Science.gov

Sample records for absorption depends strongly

  1. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  2. The Redshift Dependence of Gamma-Ray Absorption in the Environments of Strong-Line AGNs

    SciTech Connect

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-12

    The case of {gamma}-ray absorption due to photon-photon pair production of jet photons in the external photon environments, such as the accretion disk and the broad-line region radiation fields, of {gamma}-ray--loud active galactic nuclei (AGNs) that exhibit strong emission lines is considered. I demonstrate that this 'local opacity,' if detected, will almost unavoidably be redshift-dependent in the sub-TeV range. This introduces nonnegligible biases and complicates approaches for studying the evolution of the extragalactic background light with contemporary GeV instruments such as the Gamma-Ray Large Area Space Telescope (GLAST ), where the {gamma}-ray horizon is probed by means of statistical analysis of absorption features (e.g., the Fazio-Stecker relation) in AGN spectra at various redshifts. It particularly applies to strong-line quasars, where external photon fields are potentially involved in {gamma}-ray production.

  3. Polarisation response of delay dependent absorption modulation in strong field dressed helium atoms probed near threshold

    NASA Astrophysics Data System (ADS)

    Simpson, E. R.; Sanchez-Gonzalez, A.; Austin, D. R.; Diveki, Z.; Hutchinson, S. E. E.; Siegel, T.; Ruberti, M.; Averbukh, V.; Miseikis, L.; Strüber, C. S.; Chipperfield, L.; Marangos, J. P.

    2016-08-01

    We present the first measurement of the vectorial response of strongly dressed helium atoms probed by an attosecond pulse train (APT) polarised either parallel or perpendicular to the dressing field polarisation. The transient absorption is probed as a function of delay between the APT and the linearly polarised 800 nm field of peak intensity 1.3× {10}14 {{W}} {{cm}}-2. The APT spans the photon energy range 16-42 eV, covering the first ionisation energy of helium (24.59 eV). With parallel polarised dressing and probing fields, we observe modulations with periods of one half and one quarter of the dressing field period. When the polarisation of the dressing field is altered from parallel to perpendicular with respect to the APT polarisation we observe a large suppression in the modulation depth of the above ionisation threshold absorption. In addition to this we present the intensity dependence of the harmonic modulation depth as a function of delay between the dressing and probe fields, with dressing field peak intensities ranging from 2 × 1012 to 2 × 1014 {{W}} {{cm}}-2. We compare our experimental results with a full-dimensional solution of the single-atom time-dependent (TD) Schrödinger equation obtained using the recently developed abinitio TD B-spline ADC method and find good qualitative agreement for the above threshold harmonics.

  4. Polarisation response of delay dependent absorption modulation in strong field dressed helium atoms probed near threshold

    NASA Astrophysics Data System (ADS)

    Simpson, E. R.; Sanchez-Gonzalez, A.; Austin, D. R.; Diveki, Z.; Hutchinson, S. E. E.; Siegel, T.; Ruberti, M.; Averbukh, V.; Miseikis, L.; Strüber, C. S.; Chipperfield, L.; Marangos, J. P.

    2016-08-01

    We present the first measurement of the vectorial response of strongly dressed helium atoms probed by an attosecond pulse train (APT) polarised either parallel or perpendicular to the dressing field polarisation. The transient absorption is probed as a function of delay between the APT and the linearly polarised 800 nm field of peak intensity 1.3× {10}14 {{W}} {{cm}}-2. The APT spans the photon energy range 16–42 eV, covering the first ionisation energy of helium (24.59 eV). With parallel polarised dressing and probing fields, we observe modulations with periods of one half and one quarter of the dressing field period. When the polarisation of the dressing field is altered from parallel to perpendicular with respect to the APT polarisation we observe a large suppression in the modulation depth of the above ionisation threshold absorption. In addition to this we present the intensity dependence of the harmonic modulation depth as a function of delay between the dressing and probe fields, with dressing field peak intensities ranging from 2 × 1012 to 2 × 1014 {{W}} {{cm}}-2. We compare our experimental results with a full-dimensional solution of the single-atom time-dependent (TD) Schrödinger equation obtained using the recently developed abinitio TD B-spline ADC method and find good qualitative agreement for the above threshold harmonics.

  5. Strong-field absorption and emission of radiation in two-electron systems calculated with time-dependent natural orbitals

    NASA Astrophysics Data System (ADS)

    Brics, M.; Rapp, J.; Bauer, D.

    2016-01-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is based on the equations of motion for the so-called natural orbitals, i.e., the eigenfunctions of the one-body reduced density matrix. Exact TDRNOT can be formulated for any time-dependent two-electron system in either spin configuration. In this paper, the method is tested against high-order-harmonic generation (HHG) and Fano profiles in absorption spectra with the help of a numerically exactly solvable one-dimensional-model He atom, starting from the spin-singlet ground state. Such benchmarks are challenging because Fano profiles originate from transitions involving autoionizing states, and HHG is a strong-field phenomenon well beyond the linear response. TDRNOT with just one natural orbital per spin in the helium spin-singlet case is equivalent to time-dependent Hartree-Fock or time-dependent density functional theory (TDDFT) in the exact exchange-only approximation. It is not unexpected that TDDFT fails in reproducing Fano profiles due to the lack of doubly excited, autoionizing states. HHG spectra, on the other hand, are widely believed to be well captured by TDDFT. However, HHG spectra of helium may display a second plateau that originates from simultaneous HHG in +He and neutral He. It is found that TDRNOT with two natural orbitals per spin is already sufficient to capture this effect as well as the Fano profiles on a qualitative level. With more natural orbitals (6-8 per spin), quantitative agreement can be reached. Errors due to the truncation to a finite number of orbitals are identified.

  6. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  7. Tunable many-body interactions in semiconducting graphene: Giant excitonic effect and strong optical absorption

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc; Wu, Zhigang

    2015-07-01

    Electronic and optical properties of graphene depend strongly on many-body interactions. Employing the highly accurate many-body perturbation approach based on Green's functions, we find a large renormalization over independent particle methods of the fundamental band gaps of semiconducting graphene structures with periodic defects. Additionally, their exciton binding energies are larger than 0.4 eV, suggesting significantly strengthened electron-electron and electron-hole interactions. Their absorption spectra show two strong peaks whose positions are sensitive to the defect fraction and distribution. The strong near-edge optical absorption and excellent tunability make these two-dimensional materials promising for optoelectronic applications.

  8. Strongly scale-dependent non-Gaussianity

    SciTech Connect

    Riotto, Antonio; Sloth, Martin S.

    2011-02-15

    We discuss models of primordial density perturbations where the non-Gaussianity is strongly scale dependent. In particular, the non-Gaussianity may have a sharp cutoff and be very suppressed on large cosmological scales, but sizable on small scales. This may have an impact on probes of non-Gaussianity in the large-scale structure and in the cosmic microwave background radiation anisotropies.

  9. XUV Transient Absorption of Strong-Field Ionized Ferrocene

    NASA Astrophysics Data System (ADS)

    Chatterley, Adam S.; Lackner, Florian; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2015-05-01

    Femtosecond extreme ultraviolet (XUV) transient absorption experiments are underway to study the dynamics of ferrocene following strong field ionization. Ferrocene is a textbook organometallic compound, composed of an iron atom sandwiched between two aromatic organic rings. An intense infrared (IR, 790 nm) pump pulse is used to ionize the ferrocene molecules. Femtosecond XUV pulses, created by high harmonic generation (HHG) are used to probe the induced dynamics. Iron 3p inner-shell to valence transitions (M edge, 50 eV absorption spectra will probe the strong-field induced molecular dynamics from the perspective of the metal center. We will induce dissociation dynamics at high field intensities and use lower IR intensities to study dynamics of electronically and/or vibrationally excited ferrocene cations. Preliminary results will be presented, demonstrating current progress of XUV transient absorption experiments on moderately large molecular systems.

  10. Strong associated C 4 absorption in low redshift quasars

    NASA Technical Reports Server (NTRS)

    Tytler, David

    1990-01-01

    IUE spectra of quasars were used to determine the frequency of occurrence of strong associated C 4 absorption systems at low red shifts. Four systems are found with rest frame equivalent width (REW) greater than 5 angstroms in the spectra of 38 quasars. This rate of occurrence of 0.12 is not significantly different from the rate of 0.064 determined for high red shift quasars. The detected strong associated systems are all in low red shift quasars which have been imaged from the ground. One of the quasars is unusual, having two nuclei, a close companion and distorted isotopes. Two of the others also have close companion galaxies at projected distances of under 100 kpc. The conclusion was made that a much larger sample is needed.

  11. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  12. Lower hybrid wave propagation in tokamaks in weak and strong absorption regimes

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Bonoli, P. T.; Harvey, R. W.; Schmidt, A. E.; Wallace, G. W.; Valeo, E. J.; Phillips, C. K.

    2011-12-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons at (2.5-3)×vte, where vte = (2Te/me)1/2. The velocity at which damping occurs depends on the non-linear balance between quasilinear diffusion and collisions. For high efficiency current drive, a low parallel index of refraction, n∥, corresponding to a high phase velocity, is chosen. Depending on the plasma electron temperature this may put the wave propagation in a multi-pass regime. In cases of low parallel refractive index, ray tracing with no SOL has been shown to have differences with experiment [1] and collision effects in the scrape off layer may be important [2]. Using a coupled model of the full wave code, TORLH[3], and the Fokker-Planck code, CQL3D[4], the importance of full wave effects in weak and strong absorption regimes are studied.

  13. Strong terahertz absorption in all-dielectric Huygens’ metasurfaces

    NASA Astrophysics Data System (ADS)

    Cole, Michael A.; Powell, David A.; Shadrivov, Ilya V.

    2016-10-01

    We propose an all dielectric metamaterial that acts as a perfect terahertz absorber without a ground plane. The unit cell consists of a dielectric cylinder embedded in a low index material. In order to achieve near-perfect terahertz absorption (99.5%) we employ impedance matching of the electric and magnetic resonances within the cylinders of the Huygens’ metasurface. The impedance matching is controlled by changing the aspect ratio between the height and diameter of the cylinder. We show that the absorption resonance can be tuned to particular frequencies from 0.3 to 1.9 THz via changing the geometry of the structure while keeping a nearly constant aspect ratio of the cylinders.

  14. Strong saturation absorption imaging of dense clouds of ultracold atoms.

    PubMed

    Reinaudi, G; Lahaye, T; Wang, Z; Guéry-Odelin, D

    2007-11-01

    We report on a far above saturation absorption imaging technique to investigate the characteristics of dense packets of ultracold atoms. The transparency of the cloud is controlled by the incident light intensity as a result of the nonlinear response of the atoms to the probe beam. We detail our experimental procedure to calibrate the imaging system for reliable quantitative measurements and demonstrate the use of this technique to extract the profile and its spatial extent of an optically thick atomic cloud.

  15. Temperature Dependences of Mechanisms Responsible for the Water-Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng

    2014-01-01

    The water-vapor continuum absorption plays an important role in the radiative balance in the Earth's atmosphere. It has been experimentally shown that for ambient atmospheric conditions, the continuum absorption scales quadratically with the H2O number density and has a strong, negative temperature dependence (T dependence). Over the years, there have been three different theoretical mechanisms postulated: far-wings of allowed transition lines, water dimers, and collision-induced absorption. The first mechanism proposed was the accumulation of absorptions from the far-wings of the strong allowed transition lines. Later, absorption by water dimers was proposed, and this mechanism provides a qualitative explanation for the continuum characters mentioned above. Despite the improvements in experimental data, at present there is no consensus on which mechanism is primarily responsible for the continuum absorption.

  16. Temperature dependence of the two photon absorption in indium arsenide

    SciTech Connect

    Berryman, K.W.; Rella, C.W.

    1995-12-31

    Nonlinear optical processes in semiconductors have long been a source of interesting physics. Two photon absorption (TPA) is one such process, in which two photons provide the energy for the creation of an electron-hole pair. Researchers at other FEL centers have studied room temperature TPA in InSb, InAs, and HgCdTe. Working at the Stanford Picosecond FEL Center, we have extended and refined this work by measuring the temperature dependence of the TPA coefficient in InAs over the range from 80 to 350 K at four wavelengths: 4.5, 5.06, 6.01, and 6.3 microns. The measurements validate the functional dependence of recent band structure calculations with enough precision to discriminate parabolic from non-parabolic models, and to begin to observe smaller effects, such as contributions due to the split-off band. These experiments therefore serve as a strong independent test of the Kane band theory, as well as providing a starting point for detailed observations of other nonlinear absorption mechanisms.

  17. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-09-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the NIR. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the absorption Ångström exponent, defined as the negative slope of absorption versus wavelength in a log-log plot. At the pasture site, about 70 % of the absorption Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest absorption Ångström exponents (90 % of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with low Ångström exponents. This finding suggests that biogenic aerosols from Amazonia have a weaker spectral dependence for absorption than biomass burning aerosols, contradicting our expectations of biogenic particles behaving as brown carbon. In a first order assessment, results indicate a small (<1 %) effect of variations in absorption Ångström exponents on 24-h aerosol forcings, at least in the spectral

  18. Asymptotic Solutions for Optical Properties of Large Particles with Strong Absorption

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Mishchenko, Michael I.; Winker, Dave M.; Nasiri, Shaima L.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    For scattering calculations involving nonspherical particles such as ice crystals, we show that the transverse wave condition is not applicable to the refracted electromagnetic wave in the context of geometric optics when absorption is involved. Either the TM wave condition (i.e., where the magnetic field of the refracted wave is transverse with respect to the wave direction) or the TE wave condition (i.e., where the electric field is transverse with respect to the propagating direction of the wave) may be assumed for the refracted wave in an absorbing medium to locally satisfy the electromagnetic boundary condition in the ray tracing calculation. The wave mode assumed for the refracted wave affects both the reflection and refraction coefficients. As a result, a nonunique solution for these coefficients is derived from the electromagnetic boundary condition. In this study we have identified the appropriate solution for the Fresnel reflection/refraction coefficients in light scattering calculation based on the ray tracing technique. We present the 3 x 2 refraction or transmission matrix that completely accounts for the inhomogeneity of the refracted wave in an absorbing medium. Using the Fresnel coefficients for an absorbing medium, we derive an asymptotic solution in an analytical format for the scattering properties of a general polyhedral particle. Numerical results are presented for hexagonal plates and columns with both preferred and random orientations. The asymptotic theory can produce reasonable accuracy in the phase function calculations in the infrared window region (wavelengths near 10 micron) if the particle size (in diameter) is on the order of 40 micron or larger. However, since strong absorption is assumed in the computation of the single-scattering albedo in the asymptotic theory, the single scattering albedo does not change with variation of the particle size. As a result, the asymptotic theory can lead to substantial errors in the computation of

  19. Strong mid-infrared optical absorption by supersaturated sulfur doping in silicon

    NASA Astrophysics Data System (ADS)

    Umezu, I.; Kohno, A.; Warrender, J. M.; Takatori, Y.; Hirao, Y.; Nakagawa, S.; Sugimura, A.; Charnvanichborikarn, S.; Williams, J. S.; Aziz, M. J.

    2011-12-01

    Single crystalline silicon supersaturated with sulfur was prepared by ion implantation followed by pulsed laser melting and rapid solidification. A strong and broad optical absorption band and free-carrier absorption appeared for this sample around 0.5 eV and below 0.2 eV, respectively. A possible candidate for the origin of the 0.5 eV band is the formation of an impurity band by supersaturated doping.

  20. Strong enhancement of light absorption and highly directive thermal emission in graphene.

    PubMed

    Pu, Mingbo; Chen, Po; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Huang, Cheng; Hu, Chenggang; Luo, Xiangang

    2013-05-20

    Graphene is a two-dimensional material with exotic electronic, optical and thermal properties. The optical absorption in monolayer graphene is limited by the fine structure constant α. Here we demonstrated the strong enhancement of light absorption and thermal radiation in homogeneous graphene. Numerical simulations show that the light absorbance can be controlled from near zero to 100% by tuning the Fermi energy. Moreover, a set of periodically located absorption peaks is observed at near grazing incidence. Based on this unique property, highly directive comb-like thermal radiation at near-infrared frequencies is demonstrated.

  1. Strong excited state absorption (ESA) in Yb-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Engholm, Magnus; Rydberg, Sara; Hammarling, Krister

    2013-03-01

    Excited state absorption (ESA) measurements performed on Yb-doped silica bers show the onset of a strong absorption band in the visible range. In this work, we perform experiments to investigate the possibility for ESA to be part of the induced optical losses (photodarkening) observed in Yb-doped ber lasers. Our results indicate that an ESA process, from the 2F5/2 excited state manifold in the Yb3+ ion to the charge-transfer state with absorption bands in the UV range, may constitute a transfer route for pump- and laser photons in the near-infrared range.

  2. Size-dependent absorption properties of CdX (X = S, Se, Te) quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, C. C.; Mai, Y.-W.

    2012-05-01

    A unified nanothermodynamic model was developed to study the size effects on first absorption peak energy and molar extinction coefficient of semiconductor quantum dots (QDs) based on size-dependent cohesive energy and quantum confinement effect. It is found that: (1) the first absorption peak energy increases as QD size decreases; (2) the molar extinction coefficient decreases with decreasing QD size in strong confinement regime and (3) tunable absorption properties of semiconductor QDs are caused by size-induced cohesive energy variation owing to severe bond dangling. The accuracy of the developed model was verified with experimental data of CdS, CdSe and CdTe QDs.

  3. Spectral dependence of aerosol light absorption over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Rizzo, L. V.; Correia, A. L.; Artaxo, P.; Procópio, A. S.; Andreae, M. O.

    2011-04-01

    In this study, we examine the spectral dependence of aerosol absorption at different sites and seasons in the Amazon Basin. The analysis is based on measurements performed during three intensive field experiments at a pasture site (Fazenda Nossa Senhora, Rondônia) and at a primary forest site (Cuieiras Reserve, Amazonas), from 1999 to 2004. Aerosol absorption spectra were measured using two Aethalometers: a 7-wavelength Aethalometer (AE30) that covers the visible (VIS) to near-infrared (NIR) spectral range, and a 2-wavelength Aethalometer (AE20) that measures absorption in the UV and in the visible. As a consequence of biomass burning emissions, about 10 times greater absorption values were observed in the dry season in comparison to the wet season. Power law expressions were fitted to the measurements in order to derive the Ångström exponent for absorption, defined as the negative slope of absorption vs. wavelength in a log-log plot. At the pasture site, about 70% of the Ångström exponents fell between 1.5 and 2.5 during the dry season, indicating that biomass burning aerosols have a stronger spectral dependence than soot carbon particles. Ångström exponents decreased from the dry to the wet season, in agreement with the shift from biomass burning aerosols, predominant in the fine mode, to biogenic and dust aerosols, predominant in the coarse mode. The lowest Ångström exponents (90% of data below 1.5) were observed at the forest site during the dry season. Also, results indicate that low absorption coefficients were associated with Ångström exponents below 1.0. This finding suggests that biogenic aerosols from Amazonia may have a weak spectral dependence for absorption, contradicting our expectations of biogenic particles behaving as brown carbon. Nevertheless, additional measurements should be taken in the future, to provide a complete picture of biogenic aerosol absorption spectral characteristics from different seasons and geographic locations. The

  4. Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Vialla, Fabien; Roquelet, Cyrielle; Langlois, Benjamin; Delport, Géraud; Santos, Silvia Morim; Deleporte, Emmanuelle; Roussignol, Philippe; Delalande, Claude; Voisin, Christophe; Lauret, Jean-Sébastien

    2013-09-01

    The variation of the optical absorption of carbon nanotubes with their geometry has been a long-standing question at the heart of both metrological and applicative issues, in particular because optical spectroscopy is one of the primary tools for the assessment of the chiral species abundance of samples. Here, we tackle the chirality dependence of the optical absorption with an original method involving ultraefficient energy transfer in porphyrin-nanotube compounds that allows uniform photoexcitation of all chiral species. We measure the absolute absorption cross section of a wide range of semiconducting nanotubes at their S22 transition and show that it varies by up to a factor of 2.2 with the chiral angle, with type I nanotubes showing a larger absorption. In contrast, the luminescence quantum yield remains almost constant.

  5. Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-09-01

    We study the directional dependence of the absorption spectrum of ballistic nanowires in the presence of gate-controlled Rashba spin-orbit interaction and an in-plane magnetic field. In the weak Rashba regime, our analytical and numerical results show that the absorption peaks associated with the first and third intersubband transitions exhibit frequency shifts and strong amplitude modulations as the direction of the magnetic field changes. If the field is parallel to the nanowire axis, these peaks disappear and the resonance frequencies of the whole absorption spectrum are given merely in terms of the Zeeman splitting and the energy scale characterizing the confinement potential. The second transition has an absorption peak that suffers an opposite frequency shift with amplitude that is largely direction independent. The amplitude modulation and frequency shift of the absorption spectrum is periodic in the angle that the magnetic field makes with the nanowire axis.

  6. The Diffusion Eigenstates in a Periodic Porous Medium with a Strong Surface Absorption

    NASA Astrophysics Data System (ADS)

    Bergman, D. J.; Dunn, K. J.; Latorraca, G. A.

    1997-03-01

    The Bloch diffusion eigenstates of a periodic porous medium, but with an otherwise arbitrary microstructure, and with strong absorption at the pore/matrix interface, have been calculated by expanding them in a series of eigenfunctions of an unphysical porous medium which has the same microstructure but no interface absorption, and where the diffusion also takes place inside the matrix with a diffusion coefficient that approaches infinity. The results are especially simple in the case where the interface absorption coefficient is infinite and for the q=0 eigenstates, but are very accurate also for large but finite rho and arbitrary q-vectors. The results of such calculations are compared with previous calculations that were limited to the regime of low interface absorption.

  7. Temperature dependence of the excited state absorption of alexandrite

    SciTech Connect

    Shand, M.L.; Jenssen, H.P.

    1983-03-01

    The temperature dependence from 28 to 290/sup 0/C of the excited-state absorption cross section sigma /SUB 2a/ (E) in the gain wavelength region of alexandrite has been determined from the temperature dependence of the single pass gain (SPG) and of the fluorescence. sigma /SUB 2a/ (E) and the emission cross section increase with temperature at approximately the same rate.

  8. Absorption spectrum of an atom strongly coupled to a high-temperature reservoir

    NASA Astrophysics Data System (ADS)

    Kofman, A. G.

    2005-03-01

    We study the absorption spectrum of a weak probe field near resonant to an atomic transition, the upper level of which is strongly coupled to a third level by the interaction with a Lorentzian bosonic reservoir, such as, e.g., a mode of a high- Q cavity or a local vibration in a solid. The reservoir coupling is approximated by the interaction with a classical complex Gaussian-Markovian random process (control field), which is justified when the reservoir temperature exceeds significantly the mode frequency or when the high- Q cavity is pumped by broadband incoherent radiation. The present theory is applicable also when the control field is chaotic laser light. We assume that the rms control-field Rabi frequency V0 is much greater than the field detuning Δc , which, in turn, is much greater than the material relaxation constants. We reveal and describe analytically all qualitatively different regimes of the spectrum modification and obtain their validity conditions. The analytical results are verified by numerical calculations using the exact continued-fraction solution. The analytical formulas obtained allow one to perform fast computer calculations for arbitrarily small values of the reservoir (control-field) bandwidth ν , in contrast to the known numerical methods, which require sharply increasing computational resources with a decrease of ν . In the most interesting case ν≪V0 , the spectrum consists of two peaks, the nonvanishing bandwidth and material relaxation affecting mainly the dip between the peaks. The results obtained in the static limit (i.e., a very narrow reservoir) are independent of the reservoir band shape. We reveal reservoir-induced transparency (RIT)—i.e., absorption reduction due to the reservoir coupling. Moreover, two unexpected, remarkable features are uncovered in a range of intermediate values of ν and V0 , Γ2∣Δc∣≪V02ν≪∣Δc∣3 ( Γ is the spectral width in the absence of the control field): an extra peak in the dip

  9. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  10. Frequency-dependent effective hydraulic conductivity of strongly heterogeneous media.

    PubMed

    Caspari, E; Gurevich, B; Müller, T M

    2013-10-01

    The determination of the transport properties of heterogeneous porous rocks, such as an effective hydraulic conductivity, arises in a range of geoscience problems, from groundwater flow analysis to hydrocarbon reservoir modeling. In the presence of formation-scale heterogeneities, nonstationary flows, induced by pumping tests or propagating elastic waves, entail localized pressure diffusion processes with a characteristic frequency depending on the pressure diffusivity and size of the heterogeneity. Then, on a macroscale, a homogeneous equivalent medium exists, which has a frequency-dependent effective conductivity. The frequency dependence of the conductivity can be analyzed with Biot's equations of poroelasticity. In the quasistatic frequency regime of this framework, the slow compressional wave is a proxy for pressure diffusion processes. This slow compressional wave is associated with the out-of-phase motion of the fluid and solid phase, thereby creating a relative fluid-solid displacement vector field. Decoupling of the poroelasticity equations gives a diffusion equation for the fluid-solid displacement field valid in a poroelastic medium with spatial fluctuations in hydraulic conductivity. Then, an effective conductivity is found by a Green's function approach followed by a strong-contrast perturbation theory suggested earlier in the context of random dielectrics. This theory leads to closed-form expressions for the frequency-dependent effective conductivity as a function of the one- and two-point probability functions of the conductivity fluctuations. In one dimension, these expressions are consistent with exact solutions in both low- and high-frequency limits for arbitrary conductivity contrast. In 3D, the low-frequency limit depends on the details of the microstructure. However, the derived approximation for the effective conductivity is consistent with the Hashin-Shtrikman bounds.

  11. Extinction risk depends strongly on factors contributing to stochasticity.

    PubMed

    Melbourne, Brett A; Hastings, Alan

    2008-07-01

    Extinction risk in natural populations depends on stochastic factors that affect individuals, and is estimated by incorporating such factors into stochastic models. Stochasticity can be divided into four categories, which include the probabilistic nature of birth and death at the level of individuals (demographic stochasticity), variation in population-level birth and death rates among times or locations (environmental stochasticity), the sex of individuals and variation in vital rates among individuals within a population (demographic heterogeneity). Mechanistic stochastic models that include all of these factors have not previously been developed to examine their combined effects on extinction risk. Here we derive a family of stochastic Ricker models using different combinations of all these stochastic factors, and show that extinction risk depends strongly on the combination of factors that contribute to stochasticity. Furthermore, we show that only with the full stochastic model can the relative importance of environmental and demographic variability, and therefore extinction risk, be correctly determined. Using the full model, we find that demographic sources of stochasticity are the prominent cause of variability in a laboratory population of Tribolium castaneum (red flour beetle), whereas using only the standard simpler models would lead to the erroneous conclusion that environmental variability dominates. Our results demonstrate that current estimates of extinction risk for natural populations could be greatly underestimated because variability has been mistakenly attributed to the environment rather than the demographic factors described here that entail much higher extinction risk for the same variability level.

  12. The origin of the strong microwave absorption in black TiO2

    NASA Astrophysics Data System (ADS)

    Li, Kexue; Xu, Jilian; Yan, Xiaodong; Liu, Lei; Chen, Xiaobo; Luo, Yongshi; He, Jun; Shen, D. Z.

    2016-05-01

    In this study, the mechanism of the strong microwave absorption in black TiO2 nanoparticles has been investigated both experimentally and theoretically. In experiment, the amorphous TiO2 nanoparticles/paraffin wax composites show the reflection loss (RL) of -4.0 dB, which is much smaller compared with the RL of -49.0 dB in those core/shell structure ones. Theoretically, the calculation illustrates that the accumulated charge of 1013 cm-3 at the core/shell interface results in the plasmon resonance with the incident microwave frequency at 9.3 GHz and 27.0 GHz. The microwave absorption enhancement of the black TiO2 nanoparticles is proposed to originate from the synergy mechanism between their crystalline-cores and amorphous-shells, rather than the defects and impurities in amorphous phase.

  13. Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation.

    PubMed

    Engholm, M; Norin, L; Aberg, D

    2007-11-15

    A broad visible luminescence band and characteristic IR luminescence of Yb(3+) ions are observed under UV excitation in ytterbium-doped aluminosilicate glass. Samples made under both oxidizing and reducing conditions are analyzed. A strong charge-transfer absorption band in the UV range is observed for glass samples containing ytterbium. Additional absorption bands are observed for the sample made under reducing conditions, which are associated with f-d transitions of divalent ytterbium. The visible luminescence band is attributed to 5d-4f emission from Yb(2+) ions, and the IR luminescence is concluded to originate from a relaxed charge-transfer transition. The findings are important to explain induced optical losses (photodarkening) in high-power fiber lasers. PMID:18026305

  14. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires.

    PubMed

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  15. Strong Surface Orientation Dependent Thermal Transport in Si Nanowires

    PubMed Central

    Zhou, Yanguang; Chen, Yuli; Hu, Ming

    2016-01-01

    Thermoelectrics, which convert waste heat to electricity, offer an attractive pathway for addressing an important niche in the globally growing landscape of energy demand. Research to date has focused on reducing the thermal conductivity relative to the bulk. Si nanowires (NWs) have received exceptional attention due to their low-dimensionality, abundance of availability, and high carrier mobility. From thermal transport point of view, the thermal conductivity of Si NWs strongly depends on the detailed surface structure, such as roughness and surface orientation. Here, direct molecular dynamics simulations and theoretical models are used to investigate the thermal transport in Si NWs with diverse surface orientations. Our results show that the thermal conductivity of Si NWs with different surface orientation can differ by as large as 2.7~4.2 times, which suggests a new route to boost the thermoelectric performance. Using the full spectrum theory, we find that the surface orientation, which alters the distribution of atoms on the surface and determines the degree of phonon coupling between the core and the surface, is the dominant mechanism. Furthermore, using spectral thermal conductivity, the remarkable difference in the thermal conductivity for different surface orientation is found to only stem from the phonons in the medium frequency range, with minor contribution from low and high frequency phonons. PMID:27113556

  16. Exciton Absorption in Semiconductor Quantum Wells Driven by a Strong Intersubband Pump Field

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    1999-01-01

    Optical interband excitonic absorption of semiconductor quantum wells (QW's) driven by a coherent pump field is investigated based on semiconductor Bloch equations. The pump field has a photon energy close to the intersubband spacing between the first two conduction subbands in the QW's. An external weak optical field probes the interband transition. The excitonic effects and pump-induced population redistribution within the conduction subbands in the QW system are included. When the density of the electron-hole pairs in the QW structure is low, the pump field induces an Autler-Townes splitting of the exciton absorption spectrum. The split size and the peak positions of the absorption doublet depend not only on the pump frequency and intensity but also on the carrier density. As the density of the electron-hole pairs is increased, the split contrast (the ratio between the maximum and minimum values) is decreased because the exciton effect is suppressed at higher densities due to the many-body screening.

  17. Modelling polarization dependent absorption: The vectorial Lambert-Beer law

    NASA Astrophysics Data System (ADS)

    Franssens, G.

    2014-07-01

    The scalar Lambert-Beer law, describing the absorption of unpolarized light travelling through a linear non-scattering medium, is simple, well-known, and mathematically trivial. However, when we take the polarization of light into account and consider a medium with polarization dependent absorption, we now need a Vectorial Lambert-Beer Law (VLBL) to quantify this interaction. Such a generalization of the scalar Lambert-Beer law appears not to be readily available. A careful study of this topic reveals that it is not a trivial problem. We will see that the VLBL is not and cannot be a straightforward vectorized version of its scalar counterpart. The aim of the work is to present the general form of the VLBL and to explain how it arises. A reasonable starting point to derive the VLBL is the Vectorial Radiative Transfer Equation (VRTE), which models the absorption and scattering of (partially) polarized light travelling through a linear medium. When we turn off scattering, the VRTE becomes an infinitesimal model for the VLBL holding in the medium. By integrating this equation, we expect to find the VLBL. Surprisingly, this is not the end of the story. It turns out that light propagation through a medium with polarization-dependent absorption is mathematically not that trivial. The trickiness behind the VLBL can be understood in the following terms. The matrix in the VLBL, relating any input Stokes vector to the corresponding output Stokes vector, must necessarily be a Mueller matrix. The subset of invertible Mueller matrices forms a Lie group. It is known that this Lie group contains the ortho-chronous Lorentz group as a subgroup. The group manifold of this subgroup has a (well-known) non-trivial topology. Consequently, the manifold of the Lie group of Mueller matrices also has (at least the same, but likely a more general) non-trivial topology (the full extent of which is not yet known). The type of non-trivial topology, possessed by the manifold of (invertible

  18. Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Cui, Yuanshun; Bian, Xintian; Zuo, Fen; Yu, Hualing; Chen, Guibin

    2016-08-01

    We investigate theoretically the response of the output field from an optomechanical system consisting of N nearly degenerate mechanical resonators each coupled to a common cavity mode. When the cavity is driven simultaneously by a strong control field and a weak probe field and each mechanical resonator is driven by a coherent mechanical pump, we obtain the analytical expression for the probe transmission. We show that the probe transmission spectrum can exhibit multiple optomechanically induced absorption (OMIA) with at most N narrow absorption dips, which can be tuned by the phase and amplitude of the mechanical driving field as well as the control field. Moreover, it is shown that the peak probe transmission can be enhanced or suppressed by increasing the amplitude of the mechanical pump, which depends on the phase difference. This phase-dependent effect plays an important role in controlling the propagation of the probe field between OMIA and parametric amplification.

  19. INCLINATION-DEPENDENT ACTIVE GALACTIC NUCLEUS FLUX PROFILES FROM STRONG LENSING OF THE KERR SPACETIME

    SciTech Connect

    Chen, Bin; Dai, Xinyu; Baron, E.

    2013-01-10

    Recent quasar microlensing observations have constrained the X-ray emission sizes of quasars to be about 10 gravitational radii, one order of magnitude smaller than the optical emission sizes. Using a new ray-tracing code for the Kerr spacetime, we find that the observed X-ray flux is strongly influenced by the gravity field of the central black hole, even for observers at moderate inclination angles. We calculate inclination-dependent flux profiles of active galactic nuclei in the optical and X-ray bands by combining the Kerr lensing and projection effects for future reference. We further study the dependence of the X-ray-to-optical flux ratio on the inclination angle caused by differential lensing distortion of the X-ray and optical emission, assuming several corona geometries. The strong lensing X-ray-to-optical magnification ratio can change by a factor of {approx}10 for normal quasars in some cases, and a further factor of {approx}10 for broad absorption line (BAL) quasars and obscured quasars. Comparing our results with the observed distributions in normal and BAL quasars, we find that the inclination angle dependence of the magnification ratios can significantly change the X-ray-to-optical flux ratio distributions. In particular, the mean value of the spectrum slope parameter {alpha}{sub ox}, 0.3838log F {sub 2keV}/F {sub 2500A}, can differ by {approx}0.1-0.2 between normal and BAL quasars, depending on corona geometries, suggesting larger intrinsic absorptions in BAL quasars.

  20. Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

    SciTech Connect

    Sekino, M; Okamoto, Satoshi; Koshibae, W; Mori, Michiyasu; Maekawa, Sadamichi

    2014-01-01

    Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about nonmonotonic temperature dependence of the hermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.

  1. 'Diamondlike' carbon films - Optical absorption, dielectric properties, and hardness dependence on deposition parameters

    NASA Technical Reports Server (NTRS)

    Natarajan, V.; Lamb, J. D.; Woollam, J. A.; Liu, D. C.; Gulino, D. A.

    1985-01-01

    An RF plasma deposition system was used to prepare amorphous 'diamondlike' carbon films. The source gases for the RF system include methane, ethylene, propane, and propylene, and the parameters varied were power, dc substrate bias, and postdeposition anneal temperature. Films were deposited on various substrates. The main diagnostics were optical absorption in the visible and in the infrared, admittance as a function of frequency, hardness, and Auger and ESCA spectroscopy. Band gap is found to depend strongly on RF power level and band gaps up to 2.7 eV and hardness up to 7 Mohs were found. There appears to be an inverse relationship between hardness and optical band gap.

  2. Geometrical dependence of spin current absorption into a ferromagnetic nanodot

    NASA Astrophysics Data System (ADS)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi

    2016-10-01

    We have investigated the absorption property of the diffusive pure spin current due to a ferromagnetic nanodot in a laterally configured ferromagnetic/nonmagnetic hybrid nanostructure. The spin absorption in a nano-pillar-based lateral-spin-valve structure was confirmed to increase with increasing the lateral dimension of the ferromagnetic dot. However, the absorption efficiency was smaller than that in a conventional lateral spin valve based on nanowire junctions because the large effective cross section of the two dimensional nonmagnetic film reduces the spin absorption selectivity. We also found that the absorption efficiency of the spin current is significantly enhanced by using a thick ferromagnetic nanodot. This can be understood by taking into account the spin absorption through the side surface of the ferromagnetic dot quantitatively.

  3. Measured Wavelength-Dependent Absorption Enhancement of Internally Mixed Black Carbon with Absorbing and Nonabsorbing Materials.

    PubMed

    You, Rian; Radney, James G; Zachariah, Michael R; Zangmeister, Christopher D

    2016-08-01

    Optical absorption spectra of laboratory generated aerosols consisting of black carbon (BC) internally mixed with nonabsorbing materials (ammonium sulfate, AS, and sodium chloride, NaCl) and BC with a weakly absorbing brown carbon surrogate derived from humic acid (HA) were measured across the visible to near-IR (550 to 840 nm). Spectra were measured in situ using a photoacoustic spectrometer and step-scanning a supercontinuum laser source with a tunable wavelength and bandwidth filter. BC had a mass-specific absorption cross section (MAC) of 7.89 ± 0.25 m(2) g(-1) at λ = 550 nm and an absorption Ångström exponent (AAE) of 1.03 ± 0.09 (2σ). For internally mixed BC, the ratio of BC mass to the total mass of the mixture was chosen as 0.13 to mimic particles observed in the terrestrial atmosphere. The manner in which BC mixed with each material was determined from transmission electron microscopy (TEM). AS/BC and HA/BC particles were fully internally mixed, and the BC was both internally and externally mixed for NaCl/BC particles. The AS/BC, NaCl/BC, and HA/BC particles had AAEs of 1.43 ± 0.05, 1.34 ± 0.06, and 1.91 ± 0.05, respectively. The observed absorption enhancement of mixed BC relative to the pure BC was wavelength dependent for AS/BC and decreased from 1.5 at λ = 550 nm with increasing wavelength while the NaCl/BC enhancement was essentially wavelength independent. For HA/BC, the enhancement ranged from 2 to 3 and was strongly wavelength dependent. Removal of the HA absorption contribution to enhancement revealed that the enhancement was ≈1.5 and independent of wavelength. PMID:27359341

  4. TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS

    SciTech Connect

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E.; Wyithe, J. Stuart B.; Levan, Andrew J.

    2012-08-01

    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  5. The velocity distribution of interstellar gas observed in strong UV absorption lines

    NASA Technical Reports Server (NTRS)

    Cowie, L. L.; York, D. G.

    1978-01-01

    Observations of three strong interstellar UV absorption lines of N I (1199 A), N II (1083 A), and Si III (1206 A) in 47 stars of widely varying distance and a variety of spectral types are analyzed to obtain a velocity distribution function for the interstellar gas. A technique based on the maximum and minimum velocities observed along a line of sight is adopted because of heavy line blending, and results are discussed for both power-law and exponential distribution functions. The expected distribution of radiative-phase supernova remnants (SNRs) in the interstellar medium is calculated as a function of SNR birthrate and of the interstellar density in which they evolve. The results are combined with observed distance estimates, and it is shown that an interstellar density in excess of 0.1 per cu cm would be required to keep the SNRs sufficiently confined so that their cross sections are consistent with the observed number of components. The alternative possibility is considered that SNRs do not enter the radiative phase before escaping from the Galaxy or colliding with neighboring remnants.

  6. Tracking dissociation dynamics of strong-field ionized 1,2-dibromoethane with femtosecond XUV transient absorption spectroscopy.

    PubMed

    Chatterley, Adam S; Lackner, Florian; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2016-06-01

    Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2). The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br(++). However, the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br(+), and Br(++), respectively. Transient molecular ion features assigned to DBE(+) and DBE(++) are observed, with dynamics linked to the production of Br(+) products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE(+) ions on a shallow potential energy surface. The appearance of Br(+) ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE(+) ionic species. Dicationic Br(++) products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE. PMID:27183104

  7. PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY

    SciTech Connect

    Johansen, Anders; Youdin, Andrew; Mac Low, Mordecai-Mark

    2009-10-20

    We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the mid-plane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebble-to-gas column density ratio is 0.01, corresponding roughly to solar metallicity, clumping is weak, so the pebble density rarely exceeds the gas density. Doubling the column density ratio leads to a dramatic increase in clumping, with characteristic particle densities more than 10 times the gas density and maximum densities reaching several thousand times the gas density. This is consistent with unstratified simulations of the streaming instability that show strong clumping in particle-dominated flows. The clumps readily contract gravitationally into interacting planetesimals on the order of 100 km in radius. Our results suggest that the correlation between host star metallicity and exoplanets may reflect the early stages of planet formation. We further speculate that initially low-metallicity disks can be particle enriched during the gas dispersal phase, leading to a late burst of planetesimal formation.

  8. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  9. The strong environmental dependence of black hole scaling relations

    NASA Astrophysics Data System (ADS)

    McGee, Sean L.

    2013-12-01

    We investigate how the scaling relations between central black hole mass and host galaxy properties (velocity dispersion, bulge stellar mass and bulge luminosity) depend on the large-scale environment. For each of a sample of 69 galaxies with dynamical black hole measurements we compile four environmental measures (nearest-neighbour distance, fixed aperture number density, total halo mass and central/satellite). We find that central and satellite galaxies follow distinctly separate scalings in each of the three relations we have examined. The M•-σ relation of central galaxies is significantly steeper (β = 6.38 ± 0.49) than that of satellite galaxies (β = 4.91 ± 0.49), but has a similar intercept. This behaviour remains even after restricting to a sample of only early-type galaxies or after removing the eight brightest cluster galaxies. The M•-σ relation shows more modest differences when splitting the sample based on the other environmental indicators, suggesting that they are driven by the underlying satellite/central fractions. Separate relations for centrals and satellites are also seen in the power-law scaling between black hole mass and bulge stellar mass or bulge luminosity. We suggest that gas rich, low-mass galaxies undergo a period of rapid black hole growth in the process of becoming satellites. If central galaxies in the current M•-σ relation are representative progenitors of the satellite population, the observations imply that a σ = 120 km s-1 galaxy must nearly triple its central black hole mass. The elevated black hole masses of massive central galaxies are then a natural consequence of the accretion of satellites.

  10. Experimental investigations of absorption and dispersion profiles of a strongly driven transition: [ital ssV]-shaped three-level system with a strong probe

    SciTech Connect

    Wei, C.; Manson, N.B.; Martin, J.P.D. )

    1995-02-01

    This paper reports on experimental investigations of absorption, dispersion, and amplitude profiles of the Autler-Townes doublet in a [ital ssV]-shaped three-level system where the probe field intensities varied from weak to strong. The experiments were carried out on the ground-state hyperfine transitions of the nitrogen-vacancy color center in diamond using the Raman heterodyne technique, a sensitive optically detected magnetic resonance technique. A strong pump field is on resonance with the [ital I][sub [ital z

  11. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  12. Fermi energy-dependence of electromagnetic wave absorption in graphene

    NASA Astrophysics Data System (ADS)

    Shoufie Ukhtary, M.; Hasdeo, Eddwi H.; Nugraha, Ahmad R. T.; Saito, Riichiro

    2015-05-01

    Undoped graphene is known to absorb 2.3% of visible light at a normal angle of incidence. In this paper, we theoretically demonstrate that the absorption of 10-100 GHz of an electromagnetic wave can be tuned from nearly 0 to 100% by varying the Fermi energy of graphene when the angle of incidence of the electromagnetic wave is kept within total internal reflection geometry. We calculate the absorption probability of the electromagnetic wave as a function of the Fermi energy of graphene and the angle of incidence of the wave. These results open up possibilities for the development of simple electromagnetic wave-switching devices operated by gate voltage.

  13. Wavelength dependence of aerosol light absorption in urban and biomass burning impacted conditions: An integrative perspective

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Gyawali, M.; Lewis, K.; Moosmuller, H.

    2009-12-01

    Aerosol light absorption depends on aerosol size, morphology, mixing state, and composition. The wavelength dependence is often characterized with use of the Angstrom coefficient for absorption (AAE) determined from measurements at two or more wavelengths. Low fractal dimension black carbon (BC) particles are often expected to have an AAE near unity. Values of AAE significantly larger than unity are often attributed to the presence of an organic coating that absorbs strongly at lower wavelengths, though we have found that even non absorbing coatings on small, biomass burning related BC cores can have large AAE. Values of AAE significantly less than unity are often ascribed to experimental errors or large particle sizes, however, we find that they are most commonly associated with modest absorbing or non absorbing organic coatings that collapse the fractal soot BC core in urban aerosol to a dimension near that of a sphere. Photoacoustic measurements at 405 nm, 532 nm, 870 nm, and 1047 nm in urban Reno and Las Vegas NV, and for biomass burning experiments are used presented to illustrate the range of AAE possible, and coated sphere modeling results are presented to interpret the measurements.

  14. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  15. Composition dependence of the ultraviolet absorption edge in lithium tantalate

    NASA Astrophysics Data System (ADS)

    Bäumer, Ch.; David, C.; Tunyagi, A.; Betzler, K.; Hesse, H.; Krätzig, E.; Wöhlecke, M.

    2003-03-01

    Comprehensive preparations of lithium tantalate crystals with compositions ranging from the congruent to stoichiometric ones have been carried out. Vapor transport equilibration treatments were used to determine the composition of the samples with an absolute accuracy of 0.05 mol %. This absolute determination of the composition can serve as the basis for convenient relative methods where an easily measurable physical property allows a simple determination of the composition. As an example, we present a study of the fundamental absorption edge in the near-ultraviolet region.

  16. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  17. Absorption in Music: Development of a Scale to Identify Individuals with Strong Emotional Responses to Music

    ERIC Educational Resources Information Center

    Sandstrom, Gillian M.; Russo, Frank A.

    2013-01-01

    Despite the rise in research investigating music and emotion over the last decade, there are no validated measures of individual differences in emotional responses to music. We created the Absorption in Music Scale (AIMS), a 34-item measure of individuals' ability and willingness to allow music to draw them into an emotional experience. It was…

  18. Site-dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1977-01-01

    A procedure has been developed which can be used to determine the economic feasibility of solar powered absorption cooling systems. This procedure has been used in a study to investigate the influence of the site-dependent parameters on the economic feasibility of solar absorption cooling. The purpose of this study was to make preliminary site selections for solar powered absorption cooling systems. This paper summarizes the results of that study.

  19. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  20. Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots

    SciTech Connect

    Dakovski, Georgi L.; Shan, Jie

    2013-01-01

    Quantum confinement plays an important role in the optical properties of semiconductor quantum dots (QDs). In this work, we combine experiment and modeling to systematically investigate the size dependence of the degenerate two-photon absorption (TPA) of below-band-gap radiation in CdSe QDs. The TPA coefficient β at 800 nm of CdSe QDs of varying radii was measured using femtosecond white-light transient absorption spectroscopy by probing the pump-induced bleaching at the first exciton transition energy. β was also calculated using a model based on the multiband effective-mass approximation. Satisfactory agreement between experiment and theory was obtained. Our findings show the evolution of the TPA in the QDs from that of atom-like to bulk-like with increasing the radius R. The TPA coefficient (or the volume normalized TPA cross-section) increases with radius approximately linearly in the strong confinement regime due to the rapid increase of the joint density of states for the two-photon allowed transitions, and saturates for R > 5 nm (the exciton Bohr radius), approaching that of bulk CdSe.

  1. STRONG EVOLUTION OF X-RAY ABSORPTION IN THE TYPE IIn SUPERNOVA SN 2010jl

    SciTech Connect

    Chandra, Poonam; Chevalier, Roger A.; Irwin, Christopher M.; Chugai, Nikolai; Fransson, Claes; Soderberg, Alicia M.

    2012-05-01

    We report two epochs of Chandra-ACIS X-ray imaging spectroscopy of the nearby bright Type IIn supernova SN 2010jl, taken around two months and then a year after the explosion. The majority of the X-ray emission in both spectra is characterized by a high temperature ({approx}> 10 keV) and is likely to be from the forward shocked region resulting from circumstellar interaction. The absorption column density in the first spectrum is high ({approx}10{sup 24} cm{sup -2}), more than three orders of magnitude higher than the Galactic absorption column, and we attribute it to absorption by circumstellar matter. In the second epoch observation, the column density has decreased by a factor of three, as expected for shock propagation in the circumstellar medium. The unabsorbed 0.2-10 keV luminosity at both epochs is {approx}7 Multiplication-Sign 10{sup 41} erg s{sup -1}. The 6.4 keV Fe line clearly present in the first spectrum is not detected in the second spectrum. The strength of the fluorescent line is roughly that expected for the column density of circumstellar gas, provided the Fe is not highly ionized. There is also evidence for an absorbed power-law component in both spectra, which we attribute to a background ultraluminous X-ray source.

  2. Halo Mass Dependence of HI Absorption: Evidence for Differential Kinematics

    NASA Astrophysics Data System (ADS)

    Mathes, Nigel; Churchill, Christopher W.; Kacprzak, Glenn; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian; Charlton, Jane C.; Muzahid, Sowgat

    2015-01-01

    We present an analysis of the kinematics of HI and OVI absorption surrounding 14 z < 1 galaxies within a projected distance of D=300 kpc of background quasars. With high resolution HST/COS spectroscopy and HST/WFPC2 imaging, we are able to accurately derive absorbing cloud velocities and galaxy virial masses. Relating the cloud velocities to the galaxy escape velocity at the projected distance, we have determined that lower mass galaxies, with virial masses less than log(M) < 11.5 solar masses, have a larger fraction of clouds with velocities exceeding the galaxy escape velocity (65% of clouds around lower mass galaxies are observed moving faster than the escape velocity, compared to only 5% around higher mass galaxies). In fact, we show that any clouds with velocities greater than the galaxy escape velocity must trace outflowing gas. Our findings support a theoretical scenario of differential wind recycling, as proposed by Oppenheimer+ 2010, where outflows preferentially leave the CGM and pollute the IGM around lower mass galaxies, but remain bound within the CGM and can recycle in higher mass galaxies. We test theoretical wind models and find the data inconsistent with wind speeds that scale with galaxy mass; however, we do show a range of wind scenarios which can reproduce the observed differential kinematics. These observations help to explain both the observed mass metallicity relationship in the ISM of nearby galaxies and the shape of the stellar to halo mass function.

  3. Design for strong absorption in a nanowire array tandem solar cell

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-08-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1–2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells.

  4. Design for strong absorption in a nanowire array tandem solar cell.

    PubMed

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-08-30

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1-2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells.

  5. Design for strong absorption in a nanowire array tandem solar cell

    PubMed Central

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-01-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1–2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells. PMID:27574019

  6. Design for strong absorption in a nanowire array tandem solar cell.

    PubMed

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-01-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1-2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells. PMID:27574019

  7. Correlation functions of scattering matrix elements in microwave cavities with strong absorption

    NASA Astrophysics Data System (ADS)

    Schäfer, R.; Gorin, T.; Seligman, T. H.; Stöckmann, H.-J.

    2003-03-01

    The scattering matrix was measured for microwave cavities with two antennae. It was analysed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behaviour can only be modelled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems.

  8. Temperature-dependent spectral weight transfer in YBa2Cu3Ox probed by x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, J.-Y.

    2010-03-01

    The x-ray absorption spectroscopy was utilized to critically examine the temperature dependency of the spectral weight in YBa2Cu3Ox. Large excess spectral weight for the Zhang- Rice singlet due to dynamics of holes is found with its doping dependence showing similar doom-like shape as that for Tc. Furthermore, appreciable spectral weight transfer from the upper Hubbard band to Zhang-Rice singlet was observed as the temperature acrosses the onset temperature for the pseudogap. The observed spectral weight transfer follows the change of the pseudogap, indicating a strong link between pseudogap and the upper Hubbard band.

  9. Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells.

    PubMed

    Song, Guosheng; Shen, Jia; Jiang, Feiran; Hu, Ronggui; Li, Wenyao; An, Lei; Zou, Rujia; Chen, Zhigang; Qin, Zongyi; Hu, Junqing

    2014-03-26

    The molybdenum oxide nanosheets have shown strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (NIR) region. However, the long alky chains of ligands made them hydrophobic and less biocompatible. To meet the requirements of molybdenum based nanomaterials for use as a future photothermal therapy, a simple hydrothermal route has been developed for hydrophilic molybdenum oxide nanospheres and nanoribbons using a molybdenum precursor and poly(ethylene glycol) (PEG). First, molybdenum oxide nanomaterials prepared in the presence of PEG exhibit strong localized surface plasmon resonance (LSPR) absorption in near-infrared (NIR) region, compared with that of no PEG. Second, elevation of synthetic temperature leads to a gradual transformation of molybdenum oxide nanospheres into nanoribbons, entailing the evolution of an intense LSPR absorption in the NIR region. Third, as-prepared molybdenum oxide nanomaterials coated with PEG possess a hydrophilic property and thus can be directly used for biological applications without additional post treatments. Moreover, molybdenum oxide nanoribbons as a model of photothermal materials can efficiently convert the 980 nm wavelength laser energy into heat energy, and this localized hyperthermia produces the effective thermal ablation of cancer cells, meaning a potential photothermal material.

  10. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  11. Correlated multielectron systems in strong laser fields: A multiconfiguration time-dependent Hartree-Fock approach

    SciTech Connect

    Caillat, J.; Scrinzi, A.; Koch, O.; Kreuzer, W.

    2005-01-01

    The multiconfiguration time-dependent Hartree-Fock approach for the description of correlated few-electron dynamics in the presence of strong laser fields is introduced and a comprehensive description of the method is given. Total ionization and electron spectra for the ground and first excited ionic channels are calculated for one-dimensional model systems with up to six active electrons. Strong correlation effects are found in the shape of photoelectron peaks and the dependence of ionization on molecule size.

  12. Time-dependent gain and absorption in a 5 J U preionized Xe Cl laser

    SciTech Connect

    Taylor, R.S.; Alcock, A.J.; Corkum, P.B.; Leopold, K.E.; Watanabe, S.

    1983-03-01

    The operating characteristics of a wide aperture (5 X 4.5 cm/sup 2/), high output energy (5 J), UV preionized XeCl lasers are described. The time dependence of the gain and absorption have been measured for both He and Ne based laser gas mixes. These measurements were correlated with the discharge current and voltage waveforms. For optimized laser gas mixes and pressures, the absorption for He based laser mixes was ten times higher than for Ne based mixes. Absorption data are also presented for the component gas mixes.

  13. Dependence of intestinal iron absorption on the valency state of iron.

    PubMed

    Wollenberg, P; Rummel, W

    1987-11-01

    1. In rats iron was absorbed after administration into the gut lumen as ferric iron bound to serum albumin, to nitrilotriacetic acid, and to 8-OH-quinoline sulfonic acid, or as isolated diferri-transferrin. 2. Iron absorption from 59Fe-labelled transferrin was inhibited by the addition of rat plasma. 3. The inhibitory component in the rat plasma turned out to be ceruloplasmin (ferrous iron oxidase, EC 1.16.2.1). 4. The absorption of iron from these ferric iron complexes was also inhibited by addition to the incubation medium of ferrozine, a strong anionic Fe(II)-ligand. 5. Uptake and absorptive utilization of transferrin-bound ferric iron was decreased after a prewash of the gut lumen and could be restored by the addition of ascorbate to the incubation medium. 6. The conclusion was drawn from these results that luminal reduction precedes ferric iron absorption and that this is a prerequisite for the uptake into the mucosa.

  14. Strong-field induced dissociation dynamics in 1,2-dibromoethane traced by femtosecond XUV transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chatterley, A. S.; Lackner, F.; Neumark, D. M.; Leone, S. R.; Gessner, O.

    2016-05-01

    Strong field induced dissociation dynamics of the small haloalkane 1,2-dibromoethane (DBE) have been explored using femtosecond XUV transient absorption spectroscopy. Dynamics are initiated by a near IR pump pulse with intensities between 75 and 220 TW cm-2, and are probed by the atomic site specific XUV absorption of the Br 3d levels. Immediately upon ionization, the spectral signatures of molecular ions appear. These molecular peaks decay in tandem with the appearance of atomic Br peaks in charge states of 0, + 1 and + 2, which are all monitored simultaneously. Neutral Br atoms are eliminated in 300 fs, presumably from statistical dissociation of vibrationally hot DBE+ ions, Br+ ions are eliminated in 70 fs from a more energetic dissociative ionization pathway, and Br++ ions are eliminated within the duration of the 35 fs pump pulse. The simultaneous recording of multiple parent molecule and fragment ion traces enables new insight into predominant dissociation pathways induced by strong field ionization of organic molecules.

  15. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

    NASA Astrophysics Data System (ADS)

    Fukutomi, Daichi; Ishii, Katsunori; Awazu, Kunio

    2016-04-01

    The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

  16. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    SciTech Connect

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.; Campillay, Abdo; Contreras, Carlos; Simon, Joshua D.; Burns, Christopher R.; Persson, Sven E.; Thompson, I. B.; Freedman, Wendy L.; Cox, Nick L. J.; Foley, Ryan J.; Karakas, Amanda I.; Patat, F.; Sternberg, A.; Williams, R. E.; Gal-Yam, A.; Leonard, D. C.; Stritzinger, Maximilian; Folatelli, Gastón; and others

    2013-12-10

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with the progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.

  17. Observation of temperature dependence of the IR hydroxyl absorption bands in silica optical fiber

    NASA Astrophysics Data System (ADS)

    Yu, Li; Bonnell, Elizabeth; Homa, Daniel; Pickrell, Gary; Wang, Anbo; Ohodnicki, P. R.; Woodruff, Steven; Chorpening, Benjamin; Buric, Michael

    2016-07-01

    This study reports on the temperature dependent behavior of silica based optical fibers upon exposure to high temperatures in hydrogen and ambient air. The hydroxyl absorption bands in the wavelength range of 1000-2500 nm of commercially available multimode fibers with pure silica and germanium doped cores were examined in the temperature range of 20-800 °C. Two hydroxyl-related infrared absorption bands were observed: ∼2200 nm assigned to the combination of the vibration mode of Si-OH bending and the fundamental hydroxyl stretching mode, and ∼1390 nm assigned to the first overtone of the hydroxyl stretching. The absorption in the 2200 nm band decreased in intensity, while the 1390 nm absorption band shifted to longer wavelengths with an increase in temperature. The observed phenomena were reversible with temperature and suspected to be due, in part, to the conversion of the OH spectral components into each other and structural relaxation.

  18. Glucose-dependent insulinotropic polypeptide regulates dipeptide absorption in mouse jejunum.

    PubMed

    Coon, Steven D; Schwartz, John H; Rajendran, Vazhaikkurichi M; Jepeal, Lisa; Singh, Satish K

    2013-11-15

    Glucose-dependent insulinotropic polypeptide (GIP) secreted from jejunal mucosal K cells augments insulin secretion and plays a critical role in the pathogenesis of obesity and Type 2 diabetes mellitus. In recent studies, we have shown GIP directly activates Na-glucose cotransporter-1 (SGLT1) and enhances glucose absorption in mouse jejunum. It is not known whether GIP would also regulate other intestinal nutrient absorptive processes. The present study investigated the effect of GIP on proton-peptide cotransporter-1 (PepT1) that mediates di- and tripeptide absorption as well as peptidomimetic drugs. Immunohistochemistry studies localized both GIP receptor (GIPR) and PepT1 proteins on the basolateral and apical membranes of normal mouse jejunum, respectively. Anti-GIPR antibody detected 50-, 55-, 65-, and 70-kDa proteins, whereas anti-PepT1 detected a 70-kDa proteins in mucosal homogenates of mouse jejunum. RT-PCR analyses established the expression of GIPR- and PepT1-specific mRNA in mucosal cells of mouse jejunum. Absorption of Gly-Sar (a nondigestible dipeptide) measured under voltage-clamp conditions revealed that the imposed mucosal H(+) gradient-enhanced Gly-Sar absorption as an evidence for the presence of PepT1-mediated H(+):Gly-Sar cotransport on the apical membranes of mouse jejunum. H(+):Gly-Sar absorption was completely inhibited by cephalexin (a competitive inhibitor of PepT1) and was activated by GIP. The GIP-activated Gly-Sar absorption was completely inhibited by RP-cAMP (a cAMP antagonist). In contrast to GIP, the ileal L cell secreting glucagon-like peptide-1 (GLP-1) did not affect the H(+):Gly-Sar absorption in mouse jejunum. We conclude from these observations that GIP, but not GLP-1, directly activates PepT1 activity by a cAMP-dependent signaling pathway in jejunum.

  19. The nondigestible disaccharide epilactose increases paracellular Ca absorption via rho-associated kinase- and myosin light chain kinase-dependent mechanisms in rat small intestines.

    PubMed

    Suzuki, Takuya; Nishimukai, Megumi; Takechi, Maki; Taguchi, Hidenori; Hamada, Shigeki; Yokota, Atsushi; Ito, Susumu; Hara, Hiroshi; Matsui, Hirokazu

    2010-02-10

    We previously showed that epilactose, a nondigestible disaccharide, increased calcium (Ca) absorption in the small intestines of rats. Here, we explored the mechanism(s) underlying the epilactose-mediated promotion of Ca absorption in a ligated intestinal segment of anesthetized rats. The addition of epilactose to the luminal solution increased Ca absorption and chromium (Cr)-EDTA permeability, a paracellular indicator, with a strong correlation (R = 0.93) between these changes. Epilactose induced the phosphorylation of myosin regulatory light chains (MLCs), which is known to activate the paracellular route, without any change in the association of tight junction proteins with the actin cytoskeleton. The epilactose-mediated promotion of the Ca absorption was suppressed by specific inhibitors of myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). These results indicate that epilactose increases paracellular Ca absorption in the small intestine of rats through the induction of MLC phosphorylation via MLCK- and ROCK-dependent mechanisms.

  20. Thermal convection in a 3D spherical shell with strongly temperature and pressure dependent viscosity

    NASA Astrophysics Data System (ADS)

    Stemmer, K.; Harder, H.; Hansen, U.

    2004-12-01

    The style of convection in planetary mantles is presumably dominated by the strong dependence of the viscosity of the mantle material on temperature and pressure. While several efforts have been undertaken in cartesian geometry to investigate convection in media with strong temperature dependent viscosity, spherical models are still in their infancy and still limited to modest parameters. Spectral approaches are usually employed for spherical convection models which do not allow to take into account lateral variations, like temperature dependent viscosity. We have developed a scheme, based on a finite volume discretization, to treat convection in a spherical shell with strong temperature dependent viscosity. Our approach has been particularly tailored to run efficiently on parallel computers. The spherical shell is topologically divided into six cubes. The equations are formulated in primitive variables, and are treated in the cartesian cubes. In order to ensure mass conservation a SIMPLER pressure correction procedure is applied and to handle strong viscosity variations up to Δ η =106 and high Rayleigh-numbers up to Ra=108 the pressure correction algorithm is combined with a pressure weighted interpolation method to satisfy the incompressibility condition and to avoid oscillations. We study thermal convection in a basal and mixed-mode heated shell with stress free and isothermal boundary conditions, as a function of the Rayleigh-number and viscosity contrast. Besides the temperature dependence we have further explored the effects of pressure on the viscosity. As a general result we observe the existence of three regimes (mobile, sluggish and stagnant lid), characterized by the type of surface motion. Laterally averaged depth-profiles of velocity, temperature and viscosity exhibit significant deviations from the isoviscous case. As compared to cartesian geometries, convection in a spherical shell possesses strong memory for the initial state. At strong

  1. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  2. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  3. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals. PMID:27608987

  4. Simultaneous retrieval of temperature-dependent absorption coefficient and conductivity of participating media

    PubMed Central

    Ren, Yatao; Qi, Hong; Zhao, Fangzhou; Ruan, Liming; Tan, Heping

    2016-01-01

    A secondary optimization technique was proposed to estimate the temperature-dependent thermal conductivity and absorption coefficient. In the proposed method, the stochastic particle swarm optimization was applied to solve the inverse problem. The coupled radiation and conduction problem was solved in a 1D absorbing, emitting, but non-scattering slab exposed to a pulse laser. It is found that in the coupled radiation and conduction problem, the temperature response is highly sensitive to conductivity but slightly sensitive to the optical properties. On the contrary, the radiative intensity is highly sensitive to optical properties but slightly sensitive to thermal conductivity. Therefore, the optical and thermal signals should both be considered in the inverse problem to estimate the temperature-dependent properties of the transparent media. On this basis, the temperature-dependent thermal conductivity and absorption coefficient were both estimated accurately by measuring the time-dependent temperature, and radiative response at the boundary of the slab. PMID:26912418

  5. Absorption spectra of two-level atoms interacting with a strong polychromatic pump field and an arbitrarily intense probe field

    NASA Astrophysics Data System (ADS)

    Yoon, Tai Hyun; Chung, Myung Sai; Lee, Hai-Woong

    1999-09-01

    A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

  6. Temperature dependence of the band-band absorption coefficient in crystalline silicon from photoluminescence

    NASA Astrophysics Data System (ADS)

    Nguyen, Hieu T.; Rougieux, Fiacre E.; Mitchell, Bernhard; Macdonald, Daniel

    2014-01-01

    The band-band absorption coefficient in crystalline silicon has been determined using spectral photoluminescence measurements across the wavelength range of 990-1300 nm, and a parameterization of the temperature dependence has been established to allow interpolation of accurate values of the absorption coefficient for any temperature between 170 and 363 K. Band-band absorption coefficient measurements across a temperature range of 78-363 K are found to match well with previous results from MacFarlane et al. [Phys. Rev. 111, 1245 (1958)], and are extended to significantly longer wavelengths. In addition, we report the band-band absorption coefficient across the temperature range from 270-350 K with 10 K intervals, a range in which most practical silicon based devices operate, and for which there are only sparse data available at present. Moreover, the absorption coefficient is shown to vary by up to 50% for every 10 K increment around room temperature. Furthermore, the likely origins of the differences among the absorption coefficient of several commonly referenced works by Green [Sol. Energy Mater. Sol. Cells 92, 1305 (2008)], Daub and Würfel [Phys. Rev. Lett. 74, 1020 (1995)], and MacFarlane et al. [Phys. Rev. 111, 1245 (1958)] are discussed.

  7. Non-perturbative particle production mechanism in time-dependent strong non-Abelian fields

    SciTech Connect

    Levai, Peter; Skokov, Vladimir V.

    2011-04-26

    Non-perturbative production of quark-antiquarks is investigated in the early stage of heavy-ion collisions. The time-dependent study is based on a kinetic description of the fermion-pair production in strong non-Abelian fields. We introduce time-dependent chromo-electric external field with a pulse-like time evolution to simulate the overlap of two colliding heavy ions. We have found that the small inverse duration time of the field pulse determines the efficiency of the quark-pair production. The expected suppression for heavy quark production, as follows from the Schwinger formula for a constant field, is not seen, but an enhanced heavy quark production appears at ultrarelativistic energies. We convert our pulse duration time-dependent results into collisional energy dependence and introduce energy and flavour-dependent string tensions, which can be used in string based model calculations at RHIC and LHC energies.

  8. Hydrolysis-dependent absorption of disaccharides in the rat small intestine (chronic experiments and mathematical modeling).

    PubMed

    Gromova, L V; Gruzdkov, A A

    1999-06-01

    In order to throw light on the mechanisms responsible for the enzyme-dependent absorption of disaccharides membrane hydrolysis of maltose and trehalose and the absorption of glucose (free and that derived from disaccharides) were studied in isolated loops (20 cm) of the rat small intestine in chronic experiments. The rates of glucose absorption were 0.26-0.81 micromol x min(-1) x cm(-1) when the loop was perfused with a 12.5 to 75.0 mmol/l free glucose solution, which is only insignificantly higher than the rates observed during perfusion with equivalent maltose solutions. The coupling coefficient (the ratio of glucose absorption rate to the rate of disaccharide hydrolysis) decreased from 0.90 to 0.60 with the increasing maltose concentrations in the infusate from 6.25 to 37.5 mmol/l, but remained unchanged (approximately 0.95) within the same range of trehalose concentrations. The permeability of the pre-epithelial barrier was equivalent to that of unstirred water layer of less than 40 microm thickness. Fluid absorption was within the range of 0.73-2.55 microl x min(-1) x cm(-1), and it showed a correlation with the rates of glucose absorption. The results agree with a model developed on the assumption that free glucose and that released from disaccharides share the same membrane transporters. It could be concluded that a close coupling of disaccharide hydrolysis with derived glucose absorption in chronic experiments is achieved mainly due to a high activity of glucose transporters, which are presumably not associated with membrane disaccharidases. The transcellular active transport is a predominant mechanism of disaccharide-derived glucose absorption under conditions close to physiological.

  9. How Strongly does Dating Meteorites Constrain the Time-Dependence of the Fine-Structure Constant?

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori; Iwamoto, Akira

    We review our argument on the nature of the so-called meteorite constraint on the possible time-dependence of the fine-structure constant, emphasizing that dating meteorites at the present time is different in principle from searching directly for the traces in the past, as in the Oklo phenomenon and the QSO absorption lines. In the related literature, we still find some arguments not necessarily consistent with this difference to be taken properly into account. It does not immediately follow that any model-dependent approaches are useless in practice, though we cannot help suspecting that dating meteorites is no match for the Oklo and the QSO in probing the time-variability of the fine-structure constant, at this moment. Some of the relevance to the QSO data particularly in terms of the scalar field will be discussed.

  10. Temperature dependence of HNO3 absorption in the 11.3-micron region

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Bonomo, F. S.; Valero, F. P. J.; Goorvitch, D.; Boese, R. W.

    1981-01-01

    Laboratory spectra have been obtained for HNO3 with a Michelson-type Fourier transform interferometer using absorption cells with path lengths of 10.3, 25.5, and 49.8 cm at temperatures of 240, 248, 283, and 294 K. The measurements lead to a total band intensity value of 642 plus or minus 5% per sq cm amagat, which is a temperature independent value after the gas density correction has been made. However, the temperature dependence of the spectral absorption coefficients is apparent in the 885 kayser region.

  11. Pulse-shape-dependent strong-field ionization viewed with velocity-map imaging

    SciTech Connect

    Geissler, Dominik; Weinacht, Thomas C.; Rozgonyi, Tamas; Gonzalez-Vazquez, Jesus

    2011-11-15

    We explore strong field molecular ionization with velocity map imaging of fragment ions produced by dissociation following ionization. Our measurements and ab initio electronic structure calculations allow us to identify various electronic states of the molecular cation populated during ionization, with multiple pathways to individual states highlighted by the pulse shape dependence. In addition, we show that relative populations can be reconstructed from our measurements. The results illustrate how strong field molecular ionization can be complicated by the presence and interaction of multiple cationic states during ionization.

  12. How does the plasmonic enhancement of molecular absorption depend on the energy gap between molecular excitation and plasmon modes: a mixed TDDFT/FDTD investigation.

    PubMed

    Sun, Jin; Li, Guang; Liang, WanZhen

    2015-07-14

    A real-time time-dependent density functional theory coupled with the classical electrodynamics finite difference time domain technique is employed to systematically investigate the optical properties of hybrid systems composed of silver nanoparticles (NPs) and organic adsorbates. The results demonstrate that the molecular absorption spectra throughout the whole energy range can be enhanced by the surface plasmon resonance of Ag NPs; however, the absorption enhancement ratio (AER) for each absorption band differs significantly from the others, leading to the quite different spectral profiles of the hybrid complexes in contrast to those of isolated molecules or sole NPs. Detailed investigations reveal that the AER is sensitive to the energy gap between the molecular excitation and plasmon modes. As anticipated, two separate absorption bands, corresponding to the isolated molecules and sole NPs, have been observed at a large energy gap. When the energy gap approaches zero, the molecular excitation strongly couples with the plasmon mode to form the hybrid exciton band, which possesses the significantly enhanced absorption intensity, a red-shifted peak position, a surprising strongly asymmetric shape of the absorption band, and the nonlinear Fano effect. Furthermore, the dependence of surface localized fields and the scattering response functions (SRFs) on the geometrical parameters of NPs, the NP-molecule separation distance, and the external-field polarizations has also been depicted.

  13. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    SciTech Connect

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-03-10

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L{sub 8{sub -{sub 1000{sub {mu}m}}}} > 10{sup 12} L{sub Sun }) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s{sup -1} in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the {approx}10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.

  14. The Redshift-Dependence of Gamma-Ray Absorption in the Environments of Blazars

    SciTech Connect

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2011-11-21

    One of the key scientific objectives of the new generation high energy instruments is the quest for signatures from the extragalactic background light (EBL) at UV/optical/IR energies and its evolution by means of photon-photon absorption over extragalactic distances.I will discuss the various methods proposed, and biases that may be introduced when studying the evolution of the EBL with capable {gamma}-ray observatories like e.g. GLAST or CTA, where the {gamma}-ray horizon is probed by means of statistical analysis of absorption features in AGN spectra at various redshifts. In particular, the effect of the redshift-dependence of 'local opacity' in {gamma}-ray loud quasars due to possible {gamma}-ray absorption through photon-photon pair production of jet photons in the external photon environments (accretion disk, broad-line region radiation field) on evolutionary studies of the EBL is highlighted.

  15. Compositional dependence of absorption and fluorescence of Yb{sup 3+} in oxide glasses

    SciTech Connect

    Takebe, Hiromichi; Murata, Takahiro; Morinaga, Kenji

    1996-03-01

    The integrated absorption cross section, the spontaneous emission probability, and the stimulated emission cross section of Yb{sup 3+} were determined in silicate, phosphate, borate, germanate, aluminate, gallate, and ZBLAN host glasses. The compositional dependence of the stimulated emission cross section of the {sup 2}F{sub 5/2} {yields} {sup 2}F{sub 7/2} transition is determined mainly by the integrated absorption cross section in the glasses. A peak stimulated emission cross section above 1 pm{sup 2}, which is the highest value in glasses, was obtained in a gallate glass with a composition of 40K{sub 2}O{center_dot}20Ta{sub 2}O{sub 5}{center_dot}40Ga{sub 2}O{sub 3}. The factors affecting the integrated absorption cross section are discussed using the Judd-Ofelt parameters of Er{sup 3+} calculated in previous studies.

  16. Excited State Absorption from Real-Time Time-Dependent Density Functional Theory.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2015-09-01

    The optical response of excited states is a key property used to probe photophysical and photochemical dynamics. Additionally, materials with a large nonlinear absorption cross-section caused by two-photon (TPA) and excited state absorption (ESA) are desirable for optical limiting applications. The ability to predict the optical response of excited states would help in the interpretation of transient absorption experiments and aid in the search for and design of optical limiting materials. We have developed an approach to obtain excited state absorption spectra by combining real-time (RT) and linear-response (LR) time-dependent density functional theory (TDDFT). Being based on RT-TDDFT, our method is aimed at tackling larger molecular complexes and materials systems where excited state absorption is predominantly seen and many time-resolved experimental efforts are focused. To demonstrate our method, we have calculated the ground and excited state spectra of H₂⁺ and H₂ due to the simplicity in the interpretation of the spectra. We have validated our new approach by comparing our results for butadiene with previously published results based on quadratic response (QR). We also present results for oligofluorenes, where we compare our results with both QR-TDDFT and experimental measurements. Because our method directly measures the response of an excited state, stimulated emission features are also captured; although, these features are underestimated in energy which could be attributed to a change of the reference from the ground to the excited state.

  17. Temperature dependence of amino acid side chain IR absorptions in the amide I' region.

    PubMed

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2014-05-01

    Amide I' IR spectra are widely used for studies of structural changes in peptides and proteins as a function of temperature. Temperature dependent absorptions of amino acid side-chains that overlap the amide I' may significantly complicate the structural analyses. While the side-chain IR spectra have been investigated previously, thus far their dependence on temperature has not been reported. Here we present the study of the changes in the IR spectra with temperature for side-chain groups of aspartate, glutamate, asparagine, glutamine, arginine, and tyrosine in the amide I' region (in D2O). Band fitting analysis was employed to extract the temperature dependence of the individual spectral parameters, such as peak frequency, integrated intensity, band width, and shape. As expected, the side-chain IR bands exhibit significant changes with temperature. The majority of the spectral parameters, particularly the frequency and intensity, show linear dependence on temperature, but the direction and magnitude vary depending on the particular side-chain group. The exception is arginine, which exhibits a distinctly nonlinear frequency shift with temperature for its asymmetric CN3H5(+) bending signal, although a linear fit can account for this change to within ~1/3 cm(-1). The applicability of the determined spectral parameters for estimations of temperature-dependent side-chain absorptions in peptides and proteins are discussed.

  18. Temperature- and pressure-dependent absorption cross sections of gaseous hydrocarbons at 3.39 µm

    NASA Astrophysics Data System (ADS)

    Klingbeil, A. E.; Jeffries, J. B.; Hanson, R. K.

    2006-07-01

    The pressure- and temperature-dependent absorption cross sections of several neat hydrocarbons and multi-component fuels are measured using a 3.39 µm helium-neon laser. Absorption cross section measurements are reported for methane, ethylene, propane, n-heptane, iso-octane, n-decane, n-dodecane, JP-10, gasoline and jet-A with an estimated uncertainty of less than 3.5%. The experimental conditions range from 298 to 673 K and from 500 to 2000 Torr with nitrogen as the bath gas. An apparatus is designed to facilitate these measurements, and specific care is taken to ensure the compositional accuracy of the hydrocarbon/N2 mixtures. The absorption cross sections of the smallest hydrocarbons, methane and ethylene, vary with temperature and pressure. The cross sections of larger hydrocarbons show negligible dependence on pressure and only a weak dependence on temperature. The reported data increase the range of conditions and the number of hydrocarbons for which cross section measurements are available at the HeNe laser wavelength.

  19. Luminosity Dependence and Redshift Evolution of Strong Emission-Line Diagnostics in Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Songaila, A.

    2016-01-01

    We examine the redshift evolution of standard strong emission-line diagnostics for Hβ-selected star-forming galaxies using the local SDSS sample and a new z=0.2{--}2.3 sample obtained from Hubble Space Telescope WFC3 grism and Keck DEIMOS and MOSFIRE data. We use the SDSS galaxies to show that there is a systematic dependence of the strong emission-line properties on Balmer-line luminosity, which we interpret as showing that both the N/O abundance and the ionization parameter increase with increasing line luminosity. Allowing for the luminosity dependence tightens the diagnostic diagrams and the metallicity calibrations. The combined SDSS and high-redshift samples show that there is no redshift evolution in the line properties once the luminosity correction is applied, i.e., all galaxies with a given L({{H}}β ) have similar strong emission-line distributions at all the observed redshifts. We argue that the best metal diagnostic for the high-redshift galaxies may be a luminosity-adjusted version of the [N ii]6584/Hα metallicity relation. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  20. On the penetration of a hot diapir through a strongly temperature-dependent viscosity medium

    NASA Technical Reports Server (NTRS)

    Daly, S. F.; Raefsky, A.

    1985-01-01

    The ascent of a hot spherical body through a fluid with a strongly temperature-dependent viscosity has been studied using an axisymmetric finite element method. Numerical solutions range over Peclet numbers of 0.1 - 1000 from constant viscosity up to viscosity variations of 100,000. Both rigid and stress-free boundary conditions were applied at the surface of the sphere. The dependence of drag on viscosity variation was shown to have no dependence on the stress boundary condition except for a Stokes flow scaling factor. A Nusselt number parameterization based on the stress-free constant viscosity functional dependence on the Peclet number scaled by a parameter depending on the viscosity structure fits both stress-free and rigid boundary condition data above viscosity variations of 100. The temperature scale height was determined as a function of sphere radius. For the simple physical model studied in this paper pre-heating is required to reduce the ambient viscosity of the country rock to less than 10 to the 22nd sq cm/s in order for a 10 km diapir to penetrate a distance of several radii.

  1. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    PubMed Central

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  2. Strong and highly asymmetrical optical absorption in conformal metal-semiconductor-metal grating system for plasmonic hot-electron photodetection application

    PubMed Central

    Wu, Kai; Zhan, Yaohui; Zhang, Cheng; Wu, Shaolong; Li, Xiaofeng

    2015-01-01

    We propose an architecture of conformal metal-semiconductor-metal (MSM) device for hot-electron photodetection by asymmetrical alignment of the semiconductor barrier relative to the Fermi level of metals and strong energy localization through plasmonic resonances. Compared with the conventional grating design, the multi-layered grating system under conformal configuration is demonstrated to possess both optical and electrical advantages for high-sensitivity hot-electron photodetection. Finite-element simulation reveals that a strong and highly asymmetrical optical absorption (top metal absorption >99%) can be realized under such a conformal arrangement. An analytical probability-based electrical simulation verifies the strong unidirectional photocurrent, by taking advantage of the extremely high net absorption and a low metal/semiconductor barrier height, and predicts that the corresponding photoresponsivity can be ~3 times of that based on the conventional grating design in metal-insulator-metal (MIM) configuration. PMID:26387836

  3. Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy

    SciTech Connect

    Vives, O.

    2006-04-01

    We prove that taking correctly into account the lepton flavour dependence of the CP asymmetries and washout processes, it is possible to obtain successful thermal leptogenesis from the decays of the second right-handed neutrino. The asymmetries in the muon and tau-flavour channels are then not erased by the inverse decays of the lightest right-handed neutrino N{sub 1}. In this way, we reopen the possibility of ''thermal leptogenesis'' in models with a strong hierarchy in the right-handed Majorana masses that is typically the case in models with up-quark neutrino-Yukawa unification.

  4. Intensity dependent waiting time for strong electron trapping events in speckle stimulated raman scatter

    SciTech Connect

    Rose, Harvey; Daughton, W; Yin, L

    2009-01-01

    The onset of Stimulated Raman scatter from an intense laser speckle is the simplest experimentally realizable laser-plasma-interaction environment. Despite this data and recent 3D particle simulations, the controlling mechanism at the onset of backscatter in the kinetic regime when strong electron trapping in the daughter Langmuir wave is a dominant nonlinearity is not understood. This paper explores the consequences of assuming that onset is controlled by large thermal fluctuations. A super exponential dependence of mean reflectivity on speckle intensity in the onset regime is predicted.

  5. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption.

    PubMed

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P

    2015-09-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.

  6. Nonlinear ionization mechanism dependence of energy absorption in diamond under femtosecond laser irradiation

    SciTech Connect

    Wang Cong; Jiang Lan; Li Xin; Wang Feng; Yuan Yanping; Lu Yongfeng

    2013-04-14

    We present first-principles calculations for nonlinear photoionization of diamond induced by the intense femtosecond laser field. A real-time and real-space time-dependent density functional theory with the adiabatic local-density approximation is applied to describe the laser-material interactions in the Kohn-Sham formalism with the self-interaction correction. For a certain laser wavelength, the intensity dependence of energy absorption on multiphoton and/or tunnel ionization mechanisms is investigated, where laser intensity regions vary from 10{sup 12} W/cm{sup 2} to 10{sup 16} W/cm{sup 2}. In addition, the effect of laser wavelength on energy absorption at certain ionization mechanism is discussed when the Keldysh parameter is fixed. Theoretical results show that: (1) at the fixed laser wavelength, the relationship between the energy absorption and laser intensity shows a good fit of E = c{sub M}I{sup N} (N is the number of photons absorbed to free from the valence band) when multiphoton ionization dominates; (2) while when tunnel ionization becomes significant, the relationship coincides with the expression of E = c{sub T}I{sup n} (n < N).

  7. Model for atomic dielectric response in strong, time-dependent laser fields

    NASA Astrophysics Data System (ADS)

    Rensink, T. C.; Antonsen, T. M.; Palastro, J. P.; Gordon, D. F.

    2014-03-01

    A nonlocal quantum-mechanical model is presented for calculating the atomic dielectric response to a strong laser electric field. By replacing the Coulomb potential with a nonlocal potential in the Schrödinger equation, a 3 + 1-dimensional calculation of the time-dependent electric dipole moment can be reformulated as a 0 + 1-dimensional integral equation that retains the three-dimensional dynamics, while offering significant computational savings. The model is benchmarked against an established ionization model and ab initio simulation of the time-dependent Schrödinger equation. The reduced computational overhead makes the model a promising candidate to incorporate full quantum-mechanical time dynamics in laser pulse propagation simulations.

  8. Spin-dependent thermoelectric effects in a strongly correlated double quantum dot

    NASA Astrophysics Data System (ADS)

    Karwacki, Łukasz; Trocha, Piotr

    2016-08-01

    We investigate spin-dependent thermoelectric transport through a system of two coupled quantum dots attached to reservoirs of spin-polarized electrons. Generally, we focus on the strongly correlated regime of transport. To this end, a slave-boson method for finite U is employed. Our main goal is to show that, apart from complex low-temperature physics, such a basic multilevel system provides a possibility to examine various quantum interference effects, with particular emphasis put on the influence of such phenomena on thermoelectric transport. Apart from the influence of interference effects on spin-degenerate charge transport, we show how spin-dependent transport, induced by ferromagnetic leads, can be modified as well. Finally, we also consider the case where the spin-relaxation time in the ferromagnetic leads is relatively long, which leads to the so-called spin thermoelectric effects.

  9. Spin dependence of K mixing, strong configuration mixing, and electromagnetic properties of Hf178

    NASA Astrophysics Data System (ADS)

    Hayes, A. B.; Cline, D.; Wu, C. Y.; Ai, H.; Amro, H.; Beausang, C.; Casten, R. F.; Gerl, J.; Hecht, A. A.; Heinz, A.; Hua, H.; Hughes, R.; Janssens, R. V. F.; Lister, C. J.; Macchiavelli, A. O.; Meyer, D. A.; Moore, E. F.; Napiorkowski, P.; Pardo, R. C.; Schlegel, Ch.; Seweryniak, D.; Simon, M. W.; Srebrny, J.; Teng, R.; Vetter, K.; Wollersheim, H. J.

    2007-03-01

    The combined data of two Coulomb excitation experiments has verified the purely electromagnetic population of the Kπ=4+,6+,8-, and 16+ rotational bands in Hf178 via 2≤ν≤14 K-forbidden transitions, quantifying the breakdown of the K-selection rule with increasing spin in the low-K bands. The γ-, 4+, and 6+ bands were extended, and four new states in a rotational band were tentatively assigned to a previously known Kπ=0+ band. The quasiparticle structure of the 6+ (t(1)/(2)=77 ns) and 8- (t(1)/(2)=4 s) isomer bands were evaluated, showing that the gyromagnetic ratios of the 6+ isomer band are consistent with a pure π(7)/(2)+[404],π(5)/(2)+[402] structure. The 8- isomer band at 1147 keV and the second 8- band at 1479 keV, thought to be predominantly ν(7)/(2)-[514],ν(9)/(2)+[624] and π(9)/(2)-[514],π(7)/(2)+[404], respectively, are mixed to a degree approaching the strong-mixing limit. Based on measured matrix elements, it was shown that heavy-ion bombardment could depopulate the 16+ isomer at the ~1% level, although no states were found that would mediate photodeexcitation of the isomer via low-energy x-ray absorption.

  10. Preparation of Honeycomb SnO₂ Foams and Configuration-Dependent Microwave Absorption Features.

    PubMed

    Zhao, Biao; Fan, Bingbing; Xu, Yawei; Shao, Gang; Wang, Xiaodong; Zhao, Wanyu; Zhang, Rui

    2015-12-01

    Ordered honeycomb-like SnO2 foams were successfully synthesized by means of a template method. The honeycomb SnO2 foams were analyzed by X-ray diffraction (XRD), thermogravimetric and differential scanning calorimetry (TG-DSC), laser Raman spectra, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR). It can be found that the SnO2 foam configurations were determined by the size of polystyrene templates. The electromagnetic properties of ordered SnO2 foams were also investigated by a network analyzer. The results reveal that the microwave absorption properties of SnO2 foams were dependent on their configuration. The microwave absorption capabilities of SnO2 foams were increased by increasing the size of pores in the foam configuration. Furthermore, the electromagnetic wave absorption was also correlated with the pore contents in SnO2 foams. The large and high amounts pores can bring about more interfacial polarization and corresponding relaxation. Thus, the perfect ordered honeycomb-like SnO2 foams obtained in the existence of large amounts of 322 nm polystyrene spheres showed the outstanding electromagnetic wave absorption properties. The minimal reflection loss (RL) is -37.6 dB at 17.1 GHz, and RL less than -10 dB reaches 5.6 GHz (12.4-18.0 GHz) with thin thickness of 2.0 mm. The bandwidth (<-10 dB, 90% microwave dissipation) can be monitored in the frequency regime of 4.0-18.0 GHz with absorber thickness of 2.0-5.0 mm. The results indicate that these ordered honeycomb SnO2 foams show the superiorities of wide-band, high-efficiency absorption, multiple reflection and scatting, high antioxidation, lightweight, and thin thickness.

  11. Temperature dependent measurement of absorption and emission cross sections for various Yb3+ doped laser materials

    NASA Astrophysics Data System (ADS)

    Körner, J.; Hein, J.; Kahle, M.; Liebetrau, H.; Lenski, M.; Kaluza, M.; Loeser, M.; Siebold, M.

    2011-06-01

    For laser performance simulations, optical properties of applied active materials have to be exactly known. Here we report on temperature dependent emission and absorption cross section measurements for Yb:YAG, Yb:CaF2 and Yb:FP15-glass. The temperature of the samples was aligned in steps of 20 K between 100 K and room temperature with a liquid nitrogen driven cryostat. Absorption spectra were obtained with a fiber coupled white light source and fluorescence spectra by excitation with a fiber coupled 10W laser diode at 970 nm. All spectral measurements were performed with a scanning spectrum analyzer, providing a spectral resolution down to 0.05 nm. By applying the McCumber relation in combination with the Fuchtbauer-Ladenburg method, we were able to obtain a valid emission cross section over the whole range of interest from the measured data.

  12. Strong density-dependent competition and acquired immunity constrain parasite establishment: implications for parasite aggregation.

    PubMed

    Luong, Lien T; Vigliotti, Beth A; Hudson, Peter J

    2011-04-01

    The vast majority of parasites exhibit an aggregated frequency distribution within their host population, such that most hosts have few or no parasites while only a minority of hosts are heavily infected. One exception to this rule is the trophically transmitted parasite Pterygodermatites peromysci of the white-footed mouse (Peromyscus leucopus), which is randomly distributed within its host population. Here, we ask: what are the factors generating the random distribution of parasites in this system when the majority of macroparasites exhibit non-random patterns? We hypothesise that tight density-dependent processes constrain parasite establishment and survival, preventing the build-up of parasites within individual hosts, and preclude aggregation within the host population. We first conducted primary infections in a laboratory experiment using white-footed mice to test for density-dependent parasite establishment and survival of adult worms. Secondary or challenge infection experiments were then conducted to investigate underlying mechanisms, including intra-specific competition and host-mediated restrictions (i.e. acquired immunity). The results of our experimental infections show a dose-dependent constraint on within-host-parasite establishment, such that the proportion of mice infected rose initially with exposure, and then dropped off at the highest dose. Additional evidence of density-dependent competition comes from the decrease in worm length with increasing levels of exposure. In the challenge infection experiment, previous exposure to parasites resulted in a lower prevalence and intensity of infection compared with primary infection of naïve mice; the magnitude of this effect was also density-dependent. Host immune response (IgG levels) increased with the level of exposure, but decreased with the number of worms established. Our results suggest that strong intra-specific competition and acquired host immunity operate in a density-dependent manner to

  13. Special aspects of the temperature dependence of EPR absorption of chemically carbonized polyvinylidene fluoride derivatives

    NASA Astrophysics Data System (ADS)

    Zhivulin, V. E.; Pesin, L. A.; Ivanov, D. V.

    2016-01-01

    The temperature dependences of electron paramagnetic resonance (EPR) absorption of two samples of chemically carbonized derivatives of polyvinylidene fluoride (PVDF) synthesized under different conditions have been measured in the range of 100-300 K. It has been found that the temperature dependence of the integrated intensity of the EPR signal of both samples is nonmonotonic and does not obey the classical Curie dependence characteristic of free radicals. An analytical expression that is consistent with experimental data and suggests the presence of an activation component of paramagnetism in the test samples has been obtained. The presence of a term independent of temperature in this equation also indicates the paramagnetic contribution of free electrons. The magnitude of the activation energy of the singlet-triplet transitions has been evaluated: δ = 0.067 eV. The HYSCORE spectra of chemically carbonized PVDF derivatives have been obtained for the first time.

  14. Energy and optical absorption spectra of endohedral metallofullerenes with Gd or Ho as strongly correlated π-electron systems

    NASA Astrophysics Data System (ADS)

    Bubnov, V. P.; Kareev, I. E.; Lobanov, B. V.; Murzashev, A. I.; Nekrasov, V. M.

    2016-08-01

    Isomerically pure endohedral metallofullerenes Gd@C82(C2v), Ho@C82( C 2 v ), and their monoanions have been synthesized and separated. The optical absorption spectra of solutions of obtained compounds in o-dichlorobenzene have been studied. Within the Hubbard model, the energy spectrum of isomer of C 2 v symmetry (no. 9) of fullerene C82 has been calculated. Based on the obtained spectrum, optical absorption spectra of endohedral metallofullerenes Gd@C82 and Ho@C82 and their monoanions have been simulated. The calculated optical absorption spectra have been compared with experimental ones; it has been found that qualitative agreement between them is observed.

  15. Size-dependent two-photon absorption in circular graphene quantum dots.

    PubMed

    Feng, Xiaobo; Li, Xin; Li, Zhisong; Liu, Yingkai

    2016-02-01

    We investigate theoretically the size-dependence of two-photon absorption (TPA) for circular graphene quantum dots (GQDs) on the basis of electronic energy states obtained by solving the Dirac-Weyl equation analytically under infinite-mass boundary condition. The analytical expressions for TPA coefficient are derived with an arbitrary size-distribution and the transition selection rules are obtained. Results reveal that the intraband transitions in conduction band and valence band contribute much more to TPA than interband transitions. The energy spectrum and TPA peaks are tuned by the size of GQDs. PMID:26906856

  16. Fiber-optic thermometer using temperature dependent absorption, broadband detection, and time domain referencing

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Piltch, Nancy D.

    1986-01-01

    A fiber-optic thermometer based on temperature dependent absorption in Nd(3+) doped glass is demonstrated over the 298-573 K range. A broadband detection technique allows the use of the complete spectrum of a pulse modulated light emitting diode. A fiber-optic recirculating loop is employed to construct a reference channel in the time domain by generating a train of pulses from one initial pulse. A theoretical model is developed, and experimental data are shown to compare well with the theory. Possible sources of error and instability are identified, and ways to enhance the performance of the system are proposed.

  17. Absorption spectra of blue-light-emitting oligoquinolines from time-dependent density functional theory.

    PubMed

    Tao, Jianmin; Tretiak, Sergei; Zhu, Jian-Xin

    2008-11-01

    Recently, it has been discovered that a series of four conjugated oligomers, oligoquinolines, exhibits many desirable properties of organic materials for developing high-performance light-emitting diodes: good blue color purity, high brightness, high efficiency, and high glass-transition temperatures. In this work, we investigate the optical absorption of oligoquinolines in the gas phase and chloroform (CHCl3) solution, respectively, using time-dependent density functional theory with the adiabatic approximation for the dynamical exchange-correlation potential. Our calculations show that the first peak of optical absorption corresponds to the lowest singlet excited state, whereas several quasi-degenerate excited states contribute to the experimentally observed higher-frequency peak. We find that, compared with the gas phase, there is a moderate red shift in excitation energy in solution due to the solute-solvent interaction simulated using the polarizable continuum model. Our results show that the lowest singlet excitation energies of oligoquinolines in chloroform solution calculated with the adiabatic hybrid functional PBE0 are in a good agreement with experiments. Our simulated optical absorption agrees well with the experimental data. Finally, analysis of the natural transition orbitals corresponding to the excited states in question underscores the underlying electronic delocalization properties. PMID:18844398

  18. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range.

    PubMed

    Wu, Xiaojun; Zhou, Chun; Huang, Wenqian Ronny; Ahr, Frederike; Kärtner, Franz X

    2015-11-16

    Optical rectification with tilted pulse fronts in lithium niobate crystals is one of the most promising methods to generate terahertz (THz) radiation. In order to achieve higher optical-to-THz energy efficiency, it is necessary to cryogenically cool the crystal not only to decrease the linear phonon absorption for the generated THz wave but also to lengthen the effective interaction length between infrared pump pulses and THz waves. However, the refractive index of lithium niobate crystal at lower temperature is not the same as that at room temperature, resulting in the necessity to re-optimize or even re-build the tilted pulse front setup. Here, we performed a temperature dependent measurement of refractive index and absorption coefficient on a 6.0 mol% MgO-doped congruent lithium niobate wafer by using a THz time-domain spectrometer (THz-TDS). When the crystal temperature was decreased from 300 K to 50 K, the refractive index of the crystal in the extraordinary polarization decreased from 5.05 to 4.88 at 0.4 THz, resulting in ~1° change for the tilt angle inside the lithium niobate crystal. The angle of incidence on the grating for the tilted pulse front setup at 1030 nm with demagnification factor of -0.5 needs to be changed by 3°. The absorption coefficient decreased by 60% at 0.4 THz. These results are crucial for designing an optimum tilted pulse front setup based on lithium niobate crystals.

  19. The electronic absorption study of imide anion radicals in terms of time dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Andrzejak, Marcin; Sterzel, Mariusz; Pawlikowski, Marek T.

    2005-07-01

    The absorption spectra of the N-(2,5-di- tert-butylphenyl) phthalimide ( 1-), N-(2,5-di- tert-butylphenyl)-1,8-naphthalimide ( 2-) and N-(2,5-di- tert-butylphenyl)-perylene-3,4-dicarboximide ( 3-) anion radicals are studied in terms of time dependent density functional theory (TDDFT). For these anion radicals a large number electronic states (from 30 to 60) was found in the visible and near-IR regions (5000-45000 cm -1). In these regions the TD/B3LYP treatment at the 6-1+G* level is shown to reproduce satisfactorily the empirical absorption spectra of all three anion radicals studied. The most apparent discrepancies between purely electronic theory and the experiment could be found in the excitation region corresponding to D0→ D1 transitions in the 2- and 3- molecules. For these species we argue that the structures seen in the lowest energy part of the absorptions of the 2- and 3- species are very likely due to Franck-Condon (FC) activity of the totally symmetric vibrations not studied in this Letter.

  20. Strong-field induced XUV transmission and multiplet splitting in 4d(-1)6p core-excited Xe studied by femtosecond XUV transient absorption spectroscopy.

    PubMed

    Lin, Ming-Fu; Pfeiffer, Adrian N; Neumark, Daniel M; Leone, Stephen R; Gessner, Oliver

    2012-12-28

    Light-induced coupling of core-excited states of Xe atoms is investigated by femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy with photon energies ranging from 50 eV to 72 eV. Coupling of the 4d(-1)((2)D(5/2))6p((2)P(3/2)) (65.1 eV) and 4d(-1)((2)D(3/2))6p((2)P(1/2)) (67.0 eV) core-excited states to nearby states by a strong infrared laser field leads to a threefold enhancement of XUV transmission. The transmission at 65.1 eV (67.0 eV) changes from 3.2 ± 0.4% (5.9 ± 0.5%) without the coupling laser to 9 ± 2% (22 ± 5%) at the maximum of the laser field. A strong-field induced broad XUV absorption feature between 60 eV and 65 eV is ascribed to splitting of the field-free absorption lines into multiple branches when the Rabi frequencies of the coupling transitions exceed the infrared laser frequency. This picture is supported by a comparison of the strong-field induced absorption spectrum with a numerical integration of the von Neumann equation for a few-level quantum system. The valence hole-alignment of strong-field ionized Xe is revisited, confirming the previously observed reduced alignment compared to theoretical predictions.

  1. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Churchill, Christopher W.; Nielsen, Nikole M.

    2012-11-20

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W{sub r} (2796) {>=} 0.1 A] and 35 spectroscopically confirmed non-absorbing galaxies [W{sub r} (2796) < 0.1 A] imaged with Hubble Space Telescope and Sloan Digital Sky Survey. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W{sub r} (2796) < 0.1 A. We find that blue star-forming galaxies clearly drive the bimodality while red passive galaxies may exhibit an excess along their major axis. These results are consistent with galaxy evolution scenarios where star-forming galaxies accrete new gas, forming new stars and producing winds, while red galaxies exist passively due to reduced gas reservoirs. We further compute an azimuthal angle dependent Mg II absorption covering fraction, which is enhanced by as much as 20%-30% along the major and minor axes. The W{sub r} (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100 Degree-Sign and 40 Degree-Sign , respectively. We find that the probability of detecting outflows is {approx}60%, implying that winds are more commonly observed.

  2. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene.

    PubMed

    Zhang, Shuang; Yang, Jiong; Xu, Renjing; Wang, Fan; Li, Weifeng; Ghufran, Muhammad; Zhang, Yong-Wei; Yu, Zongfu; Zhang, Gang; Qin, Qinghua; Lu, Yuerui

    2014-09-23

    Phosphorene is a new family member of two-dimensional materials. We observed strong and highly layer-dependent photoluminescence in few-layer phosphorene (two to five layers). The results confirmed the theoretical prediction that few-layer phosphorene has a direct and layer-sensitive band gap. We also demonstrated that few-layer phosphorene is more sensitive to temperature modulation than graphene and MoS2 in Raman scattering. The anisotropic Raman response in few-layer phosphorene has enabled us to use an optical method to quickly determine the crystalline orientation without tunneling electron microscopy or scanning tunneling microscopy. Our results provide much needed experimental information about the band structures and exciton nature in few-layer phosphorene.

  3. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    PubMed

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-01

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  4. NF3: UV Absorption Spectrum Temperature Dependence and the Atmospheric and Climate Forcing Implications

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    Nitrogen trifluoride (NF3) is an atmospherically persistent greenhouse gas that is primarily removed by UV photolysis and reaction with O((sup 1)D) atoms. In this work, the NF3 gas-phase UV absorption spectrum, sigma(delta,T), was measured at 16 wavelengths between 184.95 and 250 nm at temperatures between 212 and 296 K. A significant spectrum temperature dependence was observed in the wavelength region most relevant to atmospheric photolysis (200-220 nm) with a decrease in sigma(210 nm,T) of approximately 45 percent between 296 and 212 K. Atmospheric photolysis rates and global annually averaged lifetimes of NF3 were calculated using the Goddard Space Flight Center 2-D model and the sigma(delta,T) parameterization developed in this work. Including the UV absorption spectrum temperature dependence increased the stratospheric photolysis lifetime from 610 to 762 years and the total global lifetime from 484 to 585 years; the NF3 global warming potentials on the 20-, 100-, and 500-year time horizons increased less than 0.3, 1.1, and 6.5 percent to 13,300, 17,700, and 19,700, respectively.

  5. Linear wave equations with time-dependent propagation speed and strong damping

    NASA Astrophysics Data System (ADS)

    Ghisi, Marina; Gobbino, Massimo

    2016-01-01

    We consider a second order linear equation with a time-dependent coefficient c (t) in front of the "elastic" operator. For these equations it is well-known that a higher space-regularity of initial data compensates a lower time-regularity of c (t). In this paper we investigate the influence of a strong dissipation, namely a friction term which depends on a power of the elastic operator. What we discover is a threshold effect. When the exponent of the elastic operator in the friction term is greater than 1/2, the damping prevails and the equation behaves as if the coefficient c (t) were constant. When the exponent is less than 1/2, the time-regularity of c (t) comes into play. If c (t) is regular enough, once again the damping prevails. On the contrary, when c (t) is not regular enough the damping might be ineffective, and there are examples in which the dissipative equation behaves as the non-dissipative one. As expected, the stronger is the damping, the lower is the time-regularity threshold. We also provide counterexamples showing the optimality of our results.

  6. Proton acceleration in the electrostatic sheaths of hot electrons governed by strongly relativistic laser-absorption processes.

    PubMed

    Ter-Avetisyan, S; Schnürer, M; Sokollik, T; Nickles, P V; Sandner, W; Reiss, H R; Stein, J; Habs, D; Nakamura, T; Mima, K

    2008-01-01

    Two different laser energy absorption mechanisms at the front side of a laser-irradiated foil have been found to occur, such that two distinct relativistic electron beams with different properties are produced. One beam arises from the ponderomotively driven electrons propagating in the laser propagation direction, and the other is the result of electrons driven by resonance absorption normal to the target surface. These properties become evident at the rear surface of the target, where they give rise to two spatially separated sources of ions with distinguishable characteristics when ultrashort (40fs) high-intensity laser pulses irradiate a foil at 45 degrees incidence. The laser pulse intensity and the contrast ratio are crucial. One can establish conditions such that one or the other of the laser energy absorption mechanisms is dominant, and thereby one can control the ion acceleration scenarios. The observations are confirmed by particle-in-cell (PIC) simulations.

  7. Strongly Composition-Dependent Partial Molar Compressibility of Water in Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Whittington, A. G.; Richet, P.; Polian, A.

    2010-12-01

    Water and other volatiles have long been known to play a fundamental role in igneous processes, yet their influence on the physical properties of melts are still not well enough understood. Of particular interest is the density contrast between liquid and solid phases, which facilitates melt extraction and migration. Owing to its low molecular weight, dissolved water must decrease magma density, but the way it does so as a function of pressure remains largely to be determined. Studies on quenched melts (glasses) provide useful information because the glass has the same structure as the melt. We measured compressional and shear wave velocities of seven series of hydrous aluminosilicate glasses by Brillouin scattering at room temperature and pressure. The glasses were quenched from high temperature and 2 or 3 kbar pressure. The dry end-members range from highly polymerized albitic and granitic compositions, to depolymerized synthetic analogues of mantle-derived melts. For each set of glasses, the adiabatic shear and bulk moduli have been calculated from the measured sound velocities and densities. These moduli are linear functions of water content up to 5 wt % H2O, the highest concentration investigated, indicating that both are independent of water speciation in all series. For water-free glasses, the bulk modulus decreases from about 65 to 35 GPa with increasing degree of polymerization. Sympathetically, the partial molar bulk modulus of the water component decreases from 114 to 8 GPa, such that dissolved water amplifies the differences in rigidity between the anhydrous glasses. This strong variation indicates that the solubility mechanisms of water depend strongly on silicate composition. Depolymerized liquids are also much less compressible than their polymerized counterparts, suggesting that the partial molar compressibility of dissolved water approaches zero in depolymerized liquids. If this is correct, hydrous mantle melts formed beneath volcanic arcs would be

  8. Effects of color centers absorption on the spectrum of the temperature-dependent radiation-induced attenuation in fiber.

    PubMed

    Jin, Jing; Hou, Yunxia; Liu, Chunjing

    2015-02-01

    Spectra ranging from 800 to 1650 nm of the temperature-dependent radiation-induced attenuation (RIA) in the irradiated and sufficiently annealed fiber with germanium and phosphorous dopant has been measured. These RIA spectra were investigated based on the mechanism of color centers absorption. With the configurational coordinate model, these RIA spectra were decomposed by the absorption bands of three kinds of color centers. The effects of color centers absorption on the spectrum of temperature-dependent RIA is discussed by comparing the absorption intensity of different color centers at a same wavelength. Moreover, the temperature-dependent RIA of the fiber has been measured separately at 850, 1310, and 1550 nm. The measured results agreed well with the analysis of RIA spectra.

  9. Temperature dependent absorption measurement of various transition metal doped laser materials

    NASA Astrophysics Data System (ADS)

    Horackova, Lucie; Šulc, Jan; Jelinkova, Helena; Jambunathan, Venkatesan; Lucianetti, Antonio; Mocek, Tomás.

    2015-05-01

    In recent years, there has been a vast development of high energy class lasers of the order of 100 J to kJ level which have potential applications in the field of science and technology. Many such systems use the gain media cooled at cryogenic temperatures which will help in enhancing the spectroscopic and thermo-optical properties. Nevertheless, parasitic effects like amplified spontaneous emission enhance and affect the overall efficiency. The best way to suppress this effect is to use cladding element attached to the gain material. Based on these facts, this work was focused on the systematic investigation of temperature dependent absorption of several materials doped with transition metals, which can be used as cladding, as laser gain material, or as passive Q-switching element. The Ti:sapphire, Cr:YAG, V:YAG, and Co:MALO samples were measured in temperature range from 80 K to 330 K by step of 50 K. Using Beer-Lambert law we estimated the absorption coefficient of these materials.

  10. α8β1 integrin regulates nutrient absorption through an Mfge8-PTEN dependent mechanism

    PubMed Central

    Khalifeh-Soltani, Amin; Ha, Arnold; Podolsky, Michael J; McCarthy, Donald A; McKleroy, William; Azary, Saeedeh; Sakuma, Stephen; Tharp, Kevin M; Wu, Nanyan; Yokosaki, Yasuyuki; Hart, Daniel; Stahl, Andreas; Atabai, Kamran

    2016-01-01

    Coordinated gastrointestinal smooth muscle contraction is critical for proper nutrient absorption and is altered in a number of medical disorders. In this work, we demonstrate a critical role for the RGD-binding integrin α8β1 in promoting nutrient absorption through regulation of gastrointestinal motility. Smooth muscle-specific deletion and antibody blockade of α8 in mice result in enhanced gastric antral smooth muscle contraction, more rapid gastric emptying, and more rapid transit of food through the small intestine leading to malabsorption of dietary fats and carbohydrates as well as protection from weight gain in a diet-induced model of obesity. Mechanistically, ligation of α8β1 by the milk protein Mfge8 reduces antral smooth muscle contractile force by preventing RhoA activation through a PTEN-dependent mechanism. Collectively, our results identify a role for α8β1 in regulating gastrointestinal motility and identify α8 as a potential target for disorders characterized by hypo- or hyper-motility. DOI: http://dx.doi.org/10.7554/eLife.13063.001 PMID:27092791

  11. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    SciTech Connect

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël; Fabrycky, Daniel C.

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotation rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.

  12. The time-dependent emission of molecular iodine from Laminaria Digitata measured with incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Dixneuf, S.

    2009-04-01

    The release of molecular iodine (I2) from the oceans into the atmosphere has been recognized to correlate strongly with ozone depletion events and aerosol formation in the Marine Boundary Layer (MBL), which affects in turn global radiative forcing. The detailed mechanisms and dominant sources leading to the observed concentrations of I2 in the marine troposphere are still under intense investigation. In a recent campaign on the Irish west coast at Mace Head Atmospheric Research Station [1], it was found that significant levels of molecular iodine correlated with times of low tide, suggesting that the emission of air-exposed macro-algae may be a prime source of molecular iodine in coastal areas [2]. To further investigate this hypothesis we tried to detect the I2 emission of the brown seaweed Laminaria digitata, one of the most efficient iodine accumulators among living systems, directly by means of highly sensitive incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) [3]. IBBCEAS combines a good temporal and spatial resolution with high molecule-specific detection limits [4] comparable to that of typical LP-DOAS. IBBCEAS thus complements LP-DOAS in the search for sources of tropospheric trace gases. In this presentation the first direct observation of the time dependence of molecular iodine emission from Laminaria digitata will be shown. Plants were studied under naturally occurring stress for quasi in situ conditions for many hours. Surprisingly, the release of I2 occurs in short, strong bursts with quasi-oscillatory behaviour, bearing similarities to well known "iodine clock reactions". References [1] Saiz-Lopez A. & Plane, J. M. C. Novel iodine chemistry in the marine boundary layer. Geophys. Res. Lett. 31, L04112 (2004) doi:10.1029/2003GL019215. [2] McFiggans, G., Coe, H., Burgess, R., Allan, J., Cubison, M., Alfarra, M. R., Saunders, R., Saiz-Lopez, A., Plane, J. M. C., Wevill, D. J., Carpenter, L. J., Rickard, A. R. & Monks, P. S. Direct

  13. Polarization dependences of electroluminescence and absorption of vertically correlated InAs/GaAs QDs

    SciTech Connect

    Sobolev, M. M. Gadzhiyev, I. M.; Bakshaev, I. O.; Nevedomskiy, V. N.; Buyalo, M. S.; Zadiranov, Yu. M.; Zolotareva, R. V.; Portnoi, E. L.

    2012-01-15

    The results of experimental studies concerning the optical polarization anisotropy of electroluminescence and absorption spectra of systems with a varied number of tunnel-coupled vertically correlated In(Ga)As/GaAs quantum dots (QDs), built into a double-section laser with equal-length sections, are presented. One such system is a QD superlattice exhibiting the Wannier-Stark effect. The involvement of heavyhole ground states in optical transitions for light polarized both in the plane perpendicular to the growth axis (X-Y) and along the growth direction Z of the structure was observed. The degree of polarization anisotropy depends on the height of vertically correlated QDs and the QD superlattice: the total thickness of all In(Ga)As QD layers and GaAs spacers between the QDs, which is related to the Z component of the wave function of heavy-hole ground states for vertically correlated QDs and for the QD superlattice.

  14. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  15. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I‧ region

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin A.; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I‧ band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D2O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  16. Temperature dependence of C-terminal carboxylic group IR absorptions in the amide I' region.

    PubMed

    Anderson, Benjamin A; Literati, Alex; Ball, Borden; Kubelka, Jan

    2015-01-01

    Studies of structural changes in peptides and proteins using IR spectroscopy often rely on subtle changes in the amide I' band as a function of temperature. However, these changes can be obscured by the overlap with other absorptions, namely the side-chain and terminal carboxylic groups. The former were the subject of our previous report (Anderson et al., 2014). In this paper we investigate the IR spectra of the asymmetric stretch of α-carboxylic groups for amino acids representing all major types (Gly, Ala, Val, Leu, Ser, Thr, Asp, Glu, Lys, Asn, His, Trp, Pro) as well as the C-terminal groups of three dipeptides (Gly-Gly, Gly-Ala, Ala-Gly) in D₂O at neutral pH. Experimental temperature dependent IR spectra were analyzed by fitting of both symmetric and asymmetric pseudo-Voigt functions. Qualitatively the spectra exhibit shifts to higher frequency, loss in intensity and narrowing with increased temperature, similar to that observed previously for the side-chain carboxylic groups of Asp. The observed dependence of the band parameters (frequency, intensity, width and shape) on temperature is in all cases linear: simple linear regression is therefore used to describe the spectral changes. The spectral parameters vary between individual amino acids and show systematic differences between the free amino acids and dipeptides, particularly in the absolute peak frequencies, but the temperature variations are comparable. The relative variations between the dipeptide spectral parameters are most sensitive to the C-terminal amino acid, and follow the trends observed in the free amino acid spectra. General rules for modeling the α-carboxylic IR absorption bands in peptides and proteins as the function of temperature are proposed.

  17. Dependence of the Broad Absorption Line Quasar Fraction on Radio Luminosity

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Dai, Xinyu; Sivakoff, Gregory R.

    2008-11-01

    We find that the fraction of classical broad absorption line quasars (BALQSOs) among the FIRST radio sources in the Sloan Data Release 3, is 20.5+ 7.3-5.9% at the faintest radio powers detected (L1.4 GHz ~ 1032 erg s-1), and rapidly drops to lesssim8% at L1.4 GHz ~ 3 × 1033 erg s-1. Similarly, adopting the broader absorption index (AI) definition of Trump et al., we find the fraction of radio BALQSOs to be 44+ 8.1-7.8%, reducing to 23.1+ 7.3-6.1% at high luminosities. While the high fraction at low radio power is consistent with the recent near-IR estimates by Dai et al., the lower fraction at high radio powers is intriguing and confirms previous claims based on smaller samples. The trend is independent of the redshift range, the optical and radio flux selection limits, or the exact definition of a radio match. We also find that at fixed optical magnitude, the highest bins of radio luminosity are preferentially populated by non-BALQSOs, consistent with the overall trend. We do find, however, that those quasars identified as AI-BALQSOs but not under the classical definition do not show a significant drop in their fraction as a function of radio power, further supporting independent claims that these sources, characterized by lower equivalent width, may represent an independent class from the classical BALQSOs. We find the balnicity index, a measure of the absorption trough in BALQSOs, and the mean maximum wind velocity to be roughly constant at all radio powers. We discuss several plausible physical models which may explain the observed fast drop in the fraction of the classical BALQSOs with increasing radio power, although none is entirely satisfactory. A strictly evolutionary model for the BALQSO and radio emission phases requires a strong fine-tuning to work, while a simple geometric model, although still not capable of explaining polar BALQSOs and the paucity of FRII BALQSOs, is statistically successful in matching the data if part of the apparent radio

  18. Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig

    2004-12-01

    Relationships to determine the probability that a weak link (WL)/strong link (SL) safety system will fail to function as intended in a fire environment are investigated. In the systems under study, failure of the WL system before failure of the SL system is intended to render the overall system inoperational and thus prevent the possible occurrence of accidents with potentially serious consequences. Formal developments of the probability that the WL system fails to deactivate the overall system before failure of the SL system (i.e., the probability of loss of assured safety, PLOAS) are presented for several WWSL configurations: (i) one WL, one SL, (ii) multiple WLs, multiple SLs with failure of any SL before any WL constituting failure of the safety system, (iii) multiple WLs, multiple SLs with failure of all SLs before any WL constituting failure of the safety system, and (iv) multiple WLs, multiple SLs and multiple sublinks in each SL with failure of any sublink constituting failure of the associated SL and failure of all SLs before failure of any WL constituting failure of the safety system. The indicated probabilities derive from time-dependent temperatures in the WL/SL system and variability (i.e., aleatory uncertainty) in the temperatures at which the individual components of this system fail and are formally defined as multidimensional integrals. Numerical procedures based on quadrature (i.e., trapezoidal rule, Simpson's rule) and also on Monte Carlo techniques (i.e., simple random sampling, importance sampling) are described and illustrated for the evaluation of these integrals. Example uncertainty and sensitivity analyses for PLOAS involving the representation of uncertainty (i.e., epistemic uncertainty) with probability theory and also with evidence theory are presented.

  19. CONCERNING THE CLASSICAL CEPHEID VI{sub C} WESENHEIT FUNCTION'S STRONG METALLICITY DEPENDENCE

    SciTech Connect

    Majaess, D.; Turner, D.; Gieren, W.

    2011-11-10

    Evidence is presented which supports findings that the classical Cepheid VI{sub C} period Wesenheit function is relatively insensitive to metallicity. The viability of a recently advocated strong metallicity dependence was evaluated by applying the proposed correction ({gamma} = -0.8 mag dex{sup -1}) to distances established for the Magellanic Clouds via a Galactic VI{sub C} Wesenheit calibration, which is anchored to 10 nearby classical Cepheids with measured Hubble Space Telescope (HST) parallaxes. The resulting {gamma}-corrected distances for the Magellanic Clouds (e.g., Small Magellanic Cloud, {mu}{sub 0,{gamma}} {approx} 18.3) are in significant disagreement with that established from a mean of >300 published estimates (NED-D), and a universal Wesenheit template featuring 11 {delta} Scuti, SX Phe, RR Lyrae, and Type II Cepheid variables with HST/Hipparcos parallaxes. Conversely, adopting a null correction (i.e., {gamma} = 0 mag dex{sup -1}) consolidates the estimates. In tandem with existing evidence, the results imply that variations in chemical composition among Cepheids are a comparatively negligible source of uncertainty for W{sub VIc}-based extragalactic distances and determinations of H{sub 0}. A new approach is described which aims to provide additional Galactic Cepheid calibrators to facilitate subsequent assessments of the VI{sub C} Wesenheit function's relative (in) sensitivity to abundance changes. VVV/UKIDSS/Two Micron All Sky Survey JHK{sub s} photometry for clusters in spiral arms shall be employed to establish a precise galactic longitude-distance relation, which can be applied in certain cases to determine the absolute Wesenheit magnitudes for younger Cepheids.

  20. A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Li, Jinhua; Ge, Kunpeng; Pan, Yongxin; Williams, Wyn; Liu, Qingsong; Qin, Huafeng

    2013-10-01

    Single-domain magnetite particles produced by magnetotactic bacteria (magnetosomes) and aligned in chains are of great interest in the biosciences and geosciences. Here, we investigated angular variation of magnetic properties of aligned Magnetospirillum magneticum AMB-1 cells, each of which contains one single fragmental chain of magnetosomes. With measurements at increasing angles from the chain direction, we observed that (i) the hysteresis loop gradually changes from nearly rectangular to a ramp-like shape (e.g., Bc and remanence decrease), (ii) the acquisition and demagnetization curves of IRM shift toward higher fields (e.g., Bcr increases), and (iii) the FORC diagram shifts toward higher coercivity fields (e.g., Bc,FORC increases). For low-temperature results, compared to unoriented samples, the samples containing aligned chains have a much lower remanence loss of field-cooled (δFC) and zero-field-cooled (δZFC) remanence upon warming through the Verwey transition, higher δ-ratio (δ = δFC/δZFC) for the measurement parallel to the chain direction, and lower δ-ratio, larger δFC and δZFC values for the perpendicular measurement. Micromagnetic simulations confirm the experimental observations and reveal that the magnetization reversal of magnetosome chain appears to be noncoherent at low angles and coherent at high angles. The simulations also demonstrate that the angular dependence of magnetic properties is related to the dispersion degree of individual chains, indicating that effects of anisotropy need to be accounted for when using rock magnetism to identify magnetosomes or magnetofossils once they have been preserved in aligned chains. Additionally, this study experimentally demonstrates an empirical correspondence of the parameter Bc,FORC to Bcr rather than Bc, at least for magnetite chains with strong shape anisotropy. This suggests FORC analysis is a good discriminant of magnetofossils in sediments and rocks.

  1. Grain size dependence of microwave absorption in Y 1Ba 2Cu 3O 7 powders near T c

    NASA Astrophysics Data System (ADS)

    Gould, A.; Jackson, E. M.; Renouard, K.; Crittenden, R.; Bhagat, S. M.; Spencer, N. D.; Dolhert, L. E.; Wormsbecher, R. F.

    1988-11-01

    A systematic study of the relationship between particle dimensions and microwave absorption in micron size powders of superconducting Y 1Ba 2Cu 3O 7 reveals that small particles have negligible absorption at T<0.8 Tc, and that the transition gets sharper as the grains get bigger. However, when the particles get so large as to incorporate multiple grains, the transition broadens and there is significant absorption down to 0.7 Tc. The temperature dependence in the small (≤10 μm) powders is satisfactorily described by a simple extension of London's theory.

  2. Scale dependency of fracture energy and estimates thereof via dynamic rupture solutions with strong thermal weakening

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Garagash, D.

    2013-12-01

    Seismological estimates of fracture energy show a scaling with the total slip of an earthquake [e.g., Abercrombie and Rice, GJI 2005]. Potential sources for this scale dependency are coseismic fault strength reductions that continue with increasing slip or an increasing amount of off-fault inelastic deformation with dynamic rupture propagation [e.g., Andrews, JGR 2005; Rice, JGR 2006]. Here, we investigate the former mechanism by solving for the slip dependence of fracture energy at the crack tip of a dynamically propagating rupture in which weakening takes place by strong reductions of friction via flash heating of asperity contacts and thermal pressurization of pore fluid leading to reductions in effective normal stress. Laboratory measurements of small characteristic slip evolution distances for friction (~10 μm at low slip rates of μm-mm/s, possibly up to 1 mm for slip rates near 0.1 m/s) [e.g., Marone and Kilgore, Nature 1993; Kohli et al., JGR 2011] imply that flash weakening of friction occurs at small slips before any significant thermal pressurization and may thus have a negligible contribution to the total fracture energy [Brantut and Rice, GRL 2011; Garagash, AGU 2011]. The subsequent manner of weakening under thermal pressurization (the dominant contributor to fracture energy) spans a range of behavior from the deformation of a finite-thickness shear zone in which diffusion is negligible (i.e., undrained-adiabatic) to that in which large-scale diffusion obscures the existence of a thin shear zone and thermal pressurization effectively occurs by the heating of slip on a plane. Separating the contribution of flash heating, the dynamic rupture solutions reduce to a problem with a single parameter, which is the ratio of the undrained-adiabatic slip-weakening distance (δc) to the characteristic slip-on-a-plane slip-weakening distance (L*). However, for any value of the parameter, there are two end-member scalings of the fracture energy: for small slip

  3. Wavelength and shape dependent strong-field photoemission from silver nanotips

    NASA Astrophysics Data System (ADS)

    Bionta, M. R.; Weber, S. J.; Blum, I.; Mauchain, J.; Chatel, B.; Chalopin, B.

    2016-10-01

    We study optical field emission from silver nanotips, showing the combined influence of the illumination wavelength and the exact shape of the nanotip on the strong-field response. This is particularly relevant in the case of FIB milled nano tips, where the nanotip fabrication capabilities could become a new ingredient for the study of strong-field physics. The influence of the thermal load on the nanotip and its effect on the emission is studied as well by switching the repetition rate of the laser source from 1 kHz to 62 MHz, showing a clear transition towards the quenching of the strong-field emission.

  4. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  5. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  6. Temperature-dependent 780-nm laser absorption by engineering grade aluminum, titanium, and steel alloy surfaces

    SciTech Connect

    Rubenchik, Alexander M.; Wu, Sheldon S. Q.; Kanz, V. Keith; LeBlanc, Mary M.; Lowdermilk, W. Howard; Rotter, Mark D.; Stanley, Joel R.

    2014-07-17

    When modeling laser interaction with metals for various applications it requires a knowledge of absorption coefficients for real, commercially available materials with engineering grade (unpolished, oxidized) surfaces. But, most currently available absorptivity data pertain to pure metals with polished surfaces or vacuum-deposited thin films in controlled atmospheres. A simple laboratory setup is developed for the direct calorimetric absorptivity measurements using a diode-array laser emitting at 780 nm. A scheme eliminating the effect of convective and radiative losses is implemented. Futhermore, the obtained absorptivity results differ considerably from existing data for polished pure metals and are essential for the development of predictive laser-material interaction models.

  7. Phase and direction dependence of photorefraction in a low-frequency strong circular-polarized plane wave

    NASA Astrophysics Data System (ADS)

    Huang, Yong-Sheng; Wang, Nai-Yan; Tang, Xiu-Zhang

    2015-05-01

    Contrary to the superposition principle, it is well known that photorefraction exists in the vacuum with the presence of a strong static field, a laser field, or a rotational magnetic field. Different from the classical optical crystals, the refractive index also depends on the phase of the strong electromagnetic field. We obtain the phase and direction dependence of the refractive index of a probe wave incident in the strong field of a circular-polarized plane wave by solving the Maxwell equations corrected by the effective Lagrangian. It may provide a valuable theoretical basis to calculate the polarization evolution of waves in the strong electromagnetic circumstances of pulsar or neutron stars. Project supported by the National Basic Research Program of China (Grant No. 2011CB808104) and the National Natural Science Foundation of China (Grant No. 11105233).

  8. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks

    PubMed Central

    Heo, Hoseok; Sung, Ji Ho; Cha, Soonyoung; Jang, Bo-Gyu; Kim, Joo-Youn; Jin, Gangtae; Lee, Donghun; Ahn, Ji-Hoon; Lee, Myoung-Jae; Shim, Ji Hoon; Choi, Hyunyong; Jo, Moon-Ho

    2015-01-01

    Two-dimensional stacks of dissimilar hexagonal monolayers exhibit unusual electronic, photonic and photovoltaic responses that arise from substantial interlayer excitations. Interband excitation phenomena in individual hexagonal monolayer occur in states at band edges (valleys) in the hexagonal momentum space; therefore, low-energy interlayer excitation in the hexagonal monolayer stacks can be directed by the two-dimensional rotational degree of each monolayer crystal. However, this rotation-dependent excitation is largely unknown, due to lack in control over the relative monolayer rotations, thereby leading to momentum-mismatched interlayer excitations. Here, we report that light absorption and emission in MoS2/WS2 monolayer stacks can be tunable from indirect- to direct-gap transitions in both spectral and dynamic characteristics, when the constituent monolayer crystals are coherently stacked without in-plane rotation misfit. Our study suggests that the interlayer rotational attributes determine tunable interlayer excitation as a new set of basis for investigating optical phenomena in a two-dimensional hexagonal monolayer system. PMID:26099952

  9. Polarization-dependent optical absorption of MoS₂ for refractive index sensing.

    PubMed

    Tan, Yang; He, Ruiyun; Cheng, Chen; Wang, Dong; Chen, Yanxue; Chen, Feng

    2014-01-01

    As a noncentrosymmetric crystal with spin-polarized band structure, MoS2 nanomaterials have attracts increasing attention in many areas such as lithium ion batteries, flexible electronic devices, photoluminescence and valleytronics. The investigation of MoS2 is mainly focused on the electronics and spintronics instead of optics, which restrict its applications as key elements of photonics. In this work, we demonstrate the first observation of the polarization-dependent optical absorption of the MoS2 thin film, which is integrated onto an optical waveguide device. With this feature, a novel optical sensor combining MoS2 thin-film and a microfluidic structure has been constituted to achieve the sensitive monitoring of refractive index. Our work indicates the MoS2 thin film as a complementary material to graphene for the optical polarizer in the visible light range, and explores a new application direction of MoS2 nanomaterials for the construction of photonic circuits. PMID:25516116

  10. Characterizing the spatio-temporal and energy-dependent response of riometer absorption to particle precipitation

    NASA Astrophysics Data System (ADS)

    Kellerman, Adam; Makarevich, Roman; Spanswick, Emma; Donovan, Eric; Shprits, Yuri

    2016-07-01

    Energetic electrons in the 10's of keV range precipitate to the upper D- and lower E-region ionosphere, and are responsible for enhanced ionization. The same particles are important in the inner magnetosphere, as they provide a source of energy for waves, and thus relate to relativistic electron enhancements in Earth's radiation belts.In situ observations of plasma populations and waves are usually limited to a single point, which complicates temporal and spatial analysis. Also, the lifespan of satellite missions is often limited to several years which does not allow one to infer long-term climatology of particle precipitation, important for affecting ionospheric conditions at high latitudes. Multi-point remote sensing of the ionospheric plasma conditions can provide a global view of both ionospheric and magnetospheric conditions, and the coupling between magnetospheric and ionospheric phenomena can be examined on time-scales that allow comprehensive statistical analysis. In this study we utilize multi-point riometer measurements in conjunction with in situ satellite data, and physics-based modeling to investigate the spatio-temporal and energy-dependent response of riometer absorption. Quantifying this relationship may be a key to future advancements in our understanding of the complex D-region ionosphere, and may lead to enhanced specification of auroral precipitation both during individual events and over climatological time-scales.

  11. Region-Dependent Role of Cell-Penetrating Peptides in Insulin Absorption Across the Rat Small Intestinal Membrane.

    PubMed

    Khafagy, El-Sayed; Iwamae, Ruisha; Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-11-01

    We have reported that the cell-penetrating peptide (CPP) penetratin acts as a potential absorption enhancer in oral insulin delivery systems and that this action occurs through noncovalent intermolecular interactions. However, the region-dependent role of CPPs in intestinal insulin absorption has not been clarified. To identify the intestinal region where CPPs have the most effect in increasing insulin absorption, the region-dependent action of penetratin was investigated using in situ closed intestinal loops in rats. The order of the insulin area under the insulin concentration-time curve (AUC) increase effect by L-penetratin was ileum > jejunum > duodenum > colon. By contrast, the AUC order after coadministration of insulin with D-penetratin was colon > duodenum ≥ jejunum and ileum. We also compared the effects of the L- and D-forms of penetratin, R8, and PenetraMax on ileal insulin absorption. Along with the CPPs used in this study, L- and D-PenetraMax produced the largest insulin AUCs. An absorption study using ilea pretreated with CPPs showed that PenetraMax had no irreversible effect on the intestinal epithelial membrane. The degradation of insulin in the presence of CPPs was assessed in rat intestinal enzymatic fluid. The half-life (t 1/2) of insulin increased from 14.5 to 23.7 and 184.7 min in the presence of L- and D-PenetraMax, respectively. These enzymatic degradation-resistant effects might contribute partly to the increased ileal absorption of insulin induced by D-PenetraMax. In conclusion, this study demonstrated that the ability of the L- and D-forms of penetratin to increase intestinal insulin absorption was maximal in the ileum and the colon, respectively, and that D-PenetraMax is a powerful but transient enhancer of oral insulin absorption.

  12. SN 2011A: A Low-luminosity Interacting Transient with a Double Plateau and Strong Sodium Absorption

    NASA Astrophysics Data System (ADS)

    de Jaeger, T.; Anderson, J. P.; Pignata, G.; Hamuy, M.; Kankare, E.; Stritzinger, M. D.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Folatelli, G.; Förster, F.; González-Gaitán, S.; Gutiérrez, C. P.; Inserra, C.; Kotak, R.; Lira, P.; Morrell, N.; Taddia, F.; Tomasella, L.

    2015-07-01

    We present optical photometry and spectroscopy of the optical transient SN 2011A. Our data span 140 days after discovery including {BVRI} u\\prime g\\prime r\\prime i\\prime z\\prime photometry and 11 epochs of optical spectroscopy. Originally classified as a type IIn supernova (SN IIn) due to the presence of narrow Hα emission, this object shows exceptional characteristics. First, the light curve shows a double plateau, a property only observed before in the impostor SN 1997bs. Second, SN 2011A has a very low luminosity ({M}V=-15.72), placing it between normal luminous SNe IIn and SN impostors. Third, SN 2011A shows low velocity and high equivalent width absorption close to the sodium doublet, which increases with time and is most likely of circumstellar origin. This evolution is also accompanied by a change in line profile; when the absorption becomes stronger, a P Cygni profile appears. We discuss SN 2011A in the context of interacting SNe IIn and SN impostors, which appears to confirm the uniqueness of this transient. While we favor an impostor origin for SN 2011A, we highlight the difficulty in differentiating between terminal and non-terminal interacting transients. This paper includes data obtained with the 6.5 m Magellan Telescopes and du Pont telescope; the Gemini-North Telescope, Mauna Kea, USA (Gemini Program GN-2010B-Q67, PI: Stritzinger); the PROMPT telescopes at Cerro Tololo Inter-American Observatory in Chile; with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council; based on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofisica de Canarias; the NTT from ESO Science Archive

  13. Bioactive Dietary Polyphenols Inhibit Heme Iron Absorption in A Dose-Dependent Manner in Human Intestinal Caco-2 cells

    PubMed Central

    Ma, Qianyi; Kim, Eun-Young; Lindsay, Elizabeth Ann; Han, Okhee

    2011-01-01

    Although heme iron is an important form of dietary iron, its intestinal absorption mechanism remains elusive. Our previous work revealed that (−)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) markedly inhibited intestinal heme iron absorption by reducing the basolateral iron export in Caco-2 cells. The aims of this study were to examine whether small amounts of EGCG, GSE and green tea extract (GT) could inhibit heme iron absorption, and to test whether the inhibitory action of polyphenols could be offset by ascorbic acid. A heme-55Fe absorption study was conducted by adding various concentrations of EGCG, GSE and GT to Caco-2 cells in the absence and presence of ascorbic acid. Polyphenolic compounds significantly inhibited heme-55Fe absorption in a dose-dependent manner. The addition of ascorbic acid did not modulate the inhibitory effect of dietary polyphenols on heme iron absorption when the cells were treated with polyphenols at a concentration of 46 mg/L. However, ascorbic acid was able to offset or reverse the inhibitory effects of polyphenolic compounds when lower concentrations of polyphenols were added (≤ 4.6 mg/L). Ascorbic acid modulated the heme iron absorption without changing the apical heme uptake, the expression of the proteins involved in heme metabolism and basolateral iron transport, and heme oxygenase activity, indicating that ascorbic acid may enhance heme iron absorption by modulating the intracellular distribution of 55Fe. These results imply that the regular consumption of dietary ascorbic acid can easily counteract the inhibitory effects of low concentrations of dietary polyphenols on heme iron absorption but cannot counteract the inhibitory actions of high concentrations of polyphenols. PMID:22417433

  14. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    SciTech Connect

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David; and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  15. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    SciTech Connect

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian; Kacprzak, Glenn G.; Charlton, Jane; Muzahid, Sowgat

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  16. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    SciTech Connect

    Yi, M.; Liu, Z. -K.; Zhang, Y.; Yu, R.; Zhu, J. -X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J. -H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S. -K.; Hussain, Z.; Mao, Z. Q.; Chu, C. W.; Fisher, I. R.; Si, Q.; Shen, Z. -X.; Lu, D. H.

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

  17. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    DOE PAGES

    Yi, M.; Liu, Z. -K.; Zhang, Y.; Yu, R.; Zhu, J. -X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; et al

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phasemore » where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less

  18. Strong blue absorption of green Zn2SiO4:Mn2+ phosphor by doping heavy Mn2+ concentrations

    NASA Astrophysics Data System (ADS)

    Park, K. W.; Lim, H. S.; Park, S. W.; Deressa, G.; Kim, J. S.

    2015-09-01

    Heavily-doped Zn2SiO4:Mn2+ phosphors showed a strong 422 nm photoluminescence excitation from 6A1 → 4A1 forbidden transitions of Mn2+ ions and an intensive 530 nm peak emission from 4T1 → 6A1 forbidden transitions with excellent thermal stability (90% @ 200 °C). The photoluminescence enhancement under 422 nm excitation was explained in terms of the relaxation of selection rule on the forbidden intra-transitions of Mn2+ ions. It is attributed to the increased Mn2+-O2- intermixing supported by electron spin resonance signal. Finally, the heavily-doped Zn2SiO4:Mn2+ phosphor was applied to white-light-emitting diode as a blue-to-green color conversion phosphor.

  19. Thickness Dependence of Infrared Reflection Absorption in Vacuum-Deposited Thin Film of Polyvinylidene Fluoride

    NASA Astrophysics Data System (ADS)

    Maki, Kunisuke; Terashima, Hidenobu; Kikuma, Kazuhiro

    1990-06-01

    Reflection absorption intensities for p-polarized infrared rays are shown as a function of thickness (d) of vacuum-deposited films of polyvinylidene fluoride (PVDF), which were deposited on Ag-covered mica substrates held at 25°C. Each absorption due to α-type polycrystalline film at 1412, 1215, 1185, 1150, 1070, 875 and 615 cm-1 increases linearly with increasing d. Some structural relaxation during the growth of PVDF film is discussed for interpretation of the result that absorption at 1215, 1185 and 875 cm-1 is not observed and the peak height at 882 cm-1 is seen clearly for films at d<15 nm.

  20. X-ray absorption spectroscopy of strongly disordered glasses: Local structure around Ag ions in g-Ag{sub 2}O{center_dot}nB{sub 2}O{sub 3}

    SciTech Connect

    Kuzmin, A.; Dalba, G.; Fornasini, P.; Rocca, F.; Sipr, O.

    2006-05-01

    The local structure around Ag ions in silver borate glasses g-Ag{sub 2}O{center_dot}nB{sub 2}O{sub 3} (n=2,4) was studied by x-ray absorption spectroscopy at the Ag K edge for temperatures from 77 to 450 K. Extended x-ray absorption fine structure (EXAFS) analysis based on cumulant expansion or multishell Gaussian model fails for these systems. Therefore, the radial distribution functions (RDFs) around Ag ions were reconstructed using a method based on the direct inversion of the EXAFS expression. The RDFs consist of about eight atoms (oxygens and borons), exhibit a relatively weak temperature dependence, and indicate the presence of strong static disorder. Two main components can be identified in RDFs, located at about 2.3-2.4 A and 2.5-3.4 A, respectively. The chemical types of atoms contributing to the RDF were determined via a simulation of configurationally averaged x-ray absorption near-edge structure (XANES) and EXAFS signals. The immediate neighborhood of Ag contains mostly oxygens while borons dominate at larger distances. The combination of EXAFS and XANES techniques allowed us to determine a more complete structural model than would be possible by relying solely on either EXAFS or XANES alone.

  1. Strong absorption by interstellar hydrogen fluoride: Herschel/HIFI observations of the sight-line to G10.6-0.4 (W31C)

    NASA Astrophysics Data System (ADS)

    Neufeld, D. A.; Sonnentrucker, P.; Phillips, T. G.; Lis, D. C.; de Luca, M.; Goicoechea, J. R.; Black, J. H.; Gerin, M.; Bell, T.; Boulanger, F.; Cernicharo, J.; Coutens, A.; Dartois, E.; Kazmierczak, M.; Encrenaz, P.; Falgarone, E.; Geballe, T. R.; Giesen, T.; Godard, B.; Goldsmith, P. F.; Gry, C.; Gupta, H.; Hennebelle, P.; Herbst, E.; Hily-Blant, P.; Joblin, C.; Kołos, R.; Krełowski, J.; Martín-Pintado, J.; Menten, K. M.; Monje, R.; Mookerjea, B.; Pearson, J.; Perault, M.; Persson, C.; Plume, R.; Salez, M.; Schlemmer, S.; Schmidt, M.; Stutzki, J.; Teyssier, D.; Vastel, C.; Yu, S.; Cais, P.; Caux, E.; Liseau, R.; Morris, P.; Planesas, P.

    2010-07-01

    We report the detection of strong absorption by interstellar hydrogen fluoride along the sight-line to the submillimeter continuum source G10.6-0.4 (W31C). We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 1232.4763 GHz J = 1-0 HF transition in the upper sideband of the Band 5a receiver. The resultant spectrum shows weak HF emission from G10.6-0.4 at LSR velocities in the range -10 to -3 km s-1, accompanied by strong absorption by foreground material at LSR velocities in the range 15 to 50 km s-1. The spectrum is similar to that of the 1113.3430 GHz 111-000 transition of para-water, although at some frequencies the HF (hydrogen fluoride) optical depth clearly exceeds that of para-H2O. The optically-thick HF absorption that we have observed places a conservative lower limit of 1.6×1014 cm-2 on the HF column density along the sight-line to G10.6-0.4. Our lower limit on the HF abundance, 6×10-9 relative to hydrogen nuclei, implies that hydrogen fluoride accounts for between ~30% and 100% of the fluorine nuclei in the gas phase along this sight-line. This observation corroborates theoretical predictions that - because the unique thermochemistry of fluorine permits the exothermic reaction of F atoms with molecular hydrogen - HF will be the dominant reservoir of interstellar fluorine under a wide range of conditions. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr_3 quantum dots

    NASA Astrophysics Data System (ADS)

    Wei, Ke; Xu, Zhongjie; Chen, Runze; Zheng, Xin; Cheng, Xiangai; Jiang, Tian

    2016-08-01

    Recently lead halide nanocrystals (quantum dots) have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) have been studied across a broad temperature range from 80K to 380K. Two-photon absorption has been investigated with absorption coefficient up to 0.085 cm/GW at room temperature. Moreover, the photoluminescence excited by two-photon absorption shows a linear blue-shift (0.25meV/K) below temperature of ~220K and turned steady with fluctuation below 1nm (4.4meV) for higher temperature up to 380K. These phenomena are distinctly different from general red-shift of semiconductor and can be explained by the competition between lattice expansion and electron-phonon couplling.Our results reveal the strong nonlinear absorption and temperature-independent chromaticity in a large temperature range from 220K to 380K in the CsPbX3 QDs, which will offer new opportunities in nonlinear photonics, light-harvesting and light-emitting devices.

  3. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    NASA Astrophysics Data System (ADS)

    Shao, Guo-yun; Tang, Zhan-duo; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-07-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu-Jona-Lasinio (PNJL) model with an explicit chemical potential dependence of Polyakov loop potential (μ PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the μ -dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of u , d quarks in the hadron-quark coexisting phase, and analyze the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and properties of the mixed phase would bring relevant information on the expected chemical potential dependence of the Polyakov loop contribution.

  4. Mg2+-dependent Gating and Strong Inward Rectification of the Cation Channel TRPV6

    PubMed Central

    Voets, Thomas; Janssens, Annelies; Prenen, Jean; Droogmans, Guy; Nilius, Bernd

    2003-01-01

    TRPV6 (CaT1/ECaC2), a highly Ca2+-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg2+. Mg2+ blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg2+ is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg2+, outward conductance is still ∼10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg2+-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg2+ sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg2+. The effects of intracellular Mg2+ on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K+ channels and may represent a novel regulatory mechanism for TRPV6 function in vivo. PMID:12601087

  5. Runoff source or sink? Biocrust hydrological function strongly depends on the relative abundance of mosses

    NASA Astrophysics Data System (ADS)

    Bowker, M. A.; Eldridge, D. J.; Maestre, F. T.

    2012-04-01

    The redistribution of water in semi-arid environments is critical for overall ecosystem productivity. To a large degree, ecosystem engineers may determine the redistribution of water. Biological soil crusts (biocrusts) are one such group of ecosystem engineers. Their effects on infiltration have been somewhat controversial, varying from place to place and ranging from strongly positive to strongly negative. In addition, they coexist with and are modified by additional ecosystem engineers. We used a systems approach to examine the interactive effects of multiple engineers on infiltration processes across two analogous sets of interactors. First in Spain, we examined interactions among Stipa tenacissima, biocrusts, and the European rabbit; and in Australia, the interaction between biocrusts and the bilby (a rabbit-like marsupial). We focused on the effects of particular community properties of biocrusts such as species richness, total cover, species composition, and spatial patterning to characterize their variable effects on infiltration. We measured the early (sorptivity) and later (steady-state infiltration) stages of infiltration at two supply potentials using disk permeameters, which allowed us to determine the relative effects of different engineers and soil micropores on water flow through large macropores. In the Spanish case, structural equation modeling showed that both Stipa and biocrust cover exerted substantial and equal positive effects on infiltration under ponding, whereas indirectly, rabbit disturbance negatively affected infiltration by reducing crust cover; rabbits had negligible direct effects. The biocrust influence could be partitioned roughly equally between total cover and composition. All lichen species were negatively related to infiltration and almost all mosses were positively related to infiltration. In the Australian study, bilby forage pits had a direct and strong positive influence on steady state infiltration under ponding and most

  6. Excited-State Absorption from Real-Time Time-Dependent Density Functional Theory: Optical Limiting in Zinc Phthalocyanine.

    PubMed

    Fischer, Sean A; Cramer, Christopher J; Govind, Niranjan

    2016-04-01

    Optical-limiting materials are capable of attenuating light to protect delicate equipment from high-intensity light sources. Phthalocyanines have attracted a lot of attention for optical-limiting applications due to their versatility and large nonlinear absorption. With excited-state absorption (ESA) being the primary mechanism for optical limiting behavior in phthalocyanines, the ability to tune the optical absorption of ground and excited states in phthalocyanines would allow for the development of advanced optical limiters. We recently developed a method for the calculation of ESA based on real-time time-dependent density functional theory propagation of an excited-state density. In this work, we apply the approach to zinc phthalocyanine, demonstrating the ability of our method to efficiently identify the optical limiting potential of a molecular complex.

  7. Strong Temperature Dependence in the Reactivity of H2 on RuO2(110).

    PubMed

    Henderson, Michael A; Dahal, Arjun; Dohnálek, Zdenek; Lyubinetsky, Igor

    2016-08-01

    Understanding the reactivity of H2 is of critical importance in controlling and optimizing many heterogeneous catalytic processes, particularly in cases where its adsorption on the catalyst surface is rate-limiting. In this work, we examine the temperature-dependent adsorption of H2/D2 on the clean RuO2(110) surface using the King and Wells molecular beam approach, temperature-programmed desorption (TPD), and scanning tunneling microscopy (STM). We show that the adsorption probability of H2/D2 on this surface is highly temperature-dependent, decreasing from ∼0.4 below 25 K to <0.01 at 300 K. Both STM and TPD reveal that adsorption (molecular or dissociative) is severely limited once the temperature exceeds the trailing edge temperature of the H2 TPD state (∼150 K). The presence of coadsorbed water or oxygen does not appear to alter this situation. Previous literature reports of extensive RuO2(110) surface hydroxylation from H2/D2 exposures at 300 K may instead be the result of background contamination brought about by chamber backfilling. PMID:27434420

  8. The hydration dependence of CaCO3 absorption lines in the Far IR

    NASA Astrophysics Data System (ADS)

    Powell, Johnny; Emery, Logan P

    2014-06-01

    The far infrared (FIR) absorption lines of CaCO3 have been measured at a range of relative humidities (RH) between 33 and 92% RH using a Bruker 66v/S spectrometer. Hydration measurements on CaCO3 have been made in the mid-infrared (MIR) by [Al-Hosney, H.A. and Grassian, V.H., 2005, Phys. Chem. Chem. Phys., 7, 1266], and astrophysically-motivated temperature-dependent FIR measurements of CaCO3 in vacuum have also been reported [Posch, T., et al., 2007, Ap. J., 668, 993]. The custom sample cell constructed for these hydrated-FIR spectra is required because the 66v/S bench is under vacuum (3 mbar) during typical measurements. Briefly, the sample cell consists of two Thalium Bromoiodide (KRS-5) windows, four O-rings, a plastic ring for separating the windows and providing a volume for the saturated atmosphere. CaCO3 was deposited on KRS-5 windows using doubly-distilled water as an intermediary. The KRS-5 window with sample and assembled sample cell were placed in a desiccator with the appropriated saturated salt solution [Washburn, E.W. (Ed.), International Critical Tables of Numerical Data, Physics Chemistry and Technology, Vol. 1, (McGraw-Hill, New York, 1926), p. 67-68] and allowed to hydrate for 23 hours. For spectroscopy the desiccator was quickly opened and the second KRS-5 window placed in the cell to seal the chamber. A spectrum was then taken of the sample at the appropriate RH. The spectra taken characterize the adsorption of water vapor and CaCO3 that might occur in circumstellar environments [Melnick, G.J., et al. 2001, Nature, 412, 160].The MIR and FIR reflectance spectra of calcite (CaCO3) have been thoroughly studied by [Hellwege, K.H., et al., 1970, Z. Physik, 232, 61]. Five Lorentzian curves were fit to our data in the range from 378-222 cm-1/SUP> and each was able to be assigned to a known mode of CaCO3. The data does not support the conclusion of a hydration effect on these modes of CaCO3, but it does suggest a possible broadening of three modes

  9. Dependence of Cr-EDTA absorption from the rumen on luminal osmotic pressure.

    PubMed

    Dobson, A; Sellers, A F; Gatewood, V H

    1976-11-01

    A method for the measurement of [51Cr]EDTA absorption from the ventral sac of the rumen with an error of the order of +/-10% is described. When a solution present in the rumen was hypotonic or isotonic, the absorption rate of [51Cr]EDTA expressed as a clearance was about 0.2 ml/min. This gave rise to negligible errors when [51Cr]EDTA was used as an unabsorbed marker to calculate net water movements. When the osmotic pressure in the rumen exceeded that of plasma by 30-40 mos-mol/kg, the absorption rate of [51Cr]EDTA appeared to be related to the degree of hypertonicity. Absorption rates as high as 8 ml/min were observed within a range of osmotic pressures normally encountered postprandially in the rumen. Under hypertonic conditions, a correction for the absorption of this large anion was necessary if passage of water into the lumen were not to be systematically overestimated.

  10. Light absorption efficiencies of photosynthetic pigments: the dependence on spectral types of central stars

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    2015-07-01

    For detecting life from reflection spectra on extrasolar planets, trace of photosynthesis is one of the indicators. However, it is not yet clear what kind of radiation environments is acceptable for photosynthesis. Light absorption in photosystems on the Earth occurs using limited photosynthetic pigments such as chlorophylls (Chls) and bacteriochlorophylls (BChls). Efficiencies of light absorption for the pigments were evaluated by calculating the specific molecular absorption spectra at the high accuracy-quantum mechanical level. We used realistic stellar radiation spectra such as F, G, K and M-type stars to investigate the efficiencies. We found that the efficiencies are increased with the temperature of stars, from M to F star. Photosynthetic pigments have two types of absorption bands, the Q y and Soret. In higher temperature stars like F star, contributions from the Soret region of the pigments are dominant for the efficiency. On the other hand, in lower temperature stars like M stars, the Q y band is crucial. Therefore, differences on the absorption intensity and the wavelength between the Q y and Soret band are the most important to characterize the photosynthetic pigments. Among photosynthetic pigments, Chls tend to be efficient in higher temperature stars, while BChls are efficient for M stars. Blueward of the 4000 Å break, the efficiencies of BChls are smaller than Chls in the higher temperature stars.

  11. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    PubMed

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

  12. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    PubMed

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties. PMID:27661893

  13. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels

    PubMed Central

    Lebaudy, Anne; Vavasseur, Alain; Hosy, Eric; Dreyer, Ingo; Leonhardt, Nathalie; Thibaud, Jean-Baptiste; Véry, Anne-Aliénor; Simonneau, Thierry; Sentenac, Hervé

    2008-01-01

    At least four genes encoding plasma membrane inward K+ channels (Kin channels) are expressed in Arabidopsis guard cells. A double mutant plant was engineered by disruption of a major Kin channel gene and expression of a dominant negative channel construct. Using the patch-clamp technique revealed that this mutant was totally deprived of guard cell Kin channel (GCKin) activity, providing a model to investigate the roles of this activity in the plant. GCKin activity was found to be an essential effector of stomatal opening triggered by membrane hyperpolarization and thereby of blue light-induced stomatal opening at dawn. It improved stomatal reactivity to external or internal signals (light, CO2 availability, and evaporative demand). It protected stomatal function against detrimental effects of Na+ when plants were grown in the presence of physiological concentrations of this cation, probably by enabling guard cells to selectively and rapidly take up K+ instead of Na+ during stomatal opening, thereby preventing deleterious effects of Na+ on stomatal closure. It was also shown to be a key component of the mechanisms that underlie the circadian rhythm of stomatal opening, which is known to gate stomatal responses to extracellular and intracellular signals. Finally, in a meteorological scenario with higher light intensity during the first hours of the photophase, GCKin activity was found to allow a strong increase (35%) in plant biomass production. Thus, a large diversity of approaches indicates that GCKin activity plays pleiotropic roles that crucially contribute to plant adaptation to fluctuating and stressing natural environments. PMID:18367672

  14. Strong Asymmetric Charge Carrier Dependence in Inelastic Electron Tunneling Spectroscopy of Graphene Phonons.

    PubMed

    Natterer, Fabian D; Zhao, Yue; Wyrick, Jonathan; Chan, Yang-Hao; Ruan, Wen-Ying; Chou, Mei-Yin; Watanabe, Kenji; Taniguchi, Takashi; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-06-19

    The observation of phonons in graphene by inelastic electron tunneling spectroscopy has been met with limited success in previous measurements arising from weak signals and other spectral features which inhibit a clear distinction between phonons and miscellaneous excitations. Utilizing a back-gated graphene device that allows adjusting the global charge carrier density, we introduce an averaging method where individual tunneling spectra at varying charge carrier density are combined into one representative spectrum. This method improves the signal for inelastic transitions while it suppresses dispersive spectral features. We thereby map the total graphene phonon density of states, in good agreement with density functional calculations. Unexpectedly, an abrupt change in the phonon intensity is observed when the graphene charge carrier type is switched through a variation of the back-gate electrode potential. This sudden variation in phonon intensity is asymmetric in the carrier type, depending on the sign of the tunneling bias.

  15. Non-mass dependent photodissociation rates of ozone isotopologues from ab-initio absorption cross sections and experimental actinic flux

    NASA Astrophysics Data System (ADS)

    Ndengué, Steve; Jost, Rémy; Gatti, Fabien; Schinke, Reinhard; Madronich, Sasha

    2010-05-01

    The absorption cross sections (XSs) of eighteen isotopologues of the ozone molecule have been calculated in the range of the Chappuis-Huggins-Hartley bands: 15000-55000 cm-1 with special emphasis to those of atmospheric interest: symmetric 16O3, 16O17O16O, and 16O18O16O and asymmetric 17O16O2 and 18O16O2. We have used the MCTDH code which is based on the time propagation of the X(0,0,0) ground state initial wavepacket on the excited state PESs. The XSs have been obtained as the Fourier transform of the autocorrelation function of this wavepacket. The calculations have been performed only for zero total angular momentum and the rotational structure has been modeled numerically. The isotopologue dependence of the overall XSs has been characterized differently in each of the three bands: in the Chappuis band (15000-27000 cm-1) and in the Hartley band (33000-55000 cm-1), the XSs are weakly structured and the isotopologue dependence is globally weak. In contrast, in the Huggins band (27000 to 33000 cm-1) the different XSs are highly structured and their peaks are significantly shifted from those of the 16O3 absolute XS which has been chosen as reference. The Hartley band of each isotopologue can be approximated by a bell shape envelop modeled by a modified Gaussian depending on only four parameters: amplitude, centre, width and asymmetry. The isotopologue dependence of the Hartley band resumes only into tiny differences between these parameters. The dependence of the Chappuis band is also weak. The isotopologue shifts of peaks in the Huggins bands induce a significant dependence of the photodissociation rates because these rates are the integral of the product of the XS by the actinic flux. Below 30 km, the actinic flux displays a tremendous attenuation in the range of the Hartley band because the solar flux is strongly absorbed by the stratospheric ozone, almost exclusively by the 16O3 isotopologue. This implies two consequences: a) the actinic flux reproduces

  16. CFCI3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime and Uncertainty

    NASA Technical Reports Server (NTRS)

    Mcgillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2014-01-01

    CFCl3 (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95 - 230 nm) and temperature (216 - 296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The obtained global annually averaged lifetime was 58.1 +- 0.7 years (2 sigma uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current spectrum recommendations

  17. CFCl3 (CFC-11): UV absorption spectrum temperature dependence measurements and the impact on its atmospheric lifetime and uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, Max R.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-09-01

    (CFC-11) is both an atmospheric ozone-depleting and potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than that currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using a 2-D model and the spectrum parameterization developed in this work. The calculated global annually averaged lifetime was 58.1 ± 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations.

  18. Seismo-acoustic propagation in environments that depend strongly on both range and depth

    NASA Astrophysics Data System (ADS)

    Outing, Donald A.; Siegmann, William L.; Dorman, LeRoy M.; Collins, Michael D.

    2002-11-01

    The parabolic equation method provides an excellent combination of accuracy and efficiency for range-dependent ocean acoustics and seismology problems. This approach is highly developed for problems in which the ocean bottom can be modeled as a fluid. For the elastic case, there remain some accuracy limitations for problems involving sloping interfaces. Progress on this problem has been made by combining a new formulation of the elastic parabolic equation that handles layering more effectively [W. Jerzak, ''Parabolic Equations for Layered Elastic Media,'' doctoral dissertation, Rensselaer Polytechnic Institute, Troy, NY (2001)] and a mapping approach that handles sloping interfaces accurately [J. Acoust. Soc. Am. 107, 1937-1942 (2000)]. This approach makes it possible to handle problems involving complex layering and steep slopes, but the rate of change of the slope must be small. The method and its application to data will be described. Our immediate goal is to model propagation of seismic surface waves propagating across a transition between dry and marshy terrain. We have suitable data applicable to vehicle-tracking problems from Marine Corps Base Camp, Pendleton, CA. [Work supported by ONR.

  19. Near-Infrared-to-Visible Photon Upconversion Sensitized by a Metal Complex with Spin-Forbidden yet Strong S0-T1 Absorption.

    PubMed

    Amemori, Shogo; Sasaki, Yoichi; Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-07-20

    Near-infrared (NIR)-to-visible (vis) photon upconversion (UC) is useful for various applications; however, it remains challenging in triplet-triplet annihilation-based UC, mainly due to the energy loss during the S1-to-T1 intersystem crossing (ISC) of molecular sensitizers. In this work, we circumvent this energy loss by employing a sensitizer with direct S0-to-T1 absorption in the NIR region. A mixed solution of an osmium complex having a strong S0-T1 absorption and rubrene emitter upconverts NIR light (λ = 938 nm) to visible light (λ = 570 nm). Sensitizer-doped emitter nanoparticles are prepared by re-precipitation and dispersed into an oxygen-barrier polymer. The obtained composite film shows a stable NIR-to-vis UC emission based on triplet energy migration (TEM), even in air. A high UC quantum yield of 3.1% is observed for this TEM-UC system, expanding the scope of molecular sensitizers for NIR-to-vis UC. PMID:27354325

  20. Modulation-frequency dependencies of the intensity and the phase delay of photoinduced absorption from conjugated polymers

    NASA Astrophysics Data System (ADS)

    Furukawa, Yukio

    2000-03-01

    The modulation-frequency dependencies of the intensity and the phase delay of photoinduced infrared absorption from poly(p-phenylene) have been observed and simulated numerically on the basis of a model based on second-order kinetics involving a neutralization recombination process between the positive and negative charge carriers (polarons) that are formed from a photogenerated polaron pair (interchain charge-transfer exciton). The rate constant of the bimolecular recombination has been obtained.

  1. Metabolic Inhibition Strongly Inhibits Na+-Dependent Mg2+ Efflux in Rat Ventricular Myocytes

    PubMed Central

    Tashiro, Michiko; Inoue, Hana; Konishi, Masato

    2009-01-01

    Abstract We measured intracellular Mg2+ concentration ([Mg2+]i) in rat ventricular myocytes using the fluorescent indicator furaptra (25°C). In normally energized cells loaded with Mg2+, the introduction of extracellular Na+ induced a rapid decrease in [Mg2+]i: the initial rate of decrease in [Mg2+]i (initial Δ[Mg2+]i/Δt) is thought to represent the rate of Na+-dependent Mg2+ efflux (putative Na+/Mg2+ exchange). To determine whether Mg2+ efflux depends directly on energy derived from cellular metabolism, in addition to the transmembrane Na+ gradient, we estimated the initial Δ[Mg2+]i/Δt after metabolic inhibition. In the absence of extracellular Na+ and Ca2+, treatment of the cells with 1 μM carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone, an uncoupler of mitochondria, caused a large increase in [Mg2+]i from ∼0.9 mM to ∼2.5 mM in a period of 5–8 min (probably because of breakdown of MgATP and release of Mg2+) and cell shortening to ∼50% of the initial length (probably because of formation of rigor cross-bridges). Similar increases in [Mg2+]i and cell shortening were observed after application of 5 mM potassium cyanide (KCN) (an inhibitor of respiration) for ≥90 min. The initial Δ[Mg2+]i/Δt was diminished, on average, by 90% in carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone-treated cells and 92% in KCN-treated cells. When the cells were treated with 5 mM KCN for shorter times (59–85 min), a significant decrease in the initial Δ[Mg2+]i/Δt (on average by 59%) was observed with only a slight shortening of the cell length. Intracellular Na+ concentration ([Na+]i) estimated with a Na+ indicator sodium-binding benzofuran isophthalate was, on average, 5.0–10.5 mM during the time required for the initial Δ[Mg2+]i/Δt measurements, which is well below the [Na+]i level for half inhibition of the Mg2+ efflux (∼40 mM). Normalization of intracellular pH using 10 μM nigericin, a H+ ionophore, did not reverse the inhibition of the Mg2+ efflux

  2. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    NASA Technical Reports Server (NTRS)

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  3. The abundance of satellites depends strongly on the morphology of the host galaxy

    NASA Astrophysics Data System (ADS)

    Ruiz, Pablo; Trujillo, Ignacio; Mármol-Queraltó, Esther

    2015-12-01

    Using the spectroscopic catalogue of the Sloan Digital Sky Survey Data Release 10, we have explored the abundance of satellites around a sample of 254 massive (1011 < M⋆ < 2 × 1011 M⊙) local (z < 0.025) galaxies. We have divided our sample into four morphological groups (E, S0, Sa, Sb/c). We find that the number of satellites with M⋆ ≳ 109 M⊙ and R < 300 kpc depends drastically on the morphology of the central galaxy. The average number of satellites per galaxy host (NSat/NHost) down to a mass ratio of 1:100 is 4.5 ± 0.3 for E hosts, 2.6 ± 0.2 for S0, 1.5 ± 0.1 for Sa and 1.2 ± 0.2 for Sb/c. The amount of stellar mass enclosed by the satellites around massive E-type galaxies is a factor of 2, 4 and 5 larger than the mass in the satellites of S0, Sa and Sb/c types, respectively. If these satellites would eventually infall into the host galaxies, for all the morphological types, the merger channel will be largely dominated by satellites with a mass ratio satellite-host μ > 0.1. The fact that massive elliptical galaxies have a significant larger number of satellites than massive spirals could point out that elliptical galaxies inhabit heavier dark matter haloes than equally massive galaxies with later morphological types. If this hypothesis is correct, the dark matter haloes of late-type spiral galaxies are a factor of ˜2-3 more efficient on producing galaxies with the same stellar mass than those dark matter haloes of early-type galaxies.

  4. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    PubMed

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  5. Time-dependent aggregation-induced enhanced emission, absorption spectral broadening, and aggregation morphology of a novel perylene derivative with a large D-π-A structure.

    PubMed

    Yang, Long; Yu, Yuyan; Zhang, Jin; Ge, Feijie; Zhang, Jianling; Jiang, Long; Gao, Fang; Dan, Yi

    2015-05-01

    Strong aggregation-caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C=C at the bay positions to obtain aggregation-induced enhanced emission (AIEE) of a perylene derivative (Cya-PDI) with a large π-conjugation system. Cya-PDI is weakly luminescent in the well-dispersed CH(3)CN or THF solutions and exhibits an evident time-dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya-PDI molecules changed from plate-shaped to rod-like aggregates under the co-effects of time and water. An edge-to-face arrangement of aggregation was proposed and discussed. The fact that the Cya-PDI aggregates show a broad absorption covering the whole visible-light range and strong intermolecular interaction through π-π stacking in the solid state makes them promising materials for optoelectric applications.

  6. Wavelength-Dependent Optical Absorption Properties of Artificial and Atmospheric Aerosol Measured by a Multi-Wavelength Photoacoustic Spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Bozóki, Z.; Szabó, G.

    2014-12-01

    Various aspects of the photoacoustic (PA) detection method are discussed from the point of view of developing it into a routine tool for measuring the wavelength-dependent optical absorption coefficient of artificial and atmospheric aerosol. The discussion includes the issues of calibration, cross-sensitivity to gaseous molecules, background PA signal subtraction, and size-dependent particle losses within the PA system. The results in this paper are based on a recently developed four-wavelength PA system, which has operational wavelengths in the near-infrared, in the visible, and in the ultraviolet. The measured spectra of artificial and atmospheric aerosol prove the outstanding applicability of the presented PA system.

  7. Strong Lyα Emission in the Proximate Damped Lyα Absorption Trough toward the Quasar SDSS J095253.83+011422.0

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Zhou, Hongyan; Pan, Xiang; Jiang, Ning; Shu, Xinwen; Wang, Huiyuan; Gu, Qiusheng; Li, Zhenzhen; Wu, Maochun; Shi, Xiheng; Ji, Tuo; Tian, Qiguo; Zhang, Shaohua

    2016-04-01

    SDSS J095253.83+011422.0 (J0952+0114) was reported by Hall et al. as an exotic quasar at zem = 3.020. In contrast to prominent broad metal-line emission with FWHM ˜ 9000 km s-1, only a narrow Lyα emission line is present with FWHM ˜ 1000 km s-1. The absence of a broad Lyα emission line has been a mystery for more than a decade. In this paper, we demonstrate that this absence is due to dark proximate damped Lyα absorption (PDLA) at zabs = 3.010 by identifying associated Lyman absorption line series from the damped Lyβ up to Ly9, as well as the Lyman limit absorption edge. The PDLA cloud has a column density of {log}{N}{{H}{{I}}}({{{cm}}}-2)=21.8+/- 0.2, a metallicity of [Zn/H] > -1.0, and a spatial extent exceeding the narrow emission line region (NELR) of the quasar. With a luminosity of {L}{{Ly}α }˜ {10}45 erg s-1, the residual Lyα emission superposed on the PDLA trough is two orders of magnitude stronger than found by previous reports. This is best explained as re-radiated photons arising from the quasar outflowing gas on a larger scale than in the NELR. The PDLA here, acting like a natural coronagraph, provides us with valuable insight into the illuminated gases in the vicinity of the quasar, which are usually hard to resolve due to their small size and the “seeing fuzz” of bright quasars. Notably, J0952+0114 analogs might be easily omitted in the spectroscopic surveys of DLAs and PDLAs because their damped Lyα troughs can be fully filled by additional strong Lyα emissions. Our preliminary survey shows that such systems are not very rare. They could potentially be a unique sample for probing strong quasar feedback phenomena in the early universe.

  8. Current dependent angular magnetoresistance in strongly Pr-doped Y Ba2Cu3O7-δ single crystal

    NASA Astrophysics Data System (ADS)

    Sandu, V.; Gyawali, P.; Katuwal, T.; Almasan, C. C.; Taylor, B. J.; Maple, M. B.

    2009-03-01

    We report a strong dependence of the angular magnetoresistance (AMR) on the current density in Y Ba2Cu3O7-δ single crystal above the critical temperature Tc = 13 K for any applied field up to 14 T. We estimated the current dependence from the angular dependence of the top resistance Rtop, as measured on the face where the current is applied, and the bottom resistance Rbot as measured on the opposite face. At any temperature, both below and above Tc, Rtop decreases as the field becomes parallel to the current and ab-plane with an angle dependence that suggests an important contribution arising from the vortex flow. Rbot evolves from a monotonic to nonmonotonic angle dependence with three minima and two maxima in the angle range 0 — 180° as the temperature increases. For less Pr-doped samples, Y0.58Pr0.42Ba2Cu3O7-δ (Tc = 39 K) and Y0.68rP0.32Ba2Cu3O7-δ (Tc = 55 K), where the interplane resistivity is much lower, both Rtop and Rbot follow the same monotonic angle dependence in all temperature and field range.

  9. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    PubMed

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p < 0.01) and PPARα agonist (P < 0.01), but not by DHA, PPARγ or PPARδ agonists. Despite unaltered β-carotene uptake, both DHA and PPARδ agonists inhibited the NPC1L1 expression. Further, EPA also induced the expression of carnitine palmitoyl transferase 1A (CPT1A) expression, a PPARα target gene. Interestingly, EPA induced inhibition of β-carotene uptake and SR B1 expression were abrogated by specific PPARα antagonist, but not by PPARδ antagonist. EPA and PPARα agonist also inhibited the basolateral secretion of β-carotene from Caco-2 cells grown on permeable supports. These results suggest that EPA inhibits intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption. PMID:26577021

  10. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism.

    PubMed

    Mashurabad, Purna Chandra; Kondaiah, Palsa; Palika, Ravindranadh; Ghosh, Sudip; Nair, Madhavan K; Raghu, Pullakhandam

    2016-01-15

    The involvement of lipid transporters, the scavenger receptor class B, type I (SR-BI) and Niemann-Pick type C1 Like 1 protein (NPC1L1) in carotenoid absorption is demonstrated in intestinal cells and animal models. Dietary ω-3 fatty acids are known to possess antilipidemic properties, which could be mediated by activation of PPAR family transcription factors. The present study was conducted to determine the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), on intestinal β-carotene absorption. β-carotene uptake in Caco-2/TC7 cells was inhibited by EPA (p < 0.01) and PPARα agonist (P < 0.01), but not by DHA, PPARγ or PPARδ agonists. Despite unaltered β-carotene uptake, both DHA and PPARδ agonists inhibited the NPC1L1 expression. Further, EPA also induced the expression of carnitine palmitoyl transferase 1A (CPT1A) expression, a PPARα target gene. Interestingly, EPA induced inhibition of β-carotene uptake and SR B1 expression were abrogated by specific PPARα antagonist, but not by PPARδ antagonist. EPA and PPARα agonist also inhibited the basolateral secretion of β-carotene from Caco-2 cells grown on permeable supports. These results suggest that EPA inhibits intestinal β-carotene absorption by down regulation of SR B1 expression via PPARα dependent mechanism and provide an evidence for dietary modulation of intestinal β-carotene absorption.

  11. Target mass dependence of 4ΛH formation mechanism from K- absorption at rest

    NASA Astrophysics Data System (ADS)

    Nara, Y.; Ohnishi, A.; Harada, T.

    1995-02-01

    Formation probabilities of Λ4H from K- absorption at rest on light nuclear targets are investigated employing antisymmetrized molecular dynamics combined with multi-step binary statistical decay. Calculated results show that as the target mass number decreases from 16O, 12C to 9Be, the main formation mechanism varies from statistical decay, followed by dynamical fragmentation, to direct formation in nuclear environment.

  12. The degradation, absorption, and solubility of volatile anesthetics in soda lime depend on water content.

    PubMed

    Strum, D P; Eger, E I

    1994-02-01

    Absorption of anesthetic into soda lime may delay induction of anesthesia and degradation by soda lime may produce toxic products. We determined whether the moisture content of soda lime influences the mechanisms underlying absorption (saturable uptake), degradation, and solubility (nonsaturable uptake). We placed liquid anesthetic (sevoflurane, isoflurane, halothane, enflurane, or desflurane) in 581-mL equilibration flasks containing soda lime of various water contents (0%-15.1% H2O) and sampled the vapor concentrations repeatedly for 24-35 h. Loss of vapor from the gas phase was partitioned into absorption, degradation, and solubility factors by regression analyses. We also found that soda lime in absorbers may dry from H2O contents of 15% to 4%-8.5% in routine clinical use. Our observations suggest that during induction of anesthesia a portion of the delivered anesthetic may be lost to the soda lime, rather than delivered to the patient. In addition, the potential for production of toxic products may be increased when volatile anesthetics are used with dry soda lime.

  13. Na-H Exchanger Isoform-2 (NHE2) Mediates Butyrate-dependent Na+ Absorption in Dextran Sulfate Sodium (DSS)-induced Colitis.

    PubMed

    Rajendran, Vazhaikkurichi M; Nanda Kumar, Navalpur S; Tse, Chung M; Binder, Henry J

    2015-10-16

    Diarrhea associated with ulcerative colitis (UC) occurs primarily as a result of reduced Na(+) absorption. Although colonic Na(+) absorption is mediated by both epithelial Na(+) channels (ENaC) and Na-H exchangers (NHE), inhibition of NHE-mediated Na(+) absorption is the primary cause of diarrhea in UC. As there are conflicting observations reported on NHE expression in human UC, the present study was initiated to identify whether NHE isoforms (NHE2 and NHE3) expression is altered and how Na(+) absorption is regulated in DSS-induced inflammation in rat colon, a model that has been used to study UC. Western blot analyses indicate that neither NHE2 nor NHE3 expression is altered in apical membranes of inflamed colon. Na(+) fluxes measured in vitro under voltage clamp conditions in controls demonstrate that both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption are inhibited by S3226 (NHE3-inhibitor), but not by HOE694 (NHE2-inhibitor) in normal animals. In contrast, in DSS-induced inflammation, butyrate-, but not HCO3 (-)-dependent Na(+) absorption is present and is inhibited by HOE694, but not by S3226. These observations indicate that in normal colon NHE3 mediates both HCO3 (-)-dependent and butyrate-dependent Na(+) absorption, whereas DSS-induced inflammation activates NHE2, which mediates butyrate-dependent (but not HCO3 (-)-dependent) Na(+) absorption. In in vivo loop studies HCO3 (-)-Ringer and butyrate-Ringer exhibit similar rates of water absorption in normal rats, whereas in DSS-induced inflammation luminal butyrate-Ringer reversed water secretion observed with HCO3 (-)-Ringer to fluid absorption. Lumen butyrate-Ringer incubation activated NHE3-mediated Na(+) absorption in DSS-induced colitis. These observations suggest that the butyrate activation of NHE2 would be a potential target to control UC-associated diarrhea.

  14. Effects of temperature-dependent molecular absorption coefficients on the thermal infrared remote sensing of the earth surface

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming; Dozier, Jeff

    1992-01-01

    The effect of temperature-dependent molecular absorption coefficients on thermal infrared spectral signatures measured from satellite sensors is investigated by comparing results from the atmospheric transmission and radiance codes LOWTRAN and MODTRAN and the accurate multiple scattering radiative transfer model ATRAD for different atmospheric profiles. The sensors considered include the operational NOAA AVHRR and two research instruments planned for NASA's Earth Observing System (EOS): MODIS-N (Moderate Resolution Imaging Spectrometer-Nadir-Mode) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer). The difference in band transmittance is as large as 6 percent for some thermal bands within atmospheric windows and more than 30 percent near the edges of these atmospheric windows. The effect of temperature-dependent molecular absorption coefficients on satellite measurements of sea-surface temperature can exceed 0.6 K. Quantitative comparison and factor analysis indicate that more accurate measurements of molecular absorption coefficients and better radiative transfer simulation methods are needed to achieve SST accuracy of 0.3 K, as required for global numerical models of climate, and to develop land-surface temperature algorithms at the 1-K accuracy level.

  15. Towards strongly correlated photons in arrays of dissipative nonlinear cavities under a frequency-dependent incoherent pumping

    NASA Astrophysics Data System (ADS)

    Lebreuilly, José; Wouters, Michiel; Carusotto, Iacopo

    2016-10-01

    We report a theoretical study of a quantum optical model consisting of an array of strongly nonlinear cavities incoherently pumped by an ensemble of population-inverted two-level atoms. Projective methods are used to eliminate the atomic dynamics and write a generalized master equation for the photonic degrees of freedom only, where the frequency-dependence of gain introduces non-Markovian features. In the simplest single cavity configuration, this pumping scheme gives novel optical bistability effects and allows for the selective generation of Fock states with a well-defined photon number. For many cavities in a weakly non-Markovian limit, the non-equilibrium steady state recovers a Grand-Canonical statistical ensemble at a temperature determined by the effective atomic linewidth. For a two-cavity system in the strongly nonlinear regime, signatures of a Mott state with one photon per cavity are found.

  16. Temperature dependence and annealing effects of absorption edges for selenium quantum dots formed by ion implantation in silica glass

    SciTech Connect

    Ueda, A.; Wu, M.; Mu, R.

    1998-12-31

    The authors have fabricated Se nanoparticles in silica substrates by ion implantation followed by thermal annealing up to 1000 C, and studied the Se nanoparticle formation by optical absorption spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction, and transmission electron microscopy. The sample with the highest dose (1 {times} 10{sup 17} ions/cm{sup 2}) showed the nanoparticle formation during the ion implantation, while the lower dose samples (1 and 3 {times} 10{sup 16} ions/cm{sup 2}) required thermal treatment to obtain nano-sized particles. The Se nanoparticles in silica were found to be amorphous. After thermal annealing, the particle doses approached the value of bulk after thermal annealing. The temperature dependent absorption spectra were also measured for this system in a temperature range from 15 to 300 K.

  17. Phototropin-dependent weak and strong light responses in the determination of branch position in the moss Physcomitrella patens.

    PubMed

    Uenaka, Hidetoshi; Kadota, Akeo

    2008-12-01

    Branch position in the moss Physcomitrella patens is regulated by blue light. In this study, fluence rate dependency of branch position determination was investigated by partial cell irradiation with a microbeam. With a 30 Wm(-2) or lower fluence rate, branches formed at the microbeam area, but formed outside the microbeam when the fluence rate was raised to > or = 200 Wm(-2). Thus, both weak and strong light responses influence the determination of branch position. Further, light sensitivity of both responses was reduced in phototropin knock-out lines, revealing an involvement of phototropin as the blue light receptor.

  18. Binding constants of membrane-anchored receptors and ligands depend strongly on the nanoscale roughness of membranes.

    PubMed

    Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2013-09-17

    Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.

  19. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation.

    PubMed

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15°C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r=0.82nm, disorder of the system D=1500cm(-1) for H-type and r=1.04nm, D=1800cm(-1) for J-type. PMID:27348046

  20. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.

  1. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys.

    PubMed

    Amendola, Vincenzo; Scaramuzza, Stefano; Agnoli, Stefano; Polizzi, Stefano; Meneghetti, Moreno

    2014-01-01

    Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures. PMID:24309909

  2. Spatial arrangement of prey affects the shape of ratio-dependent functional response in strongly antagonistic predators.

    PubMed

    Hossie, Thomas J; Murray, Dennis L

    2016-04-01

    Predators play a key role in shaping natural ecosystems, and understanding the factors that influence a predator's kill rate is central to predicting predator-prey dynamics. While prey density has a well-established effect on predation, it is increasingly apparent that predator density also can critically influence predator kill rates. The effects of both prey and predator density on the functional response will, however, be determined in part by their distribution on the landscape. To examine this complex relationship we experimentally manipulated prey density, predator density, and prey distribution using a tadpole (prey)-dragonfly nymph (predator) system. Predation was strongly ratio-dependent irrespective of prey distribution, but the shape of the functional response changed from hyperbolic to sigmoidal when prey were clumped in space. This sigmoidal functional response reflected a relatively strong negative effect of predator interference on kill rates at low prey: predator ratios when prey were clumped. Prey aggregation also appeared to promote stabilizing density-dependent intraguild predation in our system. We conclude that systems with highly antagonistic predators and patchily distributed prey are more likely to experience stable dynamics, and that our understanding of the functional response will be improved by research that examines directly the mechanisms generating interference. PMID:27220200

  3. Broadband magnetometry by infrared-absorption detection of diamond NV centers and associated temperature dependence

    NASA Astrophysics Data System (ADS)

    Acosta, Victor M.; Jarmola, Andrey; Zipp, Lucas J.; Ledbetter, M. P.; Bauch, E.; Budker, Dmitry

    2011-03-01

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy (NV) ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 μm3, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from DC to a few MHz. Operation in a gradiometer configuration yields a noise floor of 7 nTrms at ~110 Hz in one second of acquisition. We also present measurements of the zero-field splitting parameters as a function of temperature, a calibration which is essential for ultra-sensitive magnetometry at low frequencies.

  4. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    NASA Astrophysics Data System (ADS)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  5. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    NASA Astrophysics Data System (ADS)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  6. Three-dimensional electromagnetic strong turbulence: Dependence of the statistics and dynamics of strong turbulence on the electron to ion temperature ratio

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Cairns, Iver H.; Skjaeraasen, O.; Robinson, P. A.

    2012-02-01

    The temperature ratio Ti/Te of ions to electrons affects both the ion-damping rate and the ion-acoustic speed in plasmas. The effects of changing the ion-damping rate and ion-acoustic speed are investigated for electrostatic strong turbulence and electromagnetic strong turbulence in three dimensions. When ion damping is strong, density wells relax in place and act as nucleation sites for the formation of new wave packets. In this case, the density perturbations are primarily density wells supported by the ponderomotive force. For weak ion damping, corresponding to low Ti/Te, ion-acoustic waves are launched radially outwards when wave packets dissipate at burnout, thereby increasing the level of density perturbations in the system and thus raising the level of scattering of Langmuir waves off density perturbations. Density wells no longer relax in place so renucleation at recent collapse sites no longer occurs, instead wave packets form in background low density regions, such as superpositions of troughs of propagating ion-acoustic waves. This transition is found to occur at Ti/Te ≈ 0.1. The change in behavior with Ti/Te is shown to change the bulk statistical properties, scaling behavior, spectra, and field statistics of strong turbulence. For Ti/Te>rsim0.1, the electrostatic results approach the predictions of the two-component model of Robinson and Newman, and good agreement is found for Ti/Te>rsim0.15.

  7. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  8. CFCl3 (CFC-11): UV Absorption Spectrum Temperature Dependence Measurements and the Impact on Atmospheric Lifetime Uncertainty

    NASA Astrophysics Data System (ADS)

    McGillen, M.; Fleming, E. L.; Jackman, C. H.; Burkholder, J. B.

    2013-12-01

    CFCl3 (CFC-11) is both a major ozone-depleting substance and a potent greenhouse gas that is removed primarily via stratospheric UV photolysis. Uncertainty in the temperature dependence of its UV absorption spectrum is a significant contributing factor to the overall uncertainty in its global lifetime and, thus, model calculations of stratospheric ozone recovery and climate change. In this work, the CFC-11 UV absorption spectrum was measured over a range of wavelength (184.95-230 nm) and temperature (216-296 K). We report a spectrum temperature dependence that is less than currently recommended for use in atmospheric models. The impact on its atmospheric lifetime was quantified using the NASA Goddard Space Flight Center 2-D coupled chemistry-radiation-dynamics model and the spectrum parameterization developed in this work. The modeled global annually averaged lifetime was 58.1 × 0.7 years (2σ uncertainty due solely to the spectrum uncertainty). The lifetime is slightly reduced and the uncertainty significantly reduced from that obtained using current UV spectrum recommendations. CFCl 3 (CFC-11) 2-D model results: Left: Global annually averaged loss rate coefficient (local lifetime) and photolysis and reaction contributions (see legend). Middle: Molecular loss rate and uncertainty limits; the slow and fast profiles were calculated using the 2σ uncertainty estimates in the CFC-11 UV absorption spectrum from this work. Right: CFC-11 concentration profile. CFC-11 loss process contribution to the overall local lifetime uncertainty (2σ) calculated using the 2-D model (see text). Left: Results obtained from this work. Right: Results obtained using model input from Sander et al. [2011] and updates in SPARC [2013].

  9. A METAL-STRONG AND DUST-RICH DAMPED Ly{alpha} ABSORPTION SYSTEM TOWARD THE QUASAR SDSS J115705.52+615521.7

    SciTech Connect

    Wang Jianguo; Ge Jian; Hamann, Fred; Xavier Prochaska, J.

    2012-11-20

    We report the discovery of an unusual, extremely dust-rich and metal-strong damped Ly{alpha} absorption system (DLA) at a redshift z{sub a} = 2.4596 toward the quasar SDSS J115705.52+615521.7 with an emission-line redshift z{sub e} = 2.5125. The quasar spectrum, taken in the Sloan Digital Sky Survey, shows a very red color and a number of metal absorption lines, including C II, Al II, Si II, Fe II, and Zn II, which are confirmed and further characterized by follow-up spectroscopy made with the Multiple Mirror Telescope. Its neutral hydrogen column density N {sub HI} = 10{sup 21.8{+-}0.2} cm{sup -2} is among the highest values measured in quasar DLAs. The measured metal column density is N {sub ZnII} Almost-Equal-To 10{sup 13.8} cm{sup -2}, which is about 1.5 times larger than the largest value in any previously observed quasar DLAs. We derive the extinction curve of the dusty DLA using a new technique, which is an analog of the 'pair method' widely used to measure extinction curves in the Milky Way (MW). The best-fit curve is an MW-like law with a significant broad feature centered around 2175 A in the rest frame of the absorber. The measured extinction A{sub V} Almost-Equal-To 0.92 mag is unprecedentedly high in quasar DLAs. After applying an extinction correction, the i-band absolute magnitude of the quasar is as high as M{sub i} Almost-Equal-To -29.4 mag, placing it as one of the most luminous quasars ever known. The large gas-phase relative abundance of [Zn/Fe] Almost-Equal-To 1.0 indicates that metals are heavily depleted onto dust grains in the absorber. The dust depletion level is between that of the warm and cool clouds in the MW. This discovery is suggestive of the existence of a rare yet important population of dust-rich DLAs with both high metallicities and high column densities, which may have significant impact on the measurement of the cosmic evolution of neutral gas mass density and metallicity.

  10. Absorption and scattering coefficient dependence of laser-Doppler flowmetry models for large tissue volumes.

    PubMed

    Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T

    2006-01-21

    Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.

  11. He 2++ molecular ion in a strong time-dependent magnetic field: a current-density functional study.

    PubMed

    Vikas

    2011-08-01

    The He 2++ molecular ion exposed to a strong ultrashort time-dependent (TD) magnetic field of the order of 10(9) G is investigated through a quantum fluid dynamics (QFD) and current-density functional theory (CDFT) based approach using vector exchange-correlation (XC) potential and energy density functional that depend not only on the electronic charge-density but also on the current density. The TD-QFD-CDFT computations are performed in a parallel internuclear-axis and magnetic field-axis configuration at the field-free equilibrium internuclear separation R = 1.3 au with the field-strength varying between 0 and 10(11) G. The TD behavior of the exchange- and correlation energy of the He 2++ is analyzed and compared with that obtained using a [B-TD-QFD-density functional theory (DFT)] approach based on the conventional TD-DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge-density alone. The CDFT based approach yields TD exchange- and correlation energy and TD electronic charge-density significantly different from that obtained using the conventional TD-DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT-based approach is traced to the TD current-density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He 2++ molecular ion is elucidated by treating electronic charge density as an electron-"fluid" in the terminology of QFD. PMID:21598275

  12. Strong dependence of surface plasmon resonance and surface enhanced Raman scattering on the composition of Au-Fe nanoalloys

    NASA Astrophysics Data System (ADS)

    Amendola, Vincenzo; Scaramuzza, Stefano; Agnoli, Stefano; Polizzi, Stefano; Meneghetti, Moreno

    2014-01-01

    Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can be tuned by varying the liquid environment. Due to surface passivation and reaction with thiolated ligands, the nanoalloys obtained by our synthetic protocol are structurally and colloidally stable. Hence, we studied the dependence of the surface plasmon resonance (SPR) on the iron fraction and, for the first time, we observed surface enhanced Raman scattering (SERS) in Au-Fe nanoalloys. SPR and SERS performances are strongly affected by the iron content and are investigated using analytical and numerical models. By demonstrating the strong modification of plasmonic properties on the composition, our results provide important insights into the exploitation of Au-Fe nanoalloys in photonics, nanomedicine, magneto-plasmonic and plasmon-enhanced catalysis. Moreover, our findings show that several other plasmonic materials exist beyond gold and silver nanostructures.Nanoalloys of noble metals with transition metals are crucial components for the integration of plasmonics with magnetic and catalytic properties, as well as for the production of low-cost photonic devices. However, due to synthetic challenges in the realization of nanoscale solid solutions of noble metals and transition metals, very little is known about the composition dependence of plasmonic response in nanoalloys. Here we demonstrate for the first time that the elemental composition of Au-Fe nanoalloys obtained by laser ablation in liquid solution can

  13. Strong domain configuration dependence of the nonlinear dielectric response in (K,Na)NbO{sub 3}-based ceramics

    SciTech Connect

    Huan, Yu; Wang, Xiaohui Li, Longtu; Koruza, Jurij

    2015-11-16

    The nonlinear dielectric response in (Na{sub 0.52}K{sub 0.4425}Li{sub 0.0375})(Nb{sub 0.92−x}Ta{sub x}Sb{sub 0.08})O{sub 3} ceramics with different amounts of Ta was measured using subcoercive electric fields and quantified by the Rayleigh model. The irreversible extrinsic contribution, mainly caused by the irreversible domain wall translation, was strongly dependent on the domain configuration. The irreversible extrinsic contributions remained approximately the same within the single-phase regions, either orthorhombic or tetragonal, due to the similar domain morphology. However, in the polymorphic phase transition region, the domain wall density was increased by minimized domain size, as observed by transmission electron microscopy. This resulted in constrained domain wall motion due to self-clamping and reduced the irreversible extrinsic contribution.

  14. Nonlinear coupling of acoustic and shear mode in a strongly coupled dusty plasma with a density dependent viscosity

    NASA Astrophysics Data System (ADS)

    Garai, S.; Janaki, M. S.; Chakrabarti, N.

    2016-09-01

    The nonlinear propagation of low frequency waves, in a collisionless, strongly coupled dusty plasma (SCDP) with a density dependent viscosity, has been studied with a proper Galilean invariant generalized hydrodynamic (GH) model. The well known reductive perturbation technique (RPT) has been employed in obtaining the solutions of the longitudinal and transverse perturbations. It has been found that the nonlinear propagation of the acoustic perturbations govern with the modified Korteweg-de Vries (KdV) equation and are decoupled from the sheared fluctuations. In the regions, where transversal gradients of the flow exists, coupling between the longitudinal and transverse perturbations occurs due to convective nonlinearity which is true for the homogeneous case also. The results, obtained here, can have relative significance to astrophysical context as well as in laboratory plasmas.

  15. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3

    NASA Astrophysics Data System (ADS)

    Dey, Rik; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Colombo, Luigi; Register, Leonard F.; Banerjee, Sanjay K.

    2014-06-01

    We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2-20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  16. Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake.

    PubMed Central

    Berglund, M; Akesson, A; Nermell, B; Vahter, M

    1994-01-01

    Measurements of intake and uptake of cadmium in relation to diet composition were carried out in 57 nonsmoking women, 20-50 years of age. A vegetarian/high-fiber diet and a mixed-diet group were constructed based on results from a food frequency questionnaire. Duplicate diets and the corresponding feces were collected during 4 consecutive days in parallel with dietary recording of type and amount of food ingested for determination of the dietary intake of cadmium and various nutrients. Blood and 24-hr urine samples were collected for determination of cadmium, hemoglobin, ferritin, and zinc. There were no differences in the intake of nutrients between the mixed-diet and the high-fiber diet groups, except for a significantly higher intake of fiber (p < 0.001) and cadmium (p < 0.002) in the high-fiber group. Fecal cadmium corresponded to 98% in the mixed-diet group and 100% in the high-fiber diet group. No differences in blood cadmium (BCd) or urinary cadmium (UCd) between groups could be detected. There was a tendency toward higher BCd and UCd concentrations with increasing fiber intake; however, the concentrations were not statistically significant at the 5% level, indicating an inhibitory effect of fiber on the gastrointestinal absorption of cadmium. Sixty-seven percent of the women had serum ferritin < 30 micrograms/l, indicating reduced body iron stores, which were highly associated with higher BCd (irrespective of fiber intake). BCd was mainly correlated with UCd, serum ferritin, age, anf fibre intake. UCd and serum ferritin explained almost 60% of the variation in BCd.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 4. Figure 5. PMID:7713018

  17. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN. PMID:27179472

  18. Strong dependence of mechanical properties on fiber diameter for polymer-nanotube composite fibers: differentiating defect from orientation effects.

    PubMed

    Young, Karen; Blighe, Fiona M; Vilatela, Juan J; Windle, Alan H; Kinloch, Ian A; Deng, Libo; Young, Robert J; Coleman, Jonathan N

    2010-11-23

    We have prepared polyvinylalcohol-SWNT fibers with diameters from ∼1 to 15 μm by coagulation spinning. When normalized to nanotube volume fraction, V(f), both fiber modulus, Y, and strength, σ(B), scale strongly with fiber diameter, D: Y/V(f) ∝ D(-1.55) and σ(B)/V(f) ∝ D(-1.75). We show that much of this dependence is attributable to correlation between V(f) and D due to details of the spinning process: V(f) ∝ D(0.93). However, by carrying out Weibull failure analysis and measuring the orientation distribution of the nanotubes, we show that the rest of the diameter dependence is due to a combination of defect and orientation effects. For a given nanotube volume fraction, the fiber strength scales as σ(B) ∝ D(-0.29)D(-0.64), with the first and second terms representing the defect and orientation contributions, respectively. The orientation term is present and dominates for fibers of diameter between 4 and 50 μm. By preparing fibers with low diameter (1-2 μm), we have obtained mean mechanical properties as high as Y = 244 GPa and σ(B) = 2.9 GPa.

  19. Strong dependence of mechanical properties on fiber diameter for polymer-nanotube composite fibers: differentiating defect from orientation effects.

    PubMed

    Young, Karen; Blighe, Fiona M; Vilatela, Juan J; Windle, Alan H; Kinloch, Ian A; Deng, Libo; Young, Robert J; Coleman, Jonathan N

    2010-11-23

    We have prepared polyvinylalcohol-SWNT fibers with diameters from ∼1 to 15 μm by coagulation spinning. When normalized to nanotube volume fraction, V(f), both fiber modulus, Y, and strength, σ(B), scale strongly with fiber diameter, D: Y/V(f) ∝ D(-1.55) and σ(B)/V(f) ∝ D(-1.75). We show that much of this dependence is attributable to correlation between V(f) and D due to details of the spinning process: V(f) ∝ D(0.93). However, by carrying out Weibull failure analysis and measuring the orientation distribution of the nanotubes, we show that the rest of the diameter dependence is due to a combination of defect and orientation effects. For a given nanotube volume fraction, the fiber strength scales as σ(B) ∝ D(-0.29)D(-0.64), with the first and second terms representing the defect and orientation contributions, respectively. The orientation term is present and dominates for fibers of diameter between 4 and 50 μm. By preparing fibers with low diameter (1-2 μm), we have obtained mean mechanical properties as high as Y = 244 GPa and σ(B) = 2.9 GPa. PMID:20945879

  20. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields

    NASA Astrophysics Data System (ADS)

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-01

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  1. Resolution-of-identity stochastic time-dependent configuration interaction for dissipative electron dynamics in strong fields.

    PubMed

    Klinkusch, Stefan; Tremblay, Jean Christophe

    2016-05-14

    In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.

  2. Temperature and high-pressure dependent x-ray absorption of SmNiO3 at the Ni K and Sm L3 edges

    NASA Astrophysics Data System (ADS)

    Massa, Néstor E.; Ramos, Aline Y.; Tolentino, Helio C. N.; Sousa-Neto, Narcizo M.; Fonseca, Jairo, Jr.; Alonso, José Antonio

    2015-12-01

    We report on x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements of SmNiO3 from 20 K to 600 K and up to 38 GPa at the Ni K and Sm L3 edges. A multiple component pre-Ni K edge tail is understood, originating from 1 s transitions to 3d-4p states while a post-edge shoulder increases distinctively smoothly, at about the insulator to metal phase transition (TIM), due to the reduction of electron-phonon interactions as the Ni 3d and O 2p band overlap triggers the metallic phase. This effect is concomitant with pressure-induced Ni-O-Ni angle increments toward more symmetric Ni3+ octahedra of the rhombohedral R¯3c space group. Room temperature pressure-dependent Ni white line peak energies have an abrupt ˜3.10 ± 0.04 GPa valence discontinuity from non-equivalent Ni3+δ + Ni3-δ charge disproportionate net unresolved absorber turning at ˜TIM into Ni3+ of the orthorhombic Pbnm metal oxide phase. At 20 K the overall white line response, still distinctive at TIM ˜8.1 ± 0.6 GPa is much smoother due to localization. Octahedral bond contraction up to 38 GPa and at 300 K and 20 K show breaks in its monotonic increase at the different structural changes. The Sm L3 edge does not show distinctive behaviors either at 300 K or 20 K up to about 35 GPa but the perovskite Sm cage, coordinated to eight oxygen atoms, undergoes strong uneven bond contractions at intermediate pressures where we found the coexistence of octahedral and rhombohedral superexchange angle distortions. We found that the white line pressure-dependent anomaly may be used as an accurate alternative for delineating pressure-temperature phase diagrams.

  3. Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption

    PubMed Central

    Ma, Bing-Liang; Yin, Chun; Zhang, Bo-Kai; Dai, Yan; Jia, Yi-Qun; Yang, Yan; Li, Qiao; Shi, Rong; Wang, Tian-Ming; Wu, Jia-Sheng; Li, Yuan-Yuan; Lin, Ge; Ma, Yue-Ming

    2016-01-01

    Pharmacological activities of some natural products diminish and even disappear after purification. In this study, we explored the mechanisms underlying the decrease of acute oral toxicity of Coptidis Rhizoma extract after purification. The water solubility, in vitro absorption, and plasma exposure of berberine (the major active compound) in the Coptidis Rhizoma extract were much better than those of pure berberine. Scanning electron microscopy, laser scanning confocal microscopy (LSCM), and dynamic light scattering experiments confirmed that nanoparticles attached to very fine precipitates existed in the aqueous extract solution. The LSCM experiment showed that the precipitates were absorbed with the particles by the mouse intestine. High-speed centrifugation of the extract could not remove the nanoparticles and did not influence plasma exposure or acute oral toxicity. However, after extract dilution, the attached precipitates vanished, although the nanoparticles were preserved, and there were no differences in the acute oral toxicity and plasma exposure between the extract and pure berberine. The nanoparticles were then purified and identified as proteinaceous. Furthermore, they could absorb co-dissolved berberine. Our results indicate that naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. These findings should inspire related studies in other natural products. PMID:26822920

  4. Laboratory Measurement of the Temperature Dependence of Gaseous Sulfur Dioxide (SO2) Microwave Absorption with Application to the Venus Atmosphere

    NASA Technical Reports Server (NTRS)

    Suleiman, Shady H.; Kolodner, Marc A.; Steffes, Paul G.

    1996-01-01

    High-accuracy laboratory measurements of the temperature dependence of the opacity from gaseous sulfur dioxide (SO2) in a carbon dioxide (CO2) atmosphere at temperatures from 290 to 505 K and at pressures from 1 to 4 atm have been conducted at frequencies of 2.25 GHz (13.3 cm), 8.5 GHz (3.5 cm), and 21.7 GHz (1.4 cm). Based on these absorptivity measurements, a Ben-Reuven (BR) line shape model has been developed that provides a more accurate characterization of the microwave absorption of gaseous S02 in the Venus atmosphere as compared with other formalisms. The developed BR formalism is incorporated into a radiative transfer model. The resulting microwave emission spectrum of Venus is then used to set an upper limit on the disk-averaged abundance of gaseous S02 below the main cloud layer. It is found that gaseous S02 has an upper limit of 150 ppm, which compares well with previous spacecraft in situ measurements and Earth-based radio astronomical observations.

  5. Naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption.

    PubMed

    Ma, Bing-Liang; Yin, Chun; Zhang, Bo-Kai; Dai, Yan; Jia, Yi-Qun; Yang, Yan; Li, Qiao; Shi, Rong; Wang, Tian-Ming; Wu, Jia-Sheng; Li, Yuan-Yuan; Lin, Ge; Ma, Yue-Ming

    2016-01-29

    Pharmacological activities of some natural products diminish and even disappear after purification. In this study, we explored the mechanisms underlying the decrease of acute oral toxicity of Coptidis Rhizoma extract after purification. The water solubility, in vitro absorption, and plasma exposure of berberine (the major active compound) in the Coptidis Rhizoma extract were much better than those of pure berberine. Scanning electron microscopy, laser scanning confocal microscopy (LSCM), and dynamic light scattering experiments confirmed that nanoparticles attached to very fine precipitates existed in the aqueous extract solution. The LSCM experiment showed that the precipitates were absorbed with the particles by the mouse intestine. High-speed centrifugation of the extract could not remove the nanoparticles and did not influence plasma exposure or acute oral toxicity. However, after extract dilution, the attached precipitates vanished, although the nanoparticles were preserved, and there were no differences in the acute oral toxicity and plasma exposure between the extract and pure berberine. The nanoparticles were then purified and identified as proteinaceous. Furthermore, they could absorb co-dissolved berberine. Our results indicate that naturally occurring proteinaceous nanoparticles in Coptidis Rhizoma extract act as concentration-dependent carriers that facilitate berberine absorption. These findings should inspire related studies in other natural products.

  6. A pH-dependent x-ray absorption spectroscopy study of U adsorption to bacterial cell walls.

    SciTech Connect

    Ravel, B.; Kelly, S. D.; Gorman-Lewis, D.; Boyanov, M. I.; Fein, J. B.; Kemner, K. M.; Biosciences Division; Univ. of Notre Dame

    2006-01-01

    Metal mobility in subsurface water systems involves the complex interaction of the metal, the fluid, and the mineral surfaces over which the fluid flows. This mobility is further influenced by metal adsorption onto bacteria and other biomass in the subsurface. To better understand the mechanism of this adsorption as well as its dependence on the chemical composition of the fluid, we have performed a series of metal adsorption experiments of aqueous uranyl (UO{sub 2}){sup 2+} to the gram-positive bacterium B. subtilis in the presence and absence of carbonate along with X-ray Absorption Spectroscopy (XAS) to determine the binding structures at the cell surface. In this paper we demonstrate an approach to the XAS data analysis which allows us to measure the partitioning of the adsorption of uranium to hydroxyl, carboxyl/carbonato, and phosphoryl active sites at the cell surface.

  7. The feasibility of using time-dependent photochemical calculations to infer radical species concentrations from solar occultation absorption measurements

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Boughner, R. E.

    1981-01-01

    In connection with fast chemical reactions, short-lived stratospheric species experience rapid concentration variations at sunset and sunrise. For solar occultation absorption measurements, these rapid concentration variations may introduce significant errors with respect to the inference of atmospheric abundances for some species due to asymmetrical concentration distributions. Most retrieval algorithms assume that concentration distributions are spherically symmetric. The effect of this assumption on the accuracy of inferred concentrations has been studied by Kerr et al. (1977). The present investigation considers the feasibility of using a time-dependent one-dimensional photochemical model to provide detailed information about the asymmetrical distribution for use in the retrieval procedure. As shown by Boughner et al. (1980), diurnal effects can be represented by an inhomogeneity factor. It is found that the NO retrieval improves considerably with the inclusion of a correction factor containing the asymmetrical variations.

  8. Electron-acceptor-dependent light absorption, excited-state relaxation, and charge generation in triphenylamine dye-sensitized solar cells.

    PubMed

    Li, Renzhi; Zhang, Min; Yan, Cancan; Yao, Zhaoyang; Zhang, Jing; Wang, Peng

    2015-01-01

    By choosing a simple triphenylamine electron donor, we herein compare the influence of electron acceptors benzothiadiazole benzoic acid (BTBA) and cyanoacrylic acid (CA), on energy levels, light absorption, and dynamics of excited-state evolution and electron injection. DFT and time-dependent DFT calculations disclosed remarkable intramolecular conformational changes for the excited states of these two donor-acceptor dyes. Photoinduced dihedral angle variation occurs to the triphenylamine unit in the CA dye and backbone planarization happens to conjugated aromatic blocks in the BTBA dye. Femtosecond spectroscopic measurements suggested the crucial role of having a long excited-state lifetime in maintaining a high electron-injection yield because a reduced driving force for a low energy-gap dye can result in slower electron-injection dynamics.

  9. Temperature dependence of the electromagnetic properties and microwave absorption of carbonyl iron particles/silicone resin composites

    NASA Astrophysics Data System (ADS)

    Zhou, Yingying; Zhou, Wancheng; Qing, Yuchang; Luo, Fa; Zhu, Dongmei

    2015-01-01

    Microwave absorbing composites with thin thickness and wideband absorption were successfully prepared by a spraying method using carbonyl iron particles (CIPs) as absorbers and silicone resin as the matrix. The value of reflection loss (RL) below -5 dB can be obtained in the frequency range of 5.76-18 GHz for the composite with 0.8 mm thickness. The temperature dependence of electromagnetic properties and RL of the composites were investigated. The RL of the composite showed a slight variation when the temperature reached up to 200 °C while decreased at 300 °C. The room temperature RL of the composite did not display significant difference before and after the heat treatment at 300 °C for 10 h; the mechanism was also discussed.

  10. Thiazolidinediones enhance sodium-coupled bicarbonate absorption from renal proximal tubules via PPARγ-dependent nongenomic signaling.

    PubMed

    Endo, Yoko; Suzuki, Masashi; Yamada, Hideomi; Horita, Shoko; Kunimi, Motoei; Yamazaki, Osamu; Shirai, Ayumi; Nakamura, Motonobu; Iso-O, Naoyuki; Li, Yuehong; Hara, Masumi; Tsukamoto, Kazuhisa; Moriyama, Nobuo; Kudo, Akihiko; Kawakami, Hayato; Yamauchi, Toshimasa; Kubota, Naoto; Kadowaki, Takashi; Kume, Haruki; Enomoto, Yutaka; Homma, Yukio; Seki, George; Fujita, Toshiro

    2011-05-01

    Thiazolidinediones (TZDs) improve insulin resistance by activating a nuclear hormone receptor, peroxisome proliferator-activated receptor γ (PPARγ). However, the use of TZDs is associated with plasma volume expansion through a mechanism that remains to be clarified. Here we showed that TZDs rapidly stimulate sodium-coupled bicarbonate absorption from the renal proximal tubule in vitro and in vivo. TZD-induced transport stimulation is dependent on PPARγ-Src-EGFR-ERK and observed in rat, rabbit and human, but not in mouse proximal tubules where Src-EGFR is constitutively activated. The existence of PPARγ-Src-dependent nongenomic signaling, which requires the ligand-binding ability, but not the transcriptional activity of PPARγ, is confirmed in mouse embryonic fibroblast cells. The enhancement of the association between PPARγ and Src by TZDs supports an indispensable role of Src in this signaling. These results suggest that the PPARγ-dependent nongenomic stimulation of renal proximal transport is also involved in TZD-induced volume expansion.

  11. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  12. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    NASA Astrophysics Data System (ADS)

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-10-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.).

  13. Absorption and Emission Spectra of a Flexible Dye in Solution: a Computational Time-Dependent Approach

    PubMed Central

    Monti, Susanna; Prampolini, Giacomo; Barone, Vincenzo

    2015-01-01

    The spectroscopic properties of the organic chromophore 4-naphthoyloxy-1-methoxy-2,2,6,6-tetramethylpiperidine (NfO-TEMPO-Me) in toluene solution are explored through an integrated computational strategy combining a classical dynamic sampling with a quantum mechanical description within the framework of the time-dependent density functional theory (TDDFT) approach. The atomistic simulations are based on an accurately parametrized force field, specifically designed to represent the conformational behavior of the molecule in its ground and bright excited states, whereas TDDFT calculations are performed through a selected combination of hybrid functionals and basis sets to obtain optical spectra closely matching the experimental findings. Solvent effects, crucial to obtain good accuracy, are taken into account through explicit molecules and polarizable continuum descriptions. Although, in the case of toluene, specific solvation is not fundamental, the detailed conformational sampling in solution has confirmed the importance of a dynamic description of the molecular geometry for a reliable description of the photophysical properties of the dye. The agreement between theoretical and experimental data is established and a robust protocol for the prediction of the optical behaviour of flexible fluorophores in solution is set. PMID:26504457

  14. Resonance Raman and temperature-dependent electronic absorption spectra of cavity and noncavity models of the hydrated electron

    PubMed Central

    Casey, Jennifer R.; Larsen, Ross E.; Schwartz, Benjamin J.

    2013-01-01

    Most of what is known about the structure of the hydrated electron comes from mixed quantum/classical simulations, which depend on the pseudopotential that couples the quantum electron to the classical water molecules. These potentials usually are highly repulsive, producing cavity-bound hydrated electrons that break the local water H-bonding structure. However, we recently developed a more attractive potential, which produces a hydrated electron that encompasses a region of enhanced water density. Both our noncavity and the various cavity models predict similar experimental observables. In this paper, we work to distinguish between these models by studying both the temperature dependence of the optical absorption spectrum, which provides insight into the balance of the attractive and repulsive terms in the potential, and the resonance Raman spectrum, which provides a direct measure of the local H-bonding environment near the electron. We find that only our noncavity model can capture the experimental red shift of the hydrated electron’s absorption spectrum with increasing temperature at constant density. Cavity models of the hydrated electron predict a solvation structure similar to that of the larger aqueous halides, leading to a Raman O–H stretching band that is blue-shifted and narrower than that of bulk water. In contrast, experiments show the hydrated electron has a broader and red-shifted O–H stretching band compared with bulk water, a feature recovered by our noncavity model. We conclude that although our noncavity model does not provide perfect quantitative agreement with experiment, the hydrated electron must have a significant degree of noncavity character. PMID:23382233

  15. Time-Dependent Variational Methods for Strongly Driven Quantum Systems and Their Applications to Optimal Control Theory

    NASA Astrophysics Data System (ADS)

    Kim, Keon-Gee

    The Balian-Veneroni time-dependent variational method (R. Balian and M. Veneroni, Phys. Rev. Lett. 47, 1353 and 1765(E) (1981)) is applied to calculate the radial oscillations of an atomic electron after the beta decay of a tritium atom using an L^2-Sturmian function basis. Various Sturmian function matrix elements are evaluated in a compact form. The results from the variational calculations employing 4-, 6-, and 8-basis states are compared with one another and also compared with the result of a conventional expansion calculation using 70 hydrogenic bound eigenstates with the nuclear charge Z = 2 after the beta decay. Numerical instabilities associated with the calculational scheme for the "tracking" control theory proposed by Rabitz and co-workers (P. Gross, H. Singh, H. Rabitz, K. Mease, and G. M. Huang, Phys. Rev. A 47, 4593 (1993)) are illustrated through a simple example of a driven two-state system. Also demonstrated are possible situations both where no finite control field exists and where multiple control fields can exist. After constructing a generalized Bloch vector for a driven N-state system, an effective calculational scheme utilizing the observable dynamics is presented, which is expected to be applicable to any finite-dimensional problem. Finally, an integral equation approach to optimal control theory, which is nonperturbative and hence applicable to strong-field cases, is suggested. It combines the Balian-Veneroni variational equations for the density and target operators, possibly including other operators depending on the Hamiltonian under consideration. By deriving a closed, symmetric expression for the exact kernel of the Fredholm nonlinear integral equation of the second kind, it is guaranteed that a globally optimal control field is obtained at each stage of the iteration in this calculational scheme.

  16. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type.

    PubMed

    Lagarde, Fabienne; Olivier, Ophélie; Zanella, Marie; Daniel, Philippe; Hiard, Sophie; Caruso, Aurore

    2016-08-01

    In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment. PMID:27236494

  17. Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature.

    PubMed

    Heinemeyer, A; Ineson, P; Ostle, N; Fitter, A H

    2006-01-01

    * Although arbuscular mycorrhizal (AM) fungi are a major pathway in the global carbon cycle, their basic biology and, in particular, their respiratory response to temperature remain obscure. * A pulse label of the stable isotope (13)C was applied to Plantago lanceolata, either uninoculated or inoculated with the AM fungus Glomus mosseae. The extra-radical mycelium (ERM) of the fungus was allowed to grow into a separate hyphal compartment excluding roots. We determined the carbon costs of the ERM and tested for a direct temperature effect on its respiration by measuring total carbon and the (13)C:(12)C ratio of respired CO(2). With a second pulse we tested for acclimation of ERM respiration after 2 wk of soil warming. * Root colonization remained unchanged between the two pulses but warming the hyphal compartment increased ERM length. delta(13)C signals peaked within the first 10 h and were higher in mycorrhizal treatments. The concentration of CO(2) in the gas samples fluctuated diurnally and was highest in the mycorrhizal treatments but was unaffected by temperature. Heating increased ERM respiration only after the first pulse and reduced specific ERM respiration rates after the second pulse; however, both pulses strongly depended on radiation flux. * The results indicate a fast ERM acclimation to temperature, and that light is the key factor controlling carbon allocation to the fungus.

  18. Time-dependent density-functional-theory calculation of strong-field ionization rates of H2

    NASA Astrophysics Data System (ADS)

    Chu, Xi

    2010-08-01

    We report a numerical study of strong-field ionization rates of the H2 molecule using time-dependent density-functional theory (TDDFT). In the dc field limit, TDDFT results for the rate of tunneling ionization agree with molecular Ammosov-Delone-Kralnov (MO-ADK) predictions, as well as results from a complex scaling method at the full configuration interaction level. Our study demonstrates the effect of photon energy, molecular vibration, and orientation on the ionization. Calculated rates for 800-nm lasers are about four times greater than the values predicted by the slowly varying field approximation for tunneling ionization. The rate for the ground vibrational state is higher than that of the fixed nuclei value at the equilibrium distance. This difference decreases with increasing field intensity. When the field intensity is sufficiently high, the two rates are very similar, and the fixed nuclear distance rate may be used to approximate the ground-vibrational-state rate. TDDFT methods predict an anisotropy slightly larger than the prediction obtained from the MO-ADK method. We also find that the field intensity plays a role in the anisotropy, which the MO-ADK results do not show.

  19. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential.

    PubMed

    Krause, Pascal; Schlegel, H Bernhard

    2014-11-01

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10(14) W/cm(2) to 3.5 × 10(14) W/cm(2). Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length. PMID:25381499

  20. Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type.

    PubMed

    Lagarde, Fabienne; Olivier, Ophélie; Zanella, Marie; Daniel, Philippe; Hiard, Sophie; Caruso, Aurore

    2016-08-01

    In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment.

  1. Strong-field ionization rates of linear polyenes simulated with time-dependent configuration interaction with an absorbing potential

    SciTech Connect

    Krause, Pascal; Schlegel, H. Bernhard

    2014-11-07

    The strong field ionization rates for ethylene, trans 1,3-butadiene, and trans,trans 1,3,5-hexatriene have been calculated using time-dependent configuration interaction with single excitations and a complex absorbing potential (TDCIS-CAP). The calculations used the aug-cc-pVTZ basis set with a large set of diffuse functions (3 s, 2 p, 3 d, and 1 f) on each atom. The absorbing boundary was placed 3.5 times the van der Waals radius from each atom. The simulations employed a seven-cycle cosine squared pulse with a wavelength of 800 nm. Ionization rates were calculated for intensities ranging from 0.3 × 10{sup 14} W/cm{sup 2} to 3.5 × 10{sup 14} W/cm{sup 2}. Ionization rates along the molecular axis increased markedly with increasing conjugation length. By contrast, ionization rates perpendicular to the molecular axis were almost independent of the conjugation length.

  2. White spot syndrome virus entry is dependent on multiple endocytic routes and strongly facilitated by Cq-GABARAP in a CME-dependent manner.

    PubMed

    Chen, Rong-Yuan; Shen, Kai-Li; Chen, Zhen; Fan, Wei-Wei; Xie, Xiao-Lu; Meng, Chuang; Chang, Xue-Jiao; Zheng, Li-Bing; Jeswin, Joseph; Li, Cheng-Hua; Wang, Ke-Jian; Liu, Hai-Peng

    2016-01-01

    White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm. PMID:27385304

  3. White spot syndrome virus entry is dependent on multiple endocytic routes and strongly facilitated by Cq-GABARAP in a CME-dependent manner

    PubMed Central

    Chen, Rong-yuan; Shen, Kai-li; Chen, Zhen; Fan, Wei-wei; Xie, Xiao-lu; Meng, Chuang; Chang, Xue-jiao; Zheng, Li-bing; Jeswin, Joseph; Li, Cheng-hua; Wang, Ke-jian; Liu, Hai-peng

    2016-01-01

    White spot syndrome virus (WSSV) is a lethal pathogen of shrimp and many other crustaceans, including crayfish. However, the molecular mechanism underlying its cellular entry remains elusive due to the lack of shrimp cell lines for viral propagation. Crayfish hematopoietic tissue (Hpt) cell culture was recently established as a good model for WSSV infection study. Here, we showed that multiple endocytic routes, including clathrin-mediated endocytosis (CME), macropinocytosis and caveolae-mediated endocytosis, were indispensably employed for the viral entry into Hpt cell of the crayfish Cherax quadricarinatus. Intriguingly, cellular autophagic activity was positively correlated with efficient viral entry, in which a key autophagy-related protein, γ-aminobutyric acid receptor-associated protein (Cq-GABARAP), that not only localized but also co-localized with WSSV on the Hpt cell membrane, strongly facilitated WSSV entry by binding to the viral envelope VP28 in a CME-dependent manner that was negatively regulated by Cq-Rac1. Furthermore, cytoskeletal components, including Cq-β-tubulin and Cq-β-actin, bound to both recombinant rCq-GABARAP and WSSV envelope proteins, which likely led to viral entry promotion via cooperation with rCq-GABARAP. Even under conditions that promoted viral entry, rCq-GABARAP significantly reduced viral replication at an early stage of infection, which was probably caused by the formation of WSSV aggregates in the cytoplasm. PMID:27385304

  4. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  5. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions.

    PubMed

    Yamada, Kohji; Kanai, Motoki; Osakabe, Yuriko; Ohiraki, Haruka; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-16

    Plant roots are able to absorb sugars from the rhizosphere but also release sugars and other metabolites that are critical for growth and environmental signaling. Reabsorption of released sugar molecules could help reduce the loss of photosynthetically fixed carbon through the roots. Although biochemical analyses have revealed monosaccharide uptake mechanisms in roots, the transporters that are involved in this process have not yet been fully characterized. In the present study we demonstrate that Arabidopsis STP1 and STP13 play important roles in roots during the absorption of monosaccharides from the rhizosphere. Among 14 STP transporter genes, we found that STP1 had the highest transcript level and that STP1 was a major contributor for monosaccharide uptake under normal conditions. In contrast, STP13 was found to be induced by abiotic stress, with low expression under normal conditions. We analyzed the role of STP13 in roots under high salinity conditions where membranes of the epidermal cells were damaged, and we detected an increase in the amount of STP13-dependent glucose uptake. Furthermore, the amount of glucose efflux from stp13 mutants was higher than that from wild type plants under high salinity conditions. These results indicate that STP13 can reabsorb the monosaccharides that are released by damaged cells under high salinity conditions. Overall, our data indicate that sugar uptake capacity in Arabidopsis roots changes in response to environmental stresses and that this activity is dependent on the expression pattern of sugar transporters. PMID:22041897

  6. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)

    NASA Astrophysics Data System (ADS)

    Garaio, Eneko; Sandre, Olivier; Collantes, Juan-Mari; Garcia, Jose Angel; Mornet, Stéphane; Plazaola, Fernando

    2015-01-01

    Magnetic nanoparticles (NPs) are intensively studied for their potential use for magnetic hyperthermia, a treatment that has passed a phase II clinical trial against severe brain cancer (glioblastoma) at the end of 2011. Their heating power, characterized by the ‘specific absorption rate (SAR)’, is often considered temperature independent in the literature, mainly because of the difficulties that arise from the measurement methodology. Using a dynamic magnetometer presented in a recent paper, we measure here the thermal dependence of SAR for superparamagnetic iron oxide (maghemite) NPs of four different size-ranges corresponding to mean diameters around 12 nm, 14 nm, 15 nm and 16 nm. The article reports a parametrical study extending from 10 to 60 {}^\\circ C in temperature, from 75 to 1031 kHz in frequency, and from 2 to 24 kA m-1 in magnetic field strength. It was observed that SAR values of smaller NPs decrease with temperature whereas for the larger sample (16 nm) SAR values increase with temperature. The measured variation of SAR with temperature is frequency dependent. This behaviour is fully explained within the scope of linear response theory based on Néel and Brown relaxation processes, using independent magnetic measurements of the specific magnetization and the magnetic anisotropy constant. A good quantitative agreement between experimental values and theoretical values is confirmed in a tri-dimensional space that uses as coordinates the field strength, the frequency and the temperature.

  7. X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions

    NASA Astrophysics Data System (ADS)

    Kelly, S. D.; Kemner, K. M.; Fein, J. B.; Fowle, D. A.; Boyanov, M. I.; Bunker, B. A.; Yee, N.

    2002-11-01

    X-ray absorption fine structure (XAFS) measurements was used at the U L3-edge to directly determine the pH dependence of the cell wall functional groups responsible for the absorption of aqueous UO 22+ to Bacillus subtilis from pH 1.67 to 4.80. Surface complexation modeling can be used to predict metal distributions in water-rock systems, and it has been used to quantify bacterial adsorption of metal cations. However, successful application of these models requires a detailed knowledge not only of the type of bacterial surface site involved in metal adsorption/desorption, but also of the binding geometry. Previous acid-base titrations of B. subtilis cells suggested that three surface functional group types are important on the cell wall; these groups have been postulated to correspond to carboxyl, phosphoryl, and hydroxyl sites. When the U(VI) adsorption to B. subtilis is measured, observed is a significant pH-independent absorption at low pH values (<3.0), ascribed to an interaction between the uranyl cation and a neutrally charged phosphoryl group on the cell wall. The present study provides independent quantitative constraints on the types of sites involved in uranyl binding to B. subtilis from pH 1.67 to 4.80. The XAFS results indicate that at extremely low pH (pH 1.67) UO 22+ binds exclusively to phosphoryl functional groups on the cell wall, with an average distance between the U atom and the P atom of 3.64 ± 0.01 Å. This U-P distance indicates an inner-sphere complex with an oxygen atom shared between the UO 22+ and the phosphoryl ligand. The P signal at extremely low pH value is consistent with the UO 22+ binding to a protonated phosphoryl group, as previously ascribed. With increasing pH (3.22 and 4.80), UO 22+ binds increasingly to bacterial surface carboxyl functional groups, with an average distance between the U atom and the C atom of 2.89 ± 0.02 Å. This U-C distance indicates an inner-sphere complex with two oxygen atoms shared between the UO 22

  8. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  9. Prediction of pH dependent absorption using in vitro, in silico, and in vivo rat models: Early liability assessment during lead optimization.

    PubMed

    Saxena, Ajay; Shah, Devang; Padmanabhan, Shweta; Gautam, Shashyendra Singh; Chowan, Gajendra Singh; Mandlekar, Sandhya; Desikan, Sridhar

    2015-08-30

    Weakly basic compounds which have pH dependent solubility are liable to exhibit pH dependent absorption. In some cases, a subtle change in gastric pH can significantly modulate the plasma concentration of the drug and can lead to sub-therapeutic exposure of the drug. Evaluating the risk of pH dependent absorption and potential drug-drug interaction with pH modulators are important aspects of drug discovery and development. In order to assess the risk around the extent of decrease in the systemic exposure of drugs co-administered with pH modulators in the clinic, a pH effect study is carried out, typically in higher species, mostly dog. The major limitation of a higher species pH effect study is the resource and material requirement to assess this risk. Hence, these studies are mostly restricted to promising or advanced leads. In our current work, we have used in vitro aqueous solubility, in silico simulations using GastroPlus™ and an in vivo rat pH effect model to provide a qualitative assessment of the pH dependent absorption liability. Here, we evaluate ketoconazole and atazanavir with different pH dependent solubility profiles and based on in vitro, in silico and in vivo results, a different extent of gastric pH effect on absorption is predicted. The prediction is in alignment with higher species and human pH effect study results. This in vitro, in silico and in vivo (IVISIV) correlation is then extended to assess pH absorption mitigation strategy. The IVISIV predicts pH dependent absorption for BMS-582949 whereas its solubility enhancing prodrug, BMS-751324 is predicted to mitigate this liability. Overall, the material requirement for this assessment is substantially low which makes this approach more practical to screen multiple compounds during lead optimization.

  10. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  11. The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-o-β-glucoside in Caco-2 cells.

    PubMed

    Zou, Tang-Bin; Feng, Dan; Song, Gang; Li, Hua-Wen; Tang, Huan-Wen; Ling, Wen-Hua

    2014-10-01

    Anthocyanins have multiple biological activities of benefit to human health. While a few studies have been conducted to evaluate the bioavailability of anthocyanins, the mechanisms of their absorption mechanism remain ill-defined. In the present study, we investigated the absorption mechanism of cyanidin-3-O-β-glucoside (Cy-3-G) in human intestinal epithelial (Caco-2) cells. Cy-3-G transport was assessed by measuring the absorptive and efflux direction. Inhibition studies were conducted using the pharmacological agents, phloridzin, an inhibitor of sodium-dependent glucose transporter 1 (SGLT1), or phloretin, an inhibitor of glucose transporter 2 (GLUT2). The results showed that phloridzin and phloretin significantly inhibited the absorption of Cy-3-G. In addition, Caco-2 cells transfected with small interfering RNA (siRNA) specific for SGLT1 or GLUT2 showed significantly decreased Cy-3-G absorption. These siRNA transfected cells also showed a significantly decreased rate of transport of Cy-3-G compared with the control group. These findings suggest that Cy-3-G absorption is dependent on the activities of SGLT1 and GLUT2 in the small intestine and that SGLT1 and GLUT2 could be a limiting step for the bioavailability of Cy-3-G. PMID:25314643

  12. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    PubMed

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera. PMID:27332748

  13. Determination of the magnetocrystalline anisotropy constant from the frequency dependence of the specific absorption rate in a frozen ferrofluid

    NASA Astrophysics Data System (ADS)

    Mosher, Nathaniel; Perkins-Harbin, Emily; Aho, Brandon; Wang, Lihua; Kumon, Ronald; Rablau, Corneliu; Vaishnava, Prem; Tackett, Ronald; Therapeutic Biomaterials Group Team

    2015-03-01

    Colloidal suspensions of superparamagnetic nanoparticles, known as ferrofluids, are promising candidates for the mediation of magnetic fluid hyperthermia (MFH). In such materials, the dissipation of heat occurs as a result of the relaxation of the particles in an applied ac magnetic field via the Brownian and Neel mechanisms. In order to isolate and study the role of the Neel mechanism in this process, the sample can be frozen, using liquid nitrogen, in order to suppress the Brownian relaxation. In this experiment, dextran-coated Fe3O4 nanoparticles synthesized via co-precipitation and characterized via transmission electron microscopy and dc magnetization are used as MFH mediators over the temperature range between -70 °C to -10 °C (Brownian-suppressed state). Heating the nanoparticles using ac magnetic field (amplitude ~300 Oe), the frequency dependence of the specific absorption rate (SAR) is calculated between 150 kHz and 350 kHz and used to determine the magnetocrystalline anisotropy of the sample. We would like to thank Fluxtrol, Inc. for their help with this project

  14. Time-dependent absorption of very high-energy gamma-rays from the Galactic center by pair-production

    SciTech Connect

    Abramowski, Attila; Horns, Dieter; Ripken, Joachim; Gillessen, Stefan; Eldik, Christopher van

    2008-12-24

    Very high energy (VHE) gamma-rays have been detected from the direction of the Galactic center. The H.E.S.S. Cherenkov telescopes have located this {gamma}-ray source with a preliminary position uncertainty of 8.5'' per axis (6'' statistic+6'' sytematic per axis). Within the uncertainty region several possible counterpart candidates exist: the Super Massive Black Hole Sgr A*, the Pulsar Wind Nebula candidate G359.95-0.04, the Low Mass X-Ray Binary-system J174540.0-290031, the stellar cluster IRS 13, as well as self-annihilating dark matter. It is experimentally very challenging to further improve the positional accuracy in this energy range and therefore, it may not be possible to clearly associate one of the counterpart candidates with the VHE-source. Here, we present a new method to investigate a possible link of the VHE-source with the near environment of Sgr A*(within approximately 1000 Schwarzschild radii). This method uses the time- and energy-dependent effect of absorption of VHE {gamma}-rays by pair-production (in the following named pair-eclipse) with low-energy photons of stars closely orbiting the SMBH Sgr A*.

  15. Rhenium(I) tricarbonyl polypyridine complexes showing strong absorption of visible light and long-lived triplet excited states as a triplet photosensitizer for triplet-triplet annihilation upconversion.

    PubMed

    Yi, Xiuyu; Zhao, Jianzhang; Wu, Wanhua; Huang, Dandan; Ji, Shaomin; Sun, Jifu

    2012-08-01

    The preparation of rhenium(I) tricarbonyl polypyridine complexes that show a strong absorption of visible light and long-lived triplet excited state and the application of these complexes as triplet photosensitizers for triplet-triplet annihilation (TTA) based upconversion are reported. Imidazole-fused phenanthroline was used as the N^N coordination ligand, on which different aryl groups were attached (Phenyl, Re-0; Coumarin, Re-1 and naphthyl, Re-2). Re-1 shows strong absorption of visible light (ε = 60,800 M(-1) cm(-1) at 473 nm). Both Re-1 and Re-2 show long-lived T(1) states (lifetime, τ(T), is up to 86.0 μs and 64.0 μs, respectively). These properties are in contrast to the weak absorption of visible light and short-lived triplet excited states of the normal rhenium(I) tricarbonyl polypyridine complexes, such as Re-0 (ε = 5100 M(-1) cm(-1) at 439 nm, τ(T) = 2.2 μs). The photophysical properties of the complexes were fully studied with steady state and time-resolved absorption and emission spectroscopes, as well as DFT calculations. The intra-ligand triplet excited state is proposed to be responsible for the exceptionally long-lived T(1) states of Re-1 and Re-2. The Re(I) complexes were used as triplet photosensitizers for TTA based upconversion and an upconversion quantum yield up to 17.0% was observed.

  16. The Dust, Nebular Emission, and Dependence on QSO Radio Properties of the Associated Mg II Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Khare, Pushpa; Berk Daniel, Vanden; Rahmani, Hadi; York, Donald G.

    2014-10-01

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, <=3000 km s-1 in units of velocity of light, β, <=0.01) with 0.4 <=z abs <= 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 109 M ⊙ than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z abs > z em, which could be infalling galaxies.

  17. Angular distributions of photoelectrons and interatomic-Coulombic-decay electrons from helium dimers: Strong dependence on the internuclear distance

    SciTech Connect

    Havermeier, T.; Kreidi, K.; Wallauer, R.; Voss, S.; Schoeffler, M.; Schoessler, S.; Foucar, L.; Neumann, N.; Titze, J.; Sann, H.; Kuehnel, M.; Voigtsberger, J.; Schmidt-Boecking, H.; Doerner, R.; Jahnke, T.; Sisourat, N.; Schoellkopf, W.; Grisenti, R. E.

    2010-12-15

    In the present paper, we show that the absorption of a single photon can singly ionize both atoms of a helium dimer (He{sub 2}): ionization with simultaneous excitation of one atom followed by de-excitation via interatomic Coulombic decay leads to the ejection of an electron from each of the the two atoms of the dimer. Using the Cold Target Recoil Ion Momentum Spectroscopy technique (COLTRIMS), we obtained angular distributions of these electrons in the laboratory frame and the molecular frame. We observe a pronounced variation of these distributions for different regions of kinetic-energy releases of the ions.

  18. Acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids with strong two-photon absorption and high singlet oxygen quantum yield.

    PubMed

    Ke, Hanzhong; Li, Wenbin; Zhang, Tao; Zhu, Xunjin; Tam, Hoi-Lam; Hou, Anxin; Kwong, Daniel W J; Wong, Wai-Kwok

    2012-04-21

    Several acetylene bridged porphyrin-monophthalocyaninato ytterbium(III) hybrids, PZn-PcYb, PH(2)-PcYb and PPd-PcYb, have been prepared and characterized by (1)H and (31)P NMR, mass spectrometry, and UV-vis spectroscopy. Their photophysical and photochemical properties, especially the relative singlet oxygen ((1)O(2)) quantum yields and the two-photon absorption cross-section (σ(2)), were investigated. These three newly synthesized compounds exhibited very large σ(2) values and substantial (1)O(2) quantum yields upon photo-excitation, making them potential candidates as one- and two-photon photodynamic therapeutic agents.

  19. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-01

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile.

  20. Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure.

    PubMed

    Thalman, Ryan; Volkamer, Rainer

    2013-10-01

    The collisions between two oxygen molecules give rise to O4 absorption in the Earth atmosphere. O4 absorption is relevant to atmospheric transmission and Earth's radiation budget. O4 is further used as a reference gas in Differential Optical Absorption Spectroscopy (DOAS) applications to infer properties of clouds and aerosols. The O4 absorption cross section spectrum of bands centered at 343, 360, 380, 446, 477, 532, 577 and 630 nm is investigated in dry air and oxygen as a function of temperature (203-295 K), and at 820 mbar pressure. We characterize the temperature dependent O4 line shape and provide high precision O4 absorption cross section reference spectra that are suitable for atmospheric O4 measurements. The peak absorption cross-section is found to increase at lower temperatures due to a corresponding narrowing of the spectral band width, while the integrated cross-section remains constant (within <3%, the uncertainty of our measurements). The enthalpy of formation is determined to be ΔH(250) = -0.12 ± 0.12 kJ mol(-1), which is essentially zero, and supports previous assignments of O4 as collision induced absorption (CIA). At 203 K, van der Waals complexes (O(2-dimer)) contribute less than 0.14% to the O4 absorption in air. We conclude that O(2-dimer) is not observable in the Earth atmosphere, and as a consequence the atmospheric O4 distribution is for all practical means and purposes independent of temperature, and can be predicted with an accuracy of better than 10(-3) from knowledge of the oxygen concentration profile. PMID:23928555

  1. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    SciTech Connect

    Khare, Pushpa; Daniel, Vanden Berk; Rahmani, Hadi; York, Donald G.

    2014-10-10

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s{sup –1}; in units of velocity of light, β, ≤0.01) with 0.4 ≤z {sub abs} ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10{sup 9} M {sub ☉} than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z {sub abs} > z {sub em}, which could be infalling galaxies.

  2. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots.

    PubMed

    Wei, Ke; Xu, Zhongjie; Chen, Runze; Zheng, Xin; Cheng, Xiangai; Jiang, Tian

    2016-08-15

    Recently, lead halide perovskite quantum dots have been reported with potential for photovoltaic and optoelectronic applications due to their excellent luminescent properties. Herein excitonic photoluminescence (PL) excited by two-photon absorption in perovskite CsPbBr3 quantum dots (QDs) has been studied at a broad temperature range, from 80 to 380 K. Two-photon absorption has been investigated and the absorption coefficient is up to 0.085 cm/GW at room temperature. Moreover, the PL spectrum excited by two-photon absorption shows a linear blue-shift (0.32 meV/K) below the temperature of 220 K. However, for higher temperatures, the PL peak approaches a roughly constant value and shows temperature-independent chromaticity up to 380 K. This behavior is distinct from the general red-shift for semiconductors and can be attributed to the result of thermal expansion, electron-phonon interaction and structural phase transition around 360 K. The strong nonlinear absorption and temperature-independent chromaticity of CsPbBr3 QDs observed in temperature range from 220 to 380 K will offer new opportunities in nonlinear photonics, light-harvesting, and light-emitting devices. PMID:27519098

  3. Temperature Dependence of Individual Absorptions Bands in Olivine: Implications for Inferring Compositions of Asteroid Surfaces from Spectra

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Hinrichs, J. L.; Lucey, P. G.

    2000-01-01

    The temperature variations of individual absorptions in olivine are modeled and found to narrow, move slightly in position, and change in relative strength as predicted by theory. These thermal changes may be confused with compositional differences.

  4. Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra

    SciTech Connect

    Okotrub, A. V. Belavin, V. V.; Bulusheva, L. G.; Gusel'nikov, A. V.; Kudashov, A. G.; Vyalikh, D. V.; Molodtsov, S. L.

    2008-09-15

    The properties of materials containing carbon nanotubes depend on the degree of alignment and the internal structure of nanotubes. It is shown that the degree of misorientation of carbon nanotubes in samples can be evaluated from the measurements of the angular dependences of the carbon X-ray emission and carbon X-ray absorption spectra. The CK{sub {alpha}} emission and CK X-ray absorption spectra of the array of multiwalled carbon nanotubes synthesized by catalytic thermolysis of a mixture of fullerene and ferrocene are measured. A comparison of the calculated model dependences of the relative intensities of the {pi} and {sigma} bands in the spectra with the experimental results makes it possible to evaluate the degree of misorientation of nanotubes in the sample and their internal texture.

  5. The X-ray absorption spectroscopic model of the copper(II) imidazole complex ion in liquid aqueous solution: a strongly solvated square pyramid.

    PubMed

    Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O

    2012-02-20

    Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 Å, and MXAN, 1.99 ± 0.03 Å. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 Å (EXAFS) or 2.14 ± 0.06 Å (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 Å (EXAFS) or 3.0 ± 0.1 Å (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 Å that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 Å axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions. PMID:22316238

  6. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  7. Temperature-dependent local structure of NdFeAsO(1-x)F(x) system using arsenic K-edge extended x-ray absorption fine structure.

    PubMed

    Joseph, B; Iadecola, A; Malavasi, L; Saini, N L

    2011-07-01

    Local structure of NdFeAsO(1-x)F(x) (x = 0.0, 0.05, 0.15 and 0.18) high temperature iron-pnictide superconductor system is studied using arsenic K-edge extended x-ray absorption fine structure measurements as a function of temperature. Fe-As bond length shows only a weak temperature and F-substitution dependence, consistent with the strong covalent nature of this bond. The temperature dependence of the mean square relative displacements of the Fe-As bond length are well described by the correlated Einstein model for all the samples, but with different Einstein temperatures for the superconducting and non-superconducting samples. The results indicate distinct local Fe-As lattice dynamics in the superconducting and non-superconducting iron-pnictide systems.

  8. Molar Absorptivity and Concentration-Dependent Quantum Yield of Fe(II) Photo-Formation for the Aqueous Solutions of Fe(III)-Dicarboxylate Complexes

    NASA Astrophysics Data System (ADS)

    Hitomi, Y.; Arakaki, T.

    2009-12-01

    Redox cycles of iron in the aquatic environment affect formation of reactive oxygen species such as hydrogen peroxide and hydroxyl radicals, which in turn determines lifetimes of many organic compounds. Although aqueous Fe(III)-dicarboxylate complexes are considered to be important sources of photo-formed Fe(II), molar absorptivity and quantum yield of Fe(II) formation for individual species are not well understood. We initiated a study to characterize Fe(II) photo-formation from Fe(III)-dicarboxylates with the concentration ranges that are relevant to the natural aquatic environment. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of individual Fe(III)-dicarboxylate species. The molar absorptivity of Fe(III)-dicarboxylate species was obtained by UV-VIS spectrophotometer, and the product of the quantum yield and the molar absorptivity of Fe(III)-dicarboxylate species were obtained from photochemical experiments. These experimental data were combined with the calculated equilibrium Fe(III)-dicarboxylate concentrations to determine individual molar absorptivity and quantum yield of Fe(II) photo-formation for a specific Fe(III)-dicarboxylate species. We used initial concentrations of less than 10 micromolar Fe(III) to study the photochemical formation of Fe(II). Dicarboxylate compounds studied include oxalate, malonate, succinate, malate, and phthalate. We report molar absorptivity and concentration-dependent quantum yields of Fe(II) photo-formation of individual Fe(III)-dicarboxylates.

  9. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments. PMID:24811926

  10. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    PubMed

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops. PMID:18360518

  11. Strong dependence of rain-induced lidar depolarization on the illumination angle: experimental evidence and geometrical-optics interpretation.

    PubMed

    Roy, G; Bissonnette, L R

    2001-09-20

    Backscatter and depolarization lidar measurements from clouds and precipitation are reported as functions of the elevation angle of the pointing lidar direction. We recorded the data by scanning the lidar beam (Nd:YAG) at a constant angular speed of ~3.5 degrees /s while operating at a repetition rate of 10 Hz. We show that in rain there is an evident and at times spectacular dependence on the elevation angle. That dependence appears to be sensitive to raindrop size. We have developed a three-dimensional polarization-dependent ray-tracing algorithm to calculate the backscatter and the depolarization ratio by large nonspherical droplets. We have applied it to raindrop shapes derived from existing static and dynamic (oscillating) models. We show that many of the observed complex backscatter and depolarization features can be interpreted to a good extent by geometrical optics. These results suggest that there is a definite need for more extensive calculations of the scattering phase matrix elements for large deformed raindrops as functions of the direction of illumination. Obvious applications are retrieval of information on the liquid-solid phase of precipitation and on the size and the vibration state of raindrops.

  12. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  13. Phase-dependent high refractive index without absorption in a four-level inverted-Y atomic system

    SciTech Connect

    Zhi-Qiang Zeng; Fu-Ti Liu; Yu-Ping Wang; Zeng-Hui Gao

    2015-01-31

    We consider a closed four-level inverted-Y system in the presence and the absence of a microwave field. It is found that due to the quantum coherence between the two lower levels, either induced by the spontaneous decay or by the microwave field, the refraction – absorption properties of the system can be modulated by controlling the relative phase of the applied fields in both driven ways. In particular, by properly setting the values of the relative phase, the desirable high index of refraction without absorption can be achieved. (nonlinear optical phenomena)

  14. Measurements of absolute absorption cross sections of ozone in the 185- to 254-nm wavelength region and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.

    1993-01-01

    Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.

  15. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    NASA Astrophysics Data System (ADS)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  16. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the

  17. Fluctuation sound absorption in quark matter

    NASA Astrophysics Data System (ADS)

    Kerbikov, B. O.; Lukashov, M. S.

    2016-09-01

    We investigate the sound absorption in quark matter due to the interaction of the sound wave with the precritical fluctuations of the diquark-pair field above Tc. The soft collective mode of the pair field is derived using the time-dependent Ginzburg-Landau functional with random Langevin forces. The strong absorption near the phase transition line may be viewed as a manifestation of Mandelshtam-Leontovich slow relaxation time theory.

  18. Effect of cadmium administration on intestinal calcium absorption and vitamin D-dependent calcium-binding protein

    SciTech Connect

    Fullmer, C.S.; Oku, T.; Wasserman, R.H.

    1980-08-01

    The effects of cadmium on intestinal calcium absorption and calcium-binding protein (CaBP) were investigated in chicks by means of the in situ ligated duodenal loop technique. Dietary cadmium, administered in the feed or by gastric intubation, resulted in significant declines in intestinal calcium absorption and mucosal calcium-binding protein concentrations. Cadmium chloride injected directly into the ligated loop of naive chicks also diminished calcium absorption and CaBP concentrations in an apparently dose-response related fashion. No adverse effects of cadmium administration on either the 25- or 1..cap alpha..-hydroxylation reactions of vitamin D were observed. While the general effect of cadmium administration was a reduction in intestinal calcium absorption, plasma calcium levels were consistently elevated in Cd-treated chicks, with the exception of those also maintained on diets low in Ca. The results indicate that cadmium toxicity exerts at least two effects on Ca metabolism, one at the intestinal level and another at the level of the bone, kidney, or both.

  19. Dependency of magnetic microwave absorption on surface architecture of Co20Ni80 hierarchical structures studied by electron holography

    NASA Astrophysics Data System (ADS)

    Liu, Qinhe; Xu, Xianhui; Xia, Weixing; Che, Renchao; Chen, Chen; Cao, Qi; He, Jingang

    2015-01-01

    To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a series of Co20Ni80 hierarchical structures with different surface morphologies, including flower-, urchin-, ball-, and chain-like morphologies, were obtained using structure-directing templates via a facile one-step solvothermal treatment. The microwave reflection loss (RL) of urchin-like Co20Ni80 hierarchical structures reaches as high as -33.5 dB at 3 GHz, with almost twice the RL intensity of the ball- and chain-like structures, and the absorption bandwidth (<-10 dB) is about 5.5 GHz for the flower-like morphology, indicating that the surface nanospikes and nanoflakes on the Co20Ni80 microsphere surfaces have great influences on their magnetic microwave absorption properties. Electron holography analysis reveals that the surface nanospikes and nanoflakes could generate a high density of stray magnetic flux lines and contribute a large saturation magnetization (105.62 emu g-1 for urchin-like and 96.41 emu g-1 for flower-like morphology), leading the urchin-like and flower-like Co20Ni80 to possess stronger microwave RL compared with the ball-like and chain-like Co20Ni80 alloys. The eddy-current absorption mechanism μ''(μ')-2(f)-1 is dominant in the frequency region above 8 GHz, implying that eddy-current loss is a vital factor for microwave RL in the high frequency range. It can be supposed from our findings that different surface morphologies of magnetic hierarchical structures might become an effective path to achieve high-performance microwave absorption for electromagnetic shielding and stealth camouflage applications.To design and fabricate rational surface architecture of individual particles is one of the key factors that affect their magnetic properties and microwave absorption capability, which is still a great challenge. Herein, a

  20. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-08-01

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach—straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water—causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young’s modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  1. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation.

    PubMed

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-01-01

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization. PMID:27562532

  2. Cellulose as an adhesion agent for the synthesis of lignin aerogel with strong mechanical performance, Sound-absorption and thermal Insulation.

    PubMed

    Wang, Chao; Xiong, Ye; Fan, Bitao; Yao, Qiufang; Wang, Hanwei; Jin, Chunde; Sun, Qingfeng

    2016-08-26

    The lignin aerogels that are both high porosity and compressibility would have promising implications for bioengineering field to sound-adsorption and damping materials; however, creating this aerogel had a challenge to adhesive lignin. Here we reported cellulose as green adhesion agent to synthesize the aerogels with strong mechanical performance. Our approach-straightforwardly dissolved in ionic liquids and simply regenerated in the deionized water-causes assembly of micro-and nanoscale and even molecule level of cellulose and lignin. The resulting lignin aerogels exhibit Young's modulus up to 25.1 MPa, high-efficiency sound-adsorption and excellent thermal insulativity. The successful synthesis of this aerogels developed a path for lignin to an advanced utilization.

  3. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain

    PubMed Central

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D.

    2015-01-01

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40–45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC’s location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  4. Amplitude of the actomyosin power stroke depends strongly on the isoform of the myosin essential light chain.

    PubMed

    Guhathakurta, Piyali; Prochniewicz, Ewa; Thomas, David D

    2015-04-14

    We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to determine the role of myosin essential light chains (ELCs) in structural transitions within the actomyosin complex. Skeletal muscle myosins have two ELC isoforms, A1 and A2, which differ by an additional 40-45 residues at the N terminus of A1, and subfragment 1 (S1) containing A1 (S1A1) has higher catalytic efficiency and higher affinity for actin than S1A2. ELC's location at the junction between the catalytic and light-chain domains gives it the potential to play a central role in the force-generating power stroke. Therefore, we measured site-directed TR-FRET between a donor on actin and an acceptor near the C terminus of ELC, detecting directly the rotation of the light-chain domain (lever arm) relative to actin (power stroke), induced by the interaction of ATP-bound myosin with actin. TR-FRET resolved the weakly bound (W) and strongly bound (S) states of actomyosin during the W-to-S transition (power stroke). We found that the W states are essentially the same for the two isoenzymes, but the S states are quite different, indicating a much larger movement of S1A1. FRET from actin to a probe on the N-terminal extension of A1 showed close proximity to actin. We conclude that the N-terminal extension of A1-ELC modulates the W-to-S structural transition of acto-S1, so that the light-chain domain undergoes a much larger power stroke in S1A1 than in S1A2. These results have profound implications for understanding the contractile function of actomyosin, as needed in therapeutic design for muscle disorders. PMID:25825773

  5. Two-center interference effects on the orientation dependence of the strong-field double-ionization yields for hydrogen molecules

    NASA Astrophysics Data System (ADS)

    Li, W.; Liu, J.

    2012-09-01

    In the present paper we investigate the orientation dependence of the nonsequential double ionization (NSDI) of a hydrogen molecule (H2) exposed to a strong laser field analytically within the strong-field approximation. Our calculations demonstrate that the NSDI yields can increase with the increase of the molecular alignment angle; i.e., the alignment dependence of the NSDI yields exhibit a reversed tendency compared to that of the single-ionization yields. This striking phenomenon is identified as a signal of quantum interference, which arises from the two-center structure of the diatomic molecule and can lead to the dramatic suppression of the NSDI rates at small alignment angles. Moreover, the interference effect can be altered by both laser intensity and internuclear distance. The above finding indicates that the two-center interference can affect NSDI yields dramatically in certain cases and therefore suggests a feasible way to observe the interference effect indirectly in NSDI experiments.

  6. SU-C-304-07: Are Small Field Detector Correction Factors Strongly Dependent On Machine-Specific Characteristics?

    SciTech Connect

    Mathew, D; Tanny, S; Parsai, E; Sperling, N

    2015-06-15

    Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measured on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class

  7. Integration of Distinct Objects in Visual Working Memory Depends on Strong Objecthood Cues Even for Different-Dimension Conjunctions.

    PubMed

    Balaban, Halely; Luria, Roy

    2016-05-01

    What makes an integrated object in visual working memory (WM)? Past evidence suggested that WM holds all features of multidimensional objects together, but struggles to integrate color-color conjunctions. This difficulty was previously attributed to a challenge in same-dimension integration, but here we argue that it arises from the integration of 2 distinct objects. To test this, we examined the integration of distinct different-dimension features (a colored square and a tilted bar). We monitored the contralateral delay activity, an event-related potential component sensitive to the number of objects in WM. The results indicated that color and orientation belonging to distinct objects in a shared location were not integrated in WM (Experiment 1), even following a common fate Gestalt cue (Experiment 2). These conjunctions were better integrated in a less demanding task (Experiment 3), and in the original WM task, but with a less individuating version of the original stimuli (Experiment 4). Our results identify the critical factor in WM integration at same- versus separate-objects, rather than at same- versus different-dimensions. Compared with the perfect integration of an object's features, the integration of several objects is demanding, and depends on an interaction between the grouping cues and task demands, among other factors. PMID:25750258

  8. Low-frequency ac electroporation shows strong frequency dependence and yields comparable transfection results to dc electroporation.

    PubMed

    Zhan, Yihong; Cao, Zhenning; Bao, Ning; Li, Jianbo; Wang, Jun; Geng, Tao; Lin, Hao; Lu, Chang

    2012-06-28

    Conventional electroporation has been conducted by employing short direct current (dc) pulses for delivery of macromolecules such as DNA into cells. The use of alternating current (ac) field for electroporation has mostly been explored in the frequency range of 10kHz-1MHz. Based on Schwan equation, it was thought that with low ac frequencies (10Hz-10kHz), the transmembrane potential does not vary with the frequency. In this report, we utilized a flow-through electroporation technique that employed continuous 10Hz-10kHz ac field (based on either sine waves or square waves) for electroporation of cells with defined duration and intensity. Our results reveal that electropermeabilization becomes weaker with increased frequency in this range. In contrast, transfection efficiency with DNA reaches its maximum at medium frequencies (100-1000Hz) in the range. We postulate that the relationship between the transfection efficiency and the ac frequency is determined by combined effects from electrophoretic movement of DNA in the ac field, dependence of the DNA/membrane interaction on the ac frequency, and variation of transfection under different electropermeabilization intensities. The fact that ac electroporation in this frequency range yields high efficiency for transfection (up to ~71% for Chinese hamster ovary cells) and permeabilization suggests its potential for gene delivery.

  9. Quantitative determination of valproic acid in postmortem blood samples--evidence of strong matrix dependency and instability.

    PubMed

    Kiencke, Verena; Andresen-Streichert, Hilke; Müller, Alexander; Iwersen-Bergmann, Stefanie

    2013-11-01

    Most of the daily work of forensic toxicologists deals with fatal cases resulting from overdoses of licit and illicit drugs. However, another reason for fatalities in patients suffering from epilepsy can be undetectable or subtherapeutic levels of antiepileptic drugs. Some studies have shown a correlation between "sudden unexpected death in epilepsy" (SUDEP) and the ineffective treatment of epilepsy. Low levels of antiepileptic drugs may be a risk factor for SUDEP. The death of a psychiatric patient also suffering from epilepsy inspired the investigation. Subsequent to the death of the patient, the doctor was accused of providing inadequate therapy for epilepsy. The patient was to be treated with valproic acid. We developed and validated a simple method of determining valproic acid levels by gas chromatography-mass spectrometry for serum, but a transfer of the method from serum to postmortem whole blood failed. The method had to be modified and revalidated for postmortem whole blood specimens. A stability study of valproic acid in postmortem blood was conducted, showing a decline of valproic acid levels by 85 % after storage at room temperature for 28 days. During the storage time, the blood samples showed changes in consistency. Depending on the stage of decomposition, it is necessary to perform a determination by standard addition with an equilibration time of 4 h before extraction to achieve reliable results. For a proper interpretation of quantitative results, it is necessary to keep the postmortem decline of valproic acid concentrations in mind.

  10. Determination of Earths transient and equilibrium climate sensitivities from observations over the twentieth century: Strong dependence on assumed forcing

    SciTech Connect

    Schwartz S. E.

    2012-05-04

    , and strongly anticorrelated with the forcing used to determine the sensitivities. Transient sensitivities, relevant to climate change on the multidecadal time scale, are considerably lower, 0.23 {+-} 0.01 to 0.51 {+-} 0.04 K (W m{sup -2}){sup -1}. The time constant characterizing the response of the upper ocean compartment of the climate system to perturbations is estimated as about 5 years, in broad agreement with other recent estimates, and much shorter than the time constant for thermal equilibration of the deep ocean, about 500 years.

  11. BK polyomavirus-specific cellular immune responses are age-dependent and strongly correlate with phases of virus replication.

    PubMed

    Schmidt, T; Adam, C; Hirsch, H H; Janssen, M W W; Wolf, M; Dirks, J; Kardas, P; Ahlenstiel-Grunow, T; Pape, L; Rohrer, T; Fliser, D; Sester, M; Sester, U

    2014-06-01

    BK polyomavirus (BKPyV) infection is widespread and typically asymptomatic during childhood, but may cause nephropathy in kidney transplant recipients. However, there is only limited knowledge on BKPyV-specific immunity in children and adults, and its role in BKPyV-replication and disease posttransplant. We therefore characterized BKPyV-specific immunity from 122 immunocompetent individuals (1-84 years), 38 adult kidney recipients with (n = 14) and without BKPyV-associated complications (n = 24), and 25 hemodialysis (HD) patients. Blood samples were stimulated with overlapping peptides of BKPyV large-T antigen and VP1 followed by flow-cytometric analysis of activated CD4 T cells expressing interferon-γ, IL-2 and tumor necrosis factor-α. Antibody-levels were determined using enzyme-linked immunosorbent assay. Both BKPyV-IgG levels and BKPyV-specific CD4 T cell frequencies were age-dependent (p = 0.0059) with maximum levels between 20 and 30 years (0.042%, interquartile range 0.05%). Transplant recipients showed a significantly higher BKPyV-specific T cell prevalence (57.9%) compared to age-matched controls (21.7%) or HD patients (28%, p = 0.017). Clinically relevant BKPyV-replication was associated with elevated frequencies of BKPyV-specific T cells (p = 0.0002), but decreased percentage of cells expressing multiple cytokines (p = 0.009). In conclusion, BKPyV-specific cellular immunity reflects phases of active BKPyV-replication either after primary infection in childhood or during reactivation after transplantation. Combined analysis of BKPyV-specific T cell functionality and viral loads may improve individual risk assessment.

  12. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  13. ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH{sup +} ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs

    SciTech Connect

    Dahlstrom, Julie; York, Donald G.; Welty, Daniel E.; Oka, Takeshi; Johnson, Sean; Jiang Zihao; Sherman, Reid; Hobbs, L. M.; Friedman, Scott D.; Sonnentrucker, Paule; Rachford, Brian L.; Snow, Theodore P.

    2013-08-10

    Anomalously broad diffuse interstellar bands (DIBs) at 5780.5, 5797.1, 6196.0, and 6613.6 A are found in absorption along the line of sight to Herschel 36, the star illuminating the bright Hourglass region of the H II region Messier 8. Interstellar absorption from excited CH{sup +} in the J = 1 level and from excited CH in the J = 3/2 level is also seen. To our knowledge, neither those excited molecular lines nor such strongly extended DIBs have previously been seen in absorption from interstellar gas. These unusual features appear to arise in a small region near Herschel 36 which contains most of the neutral interstellar material in the sight line. The CH{sup +} and CH in that region are radiatively excited by strong far-IR radiation from the adjacent infrared source Her 36 SE. Similarly, the broadening of the DIBs toward Herschel 36 may be due to radiative pumping of closely spaced high-J rotational levels of relatively small, polar carrier molecules. If this picture of excited rotational states for the DIB carriers is correct and applicable to most DIBs, the 2.7 K cosmic microwave background may set the minimum widths (about 0.35 A) of known DIBs, with molecular processes and/or local radiation fields producing the larger widths found for the broader DIBs. Despite the intense local UV radiation field within the cluster NGC 6530, no previously undetected DIBs stronger than 10 mA in equivalent width are found in the optical spectrum of Herschel 36, suggesting that neither dissociation nor ionization of the carriers of the known DIBs by this intense field creates new carriers with easily detectable DIB-like features. Possibly related profile anomalies for several other DIBs are noted.

  14. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  15. The 13CH4 absorption spectrum in the Icosad range (6600-7692 cm-1) at 80 K and 296 K: Empirical line lists and temperature dependence

    NASA Astrophysics Data System (ADS)

    Campargue, A.; Béguier, S.; Zbiri, Y.; Mondelain, D.; Kassi, S.; Karlovets, E. V.; Nikitin, A. V.; Rey, M.; Starikova, E. N.; Tyuterev, Vl. G.

    2016-08-01

    The 13CH4 absorption spectrum has been recorded at 296 K and 80 K in the Icosad range between 6600 and 7700 cm-1. The achieved noise equivalent absorption of the spectra recorded by differential absorption spectroscopy (DAS) is about αmin ≈ 1.5 × 10-7 cm-1. Two empirical line lists were constructed including 17,792 and 24,139 lines at 80 K and 296 K, respectively. For comparison, the HITRAN database provides only 1040 13CH4 lines in the region determined from methane spectra with natural isotopic abundance. Empirical values of the lower state energy level, Eemp, were systematically derived from the intensity ratios of the lines measured at 80 K and 296 K. Overall 10,792 Eemp values were determined providing accurate temperature dependence for most of the 13CH4 absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values of the lower state rotational quantum number, Jemp, is illustrated by their clear propensity to be close to an integer. A good agreement is achieved between our small Jemp values, with previous accurate determinations obtained by applying the 2T method to jet and 80 K spectra. The line lists at 296 K and 80 K which are provided as Supplementary material will be used for future rovibrational assignments based on accurate variational calculations.

  16. A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Stemmer, K.; Harder, H.; Hansen, U.

    2006-08-01

    We present a new finite volume code for modeling three-dimensional thermal convection in a spherical shell with strong temperature- and pressure-dependent viscosity. A new discretization formulation of the viscous term, tailored to the finite volume method on a colocated grid, enables laterally variable viscosity. A smoothed cubed-sphere grid is used to avoid pole problems which occur in latitude-longitude grids with spherical coordinates. The spherical shell is topologically divided into six cubes. The equations are formulated in primitive variables, and are treated in the Cartesian cubes. In order to ensure mass conservation a SIMPLER pressure correction procedure is applied and to handle strong viscosity variations of Δ η = 10 7 and high Rayleigh numbers of Ra = 10 8 the pressure correction algorithm is combined with a pressure weighted interpolation method to satisfy the incompressibility condition and to avoid oscillatory pressure solutions. The model is validated by a comparison of diagnostical parameters of steady-state cubic and tetrahedral convection with other published spherical models and a detailed convergence test on successively refined grids. Lateral variable fluid properties have a significant influence on the convection pattern and heat flow dynamics. The influence of temperature- and pressure-dependent viscosity on the flow is systematically analyzed for basal and mixed-mode heated thermal convection in the spherical shell. A new method to classify the simulations to the mobile, transitional or stagnant-lid regime is given by means of a comparison of selected diagnostical parameters, a significantly improved classification as compared to the common surface layer mobility criterion. A scaling law for the interior temperature and viscosity in the stagnant-lid regime is given. Purely basal heating and strongly temperature-dependent rheology stabilize plume positions and yield with a weak time dependence of the convecting system, while the amount

  17. Absolute absorption cross-section measurements of ozone in the wavelength region 238-335 nm and the temperature dependence

    NASA Technical Reports Server (NTRS)

    Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.

    1988-01-01

    The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.

  18. Region-dependent absorption of faropenem shared with foscarnet, a phosphate transporter substrate, in the rat small intestine.

    PubMed

    Saitoh, Hiroshi; Sawazaki, Rinako; Oda, Masako; Kobayashi, Michiya

    2008-09-01

    Faropenem, a penem antibiotic, is orally active despite its hydrophilic nature. However, its intestinal absorption has not yet been characterised in detail. This study was undertaken to determine the factors regulating faropenem absorption using intestinal loops prepared in the rat duodenum, jejunum and terminal ileum. Faropenem disappearance was much greater than that of cefotaxime and meropenem, and faropenem disappeared more extensively from the terminal ileum than from the jejunum or duodenum. In contrast to faropenem, the disappearance of ceftibuten was much greater from the duodenum and jejunum than from the terminal ileum. As the accumulation and enzymatic degradation of faropenem was minimal in the intestinal mucosa, faropenem was considered to enter the portal vein smoothly after its disappearance from the intestinal loops. Faropenem disappearance was not significantly influenced by the presence of monocarboxylic acids, amino acids or bile acid. Dipeptides such as L-carnosine and glycylglycine slightly but significantly lowered faropenem disappearance from the terminal ileum. On the other hand, foscarnet exerted a marked inhibitory effect on faropenem disappearance, but the antiviral agent did not modulate ceftibuten absorption. The present results suggest that faropenem is in part absorbed via a phosphate transporter present in the rat small intestine. PMID:18614339

  19. Time dependent changes in the intestinal Ca²⁺ absorption in rats with type I diabetes mellitus are associated with alterations in the intestinal redox state.

    PubMed

    Rivoira, María; Rodríguez, Valeria; López, María Peralta; Tolosa de Talamoni, Nori

    2015-03-01

    The aim was to determine the intestinal Ca²⁺ absorption in type I diabetic rats after different times of STZ induction, as well as the gene and protein expression of molecules involved in both the transcellular and paracellular Ca²⁺ pathways. The redox state and the antioxidant enzymes of the enterocytes were also evaluated in duodenum from either diabetic or insulin-treated diabetic rats as compared to control rats. Male Wistar rats (150-200 g) were divided into two groups: 1) controls and 2) STZ-induced diabetic rats (60 mg/kg b.w.). A group of diabetic rats received insulin for five days. The insulin was adjusted daily to maintain a normal blood glucose level. Five 5 d after STZ injection, there was a reduction in the intestinal Ca²⁺ absorption, which was maintained for 30 d and disappeared at 60 d. Similar changes occurred in the GSH and (˙)O(2)(-) levels. The protein expression of molecules involved in the transcellular pathway increased at 5 and 30 d returning to control values at 60 d. Their mRNA levels declined considerably at 60 d. The gene and protein expression of claudin 2 was upregulated at 30 d. Catalase activity increased at 5 and 30 d normalizing at 60 d. To conclude, type I D.m. inhibits the intestinal Ca²⁺ absorption, which is transient leading to a time dependent adaptation and returning the absorptive process to normal values. The inhibition is accompanied by oxidative stress. When insulin is administered, the duodenal redox state returns to control values and the intestinal Ca²⁺ absorption normalizes.

  20. Extraordinary Absorption of Decorated Undoped Graphene

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Gómez-Santos, G.; de Abajo, F. Javier García

    2014-02-01

    We theoretically study absorption by an undoped graphene layer decorated with arrays of small particles. We discuss periodic and random arrays within a common formalism, which predicts a maximum absorption of 50% for suspended graphene in both cases. The limits of weak and strong scatterers are investigated, and an unusual dependence on particle-graphene separation is found and explained in terms of the effective number of contributing evanescent diffraction orders of the array. Our results can be important to boost absorption by single-layer graphene due to its simple setup with potential applications to light harvesting and photodetection based on energy (Förster) rather than charge transfer.

  1. Orientation-dependent local structural properties of Zn(1-x)Mg(x)O nanorods studied by extended X-ray absorption fine structure.

    PubMed

    Jeong, E S; Park, Changin; Jin, Zhenlan; Yoo, Jinkyoung; Yi, Gyu-Chul; Han, S W

    2013-03-01

    The orientation-dependent structural properties of Zn(1-x)Mg(x)O nanorods with different Mg concentrations were investigated quantitatively using polarization-dependent extended X-ray absorption fine structure (EXAFS) measurements at the Zn K edge. Vertically-aligned Zn(1-x)Mg(x)O nanorods were synthesized on Si substrates using catalyst free metal organic chemical vapor deposition. Polarization-dependent EXAFS measurements showed that Mg ions mainly occupied the Zn sites of the nanorods. EXAFS revealed that the distance between Zn-Mg pairs in all directions is - 0.2 angstroms shorter than that of Zn-Zn pairs and that there is a substantial amount of disorder in the Mg sites of the nanorods, independent of Mg concentrations.

  2. Quantum fluid dynamics based current-density functional study of a helium atom in a strong time-dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Vikas, Hash(0x125f4490)

    2011-02-01

    Evolution of the helium atom in a strong time-dependent (TD) magnetic field ( B) of strength up to 1011 G is investigated through a quantum fluid dynamics (QFD) based current-density functional theory (CDFT). The TD-QFD-CDFT computations are performed through numerical solution of a single generalized nonlinear Schrödinger equation employing vector exchange-correlation potentials and scalar exchange-correlation density functionals that depend both on the electronic charge-density and the current-density. The results are compared with that obtained from a B-TD-QFD-DFT approach (based on conventional TD-DFT) under similar numerical constraints but employing only scalar exchange-correlation potential dependent on electronic charge-density only. The B-TD-QFD-DFT approach, at a particular TD magnetic field-strength, yields electronic charge- and current-densities as well as exchange-correlation potential resembling with that obtained from the time-independent studies involving static (time-independent) magnetic fields. However, TD-QFD-CDFT electronic charge- and current-densities along with the exchange-correlation potential and energy differ significantly from that obtained using B-TD-QFD-DFT approach, particularly at field-strengths >109 G, representing dynamical effects of a TD field. The work concludes that when a helium atom is subjected to a strong TD magnetic field of order >109 G, the conventional TD-DFT based approach differs "dynamically" from the CDFT based approach under similar computational constraints.

  3. Strong dependence of spin dynamics on the orientation of an external magnetic field for InSb and InAs

    NASA Astrophysics Data System (ADS)

    Litvinenko, K. L.; Leontiadou, M. A.; Li, Juerong; Clowes, S. K.; Emeny, M. T.; Ashley, T.; Pidgeon, C. R.; Cohen, L. F.; Murdin, B. N.

    2010-03-01

    Electron spin relaxation times have been measured in InSb and InAs epilayers in a moderate (<4 T) external magnetic field. A strong and opposite field dependence of the spin lifetime was observed for longitudinal (Faraday) and transverse (Voigt) configuration. In the Faraday configuration the spin lifetime increases because the D'yakonov-Perel' dephasing process is suppressed. At the high field limit the Elliot-Yafet spin flip relaxation process dominates, enabling its direct determination. Conversely, as predicted theoretically for narrow band gap semiconductors, an additional efficient spin dephasing mechanism dominates in the Voigt configuration significantly decreasing the electron spin lifetime with increasing field.

  4. Progress in the measurement of temperature-dependent N2–N2 collision-induced absorption and H2-broadening of cold and hot CH4

    NASA Astrophysics Data System (ADS)

    Sung, Keeyoon; Wishnow, Ed; Venkataraman, Malathy; Brown, Linda R.; Ozier, Irving; Benner, D. Chris; Crawford, Tomithy J.; Mantz, Arlan; Smith, Mary-Ann H.

    2016-10-01

    We report preliminary measurements from two separate laboratory studies: (A) collision-induced absorption (CIA) of nitrogen in the far-infrared at temperatures between 78 and 130 K; and (B) temperature dependence of H2-broadening of CH4 in the near infrared at temperatures between 100 and 370 K.(A) Nitrogen collision-induced absorption provides the primary opacity of Titan at long wavelengths, thereby playing a critical role in determining the heat balance as well as the atmospheric composition and dynamics. Our new measurements of the nitrogen absorption spectrum at temperatures from 78 to 130 K are consistently ~20% higher than predictions made using theoretical models of Borysow and Frommhold (1986) [ApJ, 311, 1043] and of Karman et al. (2015)[J Chem Phys, 142, 084306]. However, the new data are consistent with the previous measurements at 78 K by the UBC group (Wishnow et al. 1996)[J Chem Phys, 104, 3511]. We present preliminary results for the N2-N2 CIA coefficients and their temperature dependence between 78 and 130 K, and comparisons with the above theoretical calculations.(B) In support of the Jovian and exoplanet atmospheric remote sensing in the near infrared, we have measured the temperature dependence of H2-broadened half width and pressure shift coefficients of CH4, both of which are known to be rotational quantum number dependent. We studied both cold and hot CH4 in the K band (~2.2 μm) with the focus on a) weaker lines in the v2+v3 band at low temperatures for cold giant planets and b) stronger lines in the v3+v4 band at elevated temperatures for extra-solar planets (e.g., hot-Jupiters). Three custom-built gas absorption cells (two cold and one hot) were used to obtain the spectra of CH4 and H2 mixtures at temperatures between 100 and 370 K. We will discuss our on-going spectrum analysis for a few select J manifolds and provide comparisons with published values, which are available only at room temperature.

  5. Temperature dependent emission and absorption cross section of Yb3+ doped yttrium lanthanum oxide (YLO) ceramic and its application in diode pumped amplifier.

    PubMed

    Banerjee, Saumyabrata; Koerner, Joerg; Siebold, Mathias; Yang, Qiuhong; Ertel, Klaus; Mason, Paul D; Phillips, P Jonathan; Loeser, Markus; Zhang, Haojia; Lu, Shenzhou; Hein, Joachim; Schramm, Ulrich; Kaluza, Malte C; Collier, John L

    2013-07-01

    Temperature dependent absorption and emission cross-sections of 5 at% Yb(3+) doped yttrium lanthanum oxide (Yb:YLO) ceramic between 80K and 300 K are presented. In addition, we report on the first demonstration of ns pulse amplification in Yb:YLO ceramic. A pulse energy of 102 mJ was extracted from a multi-pass amplifier setup. The amplification bandwidth at room temperature confirms the potential of Yb:YLO ceramic for broad bandwidth amplification at cryogenic temperatures.

  6. Strong localization induced anomalous temperature dependence exciton emission above 300 K from SnO{sub 2} quantum dots

    SciTech Connect

    Pan, S. S. E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.; Xu, S. C.; Luo, Y. Y.; Li, G. H. E-mail: ghli@issp.ac.cn

    2015-05-07

    SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300 K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defects and local potential fluctuation in SnO{sub 2} QDs.

  7. Polarization dependent two-photon absorption spectroscopy on a naturally occurring biomarker (curcumin) in solution: A theoretical-experimental study

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-09-01

    We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.

  8. Glass Composition-Dependent Silicate Absorption Peaks in FTIR Spectroscopy: Implications for Measuring Sample Thickness and Molecular H2O

    NASA Astrophysics Data System (ADS)

    McIntosh, I. M.; Nichols, A. R.; Schipper, C. I.; Stewart, R. B.

    2015-12-01

    Fourier-transform infrared spectroscopy (FTIR) is often used to measure the H2O and CO2 contents of volcanic glasses. A key advantage of FTIR over other analytical techniques is that it can reveal not only total H2O concentration but also H2O speciation, i.e. how much H2O is present as molecular H2O (H2Om) and how much as hydroxyl groups (OH) bound to the silicate network. This H2O speciation data can be used to investigate cooling rate and glass transition temperature of volcanic glasses, and to interpret H2O contents of pyroclasts affected by partial bubble resorption during cooling or secondary hydration after deposition. FTIR in transmitted light requires sample wafers polished on both sides of known thickness. Thickness is commonly measured using a micrometer but this may damage fragile samples and in samples with non-uniform thickness, e.g. vesicular samples, it is difficult to position at the exact location of FTIR analysis. Furthermore, in FTIR images or maps of such samples it is impractical to determine the thickness across the whole of the analysed area, resulting either in only a selection of the collected data being processed quantitatively and the rest being unused, or results being presented in terms of absorbance, which does not account for variations in thickness.It is known that FTIR spectra contain absorption peaks related to the glass aluminosilicate network at wavenumbers of ~2000, ~1830 and ~1600 cm-1 [1]. These have been shown to be proportional to sample thickness at the analysis location for one obsidian composition with up to 0.66 wt% H2O [2]. We test whether this calibration can be applied more widely by analysing a range of synthetic and natural glasses (andesitic to rhyolitic) to examine how the position and relative intensities of the different silicate absorption peaks vary with composition and H2O content. Our data show that even minor differences in composition necessitate a unique calibration. Furthermore, importantly we show how

  9. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window.

    PubMed

    Ventrillard, I; Romanini, D; Mondelain, D; Campargue, A

    2015-10-01

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm(-1), respectively. Self-continuum cross sections, CS, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the CS value at 4302 cm(-1) is found 40% higher than predicted by the MT_CKD V2.5 model, while at 4723 cm(-1), our value is 5 times larger than the MT_CKD value. On the other hand, these OF-CEAS CS values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D0 ≈ 1100 cm(-1). PMID:26450311

  10. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Agarwal, A.

    2015-04-01

    Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).

  11. CO2 laser light absorption characteristics of metal powders

    NASA Astrophysics Data System (ADS)

    Haag, M.; Hügel, H.; Albright, C. E.; Ramasamy, S.

    1996-04-01

    Absorption characteristics of metal powders for 10.6 μm CO2 laser radiation were examined. Using a calorimetric method, absorptance measurements were performed on four different powder materials, including aluminum, copper, iron, and titanium aluminide. The experimental results showed that laser absorptance depends on powder porosity and material. The measured absorptance values at low laser intensities ranged between 28% and 43%. The titanium aluminide powders showed the highest absorptance values, and aluminum powders the lowest. As laser intensity was increased, the copper and iron powders showed strong signs of oxidation when irradiated in air, resulting in an increase in absorptance. Neither oxidation nor increased absorptance were observed when helium or argon were used as shielding gas.

  12. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs.

  13. Nanocrystal Size-Dependent Efficiency of Quantum Dot Sensitized Solar Cells in the Strongly Coupled CdSe Nanocrystals/TiO2 System.

    PubMed

    Yun, Hyeong Jin; Paik, Taejong; Diroll, Benjamin; Edley, Michael E; Baxter, Jason B; Murray, Christopher B

    2016-06-15

    Light absorption and electron injection are important criteria determining solar energy conversion efficiency. In this research, monodisperse CdSe quantum dots (QDs) are synthesized with five different diameters, and the size-dependent solar energy conversion efficiency of CdSe quantum dot sensitized solar cell (QDSSCs) is investigated by employing the atomic inorganic ligand, S(2-). Absorbance measurements and transmission electron microscopy show that the diameters of the uniform CdSe QDs are 2.5, 3.2, 4.2, 6.4, and 7.8 nm. Larger CdSe QDs generate a larger amount of charge under the irradiation of long wavelength photons, as verified by the absorbance results and the measurements of the external quantum efficiencies. However, the smaller QDs exhibit faster electron injection kinetics from CdSe QDs to TiO2 because of the high energy level of CBCdSe, as verified by time-resolved photoluminescence and internal quantum efficiency results. Importantly, the S(2-) ligand significantly enhances the electronic coupling between the CdSe QDs and TiO2, yielding an enhancement of the charge transfer rate at the interfacial region. As a result, the S(2-) ligand helps improve the new size-dependent solar energy conversion efficiency, showing best performance with 4.2-nm CdSe QDs, whereas conventional ligand, mercaptopropionic acid, does not show any differences in efficiency according to the size of the CdSe QDs. The findings reported herein suggest that the atomic inorganic ligand reinforces the influence of quantum confinement on the solar energy conversion efficiency of QDSSCs. PMID:27224958

  14. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    SciTech Connect

    Polat, Ozgur; Sinclair IV, John W; Zuev, Yuri L; Thompson, James R; Christen, David K; Cook, Sylvester W; Kumar, Dhananjay; Chen, Y; Selvamanickam, V.

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  15. An RNA polymerase II transcription factor has an associated DNA-dependent ATPase (dATPase) activity strongly stimulated by the TATA region of promoters.

    PubMed Central

    Conaway, R C; Conaway, J W

    1989-01-01

    A transcription factor required for synthesis of accurately initiated run-off transcripts by RNA polymerase II has been purified and shown to have an associated DNA-dependent ATPase (dATPase) activity that is strongly stimulated by the TATA region of promoters. This transcription factor, designated delta, was purified more than 3000-fold from extracts of crude rat liver nuclei and has a native molecular mass of approximately 230 kDa. DNA-dependent ATPase (dATPase) and transcription activities copurify when delta is analyzed by hydrophobic interaction and ion-exchange HPLC, arguing that transcription factor delta possesses an ATPase (dATPase) activity. ATPase (dATPase) is specific for adenine nucleotides; ATP and dATP, but not CTP, UTP, or GTP, are hydrolyzed. ATPase (dATPase) is stimulated by both double-stranded and single-stranded DNAs, including pUC18, ssM13, and poly(dT); however, DNA fragments containing the TATA region of either the adenovirus 2 major late or mouse interleukin 3 promoters stimulate ATPase as much as 10-fold more effectively than DNA fragments containing nonpromoter sequences. These data suggest the intriguing possibility that delta plays a critical role in the ATP (dATP)-dependent activation of run-off transcription through a direct interaction with the TATA region of promoters. Images PMID:2552440

  16. Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links.

    SciTech Connect

    Johnson, Jay Dean; Oberkampf, William Louis; Helton, Jon Craig (Arizona State University, Tempe, AZ)

    2006-06-01

    Four verification test problems are presented for checking the conceptual development and computational implementation of calculations to determine the probability of loss of assured safety (PLOAS) in temperature-dependent systems with multiple weak links (WLs) and strong links (SLs). The problems are designed to test results obtained with the following definitions of loss of assured safety: (1) Failure of all SLs before failure of any WL, (2) Failure of any SL before failure of any WL, (3) Failure of all SLs before failure of all WLs, and (4) Failure of any SL before failure of all WLs. The test problems are based on assuming the same failure properties for all links, which results in problems that have the desirable properties of fully exercising the numerical integration procedures required in the evaluation of PLOAS and also possessing simple algebraic representations for PLOAS that can be used for verification of the analysis.

  17. Strong excitation intensity dependence of the photoluminescence line shape in GaAs{sub 1-x}Bi{sub x} single quantum well samples

    SciTech Connect

    Mazur, Yu. I.; Dorogan, V. G.; Ware, M. E.; Salamo, G. J.; Schmidbauer, M.; Tarasov, G. G.; Johnson, S. R.; Lu, X.; Yu, S.-Q.; Tiedje, T.

    2013-04-14

    A set of high quality single quantum well samples of GaAs{sub 1-x}Bi{sub x} with bismuth concentrations not exceeding 6% and well widths ranging from 7.5 to 13 nm grown by molecular beam epitaxy on a GaAs substrate at low temperature is studied by means of photoluminescence (PL). It is shown that the PL line shape changes when the exciton reduced mass behavior changes from an anomalous increase (x < 5%) to a conventional decrease (x > 5%). Strongly non-monotonous PL bandwidth dependence on the excitation intensity is revealed and interpreted in terms of optically unresolved contributions from the saturable emission of bound free excitons.

  18. Visible spectral dependence of the scattering and absorption coefficients of pigmented coatings from inversion of diffuse reflectance spectra.

    PubMed

    Curiel, Fernando; Vargas, William E; Barrera, Rubén G

    2002-10-01

    A spectral-projected gradient method and an extension of the Kubelka-Munk theory are applied to obtain the relevant parameters of the theory from measured diffuse reflectance spectra of pigmented samples illuminated with visible diffuse radiation. The initial estimate of the spectral dependence of the parameters, required by a recursive spectral-projected gradient method, was obtained by use of direct measurements and up-to-date theoretical estimates. We then tested the consistency of the Kubelka-Munk theory by repeating the procedure with samples of different thicknesses.

  19. Stable and efficient momentum-space solutions of the time-dependent Schrödinger equation for one-dimensional atoms in strong laser fields

    SciTech Connect

    Shvetsov-Shilovski, N.I. Räsänen, E.

    2014-12-15

    One-dimensional model systems have a particular role in strong-field physics when gaining physical insight by computing data over a large range of parameters, or when performing numerous time propagations within, e.g., optimal control theory. Here we derive a scheme that removes a singularity in the one-dimensional Schrödinger equation in momentum space for a particle in the commonly used soft-core Coulomb potential. By using this scheme we develop two numerical approaches to the time-dependent Schrödinger equation in momentum space. The first approach employs the expansion of the momentum-space wave function over the eigenstates of the field-free Hamiltonian, and it is shown to be more efficient for laser parameters usual in strong field physics. The second approach employs the Crank–Nicolson scheme or the method of lines for time-propagation. The both methods are readily applicable for large-scale numerical simulations in one-dimensional model systems.

  20. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    SciTech Connect

    Dey, Rik Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K.; Colombo, Luigi

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  1. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    NASA Astrophysics Data System (ADS)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  2. Application of Time-Dependent Density Functional and Natural Bond Orbital Theories to the UV-vis Absorption Spectra of Some Phenolic Compounds.

    PubMed

    Marković, Svetlana; Tošović, Jelena

    2015-09-01

    The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.

  3. Phase-Dependent Observations of Intermediate Polars and The Broad Emission and Absorption Line Region in NGC 3516

    NASA Technical Reports Server (NTRS)

    Koratkar, Anuradha; Bond, Howard E.

    1995-01-01

    The Intermediate Polars (IP's) constitute a class of Cataclysmic Variables (CV's), which are binary star systems in which mass is transferred from a late-type main-sequence star to a white dwarf via Roche lobe overflow. In the IP's, the inner accretion disk is evidently disrupted by the magnetic field of the white dwarf. High-temperature shocks at the white dwarf's magnetic poles (where accretion occurs) produce X-rays, which are reprocessed into photons over a broad energy band across the electromagnetic spectrum. Because the white dwarf typically spins rapidly (rotation periods a few 10s to a few 100s of seconds), the signals due to both the X-rays and reprocessed photons are pulsed. The shape of the spectrum of pulse amplitude as a function of wavelength yields information about both the temperature and size of the pulse-emitting region. It has been noted by several investigators that the optical pulsation amplitudes rise steeply toward short wavelengths. It is therefore a fair surmise that pulsation amplitudes peak in the ultraviolet. The scientific goal of this project was to observe a representative sample of IP's, using IUE, in search of the expected strong UV pulsations, and hence to further our understanding of pulse-producing mechanisms.

  4. Physiologically Based Pharmacokinetic modeling of the temperature-dependent dermal absorption of chloroform by humans following bath water exposures

    SciTech Connect

    Corley, Rick A. ); Gordon, Syd M.; Wallace, Lance A.

    2000-01-14

    The kinetics of chloroform in the exhaled breath of human volunteers exposed skin-only via bath water (concentrations < 100 ppb) were analyzed using a physiologically based pharmacokinetic (PBPK) model. Significant increases in exhaled chloroform (and thus bioavailability) were observed as exposure temperatures were increased from 30 to 40?C. The blood flows to the skin and effective skin permeability coefficients (Kp) were both varied to reflect the temperature-dependent changes in physiology and exhalation kinetics. At 40?C, no differences were observed between males and females. Therefore, Kp?s were determined ({approx}0.06 cm/hr) at a skin blood flow rate of 18% of the cardiac output. At 30 and 35?C, males exhaled more chloroform than females resulting in lower effective Kp?s calculated for females. At these lower temperatures, the blood flow to the skin was also reduced. Total amounts of chloroform absorbed averaged 41.9 and 43.6 mg for males and 11.5 and 39.9 mg for females exposed at 35 and 40?C, respectively. At 30?C, only 2/5 males and 1/5 females had detectable concentrations of chloroform in their exhaled breath. For perspective, the total intake of chloroform would have ranged from 79 - 194 mg if the volunteers had consumed 2 L of water orally at the concentrations used in this study. Thus, the relative contribution of dermal uptake of chloroform to the total body burdens associated with bathing for 30 min and drinking 2 L of water (ignoring contributions from inhalation exposures) was predicted to range from 1-28% depending on the temperature of the bath.

  5. A 2A2<--X 2B1 absorption and Raman spectra of the OClO molecule: A three-dimensional time-dependent wave packet study

    NASA Astrophysics Data System (ADS)

    Sun, Zhigang; Lou, Nanquan; Nyman, Gunnar

    2005-02-01

    Time-dependent wave packet calculations of the (A 2A2←X 2B1) absorption and Raman spectra of the OClO molecule are reported. The Fourier grid Hamiltonian method in three dimensions is employed. The X 2B1 ground state ab initio potential energy surface reported by Peterson [J. Chem. Phys. 109, 8864 (1998)] is used together with his corresponding A 2A2 state surface or the revised surface of the A 2A2 state by Xie and Guo [Chem. Phys. Lett. 307, 109 (1999)]. Radau coordinates are used to describe the vibrations of a nonrotating OClO molecule. The split-operator method combined with fast Fourier transform is applied to propagate the wave function. We find that the ab initio A 2A2 potential energy surface better reproduces the detailed structures of the absorption spectrum at long wavelength, while the revised surface of the A 2A2 state, consistent with the work of Xie and Guo, better reproduces the overall shape and the energies of the vibrational levels. Both surfaces of the A 2A2 state can reasonably reproduce the experimental Raman spectra but neither does so in detail for the numerical model employed in the present work.

  6. Tuning magnetoresistance and magnetic-field-dependent electroluminescence through mixing a strong-spin-orbital-coupling molecule and a weak-spin-orbital-coupling polymer

    SciTech Connect

    Wu, Yue; Xu, Zhihua; Hu, Bin; Howe, Jane Y

    2007-01-01

    We report a tunable magnetoresistance by uniformly mixing strong-spin-orbital-coupling molecule fac-tris (2-phenylpyridinato) iridium [Ir(ppy)3] and weak-spin-orbital-coupling polymer poly(N-vinyl carbazole) (PVK). Three possible mechanisms, namely charge transport distribution, energy transfer, and intermolecular spin-orbital interaction, are discussed to interpret the Ir(ppy)3 concentration-dependent magnetoresistance in the PVK+Ir(ppy)3 composite. The comparison between the magnetic field effects measured from energy-transfer and non-energy-transfer Ir(ppy)3 doped polymer composites indicates that energy transfer and intermolecular spin-orbital interaction lead to rough and fine tuning for the magnetoresistance, respectively. Furthermore, the photocurrent dependence of magnetic field implies that the excited states contribute to the magnetoresistance through dissociation. As a result, the modification of singlet or triplet ratio of excited states through energy transfer and intermolecular spin-orbital interaction form a mechanism to tune the magnetoresistance in organic semiconducting materials.

  7. Pressure-broadening and narrowing coefficients and temperature dependence measurements of CO2 at 2.68 μm by laser diode absorption spectroscopy for atmospheric applications.

    PubMed

    Ghysels, M; Durry, G; Amarouche, N

    2013-04-15

    By using a tunable diode laser absorption spectrometer in conjunction with a cryogenically cooled multipath cell, we have revisited the air-induced pressure-broadening coefficients and the narrowing coefficients related to the Dicke effect, as well as the temperature dependences, for the R(18) and R(20) lines of the (10°1)I←(00°0) vibrational band at 2.68 μm of carbon dioxide. The selected transitions are used to probe in situ CO2 in the troposphere and the lower stratosphere by using balloon-borne laser sensors. The achieved measurements are thoroughly compared to existing former determinations. The impact of processing the in situ atmospheric CO2 spectra with this new set of molecular data is reported.

  8. Simulating Cl K-edge X-ray absorption spectroscopy in MCl62- (M= U, Np, Pu) complexes and UOCl5- using time-dependent density functional theory

    SciTech Connect

    Govind, Niranjan; De Jong, Wibe A.

    2014-02-21

    We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

  9. Thickness dependent absorption and polaron photogeneration in poly-(2-metoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene)

    NASA Astrophysics Data System (ADS)

    Petrović, J. P.; Matavulj, P. S.; Pinto, L. R.; Thapa, A.; Živanović, S. R.

    2012-06-01

    A comprehensive photocurrent spectra analysis of the ITO/PEDOT:PSS/MEH-PPV/Al devices with three different poly-(2-metoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene) or MEH-PPV thin-film thicknesses is used to investigate charge carrier photogeneration in this polymer. The photocurrent is calculated based on the hole polaron drift-diffusion model including Poole-Frenkel (P-F) transport. Two mechanisms (monomolecular and Langevin-type bimolecular) for hole polaron recombination are considered separately. The MEH-PPV absorption coefficient spectra dependence on the thin film thickness is experimentally determined and included in our model. By comparing the simulated photocurrent spectra to measured data in the wide range of bias voltages and for devices with different MEH-PPV film thicknesses the polaron photogeneration quantum efficiency (θp) as a function of the electric field is extracted. The θp curves obtained for different devices are perfectly fitted by the P-F expression. It is shown that polaron photogeneration process in the thin MEH-PPV films is affected by the film thickness. A unique polaron photogeneration model which accounts for the field and thickness dependences is achieved when one of the P-F parameters is left to be thickness dependent.

  10. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window

    SciTech Connect

    Ventrillard, I.; Romanini, D.; Mondelain, D.; Campargue, A.

    2015-10-07

    In spite of its importance for the evaluation of the Earth radiative budget, thus for climate change, very few measurements of the water vapor continuum are available in the near infrared atmospheric windows especially at temperature conditions relevant for our atmosphere. In addition, as a result of the difficulty to measure weak broadband absorption signals, the few available measurements show large disagreements. We report here accurate measurements of the water vapor self-continuum absorption in the 2.1 μm window by Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) for two spectral points located at the low energy edge and at the center of the 2.1 μm transparency window, at 4302 and 4723 cm{sup −1}, respectively. Self-continuum cross sections, C{sub S}, were retrieved with a few % relative uncertainty, from the quadratic dependence of the spectrum base line level measured as a function of water vapor pressure, between 0 and 16 Torr. At 296 K, the C{sub S} value at 4302 cm{sup −1} is found 40% higher than predicted by the MT-CKD V2.5 model, while at 4723 cm{sup −1}, our value is 5 times larger than the MT-CKD value. On the other hand, these OF-CEAS C{sub S} values are significantly smaller than recent measurements by Fourier transform spectroscopy at room temperature. The temperature dependence of the self-continuum cross sections was also investigated for temperatures between 296 K and 323 K (23-50 °C). The derived temperature variation is found to be similar to that derived from previous Fourier transform spectrometer (FTS) measurements performed at higher temperatures, between 350 K and 472 K. The whole set of measurements spanning the 296-472 K temperature range follows a simple exponential law in 1/T with a slope close to the dissociation energy of the water dimer, D{sub 0} ≈ 1100 cm{sup −1}.

  11. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    SciTech Connect

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B{sup ~} {sup 1}A{sup ′}←X{sup ~} {sup 1}A{sup ′} UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045–20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201–4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438–10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  12. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide.

    PubMed

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-28

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical B̃(1)A'←X̃(1)A' UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation. PMID:25273439

  13. A full-dimensional multilayer multiconfiguration time-dependent Hartree study on the ultraviolet absorption spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2014-09-01

    Employing the multilayer multiconfiguration time-dependent Hartree (ML-MCTDH) method in conjunction with the multistate multimode vibronic coupling Hamiltonian (MMVCH) model, we perform a full dimensional (9D) quantum dynamical study on the simplest Criegee intermediate, formaldehyde oxide, in five lower-lying singlet electronic states. The ultraviolet (UV) spectrum is then simulated by a Fourier transform of the auto-correlation function. The MMVCH model is built based on extensive MRCI(8e,8o)/aug-cc-pVTZ calculations. To ensure a fast convergence of the final calculations, a large number of ML-MCTDH test calculations is performed to find an appropriate multilayer separations (ML-trees) of the ML-MCTDH nuclear wave functions, and the dynamical calculations are carefully checked to ensure that the calculations are well converged. To compare the computational efficiency, standard MCTDH simulations using the same Hamiltonian are also performed. A comparison of the MCTDH and ML-MCTDH calculations shows that even for the present not-too-large system (9D here) the ML-MCTDH calculations can save a considerable amount of computational resources while producing identical spectra as the MCTDH calculations. Furthermore, the present theoretical tilde{B}{}^1A^' }leftarrow tilde{X}{}^1A^' } UV spectral band and the corresponding experimental measurements [J. M. Beames, F. Liu, L. Lu, and M. I. Lester, J. Am. Chem. Soc. 134, 20045-20048 (2012); L. Sheps, J. Phys. Chem. Lett. 4, 4201-4205 (2013); W.-L. Ting, Y.-H. Chen, W. Chao, M. C. Smith, and J. J.-M. Lin, Phys. Chem. Chem. Phys. 16, 10438-10443 (2014)] are discussed. To the best of our knowledge, this is the first theoretical UV spectrum simulated for this molecule including nuclear motion beyond an adiabatic harmonic approximation.

  14. Effect of strong phonon-phonon coupling on the temperature dependent structural stability and frequency shift of 2D hexagonal boron nitride.

    PubMed

    Anees, P; Valsakumar, M C; Panigrahi, B K

    2016-01-28

    The temperature dependent structural stability, frequency shift and linewidth of 2D hexagonal boron nitride (h-BN) are studied using a combination of lattice dynamics (LD) and molecular dynamics (MD) simulations. The in-plane lattice parameter shows a negative thermal expansion in the whole computed temperature range (0-2000 K). When the in-plane lattice parameter falls below the equilibrium value, the quasi-harmonic bending (ZA) mode frequency becomes imaginary along the Γ-M direction in the Brillouin zone, leading to a structural instability of the 2D sheet. The ZA mode is seen to be stabilized in the dispersion obtained from MD simulations, due to the automatic incorporation of higher order phonon scattering processes in MD, which are absent in a quasi-harmonic dispersion. The mode resolved phonon spectra computed with a quasi-harmonic method predict a blueshift of the longitudinal and transverse (LO/TO) optic mode frequencies with an increase in temperature. On the other hand, both canonical (NVT) and isobaric-isothermal (NPT) ensembles predict a redshift with an increase in temperature, which is more prominent in the NVT ensemble. The strong phonon-phonon coupling dominates over the thermal contraction effect and leads to a redshift in LO/TO mode frequency in the NPT ensemble simulations. The out-of-plane (ZO) optic mode quasi-harmonic frequencies are redshifted due to a membrane effect. The phonon-phonon coupling effects in the NVT and NPT ensemble simulations lead to a further reduction in the ZO mode frequencies. The linewidth of the LO/TO and ZO mode frequencies increases in a monotonic fashion. The temperature dependence of acoustic modes is also analyzed. The quasi-harmonic calculations predict a redshift of ZA mode, and at the same time the TA (transverse acoustic) and LA (longitudinal acoustic) mode frequencies are blueshifted. The strong phonon-phonon coupling in MD simulations causes a redshift of the LA and TA mode frequencies, while the ZA mode

  15. Efficient single-photon absorption by a trapped moving atom

    NASA Astrophysics Data System (ADS)

    Trautmann, N.; Alber, G.; Leuchs, G.

    2016-09-01

    The influence of the center-of-mass motion of a trapped two-level system on efficient resonant single-photon absorption is investigated. It is shown that this absorption process depends strongly on the ratio between the characteristic time scales of spontaneous photon emission and of the two-level system's center-of-mass motion. In particular, if the spontaneous photon emission process occurs almost instantaneously on the time scale of the center-of-mass motion, coherent control of the center-of-mass motion offers interesting perspectives for optimizing single-photon absorption. It is demonstrated that time-dependent modulation of a harmonic trapping frequency allows to squeeze the two-level system's center-of-mass motion so strongly that high efficient single-photon absorption is possible even in cases of weak confinement by a trapping potential.

  16. Excision Efficiency Is Not Strongly Coupled to Transgenic Rate: Cell Type-Dependent Transposition Efficiency of Sleeping Beauty and piggyBac DNA Transposons

    PubMed Central

    Kolacsek, Orsolya; Erdei, Zsuzsa; Apáti, Ágota; Sándor, Sára; Izsvák, Zsuzsanna; Ivics, Zoltán; Sarkadi, Balázs

    2014-01-01

    Abstract The Sleeping Beauty (SB) and piggyBac (PB) DNA transposons represent an emerging new gene delivery technology, potentially suitable for human gene therapy applications. Previous studies pointed to important differences between these transposon systems, depending on the cell types examined and the methodologies applied. However, efficiencies cannot always be compared because of differences in applications. In addition, “overproduction inhibition,” a phenomenon believed to be a characteristic of DNA transposons, can remarkably reduce the overall transgenic rate, emphasizing the importance of transposase dose applied. Therefore, because of lack of comprehensive analysis, researchers are forced to optimize the technology for their own “in-house” platforms. In this study, we investigated the transposition of several SB (SB11, SB32, SB100X) and PB (mPB and hyPB) variants in various cell types at three levels: comparing the excision efficiency of the reaction by real-time PCR, testing the overall transgenic rate by detecting cells with stable integrations, and determining the average copy number when using different transposon systems and conditions. We concluded that high excision activity is not always followed by a higher transgenic rate, as exemplified by the hyperactive transposases, indicating that the excision and the integration steps of transposition are not strongly coupled as previously thought. In general, all levels of transposition show remarkable differences depending on the transposase used and cell lines examined, being the least efficient in human embryonic stem cells (hESCs). In spite of the comparably low activity in those special cell types, the hyperactive SB100X and hyPB systems could be used in hESCs with similar transgenic efficiency and with reasonably low (2–3) transgene copy numbers, indicating their potential applicability for gene therapy purposes in the future. PMID:25045962

  17. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer

    PubMed Central

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G.; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  18. The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site.

    PubMed

    Jürgen, B; Schweder, T; Hecker, M

    1998-06-01

    In Bacillus subtilis IS58 starved of glucose or exposed to heat shock, ethanol or salt stress, the sigmaB-dependent general stress protein GsiB is accumulated to a higher level than other general stress proteins. This high-level accumulation of GsiB can at least partially be attributed to the remarkably long half-life (approximately 20 min) of the gsiB mRNA. Analysis of different gsiB-lacZ fusions revealed that this stability is not determined by sequences at the 3' end of the transcript but rather by sequences upstream of the translational start codon. Site-directed mutagenesis established that a strong ribosome binding site was crucial for the increased stability of the gsiB mRNA. A comparison of the sequences upstream of the translational start codons of three general stress genes, gsiB, gspA and ctc, revealed a direct correlation between mRNA stability and the strength of their translational signals.

  19. Low-frequency oscillations measured in the periphery with near-infrared spectroscopy are strongly correlated with blood oxygen level-dependent functional magnetic resonance imaging signals

    NASA Astrophysics Data System (ADS)

    Tong, Yunjie; Hocke, Lia Maria; Licata, Stephanie C.; deB. Frederick, Blaise

    2012-10-01

    Low-frequency oscillations (LFOs) in the range of 0.01-0.15 Hz are commonly observed in functional imaging studies, such as blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) and functional near-infrared spectroscopy (fNIRS). Some of these LFOs are nonneuronal and are closely related to autonomic physiological processes. In the current study, we conducted a concurrent resting-state fMRI and NIRS experiment with healthy volunteers. LFO data was collected simultaneously at peripheral sites (middle fingertip and big toes) by NIRS, and centrally in the brain by BOLD fMRI. The cross-correlations of the LFOs collected from the finger, toes, and brain were calculated. Our data show that the LFOs measured in the periphery (NIRS signals) and in the brain (BOLD fMRI) were strongly correlated with varying time delays. This demonstrates that some portion of the LFOs actually reflect systemic physiological circulatory effects. Furthermore, we demonstrated that NIRS is effective for measuring the peripheral LFOs, and that these LFOs and the temporal shifts between them are consistent in healthy participants and may serve as useful biomarkers for detecting and monitoring circulatory dysfunction.

  20. Carbon dots with strong excitation-dependent fluorescence changes towards pH. Application as nanosensors for a broad range of pH.

    PubMed

    Barati, Ali; Shamsipur, Mojtaba; Abdollahi, Hamid

    2016-08-10

    In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation-Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability.

  1. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  2. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-01-01

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field. PMID:27629702

  3. Chemically Designed Molecular Interfaces in Cross-Linked Poly(ethylene glycol)/Silica Nanocomposites Reveal Strong Size-Dependent Trends in Gas Permeability

    NASA Astrophysics Data System (ADS)

    Su, Norman; Urban, Jeffrey

    2015-03-01

    Polymer nanocomposite membranes can exhibit gas separation performance that surpasses conventional polymeric membranes. While promising, the optimization of nanocomposite membranes requires a fundamental understanding of the transport mechanism and interfacial effects between the inorganic and polymer phase that is currently limited to empirical relationships. Synthesized nanocomposites often consist of poorly distributed and polydisperse inorganic nanomaterials. It is known that polymer dynamics can change drastically upon introduction of an inorganic phase, which can dramatically alter molecular transport behavior. Here, we systematically explore the role of nanoparticle sizes from 12 to 130 nm on polymer dynamics and permeability in a series of cross-linked poly(ethylene glycol)/silica nanocomposite membranes. The nanocomposites are well-dispersed and display excellent homogeneity throughout. Size-dependent broadening of the Tg indicates strong attractive interactions especially at high surface area loadings, which lead to deviations in permeability not captured by Maxwell's model. Chemical modifications of silica at this interface can yield significantly different polymer dynamics than previously observed with enhanced transport and mechanical properties.

  4. Optical absorption spectra of boron clusters Bn (n = 2-5) for application in nano scintillator - a time dependent density functional theory study

    NASA Astrophysics Data System (ADS)

    Shivade, Rajendra K.; Chakraborty, Brahmananda

    2016-09-01

    Boron nano-clusters of various shapes and sizes have potential applications as scintillating detector and hydrogen storage material. Using time dependent density functional theory (TDDFT) as implemented in CASIDA we have studied the linear optical absorption spectra for boron clusters B n ( n = 2-5) and compared with previously reported results using Hatree-Fock (H-F) based method where the spectrum is limited to 8 eV due to exclusion of excitation into very high energy unoccupied orbital. The optical spectra fall in the visible and near UV region and are very much dependent on the shape of the isomer. We have obtained additional peaks for B2 linear, B3 triangular, B4 rhombus and square shaped isomers beyond 8 eV which were missing in the previous H-F based study and has significance as they fall below the ionization potential. We correlate the optical spectrum with the shape of the Kohn-Sham orbitals and HUMO-LUMO gap and assess comparative stability of various B n ( n = 2-5) clusters in terms of HUMO-LUMO gap, bond-length and relative energy. TDDFT computed optical spectroscopy correlated with Kohn-Sham orbitals and HUMO-LUMO gap and its comparison with H-F based method may give significant knowledge regarding geometry and optical properties of B n ( n = 2-5) clusters enabling to distingush between various isomers of B n clusters.

  5. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    SciTech Connect

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-09-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of {pi}* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), {pi}*(CO), and ether C-O-C, {sigma}*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the {pi}*(CO) resonances disappeared while the {sigma}*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the {pi}* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface.

  6. EXTENSION OF THE INVERSE ADDING-DOUBLING METHOD TO THE MEASUREMENT OF WAVELENGTH-DEPENDENT ABSORPTION AND SCATTERING COEFFICIENTS OF BIOLOGICAL SAMPLES

    SciTech Connect

    Allegood, M.S.; Baba, J.S.

    2008-01-01

    Light interaction with biological tissue can be described using three parameters: the scattering and absorption coeffi cients (μs and μa), as well as the anisotropy (g) which describes the directional dependence of the scattered photons. Accurately determining these optical properties for different tissue types at specifi c wavelengths simultaneously would be benefi cial for a variety of different biomedical applications. The goal of this project was to take a user defi ned g-value and determine the remaining two parameters for a specifi ed wavelength range. A fully automated computer program and process was developed to collect data for all wavelengths in a timely and accurate manner. LabVIEW® was used to write programs to automate raw intensity data collection from a spectrometer equipped integrating sphere, conversion of the data into a format for analysis via Scott Prahl’s Inverse Adding-Doubling (IAD) C code execution, and fi nally computation of the optical properties based on the output from the IAD code. To allow data to be passed effi ciently between LabVIEW® and C code program modules, the two were combined into a single program (OPT 3.1). OPT 3.1 was tested using tissue mimicking phantoms. Determination of the absorption and scattering coeffi cients showed excellent agreement with theory for wavelengths where the user inputted single g-value was suffi ciently precise. Future improvements entail providing for multi-wavelength g-value entry to extend the accuracy of results to encompass the complete multispectral range. Ultimately, the data collection process and algorithms developed through this effort will be used to examine actual biological tissues for the purpose of building and refi ning models for light-tissue interactions.

  7. Strong Interaction

    SciTech Connect

    Karsch, F.; Vogelsang, V.

    2009-09-29

    We will give here an overview of our theory of the strong interactions, Quantum Chromo Dynamics (QCD) and its properties. We will also briefly review the history of the study of the strong interactions, and the discoveries that ultimately led to the formulation of QCD. The strong force is one of the four known fundamental forces in nature, the others being the electromagnetic, the weak and the gravitational force. The strong force, usually referred to by scientists as the 'strong interaction', is relevant at the subatomic level, where it is responsible for the binding of protons and neutrons to atomic nuclei. To do this, it must overcome the electric repulsion between the protons in an atomic nucleus and be the most powerful force over distances of a few fm (1fm=1 femtometer=1 fermi=10{sup -15}m), the typical size of a nucleus. This property gave the strong force its name.

  8. On the influence of wavelength-dependent light scattering on the UV-VIS absorption spectra of oxygen-based minerals: a study on silicate glass ceramics as model substances

    NASA Astrophysics Data System (ADS)

    Khomenko, V. M.; Langer, K.; Wirth, R.

    transmission spectrometry in the range 35 000-20 000 cm-1. Different inclusions, from five to several hundred nm in size, were observed in the glass matrices depending on their compositions and heating history. These inclusions represent two groups: early very small crystals of Ti, Zr oxides and relatively large crystals of stuffed high-quartz type or keatite. The absorption spectra of the glass ceramics show largely varying long-wavelength slopes of the UV absorption. UV-edge intensity correlates mostly with the size of the inclusions and changes drastically when larger keatite-type microcrystals are growing. Small variations in the UV edges also follow the early process of Ti-phase separation and nucleation. This may be explained by Ti depletion from the glass matrix and, thus, by reducing the measured intensity of LMCT in the first co-ordination sphere of Ti4+ ions. The different yellowish colourations of unheated glasses studied here are caused by this effect, whereas developing several hundred-nm-large keatite crystals leads to a strong scattering effect and a milky colour in glass ceramics.

  9. Simulated conduction rates of water through a (6,6) carbon nanotube strongly depend on bulk properties of the model employed

    NASA Astrophysics Data System (ADS)

    Liu, L.; Patey, G. N.

    2016-05-01

    We investigate pressure driven flow rates of water through a (6,6) carbon nanotube (CNT) for the TIP3P, SPC/E, and TIP4P/2005 water models. The flow rates are shown to be strongly model dependent, differing by factors that range from ˜6 to ˜2 as the temperature varies from 260 to 320 K, with TIP3P showing the fastest flow and TIP4P/2005 the slowest. For the (6,6) CNT, the size constraint allows only single-file conduction for all three water models. Hence, unlike the situation for the larger [(8,8) and (9,9)] CNTs considered in our earlier work [L. Liu and G. N. Patey, J. Chem. Phys. 141, 18C518 (2014)], the different flow rates cannot be attributed to different model-dependent water structures within the nanotubes. By carefully examining activation energies, we trace the origin of the model discrepancies for the (6,6) CNT to differing rates of entry into the nanotube, and these in turn are related to differing bulk mobilities of the water models. Over the temperature range considered, the self-diffusion coefficients of the TIP3P model are much larger than those of TIP4P/2005 and those of real water. Additionally, we show that the entry rates are approximately inversely proportional to the shear viscosity of the bulk liquid, in agreement with the prediction of continuum hydrodynamics. For purposes of comparison, we also consider the larger (9,9) CNT. In the (9,9) case, the flow rates for the TIP3P model still appear to be mainly controlled by the entry rates. However, for the SPC/E and TIP4P/2005 models, entry is no longer the rate determining step for flow. For these models, the activation energies controlling flow are considerably larger than the energetic barriers to entry, due in all likelihood to the ring-like water clusters that form within the larger nanotube.

  10. Cationic vacancies and anomalous spectral-weight transfer in Ti1-xTaxO2 thin films studied via polarization-dependent near-edge x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Chen; Barman, Arkajit Roy; Debbichi, Lamjed; Dhar, S.; Santoso, Iman; Asmara, Teguh Citra; Omer, Humair; Yang, Kesong; Krüger, Peter; Wee, Andrew T. S.; Venkatesan, T.; Rusydi, Andrivo

    2013-06-01

    We report the electronic structures of Ta-doped anatase TiO2 thin films grown by pulsed laser deposition (PLD) with varying magnetization using a combination of first-principles calculations and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The roles of Ta doping and Ti vacancies are clarified, and the observed room-temperature ferromagnetism is attributed to the localized magnetic moments at Ti vacancy sites ferromagnetically ordered by electron charge carriers. O K-edge spectra exhibit significant polarization dependence which is discussed and supported by first-principles calculations in relation to both the crystal symmetry and the formation of defects. In particular, anomalous spectral-weight transfer across the entire O K edge for the ferromagnetic thin film is associated exclusively with the occurrence of Ti vacancies and strong correlation effects, which result in the enhancement of the direct interaction between oxygen sites and of the anisotropy of the eg-pσ hybridizations in the out-of-plane component. Our results show that O K-edge NEXAFS spectra can provide reliable experimental probes capable of revealing cationic defects that are intimately related to the ferromagnetism in transition metal oxides.

  11. Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments is strongly cell- and tissue-dependent.

    PubMed

    Dron, Michel; Moudjou, Mohammed; Chapuis, Jérôme; Salamat, Muhammad Khalid Farooq; Bernard, Julie; Cronier, Sabrina; Langevin, Christelle; Laude, Hubert

    2010-04-01

    The abnormally folded form of the prion protein (PrP(Sc)) accumulating in nervous and lymphoid tissues of prion-infected individuals can be naturally cleaved to generate a N-terminal-truncated fragment called C2. Information about the identity of the cellular proteases involved in this process and its possible role in prion biology has remained limited and controversial. We investigated PrP(Sc) N-terminal trimming in different cell lines and primary cultured nerve cells, and in the brain and spleen tissue from transgenic mice infected by ovine and mouse prions. We found the following: (i) the full-length to C2 ratio varies considerably depending on the infected cell or tissue. Thus, in primary neurons and brain tissue, PrP(Sc) accumulated predominantly as untrimmed species, whereas efficient trimming occurred in Rov and MovS cells, and in spleen tissue. (ii) Although C2 is generally considered to be the counterpart of the PrP(Sc) proteinase K-resistant core, the N termini of the fragments cleaved in vivo and in vitro can actually differ, as evidenced by a different reactivity toward the Pc248 anti-octarepeat antibody. (iii) In lysosome-impaired cells, the ratio of full-length versus C2 species dramatically increased, yet efficient prion propagation could occur. Moreover, cathepsin but not calpain inhibitors markedly inhibited C2 formation, and in vitro cleavage by cathepsins B and L produced PrP(Sc) fragments lacking the Pc248 epitope, strongly arguing for the primary involvement of acidic hydrolases of the endolysosomal compartment. These findings have implications on the molecular analysis of PrP(Sc) and cell pathogenesis of prion infection. PMID:20154089

  12. Sodium iron EDTA and ascorbic acid, but not polyphenol oxidase treatment, counteract the strong inhibitory effect of polyphenols from brown sorghum on the absorption of fortification iron in young women.

    PubMed

    Cercamondi, Colin I; Egli, Ines M; Zeder, Christophe; Hurrell, Richard F

    2014-02-01

    In addition to phytate, polyphenols (PP) might contribute to low Fe bioavailability from sorghum-based foods. To investigate the inhibitory effects of sorghum PP on Fe absorption and the potential enhancing effects of ascorbic acid (AA), NaFeEDTA and the PP oxidase enzyme laccase, we carried out three Fe absorption studies in fifty young women consuming dephytinised Fe-fortified test meals based on white and brown sorghum varieties with different PP concentrations. Fe absorption was measured as the incorporation of stable Fe isotopes into erythrocytes. In study 1, Fe absorption from meals with 17 mg PP (8·5%) was higher than that from meals with 73 mg PP (3·2%) and 167 mg PP (2·7%; P< 0·001). Fe absorption from meals containing 73 and 167 mg PP did not differ (P= 0·9). In study 2, Fe absorption from NaFeEDTA-fortified meals (167 mg PP) was higher than that from the same meals fortified with FeSO₄ (4·6 v. 2·7%; P< 0·001), but still it was lower than that from FeSO₄-fortified meals with 17 mg PP (10·7%; P< 0·001). In study 3, laccase treatment decreased the levels of PP from 167 to 42 mg, but it did not improve absorption compared with that from meals with 167 mg PP (4·8 v. 4·6%; P= 0·4), whereas adding AA increased absorption to 13·6% (P< 0·001). These findings suggest that PP from brown sorghum contribute to low Fe bioavailability from sorghum foods and that AA and, to a lesser extent, NaFeEDTA, but not laccase, have the potential to overcome the inhibitory effect of PP and improve Fe absorption from sorghum foods.

  13. Polarization-dependent nickel 2p x-ray-absorption spectra of La{sub 2}NiO{sub 4+{delta}}

    SciTech Connect

    Kuiper, P.; van Elp, J.; Rice, D.E.; Buttrey, D.J.; Lin, H.; Chen, C.T.

    1998-01-01

    We present polarization dependent x-ray-absorption spectra at nickel L edges of well-characterized La{sub 2}NiO{sub 4+{delta}} single crystals. In the stoichiometric compound the splitting between the x{sup 2}{minus}y{sup 2} and the 3z{sup 2}{minus}r{sup 2} orbitals is 0.7 eV, according to a fit of the 2p{sup 5}3d{sup 9} multiplet to the spectra. This value is in agreement with an assignment of dd excitations of the optical spectrum. The Ni L edges of the doped compound are consistent with the isotropic prepeak observed at the oxygen 1s edge. Theory does not predict holes on the apex oxygens, but we argue that doping causes a polaronic deformation which reduces the tetragonal distortion of the NiO{sub 6} octahedra, and delocalizes the hole over all six ligands. {copyright} {ital 1998} {ital The American Physical Society}

  14. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    PubMed

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  15. Lumen LPS inhibits HCO3(-) absorption in the medullary thick ascending limb through TLR4-PI3K-Akt-mTOR-dependent inhibition of basolateral Na+/H+ exchange.

    PubMed

    Watts, Bruns A; George, Thampi; Good, David W

    2013-08-15

    Sepsis and endotoxemia induce defects in renal tubule function, but the mechanisms are poorly understood. Recently, we demonstrated that lipopolysaccharide (LPS) inhibits HCO3(-) absorption in the medullary thick ascending limb (MTAL) through activation of different Toll-like receptor 4 (TLR4) signaling pathways in the basolateral and apical membranes. Basolateral LPS inhibits HCO3(-) absorption through ERK-dependent inhibition of the apical Na(+)/H(+) exchanger NHE3. Here, we examined the mechanisms of inhibition by lumen LPS. Adding LPS to the lumen decreased HCO3(-) absorption by 29% in rat and mouse MTALs perfused in vitro. Inhibitors of phosphoinositide 3-kinase (PI3K) or its effectors Akt and mammalian target of rapamycin (mTOR) eliminated inhibition of HCO3(-) absorption by lumen LPS but had no effect on inhibition by bath LPS. Exposure to LPS for 15 min induced increases in phosphorylation of Akt and mTOR in microdissected MTALs that were blocked by wortmannin, consistent with activation of Akt and mTOR downstream of PI3K. The effects of lumen LPS to activate Akt and inhibit HCO3(-) absorption were eliminated in MTALs from TLR4(-/-) and MyD88(-/-) mice but preserved in tubules lacking Trif or CD14. Inhibition of HCO3(-) absorption by lumen LPS was eliminated under conditions that inhibit basolateral Na(+)/H(+) exchange and prevent inhibition of HCO3(-) absorption mediated through NHE1. Lumen LPS decreased basolateral Na(+)/H(+) exchange activity through PI3K. We conclude that lumen LPS inhibits HCO3(-) absorption in the MTAL through TLR4/MyD88-dependent activation of a PI3K-Akt-mTOR pathway coupled to inhibition of NHE1. Molecular components of the TLR4-PI3K-mTOR pathway represent potential therapeutic targets for sepsis-induced renal tubule dysfunction.

  16. A strong steric hindrance effect on ground state, excited state, and charge separated state properties of a Cu(I)-diimine complex captured by X-ray transient absorption spectroscopy.

    PubMed

    Huang, J; Mara, M W; Stickrath, A B; Kokhan, O; Harpham, M R; Haldrup, K; Shelby, M L; Zhang, X; Ruppert, R; Sauvage, J-P; Chen, L X

    2014-12-21

    Photophysical and structural properties of a Cu(I) diimine complex with very strong steric hindrance, [Cu(I)(dppS)2](+) (dppS = 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt), are investigated by optical and X-ray transient absorption (OTA and XTA) spectroscopy. The bulky phenylsulfonic acid groups at 2,9 positions of phenanthroline ligands force the ground state and the metal-to-ligand charge-transfer (MLCT) excited state to adopt a flattened pseudo-tetrahedral coordination geometry in which the solvent access to the copper center is completely blocked. We analyzed the MLCT state dynamics and structures as well as those of the charge separated state resulting from the interfacial electron injection from the MLCT state to TiO2 nanoparticles (NPs). The OTA results show the absence of the sub-picosecond component previously assigned as the time constant for flattening, while the two observed time constants are assigned to a relatively slow intersystem crossing (ISC) rate (∼13.8 ps) and a decay rate (100 ns) of the [Cu(I)(dppS)2](+) MLCT state in water. These results correlate well with the XTA studies that resolved a flattened tetrahedral Cu(i) coordination geometry in the ground state. Probing the (3)MLCT state structure with XTA establishes that the (3)MLCT state has the same oxidation state as the copper center in [Cu(II)(dppS)2](2+) and the Cu-N distance is reduced by 0.06 Å compared to that of the ground state, accompanied by a rotation of phenyl rings located at 2,9 positions of phenanthroline. The structural dynamics of the photoinduced charge transfer process in the [Cu(I)(dppS)2](+)/TiO2 hybrid is also investigated, which suggests a more restricted environment for the complex upon binding to TiO2 NPs. Moreover, the Cu-N bond length of the oxidized state of [Cu(I)(dppS)2](+) after electron injection to TiO2 NPs shortens by 0.05 Å compared to that in the ground state. The interpretation of these observed structural changes associated with

  17. Spatial Structure of Seagrass Suggests That Size-Dependent Plant Traits Have a Strong Influence on the Distribution and Maintenance of Tropical Multispecies Meadows

    PubMed Central

    Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.

    2014-01-01

    Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial

  18. High-intensity laser heating in liquids: Multiphoton absorption

    SciTech Connect

    Longtin, J.P.; Tien, C.L.

    1995-12-31

    At high laser intensities, otherwise transparent liquids can absorb strongly by the mechanism of multiphoton absorption, resulting in absorption and heating several orders of magnitude greater than classical, low-intensity mechanisms. The use of multiphoton absorption provides a new mechanism for strong, controlled energy deposition in liquids without bulk plasma formation, shock waves, liquid ejection, etc., which is of interest for many laser-liquid applications, including laser desorption of liquid films, laser particle removal, and laser water removal from microdevices. This work develops a microscopically based model of the heating during multiphoton absorption in liquids. The dependence on pulse duration, intensity, wavelength, repetition rate, and liquid properties is discussed. Pure water exposed to 266 nm laser radiation is investigated, and a novel heating mechanism for water is proposed that uses multiple-wavelength laser pulses.

  19. Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths.

    PubMed

    Lu, Hua; Cumming, Benjamin P; Gu, Min

    2015-08-01

    A hybrid graphene system consisting of graphene and silica layers coated on a metal film with groove rings is proposed to strongly enhance light absorption in the graphene layer. Our results indicate that the excited localized plasmon resonance in groove rings can effectively improve the graphene absorption from 2.3% to 43.1%, even to a maximum value of 87.0% in five-layer graphene at telecommunication wavelengths. In addition, the absorption peak is strongly dependent on the groove depth and ring radius as well as the number of graphene layers, enabling the flexible selectivity of both the operating spectral position and bandwidth. This favorable enhancement and tunability of graphene absorption could provide a path toward high-performance graphene opto-electronic components, such as photodetectors.

  20. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, N.; Schoenlein, R. W.; Govind, Niranjan; Khalil, Munira

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+, [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.

  1. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  2. An analysis of temperature-dependent absorption and photocurrent spectra in BaAl{sub 2}Se{sub 4} layers

    SciTech Connect

    Hong, K. J.; Jeong, T. S.; Youn, C. J.; Moon, J. D.

    2015-04-28

    The temperature-dependent photoresponse behavior of BaAl{sub 2}Se{sub 4} layers has been investigated through the analysis of optical absorption and photocurrent (PC) spectra. Based on these results, the optical band gap was well expressed by E{sub g}(T) = E{sub g}(0) − 4.39 × 10{sup −4}T{sup 2}/(T + 250), where E{sub g}(0) is estimated to be 3.4205, 3.6234, and 3.8388 eV for the transitions corresponding to the valence band states Γ{sub 3}(A), Γ{sub 4}(B), and Γ{sub 5}(C), respectively. From the PC measurement, three peaks A, B, and C corresponded with the intrinsic transitions from the valence band states of Γ{sub 3}(A), Γ{sub 4}(B), and Γ{sub 5}(C) to the conduction band state of Γ{sub 1}, respectively. According to the selection rule, the crystal field and spin orbit splitting were found to be 0.2029 and 0.2154 eV, respectively, through the direct use of PC spectroscopy. However, the PC intensities decreased with lowering temperature. In the log J{sub ph} versus 1/T plot, the dominant trap level at the high-temperature region was observed and its value was 12.7 meV. This level corresponds to the activation energy for the electronic transition from the shallow donor levels to the edge of the conduction band. It is estimated that the decrease in the PC intensity is caused by trapping centers related to native defects in the BaAl{sub 2}Se{sub 4} layers. Consequently, this trap level limited the PC intensity with decreasing temperature.

  3. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  4. Size-dependent optical absorption modulation of Si/Ge and Ge/Si core/shell nanowires with different cross-sectional geometries.

    PubMed

    Luo, S; Yu, W B; He, Y; Ouyang, G

    2015-02-27

    We present an atomic-level and quantitative study of the absorption properties in Si/Ge and Ge/Si core/shell nanowires (CSNWs) along [110] direction with different cross-sectional geometries using the atomic bond relaxation method. We find that the strain existing in self-equilibrium state of CSNWs and associated with elastic energy originating from interface mismatch and surface relaxation affect the band shift and absorption properties. Compared to the CSNWs with tetragonal, hexagonal and circular shapes, the triangular CSNWs have the largest band gap shift at a fixed strain and the smallest absorption coefficient at a determinate incident light wavelength. The tunable absorption property, realized by controlling the size and geometry structure, could be helpful for nanoelectronic applications. PMID:25649268

  5. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  6. Translating Human Effective Jejunal Intestinal Permeability to Surface-Dependent Intrinsic Permeability: a Pragmatic Method for a More Mechanistic Prediction of Regional Oral Drug Absorption.

    PubMed

    Olivares-Morales, Andrés; Lennernäs, Hans; Aarons, Leon; Rostami-Hodjegan, Amin

    2015-09-01

    Regional intestinal effective permeability (P(eff)) values are key for the understanding of drug absorption along the whole length of the human gastrointestinal (GI) tract. The distal regions of the GI tract (i.e. ileum, ascending-transverse colon) represent the main sites for GI absorption when there is incomplete absorption in the upper GI tract, e.g. for modified release formulations. In this work, a new and pragmatic method for the estimation of (passive) intestinal permeability in the different intestinal regions is being proposed, by translating the observed differences in the available mucosal surface area along the human GI tract into corrections of the historical determined jejunal P(eff) values. These new intestinal P(eff) values or "intrinsic" P(eff)(P(eff,int)) were subsequently employed for the prediction of the ileal absorption clearance (CL(abs,ileum)) for a set of structurally diverse compounds. Additionally, the method was combined with a semi-mechanistic absorption PBPK model for the prediction of the fraction absorbed (f(abs)). The results showed that P(eff,int) can successfully be employed for the prediction of the ileal CL(abs) and the f(abs). P(eff,int) also showed to be a robust predictor of the f(abs) when the colonic absorption was allowed in the PBPK model, reducing the overprediction of f(abs) observed for lowly permeable compounds when using the historical P(eff) values. Due to its simplicity, this approach provides a useful alternative for the bottom-up prediction of GI drug absorption, especially when the distal GI tract plays a crucial role for a drug's GI absorption.

  7. Dependence of the average spatial and energy characteristics of the hadron-lepton cascade on the strong interaction parameters at superhigh energies

    NASA Technical Reports Server (NTRS)

    Boyadjian, N. G.; Dallakyan, P. Y.; Garyaka, A. P.; Mamidjanian, E. A.

    1985-01-01

    A method for calculating the average spatial and energy characteristics of hadron-lepton cascades in the atmosphere is described. The results of calculations for various strong interaction models of primary protons and nuclei are presented. The sensitivity of the experimentally observed extensive air showers (EAS) characteristics to variations of the elementary act parameters is analyzed.

  8. Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy.

    PubMed

    Küpper, Hendrik; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Kroneck, Peter M H

    2004-02-01

    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn(2+) treatment with and without addition of Cd(2+). Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants. PMID:14966248

  9. Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy1[w

    PubMed Central

    Küpper, Hendrik; Mijovilovich, Ana; Meyer-Klaucke, Wolfram; Kroneck, Peter M.H.

    2004-01-01

    Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn2+ treatment with and without addition of Cd2+. Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants. PMID:14966248

  10. CoFe alloy as middle layer for strong spin dependent quantum well resonant tunneling in double barrier magnetic tunnel junctions

    SciTech Connect

    Liu, R. S.; Yang, See-Hun; Jiang, Xin; Zhang, Xiaoguang; Rice, Philip M.; Canali, Carlo M.; Parkin, S. S. P.

    2013-01-01

    We report the spin-dependent quantum well resonant tunneling effect in CoFe/MgO/CoFe/MgO/CoFeB (CoFe) double barrier magnetic tunnel junctions. The dI/dV spectra reveal clear resonant peaks for the parallel magnetization configurations, which can be matched to quantum well resonances obtained from calculation. The differential TMR exhibits an oscillatory behavior with a sign change due to the formation of the spin-dependent QW states in the middle CoFe layer. Also, we observe pronounced TMR enhancement at resonant voltages at room temperature, suggesting that it is very promising to achieve high TMR using the spin-dependent QW resonant tunneling effect.

  11. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    PubMed

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-01

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  12. Implications of dose-dependent target tissue absorption for linear and non-linear/threshold approaches in development of a cancer-based oral toxicity factor for hexavalent chromium.

    PubMed

    Haney, J

    2015-07-01

    Dose-dependent changes in target tissue absorption have important implications for determining the most defensible approach for developing a cancer-based oral toxicity factor for hexavalent chromium (CrVI). For example, mouse target tissue absorption per unit dose is an estimated 10-fold lower at the CrVI dose corresponding to the federal maximum contaminant level (MCL) than at the USEPA draft oral slope factor (SFo) point of departure dose. This decreasing target tissue absorption as doses decrease to lower, more environmentally-relevant doses is inconsistent with linear low-dose extrapolation. The shape of the dose-response curve accounting for this toxicokinetic phenomenon would clearly be non-linear. Furthermore, these dose-dependent differences in absorption indicate that the magnitude of risk overestimation by a linear low-dose extrapolation approach (e.g., SFo) increases and is likely to span one or perhaps more orders of magnitude as it is used to predict risk at progressively lower, more environmentally-relevant doses. An additional apparent implication is that no single SFo can reliably predict risk across potential environmental doses (e.g., doses corresponding to water concentrations⩽the federal MCL). A non-linear approach, consistent with available mode of action data, is most scientifically defensible for derivation of an oral toxicity factor for CrVI-induced carcinogenesis.

  13. Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of {alpha}-Fe2O3

    SciTech Connect

    Glatzel, Pieter; Mirone, Alessandro; Eeckhout, Sigrid G.; Sikora, Marcin; Giuli, Gabriele

    2007-02-02

    An experimental and theoretical study of the K absorption pre-edge in hematite ({alpha}-Fe2O3) is presented. Resonant inelastic X-ray scattering with a 3p hole in the final states was used to obtain spin-selective absorption spectra. Spectral variations with changing the orientation of the incident X-ray polarization vector with respect to the crystal c-axis in single crystalline hematite are discussed. The experimental results can be successfully modeled using a band-structure approach (WIEN2k with LDA+U). A pre-edge absorption feature is assigned to unoccupied p electronic states due to Fe-Fe interactions, i.e. they are due to non-local transitions.

  14. Disorder-induced enhancement of indirect absorption in a GeSn photodetector grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, H.; Chang, C.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2016-05-01

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same order of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.

  15. Strong composition-dependent variation of MCs + calibration factors in TiO x and GeO x ( x ≤ 2) films

    NASA Astrophysics Data System (ADS)

    Gnaser, Hubert; Le, Yongkang; Su, Weifeng

    2006-07-01

    The emission of MCs + secondary ions (M designates the analyte species) from TiO x (0.2 ≤ x ≤ 2) and GeO x (0.001 ≤ x ≤ 0.8) films under Cs + bombardment was examined. The relative calibration factors of OCs +/TiCs + and OCs +/GeCs + were determined and were found to depend pronouncedly on the O/Ti and O/Ge atomic concentration ratios. Specifically, with increasing oxygen content OCs + ions form much more efficiently (as compared to TiCs + or GeCs + ions), an enhancement amounting to more than a factor of 10 for the highest oxygen concentrations. Concurrently, the formation of TiOCs + or GeOCs + ions increases drastically. For both oxide systems, an empirical relation for the oxygen-concentration dependence of the relative calibration factors could be established.

  16. Strong growth orientation dependence of strain relaxation in epitaxial (Ba,Sr)TiO{sub 3} films and the resulting dielectric properties

    SciTech Connect

    Yamada, Tomoaki; Kamo, Takafumi; Funakubo, Hiroshi; Su Dong; Iijima, Takashi

    2011-05-01

    The growth orientation dependence of strain relaxation and the dielectric properties were investigated for (001)- and (111)-epitaxial (Ba,Sr)TiO{sub 3} films. The films were deposited on SrRuO{sub 3}/SrTiO{sub 3} and SrTiO{sub 3} substrates using rf magnetron sputtering. The residual strain was found to be remarkably different between the two orientations, although these lattice mismatches are identical; the strain relaxation of the (001)-epitaxial films is significantly slower than that of the (111)-epitaxial films and is promoted only when the growth rate is very low ({<=}5 nm/h). The observed orientation dependence is discussed with the surface energy for both growth orientations, which influences the growth mode of the films. Due to the large contrast of the strain in the (001)- and (111)-epitaxial films, the paraelectric to ferroelectric phase transition temperature of the (001)-epitaxial films is much higher than that of unstrained bulks, while the (111)-epitaxial films show a phase transition temperature corresponding to that of unstrained bulks regardless of the growth rates.

  17. Self-intermediate scattering function of strongly interacting three-dimensional lattice gases: Time- and wave-vector-dependent tracer diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Skarpalezos, Loukas; Argyrakis, Panos; Vikhrenko, Vyacheslav S.

    2014-05-01

    We investigate the self-intermediate scattering function (SISF) in a three-dimensional (3D) cubic lattice fluid (interacting lattice gas) with attractive nearest-neighbor interparticle interactions at a temperature slightly above the critical one by means of Monte Carlo simulations. A special representation of SISF as an exponent of the mean tracer diffusion coefficient multiplied by the geometrical factor and time is considered to highlight memory effects that are included in time and wave-vector dependence of the diffusion coefficient. An analytical expression for the diffusion coefficient is suggested to reproduce the simulation data. It is shown that the particles' mean-square displacement is equal to the time integral of the diffusion coefficient. We make a comparison with the previously considered 2D system on a square lattice. The main difference with the two-dimensional case is that the time dependence of particular characteristics of the tracer diffusion coefficient in the 3D case cannot be described by exponentially decreasing functions, but requires using stretched exponentials with rather small values of exponents, of the order of 0.2. The hydrodynamic values of the tracer diffusion coefficient (in the limit of large times and small wave vectors) defined through SIFS simulation results agree well with the results of its direct determination by the mean-square displacement of the particles in the entire range of concentrations and temperatures.

  18. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    PubMed

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes. PMID:26208642

  19. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner.

    PubMed

    Glaubitz, Ulrike; Erban, Alexander; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen

    2015-10-01

    Global climate change combined with asymmetric warming can have detrimental effects on the yield of crop plants such as rice (Oryza sativa L.). Little is known about metabolic responses of rice to high night temperature (HNT) conditions. Twelve cultivars with different HNT sensitivity were used to investigate metabolic changes in the vegetative stage under HNT compared to control conditions. Central metabolism, especially TCA cycle and amino acid biosynthesis, were strongly affected particularly in sensitive cultivars. Levels of several metabolites were correlated with HNT sensitivity. Furthermore, pool sizes of some metabolites negatively correlated with HNT sensitivity under control conditions, indicating metabolic pre-adaptation in tolerant cultivars. The polyamines putrescine, spermidine and spermine showed increased abundance in sensitive cultivars under HNT conditions. Correlations between the content of polyamines and 75 other metabolites indicated metabolic shifts from correlations with sugar-phosphates and 1-kestose under control to correlations with sugars and amino and organic acids under HNT conditions. Increased expression levels of ADC2 and ODC1, genes encoding enzymes catalysing the first committed steps of putrescine biosynthesis, were restricted to sensitive cultivars under HNT. Additionally, transcript levels of eight polyamine biosynthesis genes were correlated with HNT sensitivity. Responses to HNT in the vegetative stage result in distinct differences between differently responding cultivars with a dysregulation of central metabolism and an increase of polyamine biosynthesis restricted to sensitive cultivars under HNT conditions and a pre-adaptation of tolerant cultivars already under control conditions with higher levels of potentially protective compatible solutes.

  20. Doping dependent blue shift and linewidth broadening of intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    SciTech Connect

    Kotani, Teruhisa; Arita, Munetaka; Arakawa, Yasuhiko

    2015-09-14

    Blue shift and broadening of the absorption spectra of mid-infrared intersubband transition in non-polar m-plane AlGaN/GaN 10 quantum wells were observed with increasing doping density. As the doping density was increased from 6.6 × 10{sup 11} to 6.0 × 10{sup 12 }cm{sup −2} per a quantum well, the intersubband absorption peak energy shifted from 274.0 meV to 302.9 meV, and the full width at half maximum increased from 56.4 meV to 112.4 meV. Theoretical calculations reveal that the blue shift is due to many body effects, and the intersubband linewidth in doped AlGaN/GaN QW is mainly determined by scattering due to interface roughness, LO phonons, and ionized impurities.

  1. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke; Zhou, Haoshen; Okabayashi, Jun; Ban, Chunmei; Glans, Per-Anders; Guo, Jinghua; Mizokawa, Takashi; Chen, Gang; Achkar, Andrew J.; Hawthron, David G.; Regier, Thomas Z.; Wadati, Hiroki

    2016-03-01

    We evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathode materials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi0.5Mn1.5O4, the line shape of the Mn L3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathode materials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are useful enough for the Ni L edge which is far from the O K edge.

  2. Optical Absorptions of New Blue-Light Emitting Oligoquinolines Bearing Pyrenyl and Triphenyl Endgroups Investigated with Time-Dependent Density Functional Theory.

    PubMed

    Tao, Jianmin; Tretiak, Sergei

    2009-04-14

    The optical absorption spectra of a family of four n-type conjugated oligomers, oligoquinolines, which can be commercially used to develop high-performance light-emitting diodes for their many desirable properties, have been recently calculated from time-depedent density functional theory (TDDFT) within the adiabatic approximation for the dynamical exchange-correlation potential. In this work, we investigate the optical absorption of two new family members of the blue-light emitting oligoquinolines bearing pyrenyl and triphenyl endgroups in gas phase and chloroform (CHCl3) solution employing the adiabatic TDDFT. The ionization potentials and electron affinities of these two oligoquinoline molecules are also calculated with the ground-state DFT, from which the adiabatic dynamical exchange-correlation potential is constructed. We show that the calculated optical absorptions are in good agreement with experiments. The ionization potentials obtained with the DFT methods agree well with the experimental estimates, while the electron affinities are significantly underestimated in comparison with experiments. A natural transition orbital analysis for selected excited states with the largest oscillator strengths shows that the electronic charge is slightly redistributed in the process of electronic excitations. PMID:26609594

  3. Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background

    PubMed Central

    Shin, Dai-Lun; Hatesuer, Bastian; Bergmann, Silke; Nedelko, Tatiana

    2015-01-01

    ABSTRACT Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1r/r) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1r/r). Most remarkably, congenic D2-Mx1r/r mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1r/r mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans. IMPORTANCE Influenza A virus represents a major health threat to humans. Seasonal influenza epidemics cause high economic loss, morbidity, and deaths each year. Genetic factors of the host strongly influence susceptibility and resistance to virus infections. The Mx1 (MX dynamin-like GTPase 1) gene has been described as a major resistance gene in mice and humans. Most inbred laboratory mouse strains are deficient in Mx1, but congenic B6-Mx1r/r mice that carry the wild-type Mx1

  4. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

    PubMed

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+). PMID:26876428

  5. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

    PubMed

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (<10 fs). This transfer is preceded by the acid-base H-bond's compression, while the water solvent changes little until the actual PT occurrence; this results from the very strong driving force for the reaction, as indicated by the very favorable acid-protonated base ΔpKa difference. Further solvent rearrangement follows immediately the sudden PT's production of an incipient contact ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+).

  6. UV laser long-path absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  7. Strong temperature-dependent crystallization, phase transition, optical and electrical characteristics of p-type CuAlO2 thin films.

    PubMed

    Liu, Suilin; Wu, Zhiheng; Zhang, Yake; Yao, Zhiqiang; Fan, Jiajie; Zhang, Yiqiang; Hu, Junhua; Zhang, Peng; Shao, Guosheng

    2015-01-01

    We report here a reliable and reproducible single-step (without post-annealing) fabrication of phase-pure p-type rhombohedral CuAlO2 (r-CuAlO2) thin films by reactive magnetron sputtering. The dependence of crystallinity and phase compositions of the films on the growth temperature was investigated, revealing that highly-crystallized r-CuAlO2 thin films could be in situ grown in a narrow temperature window of ∼940 °C. Optical and electrical property studies demonstrate that (i) the films are transparent in the visible light region, and the bandgaps of the films increased to ∼3.86 eV with the improvement of crystallinity; (ii) the conductance increased by four orders of magnitude as the film was evolved from the amorphous-like to crystalline structure. The predominant role of crystallinity in determining CuAlO2 film properties was demonstrated to be due to the heavy anisotropic characteristics of the O 2p-Cu 3d hybridized valence orbitals. PMID:25406672

  8. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase.

    PubMed

    Sarin, L Peter; Wright, Sam; Chen, Qing; Degerth, Linda H; Stuart, David I; Grimes, Jonathan M; Bamford, Dennis H; Poranen, Minna M

    2012-10-10

    Double-stranded RNA viruses encode a single protein species containing RNA-dependent RNA polymerase (RdRP) motifs. This protein is responsible for RNA transcription and replication. The architecture of viral RdRPs resembles that of a cupped right hand with fingers, palm and thumb domains. Those using de novo initiation have a flexible structural elaboration that constitutes the priming platform. Here we investigate the properties of the C-terminal priming domain of bacteriophage ϕ6 to get insights into the role of an extended loop connecting this domain to the main body of the polymerase. Proteolyzed ϕ6 RdRP that possesses a nick in the hinge region of this loop was better suited for de novo initiation. The clipped C-terminus remained associated with the main body of the polymerase via the anchor helix. The structurally flexible hinge region appeared to be involved in the control of priming platform movement. Moreover, we detected abortive initiation products for a bacteriophage RdRP.

  9. HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment

    SciTech Connect

    Weigelt, Britta; Lo, Alvin T; Park, Catherine C; Gray, Joe W; Bissell, Mina J

    2009-07-27

    Development of effective and durable breast cancer treatment strategies requires a mechanistic understanding of the influence of the microenvironment on response. Previous work has shown that cellular signaling pathways and cell morphology are dramatically influenced by three-dimensional (3D) cultures as opposed to traditional two-dimensional (2D) monolayers. Here, we compared 2D and 3D culture models to determine the impact of 3D architecture and extracellular matrix (ECM) on HER2 signaling and on the response of HER2-amplified breast cancer cell lines to the HER2-targeting agents Trastuzumab, Pertuzumab and Lapatinib. We show that the response of the HER2-amplified AU565, SKBR3 and HCC1569 cells to these anti-HER2 agents was highly dependent on whether the cells were cultured in 2D monolayer or 3D laminin-rich ECM gels. Inhibition of {beta}1 integrin, a major cell-ECM receptor subunit, significantly increased the sensitivity of the HER2-amplified breast cancer cell lines to the humanized monoclonal antibodies Trastuzumab and Pertuzumab when grown in a 3D environment. Finally, in the absence of inhibitors, 3D cultures had substantial impact on HER2 downstream signaling and induced a switch between PI3K-AKT- and RAS-MAPKpathway activation in all cell lines studied, including cells lacking HER2 amplification and overexpression. Our data provide direct evidence that breast cancer cells are able to rapidly adapt to different environments and signaling cues by activating alternative pathways that regulate proliferation and cell survival, events that may play a significant role in the acquisition of resistance to targeted therapies.

  10. Water-related absorption in fibrous diamonds

    NASA Astrophysics Data System (ADS)

    Zedgenizov, D. A.; Shiryaev, A. A.; Kagi, H.; Navon, O.

    2003-04-01

    Cubic and coated diamonds from several localities (Brasil, Canada, Yakutia) were investigated using spectroscopic techniques. Special emphasis was put on investigation of water-related features of transmission Infra-red and Raman spectra. Presence of molecular water is inferred from broad absorption bands in IR at 3420 and 1640 cm-1. These bands were observed in many of the investigated samples. It is likely that molecular water is present in microinclusions in liquid state, since no clear indications of solid H_2O (ice VI-VII, Kagi et al., 2000) were found. Comparison of absorption by HOH and OH vibrations shows that diamonds can be separated into two principal groups: those containing liquid water (direct proportionality of OH and HOH absorption) and those with stronger absorption by OH group. Fraction of diamonds in every group depends on their provenance. There might be positive correlation between internal pressure in microinclusions (determined using quartz barometer, Navon et al., 1988) and affiliation with diamonds containing liquid water. In many cases absorption by HOH vibration is considerably lower than absorption by hydroxyl (OH) group. This may be explained if OH groups are partially present in mineral and/or melt inclusions. This hypothesis is supported by following fact: in diamonds with strong absorption by silicates and other minerals shape and position of the OH band differs from that in diamonds with low absorption by minerals. Moreover, in Raman spectra of individual inclusions sometimes the broad band at 3100 cm-1 is observed. This band is OH-related. In some samples water distribution is not homogeneous. Central part of the diamond usually contains more water than outer parts, but this is not a general rule for all the samples. Water absorption usually correlated with absorption of other components (carbonates, silicates and others). At that fibrous diamonds with relatively high content of silicates are characterized by molecular water. OH

  11. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    PubMed Central

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-01-01

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models. PMID:26419204

  12. Enhanced light absorption by mixed source black and brown carbon particles in UK winter.

    PubMed

    Liu, Shang; Aiken, Allison C; Gorkowski, Kyle; Dubey, Manvendra K; Cappa, Christopher D; Williams, Leah R; Herndon, Scott C; Massoli, Paola; Fortner, Edward C; Chhabra, Puneet S; Brooks, William A; Onasch, Timothy B; Jayne, John T; Worsnop, Douglas R; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L; Liu, Dantong; Allan, James D; Lee, James D; Fleming, Zoë L; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S H

    2015-09-30

    Black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC's light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ∼1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC's warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. We conclude that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  13. Overexpression of KIR inhibitory ligands (HLA-I) determines that immunosurveillance of myeloma depends on diverse and strong NK cell licensing

    PubMed Central

    Martínez-Sánchez, María V.; Periago, Adela; Legaz, Isabel; Gimeno, Lourdes; Mrowiec, Anna; Montes-Barqueros, Natividad R.; Campillo, José A.; Bolarin, José M.; Bernardo, María V.; López-Álvarez, María R.; González, Consuelo; García-Garay, María C.; Muro, Manuel; Cabañas-Perianes, Valentin; Fuster, Jose L.; García-Alonso, Ana M.; Moraleda, José M.; Álvarez-Lopez, María R.; Minguela, Alfredo

    2016-01-01

    -missing-self cancers, e.g., myeloma, mainly depends on NKc licensing. PMID:27141379

  14. Inferring surface solar absorption from broadband satellite measurements

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model and surface albedo models that include wavelength dependence and surface anisotropy are combined to study the possibility of inferring the surface solar absorption from satellite measurements. The model includes ocean, desert, pasture land, savannah, and bog surface categories. Problems associated with converting narrowband measurements to broadband quantities are discussed, suggesting that it would be easier to infer surface solar absorption from broadband measurements directly. The practice of adopting a linear relationship between planetary and surface albedo to estimate surface albedos from satellite measurements is examined, showing that the linear conversion between broadband planetary and surface albedos is strongly dependent on vegetation type. It is suggested that there is a linear slope-offset relationship between surface and surface-atmosphere solar absorption.

  15. The influence absorb stratification on absorptivity of atmosphere

    NASA Astrophysics Data System (ADS)

    Goryachev, B. V.; Mogilnitskiy, S. B.

    2014-11-01

    The authors have studied the radiation transfer in multilayer atmosphere. The analytical formulae for the calculation of the transmission coefficient, reflectance and absorption of dispersion media consisting of three plane layers were obtained. It was shown that absorption of dispersed media depends strongly on absorption layer's position in dispersed media. The lowest value is marked when the layer takes place below of the media the light falls from above. Investigation of the radiation balance of the atmosphere is usually conducted on the basis of the theory of radiative transfer and numerical methods [1]. In conducting research using various models of the atmosphere [2-4]. Accuracy of the results depends on the accuracy of the approximation and taking into account all the effects that significantly affect the results, such as the effect of the spatial limitations of the dispersion medium [4-6].

  16. Modification of light transmission channels by inhomogeneous absorption in random media.

    PubMed

    Liew, Seng Fatt; Cao, Hui

    2015-05-01

    Optical absorption is omnipresent and often distributed non-uniformly in space. We present a numerical study on the effects of inhomogeneous absorption on transmission eigenchannels of light in highly scattering media. In the weak absorption regime, the spatial profile of a transmission channel remains similar to that without absorption, and the effect of inhomogeneous absorption can be stronger or weaker than homogeneous absorption depending on the spatial overlap of the localized absorbing region with the field intensity maximum of the channel. In the strong absorption regime, the high transmission channels redirect the energy flows to circumvent the absorbing regions to minimize loss. The attenuation of high transmission channels by inhomogeneous absorption is lower than that by homogeneous absorption, regardless of the location of the absorbing region. The statistical distribution of transmission eigenvalues in the former becomes broader than that in the latter, due to a longer tail at high transmission. The maximum enhancement factor of total transmission increases with absorption, eventually exceeds that without absorption.

  17. Temperature dependence of the gas and liquid phase ultraviolet absorption cross sections of HCFC-123 (CF3CHCl2) and HCFC-142b (CH3CF2Cl)

    NASA Astrophysics Data System (ADS)

    Nayak, Akshaya K.; Buckley, Thomas J.; Kurylo, Michael J.; Fahr, Askar

    1996-04-01

    The absorption cross sections for HCFC-123 (CF3CHCl2) and HCFC-142b (CH3CF2Cl) have been measured in the gas and liquid phases over the temperature range of about 220-330 K. The liquid phase results were converted into effective gas phase cross sections using a wavelength shift procedure, thereby extending the gas phase cross sections to longer wavelengths. The results are compared with other available data and lend increased confidence in atmospheric lifetime calculations for these important industrial alternatives to the fully halogenated chlorofluorocarbons.

  18. Electron Wavepacket Interference Observed by Attosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gallmann, L.; Holler, M.; Schapper, F.; Keller, U.

    Attosecond time-resolved transient absorption spectroscopy is performed in a dense helium target by superimposing an attosecond pulse train (APT) with a moderately strong infrared field. We observe rapid oscillations of the absorption of the individual harmonics as a function of time-delay between the APT and IR field even for harmonic energies well below the ionization threshold. The phase dependence of these modulations on atto-chirp and IR intensity yields direct evidence for the interference of transiently bound electronic wavepackets as the underlying mechanism.

  19. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  20. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  1. Self-polarized terahertz magnon absorption in a single crystal of BiFeO3

    NASA Astrophysics Data System (ADS)

    Matsubara, Eiichi; Mochizuki, Takeshi; Nagai, Masaya; Ashida, Masaaki

    2016-08-01

    We report the polarization dependence of terahertz magnon absorption in single crystals of BiFeO3 grown by a modified floating zone method. In a (111)pc-oriented crystal, two major magnon absorption signals were observed for all terahertz polarizations, which indicates that magnetic domains were not aligned in one of the three allowed directions. In contrast, the absorption modes in a (001)pc-oriented crystal showed significant polarization dependence, which was unchanged even after annealing the crystal at temperatures far above the Néel point to demagnetize it. This polarization dependence coincides with that of E mode phonons. Thus, we conclude that magnon and phonon in BiFeO3 are strongly coupled and the selection rules for magnon absorption are governed by the activity of E mode phonons, namely, the crystalline anisotropy originating from ferroelectric polarization.

  2. On the Anomalous Microwave Power Dependency of both Non-Resonant and Cu2+ Resonant Microwave Absorption in a YBa2Cu3O7-δ Type Superconductor

    NASA Astrophysics Data System (ADS)

    Velter-Stefanescu, M.; Duliu, O. G.

    2007-04-01

    A ceramic high temperature superconductor [HTS] of Y-Ba-Cu-O type has been investigated at 77 K by using a standard X-band Electron Paramagnetic Resonance (EPR) configuration. At very low microwave power (< 1 mW) the non-resonant or zero field signal (ZFS) was in phase with DPPH signal, pleading for an unambiguous absorption process, but it commutes to a typical superconductor signal (i.e. opposite to DPPH signal phase) with increasing the microwave power. At the same time, Cu2+ signal appreciably changes its shape with increasing microwave power. These anomalous behaviors could be in part explained by a conventional SQUID response at microwave frequency by taking into account that the sample itself could be described by a collection of both Josephson and proximity junctions.

  3. Solvent Dependence of the Molecular Order in Ion-Exchanged Self-Assembled dialkylammonium Monolayers on Mica Studied with Soft X-ray Absorption

    SciTech Connect

    Hahner,G.; Zwahlen, M.; Caseri, W.

    2005-01-01

    Dialkyldimethylammonium films on mica prepared via ion exchange from solution have been reported to be of high quality in terms of their density and molecular orientation. Different preparation procedures are described in the literature. The molecular order and the inclination of the alkyl chains, however, are often deduced from indirect experimental evidence such as the wettability and the film thickness. In the present study we employed near edge X-ray absorption fine structure spectroscopy (NEXAFS) to determine directly the order of the molecules adsorbed from different solvents (water, methanol, water/methanol 1:1, cyclohexanol, and chloroform). It was found that films prepared from different solvents are displaying large differences in the established surface coverage and orientation. In particular, NEXAFS disclosed that the orientation of the alkyl chains can differ significantly even when similar water contact angle values are observed.

  4. Dependence of the absorption of pulsed CO{sub 2}-laser radiation by silane on wavenumber, fluence, pulse duration, temperature, optical path length, and pressure of absorbing and nonabsorbing gases

    SciTech Connect

    Blazejowski, J.; Gruzdiewa, L.; Rulewski, J.; Lampe, F.W.

    1995-05-15

    The absorption of three lines [{ital P}(20), 944.2 cm{sup {minus}1}; {ital P}(14), 949.2 cm{sup {minus}1}; and {ital R}(24), 978.5 cm{sup {minus}1}] of the pulsed CO{sub 2} laser (00{sup 0}1--10{sup 0}0 transition) by SiH{sub 4} was measured at various pulse energy, pulse duration, temperature, optical path length, and pressure of the compound and nonabsorbing foreign gases. In addition, low intensity infrared absorption spectrum of silane was compared with high intensity absorption characteristics for all lines of the pulsed CO{sub 2} laser. The experimental dependencies show deviations from the phenomenological Beer--Lambert law which can be considered as arising from the high intensity of an incident radiation and collisions of absorbing molecules with surroundings. These effects were included into the expression, being an extended form of the Beer--Lambert law, which reasonably approximates all experimental data. The results, except for extending knowledge on the interaction of a high power laser radiation with matter, can help understanding and planning processes leading to preparation of silicon-containing technologically important materials.

  5. Temperature dependent electronic structure of Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film probed by X-ray absorption near edge structure

    SciTech Connect

    Zhang, Bangmin; Sun, Cheng-Jun E-mail: msecgm@nus.edu.sg; Heald, Steve M.; Chen, Jing-Sheng; Moog Chow, Gan E-mail: msecgm@nus.edu.sg; Venkatesan, T.

    2014-05-07

    The Mn K edge X-ray absorption near edge structures (XANES) of Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film (100 nm) on (001) LaAlO{sub 3} substrate was measured at different temperatures to probe the MnO{sub 6} octahedron distortion and corresponding electronic structure. The absorption of high temperature paramagnetic-insulator phase differed from that of the low temperature ferromagnetic-metal phase. The temperature-dependent absorption intensity of Mn K edge XANES was correlated with the relaxation of distorted MnO{sub 6} octahedron, which changed the crystal field acting on the Mn site and the related electronic structure and properties. At low temperature, the splitting of Mn majority e{sub g} orbitals decreased and the density of states above the Fermi level increased in the relaxed MnO{sub 6} octahedron, as reflected by a wider separation between two sub-peaks in the pre-edge XANES spectra.

  6. Inelastic X-ray Scattering Study of SmFeAs(O1−xFy) Single Crystals: Evidence for Strong Momentum-Dependent Doping-Induced Renormalizations of Optical Phonons

    SciTech Connect

    Hill, J.P.; Le Tacon, M.; Forrest, T.R.; Ruegg, Ch.; Bosak, A.; Walters, A.C.; Mittal, R.; Rønnow, H.M.; Zhigadlo, N.D.; Katrych, S.; Karpinski, J.; Krisch, M.; McMorrow, D.F.

    2009-12-01

    We report inelastic x-ray scattering experiments on the lattice dynamics in SmFeAsO and superconducting SmFeAsO{sub 0.60}F{sub 0.35} single crystals. Particular attention was paid to the dispersions along the [100] direction of three optical modes close to 23 meV, polarized out of the FeAs planes. Remarkably, two of these modes are strongly renormalized upon fluorine doping. These results provide significant insight into the energy and momentum dependence of the coupling of the lattice to the electron system and underline the importance of spin-phonon coupling in the superconducting iron pnictides.

  7. Pressure and temperature dependence of the absorption edge of a thick Ga{sub 0.92}In{sub 0.08}As{sub 0.985}N{sub 0.015} layer

    SciTech Connect

    Perlin, P.; Subramanya, S.G.; Mars, D.E.; Kruger, J.; Shapiro, N.A.; Siegle, H.; Weber, E.R.

    1998-12-01

    We have studied the pressure and temperature dependence of the absorption edge of a 4-{mu}m-thick layer of the alloy Ga{sub 0.92}In{sub 0.08}As{sub 0.985}N{sub 0.015}. We have measured the hydrostatic pressure coefficient of the energy gap of this alloy to be 51 meV/GPa, which is more than a factor two lower than that of GaAs (116 meV/GPa). This surprisingly large lowering of the pressure coefficient is attributed to the addition of only {approximately}1.5{percent} nitrogen. In addition, the temperature-induced shift of the edge is reduced by the presence of nitrogen. We can explain this reduction by the substantial decrease of the dilatation term in the temperature dependence of the energy gap. {copyright} {ital 1998 American Institute of Physics.}

  8. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  9. Atomistic simulations of the optical absorption of type-II CdSe/ZnTe superlattices

    PubMed Central

    2012-01-01

    We perform accurate tight binding simulations to design type-II short-period CdSe/ZnTe superlattices suited for photovoltaic applications. Absorption calculations demonstrate a very good agreement with optical results with threshold strongly depending on the chemical species near interfaces. PMID:23031315

  10. Gastrointestinal absorption of uranium compounds--a review.

    PubMed

    Konietzka, Rainer

    2015-02-01

    Uranium occurs naturally in soil and rocks, and therefore where it is present in water-soluble form it also occurs naturally in groundwater as well as in drinking water obtained from groundwater. Animal studies suggest that the toxicity of uranium is mainly due to its damage to kidney tubular cells following exposure to soluble uranium compounds. The assessments of the absorption of uranium via the gastrointestinal tract vary, and this has consequences for regulation, in particular the derivation of e.g. drinking water limit values. Absorption rates vary according to the nature and solubility of the compound in which uranium is presented to the test animals and depending on the animal species used in the test. No differences for sex have been observed for absorption in either animals or humans. However, human biomonitoring data do show that boys excrete significantly more uranium than girls. In animal studies neonates took up more uranium than adults or older children. Nutritional status, and in particular the iron content of the diet, have a marked influence on absorption, and higher uranium levels in food intake also appear to increase the absorption rate. If the pointers to an absorption mechanism competing with iron are correct, these mechanisms could also explain the relatively high concentration and chemical toxicity of uranium in the kidneys. It is here (and in the duodenum) that divalent metal transporter 1 (DMT1), which is primarily responsible for the passage of iron (or uranium?) through the cell membranes, is most strongly expressed.

  11. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  12. Cyclotron resonant scattering and absorption. [in gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Daugherty, Joseph K.

    1991-01-01

    The relativistic cross-sections for first-order absorption and second-order scattering are compared to determine the conditions under which the absorption cross-section is a good approximation to the much more complex scattering cross-section for purposes of modeling cyclotron lines in gamma-ray bursts. Differences in both the cross-sections and the line profiles are presented for a range of field strengths, angles, and electron temperatures. The relative difference of the cross-sections at one line width from resonance was found to increase with field strength and harmonic number. The difference is also strongly dependent on the photon angle to the magnetic field. For the field strength, 1.7 x 10 to the 12th G, and the angle inferred from the Ginga burst features, absorption is an excellent approximation for the profiles at the first and second harmonics.

  13. Results of measurement of radio wave absorption in the ionosphere by the AI method

    NASA Technical Reports Server (NTRS)

    Korinevskaya, N. A.

    1972-01-01

    Median noon absorption values for each month from 1964 through 1967, the diurnal variations of absorption on the regular world days, and the seasonal variations of absorption are given. The dependence of the absorption coefficient on sunspot number is analyzed.

  14. Optical absorption of the anthracene and temperature-dependent capacitance-voltage characteristics of the Au/anthracene/n-Si heterojunction in metal-organic-semiconductor configuration

    NASA Astrophysics Data System (ADS)

    Kaçus, H.; Aydoğan, Ş.; Ekinci, D.; Kurudirek, S. V.; Türüt, A.

    2015-11-01

    An anthracene film has been deposited on an n-type silicon to fabricate an Au/anthracene/n-Si junction device. The band gap of the anthracene film has been determined from the optical measurement as Eg=1.65 eV. After the fabrication of the Au/anthracene/n-Si junction device, temperature dependent capacitance-voltage characteristics in the range of 160-300 K were studied to obtain the junction parameters of the device. The diffusion potential, barrier height, Fermi energy level and donor concentration parameters have been determined from the linear 1/C2-V curves with reverse bias at all temperatures. Both Fermi energy level and the barrier height increased with the increasing temperature. Temperature-dependence of the barrier height has been attributed to inhomogeneous barrier, traps and interface states. The ionized donor concentrations have varied with the temperature in an unsystematic manner due to the trapping/de-trapping of the charges at various temperatures.

  15. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  16. Disentangling eumelanin "black chromophore": visible absorption changes as signatures of oxidation state- and aggregation-dependent dynamic interactions in a model water-soluble 5,6-dihydroxyindole polymer.

    PubMed

    Pezzella, Alessandro; Iadonisi, Alfonso; Valerio, Silvia; Panzella, Lucia; Napolitano, Alessandra; Adinolfi, Matteo; d'Ischia, Marco

    2009-10-28

    A fundamental unsettled issue concerning eumelanins, the functional biopolymers of human skin and hair, is why they are black. The experimental difficulty lies in the virtual insolubility of these pigments, causing marked scattering effects and hindering characterization of the intrinsic absorption properties of the heterogeneous species produced by oxidative polymerization of 5,6-dihydroxyindole (DHI) and related monomer precursors. The synthesis of spectrally robust, water-soluble DHI polymers is therefore an important goal in the prospects of disentangling intrinsic absorption properties of eumelanin components by circumventing scattering effects. Reported herein is the first water-soluble DHI polymer produced by oxidation of ad hoc designed 5,6-dihydroxy-3-indolyl-1-thio-beta-D-galactopyranoside (1). The dark brown polymer exhibited a distinct band at 314 nm and a broad visible absorption, resembling that of natural eumelanins. Main isolable oligomer intermediates including 2,7'- and 2,4'-biindolyls 2 and 3, attest the close resemblance to the mode of coupling of the parent DHI. Sodium borohydride reduction caused decoloration and a marked absorbance decrease in the visible region around 550 nm, but did not affect the UV band at 314 nm. Measurements of absorbance variations with dilution indicated a linear response at 314 nm, but a significant deviation from linearity in the visible region, with the largest decrease around 500 nm. It is argued that eumelanin black color is not only intrinsically defined by the overlap of pi-electron conjugated chromophores within the individual polymer components, as commonly believed, but also by oxidation state- and aggregation-dependent interchromophoric interactions causing perturbations of the heterogeneous ensemble of pi-electron systems and overall spectral broadening.

  17. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  18. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; Sun, Cheng -Jun; Heald, Steve M.; Chow, Gan Moog; Yang, Ping; Chi, Xiao; Lin, Weinan

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy Er. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results, it was suggested that themore » strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of Er. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  19. Percutaneous nitroglycerin absorption in rats.

    PubMed

    Horhota, S T; Fung, H L

    1979-05-01

    Percutaneous nitroglycerin absorption was studied in shaved rats by monitoring unchanged plasma drug concentrations for up to 4 hr. Drug absorption from the neat liquid state or from an alcoholic solution was considerably poorer than that from a commercial ointment. This observation was unanticipated since the driving force for percutaneous drug absorption was assumed to be drug thermodynamics. Potential artifacts such as drug volatilization from the skin, reduction of surface area through droplet formation, and vehicle occlusion were investigated, but they did not appear to be responsible for the observed results. Two experimental aqueous nitroglycerin gels were prepared with polyethylene glycol 400. One gel contained just sufficient polyethylene glycol to solubilize the nitroglycerin; the other had excess polyethylene glycol to solubilize nitroglycerin far below saturation. Both gels gave extremely low plasma nitroglycerin levels. The composite data suggested that percutaneous nitroglycerin absorption is highly vehicle dependent and that this dependency cannot be explained by simple consideration of drug thermodynamic activity.

  20. Magnetic structures of R5Ni2In4 and R11Ni4In9 ( R = Tb and Ho): Strong hierarchy in the temperature dependence of the magnetic ordering in the multiple rare-earth sublattices

    DOE PAGES

    Ritter, C.; Provino, A.; Manfrinetti, P.; Pecharsky, V. K.; Gschneidner, Jr., K. A.; Dhar, S. K.

    2015-11-09

    In this study, the magnetic properties and magnetic structures of the R5Ni2In4 and the microfibrous R 11Ni4In9 compounds with R = Tb and Ho have been examined using magnetization, heat capacity, and neutron diffraction data. Rare earth atoms occupy three and five symmetrically inequivalent rare earth sites in R5Ni2In4 and R 11Ni4In9 compounds, respectively. As a result of the intra- and inter-magnetic sublattice interactions, the magnetic exchange interactions are different for various rare earth sites; this leads to a cascade of magnetic transitions with a strong hierarchy in the temperature dependence of the magnetic orderings.

  1. Manifestation of the Hofstadter butterfly in far-infrared absorption

    SciTech Connect

    Gudmundsson, V.; Gerhardts, R.R.

    1996-08-01

    The far-infrared absorption of a two-dimensional electron gas with a square-lattice modulation in a perpendicular constant magnetic field is calculated self-consistently within the Hartree approximation. For strong modulation and short period we obtain intrasubband and intersubband magnetoplasmon modes reflecting the subbands of the Hofstadter butterfly in two or more Landau bands. The character of the absorption and the correlation of the peaks to the number of flux quanta through each unit cell of the periodic potential depends strongly on the location of the chemical potential with respect to the subbands, or equivalently, on the density of electrons in the system. {copyright} {ital 1996 The American Physical Society.}

  2. Microstructure of a reflection holographic grating inscribed in an absorptive azopolymer film

    NASA Astrophysics Data System (ADS)

    Choi, Hyunhee

    2015-11-01

    The microstructure of a reflection holographic grating fabricated via a photo-isomerization process in an absorptive azopolymer film is analyzed. A surface relief formation takes place on the film's surface even in the reflection holographic configuration. The polarization-dependent diffraction efficiency and the polarization analysis reveal that the structure of the polarization grating inside the film strongly depends on the amount of optical absorption experienced by the two writing beams. A theoretical analysis shows that the reflection polarization grating, while mimicking a cholesteric liquid crystal structure, is composed of elliptic polarizations with the ellipticity going through a periodic modulation.

  3. Use of dose-dependent absorption into target tissues to more accurately predict cancer risk at low oral doses of hexavalent chromium.

    PubMed

    Haney, J

    2015-02-01

    The mouse dose at the lowest water concentration used in the National Toxicology Program hexavalent chromium (CrVI) drinking water study (NTP, 2008) is about 74,500 times higher than the approximate human dose corresponding to the 35-city geometric mean reported in EWG (2010) and over 1000 times higher than that based on the highest reported tap water concentration. With experimental and environmental doses differing greatly, it is a regulatory challenge to extrapolate high-dose results to environmental doses orders of magnitude lower in a meaningful and toxicologically predictive manner. This seems particularly true for the low-dose extrapolation of results for oral CrVI-induced carcinogenesis since dose-dependent differences in the dose fraction absorbed by mouse target tissues are apparent (Kirman et al., 2012). These data can be used for a straightforward adjustment of the USEPA (2010) draft oral slope factor (SFo) to be more predictive of risk at environmentally-relevant doses. More specifically, the evaluation of observed and modeled differences in the fraction of dose absorbed by target tissues at the point-of-departure for the draft SFo calculation versus lower doses suggests that the draft SFo be divided by a dose-specific adjustment factor of at least an order of magnitude to be less over-predictive of risk at more environmentally-relevant doses.

  4. pH-dependent absorption in the B and Q bands of oxyhemoglobin and chemically modified oxyhemoglobin (BME) at low Cl- concentrations.

    PubMed Central

    Brunzel, U; Dreybrodt, W; Schweitzer-Stenner, R

    1986-01-01

    We have measured the optical absorbance in the maxima of the Q and B bands for oxyhemoglobin and oxyhemoglobin (BME) in dependence on the pH value of the solution in the region between pH 4.4 and pH 10. From the absorbance data optical titration curves are derived for both bands. These yield for oxyhemoglobin pK values 4.3, 5.3, 6.8, 7.8, and 9.0, whereas for oxyhemoglobin (BME) only one pK value at 4.3 is observed. These data are in good agreement to those derived recently from resonance Raman spectroscopy. The changes of the oscillator strengths in the Q bands are interpreted in terms of Gouterman's four-orbital model to arise from A1g-distortions of the heme group, resulting from changes of the heme-apoprotein interactions due to protonation processes of amino acid-side groups in the beta-chains. The difference between the sets of pK values in oxyhemoglobin and oxyhemoglobin BME is explained from the fact that the bifunctional reagent BME blocks important pathways of heme-apoprotein interactions. The fact that in any case increase of the Q band absorbance is accompanied by a corresponding increase in the B band absorbance leads us to the conclusion that the electronic structure of the B bands has to be described in terms of a six-orbital model, taking into account configurational interaction with the L and N bands. PMID:3708091

  5. Optical absorption characteristics in thermally reduced Er:LiNbO 3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Ma, Rui; Pun, E. Y. B.

    2006-03-01

    Influence of thermal reduction on intrinsic (bipolarons), extrinsic (Er3+) defects and OH- groups in Er:LiNbO3 crystals, which were as-grown and VTE-treated (VTE: vapor transport equilibration) before being reduced, was studied by measuring the polarised or unpolarised optical absorption in visible and near infrared regions. A wide and strong band extending from the optical absorption edge up to the infrared region and peaking around 500 nm (∼2.5 eV), resulting from the absorption of reduction-induced bipolarons, is observed. Meanwhile, the thermal reduction also induces an additional, relatively much narrow absorption band around 370 nm in a crystal whether it is Er-doped or undoped and whether it is congruent or originally VTE-treated. Both the 500 nm and the 370 nm bands show similar polarisation dependence. The thermal reduction treatment hardly influences Er3+ spectroscopic properties such as absorption amplitude, linewidth, peaking position and polarisation dependence. The original VTE effects on the spectroscopic properties of Er:LiNbO3 crystal are essentially retained still. The thermal reduction has a similar effect on the OH- absorption to a strong VTE treatment: the removal of the OH- groups contained in the crystal.

  6. Effective absorption in cladding-pumped fibers

    NASA Astrophysics Data System (ADS)

    Zervas, Michalis N.; Marshall, Andy; Kim, Jaesun

    2011-02-01

    We investigate experimentally and theoretically the wavelength dependence of the pump absorption along Yb3+-doped fibers, for cladding-pumped single as well as coupled multimode (GTWaveTM) fibers. We show that significant spectral absorption distortions occur along the length with the 976nm absorption peak affected the most. We have developed a novel theoretical approach, based on coupled mode theory, to explain the observed effects. We have also investigated the mode mixing requirements in order to improve the absorption spectral distribution along the increase the overall absorption efficiency and discuss the implications on fiber laser performance.

  7. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  8. SiC absorption of near-infrared laser radiation at high temperatures

    NASA Astrophysics Data System (ADS)

    Adelmann, B.; Hellmann, R.

    2016-07-01

    We report on a theoretical and experimental investigation of the temperature-dependent optical absorption of nitrogen-doped 4H-SiC for a temperature range between room temperature and the decomposition point. The theoretical model is based on free carrier absorption including the temperature dependence of the electron mobility. With respect to laser material processing of silicon carbide, the analysis focusses on a near-infrared wavelength range. At room temperature, the calculated absorption is in excellent agreement to transmission and reflection measurements. For the experimental study of the absorption at higher temperatures induced by intense 1070-nm laser irradiation, a two-color pyrometer is employed with the thermal emission of the laser interaction zone being collected coaxial to the impinging laser. Exemplarily, the simulated temperature-dependent absorption is used to determine the heating of a 0.4-mm-thick 4H-SiC specimen during laser irradiation and compared to the experimentally determined temperature. In an initial time domain of the irradiation with an attained temperature below 1350 K, the simulated and measured temperatures are in good agreement. Above 1350 K, however, the measured temperature reveals a sharp and fast increase up to 2100 K which is not predicted by the model. This discrepancy is attributed to a strong additional absorption mechanism caused by carbonization at the surface which is confirmed by EDX analysis.

  9. Terahertz absorption of dilute aqueous solutions

    NASA Astrophysics Data System (ADS)

    Heyden, Matthias; Tobias, Douglas J.; Matyushov, Dmitry V.

    2012-12-01

    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  10. Terahertz absorption of dilute aqueous solutions.

    PubMed

    Heyden, Matthias; Tobias, Douglas J; Matyushov, Dmitry V

    2012-12-21

    Absorption of terahertz (THz) radiation by aqueous solutions of large solutes reports on the polarization response of their hydration shells. This is because the dipolar relaxation of the solute is dynamically frozen at these frequencies, and most of the solute-induced absorption changes, apart from the expulsion of water, are caused by interfacial water. We propose a model expressing the dipolar response of solutions in terms of a single parameter, the interface dipole moment induced in the interfacial water by electromagnetic radiation. We apply this concept to experimental THz absorption of hydrated sugars, amino acids, and proteins. None of the solutes studied here follow the expectations of dielectric theories, which predict a negative projection of the interface dipole on the external electric field. We find that this prediction is not able to describe the available experimental data, which instead suggests a nearly zero interface dipole for sugars and a more diverse pattern for amino acids. Hydrophobic amino acids, similarly to sugars, give rise to near zero interface dipoles, while strongly hydrophilic ones are best described by a positive projection of the interface dipole on the external field. The sign of the interface dipole is connected to the slope of the absorption coefficient with the solute concentration. A positive slope, implying an increase in the solution polarity relative to water, mirrors results frequently reported for protein solutions. We therefore use molecular dynamics simulations of hydrated glucose and lambda repressor protein to calculate the interface dipole moments of these solutes and the concentration dependence of the THz absorption. The absorption at THz frequencies increases with increasing solute concentration in both cases, implying a higher polarity of the solution compared to bulk water. The structure of the hydration layer, extracted from simulations, is qualitatively similar in both cases, with spatial correlations

  11. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  12. Anisotropic Absorption of Pure Spin Currents

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; Love, C. J.; Cavill, S. A.; Hesjedal, T.; van der Laan, G.

    2016-01-01

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α , in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co50 Fe50 layer leads to an anisotropic α in a polycrystalline Ni81 Fe19 layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.

  13. Anisotropic Absorption of Pure Spin Currents.

    PubMed

    Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G

    2016-01-29

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353

  14. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles.

    PubMed

    Hua, Yi; Chandra, Kavita; Dam, Duncan Hieu M; Wiederrecht, Gary P; Odom, Teri W

    2015-12-17

    This Letter reports the shape-dependent third-order nonlinear optical properties of anisotropic gold nanoparticles. We characterized the nonlinear absorption coefficients of nanorods, nanostars, and nanoshells using femtosecond Z-scan measurements. By comparing nanoparticle solutions with a similar linear extinction at the laser excitation wavelength, we separated shape effects from that of the localized surface plasmon wavelength. We found that the nonlinear response depended on particle shape. Using pump-probe spectroscopy, we measured the ultrafast transient response of nanoparticles, which supported the strong saturable absorption observed in nanorods and weak nonlinear response in nanoshells. We found that the magnitude of saturable absorption as well as the ultrafast spectral responses of nanoparticles were affected by the linear absorption of the nanoparticles. PMID:26595327

  15. Phenoxyethanol absorption by polyvinyl chloride.

    PubMed

    Lee, M G

    1984-12-01

    Phenoxyethanol was found to be absorbed by polyvinyl chloride administration sets during continuous irrigation therapy. Depending upon the conditions of administration up to 20% loss of potency could occur. Absorption of the drug by the rigid plastic luer-lock fitting of the set caused softening and decreased rigidity of the plastic.

  16. Electric modulation of optical absorption in nanowires

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.

  17. Impacts of nonrefractory material on light absorption by aerosols emitted from biomass burning

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Fortner, E.; Onasch, T. B.; Taylor, J. W.; Flynn, M.; Coe, H.; Kreidenweis, S. M.

    2014-11-01

    We present laboratory measurements of biomass-burning aerosol light-scattering and light absorption coefficients at 405, 532, and 781 nm and investigate their relationship with aerosol composition and fuel type. Aerosol composition measurements included nonrefractory components measured by a high-resolution aerosol mass spectrometer (AMS), composition of refractory black carbon-containing particles by a soot particle aerosol mass spectrometer (SP-AMS), and refractory black carbon measured by a single-particle soot photometer (SP2). All measurements were performed downstream of a thermal denuder system to probe the effects of nonrefractory material on observed optical properties. The fires studied emitted aerosol with a wide range of optical properties with some producing more strongly light-absorbing particles (single-scattering albedo or SSA at 781 nm = 0.4) with a weak wavelength dependence of absorption (absorption Ångström exponent or AAE = 1-2) and others producing weakly light-absorbing particles (SSA at 781 nm ~1) with strong wavelength dependence of absorption (AAE ~7). Removal of nonrefractory material from the particles by the thermal denuder system led to substantial (20-80%) decreases in light absorption coefficients, particularly at shorter wavelengths, reflecting the removal of light-absorbing material that had enhanced black carbon absorption in internally mixed untreated samples. Observed enhancements of absorption by all mechanisms were at least factors of 1.2-1.5 at 532 nm and 781 nm as determined from the heated samples. A mass absorption cross-section-based approach indicated larger enhancements, particularly at shorter wavelengths.

  18. Temperature dependence of the NO3 absorption cross-section above 298 K and determination of the equilibrium constant for NO3 + NO2 <--> N2O5 at atmospherically relevant conditions.

    PubMed

    Osthoff, Hans D; Pilling, Michael J; Ravishankara, A R; Brown, Steven S

    2007-11-21

    The reaction NO3 + NO2 <--> N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1).

  19. Anisotropic orbital occupation and Jahn-Teller distortion of orthorhombic YMnO{sub 3} epitaxial films: A combined experimental and theoretical study on polarization-dependent x-ray absorption spectroscopy

    SciTech Connect

    Haw, Shu-Chih; Chen, Shin-Ann; Lee, Jenn-Min; Lu, Kueih-Tzu; Lee, Ming-Tao; Pi, Tun-Wen; Chen, Jin-Ming E-mail: Zhiwei.Hu@cpfs.mpg.de; Lin, Pao-An; Lee, Chih-Hao; Hu, Zhiwei E-mail: Zhiwei.Hu@cpfs.mpg.de

    2014-04-21

    The b-axis oriented orthorhombic YMnO{sub 3} (o-YMnO{sub 3}) epitaxial films on a YAlO{sub 3} (010) substrate were fabricated with pulsed-laser deposition. The anisotropic orbital occupation and Jahn-Teller (JT) distortion of an o-YMnO{sub 3} film were investigated with polarization-dependent x-ray absorption spectra and configuration-interaction multiplet-cluster calculations. A significant energy difference, ∼3.8 eV, for the main white line along E//b and E//a in polarization-dependent Mn K-edge spectra of o-YMnO{sub 3} indicates an extraordinary JT distortion and significant anisotropic Mn–O bonding within the ab plane in the o-YMnO{sub 3} film. Most importantly, although the orbital occupation of 3d electrons in o-YMnO{sub 3} films is almost the same as that in single crystalline o-DyMnO{sub 3}, the JT distortion of o-YMnO{sub 3} films is larger than that of single crystalline o-DyMnO{sub 3}, deduced from the multiplet calculations. We speculate that this JT distortion predominantly contributes to the origin of the cycloidal spin deformation in bulk o-YMnO{sub 3}, because of a suppressed nearest-neighbor superexchange interaction and an enhanced next-nearest-neighbor superexchange interaction. These complementary results provide insight into the origin of the E-type magnetic configuration of o-YMnO{sub 3}.

  20. A theoretical investigation of gaseous absorption by water droplets from SO2-HNO3-NH3-CO2-HCl mixtures

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Carmichael, G. R.

    1982-01-01

    A physical-chemical model is developed and used to investigate gaseous absorption by water droplets from trace gas mixtures. The model is an extension of that of Carmichael and Peters (1979) and includes the simultaneous absorption of SO2, NH3, HNO3, CO2, and HCl. Gas phase depletion is also considered. Presented results demonstrate that the absorption behavior of raindrops is strongly dependent on drop size, fall distance, trace gas concentrations, and the chemical and physical properties of the constituents of the mixture. In addition, when gas phase depletion is considered, the absorption rates and equilibrium values are also dependent on the precipitation rate itself. Also, the trace constituents liquid phase concentrations may be a factor of six or more lower when gas depletion is considered then when the depletion is ignored. However, the hydrogen ion concentration may be insensitive to the gas phase depletion.

  1. Incomplete intestinal absorption of fructose.

    PubMed

    Kneepkens, C M; Vonk, R J; Fernandes, J

    1984-08-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children with bowel disorders showed incomplete absorption. Seven children were tested again with an equal amount of glucose, and in three of them also of galactose, added to the fructose. The mean maximum breath hydrogen increases were 5 and 10 ppm, respectively, compared with 103 ppm after fructose alone. In one boy several tests were performed with various sugars; fructose was the only sugar incompletely absorbed, and the effect of glucose on fructose absorption was shown to be dependent on the amount added. It is concluded that children have a limited absorptive capacity for fructose. We speculate that the enhancing effect of glucose and galactose on fructose absorption may be due to activation of the fructose carrier. Apple juice in particular contains fructose in excess of glucose and could lead to abdominal symptoms in susceptible children.

  2. Incomplete intestinal absorption of fructose.

    PubMed Central

    Kneepkens, C M; Vonk, R J; Fernandes, J

    1984-01-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children with bowel disorders showed incomplete absorption. Seven children were tested again with an equal amount of glucose, and in three of them also of galactose, added to the fructose. The mean maximum breath hydrogen increases were 5 and 10 ppm, respectively, compared with 103 ppm after fructose alone. In one boy several tests were performed with various sugars; fructose was the only sugar incompletely absorbed, and the effect of glucose on fructose absorption was shown to be dependent on the amount added. It is concluded that children have a limited absorptive capacity for fructose. We speculate that the enhancing effect of glucose and galactose on fructose absorption may be due to activation of the fructose carrier. Apple juice in particular contains fructose in excess of glucose and could lead to abdominal symptoms in susceptible children. PMID:6476870

  3. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    SciTech Connect

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang; Dowling, Jonathan

    2005-09-15

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strong reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.

  4. Microwave Absorption Study on (Bi, Pb)-Sr-Ca-Cu-O Granular Superconductors

    NASA Astrophysics Data System (ADS)

    Jurga, W.; Piekara-Sady, L.; Gazda, M.

    2008-07-01

    (Bi, Pb)-Sr-Ca-Cu-O is considered as a system of 2201, 2212 and 2223 superconductors embedded in the insulating matrix. The size of the grains depends on the time of recrystallization. These types of ceramics exhibit a two-step transition to superconducting state. Because electrical properties depend among other on the Josephson coupling between grains, the magnetically modulated microwave absorption study was undertaken. Magnetically modulated microwave absorption signal was observed to arise just as temperature had been lowered below T1. The shape of this signal was studied to recognize the second temperature T2. Some strong oscillations appear on magnetically modulated microwave absorption at lower temperatures, which might be related to local percolation breakdown in superconducting network.

  5. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  6. Nonlinear photoacoustic signal amplification from single targets in absorption background☆

    PubMed Central

    Sarimollaoglu, Mustafa; Nedosekin, Dmitry A.; Menyaev, Yulian A.; Juratli, Mazen A.; Zharov, Vladimir P.

    2013-01-01

    Photoacoustic (PA) detection of single absorbing targets such as nanoparticles or cells can be limited by absorption background. We show here that this problem can be overcome by using the nonlinear photoacoustics based on the differences in PA signal dependences on the laser energy from targets and background. Among different nonlinear phenomena, we focused on laser generation of nanobubbles as more efficient PA signal amplifiers from strongly absorbing, highly localized targets in the presence of spatially homogenous absorption background generating linear signals only. This approach was demonstrated by using nonlinear PA flow cytometry platform for label-free detection of circulating melanoma cells in blood background in vitro and in vivo. Nonlinearly amplified PA signals from overheated melanin nanoclusters in melanoma cells became detectable above still linear blood background. Nonlinear nanobubble-based photoacoustics provide new opportunities to significantly (5–20-fold) increase PA contrast of single nanoparticles, cells, viruses and bacteria in complex biological environments. PMID:24921062

  7. Diabetic lipohypertrophy delays insulin absorption.

    PubMed

    Young, R J; Hannan, W J; Frier, B M; Steel, J M; Duncan, L J

    1984-01-01

    The effect of lipohypertrophy at injection sites on insulin absorption has been studied in 12 insulin-dependent diabetic patients. The clearance of 125I-insulin from sites with lipohypertrophy was significantly slower than from complementary nonhypertrophied sites (% clearance in 3 h, 43.8 +/- 3.5 +/- SEM) control; 35.3 +/- 3.9 lipohypertrophy, P less than 0.05). The degree of the effect was variable but sufficient in several patients to be of clinical importance. Injection-site lipohypertrophy is another factor that modifies the absorption of subcutaneously injected insulin.

  8. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core–shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron–electron Coulomb repulsion is neglected.

  9. Multi-domain electromagnetic absorption of triangular quantum rings

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners’ symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.

  10. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected.

  11. Multi-domain electromagnetic absorption of triangular quantum rings.

    PubMed

    Sitek, Anna; Thorgilsson, Gunnar; Gudmundsson, Vidar; Manolescu, Andrei

    2016-06-01

    We present a theoretical study of the unielectronic energy spectra, electron localization, and optical absorption of triangular core-shell quantum rings. We show how these properties depend on geometric details of the triangle, such as side thickness or corners' symmetry. For equilateral triangles, the lowest six energy states (including spin) are grouped in an energy shell, are localized only around corner areas, and are separated by a large energy gap from the states with higher energy which are localized on the sides of the triangle. The energy levels strongly depend on the aspect ratio of the triangle sides, i.e., thickness/length ratio, in such a way that the energy differences are not monotonous functions of this ratio. In particular, the energy gap between the group of states localized in corners and the states localized on the sides strongly decreases with increasing the side thickness, and then slightly increases for thicker samples. With increasing the thickness the low-energy shell remains distinct but the spatial distribution of these states spreads. The behavior of the energy levels and localization leads to a thickness-dependent absorption spectrum where one transition may be tuned in the THz domain and a second transition can be tuned from THz to the infrared range of electromagnetic spectrum. We show how these features may be further controlled with an external magnetic field. In this work the electron-electron Coulomb repulsion is neglected. PMID:27102909

  12. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications.

    PubMed

    Colina-Márquez, Jose; Machuca-Martínez, Fiderman; Li Puma, Gianluca

    2010-07-01

    This study provides a systematic and quantitative approach to the analysis and optimization of solar photocatalytic reactors utilized in environmental applications such as pollutant remediation and conversion of biomass (waste) to hydrogen. Ray tracing technique was coupled with the six-flux absorption scattering model (SFM) to analyze the complex radiation field in solar compound parabolic collectors (CPC) and tubular photoreactors. The absorption of solar radiation represented by the spatial distribution of the local volumetric rate of photon absorption (LVRPA) depends strongly on catalyst loading and geometry. The total radiation absorbed in the reactors, the volumetric rate of absorption (VRPA), was analyzed as a function of the optical properties (scattering albedo) of the photocatalyst. The VRPA reached maxima at specific catalyst concentrations in close agreement with literature experimental studies. The CPC has on average 70% higher photon absorption efficiency than a tubular reactor and requires 39% less catalyst to operate under optimum conditions. The "apparent optical thickness" is proposed as a new dimensionless parameter for optimization of CPC and tubular reactors. It removes the dependence of the optimum catalyst concentration on tube diameter and photocatalyst scattering albedo. For titanium dioxide (TiO(2)) Degussa P25, maximum photon absorption occurs at apparent optical thicknesses of 7.78 for CPC and 12.97 for tubular reactors.

  13. Ozone Photolysis: Strong Isotopologue/isotopomer Selectivity in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Gatti, Fabien; Ndengue, Steve; Jost, Remy; Halasz, Gabor; Vibok, Agnes

    2013-06-01

    Using the visible-UV absorption cross section (Abs. XS) of five ozone isotopologues and an averaged actinic flux, we have calculated the contribution of the atmospheric ozone photolysis to the oxygen isotope and ozone isotopologue/isotopomer enrichment. Five ozone isotopologues/isotopomers are considered among which three are symmetric, O^{16}3 (noted 666), O^{16}O^{17}O^{16} (676) and O^{16}O^{18}O^{16} (686), and two are asymmetric, O^{17}O^{16}_2 (667) and O^{18}O^{16}_2 (668). The photolysis rates of the five ozone isotopologues have been calculated as a function of altitude. The Multi Configuration Time Dependent Hartree (MCTDH) method and the potential energy surfaces calculates by R. Schinke and coworkers have been used. We have used experimental actinic fluxes, averaged for latitude and season, for altitudes varying by step of 4km up to 80km. Below 35km, the contribution of the Hartley band to the photolysis rates is restricted to its low energy range, named the Huggins band, which has strong isotopologue/isotopomer selectivity and then induces strong enrichment. Consequently, the isotopologue enrichment's due to ozone photolysis are strongly dependent of the altitude, with pronounced enrichment peaks around 35 km, the altitude corresponding to the maximum relative contribution of the Huggins band. We will also present some new simulations for the simulation of laser-induced quantum dynamics of the electronic and nuclear motion in the ozone molecule on the attosecond time scale.

  14. Identification and Characterization of Visible Absorption Components in Aqueous Methylglyoxal-Ammonium Sulfate Mixtures

    NASA Astrophysics Data System (ADS)

    McGivern, W. S.; Allison, T. C.; Radney, J. G.; Zangmeister, C. D.

    2014-12-01

    The aqueous reaction of methylglyoxal (MG) with ammonium sulfate has been suggested as a source of atmospheric ``brown carbon.'' We have utilized high-performance liquid chromatography coupled to ultraviolet-visible spectroscopy and tandem mass spectrometry to study the products of this reaction at high concentrations. The overall product spectrum shows a large number of distinct components; however, the visible absorption from this mixture is derived a very small number of components. The largest contributor is an imine-substituted (C=N-H) product of aldol condensation/facile dehydration reaction between the parent MG and a hydrated product of the MG + ammonia reaction. The asymmetric nature of this compound relative to the aldol condensation of two MG results in a sufficiently large redshift of the UV absorption spectrum that absorption of visible radiation can occur in the long-wavelength tail. The simplicity of the imine products is a result of a strong bias toward ketimine products due to the extensive hydration of the aldehydic moiety in the parent in aqueous solution. In addition, a strong pH dependence of the absorption cross section was observed with significantly greater absorption under more basic conditions. We have performed time-dependent density functional theory calculations to evaluate the absorption spectra of all of the possible condensation products and their respective ions, and the results are consistent with the experimental observations. We have also observed smaller concentrations of other condensation products of the imine-substituted parent species that do not contribute significantly to the visible absorption but have not been previously discussed.

  15. Attosecond Electron Wave-Packet Interference Observed by Transient Absorption

    SciTech Connect

    Holler, M.; Schapper, F.; Gallmann, L.; Keller, U.

    2011-03-25

    We perform attosecond time-resolved transient absorption spectroscopy around the first ionization threshold of helium and observe rapid oscillations of the absorption of the individual harmonics as a function of time delay with respect to a superimposed, moderately strong infrared laser field. The phase relation between the absorption modulation of individual harmonics gives direct evidence for the interference of transiently bound electronic wave packets as the mechanism behind the absorption modulation.

  16. Attosecond electron wave-packet interference observed by transient absorption.

    PubMed

    Holler, M; Schapper, F; Gallmann, L; Keller, U

    2011-03-25

    We perform attosecond time-resolved transient absorption spectroscopy around the first ionization threshold of helium and observe rapid oscillations of the absorption of the individual harmonics as a function of time delay with respect to a superimposed, moderately strong infrared laser field. The phase relation between the absorption modulation of individual harmonics gives direct evidence for the interference of transiently bound electronic wave packets as the mechanism behind the absorption modulation.

  17. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    SciTech Connect

    Serebryannikov, Andriy E.; Nojima, S.; Alici, K. B.; Ozbay, Ekmel

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  18. Strong Navajo marriages.

    PubMed

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenband, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths: (1) maintain communication, (2) nurture your relationship, (3) learn about marriage, (4) be prepared for marriage, and (5) have a strong foundation.

  19. Strong Navajo marriages.

    PubMed

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenband, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths: (1) maintain communication, (2) nurture your relationship, (3) learn about marriage, (4) be prepared for marriage, and (5) have a strong foundation. PMID:19085828

  20. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  1. Single-molecule imaging by optical absorption

    NASA Astrophysics Data System (ADS)

    Celebrano, Michele; Kukura, Philipp; Renn, Alois; Sandoghdar, Vahid

    2011-02-01

    To date, optical studies of single molecules at room temperature have relied on the use of materials with high fluorescence quantum yield combined with efficient spectral rejection of background light. To extend single-molecule studies to a much larger pallet of substances that absorb but do not fluoresce, scientists have explored the photothermal effect, interferometry, direct attenuation and stimulated emission. Indeed, very recently, three groups have succeeded in achieving single-molecule sensitivity in absorption. Here, we apply modulation-free transmission measurements known from absorption spectrometers to image single molecules under ambient conditions both in the emissive and strongly quenched states. We arrive at quantitative values for the absorption cross-section of single molecules at different wavelengths and thereby set the ground for single-molecule absorption spectroscopy. Our work has important implications for research ranging from absorption and infrared spectroscopy to sensing of unlabelled proteins at the single-molecule level.

  2. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  3. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  4. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  5. Absorption of fast waves at moderate to high ion cyclotron harmonics on DIII-D

    NASA Astrophysics Data System (ADS)

    Pinsker, R. I.; Porkolab, M.; Heidbrink, W. W.; Luo, Y.; Petty, C. C.; Prater, R.; Choi, M.; Schaffner, D. A.; Baity, F. W.; Fredd, E.; Hosea, J. C.; Harvey, R. W.; Smirnov, A. P.; Murakami, M.; Van Zeeland, M. A.

    2006-07-01

    The absorption of fast Alfvén waves (FW) by ion cyclotron harmonic damping in the range of harmonics from 4th to 8th is studied theoretically and with experiments in the DIII-D tokamak. A formula for linear ion cyclotron absorption on ions with an arbitrary distribution function which is symmetric about the magnetic field is used to estimate the single-pass damping for various cases of experimental interest. It is found that damping on fast ions from neutral beam injection can be significant even at the 8th harmonic if the fast ion beta, the beam injection energy and the background plasma density are high enough and the beam injection geometry is appropriate. The predictions are tested in several L-mode experiments in DIII-D with FW power at 60 MHz and at 116 MHz. It is found that 4th and 5th harmonic absorption of the 60 MHz power on the beam ions can be quite strong, but 8th harmonic absorption of the 116 MHz power appears to be weaker than expected. The linear modelling predicts a strong dependence of the 8th harmonic absorption on the initial pitch-angle of the injected beam, which is not observed in the experiment. Possible explanations of the discrepancy are discussed.

  6. Strong Navajo Marriages

    ERIC Educational Resources Information Center

    Skogrand, Linda; Mueller, Mary Lou; Arrington, Rachel; LeBlanc, Heidi; Spotted Elk, Davina; Dayzie, Irene; Rosenbrand, Reva

    2008-01-01

    The purpose of this qualitative study, conducted in two Navajo Nation chapters, was to learn what makes Navajo marriages strong because no research has been done on this topic. Twenty-one Navajo couples (42 individuals) who felt they had strong marriages volunteered to participate in the study. Couples identified the following marital strengths:…

  7. What Is Strong Correlation?

    ERIC Educational Resources Information Center

    Kozak, Marcin

    2009-01-01

    Interpretation of correlation is often based on rules of thumb in which some boundary values are given to help decide whether correlation is non-important, weak, strong or very strong. This article shows that such rules of thumb may do more harm than good, and instead of supporting interpretation of correlation--which is their aim--they teach a…

  8. Reversible modulated mid-infrared absorption of Ag/TiO{sub 2} by photoinduced interfacial charge transfer

    SciTech Connect

    Xu, S. C. E-mail: ghli@issp.ac.cn; Li, L.; Pan, S. S.; Luo, Y. Y.; Zhang, Y. X.; Li, G. H. E-mail: ghli@issp.ac.cn

    2014-10-06

    An enhanced mid-infrared absorption in Ag nanoparticles-decorated TiO{sub 2} microflowers was reported. It was found that the mid-infrared absorption of the Ag/TiO{sub 2} complex depends strongly on the content and size of Ag nanoparticles, the higher the Ag nanoparticles content, the stronger the infrared absorption. The average reflectivity in the entire mid-infrared region of the microflowers drops from 57.6% to 10.5% after Ag nanoparticles decoration. Reversible modulated mid-infrared absorption properties were found in the Ag/TiO{sub 2} complexes upon alternative illumination of visible and UV light due to the photoinduced interfacial electron transfer between TiO{sub 2} semiconductor and Ag nanoparticles.

  9. Measurement of atmospheric NO3 1. Improved removal of water vapour absorption features in the analysis for NO3

    NASA Astrophysics Data System (ADS)

    Aliwell, S. R.; Jones, R. L.

    Atmospheric measurements of the nitrate radical generally detect its absorption of visible radiation in the band near 662 nm. This band is negatively correlated with strong absorptions due to tropospheric water vapour which must therefore be fitted in the spectral analysis to reduce the spectral residual to the level at which sufficient sensitivity to NO3 can be obtained. Previously this had been fitted using a cross-section typically derived from spectra obtained just before sunset or just after sunrise which took no account of the diurnal variation in temperature and water vapour column amounts. An improved method of accounting for water vapour absorptions is presented here. When fitted together with their temperature dependence, water vapour cross-sections calculated using a line-by-line approach gave a more accurate fitting of water vapour absorptions, thus improving the analysis for NO3.

  10. Neural regulation of intestinal nutrient absorption.

    PubMed

    Mourad, Fadi H; Saadé, Nayef E

    2011-10-01

    The nervous system and the gastrointestinal (GI) tract share several common features including reciprocal interconnections and several neurotransmitters and peptides known as gut peptides, neuropeptides or hormones. The processes of digestion, secretion of digestive enzymes and then absorption are regulated by the neuro-endocrine system. Luminal glucose enhances its own absorption through a neuronal reflex that involves capsaicin sensitive primary afferent (CSPA) fibres. Absorbed glucose stimulates insulin release that activates hepatoenteric neural pathways leading to an increase in the expression of glucose transporters. Adrenergic innervation increases glucose absorption through α1 and β receptors and decreases absorption through activation of α2 receptors. The vagus nerve plays an important role in the regulation of diurnal variation in transporter expression and in anticipation to food intake. Vagal CSPAs exert tonic inhibitory effects on amino acid absorption. It also plays an important role in the mediation of the inhibitory effect of intestinal amino acids on their own absorption at the level of proximal or distal segment. However, chronic extrinsic denervation leads to a decrease in intestinal amino acid absorption. Conversely, adrenergic agonists as well as activation of CSPA fibres enhance peptides uptake through the peptide transporter PEPT1. Finally, intestinal innervation plays a minimal role in the absorption of fat digestion products. Intestinal absorption of nutrients is a basic vital mechanism that depends essentially on the function of intestinal mucosa. However, intrinsic and extrinsic neural mechanisms that rely on several redundant loops are involved in immediate and long-term control of the outcome of intestinal function.

  11. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    DOE PAGES

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; et al

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combinationmore » of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.« less

  12. Enhanced light absorption by mixed source black and brown carbon particles in UK winter

    SciTech Connect

    Liu, Shang; Aiken, Allison C.; Gorkowski, Kyle; Dubey, Manvendra K.; Cappa, Christopher D.; Williams, Leah R.; Herndon, Scott C.; Massoli, Paola; Fortner, Edward C.; Chhabra, Puneet S.; Brooks, William A.; Onasch, Timothy B.; Jayne, John T.; Worsnop, Douglas R.; China, Swarup; Sharma, Noopur; Mazzoleni, Claudio; Xu, Lu; Ng, Nga L.; Liu, Dantong; Allan, James D.; Lee, James D.; Fleming, Zoë L.; Mohr, Claudia; Zotter, Peter; Szidat, Sönke; Prévôt, André S. H.

    2015-09-30

    We report that black carbon (BC) and light-absorbing organic carbon (brown carbon, BrC) play key roles in warming the atmosphere, but the magnitude of their effects remains highly uncertain. Theoretical modelling and laboratory experiments demonstrate that coatings on BC can enhance BC’s light absorption, therefore many climate models simply assume enhanced BC absorption by a factor of ~1.5. However, recent field observations show negligible absorption enhancement, implying models may overestimate BC’s warming. Here we report direct evidence of substantial field-measured BC absorption enhancement, with the magnitude strongly depending on BC coating amount. Increases in BC coating result from a combination of changing sources and photochemical aging processes. When the influence of BrC is accounted for, observationally constrained model calculations of the BC absorption enhancement can be reconciled with the observations. In conclusion, we find that the influence of coatings on BC absorption should be treated as a source and regionally specific parameter in climate models.

  13. Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix

    NASA Astrophysics Data System (ADS)

    Lamarre, Jean-Michel; Billard, Franck; Kerboua, Chahineze Harkati; Lequime, Michel; Roorda, Sjoerd; Martinu, Ludvik

    2008-01-01

    Nanocomposite films consisting of gold nanospheres or gold nanorods embedded in a silica matrix have been prepared using a hybrid deposition technique consisting of plasma-enhanced chemical vapor deposition of SiO2 and co-sputtering of gold, followed by annealing at 900 °C. Subsequent irradiation with 30 MeV heavy ions (Cu5+) was used to form gold nanorods. Linear and nonlinear optical properties of this material are closely related with the surface plasmon resonance in the visible. The nonlinear absorption coefficient (α2@532 nm) for the films containing gold nanospheres was measured by Z-scan and P-scan techniques, and it was found to be isotropic and equal to -4.8 × 10-2 cm/W. On the contrary, gold nanorods films exhibited two distinct surface plasmon resonance absorption bands giving rise to a strong anisotropic behavior, namely a polarization-dependent linear absorption and saturable absorption. Z-scan and P-scan measurements using various light polarization directions yielded nonlinear absorption coefficient (α2@532 nm) values varying from -0.9 × 10-2 cm/W up to -3.0 × 10-2 cm/W. Linearity of the P-scan method in the context of nanocomposite saturable absorption is also discussed.

  14. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    SciTech Connect

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition

  15. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  16. Wave propagation in birefringent materials with off-axis absorption or gain

    NASA Astrophysics Data System (ADS)

    Sabooni, Mahmood; Nilsson, Adam N.; Kristensson, Gerhard; Rippe, Lars

    2016-01-01

    The polarization direction of an electromagnetic field changes and eventually reaches a steady state when propagating through a birefringent material with off-axis absorption or gain. The steady state orientation direction depends on the magnitude of the absorption (gain) and the phase retardation rate. The change in the polarization direction is experimentally demonstrated in weakly doped (0.05 %) Pr3+:Y2SiO5 crystals, where the light polarization, if initially aligned along the most strongly absorbing principal axis, gradually switches to a much less absorbing polarization state during the propagation. This means that the absorption coefficient α in birefringent materials generally varies with length. This is important for, e.g., laser crystal gain media, highly absorbing and narrow band spectral filters and quantum memories.

  17. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Tombácz, E.; Illés, E.; Bozóki, Z.; Szabó, G.

    2014-09-01

    Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite), oxides (quartz, hematite and rutile), and carbonate (limestone) were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA) instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ) of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  18. Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Kelleher, Edmund J. R.; Hasan, Tawfique

    2016-10-01

    We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.

  19. Deep ultraviolet Raman spectroscopy: A resonance-absorption trade-off illustrated by diluted liquid benzene

    NASA Astrophysics Data System (ADS)

    Chadwick, C. T.; Willitsford, A. H.; Philbrick, C. R.; Hallen, H. D.

    2015-12-01

    The magnitude of resonance Raman intensity, in terms of the real signal level measured on-resonance compared to the signal level measured off-resonance for the same sample, is investigated using a tunable laser source. Resonance Raman enhancements, occurring as the excitation energy is tuned through ultraviolet absorption lines, are used to examine the 1332 cm-1 vibrational mode of diamond and the 992 cm-1 ring-breathing mode of benzene. Competition between the wavelength dependent optical absorption and the magnitude of the resonance enhancement is studied using measured signal levels as a function of wavelength. Two system applications are identified where the resonance Raman significantly increases the real signal levels despite the presence of strong absorption: characterization of trace species in laser remote sensing and spectroscopy of the few molecules in the tiny working volumes of near-field optical microscopy.

  20. Direct interband light absorption in the cylindrical quantum dot with modified Pöschl-Teller potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Kazaryan, E. M.; Tevosyan, H. Kh.

    2012-09-01

    In this paper the direct interband light absorption in cylindrical quantum dot with modified Pöschl-Teller potential made of GaAs is studied. For the regime of strong size quantization analytical expressions for the particle energy spectrum, absorption coefficient and dependencies of effective threshold frequencies of absorption on the geometrical sizes of quantum dot are obtained. The selection rules corresponding to different transitions between quantum levels are found. To facilitate the comparison of obtained results with the probable experimental data, size dispersion distribution of growing quantum dots by the geometrical sizes using two experimentally realizing distribution functions has been taken into account. Distribution functions of Lifshits-Slezov and Gaussian have been considered.

  1. Magnetopolaron effects on the optical absorptions in a parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Shihua, Chen

    2016-09-01

    We investigate the influence of magnetic field on the linear and nonlinear optical absorptions in a parabolic quantumdot(QD) through electron—LO-phonon interaction by using the Lee-Low-Pines-Huybrecht variational calculation for all coupling strengths. We apply our calculations to GaAs which is a good candidate in III–V group semiconductors. We find that all the absorption spectra are strongly affected by the electron—LO-phonon interaction, the applied magnetic field, and the Coulomb binding potential. Furthermore, due to the Zeeman splitting, the response of all the absorption values in transition (+1→0) and (‑1→0) closely depends on the magnetic field increasing.

  2. Optical nonlinear absorption characteristics of Sb{sub 2}Se{sub 3} nanoparticles

    SciTech Connect

    Muralikrishna, Molli Kiran, Aditha Sai Ravikanth, B. Sowmendran, P. Muthukumar, V. Sai Venkataramaniah, Kamisetti

    2014-04-24

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb{sub 2}Se{sub 3}) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb{sub 2}Se{sub 3} nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  3. Absorptivity modulation on wavy molten steel surfaces: The influence of laser wavelength and angle of incidence

    SciTech Connect

    Kaplan, A. F. H.

    2012-10-08

    The modulation of the angle-dependent Fresnel absorptivity across wavy molten steel surfaces during laser materials processing, like drilling, cutting, or welding, has been calculated. The absorptivity is strongly altered by the grazing angle of incidence of the laser beam on the processing front. Owing to its specific Brewster-peak characteristics, the 10.64 {mu}m wavelength CO{sub 2}-laser shows an opposite trend with respect to roughness and angle-of-incidence compared to lasers in the wavelength range of 532-1070 nm. Plateaus or rings of Brewster-peak absorptivity can lead to hot spots on a wavy surface, often in close proximity to cold spots caused by shadow domains.

  4. Quantifying the sensitivity of black carbon absorption to model representations of particle mixing

    NASA Astrophysics Data System (ADS)

    Fierce, L.

    2015-12-01

    Atmospheric black carbon is distributed across diverse aerosol populations, with individual particles exhibiting tremendous variation in their chemical composition and internal morphology. Absorption by an individual particle depends on both its constituent aerosol species and the arrangement of those species within the particle, but this particle-scale complexity cannot be tracked in global-scale simulations. Instead, large-scale aerosol models assume simple representations of particle composition, referred to here as inter-particle mixing, and simple representations of particle's internal morphology, referred to here as intra-particle mixing. This study quantifies the sensitivity of absorption by black carbon to these model approximations of particle mixing. A particle-resolved model was used to simulate the evolution of diverse aerosol populations and, as the simulations proceeded, absorption by black carbon was modeled using different representations of inter-particle mixing and intra-particle mixing. Although absorption by black carbon at the particle level is sensitive to the treatment of particles' internal morphology, at the population level absorption is only weakly sensitive to the treatment of intra-particle but depends strongly on model representations of inter-particle mixing.

  5. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption. PMID:25811601

  6. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.

  7. On the Ammonia Absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; Karimov, A. M.; Lyssenko, P. G.; Kharitonova, G. A.

    2015-11-01

    The ammonia absorption bands centered at wavelengths of 645 and 787 nm in the visible spectrum of Saturn are very weak and overlapped with more strong absorption bands of methane. Therefore, the allocation of these bands is extremely difficult. In fact, the NH3 band 787 nm is completely masked by methane. The NH3 645 nm absorption band is superimposed on a relatively weak shortwave wing of CH4 band, in which the absorption maximum lies at the wavelength of 667 nm. In 2009, during the equinox on Saturn we have obtained the series of zonal spectrograms by scanning of the planet disk from the southern to the northern polar limb. Besides studies of latitudinal variation of the methane absorption bands we have done an attempt to trace the behavior of the absorption of ammonia in the band 645 nm. Simple selection of the pure NH3 profile of the band was not very reliable. Therefore, after normalizing to the ring spectrum and to the level of the continuous spectrum for entire band ranging from 630 to 680 nm in the equivalent widths were calculated for shortwave part of this band (630-652 nm), where the ammonia absorption is present, and a portion of the band CH4 652-680 nm. In any method of eliminating the weak part of the methane uptake in the short wing show an increased ammonia absorption in the northern hemisphere compared to the south. This same feature is observed also in the behavior of weak absorption bands of methane in contrast to the more powerful, such as CH4 725 and 787 nm. This is due to the conditions of absorption bands formation in the clouds at multiple scattering. Weak absorption bands of methane and ammonia are formed on the large effective optical depths and their behavior reflects the differences in the degree of uniformity of the aerosol component of the atmosphere of Saturn.

  8. Living Bones, Strong Bones

    NASA Video Gallery

    In this classroom activity, engineering, nutrition, and physical activity collide when students design and build a healthy bone model of a space explorer which is strong enough to withstand increas...

  9. Deuterium absorption from the D{sub 2}O exposure of oxidized 4H-SiC (0001), (0001{sup ¯}), and (112{sup ¯}0) surfaces

    SciTech Connect

    Liu, Gang; Xu, Can; Feldman, Leonard C.; Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny; Bloch, Joseph; Dhar, Sarit

    2015-03-23

    We report results on deuterium absorption on several oxidized 4H-SiC surfaces following D{sub 2}O vapor absorption. Absorption at the oxide/semiconductor interface is strongly face dependent with an order of magnitude more deuterium on the C-face and a-face than on the Si-face, in contrast to the bulk of the oxides which show essentially no face dependence. Annealing in NO gas produces a large reduction in interfacial deuterium absorption in all cases. The reduction of the positive charge at the interface scales linearly with the interface D content. These results also scale with the variation in interface trap density (D{sub it}) and mobility on the three faces after wet oxidation annealing.

  10. Microwave absorption in s- and d-wave disordered superconductors

    NASA Astrophysics Data System (ADS)

    Li, Mai Suan

    2001-10-01

    We model s- and d-wave ceramic superconductors with a three-dimensional lattice of randomly distributed 0 and π Josephson junctions with finite self-inductance. The field and temperature dependences of the microwave absoption are obtained by solving the corresponding Langevin dynamical equations. We find that at magnetic field H=0 the microwave absoption of the s-wave samples, when plotted against the field, has a minimum at any temperature. In the case of d-wave superconductors one has a peak at H=0 in the temperature region where the paramagnetic Meissner effect is observable. These results agree with experiments. The dependence of the microwave absorption on the screening strength was found to be nontrivial due to the crossover from the weak to the strong screening regime.

  11. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  12. Enhanced neoplastic transformation by mammography X rays relative to 200 kVp X rays: indication for a strong dependence on photon energy of the RBE(M) for various end points.

    PubMed

    Frankenberg, D; Kelnhofer, K; Bär, K; Frankenberg-Schwager, M

    2002-01-01

    The fundamental assumption implicit in the use of the atomic bomb survivor data to derive risk estimates is that the gamma rays of Hiroshima and Nagasaki are considered to have biological efficiencies equal to those of other low-LET radiations up to 10 keV/microm, including mammography X rays. Microdosimetric and radiobiological data contradict this assumption. It is therefore of scientific and public interest to evaluate the efficiency of mammography X rays (25-30 kVp) to induce cancer. In this study, the efficiency of mammography X rays relative to 200 kVp X rays to induce neoplastic cell transformation was evaluated using cells of a human hybrid cell line (CGL1). For both radiations, a linear-quadratic dose-effect relationship was observed for neoplastic transformation of CGL1 cells; there was a strong linear component for the 29 kVp X rays. The RBE(M) of mammography X rays relative to 200 kVp X rays was determined to be about 4 for doses < or = 0.5 Gy. A comparison of the electron fluences for both X rays provides strong evidence that electrons with energies of < or = 15 keV can induce neoplastic transformation of CGL1 cells. Both the data available in the literature and the results of the present study strongly suggest an increase of RBE(M) for carcinogenesis in animals, neoplastic cell transformation, and clastogenic effects with decreasing photon energy or increasing LET to an RBE(M) approximately 8 for mammography X rays relative to 60Co gamma rays. PMID:11754647

  13. Synthesis of Ultrasmall Cu2 O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination.

    PubMed

    Ke, Wei-Hong; Hsia, Chi-Fu; Chen, Ying-Jui; Huang, Michael H

    2016-07-01

    Size-tunable small to ultrasmall Cu2 O nanocubes and octahedra are synthesized in aqueous solution without the introduction of any surfactant. These nanocrystals provide strong evidence of the existence of facet-dependent optical absorption properties of Cu2 O nanoparticles, showing nanocubes always have a more redshifted absorption band than that of octahedra having a similar volume by about 15 nm. PMID:27218827

  14. Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4-18 GHz

    NASA Astrophysics Data System (ADS)

    Ohlan, Anil; Singh, Kuldeep; Chandra, Amita; Dhawan, S. K.

    2008-08-01

    Conducting polymer nanocomposites of polyphenyl amine with barium ferrite nanoparticles (50-70nm) have been synthesized via emulsion polymerization. The complex permittivity, permeability, and microwave absorption properties of the composite were studied in the 12.4-18GHz (Ku band) frequency range. The composite has shown high shielding effectiveness due to absorption (SEA) of 28.9dB (˜99.9%), which strongly depends on dielectric loss, magnetic permeability, and volume fraction of barium ferrite nanoparticles. The high value of SEA suggests that these composites can be used as a promising radar absorbing materials.

  15. Energy levels and far-infrared optical absorption of impurity doped semiconductor nanorings: Intense laser and electric fields effects

    NASA Astrophysics Data System (ADS)

    Barseghyan, M. G.

    2016-11-01

    The effects of electron-impurity interaction on energy levels and far-infrared absorption in semiconductor nanoring under the action of intense laser and lateral electric fields have been investigated. Numerical calculations are performed using exact diagonalization technique. It is found that the electron-impurity interaction and external fields change the energy spectrum dramatically, and also have significant influence on the absorption spectrum. Strong dependence on laser field intensity and electric field of lowest energy levels, also supported by the Coulomb interaction with impurity, is clearly revealed.

  16. On Strong Anticipation

    PubMed Central

    Stepp, N.; Turvey, M. T.

    2009-01-01

    We examine Dubois's (2003) distinction between weak anticipation and strong anticipation. Anticipation is weak if it arises from a model of the system via internal simulations. Anticipation is strong if it arises from the system itself via lawful regularities embedded in the system's ordinary mode of functioning. The assumption of weak anticipation dominates cognitive science and neuroscience and in particular the study of perception and action. The assumption of strong anticipation, however, seems to be required by anticipation's ubiquity. It is, for example, characteristic of homeostatic processes at the level of the organism, organs, and cells. We develop the formal distinction between strong and weak anticipation by elaboration of anticipating synchronization, a phenomenon arising from time delays in appropriately coupled dynamical systems. The elaboration is conducted in respect to (a) strictly physical systems, (b) the defining features of circadian rhythms, often viewed as paradigmatic of biological behavior based in internal models, (c) Pavlovian learning, and (d) forward models in motor control. We identify the common thread of strongly anticipatory systems and argue for its significance in furthering understanding of notions such as “internal”, “model” and “prediction”. PMID:20191086

  17. Transient absorption and reshaping of ultrafast XUV light by laser-dressed helium

    SciTech Connect

    Gaarde, Mette B.; Schafer, Kenneth J.; Buth, Christian; Tate, Jennifer L.

    2011-01-15

    We present a theoretical study of transient absorption and reshaping of extreme ultraviolet (XUV) pulses by helium atoms dressed with a moderately strong infrared (IR) laser field. We formulate the atomic response using both the frequency-dependent absorption cross section and a time-frequency approach based on the time-dependent dipole induced by the light fields. The latter approach can be used in cases when an ultrafast dressing pulse induces transient effects, and/or when the atom exchanges energy with multiple frequency components of the XUV field. We first characterize the dressed atom response by calculating the frequency-dependent absorption cross section for XUV energies between 20 and 24 eV for several dressing wavelengths between 400 and 2000 nm and intensities up to 10{sup 12} W/cm{sup 2}. We find that for dressing wavelengths near 1600 nm, there is an Autler-Townes splitting of the 1s{yields}2p transition that can potentially lead to transparency for absorption of XUV light tuned to this transition. We study the effect of this XUV transparency in a macroscopic helium gas by incorporating the time-frequency approach into a solution of the coupled Maxwell-Schroedinger equations. We find rich temporal reshaping dynamics when a 61-fs XUV pulse resonant with the 1s{yields}2p transition propagates through a helium gas dressed by an 11-fs, 1600-nm laser pulse.

  18. Coherent Absorption of N00N States.

    PubMed

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging. PMID:27447505

  19. Coherent Absorption of N00N States

    NASA Astrophysics Data System (ADS)

    Roger, Thomas; Restuccia, Sara; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-07-01

    Recent results in deeply subwavelength thickness films demonstrate coherent control and logical gate operations with both classical and single-photon light sources. However, quantum processing and devices typically involve more than one photon and nontrivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single- or two-photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features, opening up applications in multiphoton spectroscopy and imaging.

  20. Effects of Surfactants on Chlorobenzene Absorption on Pyrite Surface

    NASA Astrophysics Data System (ADS)

    Hoa, P. T.; Suto, K.; Inoue, C.; Hara, J.

    2007-03-01

    Recently, both surfactant extraction of chlorinated compounds from contaminated soils and chemical reduction of chlorinated compounds by pyrite have had received a lot of attention. The reaction of the natural mineral pyrite was found as a surface controlling process which strongly depends on absorption of contaminants on the surface. Surfactants were not only aggregated into micelle which increase solubility of hydrophobic compounds but also tend to absorb on the solid surface. This study investigated effects of different kinds of Surfactants on absorption of chlorobenzene on pyrite surface in order to identify coupling potential of surfactant application and remediation by pyrite. Surfactants used including non-ionic, anionic and cationic which were Polyoxyethylene (23) Lauryl Ether (Brij35), Sodium Dodecyl Sulfate (SDS) and Cetyl TrimethylAmmonium Bromide (CTAB) respectively were investigated with a wide range of surfactant concentration up to 4 times of each critical micelle concentration (CMC). Chlorobenzene was chosen as a representative compound. The enhancement or competition effects of Surfactants on absorption were discussed.