate. Fast-depleting sources of fossil fuel and environmental concerns necessitate looking for alternative cooling solutions. Solar heat driven adsorption based cooling cycles are environmentally friendly due to their use of natural refrigerants and the thermal compression process. In this paper, a performance simulation study of a basic two-bed solar adsorption chiller has been performed through a transient model for two different climatic locations in India. Effect of operating temperatures and cycle time on the chiller performance has been studied. It is observed that the solar hot water temperature obtained in the composite climate of Delhi (28.65°N, 77.25°E) can run the basic adsorption cooling cycle efficiently throughout the year. Whereas, the monsoon months of July and August in the warm and humid climate of Durgapur (23.48°N, 87.32°E) are unable to supply the required driving heat.

  18. Terrestrial cooling and solar variability

    NASA Technical Reports Server (NTRS)

    Agee, E. M.

    1982-01-01

    Observational evidence from surface temperature records is presented and discussed which suggests a significant cooling trend over the Northern Hemisphere from 1940 to the present. This cooling trend is associated with an increase of the latitudinal gradient of temperature and the lapse rate, as predicted by climate models with decreased solar input and feedback mechanisms. Evidence suggests that four of these 80- to 100-year cycles of global surface temperature fluctuation may have occurred, and in succession, from 1600 to the present. Interpretation of sunspot activity were used to infer a direct thermal response of terrestrial temperature to solar variability on the time scale of the Gleissberg cycle (90 years, an amplitude of the 11-year cycles). A physical link between the sunspot activity and the solar parameter is hypothesized. Observations of sensible heat flux by stationary planetary waves and transient eddies, as well as general circulation modeling results of these processes, were examined from the viewpoint of the hypothesis of cooling due to reduced insolation.

  19. Advanced regenerative absorption refrigeration cycles

    DOEpatents

    Dao, Kim

    1990-01-01

    Multi-effect regenerative absorption cycles which provide a high coefficient of performance (COP) at relatively high input temperatures. An absorber-coupled double-effect regenerative cycle (ADR cycle) (10) is provided having a single-effect absorption cycle (SEA cycle) (11) as a topping subcycle and a single-effect regenerative absorption cycle (1R cycle) (12) as a bottoming subcycle. The SEA cycle (11) includes a boiler (13), a condenser (21), an expansion device (28), an evaporator (31), and an absorber (40), all operatively connected together. The 1R cycle (12) includes a multistage boiler (48), a multi-stage resorber (51), a multisection regenerator (49) and also uses the condenser (21), expansion device (28) and evaporator (31) of the SEA topping subcycle (11), all operatively connected together. External heat is applied to the SEA boiler (13) for operation up to about 500 degrees F., with most of the high pressure vapor going to the condenser (21) and evaporator (31) being generated by the regenerator (49). The substantially adiabatic and isothermal functioning of the SER subcycle (12) provides a high COP. For higher input temperatures of up to 700 degrees F., another SEA cycle (111) is used as a topping subcycle, with the absorber (140) of the topping subcycle being heat coupled to the boiler (13) of an ADR cycle (10). The 1R cycle (12) itself is an improvement in that all resorber stages (50b-f) have a portion of their output pumped to boiling conduits (71a-f) through the regenerator (49), which conduits are connected to and at the same pressure as the highest pressure stage (48a) of the 1R multistage boiler (48).

  20. Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.

    2003-01-01

    Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.

  1. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  2. Cryogenic Optical Refrigeration

    DTIC Science & Technology

    2012-03-22

    Applications of Laser Cooling of Solids, 1st ed. (Wiley-VCH, 2009). 12. M. Sheik- Bahae and R. I . Epstein, “Optical refrigeration,” Nat. Photonics 1(12), 693–699...2007). Advances in Optics and Photonics 4, 78–107 (2012) doi:10.1364/AOP.4.000078 99 13. M. Sheik- Bahae and R. I . Epstein, “Laser cooling of solids...Sheik- Bahae and R. I . Epstein, “Can laser light cool semiconductors,” Phys. Rev. Lett. 92(24), 247403 (2004). 18. P. Asbeck, “Self-absorption effects

  3. Performance analysis and optimization of power plants with gas turbines

    NASA Astrophysics Data System (ADS)

    Besharati-Givi, Maryam

    The gas turbine is one of the most important applications for power generation. The purpose of this research is performance analysis and optimization of power plants by using different design systems at different operation conditions. In this research, accurate efficiency calculation and finding optimum values of efficiency for design of chiller inlet cooling and blade cooled gas turbine are investigated. This research shows how it is possible to find the optimum design for different operation conditions, like ambient temperature, relative humidity, turbine inlet temperature, and compressor pressure ratio. The simulated designs include the chiller, with varied COP and fogging cooling for a compressor. In addition, the overall thermal efficiency is improved by adding some design systems like reheat and regenerative heating. The other goal of this research focuses on the blade-cooled gas turbine for higher turbine inlet temperature, and consequently, higher efficiency. New film cooling equations, along with changing film cooling effectiveness for optimum cooling air requirement at the first-stage blades, and an internal and trailing edge cooling for the second stage, are innovated for optimal efficiency calculation. This research sets the groundwork for using the optimum value of efficiency calculation, while using inlet cooling and blade cooling designs. In the final step, the designed systems in the gas cycles are combined with a steam cycle for performance improvement.

  4. Aerosol Radiative Forcing in Asian Continental Outflow

    NASA Technical Reports Server (NTRS)

    Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1.2 um. The removal of low-level clouds doubles the cooling at the top of the atmosphere to about -8W/m2.

  5. Some advantages of methane in an aircraft gas turbine

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Glassman, A. J.

    1980-01-01

    Liquid methane, which can be manufactured from any of the hydrocarbon sources such as coal, shale biomass, and organic waste considered as a petroleum replacement for aircraft fuels. A simple cycle analysis is carried out for a turboprop engine flying a Mach 0.8 and 10, 688 meters (35,000 ft.) altitude. Cycle performance comparisions are rendered for four cases in which the turbine cooling air is cooled or not cooled by the methane fuel. The advantages and disadvantages of involving the fuel in the turbine cooling system are discussed. Methane combustion characteristics are appreciably different from Jet A and will require different combustor designs. Although a number of similar difficult technical problems exist, a highly fuel efficient turboprop engine burning methane appear to be feasible.

  6. Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smolik, G.R.; Reuter, W.G.

    PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400$sup 0$F stress rupture solution- annealed properties and room temperature age-hardened properties. 1400$sup 0$F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter.more » Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900$sup 0$F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400$sup 0$F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties. (auth)« less

  7. Laser Cooling of Solids

    DTIC Science & Technology

    2009-01-01

    BN2 − CN3 + (1− ηe)BN2 (9) Here α(ν,N) is the interband absorption coefficient that in- cludes many-body and blocking factors. The recombination...the reso- nant absorption coefficient and αb is the unwanted parasitic (background) absorption coefficient . As will be derived in sections II and IV... coefficient of αb. It is straightforward to evaluate the steady-state solution to the above rate equations by setting the time derivatives to zero

  8. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  9. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  10. Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling

    NASA Astrophysics Data System (ADS)

    Priego Quesada, Jose Ignacio; Martínez Guillamón, Natividad; Cibrián Ortiz de Anda, Rosa M.a.; Psikuta, Agnes; Annaheim, Simon; Rossi, René Michel; Corberán Salvador, José Miguel; Pérez-Soriano, Pedro; Salvador Palmer, Rosario

    2015-09-01

    The aim of the present study was to compare infrared thermography and thermal contact sensors for measuring skin temperature during cycling in a moderate environment. Fourteen cyclists performed a 45-min cycling test at 50% of peak power output. Skin temperatures were simultaneously recorded by infrared thermography and thermal contact sensors before and immediately after cycling activity as well as after 10 min cooling-down, representing different skin wetness and blood perfusion states. Additionally, surface temperature during well controlled dry and wet heat exchange (avoiding thermoregulatory responses) using a hot plate system was assessed by infrared thermography and thermal contact sensors. In human trials, the inter-method correlation coefficient was high when measured before cycling (r = 0.92) whereas it was reduced immediately after the cycling (r = 0.82) and after the cooling-down phase (r = 0.59). Immediately after cycling, infrared thermography provided lower temperature values than thermal contact sensors whereas it presented higher temperatures after the cooling-down phase. Comparable results as in human trials were observed for hot plate tests in dry and wet states. Results support the application of infrared thermography for measuring skin temperature in exercise scenarios where perspiration does not form a water film.

  11. The Spatial Distribution and Kinematics of the Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn; Charlton, Jane C.; Muzahid, Sowgat

    2017-01-01

    We have examined the spatial distribution and kinematics of the circumgalactic medium (CGM) within 200 kpc of galaxies in the redshift range 0.1 to 1.0. The galaxies are resolved in HST images and are selected to have background quasars with sightlines that probe their CGM. We measured the cool/warm CGM in MgII absorption and the warm/hot CGM in OVI absorption using Keck/HIRES, VLT/UVES, and HST/COS. We have found that the CGM gas is highly organized such that: (1) gas is concentrated along the galaxy polar axes with high velocity dispersion, and (2) gas is concentrated along the galaxy major axes with smaller velocity dispersion. We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strongest absorption and largest velocity spreads are found for highly inclined (face on) galaxies with the bluest colors, suggesting outflows along the minor axes of star-forming galaxies. The major axis of bluer galaxies have similar velocity spreads to those of the gas surrouncding redder galaxies, which show little spatial preference in the distribution of the gas dynamics. Our results are consistent with the current view of the CGM originating from major axis (co-planer) inflows/recycled gas and from minor axis wind-driven outflows. We address how our results place strong contraints on the baryon cycle.

  12. A Comparison of Supercritical Carbon Dioxide Power Cycle Configurations with an Emphasis on CSP Applications (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T.; Turchi, C.

    2013-09-01

    Recent research suggests that an emerging power cycle technology using supercritical carbon dioxide (s-CO2) operated in a closed-loop Brayton cycle offers the potential of equivalent or higher cycle efficiency versus supercritical or superheated steam cycles at temperatures relevant for CSP applications. Preliminary design-point modeling suggests that s-CO2 cycle configurations can be devised that have similar overall efficiency but different temperature and/or pressure characteristics. This paper employs a more detailed heat exchanger model than previous work to compare the recompression and partial cooling cycles, two cycles with high design-point efficiencies, and illustrates the potential advantages of the latter. Integration of themore » cycles into CSP systems is studied, with a focus on sensible heat thermal storage and direct s-CO2 receivers. Results show the partial cooling cycle may offer a larger temperature difference across the primary heat exchanger, thereby potentially reducing heat exchanger cost and improving CSP receiver efficiency.« less

  13. Mathematical Modeling – The Impact of Cooling Water Temperature Upsurge on Combined Cycle Power Plant Performance and Operation

    NASA Astrophysics Data System (ADS)

    Indra Siswantara, Ahmad; Pujowidodo, Hariyotejo; Darius, Asyari; Ramdlan Gunadi, Gun Gun

    2018-03-01

    This paper presents the mathematical modeling analysis on cooling system in a combined cycle power plant. The objective of this study is to get the impact of cooling water upsurge on plant performance and operation, using Engineering Equation Solver (EES™) tools. Power plant installed with total power capacity of block#1 is 505.95 MWe and block#2 is 720.8 MWe, where sea water consumed as cooling media at two unit condensers. Basic principle of analysis is heat balance calculation from steam turbine and condenser, concern to vacuum condition and heat rate values. Based on the result shown graphically, there were impact the upsurge of cooling water to increase plant heat rate and vacuum pressure in condenser so ensued decreasing plant efficiency and causing possibility steam turbine trip as back pressure raised from condenser.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renlund, Anita Mariana; Tappan, Alexander Smith; Miller, Jill C.

    The HMX {beta}-{delta} solid-solid phase transition, which occurs as HMX is heated near 170 C, is linked to increased reactivity and sensitivity to initiation. Thermally damaged energetic materials (EMs) containing HMX therefore may present a safety concern. Information about the phase transition is vital to predictive safety models for HMX and HMX-containing EMs. We report work on monitoring the phase transition with real-time Raman spectroscopy aimed towards obtaining a better understanding of physical properties of HMX through the phase transition. HMX samples were confined in a cell of minimal free volume in a displacement-controlled or load-controlled arrangement. The cell wasmore » heated and then cooled at controlled rates while real-time Raman spectroscopic measurements were performed. Raman spectroscopy provides a clear distinction between the phases of HMX because the vibrational transitions of the molecule change with conformational changes associated with the phase transition. Temperature of phase transition versus load data are presented for both the heating and cooling cycles in the load-controlled apparatus, and general trends are discussed. A weak dependence of the temperature of phase transition on load was discovered during the heating cycle, with higher loads causing the phase transition to occur at a higher temperature. This was especially true in the temperature of completion of phase transition data as opposed to the temperature of onset of phase transition data. A stronger dependence on load was observed in the cooling cycle, with higher loads causing the reverse phase transitions to occur at a higher cooling temperature. Also, higher loads tended to cause the phase transition to occur over a longer period of time in the heating cycle and over a shorter period of time in the cooling cycle. All three of the pure HMX phases ({alpha}, {beta} and {delta}) were detected on cooling of the heated samples, either in pure form or as a mixture.« less

  15. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  16. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE PAGES

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; ...

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  17. Sensible heat has significantly affected the global hydrological cycle over the historical period.

    PubMed

    Myhre, G; Samset, B H; Hodnebrog, Ø; Andrews, T; Boucher, O; Faluvegi, G; Fläschner, D; Forster, P M; Kasoar, M; Kharin, V; Kirkevåg, A; Lamarque, J-F; Olivié, D; Richardson, T B; Shawki, D; Shindell, D; Shine, K P; Stjern, C W; Takemura, T; Voulgarakis, A

    2018-05-15

    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.

  18. Thermal control systems for low-temperature heat rejection on a lunar base

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok

    1993-01-01

    One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.

  19. Multi-Wavelength Measurement of Bus Exhausts Using a Four QC Laser Spectrometer

    NASA Astrophysics Data System (ADS)

    Hay, K. G.; Wilson, D.; Duxbury, G.; Langford, N.

    2010-06-01

    Using a portable, lightweight, four laser intra-pulse quantum cascade laser spectrometer we have measured the variation of the composition of exhaust gases emitted by diesel engined buses which are representative of the decades from the 1930's until the 1990's. The lasers and the fast detector used in the spectrometer are Peltier cooled, and the spectra are recorded using each laser in turn, in a repeated four laser cycle. The instrument is controlled via a ruggedised laptop computer. The wavelengths of the lasers used were 7.84 microns (methane, nitrous oxide and formaldehyde), 6.13 microns (nitrogen dioxide) 5.25 microns (nitric oxide and water) and 4.88 microns (carbon monoxide and carbon dioxide). The path length of the multiple pass absorption cell used was 77 m. The results we will present demonstrate the possibility of deploying this type of instrument for investigating gas emissions from a variety of sources.

  20. Early developments in solar cooling equipment

    NASA Technical Reports Server (NTRS)

    Price, J. M.

    1978-01-01

    A brief description of a development program to design, fabricate and field test a series of solar operated or driven cooling devices, undertaken by the Marshall Space Flight Center in the context of the Solar Heating and Cooling Demonstration Act of 1974, is presented. Attention is given to two basic design concepts: the Rankine cycle principle and the use of a dessicant for cooling.

  1. Perceived Cooling Using Asymmetrically-Applied Hot and Cold Stimuli.

    PubMed

    Manasrah, Ahmad; Crane, Nathan; Guldiken, Rasim; Reed, Kyle B

    2017-01-01

    Temperature perception is a highly nonlinear phenomenon with faster rates of change being perceived at much lower thresholds than slower rates. This paper presents a method that takes advantage of this nonlinear characteristic to generate a perception of continuous cooling even though the average temperature is not changing. The method uses multiple thermal actuators so that a few are cooling quickly while the rest of the actuators are heating slowly. The slowly-heating actuators are below the perceptual threshold temperature change and hence are not perceived, while the quickly-cooling actuators are above the perceptual temperature change, hence are perceived. As a result, a feeling of decreasing temperature was elicited, when in fact, there was no net change in the temperature of the skin. Three sets of judiciously designed experiments were conducted in this study, investigating the effects of actuator sizes, forearm measurement locations, patterns of actuator layout, and various heating/cooling time cycles. Our results showed that 19 out 21 participants perceived the continuous cooling effect as hypothesized. Our research indicates that the measurement location, heating/cooling cycle times, and arrangement of the actuators affect the perception of continuous cooling.

  2. Temporal Evolution of Water Use for Thermoelectric Generation

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.

    2013-12-01

    The long lifespan of power plants (30 - 50 yr) results in the current power plant fleet representing a legacy of past variations in fuel availability and costs, water availability and water rights, and advances in technologies, such as combined cycle plants, which impact trends in water consumption. The objective of this study was to reconstruct past water consumption and withdrawal of thermoelectric generation based on data on controls, including fuel types, generator technologies, and cooling systems, using Texas as a case study and comparing with the US. Fuel sources in Texas varied over time, from predominantly natural gas in the 1960s and early 1970s to coal and nuclear sources following the 1973 oil embargo and more recently to large increases in natural gas generation (85% increase 1998 - 2004) in response to hydraulic fracturing and low natural gas prices. The dominant generator technology in Texas was steam turbines until the early 1990s; however, combined cycle plants markedly increased in the late 1990s (400% increase 1998 - 2004). Proliferation of cooling ponds in Texas, mostly in the 1970s and 1980s (340% increase) reflects availability of large quantities of unappropriated surface water and increases in water rights permitting during this time and lower cost and higher cooling efficiency of ponds relative to wet cooling towers. Water consumption for thermoelectricity in Texas in 2010 totaled ~0.53 km3 (0.43 million acre feet, maf), accounting for ~4% of total state water consumption. High water withdrawals (32.3 km3, 26.2 maf) mostly reflect circulation between cooling ponds and power plants. About a third of the water withdrawals is not required for cooling and reflects circulation by idling plants being used as peaking plants. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system resulting in statewide consumption for natural gas combined cycle generators with mostly cooling towers being 60% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds. The primary control on water withdrawals is cooling system, with ~ two orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. A similar approach will be applied to thermoelectric generation throughout the US using information on fuel sources, generator technologies and cooling systems to better understand current water use for thermoelectric generation based on the legacy of past drivers and long lifespans of power plants. Understanding the historical evolution of water needs for thermoelectricity should allow us to better project future water needs.

  3. Characterizing the Circumgalactic Medium of Nearby Galaxies with HST/COS and HST/STIS Absorption-line Spectroscopy. II. Methods and Models

    NASA Astrophysics Data System (ADS)

    Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Pratt, Cameron T.; Froning, Cynthia S.; Green, James C.; Penton, Steven V.; Savage, Blair D.

    2017-05-01

    We present basic data and modeling for a survey of the cool, photoionized circumgalactic medium (CGM) of low-redshift galaxies using far-UV QSO absorption-line probes. This survey consists of “targeted” and “serendipitous” CGM subsamples, originally described in Stocke et al. (Paper I). The targeted subsample probes low-luminosity, late-type galaxies at z< 0.02 with small impact parameters (< ρ > =71 kpc), and the serendipitous subsample probes higher luminosity galaxies at z≲ 0.2 with larger impact parameters (< ρ > =222 kpc). Hubble Space Telescope and FUSE UV spectroscopy of the absorbers and basic data for the associated galaxies, derived from ground-based imaging and spectroscopy, are presented. We find broad agreement with the COS-Halos results, but our sample shows no evidence for changing ionization parameter or hydrogen density with distance from the CGM host galaxy, probably because the COS-Halos survey probes the CGM at smaller impact parameters. We find at least two passive galaxies with H I and metal-line absorption, confirming the intriguing COS-Halos result that galaxies sometimes have cool gas halos despite no on-going star formation. Using a new methodology for fitting H I absorption complexes, we confirm the CGM cool gas mass of Paper I, but this value is significantly smaller than that found by the COS-Halos survey. We trace much of this difference to the specific values of the low-z metagalactic ionization rate assumed. After accounting for this difference, a best-value for the CGM cool gas mass is found by combining the results of both surveys to obtain {log}(M/{M}⊙ )=10.5+/- 0.3, or ˜30% of the total baryon reservoir of an L≥slant {L}* , star-forming galaxy. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  4. Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability.

    PubMed

    Jagannathan, Ramya; Abraham, Priya Mary; Poddar, Pankaj

    2012-12-20

    In curcumin, keto-enol-enolate equilibrium of the heptadiene-dione moiety determines its physiochemical and antioxidant properties. However, its poor solubility in water at neutral pH and room temperature decreases its bioavailability. Potential therapeutic applications have triggered an interest in manipulating the solubility of curcumin in water as its stability and solubility in water remains poorly understood. Here, the mechanism behind its solubility at various temperatures and the influence of interplay of temperature, intramolecular H-bonding, and intermolecular forces is reported, which leads to aggregation-disaggregation at various temperatures. Remarkable change is observed in temperature-dependent electronic transition behavior of curcumin, however, the absorption spectra after cooling and heating cycles remain unchanged, hinting much better thermal stability of curcumin in water than previously thought. This study indicates that it is perhaps the breaking of intramolecular hydrogen bonding which leads to exposure of polar groups and hence responsible for the dissolution of curcumin at higher temperature. The formation of intermolecular aggregates might be responsible behind a better room temperature stability of the molecules after cooling its aqueous suspension from 90 to 25 °C. These curcumin solubility studies have great application in biological research with reference to bioavailability and to understand target oriented mode of action of curcumin.

  5. Photovoltaic concentrator application experiment to be located at Sea World Park, Orlando, Florida. Phase I. System Design. Final report, June 1, 1978-February 28, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirpich, A.S.

    1979-12-01

    The General Electric/Sea World Photovoltaic Concentrator Application Experiment will be located at Sea World's Marine Park near Orlando, Florida. The experiment will consist of nine azimuth-tracking turntable arrays, each containing twenty-four elevation-tracking parabolic trough PV concentrators of a type developed on this contract. The system will produce a peak power output of 330 kW and an annual net electrical energy of 355 MWh corresponding to an annual direct normal insolation of 1375.5 kWh/m/sup 2/. A line-commutated DC/AC inverter controlled to operate at the solar array maximum power point will deliver three-phase power through a bidirectional transformer to a 13-kilovolt linemore » serving the Sea World Park. In addition to generating electrical power, the system will produce 3.56 x 10/sup 5/ ton-hours of cooling for air conditioning a nearby shark exhibit by supplying collected thermal energy to a lithium-bromide absorption chiller. With credit included for the amount of electricity that would be required to produce this cooling by a vapor compression cycle, the overall system efficiency is estimated to be 11.7 percent.« less

  6. Does wearing clothing made of a synthetic “cooling” fabric improve indoor cycle exercise endurance in trained athletes?

    PubMed Central

    Abdallah, Sara J; Krug, Robin; Jensen, Dennis

    2015-01-01

    This randomized, double-blind, crossover study examined the effects of a clothing ensemble made of a synthetic fabric promoted as having superior cooling properties (COOL) on exercise performance and its physiological and perceptual determinants during cycle exercise in ambient laboratory conditions that mimic environmental conditions of indoor training/sporting facilities. Twenty athletes (15 men:5 women) aged 25.8 ± 1.2 years (mean ± SEM) with a maximal rate of O2 consumption of 63.7 ± 1.5 mL·kg−1·min−1 completed cycle exercise testing at 85% of their maximal incremental power output to exhaustion while wearing an ensemble consisting of a fitted long-sleeved shirt and full trousers made of either COOL or a synthetic control fabric (CTRL). Exercise endurance time was not different under COOL versus CTRL conditions: 12.38 ± 0.98 versus 11.75 ± 1.10 min, respectively (P > 0.05). Similarly, COOL had no effect on detailed thermoregulatory (skin and esophageal temperatures), cardiometabolic, ventilatory, and perceptual responses to exercise (all P > 0.05). In conclusion, clothing made of a synthetic fabric with purported “cooling” properties did not improve high-intensity cycle exercise endurance in trained athletes under ambient laboratory conditions that mimic the environmental conditions of indoor training/sporting facilities. PMID:26290527

  7. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  8. UV and VUV spectroscopy and photochemistry of small molecules in a supersonic jet

    NASA Technical Reports Server (NTRS)

    Ruehl, E.; Vaida, V.

    1990-01-01

    UV and VUV absorption and emission spectroscopy is used to probe jet cooled molecules, free radicals, and clusters in the gas phase. Due to efficient cooling inhomogeneous effects on spectral line widths are eliminated. Therefore from these spectra, both structural and dynamical information is obtained. The photoproducts of these reactions are probed by resonance enhanced multiphoton ionization.

  9. Timonium Elementary School Solar Energy Heating and Cooling Augmentation Experiment. Final Engineering Report. Executive Summary.

    ERIC Educational Resources Information Center

    AAI Corp., Baltimore, MD.

    This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…

  10. Controls on Water Use for Thermoelectric Generation: Case Study Texas, U.S.

    PubMed Central

    2013-01-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km3), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km3) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000. PMID:23937226

  11. Controls on water use for thermoelectric generation: case study Texas, US.

    PubMed

    Scanlon, Bridget R; Reedy, Robert C; Duncan, Ian; Mullican, William F; Young, Michael

    2013-10-01

    Large-scale U.S. dependence on thermoelectric (steam electric) generation requiring water for cooling underscores the need to understand controls on this water use. The study objective was to quantify water consumption and withdrawal for thermoelectric generation, identifying controls, using Texas as a case study. Water consumption for thermoelectricity in Texas in 2010 totaled ∼0.43 million acre feet (maf; 0.53 km(3)), accounting for ∼4% of total state water consumption. High water withdrawals (26.2 maf, 32.3 km(3)) mostly reflect circulation between ponds and power plants, with only two-thirds of this water required for cooling. Controls on water consumption include (1) generator technology/thermal efficiency and (2) cooling system, resulting in statewide consumption intensity for natural gas combined cycle generators with mostly cooling towers (0.19 gal/kWh) being 63% lower than that of traditional coal, nuclear, or natural gas steam turbine generators with mostly cooling ponds (0.52 gal/kWh). The primary control on water withdrawals is cooling system, with ∼2 orders of magnitude lower withdrawals for cooling towers relative to once-through ponds statewide. Increases in natural gas combined cycle plants with cooling towers in response to high production of low-cost natural gas has greatly reduced water demand for thermoelectric cooling since 2000.

  12. Phase transformations of siderite ore by the thermomagnetic analysis data

    NASA Astrophysics Data System (ADS)

    Ponomar, V. P.; Dudchenko, N. O.; Brik, A. B.

    2017-02-01

    Thermal decomposition of Bakal siderite ore (that consists of magnesium siderite and ankerite traces) was investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory-built facility that allows automatic registration of sample magnetization with the temperature (heating/cooling rate was 65°/min, maximum temperature 650 °C) at low- and high-oxygen content. Curie temperature gradually decreases with each next cycles of heating/cooling at low-oxygen content. Curie temperature decrease after 2nd cycle of heating/cooling at high-oxygen content and do not change with next cycles. Final Curie temperature for both modes was 320 °C. Saturation magnetization of obtained samples increases up to 20 Am2/kg. The final product of phase transformation at both modes was magnesioferrite. It was shown that intermediate phase of thermal decomposition of Bakal siderite ore was magnesiowustite.

  13. Evaluation of the Performance of O-rings Made with Different Elastomeric Polymers in Simulated Geothermal Environments at 300°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie

    2014-12-01

    This paper aims to evaluate the survival of O-rings made with six different elastomeric polymers, EPDM, type I- and II-FKM, FEPM, FFKM, and FSR, in five different simulated geothermal environments at 300°C. It further defines the relative strengths and weaknesses of the materials in each environment. The environments tested were: 1) non-aerated steam-cooling cycles, 2) aerated steam-cooling cycles, 3) water-based drilling fluid, 4) CO2-rich geo-brine fluid, and, 5) heat-cool water quenching cycles. Following exposure, the extent of oxidation, oxidationinduced degradation, thermal behaviors, micro-defects, permeation depths of ionic species present in environments throughout the O-ring, silicate-related scale-deposition, and changes in mechanicalmore » properties were assessed.« less

  14. Qubit absorption refrigerator at strong coupling

    NASA Astrophysics Data System (ADS)

    Mu, Anqi; Agarwalla, Bijay Kumar; Schaller, Gernot; Segal, Dvira

    2017-12-01

    We demonstrate that a quantum absorption refrigerator (QAR) can be realized from the smallest quantum system, a qubit, by coupling it in a non-additive (strong) manner to three heat baths. This function is un-attainable for the qubit model under the weak system-bath coupling limit, when the dissipation is additive. In an optimal design, the reservoirs are engineered and characterized by a single frequency component. We then obtain closed expressions for the cooling window and refrigeration efficiency, as well as bounds for the maximal cooling efficiency and the efficiency at maximal power. Our results agree with macroscopic designs and with three-level models for QARs, which are based on the weak system-bath coupling assumption. Beyond the optimal limit, we show with analytical calculations and numerical simulations that the cooling efficiency varies in a non-universal manner with model parameters. Our work demonstrates that strongly-coupled quantum machines can exhibit function that is un-attainable under the weak system-bath coupling assumption.

  15. Theoretical Evaluation of Methods of Cooling the Blades of Gas Turbines

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1947-01-01

    A study was made of heat transfer in turbine blades and the effects on blade temperature of cooling the blade root and tip, changing the dimensions of the blades, raising the cycle temperatures, insulating with ceramics, and cooling by circulation of air or water through hollow blades.

  16. Personal, closed-cycle cooling and protective apparatus and thermal battery therefor

    DOEpatents

    Klett, James W.; Klett, Lynn B.

    2004-07-20

    A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

  17. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  18. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  19. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  20. Demonstration of a non-contact x-ray source using an inductively heated pyroelectric accelerator

    NASA Astrophysics Data System (ADS)

    Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee

    2015-04-01

    X-ray emission from pyroelectric sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) pyroelectric crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.

  1. Preliminary Evaluation of a Turbine/Rotary Combustion Compound Engine for a Subsonic Transport. [fuel consumption and engine tests of turbofan engines

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Kraft, G. A.

    1976-01-01

    The fuel consumption of a modern compound engine with that of an advanced high pressure ratio turbofan was compared. The compound engine was derived from a turbofan engine by replacing the combustor with a rotary combustion (RC) engine. A number of boost pressure ratios and compression ratios were examined. Cooling of the RC engine was accomplished by heat exchanging to the fan duct. Performance was estimated with an Otto-cycle for two levels of energy lost to cooling. The effects of added complexity on cost and maintainability were not examined and the comparison was solely in terms of cruise performance and weight. Assuming a 25 percent Otto-cycle cooling loss (representative of current experience), the best compound engine gave a 1.2 percent improvement in cruise. Engine weight increased by 23 percent. For a 10 percent Otto-cycle cooling loss (representing advanced insulation/high temperature materials technology), a compound engine with a boost PR of 10 and a compression ratio of 10 gave an 8.1 percent lower cruise than the reference turbofan.

  2. IR multiphoton absorption of SF6 in flow with Ar at moderate energy fluences

    NASA Astrophysics Data System (ADS)

    Makarov, G. N.; Ronander, E.; van Heerden, S. P.; Gouws, M.; van der Merwe, K.

    1997-10-01

    IR multiple photon absorption (MPA) of SF6 in flow with Ar (SF6: Ar=1:100) in conditions of a large vibrational/rotational temperature difference (TV𪒮 K, TR䏐 K) was studied at moderate energy fluences from ۂ.1 to 𪐬 mJ/cm2, which are of interest for isotope selective two-step dissociation of molecules. A 50 cm Laval-type slit nozzle for the flow cooling, and a TEA CO2-laser for excitation of molecules were used in the experiments. The laser energy fluence dependences of the SF6 MPA were studied for several CO2-laser lines which are in a good resonance with the linear absorption spectrum of the Ƚ vibration of SF6 at low temperature. The effect of the laser pulse duration (intensity) on MPA of flow cooled SF6 with Ar was also studied. The results are compared with those obtained in earlier studies.

  3. Large-scale gas dynamical processes affecting the origin and evolution of gaseous galactic halos

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1991-01-01

    Observations of galactic halo gas are consistent with an interpretation in terms of the galactic fountain model in which supernova heated gas in the galactic disk escapes into the halo, radiatively cools and forms clouds which fall back to the disk. The results of a new study of several large-scale gas dynamical effects which are expected to occur in such a model for the origin and evolution of galactic halo gas will be summarized, including the following: (1) nonequilibrium absorption line and emission spectrum diagnostics for radiatively cooling halo gas in our own galaxy, as well the implications of such absorption line diagnostics for the origin of quasar absorption lines in galactic halo clouds of high redshift galaxies; (2) numerical MHD simulations and analytical analysis of large-scale explosions ad superbubbles in the galactic disk and halo; (3) numerical MHD simulations of halo cloud formation by thermal instability, with and without magnetic field; and (4) the effect of the galactic fountain on the galactic dynamo.

  4. Split radiator design for heat rejection optimization for a waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-10-18

    A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.

  5. Low-cycle fatigue analysis of a cooled copper combustion chamber

    NASA Technical Reports Server (NTRS)

    Miller, R. W.

    1974-01-01

    A three-dimensional finite element elastoplastic strain analysis was performed for the throat section of regeneratively cooled rocket engine combustion chamber. The analysis included thermal and pressure loads, and the effects of temperature dependent material properties, to determine the strain range corresponding to the engine operating cycle. The strain range was used in conjunction with OFHC copper isothermal fatigue test data to predict engine low-cycle fatigue life. The analysis was performed for chamber configuration and operating conditions corresponding to a hydrogen-oxygen chamber which was fatigue tested to failure at the NASA Lewis Research Center.

  6. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  7. Propagation of sound through the Earth's atmosphere. 1: Measurement of sound absorption in the air. 2: Measurement of ground impedance

    NASA Technical Reports Server (NTRS)

    Becher, J.; Meredith, R. W.; Zuckerwar, A. J.

    1981-01-01

    The fabrication of parts for the acoustic ground impedance meter was completed, and the instrument tested. Acoustic ground impedance meter, automatic data processing system, cooling system for the resonant tube, and final results of sound absorption in N2-H2O gas mixtures at elevated temperatures are described.

  8. Evaluation of solar thermal driven cooling system in office buildings in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Linjawi, Majid T.; Talal, Qazi; Al-Sulaiman, Fahad A.

    2017-11-01

    In this study solar driven absorption chiller is used to reduce the peak cooling load in office buildings in Saudi Arabia for different selected cities. The study is conducted for six cities of Abha, Dhahran, Hail, Jeddah, Nejran and Riyadh under three operating durations of 4, 6, and 8 hours using flat plate or evacuated tube collectors. The energy analysis concluded that flat plate collectors are better than evacuated tube collectors. However, the results from economic analysis suggest that while proposing a gas fired absorption chiller will reduce running costs, further reduction by using solar collectors is not feasible because of its high initial cost. At the best case scenario the Net Present Value of a 10 Ton Absorption chiller operated by natural gas boiler and two large flat plate collectors (12m2 each) running for 8 hours/day, 5days/week has a value of 117,000 and Internal Rate of Return (IRR) of 12%. Solar driven absorption chiller could be more feasible if the gas prices increases or the solar collector prices decreases significantly. Finally, government economic incentives and taxes are recommended to provide a boost for the feasibility of such projects.

  9. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  10. Rotational modulation of hydrogen Lyman alpha flux from 44ii Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1988-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the C II and C IV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  11. Rotational modulation of hydrogen Lyman alpha flux from 44i Bootis

    NASA Technical Reports Server (NTRS)

    Vilhu, O.; Neff, J. E.; Rahunen, T.

    1989-01-01

    Observations with IUE that cover the entire 6.4 hr orbital cycle of the late-type contact binary 44i Bootis are presented. Intrinsic stellar hydrogen Lyman alpha emission flux was determined from low-resolution IUE spectra, compensating for geocoronal emission and for interstellar absorption. The variation of the stellar Lyman alpha emission flux correlates well with the variation of the CII and CIV emission fluxes, and shows orbital modulation in phase with the visual light curve. The ratio of Lyman alpha to CII flux (15 to 20) is similar to that observed in solar active regions. Hydrogen Lyman alpha emission is thus one of the most important cooling channels in the outer atmosphere of 44i Boo. A high-resolution spectrum of the Lyman alpha line was obtained between orbital phases 0.0 and 0.6. The integrated flux in the observed high-resolution Lyman alpha profile is consistent with the fluxes determined using low-resolution spectra, and the composite profile indicates that both components of this binary have equally active chromospheres and transition regions. The uncertainty in the interstellar hydrogen column density cannot mimic the observed variation in the integrated Lyman alpha flux, because the stellar line is very much broader than the interstellar absorption.

  12. The Circumgalactic Medium in Massive Halos

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    This chapter presents a review of the current state of knowledge on the cool (T ˜ 104 K) halo gas content around massive galaxies at z ≈ 0. 2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of M h ≈ 1012-14 M⊙ at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ≈ 0. 5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d 100 d\\gtrsim 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d 200 d\\lesssim 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.

  13. Preliminary Design Study of Medium Sized Gas Cooled Fast Reactor with Natural Uranium as Fuel Cycle Input

    NASA Astrophysics Data System (ADS)

    Meriyanti, Su'ud, Zaki; Rijal, K.; Zuhair, Ferhat, A.; Sekimoto, H.

    2010-06-01

    In this study a fesibility design study of medium sized (1000 MWt) gas cooled fast reactors which can utilize natural uranium as fuel cycle input has been conducted. Gas Cooled Fast Reactor (GFR) is among six types of Generation IV Nuclear Power Plants. GFR with its hard neuron spectrum is superior for closed fuel cycle, and its ability to be operated in high temperature (850° C) makes various options of utilizations become possible. To obtain the capability of consuming natural uranium as fuel cycle input, modified CANDLE burn-up scheme[1-6] is adopted this GFR system by dividing the core into 10 parts of equal volume axially. Due to the limitation of thermal hydraulic aspects, the average power density of the proposed design is selected about 70 W/cc. As an optimization results, a design of 1000 MWt reactors which can be operated 10 years without refueling and fuel shuffling and just need natural uranium as fuel cycle input is discussed. The average discharge burn-up is about 280 GWd/ton HM. Enough margin for criticallity was obtained for this reactor.

  14. Alpine soil carbon is vulnerable to rapid microbial decomposition under climate cooling.

    PubMed

    Wu, Linwei; Yang, Yunfeng; Wang, Shiping; Yue, Haowei; Lin, Qiaoyan; Hu, Yigang; He, Zhili; Van Nostrand, Joy D; Hale, Lauren; Li, Xiangzhen; Gilbert, Jack A; Zhou, Jizhong

    2017-09-01

    As climate cooling is increasingly regarded as important natural variability of long-term global warming trends, there is a resurging interest in understanding its impact on biodiversity and ecosystem functioning. Here, we report a soil transplant experiment from lower to higher elevations in a Tibetan alpine grassland to simulate the impact of cooling on ecosystem community structure and function. Three years of cooling resulted in reduced plant productivity and microbial functional potential (for example, carbon respiration and nutrient cycling). Microbial genetic markers associated with chemically recalcitrant carbon decomposition remained unchanged despite a decrease in genes associated with chemically labile carbon decomposition. As a consequence, cooling-associated changes correlated with a decrease in soil organic carbon (SOC). Extrapolation of these results suggests that for every 1 °C decrease in annual average air temperature, 0.1 Pg (0.3%) of SOC would be lost from the Tibetan plateau. These results demonstrate that microbial feedbacks to cooling have the potential to differentially impact chemically labile and recalcitrant carbon turnover, which could lead to strong, adverse consequences on soil C storage. Our findings are alarming, considering the frequency of short-term cooling and its scale to disrupt ecosystems and biogeochemical cycling.

  15. Cooled variable nozzle radial turbine for rotor craft applications

    NASA Technical Reports Server (NTRS)

    Rogo, C.

    1981-01-01

    An advanced, small 2.27 kb/sec (5 lbs/sec), high temperature, variable area radial turbine was studied for a rotor craft application. Variable capacity cycles including single-shaft and free-turbine engine configurations were analyzed to define an optimum engine design configuration. Parametric optimizations were made on cooled and uncooled rotor configurations. A detailed structural and heat transfer analysis was conducted to provide a 4000-hour life HP turbine with material properties of the 1988 time frame. A pivoted vane and a moveable sidewall geometry were analyzed. Cooling and variable geometry penalties were included in the cycle analysis. A variable geometry free-turbine engine configuration with a design 1477K (2200 F) inlet temperature and a compressor pressure ratio of 16:1 was selected. An uncooled HP radial turbine rotor with a moveable sidewall nozzle showed the highest performance potential for a time weighted duty cycle.

  16. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1981-01-01

    An analytical study evaluating thrust chamber cooling engine cycles and preliminary engine design for low thrust chemical rocket engines for orbit transfer vehicles is described. Oxygen/hydrogen, oxygen/methane, and oxygen/RP-1 engines with thrust levels from 444.8 N to 13345 N, and chamber pressures from 13.8 N/sq cm to 689.5 N/sq cm were evaluated. The physical and thermodynamic properties of the propellant theoretical performance data, and transport properties are documented. The thrust chamber cooling limits for regenerative/radiation and film/radiation cooling are defined and parametric heat transfer data presented. A conceptual evaluation of a number of engine cycles was performed and a 2224.1 N oxygen/hydrogen engine cycle configuration and a 2224.1 N oxygen/methane configuration chosen for preliminary engine design. Updated parametric engine data, engine design drawings, and an assessment of technology required are presented.

  17. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    NASA Astrophysics Data System (ADS)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  18. The kinematics and morphology of cool galactic winds and halo gas from galaxies at 0.3 < z < 1.4

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.

    Large-scale redshift surveys tracing the evolution of the luminous components of galaxies have revealed both an increase in the number density of "red and dead" galaxies and a concomitant decline in the star formation rates (SFRs) of blue galaxies since z ˜ 1. The latter is predicted to be due to a decreasing cool gas supply over time; whereas the former may be explained by the theory of merger-driven galaxy evolution, which suggests that the merging of blue galaxies expels the interstellar medium (ISM), thereby quenching star formation in the remnant. While these theoretical explanations provide robust predictions for the evolution of the gaseous components of distant galaxies, we have few direct measurements of the location and kinematics of cool gas around galaxies beyond the local universe. This thesis uses three complementary observational techniques to provide new constraints on the kinematics and morphology of cool gas in galaxies at 0.3 < z < 1.4. First, we use spectra of ˜470 galaxies at 0.7 < z < 1.5 drawn from the Team Keck Treasury Redshift Survey to study absorption line profiles for the Mg II lambdalambda2796, 2803 and Fe II lambdalambda2586, 2600 transitions, which probe cool, photoionized gas with temperature T ˜ 10 4 K. By coadding several sub-samples of galaxy spectra, we identify gaseous outflows via the Doppler shift of the absorption lines, and find that outflows are ubiquitous in galaxies having SFR > 10 M⊙ yr-1 and stellar masses ≳1010.5M⊙ . By comparing these results to those of Weiner et al. (2009), who present a similar study of outflows in star-forming galaxies at z ˜ 1.4, we find that these outflows persist in high-mass galaxies as they age between z ˜ 1.4 and z ˜ 1. Using HST/ACS imaging of our galaxy sample, we present evidence for a weak trend of increasing outflow absorption strength with increasing galaxy SFR surface density (SigmaSFR). Theoretical studies suggest that a minimum SigmaSFR must be exceeded in the host galaxy for outflows to be driven by either radiation pressure or thermalized energy from supernovae. To test this directly, we use a similar technique to probe cool gas kinematics in the individual Keck/LRIS spectra of a sample of ˜120 galaxies at 0.3 < z < 1.4. These data permit modeling of Mg II and Fe II absorption lines to obtain, e.g., the cool gas outflow velocity and covering fraction. Using Spitzer/MIPS and GALEX imaging to determine SFRs in concert with HST/ACS imaging which enables measurements of the size of star-forming regions, we compare outflow velocity to SigmaSFR. We find that while we detect outflows over a range 0.005 M⊙ yr-1 kpc-2 < Sigma SFR < 1 M⊙ yr-1 kpc-2, outflows occur more frequently with increasing SigmaSFR. The absorption line studies described above provide strong constraints on, e.g., the cool gas velocities. However, they provide only weak constraints on the radial extent and morphology of the gas. Knowledge of the spatial extent of the outflow is essential for accurately estimating its mass and energy; measurements of these rates are in turn crucial to understanding the role of outflows in driving galaxy evolution. Next, we show that emission in Mg II and Fe II* fine-structure lines can provide novel constraints on the spatial extent of an outflow. We identify a starburst galaxy at z = 0.69 which exhibits emission and absorption in Mg II, yielding a P Cygni-like line profile. We demonstrate that this emission is spatially broader than the continuum emission and the emission from H II regions, and associate the Mg II and Fe II* emission with resonance-line scattering and fluorescence in the outflow. These features are common at z ˜ 1, and in principle yield the first direct constraint on the radial extent of the outflow in many distant galaxies. Finally, we present a study of the cool gas around a single galaxy at z = 0.47 using spectroscopy of a bright background galaxy at z = 0.7 at a transverse distance of 16.5 h-170 kpc. While cool halo gas is typically studied along sightlines to background QSOs, the use of background galaxies offers several advantages over more traditional techniques. Because the background galaxy is spatially extended, we probe absorption over a large (> 4 h-170 kpc) area in the foreground halo, and find that the gas exhibits a large velocity dispersion and high covering fraction over this area. Spectroscopy of the foreground host galaxy reveals that it experienced a burst of star formation ˜1 Gyr ago, and we suggest that the absorbing gas in the halo was most likely ejected or tidally stripped during this past violent event. As such, these results again place a novel constraint on the radial extent of cool gas originating in the ISM of a distant galaxy.

  19. Ejector gas cooling. Phase 1. Final report, 1 April 1987-30 April 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, C.D.; Silvetti, B.M.; Hrbek, R.

    1988-11-01

    Closed-circuit ejector cooling systems have never in the past achieved acceptable operating efficiencies in their vapor-compression cycle using standard refrigerants. Despite their long history, relative simplicity, quietness, rugged design, low maintenance and low cost, they could not compete with electric-motor-driven compressors. Phase I is an assessment of two immiscible fluids in an ejector cooling system with different latent heat capacity and molecular weights intended to require less heat in the boiler producing the propellant and taking more heat out in the evaporator cooling fluid. Actual tests corrected to standard conditions and neglecting thermal losses showed 0.5 closed-cycle thermal COP (excludingmore » stack losses), higher than ever previously achieved but below original expectations. Computer programs developed indicate higher COP values are attainable along with competitive first costs.« less

  20. Does Short-Duration Heat Exposure at a Matched Cardiovascular Intensity Improve Intermittent-Running Performance in a Cool Environment?

    PubMed

    Philp, Calvin P; Buchheit, Martin; Kitic, Cecilia M; Minson, Christopher T; Fell, James W

    2017-07-01

    To investigate whether a 5-d cycling training block in the heat (35°C) in Australian Rules footballers was superior to exercising at the same relative intensity in cool conditions (15°C) for improving intermittent-running performance in a cool environment (<18°C). Using a parallel-group design, 12 semiprofessional football players performed 5 d of cycling exercise (70% heart-rate reserve [HRR] for 45 min [5 × 50-min sessions in total]) in a hot (HEAT, 35°C ± 1°C, 56% ± 9% RH) or cool environment (COOL, 15°C ± 3°C, 81% ± 10% RH). A 30-15 Intermittent Fitness Test to assess intermittent running performance (V IFT ) was conducted in a cool environment (17°C ± 2°C, 58 ± 5% RH) before and twice after (1 and 3 d) the intervention. There was a likely small increase in V IFT in each group (HEAT, 0.5 ± 0.3 km/h, 1.5 ± 0.8 × smallest worthwhile change [SWC]; COOL, 0.4 ± 0.4 km/h, 1.6 ± 1.2 × SWC) 3 d postintervention, with no difference in change between the groups (0.5% ± 1.9%, 0.4 ± 1.4 × SWC). Cycle power output during the intervention was almost certainly lower in the HEAT group (HEAT 1.8 ± 0.2 W/kg vs COOL 2.5 ± 0.3 W/kg, -21.7 ± 3.2 × SWC, 100/0/0). When cardiovascularexercise intensity is matched (ie, 70% HRR) between environmental conditions, there is no additional performance benefit from short-duration moderate-intensity heat exposure (5 × 50 min) for semiprofessional footballers exercising in cool conditions. However, the similar positive adaptations may occur in HEAT with 30% lower mechanical load, which may be of interest for load management during intense training or rehabilitation phases.

  1. The influence of H2O line blanketing on the spectra of cool dwarf stars

    NASA Technical Reports Server (NTRS)

    Allard, F.; Hauschildt, P. H.; Miller, S.; Tennyson, J.

    1994-01-01

    We present our initial results of model atmosphere calculations for cool M dwarfs using an opacity sampling method and a new list of H2O lines. We obtain significantly improved fits to the infrared spectrum of the M dwarf VB10 when compared to earlier models. H2O is by far the dominant opacity source in cool stars. To illustrate this, we show the Rosseland mean of the total extinction under various assumptions. Our calculations demonstrate the importance of a good treatment of the water opacities in cool stars and the improvements possible by using up-to-date data for the water line absorption.

  2. Preliminary Investigations on Therapy Thresholds for Laser Dosimetry, Cryogen Spray Cooling Duration, and Treatment Cycles for Laser Cartilage Reshaping in the New Zealand White Rabbit Auricle

    PubMed Central

    Chlebicki, Cara A.; Protsenko, Dmitry E.; Wong, Brian J.

    2014-01-01

    Previous studies have demonstrated the feasibility of laser irradiation (λ=1.45 μm) in tandem with cryogen spray cooling (CSC) to reshape rabbit auricular cartilage using total energy density of 14 J/cm2. The aim of this study was to further explore and identify the dosimetry parameter space for laser output energy, CSC duration, and treatment cycles required to achieve shape change while limiting skin and cartilage injury. Ten New Zealand white rabbits were treated with the 1.45 μm diode laser combined with cryogen spray cooling (Candela Smoothbeam™, Candela Co., Wayland, MA). The ear's central portion was bent around a cylindrical jig and irradiated in consecutive spots of 6 mm diameter (13 J/cm2 or 14 J/cm2 per spot) along 3 rows encompassing the bend. CSC was delivered during irradiation in cycles consisting of 25-35 ms. At thin and thick portions of the ear, 4-7 and 6-10 treatment cycles were delivered, respectively. After surgery, ears were examined and splinted for 6 weeks. Treatment parameters resulting in acceptable (Grades 1 & 2) and unacceptable (Grade 3) skin injuries for thick and thin regions were identified and shape change was observed. Confocal and histological analysis of cartilage tissue revealed several outcomes correlating to laser dosimetry, CSC duration, and treatment cycles. These outcomes included expansion of cartilage layers (thickening), partial cartilage injuries, and full thickness cartilage injuries. We determined therapy thresholds for laser output energy, cryogen spray cooling duration, and treatment cycles in the rabbit auricular model. These parameters are a starting point for future clinical procedures aimed at correcting external ear deformities. PMID:24202858

  3. Preliminary investigations on therapy thresholds for laser dosimetry, cryogen spray cooling duration, and treatment cycles for laser cartilage reshaping in the New Zealand white rabbit auricle.

    PubMed

    Chlebicki, Cara A; Protsenko, Dmitry E; Wong, Brian J

    2014-05-01

    Previous studies have demonstrated the feasibility of laser irradiation (λ = 1.45 μm) in tandem with cryogen spray cooling (CSC) to reshape rabbit auricular cartilage using a total energy density of 14 J/cm(2). The aim of this study was to further explore and identify the dosimetry parameter space for laser output energy, CSC duration, and treatment cycles required to achieve shape change while limiting skin and cartilage injury. Ten New Zealand white rabbits were treated with the 1.45 μm diode laser combined with cryogen spray cooling (Candela Smoothbeam™, Candela Co., Wayland, MA, USA). The ear's central portion was bent around a cylindrical jig and irradiated in consecutive spots of 6 mm diameter (13 or 14 J/cm(2) per spot) along three rows encompassing the bend. CSC was delivered during irradiation in cycles consisting of 25-35 ms. At thin and thick portions of the ear, 4-7 and 6-10 treatment cycles were delivered, respectively. After surgery, ears were examined and splinted for 6 weeks. Treatment parameters resulting in acceptable (grades 1 and 2) and unacceptable (grade 3) skin injuries for thick and thin regions were identified, and shape change was observed. Confocal and histological analysis of cartilage tissue revealed several outcomes correlating to laser dosimetry, CSC duration, and treatment cycles. These outcomes included expansion of cartilage layers (thickening), partial cartilage injuries, and full-thickness cartilage injuries. We determined therapy thresholds for laser output energy, cryogen spray cooling duration, and treatment cycles in the rabbit auricular model. These parameters are a starting point for future clinical procedures aimed at correcting external ear deformities.

  4. Can Thermal Bending Fracture Ice Shelves?

    NASA Astrophysics Data System (ADS)

    MacAyeal, D. R.; Sergienko, O. V.; Banwell, A. F.; Willis, I.; Macdonald, G. J.; Lin, J.

    2017-12-01

    Visco-elastic plates will bend if the temperature on one side is cooled. If the plate is constrained to float, as for sea ice floes, this bending will lead to tensile stresses that can fracture the ice. The hydroacoustic regime below sea ice displays increased fracture-sourced noise when air temperatures above the ice cools with the diurnal cycle. The McMurdo Ice Shelf, Antarctica, also displays a massive increase in seismicity during the cooling phase of the diurnal cycle, and this motivates the question: Can surface cooling (or other forcing with thermal consequences) drive through-thickness fracture leading to iceberg calving? Past study of this question for sea ice gives an upper limit of ice-plate thickness (order meters) for which diurnal-scale thermal bending fracture can occur; but could cooling with longer time scales induce fracture of thicker ice plates? Given the seismic evidence of thermal bending fracture on the McMurdo Ice Shelf, the authors examine this question further.

  5. Energy and Exergy Analysis of Vapour Absorption Refrigeration Cycle—A Review

    NASA Astrophysics Data System (ADS)

    Kanabar, Bhaveshkumar Kantilal; Ramani, Bharatkumar Maganbhai

    2016-07-01

    In recent years, an energy crisis and the energy consumption have become global problems which restrict the sustainable growth. In these scenarios the scientific energy recovery and the utilization of various kinds of waste heat become very important. The waste heat can be utilized in many ways and one of the best practices is to use it for vapour absorption refrigeration system. To ensure efficient working of absorption cycle and utilization of optimum heat, exergy is the best tool for analysis. This paper provides the comprehensive picture of research and development of absorption refrigeration technology, practical and theoretical analysis with different arrangements of the cycle.

  6. Economic analysis of solar assisted absorption chiller for a commercial building

    NASA Astrophysics Data System (ADS)

    Antonyraj, Gnananesan

    Dwindling fossil fuels coupled with changes in global climate intensified the drive to make use of renewable energy resources that have negligible impact on the environment. In this attempt, the industrial community produced various devices and systems to make use of solar energy for heating and cooling of building space as well as generate electric power. The most common components employed for collection of solar energy are the flat plate and evacuated tube collectors that produce hot water that can be employed for heating the building space. In order to cool the building, the absorption chiller is commonly employed that requires hot water at high temperatures for its operation. This thesis deals with economic analysis of solar collector and absorption cooling system to meet the building loads of a commercial building located in Chattanooga, Tennessee. Computer simulations are employed to predict the hourly building loads and performance of the flat plate and evacuated tube solar collectors using the hourly weather data. The key variables affecting the economic evaluation of such system are identified and the influence of these parameters is presented. The results of this investigation show that the flat plate solar collectors yield lower payback period compared to the evacuated tube collectors and economic incentives offered by the local and federal agencies play a major role in lowering the payback period.

  7. Calculation tool for transported geothermal energy using two-step absorption process

    DOE Data Explorer

    Kyle Gluesenkamp

    2016-02-01

    This spreadsheet allows the user to calculate parameters relevant to techno-economic performance of a two-step absorption process to transport low temperature geothermal heat some distance (1-20 miles) for use in building air conditioning. The parameters included are (1) energy density of aqueous LiBr and LiCl solutions, (2) transportation cost of trucking solution, and (3) equipment cost for the required chillers and cooling towers in the two-step absorption approach. More information is available in the included public report: "A Technical and Economic Analysis of an Innovative Two-Step Absorption System for Utilizing Low-Temperature Geothermal Resources to Condition Commercial Buildings"

  8. Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.

    PubMed

    Hill, R N; Nutt, W M; Laidler, J J

    2011-01-01

    The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society

  9. Theoretical model for Sub-Doppler Cooling with EIT System

    NASA Astrophysics Data System (ADS)

    He, Peiru; Tengdin, Phoebe; Anderson, Dana; Rey, Ana Maria; Holland, Murray

    2016-05-01

    We propose a of sub-Doppler cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the so-called Electromagnetically Induced Transparency (EIT) effect, a destructive quantum interference phenomenon experienced by atoms with Lambda-shaped energy levels when illuminated by two light fields with appropriate frequencies. By detuning the probe lasers slightly from the ``dark resonance'', we observe that atoms can be significantly cooled down by the strong viscous force within the transparency window, while being just slightly heated by the diffusion caused by the small absorption near resonance. In contrast to polarization gradient cooling or EIT sideband cooling, no external magnetic field or external confining potential are required. Using a semi-classical method, analytical expressions, and numerical simulations, we demonstrate that the proposed EIT cooling method can lead to temperatures well below the Doppler limit. This work is supported by NSF and NIST.

  10. Triple effect absorption cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, D.C.; Potnis, S.V.; Tang, J.

    1996-12-31

    Triple effect absorption chillers can achieve 50% COP improvement over double-effect systems. However, to translate this potential into cost-effective hardware, the most promising embodiments must be identified. In this study, 12 generic triple effect cycles and 76 possible hermetic loop arrangements of those 12 generic cycles were identified. The generic triple effect cycles were screened based on their pressure and solubility field requirements, generic COPs, risk involved in the component design, and number of components in a high corrosive environment. This screening identified four promising arrangements: Alkitrate Topping cycle, Pressure Staged Envelope cycle, High Pressure Overlap cycle, and Dual Loopmore » cycle. All of these arrangements have a very high COP ({approximately} 1.8), however the development risk and cost involved is different for each arrangement. Therefore, the selection of a particular arrangement will depend upon the specific situation under consideration.« less

  11. Experimental determination of transient strain in a thermally-cycled simulated turbine blade utilizing a non-contact technique

    NASA Technical Reports Server (NTRS)

    Calfo, F. D.; Bizon, P. T.

    1978-01-01

    A type of noncontacting electro-optical extensometer was used to measure the displacement between parallel targets mounted on the leading edge of a simulated turbine blade throughout a complete heating and cooling cycle. The blade was cyclically heated and cooled by moving it into and out of a Mach 1 hot gas stream. The principle of operation and measurement procedure of the electro-optics extensometer are described.

  12. USAF Physiological Studies of Personal Microclimate Cooling: A Review

    DTIC Science & Technology

    1993-05-01

    53 vi 11h. Thermal comfort ratings during continuous work. AC = Ambient Air Cooling; NC = No Cooling...43 10b Thermal Comfort (TC) and Rating of Perceived Exertion (RPE) at the End of 45-Min Work Cycles in...47 10d Thermal Comfort (TC) and Ratings of Perceived Exertion (RPE) at the End o! 30

  13. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Earleywine, M.; Wood, E.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVsmore » under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.« less

  14. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  15. Metal concentration and X-ray cool spectral component in the central region of the Centaurus cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Fukazawa, Yasushi; Ohashi, Takaya; Fabian, Andrew C.; Canizares, Claude R.; Ikebe, Yasushi; Makishima, Kazuo; Mushotzky, Richard F.; Yamashita, Koujun

    1994-01-01

    Spatially resolved energy spectra in the energy range 0.5-10 keV have been measured for the Centaurus cluster of galaxies with Advanced Satellite for Cosmology and Astrophysics (ASCA). Within 10 min (200 kpc) from the cluster center, the helium-like iron K emission line exhibits a dramatic increase toward the center rising from an equivalent width approximately 500 eV to approximately 1500 eV corresponding to an abundance change from 0.3 to 1.0 solar. The presence of strong iron L lines indicates an additional cool component (kT approximately 1 keV) within 10 min from the center. The cool component requires absorption in excess of the galactic value and this excess absorption increases towards the central region of the cluster. In the surrounding region with radius greater than 10 min, the spectra are well described by a single temperature thermal model with kT approximately 4 keV and spatially uniform abundances at about 0.3-0.4 times solar. The detection of metal-rich hot and cool gas in the cluster center implies a complex nature of the central cluster gas which is likely to be related to the presence of the central cD galaxy NGC 4696.

  16. Copernicus observations of Betelgeuse and Antares

    NASA Technical Reports Server (NTRS)

    Bernat, A. P.; Lambert, D. L.

    1975-01-01

    Copernicus observations of the M-supergiants, alpha Ori and alpha Sco, are presented. The MgII h and k resonance lines are strongly in emission in both stars. The k line is highly asymmetric in both stars but the h line is symmetric. Upper limits for several other resonance lines are given for alpha Ori. The possibility is explored that the k line asymmetry is caused by overlying resonance lines of MnI and FeI formed in the cool circumstellar gas shells around these stars. Observations of the MnI 4030-4033 A lines are used to show that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere.

  17. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  18. Active cooling of pulse compression diffraction gratings for high energy, high average power ultrafast lasers

    DOE PAGES

    Alessi, David A.; Rosso, Paul A.; Nguyen, Hoang T.; ...

    2016-12-26

    Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. As a result, combining this technique with low absorption multilayer dielectric gratings developed in ourmore » group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.« less

  19. Massive Warm/Hot Galaxy Coronae as Probed by UV/X-Ray Oxygen Absorption and Emission. I. Basic Model

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2017-01-01

    We construct an analytic phenomenological model for extended warm/hot gaseous coronae of L* galaxies. We consider UV O VI Cosmic Origins Spectrograph (COS)-Halos absorption line data in combination with Milky Way (MW) X-ray O vii and O viii absorption and emission. We fit these data with a single model representing the COS-Halos galaxies and a Galactic corona. Our model is multi-phased, with hot and warm gas components, each with a (turbulent) log-normal distribution of temperatures and densities. The hot gas, traced by the X-ray absorption and emission, is in hydrostatic equilibrium in an MW gravitational potential. The median temperature of the hot gas is 1.5× {10}6 K and the mean hydrogen density is ˜ 5× {10}-5 {{cm}}-3. The warm component as traced by the O VI, is gas that has cooled out of the high density tail of the hot component. The total warm/hot gas mass is high and is 1.2× {10}11 {M}⊙ . The gas metallicity we require to reproduce the oxygen ion column densities is 0.5 solar. The warm O VI component has a short cooling time (˜ 2× {10}8 years), as hinted by observations. The hot component, however, is ˜ 80 % of the total gas mass and is relatively long-lived, with {t}{cool}˜ 7× {10}9 years. Our model supports suggestions that hot galactic coronae can contain significant amounts of gas. These reservoirs may enable galaxies to continue forming stars steadily for long periods of time and account for “missing baryons” in galaxies in the local universe.

  20. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  1. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Brum, C. G.

    2013-05-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred in Jan/2005, during the descendent phase of the XXIII solar activity cycle. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65oN) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  2. Polar low ionospheric responses to the most energetic SPE of the solar cycle#23 based on cosmic noise absorption

    NASA Astrophysics Data System (ADS)

    Pacini, A. A.; Garnett Marques Brum, C.

    2013-12-01

    We present a detailed study of the impact of solar proton event over the polar low ionosphere, occurred Jan/2005, during the descendent phase of the last solar activity cycle XXIII. This event was the hardest SPE of the last solar cycle, and was associated to a solar X-ray flare X.2 and CME halo. For this study, we are using cosmic noise absorption data measured by a riometer located in Oulu, Finland (65N) along with solar proton data from GOES satellite. Based on computation simulations we intend to explain the 30MHz riometer absorption events based on variations of the flux and spectrum of the energetic particle precipitated.

  3. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the gases before the chiller inlet. The results show that no risk of cold end corrosion within the chiller heat exchanger exists. In addition, crystallization is not an issue during system operation. Accounting for the electricity and the cooling produced and disregarding the remaining thermal energy, the second strategy is preferred and yields an overall estimated efficiency of 71.7%.

  4. Air-Conditioning for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  5. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn; State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819; Kong, Xiangwei

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grainsmore » changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.« less

  6. PARTIAL ECONOMIC STUDY OF STEAM COOLED HEAVY WATER MODERATED REACTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1960-04-01

    Steam-cooled reactors are compared with CAHDU for costs of Calandria tubes, pressure tubes. heavy water moderator, heavy water reflector, fuel supply, heat exchanger, and turbine generator. A direct-cycle lightsteam-cooled heavy- water-moderated pressure-tube reactor formed the basic reactor design for the study. Two methods of steam circulation through the reactor were examined. In both cases the steam was generated outside the reactor and superheated in the reactor core. One method consisted of a series of reactor and steam generator passes. The second method consisted of the Loeffler cycle and its modifications. The fuel was assumed to be natural cylindrical UO/sub 2/more » pellets sheathed in a hypothetical material with the nuclear properties of Zircaloy, but able to function at temperatures to 900 deg F. For the conditions assumed, the longer the rod, the higher the outlet temperature and therefore the higher the efficiency. The turbine cycle efficiency was calculated on the assumption that suitable steam generators are available. As the neutron losses to the pressure tubes were significant, an economic analysis of insulated pressure tubes is included. A description of the physics program for steam-cooled reactors is included. Results indicated that power from the steam-cooled reactor would cost 1.4 mills/ kwh compared with 1.25 mills/kwh for CANDU. (M.C.G.)« less

  7. Elastocaloric cooling materials and systems

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro

    2015-03-01

    We are actively pursuing applications of thermoelastic (elastocaloric) cooling using shape memory alloys. Latent heat associated with martensitic transformation of shape memory alloys can be used to run cooling cycles with stress-inducing mechanical drives. The coefficient of performance of thermoelastic cooling materials can be as high as 11 with the directly measured DT of around 17 °C. Depending on the stress application mode, the number of cycles to fatigue can be as large as of the order of 105. Efforts to design and develop thermoelastic alloys with long fatigue life will be discussed. The current project at the University of Maryland is focused on development of building air-conditioners, and at Maryland Energy and Sensor Technologies, smaller scale commercial applications are being pursued. This work is carried out in collaboration with Jun Cui, Yiming Wu, Suxin Qian, Yunho Hwang, Jan Muehlbauer, and Reinhard Radermacher, and it is funded by the ARPA-E BEETIT program and the State of Maryland.

  8. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface tempera- cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  9. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes during Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Chin, Mian; Kim, K. M.

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  10. Green buildings: Implications for acousticians

    NASA Astrophysics Data System (ADS)

    Noble, Michael R.

    2005-04-01

    This presentation will deal with the practical implications of green design protocols of the US Green Building Council on interior acoustics of buildings. Three areas of particular consequence to acousticians will be discussed. Ventilation Systems: reduced energy consumption goals dictate reliance on natural cooling and ventilation using ambient air when possible. The consequent large openings in the building envelope to bring fresh air into rooms, and similar sized openings to transfer the mixed air out, can severely compromise the noise isolation of the rooms concerned. Radiant Cooling: the heavy concrete floors of buildings can be used as a thermal flywheel to lessen the cooling load, which forces the concrete ceilings to be exposed to the occupied rooms for heat transfer, and strictly limits the application of acoustical absorption on the ceilings. This challenges the room acoustics design. Green Materials: the LEED protocols require the elimination of potentially harmful finishes, including fibrous materials which may impact air quality or contribute to health problems. Since the backbone of sound absorption is glass and mineral fibres, this further challenges provision of superior room acoustics. Examples and commentary will be provided based on current and recent projects.

  11. Non-LTE models of Titan's upper atmosphere

    NASA Technical Reports Server (NTRS)

    Yelle, Roger V.

    1991-01-01

    Models for the thermal structure of Titan's upper atmosphere, between 0.1 mbar and 0.01 nbar are presented. The calculations include non-LTE heating/cooling in the rotation-vibration bands of CH4, C2H2, and C2H6, absorption of solar IR radiation in the near-IR bands of CH4 and subsequent cascading to the nu-4 band of CH4, absorption of solar EUV and UV radiation, thermal conduction and cooling by HCN rotational lines. Unlike earlier models, the calculated exospheric temperature agrees well with observations, because of the importance of HCN cooling. The calculations predict a well-developed mesopause with a temperature of 135-140 K at an altitude of approximately 600 km and pressure of about 0.1 microbar. The mesopause is at a higher pressure than predicted by earlier calculations because non-LTE radiative transfer in the rotation-vibration bands of CH4, C2H2, and C2H6 is treated in an accurate manner. The accuracy of the LTE approximation for source functions and heating rates is discussed.

  12. Solar Energy system performance evaluation: El Toro, California, March 1981-November 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pakkala, P.A.

    The El Toro Library is a public library facility in California with an active solar energy system designed to supply 97% of the heating load and 60% of the cooling load. The system is equipped with 1427 square feet of evacuated tube collectors, a 1500-gallon steel storage tank, and an auxiliary natural-gas-fired heating unit. During the period from March 1981 through November 1981 the system supplied only 16% of the space cooling load, far short of the 60% design value. Problems are reported related to control of a valve and of collection, low absorption chiller coefficient of performance during partmore » of the period, and small collector area. Performance data are reported for the system, including solar savings ratio, conventional fuel savings, system performance factor, system coefficient of performance, solar energy utilization, and system operation. Subsystem performance data are also given for the collector, storage, and space cooling subsystems and absorption chiller. The system is briefly described along with performance evaluation techniques and sensors, and typical data are presented for one month. Some weather data are also included. (LEW)« less

  13. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model

    PubMed Central

    Wu, Edward C.; Sun, Victor; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Jia, Wangcun; Nelson, J. Stuart; Wong, Brian J. F.

    2014-01-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12–14 J/cm2 per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33–85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50–70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress. PMID:23307439

  14. Preliminary design of an alternate high-temperature turbine. A topical report for Phase II of the High-Temperature-Turbine Technology Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strough, R.I.

    The feasibility of designing a convectively air-cooled turbine to operate in the environment of a 3000/sup 0/F combustor exit temperature with maximum turbine airfoil metal temperatures held to 1500/sup 0/F was established. The United Technologies-Kraftwerk Union V84.3 gas turbine design was used as the basic configuration for the design of the 3000/sup 0/F turbine. Turbine cooling requirements were determined based on the use of the modified V84.3 type silo combustor with a pattern factor of 0.1. The convective air-cooling technology levels in terms of cooling effectiveness required to satisfy the airfoil cooling requirements were identified. Cooling schemes and fabrication technologiesmore » required are discussed. Turbine airfoil cooling technology levels required for the 3000/sup 0/F engine were selected. The performance of the 3000/sup 0/F convectively air-cooled gas turbine in simple and combined cycle was calculated. The 3000/sup 0/F gas turbine combined-cycle system provides an increase in power of 61% and a decrease in heat rate of 10% compared to a similar system with a combustor exit temperature of 2210/sup 0/F and the same airflow. The development of a successful 3000/sup 0/F convectively air-cooled turbine can be accomplished with a reasonable design and fabrication development effort on the cooled turbine airfoils. Use of the convectively air-cooled turbine provides the transfer of technology from extensive aircraft engines developed programs and operating experience to industrial gas turbines. It eliminates the requirement for large investments in alternate cooling techniques tailored specifically for industrial engines which offer no additional benefits.« less

  15. Ex vivo investigations of laser auricular cartilage reshaping with carbon dioxide spray cooling in a rabbit model.

    PubMed

    Wu, Edward C; Sun, Victor; Manuel, Cyrus T; Protsenko, Dmitriy E; Jia, Wangcun; Nelson, J Stuart; Wong, Brian J F

    2013-11-01

    Laser cartilage reshaping (LCR) with cryogen spray cooling is a promising modality for producing cartilage shape change while reducing cutaneous thermal injury. However, LCR in thicker tissues, such as auricular cartilage, requires higher laser power, thus increasing cooling requirements. To eliminate the risks of freeze injury characteristic of high cryogen spray pulse rates, a carbon dioxide (CO2) spray, which evaporates rapidly from the skin, has been proposed as the cooling medium. This study aims to identify parameter sets which produce clinically significant reshaping while producing minimal skin thermal injury in LCR with CO2 spray cooling in ex vivo rabbit auricular cartilage. Excised whole rabbit ears were mechanically deformed around a cylindrical jig and irradiated with a 1.45-μm wavelength diode laser (fluence 12-14 J/cm(2) per pulse, four to six pulse cycles per irradiation site, five to six irradiation sites per row for four rows on each sample) with concomitant application of CO2 spray (pulse duration 33-85 ms) to the skin surface. Bend angle measurements were performed before and after irradiation, and the change quantified. Surface temperature distributions were measured during irradiation/cooling. Maximum skin surface temperature ranged between 49.0 to 97.6 °C following four heating/cooling cycles. Significant reshaping was achieved with all laser dosimetry values with a 50-70 °C difference noted between controls (no cooling) and irradiated ears. Increasing cooling pulse duration yielded progressively improved gross skin protection during irradiation. CO2 spray cooling may potentially serve as an alternative to traditional cryogen spray cooling in LCR and may be the preferred cooling medium for thicker tissues. Future studies evaluating preclinical efficacy in an in vivo rabbit model are in progress.

  16. Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible.

    PubMed

    Fan, Meng; Wang, Minglei; Zhang, Kai; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2017-02-01

    Amorphous solids, such as metallic, polymeric, and colloidal glasses, display complex spatiotemporal response to applied deformations. In contrast to crystalline solids, during loading, amorphous solids exhibit a smooth crossover from elastic response to plastic flow. In this study, we investigate the mechanical response of binary Lennard-Jones glasses to athermal, quasistatic pure shear as a function of the cooling rate used to prepare them. We find several key results concerning the connection between strain-induced particle rearrangements and mechanical response. We show that the energy loss per strain dU_{loss}/dγ caused by particle rearrangements for more rapidly cooled glasses is larger than that for slowly cooled glasses. We also find that the cumulative energy loss U_{loss} can be used to predict the ductility of glasses even in the putative linear regime of stress versus strain. U_{loss} increases (and the ratio of shear to bulk moduli decreases) with increasing cooling rate, indicating enhanced ductility. In addition, we characterized the degree of reversibility of particle motion during a single shear cycle. We find that irreversible particle motion occurs even in the linear regime of stress versus strain. However, slowly cooled glasses, which undergo smaller rearrangements, are more reversible during a single shear cycle than rapidly cooled glasses. Thus, we show that more ductile glasses are also less reversible.

  17. Realization of an all-solid-state cryocooler using optical refrigeration

    NASA Astrophysics Data System (ADS)

    Meng, Junwei; Albrecht, Alexander R.; Gragossian, Aram; Lee, Eric; Volpi, Azzurra; Ghasemkhani, Mohammadreza; Hehlen, Markus P.; Epstein, Richard I.; Sheik-Bahae, Mansoor

    2018-05-01

    Optical refrigeration of rare-earth-doped solids has reached the boiling point of argon, 87 K, and is expected to cool to that of nitrogen, 77 K, in the near future. This technology is poised to pave the way to compact, reliable, and vibrationfree all-solid-state optical cryocoolers. By attaching the Yb:YLF cooling crystal to a cold finger via a double 90° kink thermal link, we have cooled a silicon temperature sensor to below 151 K. An advanced design of the thermal link and the clamshell surrounding the cooled assembly successfully controlled the flow of heat and radiation to allow cooling of a payload to cryogenic temperatures. Key elements of the design were a low-absorption thermal link material, an optimized thermal link geometry, and a spectrally-selective coating of the clamshell.

  18. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or...

  19. J-2X Upper Stage Engine: Hardware and Testing 2009

    NASA Technical Reports Server (NTRS)

    Buzzell, James C.

    2009-01-01

    Mission: Common upper stage engine for Ares I and Ares V. Challenge: Use proven technology from Saturn X-33, RS-68 to develop the highest Isp GG cycle engine in history for 2 missions in record time . Key Features: LOX/LH2 GG cycle, series turbines (2), HIP-bonded MCC, pneumatic ball-sector valves, on-board engine controller, tube-wall regen nozzle/large passively-cooled nozzle extension, TEG boost/cooling . Development Philosophy: proven hardware, aggressive schedule, early risk reduction, requirements-driven.

  20. The formation process of the He I lambda 10830 line in cool giant stars

    NASA Technical Reports Server (NTRS)

    Luttermoser, Donald G.

    1993-01-01

    The Final Report on the formation process of the He I lambda 10830 line in cool giant stars is presented. The research involves observing a sample of cool giant stars with ROSAT. These stars were selected from the list of bright stars which display He I lambda 10830 in absorption or emission and lie on the cool side of the coronal dividing line. With measured x ray fluxes or upper limits measured by the Position Sensitive Proportional Counter (PSPC), the role x rays play in the formation of this important line was investigated using the non-LTE radiative transfer code PANDORA. Hydrodynamic calculations were performed to investigate the contributions of acoustic wave heating in the formation of this line as well.

  1. Performance and heat transfer characteristics of the laser-heated rocket - A future space transportation system

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.; Larson, V. R.

    1976-01-01

    The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.

  2. Incorporating Prognostic Marine Nitrogen Fixers and Related Bio-Physical Feedbacks in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Paulsen, H.; Ilyina, T.; Six, K. D.

    2016-02-01

    Marine nitrogen fixers play a fundamental role in the oceanic nitrogen and carbon cycles by providing a major source of `new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Furthermore, nitrogen fixers may regionally have a direct impact on ocean physics and hence the climate system as they form extensive surface mats which can increase light absorption and surface albedo and reduce the momentum input by wind. Resulting alterations in temperature and stratification may feed back on nitrogen fixers' growth itself.We incorporate nitrogen fixers as a prognostic 3D tracer in the ocean biogeochemical component (HAMOCC) of the Max Planck Institute Earth system model and assess for the first time the impact of related bio-physical feedbacks on biogeochemistry and the climate system.The model successfully reproduces recent estimates of global nitrogen fixation rates, as well as the observed distribution of nitrogen fixers, covering large parts of the tropical and subtropical oceans. First results indicate that including bio-physical feedbacks has considerable effects on the upper ocean physics in this region. Light absorption by nitrogen fixers leads locally to surface heating, subsurface cooling, and mixed layer depth shoaling in the subtropical gyres. As a result, equatorial upwelling is increased, leading to surface cooling at the equator. This signal is damped by the effect of the reduced wind stress due to the presence of cyanobacteria mats, which causes a reduction in the wind-driven circulation, and hence a reduction in equatorial upwelling. The increase in surface albedo due to nitrogen fixers has only inconsiderable effects. The response of nitrogen fixers' growth to the alterations in temperature and stratification varies regionally. Simulations with the fully coupled Earth system model are in progress to assess the implications of the biologically induced changes in upper ocean physics for the global climate system.

  3. Quantifying planetary limits of Earth system processes relevant to human activity using a thermodynamic view of the whole Earth system

    NASA Astrophysics Data System (ADS)

    Kleidon, Axel

    2014-05-01

    Food, water, and energy play, obviously, a central role in maintaining human activity. In this contribution, I derive estimates for the fundamental limits on the rates by which these resources are provided by Earth system processes and the levels at which these can be used sustainably. The key idea here is that these resources are, directly or indirectly, generated out of the energy associated with the absorption of sunlight, and that the energy conversions from sunlight to other forms ultimately limit the generation of these resources. In order to derive these conversion limits, we need to trace the links between the processes that generate food, water and energy to the absorption of sunlight. The resource "food" results from biomass production by photosynthesis, which requires light and a sufficient magnitude of gas exchange of carbon dioxide at the surface, which is maintained by atmospheric motion which in turn is generated out of differential radiative heating and cooling. The resource "water" is linked to hydrologic cycling, with its magnitude being linked to the latent heat flux of the surface energy balance and water vapor transport in the atmosphere which is also driven by differential radiative heating and cooling. The availability of (renewable) energy is directly related to the generation of different forms of energy of climate system processes, such as the kinetic energy of atmospheric motion, which, again, relates to radiative heating differences. I use thermodynamics and its limits as a basis to establish the planetary limits of these processes and use a simple model to derive first-order estimates. These estimates compare quite well with observations, suggesting that this thermodynamic view of the whole Earth system provides an objective, physical basis to define and quantify planetary boundaries as well as the factors that shape these boundaries.

  4. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    NASA Astrophysics Data System (ADS)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  5. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  6. A Method for Eliminating Beam Steering Error for the Modulated Absorption-Emission Thermometry Technique

    DTIC Science & Technology

    2015-01-01

    emissivity and the radiative intensity of the gas over a spectral band. The temperature is then calculated from the Planck function. The technique does not...pressure budget for cooling channels reduces pump horsepower and turbine inlet temperature DISTRIBUTION STATEMENT A – Approved for public release...distribution unlimited 4 Status of Modeling and Simulation • Existing data set for film cooling effectiveness consists of wall heat flux measurements • CFD

  7. Investigation into the origin of parasitic absorption in GaInP|GaAs double heterostructures

    NASA Astrophysics Data System (ADS)

    Giannini, Nathan; Yang, Zhou; Albrecht, Alexander R.; Sheik-Bahae, Mansoor

    2017-02-01

    Despite achievements of extremely high external quantum efficiency (EQE), 99.5%, the net cooling of GaInP|GaAs double heterostructures (DHS) has never been realized. This is due to an unknown source of parasitic absorption. Prior studies have ruled out the possibility of the bulk absorption from the GaAs layer. Thus it is thought to be either at the air- GaInP interface, through the presence of dangling bonds, or in bulk GaInP through impurities. Using two-color thermallens calorimetry (based on the Z-scan technique), this study indicates that that the parasitic absorption likely originates from the GaInP bulk layers.

  8. A GCM Study of Responses of the Atmospheric Water Cycle of West Africa and the Atlantic to Saharan Dust Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.

    2009-01-01

    The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0.95 or higher.

  9. Algorithm for calculating turbine cooling flow and the resulting decrease in turbine efficiency

    NASA Technical Reports Server (NTRS)

    Gauntner, J. W.

    1980-01-01

    An algorithm is presented for calculating both the quantity of compressor bleed flow required to cool the turbine and the decrease in turbine efficiency caused by the injection of cooling air into the gas stream. The algorithm, which is intended for an axial flow, air routine in a properly written thermodynamic cycle code. Ten different cooling configurations are available for each row of cooled airfoils in the turbine. Results from the algorithm are substantiated by comparison with flows predicted by major engine manufacturers for given bulk metal temperatures and given cooling configurations. A list of definitions for the terms in the subroutine is presented.

  10. Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission

    NASA Technical Reports Server (NTRS)

    Mellott, Ken

    2004-01-01

    The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.

  11. Ceramic thermal-barrier coatings for cooled turbines

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1976-01-01

    Coating systems consisting of a plasma sprayed layer of zirconia stabilized with either yttria, magnesia or calcia over a thin alloy bond coat have been developed, their potential was analyzed and their durability and benefits evaluated in a turbojet engine. The coatings on air cooled rotating blades were in good condition after completing as many as 500 two-minute cycles of engine operation between full power at a gas temperature of 1644 K and flameout, or as much as 150 hours of steady state operation on cooled vanes and blades at gas temperatures as high as 1644 K with 35 start and stop cycles. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  12. Economic analysis of condensers for water recovery in steam injected gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Paepe, M.; Huvenne, P.; Dick, E.

    1998-07-01

    Steam injection cycles are interesting for small power ranges because of the high efficiency and the relatively low investment costs. A big disadvantage is the consumption of water by the cycle. Water recovery is seldom realized in industrial practice. In this paper an analysis of the technical and economical possibilities of water recovery by condensation of water out of the exhaust gases is made. Three gas turbines are considered : the Kawasaki M1A-13CC (2.3 MWe), the Allison 501KH (6.8 MWe) and the General Electric LM1600 (17 MWe). For every gas turbine two types of condensers are designed. In the watermore » cooled condenser finned tubes are used to cool the exhaust gases, flowing at the outside of the tubes. The water itself flows at the inside of the tubes and is cooled by a water to air cooler. In the air cooled condenser the exhaust gases flow at the inside of the tubes and the cooling air at the outside. The investment costs of the condensers is compared to the costs of the total installation. The investment costs are relatively smaller if the produced power goes up. The water cooled condenser with water to air cooler is cheaper than the air cooled condenser. Using a condenser results in higher exploitation costs due to the fans and pumps. It is shown that the air cooled condenser has lower exploitation costs than the water cooled one. Pay back time of the total installation does not significantly vary compared to the installation without recovery. Water prices are determined for which water recovery is profitable. For the water cooled condenser the turning point lies at 2.2 Euro/m; for the air cooled condenser this is 0.6 Euro/m.« less

  13. High-Performance Computing Data Center Water Usage Efficiency |

    Science.gov Websites

    cooler-an advanced dry cooler that uses refrigerant in a passive cycle to dissipate heat-was installed at efficiency-using wet cooling when it's hot and dry cooling when it's not. Learn more about NREL's partnership

  14. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  15. Nonequilibrium quantum absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Du, Jian-Ying; Zhang, Fu-Lin

    2018-06-01

    We study a quantum absorption refrigerator, in which a target qubit is cooled by two machine qubits in a nonequilibrium steady-state. It is realized by a strong internal coupling in the two-qubit fridge and a vanishing tripartite interaction among the whole system. The coherence of a machine virtual qubit is investigated as quantumness of the fridge. A necessary condition for cooling shows that the quantum coherence is beneficial to the nonequilibrium fridge, while it is detrimental as far as the maximum coefficient of performance (COP) and the COP at maximum power are concerned. Here, the COP is defined only in terms of heat currents caused by the tripartite interaction, with the one maintaining the two-qubit nonequilibrium state being excluded. The later can be considered to have no direct involvement in extracting heat from the target, as it is not affected by the tripartite interaction.

  16. Copernicus observations of Betelgeuse and Antares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernat, A.P.; Lambert, D.L.

    1975-01-01

    Copernicus observations of the M-supergiants, ..cap alpha.. Ori and ..cap alpha.. Sco, are presented. The Mg II H and K resonance lines are strongly in emission in both stars. The K line is highly asymmetric in both stars but the H line is symmetric. Upper limits for several other resonance lines are given for ..cap alpha.. Ori. The possibility is explored that the K line asymmetry is caused by overlying resonance lines of Mn I and Fe I formed in the cool circumstellar gas shells around these stars. Observations of the Mn I 4030--4033 A lines are used to showmore » that circumstellar shell absorption is too weak to explain the asymmetry. It is suggested that the absorption occurs in a cool turbulent region between the base of the circumstellar shell and the top of the chromosphere. (auth)« less

  17. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Changala, P. Bryan; Spaun, Ben; Patterson, David; Doyle, John M.; Ye, Jun

    2016-12-01

    We discuss the use of cavity-enhanced direct frequency comb spectroscopy in the mid-infrared region with buffer gas cooling of polyatomic molecules for high-precision rovibrational absorption spectroscopy. A frequency comb coupled to an optical enhancement cavity allows us to collect high-resolution, broad-bandwidth infrared spectra of translationally and rotationally cold (10-20 K) gas-phase molecules with high absorption sensitivity and fast acquisition times. The design and performance of the combined apparatus are discussed in detail. Recorded rovibrational spectra in the CH stretching region of several organic molecules, including vinyl bromide (CH_2CHBr), adamantane (C_{10}H_{16}), and diamantane (C_{14}H_{20}) demonstrate the resolution and sensitivity of this technique, as well as the intrinsic challenges faced in extending the frontier of high-resolution spectroscopy to large complex molecules.

  18. Stellar and Circumstellar Properties of the Pre-Main-Sequence Binary GV Tau From Infrared Spectroscopy

    DTIC Science & Technology

    2008-09-20

    surface gravity . With ourL-band spectra in order 25 (3.0450Y3.0865m;Fig. 1e), we detect strong HCN absorption (10% deep) and weaker C2H2 absorption in...Doppmann et al. 2005). The absorption lines of Na i and Mg i are particularly gravity and temperature sensitive, but in the opposite sense from each...other. For example, at cool effective temperatures (3200Y4500 K) and subdwarf surface gravities (3:5 log g 4:5) Na andMg lines both grow stronger as

  19. Far-infrared spectra of CO2 clathrate hydrate frosts

    NASA Technical Reports Server (NTRS)

    Landry, J. C.; England, A. W.

    1993-01-01

    As a product of our interest in remote sensing of planetary ices, frost samples of CO2 clathrate hydrate were grown by depositing water vapor on a cooled surface and pressurizing the resulting water frost with CO2 gas. At pressures above the dissociation pressure of the clathrate, the samples exhibit an absorption peak at 75 cm (sup -1). At pressures below the dissociation pressure, the peak disappears. Since the free CO2 molecule does not have rotational or vibrational absorption in this region, the absorption is attributed to a CO2 rattling mode within a clathrate cage.

  20. Cryogenic Thermal Absorptance Measurements on Small-Diameter Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Tuttle, James; Jahromi, Amir; Canavan, Edgar; DiPirro, Michael

    2015-01-01

    The Mid Infrared Instrument (MIRI) on the James Webb Space Telescope includes a mechanical cryocooler which cools its detectors to their 6 Kelvin operating temperature. The coolant gas flows through several meters of small-diameter stainless steel tubing, which is exposed to thermal radiation from its environment. Over much of its length this tubing is gold-plated to minimize the absorption of this radiant heat. In order to confirm that the cryocooler will meet MIRI's requirements, the thermal absorptance of this tubing was measured as a function of its environment temperature. We describe the measurement technique and present the results.

  1. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  2. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  3. Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B. (Inventor); Cepeda-Rizo, Juan (Inventor)

    2016-01-01

    An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.

  4. ON THE DEGREE OF CONVERSION AND COEFFICIENT OF THERMAL EXPANSION OF A SINGLE FIBER COMPOSITE USING A FBG SENSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, M.; Botsis, J.; Coric, D.

    2008-08-28

    The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledgemore » can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.« less

  5. Measuring the Optical Performance of Evacuated Receivers via an Outdoor Thermal Transient Test: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Netter, J.

    2011-08-01

    Modern parabolic trough solar collectors operated at high temperatures to provide the heat input to Rankine steam power cycles employ evacuated receiver tubes along the collector focal line. High performance is achieved via the use of a selective surface with a high absorptance for incoming short-wave solar radiation and a low emittance for outgoing long-wave infrared radiation, as well as the use of a hard vacuum to essentially eliminate convective and conductive heat losses. This paper describes a new method that determines receiver overall optical efficiency by exposing a fluid-filled, pre-cooled receiver to one sun outdoors and measuring the slopemore » of the temperature curve at the point where the receiver temperature passes the glass envelope temperature (that is, the point at which there is no heat gain or loss from the absorber). This transient test method offers the potential advantages of simplicity, high accuracy, and the use of the actual solar spectrum.« less

  6. Probing the Outflowing Multiphase Gas ∼1 kpc below the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Blair D.; Kim, Tae-Sun; Wakker, Bart P.

    Comparison of interstellar medium (ISM) absorption in the UV spectrum of LS 4825, a B1 Ib−II star d  = 21 ± 5 kpc from the Sun toward l  = 1.°67 and b  = −6.°63, with ISM absorption toward an aligned foreground star at d  < 7.0 ± 1.7 kpc, allows us to isolate and study gas associated with the Milky Way nuclear wind. Spectra from the Space Telescope Imaging Spectrograph show low-ionization absorption out to d  < 7 kpc (e.g., O i, C ii, Mg ii, Si ii, Fe ii, S ii) only between 0 and 40 km s{sup −1}, while absorption at d  > 7 kpc, ∼1 kpc below themore » Galactic plane, is complex and spans −290 to +94 km s{sup −1}. The intermediate and high ions Si iii, C iv, Si iv, and N v show extremely strong absorption with multiple components from −283 to 107 km s{sup −1}, implying that the ISM ∼1 kpc below the Galactic center has a substantial reservoir of plasma and more gas containing C iv and N v than in the Carina OB1 association at z  = 0 kpc. Abundances and physical conditions are presented for many absorption components. The high ion absorption traces cooling transition temperature plasma probably driven by the outflowing hot gas, while the extraordinarily large thermal pressure, p / k  ∼ 10{sup 5} cm{sup −3} K{sup −1}, in an absorption component at −114 km s{sup −1} probably arises from the ram pressure of the outflowing hot gas. The observations are consistent with a flow whose ionization structure in the high ions can be understood through a combination of nonequilibrium radiative cooling and turbulent mixing.« less

  7. Chalk point cooling tower project: effects of simulated saline cooling tower drift on woody species. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, B.A.

    1977-07-01

    Cooling towers of power plants are used to dissipate waste heat into the atmosphere. If saline water is used for cooling, a saline aerosol known as drift is released into the atmosphere. Drift effects on vegetation are not well known. To simulate drift for a field study, cooling tower basin water was sprayed thirty separate times during a 46-day period in 1975 on Virginia pine (Pinus virginiana), flowering dogwood (Cornus florida), tulip tree (Liriodendron tulipfera), and California privet (Ligustrum ovalifolium), Norway spruce (Picea abies), and white ash (Fraxinus americana) were added in 1976 and all trees were sprayed 43 timesmore » during a 59-day period. Only dogwood leaves showed significant injury. Absence of injury on other species was probably due to the ability of their leaves to exclude, or reduce absorption of, toxic concentrations of the ions supplied.« less

  8. Effect of tropospheric aerosols upon atmospheric infrared cooling rates

    NASA Technical Reports Server (NTRS)

    Harshvardhan, MR.; Cess, R. D.

    1978-01-01

    The effect of tropospheric aerosols on atmospheric infrared cooling rates is investigated by the use of recent models of infrared gaseous absorption. A radiative model of the atmosphere that incorporates dust as an absorber and scatterer of infrared radiation is constructed by employing the exponential kernel approximation to the radiative transfer equation. Scattering effects are represented in terms of a single scattering albedo and an asymmetry factor. The model is applied to estimate the effect of an aerosol layer made of spherical quartz particles on the infrared cooling rate. Calculations performed for a reference wavelength of 0.55 microns show an increased greenhouse effect, where the net upward flux at the surface is reduced by 10% owing to the strongly enhanced downward emission. There is a substantial increase in the cooling rate near the surface, but the mean cooling rate throughout the lower troposphere was only 10%.

  9. Study of Cycling Air-Cooling System with a Cold Accumulator for Micro Gas-Turbine Installations

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Stepanova, T. A.; Katenev, G. M.; Tumanovskii, V. A.; Borisova, P. N.

    2018-05-01

    Using the cycling air-cooling systems of the CTIC type (Combustion Turbine Inlet Cooling) with a cold accumulator in a micro gas-turbine installation (micro-GTI) to preserve its capacity under the seasonal temperature rise of outside air is described. Water ice is used as the body-storage in the accumulators, and ice water (water at 0.5-1.0°C) is used as the body that cools air. The ice water circulates between the accumulator and the air-water heat exchanger. The cold accumulator model with renewable ice resources is considered. The model contains the heat-exchanging tube lattice-evaporator covered with ice. The lattice is cross-flowed with water. The criterion heat exchange equation that describes the process in the cold accumulator under consideration is presented. The calculations of duration of its active operation were performed. The dependence of cold accumulator service life on water circulation rate was evaluated. The adequacy of the design model was confirmed experimentally in the mock-up of the cold accumulator with a refrigerating machine periodically creating a 200 kg ice reserve in the reservoir-storage. The design model makes it possible to determine the weight of ice reserve of the discharged cold accumulator for cooling the cycle air in the operation of a C-30 type micro- GTI produced by the Capstone Company or micro-GTIs of other capacities. Recommendations for increasing the working capacity of cold accumulators of CTIC-systems of a micro-GTI were made.

  10. Temperature modulation of the visible and near infrared absorption and scattering coefficients of human skin.

    PubMed

    Khalil, Omar S; Yeh, Shu-Jen; Lowery, Michael G; Wu, Xiaomao; Hanna, Charles F; Kantor, Stanislaw; Jeng, Tzyy-Wen; Kanger, Johannes S; Bolt, Rene A; de Mul, Frits F

    2003-04-01

    We determine temperature effect on the absorption and reduced scattering coefficients (mu(a) and mu(s)(')) of human forearm skin. Optical and thermal simulation data suggest that mu( a) and mu(s)(') are determined within a temperature-controlled depth of approximately 2 mm. Cutaneous mu(s)(') change linearly with temperature. Change in mu(a) was complex and irreversible above body normal temperatures. Light penetration depth (delta) in skin increased on cooling, with considerable person-to-person variations. We attribute the effect of temperature on mu(s)(') to change in refractive index mismatch, and its effect on mu(a) to perfusion changes. The reversible temperature effect on mu (s)(' ) was maintained during more than 90 min. contact between skin and the measuring probe, where temperature was modulated between 38 and 22 degrees C for multiple cycles While temperature modulated mu(s)(' ) instantaneously and reversibly, mu(a) exhibited slower response time and consistent drift. There was a statistically significant upward drift in mu(a) and a mostly downward drift in mu( s)(') over the contact period. The drift in temperature-induced fractional change in mu(s)(') was less statistically significant than the drift in mu(s)('). Deltamu( s)(') values determined under temperature modulation conditions may have less nonspecific drift than mu(s)(') which may have significance for noninvasive determination of analytes in human tissue.

  11. Cooling options for high-average-power laser mirrors

    NASA Astrophysics Data System (ADS)

    Vojna, D.; Slezak, O.; Lucianetti, A.; Mocek, T.

    2015-01-01

    Thermally-induced deformations of steering mirrors reflecting 100 J/10 Hz laser pulses in vacuum have been analyzed. This deformation is caused by the thermal stress arisen due to parasitic absorption of 1 kW square-shaped flat-top laser beam in the dielectric multi-layer structure. Deformation depends on amount of absorbed power and geometry of the mirror as well as on the heat removal scheme. In our calculations, the following percentages of absorption of the incident power have been used: 1%, 0.5% and 0.1%. The absorbed power has been considered to be much higher than that expected in reality to assess the worst case scenario. Rectangular and circular mirrors made of zerodur (low thermal expansion glass) were considered for these simulations. The effect of coating layers on induced deformations has been neglected. Induced deformation of the mirror surface can significantly degrade the quality of the laser beam in the beam delivery system. Therefore, the proper design of the cooling scheme for the mirror in order to minimize the deformations is needed. Three possible cooling schemes of the mirror have been investigated. The first one takes advantage of a radiation cooling of the mirror and a copper heatsink fixed to the rear face of the mirror, the second scheme is based on additional heat conduction provided by flexible copper wires connected to the mirror holder, and the last scheme combines two above mentioned methods.

  12. Phase change material thermal capacitor clothing

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  13. Phase change thermal control materials, method and apparatus

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  14. Online monitoring of thermo-cycles and its correlation with microstructure in laser cladding of nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Muvvala, Gopinath; Patra Karmakar, Debapriya; Nath, Ashish Kumar

    2017-01-01

    Laser cladding, basically a weld deposition technique, is finding applications in many areas including surface coatings, refurbishment of worn out components and generation of functionally graded components owing to its various advantages over conventional methods like TIG, PTA etc. One of the essential requirements to adopt this technique in industrial manufacturing is to fulfil the increasing demand on product quality which could be controlled through online process monitoring and correlating the signals with the mechanical and metallurgical properties. Rapid thermo-cycle i.e. the fast heating and cooling rates involved in this process affect above properties of the deposited layer to a great extent. Therefore, the current study aims to monitor the thermo-cycles online, understand its variation with process parameters and its effect on different quality aspects of the clad layer, like microstructure, elemental segregations and mechanical properties. The effect of process parameters on clad track geometry is also studied which helps in their judicious selection to deposit a predefined thickness of coating. In this study Inconel 718, a nickel based super alloy is used as a clad material and AISI 304 austenitic steel as a substrate material. The thermo-cycles during the cladding process were recorded using a single spot monochromatic pyrometer. The heating and cooling rates were estimated from the recorded thermo-cycles and its effects on microstructures were characterised using SEM and XRD analyses. Slow thermo-cycles resulted in severe elemental segregations favouring Laves phase formation and increased γ matrix size which is found to be detrimental to the mechanical properties. Slow cooling also resulted in termination of epitaxial growth, forming equiaxed grains near the surface, which is not preferred for single crystal growth. Heat treatment is carried out and the effect of slow cooling and the increased γ matrix size on dissolution of segregated elements in metal matrix is studied.

  15. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  16. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...

  17. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...

  18. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  19. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specific gravity Condenser Exit temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum...

  20. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  1. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  2. 40 CFR Table 4 to Subpart Ooo of... - Operating Parameter Levels

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperature Maximum temperature Carbon absorber Total regeneration steam or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or pressure; and maximum...

  3. 40 CFR Table 6 to Subpart Uuuu of... - Continuous Compliance With Operating Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... 7. carbon absorber maintain the regeneration frequency, total regeneration stream mass or volumetric flow during carbon bed regeneration and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) for each regeneration cycle within the values established...

  4. The Effect of Intermittent Head Cooling on Aerobic Performance in the Heat

    PubMed Central

    Walters, Peter; Thom, Nathaniel; Libby, Kai; Edgren, Shelby; Azadian, Amanda; Tannous, Daniel; Sorenson, Elisabeth; Hunt, Brian

    2017-01-01

    Thermoregulation is critical for athletes, particularly those for those who must perform in the heat. Most strategies aimed at reducing heat stress have cooled participants before or during activity. The objective of this study is to investigate whether seven minutes of head cooling applied between bouts of aerobic exercise in hot (35 ± 1.0 °C) and dry (14.68 ±4.29% rh) environmental conditions could positively effect participants peak power output (PP) on a maximal effort graded exercise test (GXT). Twenty-two recreational active men ages 18 to 23 (19.8 ± 1.6 yrs.) completed three performance trials over a 21 day period. During the first trial, participants were familiarized with procedures and completed a maximal effort GXT on a cycle ergometer to establish maximal baseline performances. The second and third trials, which were counterbalanced, consisted of a cooling and placebo condition. During both of these trials, participants cycled 40 minutes at 65% of their maximum VO2, in hot (35 ± 1.0 °C) and dry (17-20% rh) environmental conditions. Immediately after this initial bout of activity, participants were given seven minutes of recovery in which head cooling was applied during the cooling condition and withheld during the placebo condition. Participants then completed a maximal effort GXT. Significant differences (p < 0.001) in participants peak power output (W) were measured when cooling was applied compared to the placebo condition (304.23(W) ± 26.19(W) cooling, 291.68(W) ± 26.04(W) placebo). These results suggest that a relatively brief period of intermittent cooling may enhance subsequent aerobic performance. Key points Thermoregulation is a critical performance variable Pre-cooling and Mid-cooling methods have been shown to benefit aerobic and anaerobic performance To date, intermittent head mid-cooling has not been investigated This study demonstrated that seven minutes of intermittent head cooling was sufficient to positively effect aerobic performance PMID:28344454

  5. Advanced Design Heat PumpRadiator for EVA Suits

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Passow, Christian; Phillips, Scott; Trevino, Luis

    2009-01-01

    Absorption cooling using a LiCl/water heat pump can enable lightweight and effective thermal control for EVA suits without venting water to the environment. The key components in the system are an absorber/radiator that rejects heat to space and a flexible evaporation cooling garment that absorbs heat from the crew member. This paper describes progress in the design, development, and testing of the absorber/radiator and evaporation cooling garment. New design concepts and fabrication approaches will significantly reduce the mass of the absorber/radiator. We have also identified materials and demonstrated fabrication approaches for production of a flexible evaporation cooling garment. Data from tests of the absorber/radiator s modular components have validated the design models and allowed predictions of the size and weight of a complete system.

  6. Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing.

    PubMed

    Moum, James N; Perlin, Alexander; Nash, Jonathan D; McPhaden, Michael J

    2013-08-01

    Sea surface temperature (SST) is a critical control on the atmosphere, and numerical models of atmosphere-ocean circulation emphasize its accurate prediction. Yet many models demonstrate large, systematic biases in simulated SST in the equatorial 'cold tongues' (expansive regions of net heat uptake from the atmosphere) of the Atlantic and Pacific oceans, particularly with regard to a central but little-understood feature of tropical oceans: a strong seasonal cycle. The biases may be related to the inability of models to constrain turbulent mixing realistically, given that turbulent mixing, combined with seasonal variations in atmospheric heating, determines SST. In temperate oceans, the seasonal SST cycle is clearly related to varying solar heating; in the tropics, however, SSTs vary seasonally in the absence of similar variations in solar inputs. Turbulent mixing has long been a likely explanation, but firm, long-term observational evidence has been absent. Here we show the existence of a distinctive seasonal cycle of subsurface cooling via mixing in the equatorial Pacific cold tongue, using multi-year measurements of turbulence in the ocean. In boreal spring, SST rises by 2 kelvin when heating of the upper ocean by the atmosphere exceeds cooling by mixing from below. In boreal summer, SST decreases because cooling from below exceeds heating from above. When the effects of lateral advection are considered, the magnitude of summer cooling via mixing (4 kelvin per month) is equivalent to that required to counter the heating terms. These results provide quantitative assessment of how mixing varies on timescales longer than a few weeks, clearly showing its controlling influence on seasonal cooling of SST in a critical oceanic regime.

  7. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  8. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, R.C.; Biermann, W.J.

    1989-05-09

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit. 1 fig.

  9. LEO-to-GEO low thrust chemical propulsion

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1980-01-01

    One approach being considered for transporting large space structures from low Earth orbit (LEO) to geosynchronous equatorial orbit (GEO) is the use of low thrust chemical propulsion systems. A variety of chemical rocket engine cycles evaluated for this application for oxygen/hydrogen and oxygen/hydrocarbon propellants (oxygen/methane and oxygen/RF-1) are discussed. These cycles include conventional propellant turbine drives, turboalternator/electric motor pump drive, and fuel cell/electric motor pump drive as well as pressure fed engines. Thrust chamber cooling analysis results are presented for regenerative/radiation and film/radiation cooling.

  10. Warpage optimisation on the moulded part with straight-drilled and conformal cooling channels using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    NASA Astrophysics Data System (ADS)

    Hazwan, M. H. M.; Shayfull, Z.; Sharif, S.; Nasir, S. M.; Zainal, N.

    2017-09-01

    In injection moulding process, quality and productivity are notably important and must be controlled for each product type produced. Quality is measured as the extent of warpage of moulded parts while productivity is measured as a duration of moulding cycle time. To control the quality, many researchers have introduced various of optimisation approaches which have been proven enhanced the quality of the moulded part produced. In order to improve the productivity of injection moulding process, some of researches have proposed the application of conformal cooling channels which have been proven reduced the duration of moulding cycle time. Therefore, this paper presents an application of alternative optimisation approach which is Response Surface Methodology (RSM) with Glowworm Swarm Optimisation (GSO) on the moulded part with straight-drilled and conformal cooling channels mould. This study examined the warpage condition of the moulded parts before and after optimisation work applied for both cooling channels. A front panel housing have been selected as a specimen and the performance of proposed optimisation approach have been analysed on the conventional straight-drilled cooling channels compared to the Milled Groove Square Shape (MGSS) conformal cooling channels by simulation analysis using Autodesk Moldflow Insight (AMI) 2013. Based on the results, melt temperature is the most significant factor contribute to the warpage condition and warpage have optimised by 39.1% after optimisation for straight-drilled cooling channels and cooling time is the most significant factor contribute to the warpage condition and warpage have optimised by 38.7% after optimisation for MGSS conformal cooling channels. In addition, the finding shows that the application of optimisation work on the conformal cooling channels offers the better quality and productivity of the moulded part produced.

  11. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  12. Indirect-cycle FBR cooled by supercritical steam-concept and design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshiaki, Oka; Tatjana, Jevremovic; Sei-ichi, Koshizuka

    1993-01-01

    Neutronic and thermal-hydraulic design of an in direct-cycle supercritical steam-cooled fast breeder reactor (SCFBR-I) is carried out to find a way to make low-cost FBRs (Ref. 1). The advantages of supercritical steam cooling are high thermal efficiency, low pumping power, simplified system (no primary steam generators and no Loeffler boilers), and the use of experienced technology in fossil-fired power plants. The design goals are fissile fuel breeding (compound system doubling time below 30 yr), 1000-M(electric) class out-put, high fuel discharge burnup, and a long refueling period. The coolant void reactivity should be negative throughout fuel lifetime because the loss-of-coolant accidentmore » is the design-basis accident. These goals have never been satisfied simultaneously in previous SCFBRs.« less

  13. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  14. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  15. Advanced cooling techniques for high-pressure hydrocarbon-fueled engines

    NASA Technical Reports Server (NTRS)

    Cook, R. T.

    1979-01-01

    The regenerative cooling limits (maximum chamber pressure) for 02/hydrocarbon gas generator and staged combustion cycle rocket engines over a thrust range of 89,000 N (20,000lbf) to 2,669,000 N (600,000 lbf) for a reusable life of 250 missions were defined. Maximum chamber pressure limits were first determined for the three propellant combinations (O2/CH4, O2/C3H8, and O2/RP-1 without a carbon layer (unenhanced designs). Chamber pressure cooling enhancement limits were then established for seven thermal barriers. The thermal barriers evaluated for these designs were: carbon layer, ceramic coating, graphite liner, film cooling, transpiration cooling, zoned combustion, and a combination of two of the above. All fluid barriers were assessed a 3 percent performance loss. Sensitivity studies were then conducted to determine the influence of cycle life and RP-1 decomposition temperature on chamber pressure limits. Chamber and nozzle design parameters are presented for the unenahanced and enhanced designs. The maximum regenerative cooled chamber pressure limits were attained with the O2/CH4 propellant combination. The O2/RP-1 designs relied on a carbon layer and liquid gas injection chamber contours, short chamber, to be competitive with the other two propellant combinations. This was attributed to the low decomposition temperature of RP-1.

  16. A combined solar and geomagnetic index for thermospheric climate

    PubMed Central

    Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L

    2015-01-01

    Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. Key Points F10.7, Ap, and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years PMID:26709319

  17. A combined solar and geomagnetic index for thermospheric climate.

    PubMed

    Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L

    2015-05-28

    Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F 10.7 , Ap , and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. F 10.7 , Ap , and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years.

  18. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  19. Broad Balmer-Line Absorption in SDSS J172341.10+555340.5

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro

    2010-10-01

    We present the discovery of Balmer-line absorption from Hα to H9 in an iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS J172341.10+555340.5, by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) attached to the Subaru Telescope. The redshift of the Balmer-line absorption troughs is 2.0530±0.0003, and it is blueshifted by 5370 km s-1 from the Balmer emission lines. It is more than 4000 km s-1 blueshifted from the previously known UV absorption lines. We detected relatively strong (EWrest = 20 Å) [OIII] emission lines that are similar to those found in other broad absorption line quasars with Balmer-line absorption. We also derived the column density of neutral hydrogen of 5.2 × 1017 cm-2 by using the curve of growth and taking account of Lyα trapping. We searched for UV absorption lines that had the same redshift with Balmer-line absorption, and found Ali III and Fe III absorption lines at z = 2.053 that correspond to previously unidentified absorption lines, and the presence of other blended troughs that were difficult to identify.

  20. Empirical determination of low J values of 13CH4 transitions from jet cooled and 80 K cell spectra in the icosad region (7170-7367 cm-1)

    NASA Astrophysics Data System (ADS)

    Votava, O.; Mašát, M.; Pracna, P.; Mondelain, D.; Kassi, S.; Liu, A. W.; Hu, S. M.; Campargue, A.

    2014-12-01

    The absorption spectrum of 13CH4 was recorded at two low temperatures in the icosad region near 1.38 μm, using direct absorption tunable diode lasers. Spectra were obtained using a cryogenic cell cooled at liquid nitrogen temperature (80 K) and a supersonic jet providing a 32 K rotational temperature in the 7173-7367 cm-1 and 7200-7354 cm-1 spectral intervals, respectively. Two lists of 4498 and 339 lines, including absolute line intensities, were constructed from the 80 K and jet spectra, respectively. All the transitions observed in jet conditions were observed at 80 K. From the temperature variation of their line intensities, the corresponding lower state energy values were determined. The 339 derived empirical values of the J rotational quantum number are found close to integer values and are all smaller than 4, as a consequence of the efficient rotational cooling. Six R(0) transitions have been identified providing key information on the origins of the vibrational bands which contribute to the very congested and not yet assigned 13CH4 spectrum in the considered region of the icosad.

  1. Cool neutral hydrogen in the direction of an anonymous OB association

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bania, T.M.

    1983-08-01

    H I self-absorption is seen in the direction l = 55./sup 0/6 probably physically associated with an anonymous OB association which has the Cepheid GY Sagittae as a member. The cool H I is in two clouds at least 15 pc in diameter located 3.25 kpc from the Sun. If their temperature is approx. =50 K, the cloud masses are approx. =10/sup 3/ M/sub sun/. The neutral atomic hydrogen clouds are probably warm envelopes surrounding cold molecular cloud cores because CO observations in this region show two molecular clouds nearly coincident with the absorbing H i gas. Since the OBmore » association is only approx. =10/sup 7/ years old, these clouds are likely to be part of the original cloud complex from which the stellar cluster formed. The H i clouds are part of the larger Arecibo survey of self-absorption which suggests that many of the Arecibo clouds are associated with heretofore unidentified star clusters. Even if this is generally not the case, the Arecibo objects have accurate kinematic distances and thus provide a new sample of cool H I clouds whose thermodynamic properties can be studied.« less

  2. The outer atmospheres of cool M giants: High-dispersion ultraviolet spectra of Rho Per, 2 Cen, and g Her

    NASA Technical Reports Server (NTRS)

    Eaton, Joel A.; Johnson, Hollis R.

    1986-01-01

    Long duration IUE spectra were obtained to extend coverage of cool giants studied in the ultraviolet at high dispersion to M6. The chromospheric spectra of the three stars, which consist of a profusion of Fe II lines and a few lines of Mg II, Mg I, Al II, C II, C I, Cr II, and Fe I, are remarkably similar, both among themselves and with respect to stars of earlier spectral type. These lines present a picture of a warm chromosphere that is static in the average but may be far from uniform in density and ionization. The Mg II emission lines of 2 Cen show 2 unresolved absorption components, the shorter at the velocity of the local interstellar medium. The longer is blueshifted from the star by 12 to 18 km/sec and must be one of very few observed shell lines uncontaminated by interstellar absorption.

  3. The absorption of sound by perforated linings

    NASA Astrophysics Data System (ADS)

    Hughes, I. J.; Dowling, A. P.

    1990-09-01

    This paper describes a practical application for sound-absorbent perforated screen with a bias flow through the screen. It is postulated that, if a perforated liner with a bias flow of cooling air through the liner is inserted in the afterburner section of a jet engine, all the incident sound may be absorbed at a particular frequency. Experimental results are presented on the absorptive properties of plane liners with circular apertures, showing an agreement with the theoretical model.

  4. The photochemical cycle of bacteriorhodopsin

    NASA Technical Reports Server (NTRS)

    Lozier, R. H.; Niederberger, W.

    1977-01-01

    The reaction cycle of bacteriorhodopsin in the purple membrane isolated from Halobacterium halobium has been studied by optical absorption spectroscopy using low-temperature and flash kinetic techniques. After absorption of light, bacteriorhodopsin passes through at least five distinct intermediates. The temperature and pH dependence of the absorbance changes suggests that branch points and/or reversible steps exist in this cycle. Flash spectroscopy in the presence of a pH-indicating dye shows that the transient release of a proton accompanies the photoreaction cycle. The proton release occurs from the exterior and the uptake is on the cytoplasmic side of the membrane, as required by the function of bacteriorhodopsin as a light-driven proton pump. Proton translocating steps connecting release and uptake are indicated by deuterium isotope effects on the kinetics of the cycle. The rapid decay of a light-induced linear dichroism shows that a chromophore orientation change occurs during the reaction cycle.

  5. Research Proposal for the Design and Engineering Phase of a Solar Heating and Cooling System Experiment at the Warner Robins Public Library, Warner Robins, Georgia. Submitted to the United States Energy Research and Development Administration.

    ERIC Educational Resources Information Center

    Phillips, Warren H.; And Others

    A number of reasons are advanced to include a solar heating and cooling experiment in a library building. The unique aspects of the experiment are to be a seasonally adjustable collector tilt and testing of a new generation of absorption air conditioners. After a brief description of the proposed experiment, the proposal contains forms filed by…

  6. Solar heating and cooling system installed at Columbus, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  7. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  8. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  9. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  10. Analysis and optimisation of a mixed fluid cascade (MFC) process

    NASA Astrophysics Data System (ADS)

    Ding, He; Sun, Heng; Sun, Shoujun; Chen, Cheng

    2017-04-01

    A mixed fluid cascade (MFC) process that comprises three refrigeration cycles has great capacity for large-scale LNG production, which consumes a great amount of energy. Therefore, any performance enhancement of the liquefaction process will significantly reduce the energy consumption. The MFC process is simulated and analysed by use of proprietary software, Aspen HYSYS. The effect of feed gas pressure, LNG storage pressure, water-cooler outlet temperature, different pre-cooling regimes, liquefaction, and sub-cooling refrigerant composition on MFC performance are investigated and presented. The characteristics of its excellent numerical calculation ability and the user-friendly interface of MATLAB™ and powerful thermo-physical property package of Aspen HYSYS are combined. A genetic algorithm is then invoked to optimise the MFC process globally. After optimisation, the unit power consumption can be reduced to 4.655 kW h/kmol, or 4.366 kW h/kmol on condition that the compressor adiabatic efficiency is 80%, or 85%, respectively. Additionally, to improve the process further, with regards its thermodynamic efficiency, configuration optimisation is conducted for the MFC process and several configurations are established. By analysing heat transfer and thermodynamic performances, the configuration entailing a pre-cooling cycle with three pressure levels, liquefaction, and a sub-cooling cycle with one pressure level is identified as the most efficient and thus optimal: its unit power consumption is 4.205 kW h/kmol. Additionally, the mechanism responsible for the weak performance of the suggested liquefaction cycle configuration lies in the unbalanced distribution of cold energy in the liquefaction temperature range.

  11. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat.

    PubMed

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L

    2004-10-01

    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  12. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  13. Optimization of Cooling Water Flow Rate in Nuclear and Thermal Power Plants Based on a Mathematical Model of Cooling Systems{sup 1}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru; Kochetkov, A. V.; Glazova, E. G.

    A mathematical model and algorithms are proposed for automatic calculation of the optimum flow rate of cooling water in nuclear and thermal power plants with cooling systems of arbitrary complexity. An unlimited number of configuration and design variants are assumed with the possibility of obtaining a result for any computational time interval, from monthly to hourly. The structural solutions corresponding to an optimum cooling water flow rate can be used for subsequent engineering-economic evaluation of the best cooling system variant. The computerized mathematical model and algorithms make it possible to determine the availability and degree of structural changes for themore » cooling system in all stages of the life cycle of a plant.« less

  14. Effects of Thermal Barrier Coatings on Approaches to Turbine Blade Cooling

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2007-01-01

    Reliance on Thermal Barrier Coatings (TBC) to reduce the amount of air used for turbine vane cooling is beneficial both from the standpoint of reduced NOx production, and as a means of improving cycle efficiency through improved component efficiency. It is shown that reducing vane cooling from 10 to 5 percent of mainstream air can lead to NOx reductions of nearly 25 percent while maintaining the same rotor inlet temperature. An analysis is given which shows that, when a TBC is relied upon in the vane thermal design process, significantly less coolant is required using internal cooling alone compared to film cooling. This is especially true for small turbines where internal cooling without film cooling permits the surface boundary layer to remain laminar over a significant fraction of the vane surface.

  15. Heat transfer characteristics of building walls using phase change material

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  16. Design and Economic Potential of an Integrated High-Temperature Fuel Cell and Absorption Chiller Combined Cooling, Heat, and Power System

    NASA Astrophysics Data System (ADS)

    Hosford, Kyle S.

    Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.

  17. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Svaasand, Lars O.; Aguilar, Guillermo; Nelson, J. Stuart

    2002-09-01

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  18. Material Requirements, Selection And Development for the Proposed JIMO SpacePower System

    NASA Astrophysics Data System (ADS)

    Ring, P. J.; Sayre, E. D.

    2004-02-01

    NASA is proposing a major new nuclear Space initiative-The Jupiter Icy Moons Orbiter (JIMO). A mission such as this inevitably requires a significant power source both for propulsion and for on-board power. Three reactor concepts, liquid metal cooled, heat pipe cooled and gas cooled are being considered together with three power conversion systems Brayton (cycle), Thermoelectric and Stirling cycles, and possibly Photo voltaics for future systems. Regardless of the reactor system selected it is almost certain that high temperature (materials), refractory alloys, will be required. This paper revisits the material selection options, reviewing the rationale behind the SP-100 selection of Nb-1Zr as the major cladding and structural material and considers the alternatives and developments needed for the longer duty cycle of the JIMO power supply. A side glance is also taken at the basis behind the selection of Uranium nitride fuel over UO2 or UC and a brief discussion of the reason for the selection of Lithium as the liquid metal coolant for SP-100 over other liquid metals.

  19. Intermittent cryogen spray cooling for optimal heat extraction during dermatologic laser treatment.

    PubMed

    Majaron, Boris; Svaasand, Lars O; Aguilar, Guillermo; Nelson, J Stuart

    2002-09-21

    Fast heat extraction is critically important to obtain the maximal benefit of cryogen spray cooling (CSC) during laser therapy of shallow skin lesions, such as port wine stain birthmarks. However, a film of liquid cryogen can build up on the skin surface, impairing heat transfer due to the relatively low thermal conductivity and higher temperature of the film as compared to the impinging spray droplets. In an attempt to optimize the cryogen mass flux, while minimally affecting other spray characteristics, we apply a series of 10 ms spurts with variable duty cycles. Heat extraction dynamics during such intermittent cryogen sprays were measured using a custom-made metal-disc detector. The highest cooling rates were observed at moderate duty cycle levels. This confirms the presence, and offers a practical way to eliminate the adverse effect of liquid cryogen build-up on the sprayed surface. On the other hand, lower duty cycles allow a substantial reduction in the average rate of heat extraction, enabling less aggressive and more efficient CSC for treatment of deeper targets, such as hair follicles.

  20. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...

  1. Coupling a Supercritical Carbon Dioxide Brayton Cycle to a Helium-Cooled Reactor.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Bobby; Pasch, James Jay; Kruizenga, Alan Michael

    2016-01-01

    This report outlines the thermodynamics of a supercritical carbon dioxide (sCO 2) recompression closed Brayton cycle (RCBC) coupled to a Helium-cooled nuclear reactor. The baseline reactor design for the study is the AREVA High Temperature Gas-Cooled Reactor (HTGR). Using the AREVA HTGR nominal operating parameters, an initial thermodynamic study was performed using Sandia's deterministic RCBC analysis program. Utilizing the output of the RCBC thermodynamic analysis, preliminary values of reactor power and of Helium flow rate through the reactor were calculated in Sandia's HelCO 2 code. Some research regarding materials requirements was then conducted to determine aspects of corrosion related tomore » both Helium and to sCO 2 , as well as some mechanical considerations for pressures and temperatures that will be seen by the piping and other components. This analysis resulted in a list of materials-related research items that need to be conducted in the future. A short assessment of dry heat rejection advantages of sCO 2> Brayton cycles was also included. This assessment lists some items that should be investigated in the future to better understand how sCO 2 Brayton cycles and nuclear can maximally contribute to optimizing the water efficiency of carbon free power generation« less

  2. Water absorption characteristic of interlocking compressed earth brick units

    NASA Astrophysics Data System (ADS)

    Bakar, B. H. Abu; Saari, S.; Surip, N. A.

    2017-10-01

    This study aims to investigate the water absorption characteristic of interlocking compressed earth brick (ICEB) units. Apart from compressive strength, water absorption is an important property in masonry. This property can affect the quality of the brick itself and the bond strength between the brick and mortar in masonry structures and can result in reducing its strength properties. The units were tested for 24 h water absorption and 5 h boiling water absorption. A total of 170 ICEB units from four ICEB types underwent both tests. For the 24 h water absorption, the ICEB units were dried in the oven for 24 h and then cooled before being weighed. Thereafter, each brick was immersed in water for 24 h and weighed. The same specimens used for the 24 h water absorption test were re-used for the 5 h boiling water absorption test. After completing the 24 h water absorption test, the brick was boiled for 5-hours and weighed. The highest water absorption for the ICEBs in the 24-hour water absorption and 5 h boiling water absorption tests are 15.09% and 17.18%, respectively. The half brick has the highest water absorption (15.87%), whereas the beam brick has the lowest (13.20%). The water absorption of an ICEB unit is higher than that of normal bricks, although the water absorption of the former remains below the maximum rate of the brick water absorption (21%).

  3. Closed loop steam cooled airfoil

    DOEpatents

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  4. A Gas-Cooled-Reactor Closed-Brayton-Cycle Demonstration with Nuclear Heating

    NASA Astrophysics Data System (ADS)

    Lipinski, Ronald J.; Wright, Steven A.; Dorsey, Daniel J.; Peters, Curtis D.; Brown, Nicholas; Williamson, Joshua; Jablonski, Jennifer

    2005-02-01

    A gas-cooled reactor may be coupled directly to turbomachinery to form a closed-Brayton-cycle (CBC) system in which the CBC working fluid serves as the reactor coolant. Such a system has the potential to be a very simple and robust space-reactor power system. Gas-cooled reactors have been built and operated in the past, but very few have been coupled directly to the turbomachinery in this fashion. In this paper we describe the option for testing such a system with a small reactor and turbomachinery at Sandia National Laboratories. Sandia currently operates the Annular Core Research Reactor (ACRR) at steady-state powers up to 4 MW and has an adjacent facility with heavy shielding in which another reactor recently operated. Sandia also has a closed-Brayton-Cycle test bed with a converted commercial turbomachinery unit that is rated for up to 30 kWe of power. It is proposed to construct a small experimental gas-cooled reactor core and attach this via ducting to the CBC turbomachinery for cooling and electricity production. Calculations suggest that such a unit could produce about 20 kWe, which would be a good power level for initial surface power units on the Moon or Mars. The intent of this experiment is to demonstrate the stable start-up and operation of such a system. Of particular interest is the effect of a negative temperature power coefficient as the initially cold Brayton gas passes through the core during startup or power changes. Sandia's dynamic model for such a system would be compared with the performance data. This paper describes the neutronics, heat transfer, and cycle dynamics of this proposed system. Safety and radiation issues are presented. The views expressed in this document are those of the author and do not necessarily reflect agreement by the government.

  5. The Laser Cooling and Magneto-Optical Trapping of the YO Molecule

    NASA Astrophysics Data System (ADS)

    Yeo, Mark

    Laser cooling and magneto-optical trapping of neutral atoms has revolutionized the field of atomic physics by providing an elegant and efficient method to produce cold dense samples of ultracold atoms. Molecules, with their strong anisotropic dipolar interaction promises to unlock even richer phenomenon. However, due to their additional vibrational and rotational degrees of freedom, laser cooling techniques have only been extended to a small set of diatomic molecules. In this thesis, we demonstrate the first magneto-optical trapping of a diatomic molecule using a quasi-cycling transition and an oscillating quadrupole magnetic field. The transverse temperature of a cryogenically produced YO beam was reduced from 25 mK to 10 mK via doppler cooling and further reduced to 2 mK with the addition of magneto-optical trapping forces. The optical cycling in YO is complicated by the presence of an intermediate electronic state, as decays through this state lead to optical pumping into dark rotational states. Thus, we also demonstrate the mixing of rotational states in the ground electronic state using microwave radiation. This technique greatly enhances optical cycling, leading to a factor of 4 increase in the YO beam fluorescence and is used in conjunction with a frequency modulated and chirped continuous wave laser to longitudinally slow the YO beam. We generate YO molecules below 10 m/s that are directly loadable into a three-dimensional magneto-optical trap. This mixing technique provides an alternative to maintaining rotational closure and should extend laser cooling to a larger set of molecules.

  6. Experimental opto-mechanics with levitated nanoparticles: towards quantum control and thermodynamic cycles (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kiesel, Nikolai; Blaser, Florian; Delic, Uros; Grass, David; Dechant, Andreas; Lutz, Eric; Bathaee, Marzieh; Aspelmeyer, Markus

    2015-08-01

    Combining optical levitation and cavity optomechanics constitutes a promising approach to prepare and control the motional quantum state of massive objects (>10^9 amu). This, in turn, would represent a completely new type of light-matter interface and has, for example, been predicted to enable experimental tests of macrorealistic models or of non-Newtonian gravity at small length scales. Such ideas have triggered significant experimental efforts to realizing such novel systems. To this end, we have recently successfully demonstrated cavity-cooling of a levitated sub-micron silica particle in a classical regime at a pressure of approximately 1mbar. Access to higher vacuum of approx. 10^-6 mbar has been demonstrated using 3D-feedback cooling in optical tweezers without cavity-coupling. Here we will illustrate our strategy towards trapping, 3D-cooling and quantum control of nanoparticles in ultra-high vacuum using cavity-based feedback cooling methods and clean particle loading with hollow-core photonic crystal fibers. We will also discuss the current experimental progress both in 3D-cavity cooling and HCPCF-based transport of nanoparticles. As yet another application of cavity-controlled levitated nanoparticles we will show how to implement a thermodynamic Sterling cycle operating in the underdamped regime. We present optimized protocols with respect to efficiency at maximum power in this little explored regime. We also show that the excellent level of control in our system will allow reproducing all relevant features of such optimized protocols. In a next step, this will enable studies of thermodynamics cycles in a regime where the quantization of the mechanical motion becomes relevant.

  7. Cooling Effects of Wearer-Controlled Vaporization for Extravehicular Activity.

    PubMed

    Tanaka, Kunihiko; Nagao, Daiki; Okada, Kosuke; Nakamura, Koji

    2017-04-01

    The extravehicular activity suit currently used by the United States in space includes a liquid cooling and ventilation garment (LCVG) that controls thermal conditions. Previously, we demonstrated that self-perspiration for evaporative cooling (SPEC) garment effectively lowers skin temperature without raising humidity in the garment. However, the cooling effect is delayed until a sufficient dose of water permeates and evaporates. In the present study, we hypothesized that wearer-controlled vaporization improves the cooling effect. Six healthy subjects rode a cycle ergometer under loads of 30, 60, 90, and 120 W for durations of 3 min each. Skin temperature and humidity on the back were measured continuously. Subjects wore and tested three garments: 1) a spandex garment without any cooling device (Normal); 2) a simulated LCVG (s-LCVG) or spandex garment knitted with a vinyl tube for flowing and permeating water; and 3) a garment that allowed wearer-controlled vaporization (SPEC-W). The use of s-LCVG reduced skin temperature by 1.57 ± 0.14°C during 12 min of cooling. Wearer-controlled vaporization of the SPEC-W effectively and significantly lowered skin temperature from the start to the end of cycle exercise. This decrease was significantly larger than that achieved using s-LCVG. Humidity in the SPEC-W was significantly lower than that in s-LCVG. This preliminary study suggests that SPEC-W is effective in lowering skin temperature without raising humidity in the garment. The authors think it would be useful in improving the design of a cooling system for extravehicular activity.Tanaka K, Nagao D, Okada K, Nakamura K. Cooling effects of wearer-controlled vaporization for extravehicular activity. Aerosp Med Hum Perform. 2017; 88(4):418-422.

  8. AGN Heating in Simulated Cool-core Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan; Ruszkowski, Mateusz; Bryan, Greg L., E-mail: yuanlium@umich.edu

    We analyze heating and cooling processes in an idealized simulation of a cool-core cluster, where momentum-driven AGN feedback balances radiative cooling in a time-averaged sense. We find that, on average, energy dissipation via shock waves is almost an order of magnitude higher than via turbulence. Most of the shock waves in the simulation are very weak shocks with Mach numbers smaller than 1.5, but the stronger shocks, although rare, dissipate energy more effectively. We find that shock dissipation is a steep function of radius, with most of the energy dissipated within 30 kpc, more spatially concentrated than radiative cooling loss.more » However, adiabatic processes and mixing (of post-shock materials and the surrounding gas) are able to redistribute the heat throughout the core. A considerable fraction of the AGN energy also escapes the core region. The cluster goes through cycles of AGN outbursts accompanied by periods of enhanced precipitation and star formation, over gigayear timescales. The cluster core is under-heated at the end of each cycle, but over-heated at the peak of the AGN outburst. During the heating-dominant phase, turbulent dissipation alone is often able to balance radiative cooling at every radius but, when this is occurs, shock waves inevitably dissipate even more energy. Our simulation explains why some clusters, such as Abell 2029, are cooling dominated, while in some other clusters, such as Perseus, various heating mechanisms including shock heating, turbulent dissipation and bubble mixing can all individually balance cooling, and together, over-heat the core.« less

  9. Estimating the potential for industrial waste heat reutilization in urban district energy systems: method development and implementation in two Chinese provinces

    NASA Astrophysics Data System (ADS)

    Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu

    2017-12-01

    Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.

  10. Suitability of commercially available laboratory cryogenic refrigerators to support shipboard electro-optical systems in the 10 - 77 Kelvin region

    NASA Technical Reports Server (NTRS)

    Hansen, R. G.; Byrd, E. A.

    1983-01-01

    The primary development of cryogenically cooled infrared systems was accomplished by FLIR systems designed for airborne, passive night vision. Essential to the development of these FLIR systems was a family of closed cycle refrigerators which had to meet a limited envelope requirement, utilize a nonlubricated compressor module, and be light in weight. Closed cycle refrigerators accomplished the same cooling function, they use modified oil lubricated reciprocating compressors which are limited in their axis of orientation to an angle of approximately 15-20 degrees maximum from horizon.

  11. Induced natural convection thermal cycling device

    DOEpatents

    Heung, Leung Kit [Aiken, SC

    2002-08-13

    A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.

  12. Interpretation of the prominence differential emissions measure for 3 geometries

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Orrall, F. Q.

    1986-01-01

    Researchers have used prominence extreme ultraviolet line intensities observed from Skylab to derive the differential emission measure Q(T) in the prominence-corona (PC) interface from 3 x 10,000 to 3 times 1 million K, including the effects of Lyman Continuum absorption. Using lines both shortward and longward of the Lyman limit, researchers have estimated the importance of absorption as function of temperature. The magnitude of the absorption, as well as its rate of increase as a function of temperature, place limits on the thread scales and the character of the interfilar medium. Researchers have calculated models based on three assumed geometries: (1) threads with hot sheaths and cool cores; (2) isothermal threads; and (3) threads with longitudinal temperature gradients along the magnetic field. Comparison of the absorption computed from these models with the observed absorption in prominences shows that none of the geometries is totally satisfactory.

  13. In-vivo experimental evaluation of nonablative skin remodeling using a 1.54-μm laser with surface cooling

    NASA Astrophysics Data System (ADS)

    Mordon, Serge R.; Capon, Alexandre; Creusy, Collette; Fleurisse, Laurence; Buys, Bruno; Faucheux, Marc A.; Servell, Pascal

    2000-05-01

    Selective dermal remodeling using diode or 1.32 micrometer Nd:YAG lasers has been recently proposed for skin rejuvenation. This new technique consists in inducing collagen tightening and/or neocollagen synthesis without significant damage of the overlying epidermis. Such an approach requires (1) a cooling system in order to target dermal collagen with relatively good protection of the epidermal layer, (2) a specific wavelength for confining the thermal damage into the upper dermis (100 to 400 micrometer). Based on previous studies, demonstrating a better water absorption and a reduced melanin absorption at 1.54 micrometer compared to the 1.32 micrometer, this experimental study aimed to evaluate a new laser (co-doped Yb-Er:phosphate glass material, Aramis, Quantel-France) emitting at 1.54 micrometer. This laser was used in combination with the Dermacool system (Dermacool, Mableton, USA) in order to achieve epidermis cooling before, during and after irradiation. Male hairless rats were used for the study. Pulse train irradiation (1.1 J, 3 Hz, 30 pulses) and different cooling temperatures (+5 degree(s)C, 0 degree(s)C, -5 degree(s)C) were screened with clinical examination and histological evaluation at 1, 3, and 7 days after laser irradiation. The clinical effects showed that pulse train irradiation produced reproducible epidermal preservation and confinement of the thermal damage into the dermis. The different cooling temperatures did not provide detectable differences in terms of size and depth of thermal damage. New collagen synthesis was confirmed by a marked fibroblastic proliferation, detected in the lower dermis at D3 and clearly seen in the upper dermis at D7. This new laser appears to be a promising new tool for the treatment of skin laxity, solar elastosis, facial rhytids and mild reduction of wrinkles.

  14. Simulation model of a single-stage lithium bromide-water absorption cooling unit

    NASA Technical Reports Server (NTRS)

    Miao, D.

    1978-01-01

    A computer model of a LiBr-H2O single-stage absorption machine was developed. The model, utilizing a given set of design data such as water-flow rates and inlet or outlet temperatures of these flow rates but without knowing the interior characteristics of the machine (heat transfer rates and surface areas), can be used to predict or simulate off-design performance. Results from 130 off-design cases for a given commercial machine agree with the published data within 2 percent.

  15. Characterization of selective solar absorber under high vacuum.

    PubMed

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  16. Three Dimensional Reconstruction Algorithm for Imaging Pathophysiological Signals Within Breast Tissue Using Near Infrared Light

    DTIC Science & Technology

    2006-07-01

    months.31 A heated mixture of water, gelatin (G2625, Sigma Inc.), India ink (for absorption), and titanium dioxide powder (for scatter) (TiO2, Sigma Inc...for absorption, and titanium dioxide powder for scat- ter TiO2, Sigma Inc. that are solidified by cooling to room temperature. Optically...2713-2727. 8. Bolin, F.P., Preuss, L. E., Taylor, R. C., Ference, R. J, Refractive index of some mammalian tissue using a fiber optic cladding method

  17. Modified-Collins cryocooler for zero-boiloff storage of cryogenic fuels in space

    NASA Astrophysics Data System (ADS)

    Hannon, Charles L.; Krass, Brady; Hogan, Jake; Brisson, John

    2012-06-01

    Future lunar and planetary explorations will require the storage of cryogenic propellants, particularly liquid oxygen (LOX) and liquid hydrogen (LH2), in low earth orbit (LEO) for periods of time ranging from days to months, and possibly longer. Without careful thermal management, significant quantities of stored liquid cryogens can be lost due to boil-off. Boil-off can be minimized by a variety of passive means including insulation, sun shades and passive radiational cooling. However, it has been shown that active cooling using space cryocoolers has the potential to result in Zero Boil-Off (ZBO) and the launch-mass savings using active cooling exceeds that of passive cooling of LOX for mission durations in LEO of less than 1 week, and for LH2 after about 2 months in LEO. Large-scale DC-flow cryogenic refrigeration systems operate at a fraction of the specific power levels required by small-scale AC-flow cryocoolers. The efficiency advantage of DC-flow cryogenic cycles motivates the current development of a cryocooler based on a modification of the Collins Cycle. The modified Collins cycle design employs piston type expanders that support high operating pressure ratios, electromagnetic valves that enable "floating pistons", and recuperative heat transfer. This paper will describe the design of a prototype Modified-Collins cryocooler for ZBO storage of cryogenic fuels in space.

  18. Life cycle assessment of a parabolic trough concentrating solar power plant and the impacts of key design alternatives.

    PubMed

    Burkhardt, John J; Heath, Garvin A; Turchi, Craig S

    2011-03-15

    Climate change and water scarcity are important issues for today's power sector. To inform capacity expansion decisions, hybrid life cycle assessment is used to evaluate a reference design of a parabolic trough concentrating solar power (CSP) facility located in Daggett, CA, along four sustainability metrics: life cycle (LC) greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). This wet-cooled, 103 MW plant utilizes mined nitrates salts in its two-tank, thermal energy storage (TES) system. Design alternatives of dry-cooling, a thermocline TES, and synthetically derived nitrate salt are evaluated. During its LC, the reference CSP plant is estimated to emit 26 g of CO(2eq) per kWh, consume 4.7 L/kWh of water, and demand 0.40 MJ(eq)/kWh of energy, resulting in an EPBT of approximately 1 year. The dry-cooled alternative is estimated to reduce LC water consumption by 77% but increase LC GHG emissions and CED by 8%. Synthetic nitrate salts may increase LC GHG emissions by 52% compared to mined. Switching from two-tank to thermocline TES configuration reduces LC GHG emissions, most significantly for plants using synthetically derived nitrate salts. CSP can significantly reduce GHG emissions compared to fossil-fueled generation; however, dry-cooling may be required in many locations to minimize water consumption.

  19. Absorptive capacity, technological innovation, and product life cycle: a system dynamics model.

    PubMed

    Zou, Bo; Guo, Feng; Guo, Jinyu

    2016-01-01

    While past research has recognized the importance of the dynamic nature of absorptive capacity, there is limited knowledge on how to generate a fair and comprehensive analytical framework. Based on interviews with 24 Chinese firms, this study develops a system-dynamics model that incorporates an important feedback loop among absorptive capacity, technological innovation, and product life cycle (PLC). The simulation results reveal that (1) PLC affects the dynamic process of absorptive capacity; (2) the absorptive capacity of a firm peaks in the growth stage of PLC, and (3) the market demand at different PLC stages is the main driving force in firms' technological innovations. This study also explores a sensitivity simulation using the variables of (1) time spent in founding an external knowledge network, (2) research and development period, and (3) knowledge diversity. The sensitivity simulation results show that the changes of these three variables have a greater impact on absorptive capacity and technological innovation during growth and maturity stages than in the introduction and declining stages of PLC. We provide suggestions on how firms can adjust management policies to improve their absorptive capacity and technological innovation performance during different PLC stages.

  20. Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2005-12-01

    The water vapour spectrum in the 1.25-1.65 µm region is systematically analysed to find the best absorption transitions for sensitive measurement of in-cylinder gas temperature over short paths in an internal combustion engine. The strategy to select the optimum wavelength regions and absorption line combinations is developed for the time-varying pressures and temperatures expected during the compression portion of an engine cycle. We have identified 14 transitions of water vapour in this spectral region as promising for this application. From these transitions, 16 potential line pairs were considered for a wavelength-modulated absorption sensor for in-cylinder gas temperature during the compression stroke. Expected performance is modelled for the intake portion of two engine cycles that produce extreme temperature and pressure variations during compression.

  1. Angular motion of a PAH molecule in interstellar environment

    NASA Technical Reports Server (NTRS)

    Rouan, D.; Leger, Alain; Omont, A.; Giard, Martin

    1989-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules have recently been proposed as an important and hitherto undetected component of the Interstellar Medium (ISM). The theory was based on an explanation of the Unidentified IR Emission Bands by Leger et al. It has already led to a verified prediction on extended galactic and extragalactic emissions measured by IRAS, or by a recent balloon borne experiment. The physics that rules the motion of such molecules in the ISM was studied, taking into account their coupling with the ambient gas, the radiation field (absorption and emission) and the static magnetic field. This is important for many implications of the PAH theory such as the radio emission by these molecules or the expected polarization of their IR emission. A reflection nebulae is considered where the situation is rather well known. Every day life of a mean PAH molecule in such a region is as follows: every 3 hrs a UV photon is absorbed heating the molecule to a thousand degs; the temperature decay due to cooling by IR emission follows then within a few seconds. A collision with a molecule of gas occurs typically once a week, while an H atom is ejected or captured at the same rate. A typical cooling cycle after a heat impulse is given. The PAH molecules studied as representative of the family has typically 50 atoms, a radius of 4.5 A, is circular and has a molecular mass of M = 300; its permanent dipole moment is 3 Debye.

  2. 40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...

  3. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  4. 40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...

  5. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  6. 40 CFR Table 7 to Subpart Ppp of... - Process Vents From Continuous Unit Operations-Monitoring, Recordkeeping, and Reporting Requirements

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... absorbent is used. Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration stream mass or volumetric flow during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum mass or volumetric flow; and...

  7. 40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...

  8. 40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...

  9. 40 CFR Table 7 to Subpart U of... - Operating Parameters for Which Monitoring Levels Are Required To Be Established for Continuous...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Condenser Exit temperature Maximum temperature. Carbon adsorber Total regeneration steam flow or nitrogen flow, or pressure (gauge or absolute) a during carbon bed regeneration cycle; and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s)) Maximum flow or...

  10. Effects of Pulsing on Film Cooling of Gas Turbine Airfoils

    DTIC Science & Technology

    2005-05-09

    turbine engine . 15. NUMBER OF PAGES 70 14. SUBJECT TERMS: Turbine blade ; Film cooling ; Pulsed jet 16. PRICE CODE 17...with additional research, ultimately allowing for an increased efficiency in a gas turbine engine . 2 Keywords Turbine blade Film cooling Pulsed jet ... engine for aircraft propulsion…………………. 11 Figure 2: Thermodynamic cycle of a general turbine engine . ………………………..…… 11

  11. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Astrophysics Data System (ADS)

    Moriarty, Michael P.

    1993-11-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  12. Heat pipe cooled heat rejection subsystem modelling for nuclear electric propulsion

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.

    1993-01-01

    NASA LeRC is currently developing a FORTRAN based computer model of a complete nuclear electric propulsion (NEP) vehicle that can be used for piloted and cargo missions to the Moon or Mars. Proposed designs feature either a Brayton or a K-Rankine power conversion cycle to drive a turbine coupled with rotary alternators. Both ion and magnetoplasmodynamic (MPD) thrusters will be considered in the model. In support of the NEP model, Rocketdyne is developing power conversion, heat rejection, and power management and distribution (PMAD) subroutines. The subroutines will be incorporated into the NEP vehicle model which will be written by NASA LeRC. The purpose is to document the heat pipe cooled heat rejection subsystem model and its supporting subroutines. The heat pipe cooled heat rejection subsystem model is designed to provide estimate of the mass and performance of the equipment used to reject heat from Brayton and Rankine cycle power conversion systems. The subroutine models the ductwork and heat pipe cooled manifold for a gas cooled Brayton; the heat sink heat exchanger, liquid loop piping, expansion compensator, pump and manifold for a liquid loop cooled Brayton; and a shear flow condenser for a K-Rankine system. In each case, the final heat rejection is made by way of a heat pipe radiator. The radiator is sized to reject the amount of heat necessary.

  13. X-ray and optical emission-line filaments in the cooling flow cluster 2A 0335 + 096

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.; O'Connell, Robert W.; Mcnamara, Brian R.

    1992-01-01

    We present a new high-resolution X-ray image of the 2A 0335 + 096 cluster of galaxies obtained with the High Resolution Imager (HRI) aboard the ROSAT satellite. The presence of dense gas having a very short cooling time in the central regions confirms its earlier identification as a cooling flow. The X-ray emission from the central regions of the cooling flow shows a great deal of filamentary structure. Using the crude spectral resolution of the HRI, we show that these filaments are the result of excess emission, rather than foreground X-ray absorption. Although there are uncertainties in the pointing, many of the X-ray features in the cooling flow region correspond to features in H-alpha optical line emission. This suggests that the optical emission line gas has resulted directly from the cooling of X-ray-emitting gas. The filament material cannot be in hydrostatic equilibrium, and it is likely that other forces such as rotation, turbulence, and magnetic fields influence the dynamical state of the gas.

  14. Variants of closing the nuclear fuel cycle

    NASA Astrophysics Data System (ADS)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.; Tsibulskiy, S. V.

    2015-12-01

    Influence of the nuclear energy structure, the conditions of fuel burnup, and accumulation of new fissile isotopes from the raw isotopes on the main parameters of a closed fuel cycle is considered. The effects of the breeding ratio, the cooling time of the spent fuel in the external fuel cycle, and the separation of the breeding area and the fissile isotope burning area on the parameters of the fuel cycle are analyzed.

  15. Cooler Tile-Roofed Buildings with Near-Infrared-ReflectiveNon-white Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinson, Ronnen; Akbari, Hashem; Reilly, Joeseph C.

    Owners of homes with pitched roofs visible from ground leveloften prefer non-white roofing products for aesthetic considerations.Non-white, near-infrared-reflective architectural coatings can be appliedin-situ to pitched concrete or clay tile roofs to reduce tiletemperature, building heat gain, and cooling power demand, whilesimultaneously improving the roof s appearance. Scale model measurementsof building temperatures and heat-flux were combined with solar andcooling energy use data to estimate the effects of such cool roofcoatings in various California data. Under typical conditions e.g., 1 kWm-2 summer afternoon insolation, R-11 attic insulation, no radiantbarrier, and a 0.3 reduction in solar absorptance absolute reductions inroof surface temperature, atticmore » air temperature, and ceiling heat fluxare about 12 K, 6.2 K, and 3.7 W m-2, respectively. For a typical 1,500ft2 (139 m2) house with R-11 attic insulation and no radiant barrier,reducing roof absorptance by 0.3 yields whole-house peak power savings of230, 210, and 210 W in Fresno, San Bernardino, and San Diego,respectively. The corresponding absolute and fractional cooling energysavings are 92 kWh yr-1 (5 percent), 67 kWh yr-1 (6 percent), and 8 kWhyr-1 (1 percent), respectively. These savings are about half thosepreviously reported for houses with non-tile roofs. With theseassumptions, the statewide peak cooling power and annual cooling energyreductions would be 240 MW and 63 GWh yr-1, respectively. These energysavings would reduce annual emissions from California power plants by 35kilotonnes CO2, 11 tonnes NOx,and 0.86 tonnes SOx. The economic value ofcooling energy savings is well below the cost of coating a tile roof, butthe simple payback times for using cool pigments in a rooftile coatingare modest (5-7 years) in the hot climates of Fresno and SanBernardino.« less

  16. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  17. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; Leone, Stephen R.

    2016-01-01

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicate the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. An intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.

  18. Attosecond transient absorption of argon atoms in the vacuum ultraviolet region: line energy shifts versus coherent population transfer

    DOE PAGES

    Cao, Wei; Warrick, Erika R.; Neumark, Daniel M.; ...

    2016-01-18

    Using attosecond transient absorption, the dipole response of an argon atom in the vacuum ultraviolet (VUV) region is studied when an external electromagnetic field is present. An isolated attosecond VUV pulse populates Rydberg states lying 15 eV above the argon ground state. A synchronized few-cycle near infrared (NIR) pulse modifies the oscillating dipoles of argon impulsively, leading to alterations in the VUV absorption spectra. As the NIR pulse is delayed with respect to the VUV pulse, multiple features in the absorption profile emerge simultaneously including line broadening, sideband structure, sub-cycle fast modulations, and 5-10 fs slow modulations. These features indicatemore » the coexistence of two general processes of the light-matter interaction: the energy shift of individual atomic levels and coherent population transfer between atomic eigenstates, revealing coherent superpositions. Finally, an intuitive formula is derived to treat both effects in a unifying framework, allowing one to identify and quantify the two processes in a single absorption spectrogram.« less

  19. Spectroscopic and laser cooling results on Yb3+-doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Bigotta, Stefano; Parisi, Daniela; Bonelli, Lucia; Toncelli, Alessandra; Tonelli, Mauro; Di Lieto, Alberto

    2006-07-01

    Anti-Stokes cooling has been observed in an Yb3+-doped BaY2F8 single crystal. Single crystals have been grown by the Czochralski technique. The absorption spectra and the emission properties have been measured at room temperature and at 10K. The energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and separated from the vibronic substructure. The intrinsic decay time of the F5/22 level has been measured taking care of avoiding the effect of multiple reabsorption processes. The theoretical and experimental cooling efficiencies of Yb:BaY2F8 are evaluated and compared with respect to those of the most frequently investigated materials for laser cooling. A temperature drop of almost 4K was measured by pumping the crystal with 3W of laser radiation at ˜1025nm in single pass configuration with a cooling efficiency of ˜3%.

  20. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, P.L.; Williams, M.C.; Parsons, E.L.

    1995-09-12

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes. 1 fig.

  1. Indirect-fired gas turbine bottomed with fuel cell

    DOEpatents

    Micheli, Paul L.; Williams, Mark C.; Parsons, Edward L.

    1995-01-01

    An indirect-heated gas turbine cycle is bottomed with a fuel cell cycle with the heated air discharged from the gas turbine being directly utilized at the cathode of the fuel cell for the electricity-producing electrochemical reaction occurring within the fuel cell. The hot cathode recycle gases provide a substantial portion of the heat required for the indirect heating of the compressed air used in the gas turbine cycle. A separate combustor provides the balance of the heat needed for the indirect heating of the compressed air used in the gas turbine cycle. Hot gases from the fuel cell are used in the combustor to reduce both the fuel requirements of the combustor and the NOx emissions therefrom. Residual heat remaining in the air-heating gases after completing the heating thereof is used in a steam turbine cycle or in an absorption refrigeration cycle. Some of the hot gases from the cathode can be diverted from the air-heating function and used in the absorption refrigeration cycle or in the steam cycle for steam generating purposes.

  2. Long-Term Stability of Plate-Like Behavior Caused by Hydrous Mantle Convection and Water Absorption in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Iwamori, Hikaru

    2017-10-01

    We investigate the cycling of water (regassing, dehydration, and degassing) in mantle convection simulations as a function of the strength of the oceanic lithosphere and its influence on the evolution of mantle water content. We also consider pseudo-plastic yielding with a friction coefficient for simulating brittle behavior of the plates and the water-weakening effect of mantle materials. This model can generate long-term plate-like behavior as a consequence of the water-weakening effect of mantle minerals. This finding indicates that water cycling plays an essential role in generating tectonic plates. In vigorous plate motion, the mantle water content rapidly increases by up to approximately 4-5 ocean masses, which we define as the "burst" effect. A burst is related to the mantle temperature and water solubility in the mantle transition zone. When the mantle is efficiently cooled down, the mantle transition zone can store water transported by the subducted slabs that can pass through the "choke point" of water solubility. The onset of the burst effect is strongly dependent on the friction coefficient. The burst effect of the mantle water content could have significantly influenced the evolution of the surface water if the burst started early, in which case the Earth's surface cannot preserve the surface water over the age of the Earth.

  3. High-Performance Computing Data Center | Computational Science | NREL

    Science.gov Websites

    liquid cooling to achieve its very low PUE, then captures and reuses waste heat as the primary heating dry cooler that uses refrigerant in a passive cycle to dissipate heat-is reducing onsite water Measuring efficiency through PUE Warm-water liquid cooling Re-using waste heat from computing components

  4. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  5. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  6. 16 CFR § 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  7. 16 CFR 1511.5 - Structural integrity tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pounds for an additional 10 seconds. (c) Heat cycle deterioration. After the testing prescribed in... pacifier in boiling water for 5 minutes and then remove the pacifier and allow it to cool for 5 minutes in... in the boiling water for 5 minutes. The process shall be repeated for a total of 6 boiling/cooling...

  8. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  9. SMA foil-based elastocaloric cooling: from material behavior to device engineering

    NASA Astrophysics Data System (ADS)

    Bruederlin, F.; Ossmer, H.; Wendler, F.; Miyazaki, S.; Kohl, M.

    2017-10-01

    The elastocaloric effect associated with the stress-induced first order phase transformation in pseudoelastic shape memory alloy (SMA) films and foils is of special interest for cooling applications on a miniature scale enabling fast heat transfer and high cycling frequencies as well as tunable transformation temperatures. The focus is on TiNi-based materials having the potential to meet the various challenges associated with elastocaloric cooling including large adiabatic temperature change and ultra-low fatigue. The evolution of strain and temperature bands during tensile load cycling is investigated with respect to strain and strain-rate by in situ digital image correlation and infrared thermography with a spatial resolution in the order of 25 µm. Major design issues and challenges in fabrication of SMA film-based elastocaloric cooling devices are discussed including the efficiency of heat transfer as well as force recovery to enhance the coefficient of performance (COP) on the system level. Advanced demonstrators show a temperature span of 13 °C after 30 s, while the COP of the overall device reaches almost 10% of Carnot efficiency.

  10. The Potential of Different Concepts of Fast Breeder Reactor for the French Fleet Renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massara, Simone; Tetart, Philippe; Lecarpentier, David

    2006-07-01

    The performances of different concepts of Fast Breeder Reactor (Na-cooled, He-cooled and Pb-cooled FBR) for the current French fleet renewal are analyzed in the framework of a transition scenario to a 100% FBR fleet at the end of the 21. century. Firstly, the modeling of these three FBR types by means of a semi-analytical approach in TIRELIRE - STRATEGIE, the EDF fuel cycle simulation code, is presented, together with some validation elements against ERANOS, the French reference code system for neutronic FBR analysis (CEA). Afterwards, performances comparisons are made in terms of maximum deployable power, natural uranium consumption and wastemore » production. The results show that the FBR maximum deployable capacity, independently from the FBR technology, is highly sensitive to the fuel cycle options, like the spent nuclear fuel cooling time or the Minor Actinides management strategy. Thus, some of the key parameters defining the dynamic of FBR deployment are highlighted, to inform the orientation of R and D in the development and optimization of these systems. (authors)« less

  11. 24 CFR 941.606 - Proposal.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Life cycle analysis. For new construction and substantial rehabilitation, the criteria to be used in equipping the proposed development with heating and cooling systems, which shall include a life-cycle cost... the proposed site, site plan, and neighborhood. (f) Market analysis. An analysis of the projected...

  12. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  13. Contamination in Orbit of GOES-8

    NASA Technical Reports Server (NTRS)

    Sanders, Jack T.

    2002-01-01

    The GOES-8 satellite has lost some of its ability to dissipate heat over time. This is shown by the temperature increases over time of spacecraft and instrument components that are cooled with optical solar reflector (OSR) radiators. Contamination has a significant, well-documented effect on the solar absorptance (a(sub s)) of OSRs. This document attempts to discern how much molecular contamination has collected on the Imager and Sounder radiant coolers by analyzing the increase in temperature of the vacuum cooler housing. In the first part, temperature change is transformed into solar absorptance units by a method devised by ITT. The second part transfomis the solar absorptance gain into a molecular film thickness.

  14. Physicochemical processes in embryonic plant tissue during the transition to the state of cold anabiosis and storage at liquid nitrogen temperature

    NASA Astrophysics Data System (ADS)

    Khodko, A. T.; Lysak, Yu. S.

    2017-10-01

    Critical opalescence phenomenon was observed in the cytoplasm of garlic embryonic tissue—meristem—upon cooling in liquid nitrogen vapor, indicating liquid-liquid phase transition in the system. It was established that cells of the meristem tissue survive the cooling-thawing cycle. We suggest that the transition of meristem tissue to the state of anabiosis is mainly due to a drastic slowing of the diffusion in the cytoplasm caused by the passage of the solution through the critical point, followed by the formation of a dispersed system—a highly concentrated emulsion—as a result of a liquid-liquid phase transition. This macrophase separation is characteristic of polymer-solvent systems. We established the regime of cooling down to liquid nitrogen temperature and subsequent thawing in the cryopreservation cycle for the biological object under study, which ensures the preservation of tissue viability.

  15. Transient Heat Transfer in a Semitransparent Radiating Layer with Boundary Convection and Surface Reflections

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1996-01-01

    Surface convection and refractive index are examined during transient radiative heating or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. Emission within the layer and internal reflections depend on the layer refractive index. The reflected energy and heat conduction distribute energy across the layer and partially equalize the transient temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with various optical thicknesses, the behavior of the layer heated by radiation on one side and convectively cooled on the other, and a layer heated by convection while being cooled by radiation. The numerical method is an implicit finite difference procedure with non-uniform space and time increments. The basic method developed in earlier work is expanded to include external convection and incident radiation.

  16. Results of scalp cooling during anthracycline containing chemotherapy depend on scalp skin temperature.

    PubMed

    Komen, M M C; Smorenburg, C H; Nortier, J W R; van der Ploeg, T; van den Hurk, C J G; van der Hoeven, J J M

    2016-12-01

    The success of scalp cooling in preventing or reducing chemotherapy induced alopecia (CIA) is highly variable between patients undergoing similar chemotherapy regimens. A decrease of the scalp skin temperature seems to be an important factor, but data on the optimum temperature reached by scalp cooling to prevent CIA are lacking. This study investigated the relation between scalp skin temperature and its efficacy to prevent CIA. In this explorative study, scalp skin temperature was measured during scalp cooling in 62 breast cancer patients undergoing up to six cycles of anthracycline containing chemotherapy. Scalp skin temperature was measured by using two thermocouples at both temporal sides of the head. The primary end-point was the need for a wig or other head covering. Maximal cooling was reached after 45 min and was continued for 90 min after chemotherapy infusion. The scalp skin temperature after 45 min cooling varied from 10 °C to 31 °C, resulting in a mean scalp skin temperature of 19 °C (SEM: 0,4). Intrapersonal scalp skin temperatures during cooling were consistent for each chemotherapy cycle (ANOVA: P = 0,855). Thirteen out of 62 patients (21%) did not require a wig or other head covering. They appeared to have a significantly lower mean scalp skin temperature (18 °C; SEM: 0,7) compared to patients with alopecia (20 °C; SEM: 0,5) (P = 0,01). The efficacy of scalp cooling during chemotherapy is temperature dependent. A precise cut-off point could not be detected, but the best results seem to be obtained when the scalp temperature decreases below 18 °C. TRIALREGISTER. 3082. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Performance analysis of single stage libr-water absorption machine operated by waste thermal energy of internal combustion engine: Case study

    NASA Astrophysics Data System (ADS)

    Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat

    2017-09-01

    Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.

  18. The State of the Thermosphere in 2017 as Observed by SABER

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.; Mlynczak, M. G.; Marshall, B. T.; Russell, J. M., III

    2017-12-01

    Infrared radiative cooling of the thermosphere by carbon dioxide (CO2, 15 μm) and by nitric oxide (NO, 5.3 μm) has been observed for nearly 16 years by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. SABER has documented dramatic variability in the radiative cooling on timescales ranging from days to the nominal 11-year solar cycle, providing important information about the radiation budget in the upper atmosphere. The effects of Solar Cycle 24 are clearly evident in the infrared radiative cooling of the thermosphere as observed by SABER. The peak NO cooling in SC24 is about one-third less than the maximum seen in SC23 since the beginning of the SABER record in January 2002, while the SC24 CO2 peak is nearly 95% of that in SC23. SC24 has been weakening throughout all of 2017 as measured by the F10.7 index and the sunspot number. Despite this, the radiative cooling by NO and CO2 has not yet reached the low levels of the prior minimum in 2008-2009. This is due to continuing elevated levels of geomagnetic activity as clearly shown by the Ap index. During the years preceding the prior solar minimum, harmonics of the solar rotation period were evident in time series of the NO and CO2 power, and were associated with high speed solar wind streams emanating from coronal holes roughly evenly spaced in solar longitude. Despite a number of large, Earth-facing coronal holes in 2017, periodic features have not yet been observed in spectral/Fourier analysis of the SABER radiative cooling time series. Additional comparisons between solar cycles and with other solar and geomagnetic indicators will also be shown.

  19. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Astrophysics Data System (ADS)

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  20. On the possibility of laser cooling of Cr3+ ions doped crystals

    NASA Astrophysics Data System (ADS)

    Feofilov, S. P.; Kulinkin, A. B.

    2018-01-01

    The fluorescence of Cr3+ ions doped insulating crystals was studied under the excitation in the long-wavelength tail of the absorption spectrum ("laser cooling regime"). The 4T2 - 4A2 and 2E - 4A2 fluorescence spectra with a dominant anti-Stokes component were observed. Though no optical refrigeration was detected in the presented experiments, the spectroscopic results suggest that electron-phonon bands of Cr3+ ions are of interest for further investigations from the point of view of achieving optical refrigeration.

  1. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    NASA Technical Reports Server (NTRS)

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  2. Heavy Elements and Cool Stars

    NASA Technical Reports Server (NTRS)

    Wahlgren, Glenn M.; Carpenter, Kenneth G.; Norris, Ryan P.

    2008-01-01

    We report on progress in the analysis of high-resolution near-IR spectra of alpha Orionis (M2 Iab) and other cool, luminous stars. Using synthetic spectrum techniques, we search for atomic absorption lines in the stellar spectra and evaluate the available line parameter data for use in our abundance analyses. Our study concentrates on the post iron-group elements copper through zirconium as a means of investigating the slow neutron-capture process of nucleosynthesis in massive stars and the mechanisms that transport recently processed material up into the photospheric region. We discuss problems with the atomic data and model atmospheres that need to be addressed before theoretically derived elemental abundances from pre-supernova nucleosynthesis calculations can be tested by comparison with abundances determined from observations of cool, massive stars.

  3. Thermoelectric Energy Conversion: Future Directions and Technology Development Needs

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre

    2007-01-01

    This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.

  4. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  5. Low-thrust chemical rocket engine study

    NASA Technical Reports Server (NTRS)

    Mellish, J. A.

    1981-01-01

    Engine data and information are presented to perform system studies on cargo orbit-transfer vehicles which would deliver large space structures to geosynchronous equatorial orbit. Low-thrust engine performance, weight, and envelope parametric data were established, preliminary design information was generated, and technologies for liquid rocket engines were identified. Two major engine design drivers were considered in the study: cooling and engine cycle options. Both film-cooled and regeneratively cooled engines were evaluated. The propellant combinations studied were hydrogen/oxygen, methane/oxygen, and kerosene/oxygen.

  6. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  7. Picosecond laser bonding of highly dissimilar materials

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-10-01

    We report on recent progress in developing an industrially relevant, robust technique to bond dissimilar materials through ultra-fast microwelding. This technique is based on the use of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. Tight focusing of the laser radiation at, or around, the interface between two materials allows for simultaneous absorption in both. This absorption rapidly, and locally, heats the material forming plasma from both materials. With suitable surface preparation this plasma can be confined to the interface region where it mixes, cools and forms a weld between the two materials. The use of ps pulses results in a short interaction time. This enables a bond to form whilst limiting the heat affected zone (HAZ) to a region of only a few hundred micrometres across. This small scale allows for the bonding of materials with highly dissimilar thermal properties, and in particular coefficients of thermal expansion e.g. glass-metal bonding. We report on our results for a range of material combinations including, Al-Bk7, Al-SiO2 and Nd:YAG-AlSi. Emphasis will be laid on the technical requirements for bonding including the required surface preparation of the two materials and on the laser parameters required. The quality of the resultant bonds are characterized through shear force measurements (where strengths equal to and exceeding equivalent adhesives will be presented). The lifetime of the welds is also discussed, paying particular attention to the results of thermal cycling tests.

  8. The extent of chemically enriched gas around star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Sean

    2018-01-01

    Supernovae driven winds are often invoked to remove chemically enriched gas from galaxies to match the low metallicities of dwarf galaxies. In such shallow potential wells, outflows may produce massive amounts of enriched halo gas (circum-galactic medium or CGM) and pollute the intergalactic medium (IGM). I will present a survey of the CGM and IGM around 18 star-forming field dwarf galaxies with stellar masses of log M*/M⊙ ≈ 8 ‑ 9 at z ≈ 0.2. Eight of these have CGM probed by quasar absorption spectra at projected distances, d, less than the host virial radius, Rh. Ten are probed at d/Rh = 1 ‑ 3 to study the surrounding IGM. The absorption measurements include neutral hydrogen (H I), the dominant silicon ions for diffuse cool gas (T ∼ 104 K; Si II, Si III, and Si IV), more highly ionized carbon (C IV), and highly ionized oxygen (O VI). The metal absorption from the CGM of the dwarf galaxies is less common and ≈ 4× weaker compared to massive star-forming galaxies though O VI absorption is still common. None of the dwarfs probed at d/Rh = 1 ‑ 3 have definitive metal-line detections. Combining the available silicon ions, we estimate that the cool CGM accounts for only 2 ‑ 6% of the expected silicon budget. CGM absorption from O VI can account for ≈ 8% of the expected oxygen budget. As O VI traces an ion with expected equilibrium ion fractions of 0.2, this highly ionized phase of the CGM may represent a significant metal reservoir even for dwarf galaxies not expected to maintain gravitationally shock heated hot halos.

  9. Remote sensing of particle dynamics: a two-component unmixing model in a western UK shelf sea.

    NASA Astrophysics Data System (ADS)

    Mitchell, Catherine; Cunningham, Alex

    2014-05-01

    The relationship between the backscattering and absorption coefficients, in particular the backscattering to absorption ratio, is mediated by the type of particles present in the water column. By considering the optical signals to be driven by phytoplankton and suspended minerals, with a relatively constant influence from CDOM, radiative transfer modelling is used to propose a method for retrieving the optical contribution of phytoplankton and suspended minerals to the total absorption coefficient with mean percentage errors of below 5% for both components. These contributions can be converted to constituent concentrations if the appropriate specific inherent optical properties are known or can be determined from the maximum and minimum backscattering to absorption ratios of the data. Remotely sensed absorption and backscattering coefficients from eight years of MODIS data for the Irish Sea reveal maximum backscattering to absorption coefficient ratios over the winter (with an average for the region of 0.27), which then decrease to a minimum over the summer months (with an average of 0.06) before increasing again through to winter, indicating a change in the particles present in the water column. Application of the two-component unmixing model to this data showed seasonal cycles of both phytoplankton and suspended mineral concentrations which vary in both amplitude and periodicity depending on their location. For example, in the Bristol Channel the amplitude of the suspended mineral concentration throughout one cycle is approximately 75% greater than a yearly cycle in the eastern Irish Sea. These seasonal cycles give an insight into the complex dynamics of particles in the water column, indicating the suspension of sediment throughout the winter months and the loss of sediments from the surface layer over the summer during stratification. The relationship between the timing of the phytoplankton spring bloom and changes in the availability of light in the water column can be studied to gain an understanding into the phytoplankton phenology across the region.

  10. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  11. Flexible composite material with phase change thermal storage

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    1999-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  12. A study of cooling flows in poor clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Dillingham, Stephen

    1995-01-01

    We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.

  13. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell.

    PubMed

    Dana, Jayanta; Maiti, Sourav; Tripathi, Vaidehi S; Ghosh, Hirendra N

    2018-02-16

    Shell thickness dependent band-gap engineering of quasi type II core-shell material with higher carrier cooling time, lower interfacial defect states, and longer charge carrier recombination time can be a promising candidate for both photocatalysis and solar cell. In the present investigation, colloidal CdSe@CdS core-shells with different shell thickness (2, 4 and 6 monolayer CdS) were synthesized through hot injection method and have been characterized by high resolution transmission electron microscope (HRTEM) followed by steady state absorption and luminescence techniques. Ultrafast transient absorption (TA) studies suggest longer carrier cooling, lower interfacial surface states, and slower carrier recombination time in CdSe@CdS core-shell with increasing shell thickness. By TA spectroscopy, the role of CdS shell in power conversion efficiency (PCE) has been explained in detail. The measured PCE was found to initially increase and then decrease with increasing shell thickness. Shell thickness has been optimized to maximize the efficiency after correlating the shell controlled carrier cooling and recombination with PCE values and a maximum PCE of 3.88 % was obtained with 4 monolayers of CdS shell, which is found to be 57 % higher than compared to bare CdSe QDs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mapping the impacts of thermoelectric power generation: a global, spatially explicit database

    NASA Astrophysics Data System (ADS)

    Raptis, Catherine; Pfister, Stephan

    2017-04-01

    Thermoelectric power generation is associated with environmental pressures resulting from emissions to air and water, as well as water consumption. The need to achieve global coverage in related studies has become pressing in view of climate change. At the same time, the ability to quantify impacts from power production on a high resolution remains pertinent, given their highly regionalized nature, particularly when it comes to water-related impacts. Efforts towards global coverage have increased in recent years, but most work on the impacts of global electricity production presents a coarse geographical differentiation. Over the past few years we have begun a concerted effort to create and make available a global georeferenced inventory of thermoelectric power plant operational characteristics and emissions, by modelling the relevant processes on the highest possible level: that of a generating unit. Our work extends and enhances a commercially available global power plant database, and so far includes: - Georeferencing the generating units and populating the gaps in their steam properties. - Identifying the cooling system for 92% of the global installed thermoelectric power capacity. - Using the completed steam property data, along with local environmental temperature data, to systematically solve the Rankine cycle for each generating unit, involving: i) distinguishing between simple, reheat, and cogenerative cycles, and accounting for particularities in nuclear power cycles; ii) accounting for the effect of different cooling systems (once-through, recirculating (wet tower), dry cooling) on the thermodynamic cycle. One of the direct outcomes of solving the Rankine cycle is the cycle efficiency, an indispensable parameter in any study related to power production, including the quantification of air emissions and water consumption. Another direct output, for those units employing once-through cooling, is the rate of heat rejection to water, which can lead to thermal pollution. The opportunities afforded by the creation of this comprehensive database are numerous, including its use in integrated studies of electricity production and environmental burden, on local or global scales. The quantification, on the highest possible geographical and technological resolution, of all the different current impacts caused by thermoelectric power generation is crucial in order to conduct a proper assessment of the trade-offs in impacts in future scenario studies including technological changes, and to avoid burden-shifting. Here, we present the progress made in the building of the database so far, as well as the results of its application in a worldwide study of the thermal stress of rivers from the heat rejected by power plants using once-through cooling systems.

  15. Near term application of water cooling

    NASA Astrophysics Data System (ADS)

    Horner, M. W.; Caruvana, A.; Cohn, A.; Smith, D. P.

    1980-03-01

    The paper presents studies of combined gas and steam-turbine cycles related to the near term application of water cooling technology to the commercial gas turbine operating on heavy residual oil or coal derived liquid fuels. Water cooling promises significant reduction of hot corrosion and ash deposition at the turbine first-stage nozzle. It was found that: (1) corrosion of some alloys in the presence of alkali contaminant was less as metal temperatures were lowered to the 800-1000 F range, (2) the rate of ash deposition is increased for air-cooled and water-cooled nozzles at the 2060 F turbine firing temperature compared to 1850 F, (3) the ash deposit for the water cooled nozzle was lighter and more easily removed at both 1850 and 2050 F, (4) on-line nutshelling was effective on the water-cooled nozzles even at 2050 F, and (5) the data indicates that the rate of ash deposition may be sensitive to surface wall temperatures.

  16. Impact of upper body precooling during warm-up on subsequent time trial paced cycling in the heat.

    PubMed

    Katica, Charles P; Wingo, Jonathan E; Herron, Robert L; Ryan, Greg A; Bishop, Stacy H; Richardson, Mark

    2018-06-01

    The purpose of this study was to test the hypothesis that cooling the upper body during a warm-up enhances performance during a subsequent 16.1-km simulated cycling time trial in a hot environment. Counterbalanced, repeated measures design. Eight trained, male cyclists (peak oxygen uptake=57.8±5.0mLkg -1 min -1 ) completed two simulated 16.1-km time trials in a hot environment (35.0±0.5°C, 43.8±2.0% relative humidity) each separated by 72h. Treatments were counterbalanced; participants warmed up for 20min while either wearing head and neck ice wraps and an ice vest (COOLING) or no cooling apparatus (CONTROL). Following the warm-up mean skin temperature (T¯ sk ), mean body temperature (T¯ b ) and rating of thermal comfort were significantly lower than baseline following the COOLING trial (all P<0.05); however, rectal temperature was unaffected (P=0.35). Because the effects of precooling on T¯ sk and T¯ b were not sustained during exercise, values for COOLING and CONTROL were not different throughout the time trial (P=0.38). Nonetheless, time to completion was significantly faster following the COOLING intervention when compared to the CONTROL (29.3±3.6min, vs. 30.3±3.1min; P=0.04). These data suggest that in short distance time trials in hot conditions cyclists may benefit from utilizing a cooling modality during the warm-up. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. MAGIICAT III. Interpreting Self-similarity of the Circumgalactic Medium with Virial Mass Using Mg II Absorption

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Trujillo-Gomez, Sebastian; Nielsen, Nikole M.; Kacprzak, Glenn G.

    2013-12-01

    In Churchill et al., we used halo abundance matching applied to 182 galaxies in the Mg II Absorber-Galaxy Catalog (MAGIICAT) and showed that the mean Mg II λ2796 equivalent width follows a tight inverse-square power law, Wr (2796)vprop(D/R vir)-2, with projected location relative to the galaxy virial radius and that the Mg II absorption covering fraction is effectively invariant with galaxy virial mass, M h, over the range 10.7 <= log M h/M ⊙ <= 13.9. In this work, we explore multivariate relationships between Wr (2796), virial mass, impact parameter, virial radius, and the theoretical cooling radius that further elucidate self-similarity in the cool/warm (T = 104-104.5 K) circumgalactic medium (CGM) with virial mass. We show that virial mass determines the extent and strength of the Mg II absorbing gas such that the mean Wr (2796) increases with virial mass at fixed distance while decreasing with galactocentric distance for fixed virial mass. The majority of the absorbing gas resides within D ~= 0.3 R vir, independent of both virial mass and minimum absorption threshold; inside this region, and perhaps also in the region 0.3 < D/R vir <= 1, the mean Wr (2796) is independent of virial mass. Contrary to absorber-galaxy cross-correlation studies, we show there is no anti-correlation between Wr (2796) and virial mass. We discuss how simulations and theory constrained by observations support self-similarity of the cool/warm CGM via the physics governing star formation, gas-phase metal enrichment, recycling efficiency of galactic scale winds, filament and merger accretion, and overdensity of local environment as a function of virial mass.

  18. 40 CFR Table 2 to Subpart Uuuu of... - Operating Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... values established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s...

  19. 40 CFR Table 2 to Subpart Uuuu of... - Operating Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... values established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s...

  20. 40 CFR Table 2 to Subpart Uuuu of... - Operating Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... values established during the compliance demonstration. 7. carbon absorber maintain the regeneration frequency, total regeneration adsorber stream mass or volumetric flow during carbon bed regeneration, and temperature of the carbon bed after regeneration (and within 15 minutes of completing any cooling cycle(s...

  1. Oxidation-resistant silicide coating applied to columbium alloy screen

    NASA Technical Reports Server (NTRS)

    Torgerson, R. T.

    1971-01-01

    Coated screens withstand temperature cycling in special transpiration-cooling systems and provide porous surface that is effective at temperatures well above those limiting superalloy screen efficiency. Thickness of coating depends on time, temperature and activator concentration. Coatings are uniform and resistant to thermal cycling.

  2. Development of Electric Power Units Driven by Waste Heat

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Takeuchi, Takao; Kaneko, Atsushi; Uchimura, Tomoyuki; Irie, Kiichi; Watanabe, Hiroyoshi

    For the development of a simple and compact power generator driven by waste heat, working fluids and an expander were studied, then a practical electric power unit was put to test. Many working fluids were calculated with the low temperature power cycle (evaporated at 77°C, condensed at 42°C),and TFE,R123,R245fa were selected to be suitable for the cycle. TFE(Trifluoroethanol CF3CH2OH) was adopted to the actual power generator which was tested. A radial turbine was adopted as an expander, and was newly designed and manufactured for working fluid TFE. The equipment was driven by hot water as heat source and cooling water as cooling source, and generated power was connected with electric utility. Characteristics of the power generating cycle and characteristics of the turbine were obtained experimentally.

  3. Integrated design of cryogenic refrigerator and liquid-nitrogen circulation loop for HTS cable

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Ryu, Ki Nam; Yang, Hyung Suk

    2016-12-01

    A new concept of cryogenic cooling system is proposed and investigated for application to long-length HTS cables. One of major obstacles to the cable length of 1 km or longer is the difficulty in circulating liquid nitrogen (LN) along the cables, since the temperature rise and pressure drop of LN flow could be excessively large. This study attempts a breakthrough by integrating the refrigerator with the LN circulation loop in order to eliminate the cryogenic LN pumps, and generate a large LN flow with the power of compressors at ambient temperature. A variety of thermodynamic structures are investigated on standard and modified Claude cycles, where nitrogen is used as refrigerant and the LN circulation loop is included as part of the closed cycle. Four proposed cycles are fully analyzed and optimized with a process simulator (Aspen HYSYS) to evaluate the FOM (figure of merit) and examine the feasibility. The modified dual-pressure cycle cooled with expander stream is recommended for long HTS cables.

  4. Magnetocaloric cycle with six stages: Possible application of graphene at low temperature

    NASA Astrophysics Data System (ADS)

    Reis, M. S.

    2015-09-01

    The present work proposes a thermodynamic hexacycle based on the magnetocaloric oscillations of graphene, which has either a positive or negative adiabatic temperature change depending on the final value of the magnetic field change. For instance, for graphenes at 25 K, an applied field of 2.06 T/1.87 T promotes a temperature change of ca. -25 K/+3 K. The hexacycle is based on the Brayton cycle and instead of the usual four steps, it has six stages, taking advantage of the extra cooling provided by the inverse adiabatic temperature change. This proposal opens doors for magnetic cooling applications at low temperatures.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less

  6. Degradation of different elastomeric polymers in simulated geothermal environments at 300°C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie

    This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300 °C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO 2-rich geo-brine fluid, and, 5) heat–cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomericmore » polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This study discusses the degradation mechanisms of the polymers under the aforementioned conditions.« less

  7. Degradation of different elastomeric polymers in simulated geothermal environments at 300°C

    DOE PAGES

    Sugama, Toshifumi; Pyatina, Tatiana; Redline, Erica Marie; ...

    2015-07-17

    This study evaluates the degradation of six different elastomeric polymers used for O-rings: EPDM, FEPM, type I- and II-FKM, FFKM, and FSR, in five different simulated geothermal environments at 300 °C: 1) non-aerated steam/cooling cycles, 2) aerated steam/cooling cycles, 3) water-based drilling fluid, 4) CO 2-rich geo-brine fluid, and, 5) heat–cool water quenching cycles. The factors assessed included the extent of oxidation, changes in thermal behavior, micro-defects, permeation of ionic species from the test environments into the O-rings, silicate-related scale-deposition, and changes in the O-rings' elastic modulus. The reliability of the O-rings to maintain their integrity depended on the elastomericmore » polymer composition and the exposure environment. FSR disintegrated while EPDM was oxidized only to some degree in all the environments, FKM withstood heat-water quenching but underwent chemical degradation, FEPM survived in all the environments with the exception of heat-water quenching where it underwent severe oxidation-induced degradation, and FFKM displayed outstanding compatibility with all the tested environments. This study discusses the degradation mechanisms of the polymers under the aforementioned conditions.« less

  8. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, C.; Cummings, J.; Nigusse, B.

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less

  9. Multistation refrigeration system

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R. (Inventor)

    1978-01-01

    A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.

  10. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Gwynne, Owen

    1992-01-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  11. Heat transfer from an internal combustion (Otto-cycle) engine on the surface of Mars

    NASA Astrophysics Data System (ADS)

    Gwynne, Owen

    1992-05-01

    The cooling requirements for an average car sized engine (spark-ignition, V-6, four-stroke, naturally aspirated, about 200 kg, about 100 kW) were looked at for Mars. Several modes of cooling were considered, including forced convection, exhaust, radiation and closed loop systems. The primary goal was to determine the effect of the thinner Martian atmosphere on the cooling system. The results show that there was only a 6-percent difference in the cooling requirements. This difference was due mostly to the thinner atmosphere during forced convection and the heat capacity of the exhaust. A method using a single pass counter-flow heat exchanger is suggested to offset this difference in cooling requirements.

  12. 40 CFR 125.84 - As an owner or operator of a new facility, what must I do to comply with this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS CRITERIA AND STANDARDS FOR THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM Requirements Applicable to Cooling Water Intake Structures for New Facilities... that which can be attained by a closed-cycle recirculating cooling water system; (2) You must design...

  13. 40 CFR 125.83 - What special definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cooling water intake structure and into a cooling water system. Estuary means a semi-enclosed body of... fresh water derived from land drainage. The salinity of an estuary exceeds 0.5 parts per thousand (by... distance along the estuary or tidal river that a particle moves during one tidal cycle of ebb and flow...

  14. 40 CFR 125.83 - What special definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cooling water intake structure and into a cooling water system. Estuary means a semi-enclosed body of... fresh water derived from land drainage. The salinity of an estuary exceeds 0.5 parts per thousand (by... distance along the estuary or tidal river that a particle moves during one tidal cycle of ebb and flow...

  15. 40 CFR 125.83 - What special definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cooling water intake structure and into a cooling water system. Estuary means a semi-enclosed body of... fresh water derived from land drainage. The salinity of an estuary exceeds 0.5 parts per thousand (by... distance along the estuary or tidal river that a particle moves during one tidal cycle of ebb and flow...

  16. 40 CFR 125.83 - What special definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cooling water intake structure and into a cooling water system. Estuary means a semi-enclosed body of... fresh water derived from land drainage. The salinity of an estuary exceeds 0.5 parts per thousand (by... distance along the estuary or tidal river that a particle moves during one tidal cycle of ebb and flow...

  17. 40 CFR 125.83 - What special definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cooling water intake structure and into a cooling water system. Estuary means a semi-enclosed body of... fresh water derived from land drainage. The salinity of an estuary exceeds 0.5 parts per thousand (by... distance along the estuary or tidal river that a particle moves during one tidal cycle of ebb and flow...

  18. 40 CFR 125.86 - As an owner or operator of a new facility, what must I collect and submit when I apply for my new...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-cycle recirculating cooling water system and any engineering calculations, including documentation... subsequent industrial processes, you must provide documentation that the amount of cooling water that is not... provide the annual mean flow and any supporting documentation and engineering calculations to show that...

  19. Design of a Film Cooling Experiment for Rocket Engines

    DTIC Science & Technology

    2010-03-01

    concentrations inside the UCC (22)............................................................ 25 Figure 7: PIV data in the UCC (23...64 Figure 38: UCC /FCR igniter ............................................................................................. 65 Figure 39: Ethylene...TDLAS Tunable Diode Laser Absorption Spectroscopy UCC Ultra Compact Combustor μm micrometers VI Virtual Instrument Xe Xenon ZnSe

  20. Thermodynamic analysis and economical evaluation of two 310-80 K pre-cooling stage configurations for helium refrigeration and liquefaction cycle

    NASA Astrophysics Data System (ADS)

    Zhu, Z. G.; Zhuang, M.; Jiang, Q. F.; Y Zhang, Q.; Feng, H. S.

    2017-12-01

    In 310-80 K pre-cooling stage, the temperature of the HP helium stream reduces to about 80 K where nearly 73% of the enthalpy drop from room temperature to 4.5 K occurs. Apart from the most common liquid nitrogen pre-cooling, another 310-80 K pre-cooling configuration with turbine is employed in some helium cryoplants. In this paper, thermodynamic and economical performance of these two kinds of 310-80 K pre-cooling stage configurations has been studied at different operating conditions taking discharge pressure, isentropic efficiency of turbines and liquefaction rate as independent parameters. The exergy efficiency, total UA of heat exchangers and operating cost of two configurations are computed. This work will provide a reference for choosing 310-80 K pre-cooling stage configuration during design.

Top