Science.gov

Sample records for absorption depth profile

  1. Absorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  2. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-11-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  3. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad K.; Mukhaimer, Ayman W.; Drmosh, Qasem A.

    2016-07-01

    Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ˜650 nm of the solar spectrum (i.e. ˜1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet-visible (UV-Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV-Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for

  4. Depth profiling the optical absorption and thermal reflection coefficient via an analysis based on the method of images (abstract)

    NASA Astrophysics Data System (ADS)

    Power, J. F.

    2003-01-01

    The problem of depth profiling optical absorption in a thermally depth variable solid is a problem of direct interest for the analysis of complex structured materials. In this work, we introduce a new algorithm to solve this problem in a planar layered sample which is impulse irradiated. The sample is comprised of "N" model layers of thickness Δx, of constant diffusivity α, where the conductivity varies depth wise with each layer. This derivation extends to the general case of a depth variable thermal reflection coefficient with depth variable optical source density. In such a sample, at finite time, t, past excitation, thermal energy can only significantly penetrate NL model layers NL≈√4αt[-ln(ɛ)] /2Δx, where ɛ is a small error (ɛ⩽10-6) and a double transit through each layer is assumed. The depth profile of optical absorption in each layer, i, is approximated by δ(x-iΔx), weighted by the optical source density Si. The temperature at x=0- just inside a front medium contacting the sample is given by T(x=0,t)= ∑ i=12NL SiṡGR(x,x0=iΔx,t)]x=0, where GR(x,x0,t) represents an effective Green's function for optical absorption at the depth x0=iΔx in the sample. The method of images1 gives GR(x,x0=iΔx,t) in the following form: [GR(x,0Δx,t)GR(x,2Δx,t)…GR(x,2NLΔx,t)]=[A10A12 A14 A16 …..A1,2NL0A32A34 A36 …..A3,2NL….0……A2NL-1,2NL][G(x-0Δx,t)G(x-2Δx,t)……G(x-2NLΔx,t)]. The G(x-nΔx,t) are shifted image fields obtained from the infinite domain Green's function for one-dimensional heat conduction. They account for thermal wave reflection/transmission over the path length nΔx from the source (at interface i) to the surface (x=0). The Ain are lumped coefficients giving the efficiency of heat transmission from the ith source to the surface for each path order n. They are determined by a mapping procedure that identifies all propagation paths of each order, n, and computes the individual and lumped reflection coefficients. Equation (2) is

  5. Oxygen depth profiling with subnanometre depth resolution

    NASA Astrophysics Data System (ADS)

    Kosmata, Marcel; Munnik, Frans; Hanf, Daniel; Grötzschel, Rainer; Crocoll, Sonja; Möller, Wolfhard

    2014-10-01

    A High-depth Resolution Elastic Recoil Detection (HR-ERD) set-up using a magnetic spectrometer has been taken into operation at the Helmholtz-Zentrum Dresden-Rossendorf for the first time. This instrument allows the investigation of light elements in ultra-thin layers and their interfaces with a depth resolution of less than 1 nm near the surface. As the depth resolution is highly influenced by the experimental measurement parameters, sophisticated optimisation procedures have been implemented. Effects of surface roughness and sample damage caused by high fluences need to be quantified for each kind of material. Also corrections are essential for non-equilibrium charge state distributions that exist very close to the surface. Using the example of a high-k multilayer SiO2/Si3N4Ox/SiO2/Si it is demonstrated that oxygen in ultra-thin films of a few nanometres thickness can be investigated by HR-ERD.

  6. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  7. Depth profile characterization with noncollinear beam mixing

    SciTech Connect

    Freed, Shaun L. E-mail: jeong.na@wyle.com; Na, Jeong K. E-mail: jeong.na@wyle.com

    2015-03-31

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  8. Molecular depth profiling by wedged crater beveling.

    PubMed

    Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas

    2011-08-15

    Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40-keV C(60)(+) cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography, and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ∼(1)/(3) during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm to ∼4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments.

  9. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    NASA Astrophysics Data System (ADS)

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  10. Feature Profile Simulations and Finite Penetration Depth

    NASA Astrophysics Data System (ADS)

    Moroz, Paul; Moroz, Daniel

    2012-10-01

    In plasma materials processing, energetic ions, neutrals and UV photons typically penetrate deep inside solid materials breaking atomic bonds and displacing atoms on their paths. These important phenomena are rarely taken into consideration in processing simulation software, primarily because the proper penetration depths and the corresponding energy depositions, breaking bonds, and atom displacements are difficult and computationally expensive to compute. The FPS-3D feature profile simulator [1-2] is doing that computationally efficiently by utilizing tabulated results obtained with other methods. We discuss, compare, and present results of such simulations made with different methods, one of which is the molecular dynamics analysis. In general, molecular dynamics could be used for simulating materials processing, etching and deposition, but it is extremely computationally expensive to be used for large groups of atoms. In practice, molecular dynamics methods are too slow to be used for feature profile simulations. However, they could help in defining proper chemical reactions and corresponding rates to be used in an advanced feature profile simulator such as FPS-3D. We present results of FPS-3D simulations for Si and SiO2 etching in Ar/Cl2 and Ar/C4F6/O2 plasmas. [4pt] [1] P. Moroz, ``General Feature Profile Simulator FPS-3D,'' ECS Transactions, 35, 25 (2011). [0pt] [2] P. Moroz, ``Numerical Simulation of Feature Profile Evolution using FPS-3D,'' IEEE Transactions of Plasma Science, 39, 2804 (2011).

  11. Oxygen depth profiling by nuclear resonant scattering

    SciTech Connect

    Gibson, G. T.; Sheu, W. J.; Glass, G. A.; Wang, Y. Q.

    1999-06-10

    Nuclear resonance scattering (NRS) {sup 16}O({alpha},{alpha}){sup 16}O at 3.045 MeV ({gamma}=10 keV) has been used for oxygen depth profiling in various thin oxide films. There are two ways by which the oxygen concentration versus depth profile can be obtained from the experimental data: energy spectrum simulation or yield distribution analysis. Energy spectrum simulation is done using the standard RBS software/Rutherford Universal Manipulation Program (RUMP) where only one spectrum is usually needed from the measurement. Yield distribution analysis is accomplished by using a custom developed software/Resonance Analysis Program (RAP) and involves a series of spectra obtained by stepping up the beam energy above the resonance energy. This article aims at comparing the fundamentals of both methods and also discussing their advantages and disadvantages in terms of the data acquisition and the post data analysis. A thermally grown thick SiO{sub 2} film and a thin titanium oxide film grown by corona point discharge were examined.

  12. Oxygen depth profiling by nuclear resonant scattering

    SciTech Connect

    Gibson, G.T.; Sheu, W.J.; Glass, G.A. Wang, Y.Q.

    1999-06-01

    Nuclear resonance scattering (NRS) {sup 16}O({alpha},{alpha}){sup 16}O at 3.045 MeV ({Gamma}=10&hthinsp;keV) has been used for oxygen depth profiling in various thin oxide films. There are two ways by which the oxygen concentration versus depth profile can be obtained from the experimental data: energy spectrum simulation or yield distribution analysis. Energy spectrum simulation is done using the standard RBS software/Rutherford Universal Manipulation Program (RUMP) where only one spectrum is usually needed from the measurement. Yield distribution analysis is accomplished by using a custom developed software/Resonance Analysis Program (RAP) and involves a series of spectra obtained by stepping up the beam energy above the resonance energy. This article aims at comparing the fundamentals of both methods and also discussing their advantages and disadvantages in terms of the data acquisition and the post data analysis. A thermally grown thick SiO{sub 2} film and a thin titanium oxide film grown by corona point discharge were examined. {copyright} {ital 1999 American Institute of Physics.}

  13. Adsorption depth profile of water on thermoplastic starch films

    SciTech Connect

    Bonno, B.; Laporte, J.L.; Paris, D.; D'Leon, R.T.

    2000-01-01

    It is well known that petroleum derived polymers are primary environmental contaminants. The study of new packing biodegradable materials has been the object of numerous papers in past years. Some of these new materials are the thermoplastic films derived from wheat starch. In the present paper, the authors study some of properties of wheat starch thermoplastic films, with various amounts of absorbed water, using photoacoustic spectroscopy techniques. The absorption depth profile of water in the starch substrate is determined for samples having a variable water level.

  14. Tritium Depth Profiles in 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Torikai, Yuji; Murata, Daiju; Penzhorn, Ralf-Dieter; Akaishi, Kenya; Watanabe, Kuniaki; Matsuyama, Masao

    To investigate the behavior of hydrogen uptake and release by 316 stainless steel (SS316), as-received and finely polished stainless steel specimens were exposed at 573 K to tritium gas diluted with hydrogen. Then tritium concentration in the exposed specimens was measured as a function of depth using a chemical etching method. All the tritium concentration profiles showed a sharp drop in the range of 10 μm from the top surface up to the bulk. The amount of tritium absorbed into the polished specimens was three times larger than that into the as-received specimen. However, the polishing effects disappeared by exposing to the air for a long time.

  15. Chemical Depth Profiling from Neutron Reflectometry

    SciTech Connect

    Tuncay Aktosun

    2006-03-21

    The material profile of a thin film can be analyzed by placing the film on a substrate and by sending a neutron beam onto it at various angles of incidence. Technically, the scattering length density of the film needs to be determined as a function of depth. A reflectometer is used to measure the amount of reflection (reflectivity) as a function of the angle of incidence. Mathematically, this is equivalent to sending the neutron beam onto the film at every energy but at a fixed angle of incidence. The film profile needs to be recovered from the measured reflectivity data. Unfortunately, the unique recovery is impossible, and many distinct unrelated profiles may correspond to the same reflectivity data. In our DOE/EPSCoR sponsored research, we have developed an analytical method to uniquely recover the profile of a thin film from the measured reflectivity data. We have shown that by taking reflectivity measurements with two different substrates, one can uniquely determine the film profile. Previously, it was known that one could uniquely recover the profile by taking reflectivity measurements with three different substrates, and our findings indicate that the same goal can be accomplished by using fewer measurements. At Mississippi State University we started an informal weekly seminar (called ''the reflectometry meeting'') at to attract various undergraduate and graduate students into the field. There were about 3 undergraduate students, 6 graduate students, and 2 faculty members attending these seminars. The PI has collaborated with Dr. Norm Berk at National Institute of Standards and Technology (NIST) on various aspects of neutron reflectometry, from which various interesting problems of theoretical and practical importance have arisen. One of these problems is closely related to the important mathematical problem known as analytic extrapolation. Under appropriate conditions (known to hold in neutron reflectometry), the reflection data taken in a finite interval

  16. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2009-12-01

    The degree and depth of curing due to photopolymerization in a commercial dental resin have been studied using photothermal radiometry. The sample consisted of a thick layer of resin on which a thin metallic gold layer was deposited, thus guaranteeing full opacity. Purely thermal-wave inverse problem techniques without the interference of optical profiles were used. Thermal depth profiles were obtained by heating the gold coating with a modulated laser beam and by performing a frequency scan. Prior to each frequency scan, photopolymerization was induced using a high power blue light emitted diode (LED). Due to the highly light dispersive nature of dental resins, the polymerization process depends strongly on optical absorption of the blue light, thereby inducing a depth dependent thermal diffusivity profile in the sample. A robust depth profilometric method for reconstructing the thermal diffusivity depth dependence on degree and depth of polymerization has been developed. The thermal diffusivity depth profile was linked to the polymerization kinetics.

  17. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    PubMed

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis. PMID:26883085

  18. Accurate hydrogen depth profiling by reflection elastic recoil detection analysis

    SciTech Connect

    Verda, R. D.; Tesmer, Joseph R.; Nastasi, Michael Anthony,; Bower, R. W.

    2001-01-01

    A technique to convert reflection elastic recoil detection analysis spectra to depth profiles, the channel-depth conversion, was introduced by Verda, et al [1]. But the channel-depth conversion does not correct for energy spread, the unwanted broadening in the energy of the spectra, which can lead to errors in depth profiling. A work in progress introduces a technique that corrects for energy spread in elastic recoil detection analysis spectra, the energy spread correction [2]. Together, the energy spread correction and the channel-depth conversion comprise an accurate and convenient hydrogen depth profiling method.

  19. Quantification of AES depth profiles by the MRI model

    NASA Astrophysics Data System (ADS)

    Kovač, Janez; Zalar, Anton; Praček, Borut

    2003-02-01

    The main physical effects that contribute to interface broadening in the sputter depth profiles of polycrystalline metallic multilayer structures were studied by comparison of measured and simulated AES depth profiles. An algorithm based on the so-called mixing-roughness-information depth (MRI) model was used to simulate AES depth profiles of Ni/Cr multilayer structures with different roughnesses of the initial surfaces. The simulated depth profiles were compared with measurements performed at two different depth profiling parameters on the Ni/Cr and Al/Ni/Cr multilayer structures with an initial surface roughness of about 1.0 and 21.5 nm, respectively. The comparison of simulated and measured depth profiles enabled us to separate and estimate different contributions to the interface broadening, as well as their dependence on the sputter depth. We found that roughness was the dominant factor related to depth resolution with respect to the information depth and atomic mixing contribution. The values of roughness introduced into the simulation algorithm coincided well with the values measured by AFM at the initial surface and after depth profiling. The results showed the capability of the simulation procedure based on the MRI model to separate and evaluate different contributions to the depth resolution.

  20. An energy spread correction for ERDA hydrogen depth profiling

    SciTech Connect

    Verda, R. D.; Nastasi, Michael Anthony,

    2002-01-01

    A technique for hydrogen depth profiling by reflection elastic recoil detection analysis called the channel-depth conversion was introduced by Verda, et al.' However, the energy spread in elastic recoil detection analysis spectra, which causes a broadening in the energy range and leads to errors in depth profiling, was not addressed by this technique. Here we introduce a technique to addresses this problem, called the energy spread correction. Together, the energy spread correction and the channel-depth conversion techniques comprise the depth profiling method presented in this work.

  1. Non-Voigt Lyalpha Absorption Line Profiles.

    PubMed

    Outram; Carswell; Theuns

    2000-02-01

    Recent numerical simulations have lead to a paradigm shift in our understanding of the intergalactic medium and the loss of a physical justification for Voigt profile fitting of the Lyalpha forest. Many individual lines seen in simulated spectra have significant departures from the Voigt profile, yet could be well fitted by a blend of two or more such lines. We discuss the expected effect on the line profiles due to ongoing gravitational structure formation and Hubble expansion. We develop a method to detect departures from Voigt profiles of the absorption lines in a statistical way and apply this method to simulated Lyalpha forest spectra, confirming that the profiles seen do statistically differ from Voigt profiles. PMID:10622758

  2. Depth profiling of tritium in materials for fusion technology

    SciTech Connect

    Sawicki, J.A.

    1988-09-01

    The paper outlines recent progress in depth profiling of tritium distribution near the surface of materials by two ion beam techniques; elastic recoil detection (ERD) and T(d,/alpha/)n nuclear reaction analysis (NRA). The sensitivity and depth-resolution of both methods are examined for a series of tritiated titanium films. Calculated depth profiles and ranges of implanted tritium ions in selected candidate materials for thermonuclear fusion devices are also given. Depth profiles of tritium implanted into specimens of graphite and lithium oxides as a function of temperature are discussed as the examples of applications.

  3. Wind profiler mixing depth and entrainment measurements with chemical applications

    SciTech Connect

    Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C.; Kok, G.L.

    1994-12-31

    Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.

  4. Magnetic depth profiles by neutron reflection

    SciTech Connect

    Felcher, G.P.; Gray, K.E.; Kampwirth, R.T.; Brodsky, M.B.

    1985-09-01

    Fresnel reflection of polarized neutrons was used to measure the dependence of magnetic induction B in materials as a function of depth from the surface. The penetration depth of a magnetic field is superconductors was investigated, as well as the remnant superconducting surface sheath when the applied field exceeded the critical value (H/sub c2/ < H < H/sub c3/ in type II superconductors). In addition ferromagnets in bulk and in thin layers were examined. The prototype instrument with which the measurements were made was described. 19 refs., 5 figs. (WRF)

  5. Optical and thermal depth profile reconstructions of inhomogeneous photopolymerization in dental resins using photothermal waves

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2010-09-01

    Photopolymerization is a process that depends, among other factors, on the optical properties of polymerized materials. In turn, this process affects longitudinal light transport in these materials, thereby altering their optical absorption coefficient which is thus expected to exhibit depth dependence. Furthermore, polymerization affects the thermal properties of these materials. A robust theoretical approach to the study of the depth-dependent optical absorption coefficient, β(x ), and thermal diffusivity, α(x ), in materials exhibiting depth profiles of these parameters has been developed through the photothermal inverse problem based on the concept of the thermal-harmonic oscillator. Using this concept in the frequency-domain nonhomogeneous photothermal-wave boundary-value problem, the simultaneous reconstruction of arbitrary simultaneous optical and thermal depth profiles was achieved using a multiparameter fitting method to the experimental amplitude and phase. As a first application of the theory to partially polymerized Alert Composite (shade A3) dental resin, with curing induced by a blue light-emitting diode, the β(x ) and α(x ) depth profiles were reconstructed from photothermal radiometric frequency-scanned data. A strong anticorrelation of these two depth profiles was observed and was interpreted in terms of photochemical processes occurring during the optical (photocuring) creation of long polymeric chains in the resin. The photothermally reconstructed depth profiles may have implications for the optimization of blue light curing methods using such resins in dental clinical practice.

  6. Automatic digital data collection for ion scattering depth profiles.

    PubMed

    McCune, R C; Hoffman, D W; Baird, R J

    1978-03-01

    A means for acquiring elemental depth profiles in digital form using ion scattering spectrometry for materials having well resolved binary elastic scattering peaks is described. The integrated counts for each elemental peak or background region are stored in consecutive channels of a multichannel scaler using the system sweep multiplexer to provide the time base necessary to advance the scaler address. A typical depth profile for a copper-chromium bi-layer sample collected in this manner is presented.

  7. Sensitivity of depth of maximum and absorption depth of EAS to hadron production mechanism

    NASA Technical Reports Server (NTRS)

    Antonov, R. A.; Galkin, V. I.; Hein, L. A.; Ivanenko, I. P.; Kanevsky, B. L.; Kuzmin, V. A.

    1985-01-01

    Comparison of experimental data on depth of extensive air showers (EAS) development maximum in the atmosphere, T sub M and path of absorption, lambda, in the lower atmosphere of EAS with fixed particle number in the energy region eV with the results of calculation show that these parameters are sensitive mainly to the inelastic interaction cross section and scaling violation in the fragmentation and pionization region. The data are explained in a unified manner within the framework of a model in which scaling is violated slightly in the fragmentation region and strongly in the pionization region at primary cosmic rays composition close to the normal one and a permanent increase of inelastic interaction cross section. It is shown that, while interpreting the experimental data, disregard of two methodical points causes a systematic shift in T sub M: (1) shower selection system; and (2) EAS electron lateral distribution when performing the calculations on basis of which the transfer is made from the Cerenkov pulse FWHM to the depth of shower maximum, T sub M.

  8. Confocal volume in laser Raman microscopy depth profiling

    SciTech Connect

    Maruyama, Yutaka; Kanematsu, Wataru

    2011-11-15

    To clarify the degradation of confocality in laser Raman microscopy depth profiling (optical sectioning) and the influence of pinhole filtering on it, we investigate the confocal volume in detail based on Gaussian beam optics and scalar wave optics. Theoretical depth profiles of a homogeneous transparent sample for four different pinhole sizes, which are computed using the measured incident beam waist radius w{sub 0} and only a few optical system specific parameters such as a numerical aperture (NA) and a focal length, show a good agreement with the corresponding measured depth profiles. The computed confocal volume demonstrates that the pinhole size affects the actual probe depth as well as the axial resolution and the total intensity loss.

  9. Development and Applications of Time of Flight Neutron Depth Profiling

    SciTech Connect

    Bingham Cady; Kenan Unlu

    2005-03-17

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. For example, the subtle differences in spatial distribution and composition of many chemical species in the near surface region and across interfacial boundaries can significantly alter the electronic and optical properties of materials. A number of analytical techniques for depth profiling have been developed during the last two decades. neutron Depth Profiling (NDP) is one of the leading analytical techniques. The NDP is a nondestructive near surface technique that utilizes thermal/cold neutron beam to measure the concentration of specific light elements versus their depth in materials. The depth is obtained from the energy loss of protons, alphas or recoil atoms in substrate materials. Since the charged particle energy determination using surface barrier detector is used for NDP, the depth resolution is highly dependent on the detectors an d detection instruments. The depth resolutions of a few tens of nm are achieved with available NDP facilities in the world. However, the performance of NDP needs to be improved in order to obtain a few A depth resolutions.

  10. Sputter-depth profiling for thin-film analysis.

    PubMed

    Hofmann, S

    2004-01-15

    Following a brief historical background, the concepts and the present state of sputter-depth profiling for thin-film analysis are outlined. There are two main branches: either the removed matter (as in mass- or optical-spectroscopy-based secondary-ion mass spectrometry or glow-discharge optical emission spectroscopy), or the remaining surface (as in Auger electron spectroscopy and X-ray photoelectron spectroscopy) is characterized. These complementary methods show the same result if there is no preferential sputtering of a component. The common root of both is the fundamental ion-solid interaction. Understanding of how the latter influences the depth resolution has led to important improvements in experimental profiling conditions such as sample rotation and the use of low-energy ions at glancing incidence. Modern surface-analysis instruments can provide high-resolution depth profiles on the nanometre scale. Mathematical models of different sophistication were developed to allow deconvolution of the measured profile or quantification by reconstruction of the in-depth distribution of composition. For the latter purpose, the usefulness of the so-called mixing-roughness-information (MRI) depth model is outlined on several thin-film structures (e.g. AlAs/GaAs and Si/Ge), including its extension to quantification of sputter-depth profiles in layer structures with preferential sputtering of one component (Ta/Si). Using the MRI model, diffusion coefficients at interfaces as low as 10(-22) m(2) s(-1) can be determined. Fundamental limitations of sputter-depth profiling are mainly traced back to the stochastic nature of primary-particle energy transfer to the sputtered particle, promoting atomic mixing and the development of surface roughness. Owing to more sophisticated experimental methods, such as low-energy cluster ion bombardment, glancing ion incidence or 'backside' sputtering, these ultimate limitations can be reduced to the atomic monolayer scale.

  11. Photothermal radiometric determination of thermal diffusivity depth profiles in a dental resin

    NASA Astrophysics Data System (ADS)

    Martínez-Torres, P.; Mandelis, A.; Alvarado-Gil, J. J.

    2010-03-01

    The depth of curing due to photopolymerization in a commercial dental resin is studied using photothermal radiometry. The sample consists of a thick layer of resin on which a thin metallic layer is deposited guaranteeing full opacity of the sample. In this case, purely thermal-wave inverse problem techniques without the interference of optical profiles can be used. Thermal profiles are obtained by heating the coating with a modulated laser beam and performing a modulation frequency scan. Before each frequency scan, photopolymerization was induced using a high power blue LED. However due to the fact that dental resins are highly light dispersive materials, the polymerization process depends strongly on the optical absorption coefficient inducing a depth dependent thermal diffusion in the sample. It is shown that using a robust depth profilometric inverse method one can reconstruct the thermal diffusivity profile of the photopolymerized resin.

  12. IR spectral depth profiling using Fourier transform photothermal beam deflection

    NASA Astrophysics Data System (ADS)

    Varlashkin, P. G.; Low, M. J. D.

    1986-05-01

    Fourier transform IR photothermal beam-deflection spectroscopy (PBDS) was used to make spectral depth-profiling measurements with synthetic bilayer samples of polyethylene/nitrocellulose, with a commercial plastic having surface printing and with a single human hair. An interferometer modified to operate at several scan speeds was used to record the spectra, without the cell-resonance problems found with photoacoustic spectroscopy (PAS). The utility of spectral depth profiling is discussed; significant S/N improvements seem to be needed and, with either PBDS or PAS, a wider range of modulation frequencies is required for the methods to be useful.

  13. Crack depth profiling using guided wave angle dependent reflectivity

    SciTech Connect

    Volker, Arno Pahlavan, Lotfollah Blacquiere, Gerrit

    2015-03-31

    Tomographic corrosion monitoring techniques have been developed, using two rings of sensors around the circumference of a pipe. This technique is capable of providing a detailed wall thickness map, however this might not be the only type of structural damage. Therefore this concept is expanded to detect and size cracks and small corrosion defects like root corrosion. The expanded concept uses two arrays of guided-wave transducers, collecting both reflection and transmission data. The data is processed such that the angle-dependent reflectivity is obtained without using a baseline signal of a defect-free situation. The angle-dependent reflectivity is the input of an inversion scheme that calculates a crack depth profile. From this profile, the depth and length of the crack can be determined. Preliminary experiments show encouraging results. The depth sizing accuracy is in the order of 0.5 mm.

  14. Optothermal skin pigment spectral depth profiling using an OPO laser

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Guo, Xinxin; Notingher, Ioan; Cowen, Anna J.; O'Driscoll, Don; Imhof, Robert E.

    1999-06-01

    This paper presents the results of a research program to quantify the factors that determine the visual appearance of human skin. We use in-vivo opto-thermal transient emission radiometry (OTTER) with a tunable OPO laser (400 - 590 nm) to measure spectrally resolved pigment depth profiles. Radiation in this wavelength range is only weakly absorbed by stratum corneum and epidermis, but strongly absorbed by sub-surface pigments, mainly melanin and haemoglobin. These produce characteristic delayed thermal wave (DTW) signals, detected using a high speed Mercury Cadmium Telluride detector sensitive in the wavelength range 6 - 13 microns. The measured intensity-time profiles yield the desired concentration depth profiles through either model-based non-linear least-squares analysis or model-independent inverse analysis. Results on melanin and haemoglobin distributions within normal, tape stripped and wash-damaged skin are presented.

  15. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  16. Determination of agar tissue phantoms depth profiles with pulsed photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Milanič, Matija; Majaron, Boris; Nelson, J. Stuart

    2007-07-01

    Pulsed photothermal radiometry (PPTR) can be used for non-invasive depth profiling of skin vascular lesions (e.g., port wine stain birthmarks), aimed towards optimizing laser therapy on an individual patient basis. Optimal configuration of the experimental setup must be found and its performance characterized on samples with well defined structure, before introducing the technique into clinical practice. The aim of our study is to determine how sample structure and width of spectruml acquisition band affect the accuracy of measured depth profiles. We have constructed tissue phantoms composed of multiple layers of agar and of thin absorbing layers between the agar layers. Three phantoms had a single absorber layer at various depths between 100 and 500 μm, and one phantom had two absorber layers. In each sample we induced a non-homogeneous temperature profile with a 585 nm pulsed laser and acquired the resulting radiometric signal with a fast InSb infrared camera. We tested two configurations of the acquisition system, one using the customary 3-5 um spectruml band and one with a custom 4.5 μm cut-on filter. The laser-induced temperature depth profiles were reconstructed from measured PPTR signals using a custom algorithm and compared with sample structure as determined by histology and optical coherent tomography (OCT). PPTR determined temperature profiles correlate well with sample structure in all samples. Determination of the absorbing layer depth shows good repeatability with spatial resolution decreasing with depth. Spectruml filtering improved the accuracy of reconstructed profiles for shallow absorption layers (100-200 μm). PPTR technique enables reliable determination of structure in tissue phantoms with thin absorbing layers. Narrowing of the spectruml acquisition band (to 4.5 - 5.3 μm) improves reconstruction of objects near the surface.

  17. Mars Sample Return: The Value of Depth Profiles

    NASA Technical Reports Server (NTRS)

    Hausrath, E. M.; Navarre-Sitchler, A. K.; Moore, J.; Sak, P. B.; Brantley, S. L.; Golden, D. C.; Sutter, B.; Schroeder, C.; Socki, R.; Morris, R. V.; Ming, D. W.

    2008-01-01

    Sample return from Mars offers the promise of data from Martian materials that have previously only been available from meteorites. Return of carefully selected samples may yield more information about the history of water and possible habitability through Martian history. Here we propose that samples collected from Mars should include depth profiles of material across the interface between weathered material on the surface of Mars into unweathered parent rock material. Such profiles have the potential to yield chemical kinetic data that can be used to estimate the duration of water and information about potential habitats on Mars.

  18. Surface acoustic wave depth profiling of a functionally graded material

    SciTech Connect

    Goossens, Jozefien; Leclaire, Philippe; Xu Xiaodong; Glorieux, Christ; Martinez, Loic; Sola, Antonella; Siligardi, Cristina; Cannillo, Valeria; Van der Donck, Tom; Celis, Jean-Pierre

    2007-09-01

    The potential and limitations of Rayleigh wave spectroscopy to characterize the elastic depth profile of heterogeneous functional gradient materials are investigated by comparing simulations of the surface acoustic wave dispersion curves of different profile-spectrum pairs. This inverse problem is shown to be quite ill posed. The method is then applied to extract information on the depth structure of a glass-ceramic (alumina) functionally graded material from experimental data. The surface acoustic wave analysis suggests the presence of a uniform coating region consisting of a mixture of Al{sub 2}O{sub 3} and glass, with a sharp transition between the coating and the substrate. This is confirmed by scanning electron microscope with energy dispersive x-ray analysis.

  19. Ion-beam depth-profiling studies of leached glasses

    SciTech Connect

    Houser, C.A.; Tsong, I.S.T.; White, W.B.; Wintenberg, A.L.; Miller, P.D.; Moak, C.D.

    1981-01-01

    Ion-beam depth-profiling was carried out on three different glasses leached (or hydrated) in deionized water using /sup 1/H(/sup 19/F,..cap alpha gamma..)/sup 16/O nuclear reaction, secondary ion mass spectrometry (SIMS) and sputter-induced photon spectrometry (SIPS) techniques. The depth-profiles show an interdiffusion mechanism in which the sodium ions in the glass are depleted and replaced by hydrogen (H/sup +/) or hydronium (H/sub 3/O/sup +/) ions from the solution. The leaching behavior does not show significant difference whether the glass surface is fractured or polished. Problems of mobile ion migration caused by ion bombardment and loss of hydrogen during analysis are discussed.

  20. Depth profiles and free volume in aircraft primer films

    NASA Astrophysics Data System (ADS)

    Van Horn, J. D.; Chen, H.; Jean, Y. C.; Zhang, W.; Jaworowski, M. R.

    2015-06-01

    Positron annihilation lifetime spectroscopy (PALS) and associated techniques provide non-destructive methods to study the free volume inside polymeric materials, and to study material characteristics over a depth profile. Cast free films of organic- or aqueous-based, non-chromated aerospace primers, when cured for about one week, had very different water vapour transport (through-plane) behaviour. In addition, both types of primer films showed strong anisotropic behaviour in in-plane versus through-plane water vapour transport rates. We report the differences between the organic- and aqueous-based aircraft primer films samples and their surface depth profiles. In bulk PALS measurements, an aged, organic-based film exhibited typical lifetimes and intensities for a particulate-containing polymer film on both faces. In contrast, aqueous-based films exhibited face oriented-dependent differences. In all aqueous- based samples, the I3 value of the back of the sample was smaller. The primer film samples were also evaluated with mono-energetic positron beam techniques to generate depth profile information. The heterogeneity in the samples was verified by Doppler broadening of energy spectroscopy (DBES). A model for the differences in the faces of the films, and their layered structure is discussed.

  1. Investigation of interdiffusion and depth resolution in Cu/Ni multilayers by means of AES depth profiling

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Liu, Y.; Swart, H. C.; Wang, J. Y.; Terblans, J. J.

    2016-02-01

    The interdiffusion upon annealing Cu/Ni multilayers structures at 325 °C, 350 °C and 375 °C for 30 min were investigated by Auger electron spectroscopy (AES) depth profiling. The Cu/Ni multilayers structures were deposited on a SiO2 substrate by means of electron beam evaporation in a high vacuum. The measured AES depth profiles of the as-deposited and annealed samples were quantitatively fitted by the Mixing-Roughness-Information depth model assuming that the roughness parameter has linearly increased with the sputtered depth. The roughness values extracted from the depth profiling data fits agreed well with those measured by atomic force microscopy. The depth-dependent interdiffusion coefficients of the annealed samples and depth resolution upon depth profiling of the as-deposited sample were quantitatively evaluated accordingly.

  2. On optical depth profiling using confocal Raman spectroscopy.

    PubMed

    Freebody, N A; Vaughan, A S; Macdonald, A M

    2010-04-01

    Until 2006 the performance of confocal Raman spectroscopy depth profiling was typically described and modeled through the application of geometrical optics, including refraction at the surface, to explain the degree of resolution and the precise form of the depth profile obtained from transparent and semicrystalline materials. Consequently a range of techniques, physical and analytical, was suggested to avoid the errors thus encountered in order to improve the practice of Raman spectroscopy, if not the understanding of the underlying mechanisms. These approaches were completely unsuccessful in accounting for the precise form of the depth profile, the fact that spectra obtained from laminated samples always contain characteristic peaks from all materials present both well above and below the focal point and that spectra can be obtained when focused some 40 mum above the sample surface. This paper provides further evidence that the physical processes underlying Raman spectroscopy are better modeled and explained through the concept of an extended illuminated volume contributing to the final Raman spectrum and modeled through a photon scattering approach rather than a point focus ray optics approach. The power of this numerical model lies in its ability to incorporate, simultaneously, the effects of degree of refraction at the surface (whether using a dry or oil objective lens), the degree of attenuation due to scatter by the bulk of the material, the Raman scattering efficiency of the material, and surface roughness effects. Through this we are now able to explain why even removing surface aberration and refraction effects through the use of oil immersion objective lenses cannot reliably ensure that the material sampled is only that at or close to the point of focus of the laser. Furthermore we show that the precise form of the depth profile is affected by the degree of flatness of the surface of the sample. Perhaps surprisingly, we show that the degree of flatness

  3. Depth Profiling of Polymer Composites by Ultrafast Laser Ablation

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Clayton, Clive; Longtin, Jon

    2009-03-01

    Past work has shown femtosecond laser ablation to be an athermal process at low fluences in polymer systems. The ablation rate in this low fluence regime is very low, allowing for micro-scale removal of material. We have taken advantage of this fact to perform shallow depth profiling ablation on carbon fiber reinforced polymer (CFRP) composites. Neat composite and resin samples were studied to establish reference ablation profiles. These profiles and the effects of the heterogeneous distribution of carbon fibers were observed through confocal laser profilometry and optical and scanning electron microscopy. Weathered materials that have been subjected to accelerated tests in artificial sunlight or water conditions were ablated to determine the correlation between exposure and change in ablation characteristics. Preliminary Raman and micro-ATR analysis performed before and after ablation shows no chemical changes indicative of thermal effects. The low-volume-ablation property was utilized in an attempt to expose the sizing-matrix interphase for analysis.

  4. Metrology aspects of SIMS depth profiling for advanced ULSI processes

    SciTech Connect

    Budrevich, Andre; Hunter, Jerry

    1998-11-24

    As the semiconductor industry roadmap passes through the 0.1 {mu}m technology node, the junction depth of the transistor source/drain extension will be required to be less than 20 nm and the well doping will be near 1.0 {mu}m in depth. The development of advanced ULSI processing techniques requires the evolution of new metrology tools to ensure process capability. High sensitivity (ppb) coupled with excellent depth resolution (1 nm) makes SIMS the technique of choice for measuring the in-depth chemical distribution of these dopants with high precision and accuracy. This paper will discuss the issues, which impact the accuracy and precision of SIMS measurements of ion implants (both shallow and deep). First this paper will discuss common uses of the SIMS technique in the technology development and manufacturing of advanced ULSI processes. In the second part of this paper the ability of SIMS to make high precision measurements of ion implant depth profiles will be studied.

  5. Studying Velocity Turbulence from Doppler-broadened Absorption Lines: Statistics of Optical Depth Fluctuations

    SciTech Connect

    Lazarian, A.; Pogosyan, D.

    2008-10-10

    We continue our work on developing techniques for studying turbulence with spectroscopic data. We show that Doppler-broadened absorption spectral lines, in particular, saturated absorption lines, can be used within the framework of the previously introduced technique termed the velocity coordinate spectrum (VCS). The VCS relates the statistics of fluctuations along the velocity coordinate to the statistics of turbulence; thus, it does not require spatial coverage by sampling directions in the plane of the sky. We consider lines with different degree of absorption and show that for lines of optical depth less than one, our earlier treatment of the VCS developed for spectral emission lines is applicable, if the optical depth is used instead of intensity. This amounts to correlating the logarithms of absorbed intensities. For larger optical depths and saturated absorption lines, we show that only wings of the line are available for the analysis. In terms of the VCS formalism, this results in introducing an additional window, whose size decreases with the increase of the optical depth. As a result, strongly saturated absorption lines only carry the information about the small-scale turbulence. Nevertheless, the contrast of the fluctuations corresponding to the small-scale turbulence increases with the increase of the optical depth, which provides advantages for studying turbulence by combining lines with different optical depths. By combining different absorption lines one can develop a tomography of the turbulence in the interstellar gas in all its complexity.

  6. Pulsed photothermal depth profiling of tattoos undergoing laser removal treatment

    NASA Astrophysics Data System (ADS)

    Milanic, Matija; Majaron, Boris

    2012-02-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of temperature depth profiles induced by pulsed laser irradiation of strongly scattering biological tissues and organs, including human skin. In present study, we evaluate the potential of this technique for investigational characterization and possibly quantitative evaluation of laser tattoo removal. The study involved 5 healthy volunteers (3 males, 2 females), age 20-30 years, undergoing tattoo removal treatment using a Q-switched Nd:YAG laser. There were four measurement and treatment sessions in total, separated by 2-3 months. Prior to each treatment, PPTR measurements were performed on several tattoo sites and one nearby healthy site in each patient, using a 5 ms Nd:YAG laser at low radiant exposure values and a dedicated radiometric setup. The laser-induced temperature profiles were then reconstructed by applying a custom numerical code. In addition, each tatoo site was documented with a digital camera and measured with a custom colorimetric system (in tristimulus color space), providing an objective evaluation of the therapeutic efficacy to be correlated with our PPTR results. The results show that the laser-induced temperature profile in untreated tattoos is invariably located at a subsurface depth of 300 μm. In tattoo sites that responded well to laser therapy, a significant drop of the temperature peak was observed in the profiles obtained from PPTR record. In several sites that appeared less responsive, as evidenced by colorimetric data, a progressive shift of the temperature profile deeper into the dermis was observed over the course of consecutive laser treatments, indicating that the laser tattoo removal was efficient.

  7. Depth profiling code for analyzing ERD-TOF spectra

    NASA Astrophysics Data System (ADS)

    Mathot, G.; Terwagne, G.; Bodart, F.

    2001-07-01

    A computer program calculating depth profiles of light elements in surface layer of various materials from experimental ERD-TOF spectra has been developed. The program, which is able to identify the recoil particles, makes multi-element profiling by sorting the spectra by mass. The interactive spectrum synthesis compare the real recoils spectra with simulated spectra of the assumed target. The program is also able to calculate the atomic concentration ratios without any a priori assumption of the composition of an unknown target. The stopping power used in the analysis package respect the Alegria [1] format and can be easily upgraded and modified by the user. It can be calculated for any particle target combination and beam energy between 100 keV and 15 MeV. The calculation takes also into account for the straggling, the energy loss in the carbon foils of the start and the stop detectors and the entry window of the particle detector.

  8. Neutron depth profiling at the University of Texas

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Wehring, Bernard W.

    1994-12-01

    A Neutron Depth Profiling (NDP) facility has been developed at The University of Texas at Austin (UT) Nuclear Engineering Teaching Laboratory. Thermal neutrons from the tangential beam port of the UT 1-MW TRIGA Mark II research reactor are utilized. The UT-NDP facility consists of a neutron beam collimator, target chamber, beam catcher, and necessary data acquisition and process electronics. The collimator was designed to achieve a high quality thermal neutron beam with good intensity and minimum contamination of neutrons above thermal energies. A target chamber for NDP was constructed from 40.6 cm diameter aluminum tubing. The chamber can accommodate several small samples as well as a single large sample with a diameter up to 30.5 cm. Depth profiles for borophosphosilicate glass films on silicon wafers were measured using the UT-NDP facility. Other potential applications of the UT-NDP facility include the study of implanted boron in semiconductor material; study of nitrogen in metals; and study of helium behavior in metals, and metallic and amorphous alloys.

  9. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  10. Chemical depth profiling of photovoltaic backsheets after accelerated laboratory weathering

    NASA Astrophysics Data System (ADS)

    Lin, Chiao-Chi; Krommenhoek, Peter J.; Watson, Stephanie S.; Gu, Xiaohong

    2014-10-01

    Polymeric multilayer backsheets provide protection for the backside of photovoltaic (PV) module from the damage of moisture and ultraviolet (UV). Due to the nature of multilayer films, certain material property characterization of a backsheet could only be studied by examining its cross-section parallel to the thickness direction of the film. In this study, commercial PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films were aged on the NIST (National Institute of Standards and Technology) SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) with UV irradiance at 170 W/m2 (300 nm to 400 nm) under accelerated weathering conditions of 85°C and two relative humidity (R.H.) levels of 5% (low) and 60% (high). Cryo-microtomy was used to obtain cross-sectional PPE samples with a flat surface parallel to the thickness direction, and chemical depth profiling of multilayers was conducted by Raman microscopic mapping. Atomic force microscopy with peak force tapping mode was used complementarily for cross-sectional imaging. The results revealed that the PPE backsheet films were comprised of five main layers, including pigmented-PET, core PET, inner EVA, pigmented-EVA and outer EVA, along with their interfacial regions and two adhesive layers. UV and moisture degradation on the outer pigmented PET layer was clearly observed; while the damage on the core PET layer was less significance, indicating that the outer pigmented PET layer effectively reduced the damage from UV. In high R.H. exposure, both adhesive layers were severely deteriorated. It was found that the EVA layers were susceptible to moisture at elevated temperature, especially for the pigmented-EVA. Based on the results of accelerated weathering, this depth profiling study brings new understanding to the mechanisms of failure observed in polymeric multilayer backsheets during field exposure.

  11. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  12. Combining dynamic and static depth profiling in low energy ion scattering

    SciTech Connect

    Veen, Rik ter; Fartmann, Michael; Kersting, Reinhard; Hagenhoff, Birgit

    2013-01-15

    The advantages of combining dynamic and static depth profiling in low energy ion scattering are demonstrated for an Si/SiO{sub x}/W/Al{sub 2}O{sub 3} ALD stack. Dynamic depth profiling can be used to calibrate static depth profiling. Energy losses of 152 and 215 eV/nm were found for 3 keV {sup 4}He{sup +} and 5 keV {sup 4}He{sup +} primary ions, respectively, for the experimental configuration used. This is in good agreement with the values used in the field. Static depth profiling can be used to recognize sputter artifacts in dynamic depth profiles.

  13. Interstellar Medium Absorption Profile Spectrograph (IMAPS)

    NASA Technical Reports Server (NTRS)

    Jenkins, E. B.

    1985-01-01

    The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.

  14. Interstellar Medium Absorption Profile Spectrograph (IMAPS)

    NASA Astrophysics Data System (ADS)

    Jenkins, E. B.

    1985-08-01

    The design and fabrication of an objective-grating echelle spectrograph to fly on sounding rockets and record spectra of stars from approximately 920 to 1120A with a resolving power lambda/delta lambda = 200,000 is discussed. The scientific purpose of the program is to observe, with ten times better velocity resolution than before, the plentiful absorption lines in this spectral region produced by atoms, ions and molecules in the interstellar medium. In addition, an important technical goal is to develop and flight-quality a new ultraviolet, photon-counting image sensor which has a windowless, opaque photocathode and a CCD bombarded directly by the accelerated photoelectrons. Except for some initial difficulties with the performance of CCDs, the development of the payload instrument is relatively straightforward and our overall design goals are satisfied. The first flight occurred in late 1984, but no data were obtained because of an inrush of air degraded the instrument's vacuum and caused the detector's high voltage to arc. A second flight in early 1985 was a complete success and obtained a spectrum of pi Sco. Data from this mission are currently being reduced; quick-look versions of the spectra indicate that excellent results will be obtained. Currently, the payload is being reconfigured to fly on a Spartan mission in 1988.

  15. DEPTH CONTINUOUS HYDRAULIC CONDUCTIVITY PROFILING USING AN ACTIVE SOURCE PENETROMETER

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Elsworth, D.

    2009-12-01

    A method is developed to recover depth-continuous hydraulic conductivity profiles of an unconsolidated saturated aquifer using an active source penetrometer, the Hydraulic Profiling Tool (HPT). The tool yields estimates of K through continuous injection of fluid in the subsurface from a small port on the probe shaft while controlled measurements of net applied fluid pressure required to maintain a specified flow rate (typically 350 mL/min) are recorded. The tool gathers these data of flow rate and measured applied pressure during halted and constant-rate penetration (typically 2cm/sec) of the probe. The analysis is developed in two parts, first to explore the interplay between advective effects controlled by penetration rate and secondly flow volume effects controlled by the targeted flow rate. These two effects are analyzed through their respective influence on the measured applied pressure response in ΔP/σv’-Q/ΔP space, which shows a linear relationship for the flow rate to applied pressure response when Q/ΔP > 1 and when Q/ΔP < 1 the response tends towards an asymptotic limit representing soil failure limits as ΔP/σv’ > 1. The analysis shows that penetration rate does not significantly influence the applied pressure response at the tested penetration rates (0 ≤ U(cm/s)≤ 4). The targeted applied flow rate does however influence the applied pressure response as flow rates less than ~300 mL/min show a scattering of the data in ΔP/σv’-Q/ΔP space, where above 300 mL/min the data begins to form a linear response. A targeted flow rate of QT = 400mL/min is suggested as a suitable flow rate based on this analysis. Measurements of hydraulic conductivity are then obtained for the HPT data through the derivation of an equation based on a recast form of Darcy’s law where considerations of the flow geometry as K = (QHPT/ΔP)(δw/πΦ). K profiles obtained for the HPT system are then compared against K profiles obtained from an independent method (PSU

  16. Trace element depth profiles in presolar silicon carbide grains

    NASA Astrophysics Data System (ADS)

    King, Ashley J.; Henkel, Torsten; Rost, Detlef; Lyon, Ian C.

    2012-10-01

    We have analyzed eleven presolar SiC grains from the Murchison meteorite using time-of-flight secondary ion mass spectrometry. The Si isotopic compositions of the grains indicate that they are probably of an AGB star origin. The average abundances of Mg, Fe, Ca, Al, Ti, and V are strongly influenced by their condensation behavior into SiC in circumstellar environments. Depth profiles of Li, B, Mg, Al, K, Ca, Ti, V, Cr, and Fe in the SiC grains show that trace elements are not always homogenously distributed. In approximately half of the SiC grains studied here, the trace element distributions can be explained by condensation processes around the grains' parent stars. These grains appear to have experienced only minimal processing before their arrival in the presolar molecular cloud, possibly due to short residence times in the interstellar medium. The remaining SiC grains contained elevated abundances of several elements within their outer 200 nm, which is attributed to the implantation of energetic ions accelerated by shockwaves in the interstellar medium. These grains may have spent a longer period of time in this region, hence increasing the probability of them passing through a shockfront. Distinct groups of presolar SiC grains whose residence times in the interstellar medium differ are consistent with previous findings based on noble gas studies, although some grains may also have been shielded from secondary alteration by protective outer mantles.

  17. Molecular depth profiling in ice matrices using C 60 projectiles

    NASA Astrophysics Data System (ADS)

    Wucher, A.; Sun, S.; Szakal, C.; Winograd, N.

    2004-06-01

    The prospects of molecular sputter depth profiling using C 60+ projectiles were investigated on thick ice layers prepared by freezing aqueous solutions of histamine onto a metal substrate. The samples were analyzed in a ToF-SIMS spectrometer equipped with a liquid metal Ga + ion source and a newly developed fullerene ion source. The C 60+ beam was used to erode the surface, while static ToF-SIMS spectra were taken with both ion beams alternatively between sputtering cycles. We find that the signals both related to the ice matrix and to the histamine are about two orders of magnitude higher under 20-keV C 60 than under 15-keV Ga bombardment. Histamine related molecular signals are found to increase drastically if the freshly introduced surface is pre-sputtered with C 60 ions, until at a total ion fluence of about 10 13 cm -2 the spectra are completely dominated by the molecular ion and characteristic fragments of histamine. At larger fluence, the signal is found to decrease with a disappearance cross section of approximately 10 -14 cm 2, until at total fluences of about 10 14 cm -2 a steady state with stable molecular signals is reached. In contrast, no appreciable molecular signal could be observed if Ga + ions were used to erode the surface.

  18. Development of cold neutron depth profiling system at HANARO

    NASA Astrophysics Data System (ADS)

    Park, B. G.; Sun, G. M.; Choi, H. D.

    2014-07-01

    A neutron depth profiling (NDP) system has been designed and developed at HANARO, a 30 MW research reactor at the Korea Atomic Energy Research Institute (KAERI). The KAERI-NDP system utilizes cold neutrons that are transported along the CG1 neutron guide from the cold neutron source and it consists of a neutron beam collimator, a target chamber, a beam stopper, and charged particle detectors along with NIM-standard modules for charged particle pulse-height analysis. A 60 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The energy distribution of the cold neutron beam at the end of the neutron guide was calculated by using the Monte Carlo simulation code McStas, and a neutron flux of 1.8×108 n/cm2 s was determined by using the gold foil activation method at the sample position. The performance of the charged particle detection of the KAERI-NDP system was tested by using Standard Reference Materials. The energy loss spectra of alpha particles and Li ions emitted from 10B, which was irradiated by cold neutrons, were measured. The measured peak concentration and the areal density of 10B in the Standard Reference Material are consistent with the reference values within 1% and 3.4%, respectively.

  19. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    PubMed

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons.

  20. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  1. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror. PMID:26368258

  2. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

  3. Depth Profiles of Cosmogenic Noble Gases in the Chondrite Knyahinya

    NASA Astrophysics Data System (ADS)

    Toe, S.; Lavielle, B.; Gilabert, E.; Simonoff, G. N.

    1993-07-01

    Concentrations and isotopic ratios of Ne, Ar, Kr, and Xe have been analyzed in 5-g size samples from different positions within the L5 chondrite Knyahinya. A previous work [1] has shown that Knyahinya experienced a single-stage exposure history (duration 40.5 Ma) as a meteoroid of approximately spherical shape (radius 45 cm). For these reasons, this meteorite represents a very interesting object to study depth profiles of cosmogenic nuclide concentrations and to test and improve model calculations of production rates. The procedure of extraction of noble gases adopted for this work, includes two pyrolyses respectively at about 450 degrees C and 650 degrees C, followed by a combustion step in pure O2 (15-25 torr pressure) at 650 degrees C before the complete melting of the sample [2]. This procedure allows a low-temperature extraction of a significant fraction of the Kr and Xe trapped noble gas component, leading to an enrichment of the cosmogenic component during the last temperature step. Concentration of trapped Ar, Kr, and Xe is 2-3 times lower than expected for a type 5 chondrite. The isotopic composition of the trapped Xe component analyzed in the combustion step is identical with the OC- Xe composition measured in Forest Vale [3]. Preliminary results show that concentration of cosmogenic 83Kr increases by 16% from the surface to the center when the ratio of cosmogenic 78Kr to 83Kr decreases from 0.157 to 0.136. The concentration of 81Kr has been measured in each sample. It increases from 0.0220 10^-12 cm^3 STP/g near the surface to 0.0255 10^-12 cm^3 STP/g at the center, in excellent agreement with the variations measured by Eugster [4] in other ordinary chondrites. Acknowledgments: This work was supported by C.N.R.S., by IN2P3 and by INSU (Programme National de Planetologie). References: [1] Graf Th. et al. (1990) GCA, 54, 2511-2520. [2] Gilabert E. and Lavielle B. (1991) Meteoritics, 26, 337. [3] Lavielle B. and Marti K. (1992) JGR, 97, 20875-20881. [4

  4. Altitude range resolution of differential absorption lidar ozone profiles.

    PubMed

    Beyerle, G; McDermid, I S

    1999-02-20

    A method is described for the empirical determination of altitude range resolutions of ozone profiles obtained by differential absorption lidar (DIAL) analysis. The algorithm is independent of the implementation of the DIAL analysis, in particular of the type and order of the vertical smoothing filter applied. An interpretation of three definitions of altitude range resolution is given on the basis of simulations carried out with the Jet Propulsion Laboratory ozone DIAL analysis program, SO3ANL. These definitions yield altitude range resolutions that differ by as much as a factor of 2. It is shown that the altitude resolution calculated by SO3ANL, and reported with all Jet Propulsion Laboratory lidar ozone profiles, corresponds closely to the full width at half-maximum of a retrieved ozone profile if an impulse function is used as the input ozone profile.

  5. In Situ Depth Profiling of CS-137 Contamination in Soils

    SciTech Connect

    Christopher P. Oertel; John R. Giles; Kenneth C. Thompson; Richard P. Wells

    2004-12-01

    Preremediation characterization of Cs-137 contamination in soils was conducted at the Auxiliary Reactor Area (ARA)-23 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site, located at the Idaho National Engineering and Environmental Laboratory. Characterization activities included verification of the lateral extent of the contaminated area using the INEEL Global Positioning Radiometric Scanner. The vertical extent of the contamination in select areas of the site also was evaluated with an in-situ gamma-ray spectrometer, and depth discrete samples were collected at 2-inch depth intervals down to a depth of 8 inches. A comparison was made between the depth distribution data from the in-situ spectrometric measurements and the physical, depth-discrete samples. The results of the study and of the aforementioned comparison indicate that use of in situ high purity germanium (HpGe) detectors during the remediation of the ARA-23 site will aid in directing the depth of excavation, thereby helping to (a) minimize the amount of soils excavated and removed for disposal, and (b) reduce overall project costs.

  6. Measuring depth profiles of residual stress with Raman spectroscopy

    SciTech Connect

    Enloe, W.S.; Sparks, R.G.; Paesler, M.A.

    1988-12-01

    Knowledge of the variation of residual stress is a very important factor in understanding the properties of machined surfaces. The nature of the residual stress can determine a part`s susceptibility to wear deformation, and cracking. Raman spectroscopy is known to be a very useful technique for measuring residual stress in many materials. These measurements are routinely made with a lateral resolution of 1{mu}m and an accuracy of 0.1 kbar. The variation of stress with depth; however, has not received much attention in the past. A novel technique has been developed that allows quantitative measurement of the variation of the residual stress with depth with an accuracy of 10nm in the z direction. Qualitative techniques for determining whether the stress is varying with depth are presented. It is also demonstrated that when the stress is changing over the volume sampled, errors can be introduced if the variation of the stress with depth is ignored. Computer aided data analysis is used to determine the depth dependence of the residual stress.

  7. ADEPT: a program to estimate depth to magnetic basement from sampled magnetic profiles

    USGS Publications Warehouse

    Phillips, Jeffrey D.

    1978-01-01

    A fortran program computes depth to magnetic basement from the spatially varying autocorrelation function of a sampled magnetic profile. The depth calculation assumes a particular form for the autocorrelation function, and this assumption is tested against the measured autocorrelation function in order to reject invalid depth estimates.

  8. Residual stress depth profiles of ausrolled 9310 gear steel

    SciTech Connect

    Paliani, C.M.; Queeney, R.A.; Kozaczek, K.J.

    1995-12-31

    Residual Stress analysis utilizing x-ray diffraction in conjunction with material removal by chemical polishing provides a very effective method of analyzing the near surface residual stress profile of steels. In this experiment, residual stress profiling has been used to analyze the effects of surface ausrolling during the marquenching of a 9310 gear steel which has been carburized to 1% carbon. The ausrolling process is an advanced thermomechanical processing technique used to ausform only the critical surface layer of gears and produce a hard, tough, fine-grained martensitic product. This study compares the residual stress profile of a marquenched specimen with a moderately deformed ausrolled specimen and with a heavily deformed ausrolled specimen, in order to correlate the effects of residual stress with the improved fatigue properties of the gear steel. While no significant variation was observed between the residual stress profile of the marquenched specimens (no deformation) and the line contact ausrolled specimens (moderate deformation), significant increases in the amount of compressive residual stress was noted in the residual stress profile of the point contact ausrolled (heavily deformed) samples. The maximum increase in compressive residual stress due to point contact ausrolling was approximately 500 MPa, when compared to the marquenched sample. This increased residual compressive stress will lower the effective shear stresses during rolling contact fatigue and would therefore explain some of the increase the rolling contact fatigue endurance of the point contact ausrolled specimens.

  9. Depth

    PubMed Central

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  10. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  11. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions

    NASA Astrophysics Data System (ADS)

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs+ beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs+ ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  12. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices. PMID:26883532

  13. Hybrid Organic/Inorganic Materials Depth Profiling Using Low Energy Cesium Ions.

    PubMed

    Noël, Céline; Houssiau, Laurent

    2016-05-01

    The structures developed in organic electronics, such as organic light emitting diodes (OLEDs) or organic photovoltaics (OPVs) devices always involve hybrid interfaces, joining metal or oxide layers with organic layers. No satisfactory method to probe these hybrid interfaces physical chemistry currently exists. One promising way to analyze such interfaces is to use in situ ion beam etching, but this requires ion beams able to depth profile both inorganic and organic layers. Mono- or diatomic ion beams commonly used to depth profile inorganic materials usually perform badly on organics, while cluster ion beams perform excellently on organics but yield poor results when organics and inorganics are mixed. Conversely, low energy Cs(+) beams (<500 eV) allow organic and inorganic materials depth profiling with comparable erosion rates. This paper shows a successful depth profiling of a model hybrid system made of metallic (Au, Cr) and organic (tyrosine) layers, sputtered with 500 eV Cs(+) ions. Tyrosine layers capped with metallic overlayers are depth profiled easily, with high intensities for the characteristic molecular ions and other specific fragments. Metallic Au or Cr atoms are recoiled into the organic layer where they cause some damage near the hybrid interface as well as changes in the erosion rate. However, these recoil implanted metallic atoms do not appear to severely degrade the depth profile overall quality. This first successful hybrid depth profiling report opens new possibilities for the study of OLEDs, organic solar cells, or other hybrid devices.

  14. Al-26 depth profile in Apollo 15 drill core

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Klein, J.; Middleton, R.

    1984-01-01

    Accelerator mass spectrometry is used in a study of galactic cosmic ray production profiles based on cosmic ray-produced Al-26 in the Apollo 15 long core. The results, which are in general agreement with earlier nondestructive counting data, are of significantly higher precision, yet systematically lower. The half-attenuation length for Al-26 production is presently calculated to be 122 g/sq cm, after normalizing the data to average chemical composition.

  15. Quantitative Analysis of Hemodynamics in Bruised Skin Using Photothermal Depth Profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, L.; Milanič, M.; Majaron, B.

    2015-06-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles, providing useful information on depth distribution of specific absorbers in optically scattering biological tissues. In the present study, PPTR profiling is combined with numerical modeling of light transport in human skin to analyze hemoglobin dynamics in traumatic bruises. Specifically, the influence of regularization degree, applied in iterative reconstruction of temperature depth profiles from PPTR signals measured in bruised volunteers, is studied. The results show that selection between two plausible reconstruction results does not significantly affect the assessed values of key bruise evolution parameters, i.e., hemoglobin mass diffusion and characteristic decomposition time.

  16. Compositional depth profiling of TaCN thin films

    SciTech Connect

    Adelmann, Christoph; Conard, Thierry; Franquet, Alexis; Brijs, Bert; Munnik, Frans; Burgess, Simon; Witters, Thomas; Meersschaut, Johan; Kittl, Jorge A.; Vandervorst, Wilfried; Van Elshocht, Sven

    2012-07-15

    The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accurate results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.

  17. Weighted exponential regression for characterizing radionuclide concentrations in soil depth profiles

    SciTech Connect

    C.P.Oertel; J.R.Giles

    2009-11-01

    Characterization of radionuclide concentrations in soil profiles requires accurate evaluation of the depth distribution of the concentrations as measured by gamma emissions. An ongoing study based on 137Cs activity has shown that such concentration data generally follow an exponential trend when the fraction of radioactivity below depth is plotted against the depth. The slope of the exponential regression fit is defined as alpha/rho, the depth profile parameter. A weighted exponential regression procedure has been developed to compute a mean ??? for a group of related soil samples. Regression results from different areas or from different time periods can be used to compare representative radionuclide concentrations for the specified groupings.

  18. Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    NASA Astrophysics Data System (ADS)

    Rieder, M. J.; Kirchengast, G.

    2001-01-01

    An error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50 100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50 100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and

  19. Phytoplankton depth profiles and their transitions near the critical sinking velocity.

    PubMed

    Kolokolnikov, Theodore; Ou, Chunhua; Yuan, Yuan

    2009-07-01

    We consider a simple phytoplankton model introduced by Shigesada and Okubo which incorporates the sinking and self-shading effect of the phytoplankton. The amount of light the phytoplankton receives is assumed to be controlled by the density of the phytoplankton population above the given depth. We show the existence of non-homogeneous solutions for any water depth and study their profiles and stability. Depending on the sinking rate of the phytoplankton, light intensity and water depth, the plankton can concentrate either near the surface, at the bottom of the water column, or both, resulting in a "double-peak" profile. As the buoyancy passes a certain critical threshold, a sudden change in the phytoplankton profile occurs. We quantify this transition using asymptotic techniques. In all cases we show that the profile is locally stable. This generalizes the results of Shigesada and Okubo where infinite depth was considered.

  20. Asteroid Defence: Radiation deposition profiles for angle and depth

    NASA Astrophysics Data System (ADS)

    Ferguson, J.; Gisler, G. R.; Plesko, C. S.; Weaver, R.

    2014-12-01

    In this work we study the energy and momentum deposited to a hazardousnear-earth object due to the radiation (photons) from a nuclear stand-offburst. We use an adaptive-mesh hydrocode, which models the radiationvia nonequilibrium diffusion, to investigate the deposition profiles at varyingdepths and angles, and we compare these results to the analytic work byAhrens and Harris. For the problem of interest, the radiation mean-free-path is exceedingly small (O(1 mm)) compared to the size of the asteroid(O(100 m)), and the radiation is dominantly absorbed by those parts of theasteroid that are closest to the nuclear source. We present a time-dependentanalysis of the radiation-energy and radiation-momentum deposition, as wellas the resolution of the mesh, and a demonstration of the convergence of ourresults.

  1. Spectral analysis of aeromagnetic profiles for depth estimation principles, software, and practical application

    USGS Publications Warehouse

    Sadek, H.S.; Rashad, S.M.; Blank, H.R.

    1984-01-01

    If proper account is taken of the constraints of the method, it is capable of providing depth estimates to within an accuracy of about 10 percent under suitable circumstances. The estimates are unaffected by source magnetization and are relatively insensitive to assumptions as to source shape or distribution. The validity of the method is demonstrated by analyses of synthetic profiles and profiles recorded over Harrat Rahat, Saudi Arabia, and Diyur, Egypt, where source depths have been proved by drilling.

  2. Fine-tuning the etch depth profile via dynamic shielding of ion beam

    NASA Astrophysics Data System (ADS)

    Wu, Lixiang; Qiu, Keqiang; Fu, Shaojun

    2016-08-01

    We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method.

  3. Breadth and Depth of Vocabulary Knowledge and Their Effects on L2 Vocabulary Profiles

    ERIC Educational Resources Information Center

    Bardakçi, Mehmet

    2016-01-01

    Breadth and depth of vocabulary knowledge have been studied from many different perspectives, but the related literature lacks serious studies dealing with their effects on vocabulary profiles of EFL learners. In this paper, with an aim to fill this gap, the relative effects of breadth and depth of vocabulary knowledge on L2 vocabulary profiles…

  4. Depth-profiling of vertical sidewall nanolayers on structured wafers by grazing incidence X-ray flourescence

    NASA Astrophysics Data System (ADS)

    Hönicke, P.; Beckhoff, B.; Kolbe, M.; List, S.; Conard, T.; Struyff, H.

    2008-12-01

    The Physikalisch-Technische Bundesanstalt (PTB), Germany's national metrology institute, developed an alignment strategy to specify elemental depth profiling in vertical sidewall layers on structured wafers. For this purpose, PTB's irradiation chamber for 200 mm and 300 mm silicon wafers was used to combine total-reflection X-ray fluorescence (TXRF) and grazing incidence XRF (GIXRF) techniques by employing monochromatized undulator radiation of the BESSY II electron storage ring. 3-D test structures were fabricated to develop an optimal alignment strategy allowing for depth profiling in such nanolayers. The test structures consisted of silicon bars with widths/spacings either in the μm or in the nm range. In order to be able to differentiate the sidewalls more easily from the remainder of the structures, they were provided with an additional silicon nitride layer. Four structure types of different bar width and density parameters on two 200 mm silicon wafers were investigated. The alignment procedure developed in the present work consists of three main steps and allows for distinct excitation of multiple sidewalls of one kind. Information about depth-dependent sidewall contamination, layer thickness and composition can be obtained by this approach. First results obtained on these test structures demonstrate the application potential of this new technique. In principle, depth-dependent chemical speciation should also be possible using GIXRF in combination with near edge absorption X-ray fine structure (NEXAFS).

  5. Measuring the thickness of protective coatings on historic metal objects using nanosecond and femtosecond laser induced breakdown spectroscopy depth profiling

    NASA Astrophysics Data System (ADS)

    Pouli, P.; Melessanaki, K.; Giakoumaki, A.; Argyropoulos, V.; Anglos, D.

    2005-08-01

    Depth profile analysis by means of laser induced breakdown spectroscopy (LIBS) was investigated with respect to its potential to measure the thickness of different types of thin organic films used as protective coatings on historical and archaeological metal objects. For the materials examined, acrylic varnish and microcrystalline wax, the output from a nanosecond ArF excimer laser at 193 nm was found appropriate for performing a reliable profiling of the coating films leading to accurate determination of the coating thickness on the basis of the number of laser pulses required to penetrate the coating and on the ablation etch rate of the corresponding coating material under the same irradiation conditions. Nanosecond pulses at 248 nm proved inadequate to profile the coatings because of their weak absorption at the laser wavelength. In contrast, femtosecond irradiation at 248 nm yielded well-resolved profiles as a result of efficient ablation achieved through the increased non-linear absorption induced by the high power density of the ultrashort pulses.

  6. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-08-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sight-line to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesised that this is due to high velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳80% accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  7. A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies

    NASA Astrophysics Data System (ADS)

    Curran, S. J.; Duchesne, S. W.; Divoli, A.; Allison, J. R.

    2016-11-01

    The star-forming reservoir in the distant Universe can be detected through H I 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sightline to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z ≥ 0.1) H I 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesized that this is due to high-velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≳ 80 per cent accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy.

  8. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    DOE PAGES

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; et al

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile ismore » consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.« less

  9. On correlation of microturbulence and the line depth of S II line profile in iota Herculis

    NASA Astrophysics Data System (ADS)

    Said, N. M. M.; Razelan, M. M.; Chong, H. Y.; Aziz, A. H. A.; Zainuddin, M. Z.

    2015-04-01

    In this paper, we discuss about the correlation between microturbulence and the fluctuations of central depth of S II line profile of iota Herculis a B3 IV star, based on 144 spectra from the ELODIE archive data (May 17 to 21, 1995) and 47 spectra from the archive data of Ritter Observatory (February 6, 1994 to October 30, 1995). The variations of central depth of S II line profile of this star are analyzed using the IRAF software, and the evaluations of microturbulence are determined by using the important equation of the full width at half-maximum (FWHM) of the line profile for Doppler broadening. From both datasets, we found that there is a connection between the variations of central depth of S II line profile and the microturbulence of iota Herculis. The central depth of S II line profile becomes deeper when the microturbulent velocity increases and vice versa. We propose the connection between microturbulence and the fluctuations of central depth of S II line profile in this star is due to the sub-photospheric iron convection zones (FeCZ) which have the connection with the origin of microturbulence phenomenon, stellar temperature and the opacity of this star

  10. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  11. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus.

  12. Contribution of a visual pigment absorption spectrum to a visual function: depth perception in a jumping spider.

    PubMed

    Nagata, Takashi; Arikawa, Kentaro; Terakita, Akihisa

    2013-01-01

    Absorption spectra of visual pigments are adaptively tuned to optimize informational capacity in most visual systems. Our recent investigation of the eyes of the jumping spider reveals an apparent exception: the absorption characteristics of a visual pigment cause defocusing of the image, reducing visual acuity generally in a part of the retina. However, the amount of defocus can theoretically provide a quantitative indication of the distance of an object. Therefore, we proposed a novel mechanism for depth perception in jumping spiders based on image defocus. Behavioral experiments revealed that the depth perception of the spider depended on the wavelength of the ambient light, which affects the amount of defocus because of chromatic aberration of the lens. This wavelength effect on depth perception was in close agreement with theoretical predictions based on our hypothesis. These data strongly support the hypothesis that the depth perception mechanism of jumping spiders is based on image defocus. PMID:27493545

  13. Aluminum 26, Be-10 and Cl-36 depth profiles in the Canyon Diablo iron meteorite

    NASA Technical Reports Server (NTRS)

    Michlovich, E. S.; Vogt, S.; Masarik, J.; Reedy, R. C.; Elmore, D.; Lipschutz, M. E.

    1994-01-01

    We have measured activities of the long-lived cosmogenic radionuclides Al-26, Be-10, and Cl-36 in 12 fragments of the iron meteorite Canyon Diablo and have constructed production rate-versus-depth profiles of those radionuclides. Profiles determined using differential particle fluxes calculated with the LAHET code system are in good agreement with Al-26, Be-10, and Cl-36 experimental data, but the agreement for Cl-36 was obtained only after neutron-induced cross sections were modified. Profiles calculated with lunar particle fluxes are much lower than experimental Canyon Diablo profiles. The cosmic ray exposure ages of most samples are near 540 m.y.

  14. A simple method of obtaining concentration depth-profiles from X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1984-01-01

    The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.

  15. Assessment of hemoglobin dynamics in traumatic bruises using temperature depth profiling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2013-11-01

    Perceived color of traumatic bruise depends strongly on depth of the spilled blood, natural skin tone, ambient light conditions, etc., which prevents an accurate and reliable determination of the time of the injury. Pulsed photothermal radiometry (PPTR) allows noninvasive determination of the laser-induced temperature depth profile in human skin. We have applied this technique to characterize dynamics of extravasated hemoglobin in the bruise. Next, we use simple model of mass diffusion and biochemical transformation kinetics to simulate bruise dynamics. By applying Monte Carlo simulation of laser energy deposition, comparison with measured temperature profiles is possible. However, parameters of the model were previously not determined directly. Instead, biologically plausible values were assumed. We show how temperature depth profiling enables accurate monitoring of hemoglobin diffusion and degradation. Parameters of the model, hemoglobin mass diffusivity, hemoglobin degradation time, and skin geometry, can be estimated rather accurately. Derivation of bruise evolution parameters will be a valuable addition to existing bruise age determination techniques.

  16. Evaluating the Impact of Smoke Particle Absorption on Passive Satellite Cloud Optical Depth Retrievals

    NASA Astrophysics Data System (ADS)

    Alfaro-Contreras, R.; Zhang, J.; Reid, J. S.; Campbell, J. R.

    2013-12-01

    Absorbing aerosol particles, when lifted above clouds, can perturb top-of-atmosphere radiation radiances measured by passive satellite sensors through the absorption of reflected solar energy. This scenario, if not properly screened, impacts cloud physical retrievals, like cloud optical depth (COD), conducted using radiances/channels in the visible spectrum. We describe observations of smoke particle presence above cloud off the southwest coast of Africa, using spatially and temporally collocated Aqua Moderate Resolution Imaging Spectroradiometer (AQUA MODIS), Ozone Monitoring Instrument (OMI) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. Results from this study indicate that above cloud aerosol episodes happen rather frequent in the smoke outflow region during the Northern Hemisphere summer where above cloud aerosol plumes introduce a significant bias to MODIS COD retrievals in the visible spectrum. This suggests that individual COD retrievals as well as COD climatology from MODIS can be affected over the smoke outflow region by above cloud aerosol contamination and thus showing the need to account for the presence of above cloud absorbing aerosols in the MODIS visible COD retrievals.

  17. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    SciTech Connect

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen; Wang, Fuyi; Zhu, Zihua

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases are presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.

  18. High resolution TOF - SIMS depth profiling of nano-film multilayers

    SciTech Connect

    Bhushan, K. G.; Mukundhan, R.; Gupta, S. K.

    2013-02-05

    We present the results of depth profiling studies conducted using an indigenously developed dual-beam high resolution Time-of-Flight Secondary Ion Mass Spectrometer (TOF-SIMS) on thinfilm W-C-W multilayer structure grown on Si substrate. Opto 8 layers could be clearly identified. Mixing of layers is seen which from analysis using roughness model calculations indicate a mixing thickness of about 2nm that correspond to the escape depth of secondary ions from the sample.

  19. Depth Profiling Of Small Molecule Ingress Into Planar and Cylindrical Materials Using NRA and PIXE

    SciTech Connect

    Smith, Richard W.; Massingham, Gary; Clough, Anthony S.

    2003-08-26

    The use of a 3He ion micro-beam technique to study the ingress/diffusion of water into a planar fibre optic grade glass and a cylindrical drug-release polymer is described. One-dimensional concentration profiles showing the depth of water ingress were produced. The depth of penetration of water into the glass was measured by fitting a gaussian function to the concentration profile. The ingress of water into the drug-release polymer was found to be Fickian and a cylindrical diffusion model used to obtain a diffusion coefficient.

  20. A carbon-14 depth profile in the L5 chondrite Knyahinya

    NASA Astrophysics Data System (ADS)

    Jull, A. J. T.; Donahue, D. J.; Reedy, R. C.; Masarik, J.

    1994-09-01

    We report on a series of measurements of C-14 in samples of the L-chondrite Knyahinya, as a function of depth. The results show C-14 concentrations ranging from 37 to 58 dpm/kg. These measurements are compared to the levels of Ne-21, Be-10 and noble-gas ratios in this meteorite reported by Graf et al (1990). We also compare the C-14 data to the expected profile based on two sets of model calculations. The behavior of this radioisotope with depth is similar to that expected from the models, and good agreement with the profiles of other nuclides is also observed.

  1. A carbon-14 depth profile in the L5 chondrite Knyahinya

    NASA Technical Reports Server (NTRS)

    Jull, A. J. T.; Donahue, D. J.; Reedy, R. C.; Masarik, J.

    1994-01-01

    We report on a series of measurements of C-14 in samples of the L-chondrite Knyahinya, as a function of depth. The results show C-14 concentrations ranging from 37 to 58 dpm/kg. These measurements are compared to the levels of Ne-21, Be-10 and noble-gas ratios in this meteorite reported by Graf et al (1990). We also compare the C-14 data to the expected profile based on two sets of model calculations. The behavior of this radioisotope with depth is similar to that expected from the models, and good agreement with the profiles of other nuclides is also observed.

  2. Cluster secondary ion mass spectrometry and the temperature dependence of molecular depth profiles.

    PubMed

    Mao, Dan; Wucher, Andreas; Brenes, Daniel A; Lu, Caiyan; Winograd, Nicholas

    2012-05-01

    The quality of molecular depth profiles created by erosion of organic materials by cluster ion beams exhibits a strong dependence upon temperature. To elucidate the fundamental nature of this dependence, we employ the Irganox 3114/1010 organic delta-layer reference material as a model system. This delta-layer system is interrogated using a 40 keV C(60)(+) primary ion beam. Parameters associated with the depth profile such as depth resolution, uniformity of sputtering yield, and topography are evaluated between 90 and 300 K using a unique wedge-crater beveling strategy that allows these parameters to be determined as a function of erosion depth from atomic force microscope (AFM) measurements. The results show that the erosion rate calibration performed using the known Δ-layer depth in connection with the fluence needed to reach the peak of the corresponding secondary ion mass spectrometry (SIMS) signal response is misleading. Moreover, we show that the degradation of depth resolution is linked to a decrease of the average erosion rate and the buildup of surface topography in a thermally activated manner. This underlying process starts to influence the depth profile above a threshold temperature between 210 and 250 K for the system studied here. Below that threshold, the process is inhibited and steady-state conditions are reached with constant erosion rate, depth resolution, and molecular secondary ion signals from both the matrix and the Δ-layers. In particular, the results indicate that further reduction of the temperature below 90 K does not lead to further improvement of the depth profile. Above the threshold, the process becomes stronger at higher temperature, leading to an immediate decrease of the molecular secondary ion signals. This signal decay is most pronounced for the highest m/z ions but is less for the smaller m/z ions, indicating a shift toward small fragments by accumulation of chemical damage. The erosion rate decay and surface roughness buildup

  3. Case study of absorption aerosol optical depth closure of black carbon over the East China Sea

    NASA Astrophysics Data System (ADS)

    Koike, M.; Moteki, N.; Khatri, P.; Takamura, T.; Takegawa, N.; Kondo, Y.; Hashioka, H.; Matsui, H.; Shimizu, A.; Sugimoto, N.

    2014-01-01

    aerosol optical depth (AAOD) measurements made by sun-sky photometers are currently the only constraint available for estimates of the global radiative forcing of black carbon (BC), but their validation studies are limited. In this paper, we report the first attempt to compare AAODs derived from single-particle soot photometer (SP2) and ground-based sun-sky photometer (sky radiometer, SKYNET) measurements. During the Aerosol Radiative Forcing in East Asia (A-FORCE) experiments, BC size distribution and mixing state vertical profiles were measured using an SP2 on board a research aircraft near the Fukue Observatory (32.8°N, 128.7°E) over the East China Sea in spring 2009 and late winter 2013. The aerosol extinction coefficients (bext) and single scattering albedo (SSA) at 500 nm were calculated based on aerosol size distribution and detailed BC mixing state information. The calculated aerosol optical depth (AOD) agreed well with the sky radiometer measurements (2 ± 6%) when dust loadings were low (lidar-derived nonspherical particle contribution to AOD less than 20%). However, under these low-dust conditions, the AAODs obtained from sky radiometer measurements were only half of the in situ estimates. When dust loadings were high, the sky radiometer measurements showed systematically higher AAODs even when all coarse particles were assumed to be dust for in situ measurements. These results indicate that there are considerable uncertainties in AAOD measurements. Uncertainties in the BC refractive index, optical calculations from in situ data, and sky radiometer retrieval analyses are discussed.

  4. Inversion for the density-depth profile of polar firn using a stepped-frequency radar

    NASA Astrophysics Data System (ADS)

    Arthern, Robert J.; Corr, Hugh F. J.; Gillet-Chaulet, Fabien; Hawley, Robert L.; Morris, Elizabeth M.

    2013-09-01

    Translating satellite measurements of ice sheet volume change into sea level contribution requires knowledge of the profile of density as a function of depth within the ice sheet and how this profile changes over time. This paper describes an interferometric method of inverting ground-penetrating radar returns for the profile of firn density as a function of depth. The method is an interferometric implementation of the common-midpoint approach, performed using a stepped-frequency, phase-sensitive ground-penetrating radar. By recording the phase difference of returns with a range of antenna separations, the different path lengths through the firn allow recovery of a smoothed representation of the density profile. This density model is characterized by three parameters: surface density and two decay lengths for porosity, each operating over a different density range. Our results suggest that the stepped-frequency radar used here can accurately recover differences in two-way traveltime and produce useful estimates of the density profile. In a test of the method performed at Summit station in Greenland, the recovered density-depth profile agreed with independent density measurements from an ice core and a neutron probe to within 6% root-mean-square error.

  5. XPS for non-destructive depth profiling and 3D imaging of surface nanostructures.

    PubMed

    Hajati, Shaaker; Tougaard, Sven

    2010-04-01

    Depth profiling of nanostructures is of high importance both technologically and fundamentally. Therefore, many different methods have been developed for determination of the depth distribution of atoms, for example ion beam (e.g. O(2)(+) , Ar(+)) sputtering, low-damage C(60) cluster ion sputtering for depth profiling of organic materials, water droplet cluster ion beam depth profiling, ion-probing techniques (Rutherford backscattering spectroscopy (RBS), secondary-ion mass spectroscopy (SIMS) and glow-discharge optical emission spectroscopy (GDOES)), X-ray microanalysis using the electron probe variation technique combined with Monte Carlo calculations, angle-resolved XPS (ARXPS), and X-ray photoelectron spectroscopy (XPS) peak-shape analysis. Each of the depth profiling techniques has its own advantages and disadvantages. However, in many cases, non-destructive techniques are preferred; these include ARXPS and XPS peak-shape analysis. The former together with parallel factor analysis is suitable for giving an overall understanding of chemistry and morphology with depth. It works very well for flat surfaces but it fails for rough or nanostructured surfaces because of the shadowing effect. In the latter method shadowing effects can be avoided because only a single spectrum is used in the analysis and this may be taken at near normal emission angle. It is a rather robust means of determining atom depth distributions on the nanoscale both for large-area XPS analysis and for imaging. We critically discuss some of the techniques mentioned above and show that both ARXPS imaging and, particularly, XPS peak-shape analysis for 3D imaging of nanostructures are very promising techniques and open a gateway for visualizing nanostructures. PMID:20091159

  6. An autonomous expendable conductivity, temperature, depth profiler for ocean data collection

    SciTech Connect

    Downing, J.; McCoy, K.

    1992-10-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions is described. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. It records two CTD profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. The AXCTD can provide ``sea truth`` for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  7. An autonomous expendable conductivity, temperature, depth profiler for ocean data collection

    SciTech Connect

    Downing, J. ); DeRoos, B.G. ); McCoy, K. )

    1992-10-01

    An Autonomous Expendable Conductivity-Temperature-Depth Profiler (AXCTD) for profiling temperature, conductivity, pressure, and other parameters in remote oceanic regions is described. The AXCTD is a microcomputer-controlled sensor package that can be deployed by unskilled operators from ships or aircraft. It records two CTD profiles (one during descent and another during ascent) and CTD times series while on the bottom and adrift at the surface. Recorded data are transmitted to an ARGOS satellite with ground-positioning capabilities. The AXCTD can provide sea truth'' for remote sensing, perform environmental and military surveillance missions, and acquire time-series and synoptic data for computer models.

  8. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics.

  9. 152Eu depth profiles in granite and concrete cores exposed to the Hiroshima atomic bomb.

    PubMed

    Shizuma, K; Iwatani, K; Hasai, H; Hoshi, M; Oka, T

    1997-06-01

    Two granite and two concrete core samples were obtained within 500 m from the hypocenter of the Hiroshima atomic bomb, and the depth profile of 152Eu was measured to evaluate the incident neutron spectrum. The granite cores were obtained from a pillar of the Motoyasu Bridge located 101 m from the hypocenter and from a granite rock in the Shirakami Shrine (379 m); the concrete cores were obtained from a gate in the Gokoku Shrine (398 m) and from a pillar top of the Hiroshima bank (250 m). The profiles of the specific activities of the cores were measured to a depth of 40 cm from the surface using low background germanium (Ge) spectrometers. According to the measured depth profiles, relaxation lengths of incident neutrons were derived as 13.6 cm for Motoyasu Bridge pillar (granite), 12.2 cm for Shirakami Shrine core (granite), and 9.6 cm for concrete cores of Gokoku Shrine and Hiroshima Bank. In addition, a comparison of the granite cores in Hiroshima showed good agreement with Nagasaki data. Present results indicates that the depth profile of 152Eu reflects incident neutrons not so high but in the epithermal region.

  10. Determining mixing depths in complex terrain near a power plant with radar profiler reflectivities

    SciTech Connect

    Gaynor, J.E.

    1994-12-31

    Numerous analyses of 915-MHz wind profiler data are now appearing in the literature in such applications as air quality. Another set of data from these radars is just beginning to be exploited. Pioneering work used radar reflectivity to estimate daytime mixing depths by relating this reflectivity in the form of signal-to-noise ratios to radar C{sub n}{sup 2}. This, in turn, can be related to mixed layer turbulence. These results add a new dimension to the 915-MHz wind profiler products. We used these estimated mixing depths to determine the extent of mixing at several distributed wind profiler sites in the very complex terrain of the Project MOHAVE which occurred during 1992.

  11. Determining concentration depth profiles in fluorinated networks by means of electric force microscopy

    SciTech Connect

    Miccio, Luis A.; Schwartz, Gustavo A.

    2011-08-14

    By means of electric force microscopy, composition depth profiles were measured with nanometric resolution for a series of fluorinated networks. By mapping the dielectric permittivity along a line going from the surface to the bulk, we were able to experimentally access to the fluorine concentration profile. Obtained data show composition gradient lengths ranging from 30 nm to 80 nm in the near surface area for samples containing from 0.5 to 5 wt. % F, respectively. In contrast, no gradients of concentration were detected in bulk. This method has several advantages over other techniques because it allows profiling directly on a sectional cut of the sample. By combining the obtained results with x-ray photoelectron spectroscopy measurements, we were also able to quantify F/C ratio as a function of depth with nanoscale resolution.

  12. Improved quantitative analysis of Cu(In,Ga)Se2 thin films using MCs+-SIMS depth profiling

    NASA Astrophysics Data System (ADS)

    Lee, Jihye; Kim, Seon Hee; Lee, Kang-Bong; Min, Byoung Koun; Lee, Yeonhee

    2014-06-01

    The chalcopyrite semiconductor, Cu(InGa)Se2 (CIGS), is popular as an absorber material for incorporation in high-efficiency photovoltaic devices because it has an appropriate band gap and a high absorption coefficient. To improve the efficiency of solar cells, many research groups have studied the quantitative characterization of the CIGS absorber layers. In this study, a compositional analysis of a CIGS thin film was performed by depth profiling in secondary ion mass spectrometry (SIMS) with MCs+ (where M denotes an element from the CIGS sample) cluster ion detection, and the relative sensitivity factor of the cluster ion was calculated. The emission of MCs+ ions from CIGS absorber elements, such as Cu, In, Ga, and Se, under Cs+ ion bombardment was investigated using time-of-flight SIMS (TOF-SIMS) and magnetic sector SIMS. The detection of MCs+ ions suppressed the matrix effects of varying concentrations of constituent elements of the CIGS thin films. The atomic concentrations of the CIGS absorber layers from the MCs+-SIMS exhibited more accurate quantification compared to those of elemental SIMS and agreed with those of inductively coupled plasma atomic emission spectrometry. Both TOF-SIMS and magnetic sector SIMS depth profiles showed a similar MCs+ distribution for the CIGS thin films.

  13. Oxygen fugacity profile of the oceanic upper mantle and the depth of redox melting beneath ridges

    NASA Astrophysics Data System (ADS)

    Davis, F. A.; Cottrell, E.

    2014-12-01

    Oxygen fugacity (fO2) of a mantle mineral assemblage, controlled primarily by Fe redox chemistry, sets the depth of the diamond to carbonated melt reaction (DCO3). Near-surface fO2 recorded by primitive MORB glasses and abyssal peridotites anchor the fO2 profile of the mantle at depth. If the fO2-depth relationship of the mantle is known, then the depth of the DCO3 can be predicted. Alternatively, if the DCO3 can be detected geophysically, then its depth can be used to infer physical and chemical characteristics of upwelling mantle. We present an expanded version of a model of the fO2-depth profile of adiabatically upwelling mantle first presented by Stagno et al. (2013), kindly provided by D. Frost. The model uses a chemical mass balance and empirical fits to experimental data to calculate compositions and modes of mantle minerals at specified P, T, and bulk Fe3+/ƩFe. We added P and T dependences to the partitioning of Al and Ca to better simulate the mineralogical changes in peridotite at depth and included majorite component in garnet to increase the depth range of the model. We calculate fO2 from the mineral assemblages using the grt-ol-opx oxybarometer (Stagno et al., 2013). The onset of carbonated melting occurs at the intersection of a Fe3+/ƩFe isopleth with the DCO3. Upwelling mantle is tied to the DCO3 until all native C is oxidized to form carbonated melts by reduction of Fe3+ to Fe2+. The depth of intersection of a parcel of mantle with the DCO3 is a function of bulk Fe3+/ƩFe, potential temperature, and bulk composition. We predict that fertile mantle (PUM) along a 1400 °C adiabat, with 50 ppm bulk C, and Fe3+/ƩFe = 0.05 after C oxidation begins redox melting at a depth of 250 km. The model contextualizes observations of MORB redox chemistry. Because fertile peridotite is richer in Al2O3, the Fe2O3-bearing components of garnet are diluted leading to lower fO2 at a given depth compared to refractory mantle under the same conditions. This may indicate

  14. Reconstructing accurate ToF-SIMS depth profiles for organic materials with differential sputter rates

    PubMed Central

    Taylor, Adam J.; Graham, Daniel J.; Castner, David G.

    2015-01-01

    To properly process and reconstruct 3D ToF-SIMS data from systems such as multi-component polymers, drug delivery scaffolds, cells and tissues, it is important to understand the sputtering behavior of the sample. Modern cluster sources enable efficient and stable sputtering of many organics materials. However, not all materials sputter at the same rate and few studies have explored how different sputter rates may distort reconstructed depth profiles of multicomponent materials. In this study spun-cast bilayer polymer films of polystyrene and PMMA are used as model systems to optimize methods for the reconstruction of depth profiles in systems exhibiting different sputter rates between components. Transforming the bilayer depth profile from sputter time to depth using a single sputter rate fails to account for sputter rate variations during the profile. This leads to inaccurate apparent layer thicknesses and interfacial positions, as well as the appearance of continued sputtering into the substrate. Applying measured single component sputter rates to the bilayer films with a step change in sputter rate at the interfaces yields more accurate film thickness and interface positions. The transformation can be further improved by applying a linear sputter rate transition across the interface, thus modeling the sputter rate changes seen in polymer blends. This more closely reflects the expected sputtering behavior. This study highlights the need for both accurate evaluation of component sputter rates and the careful conversion of sputter time to depth, if accurate 3D reconstructions of complex multi-component organic and biological samples are to be achieved. The effects of errors in sputter rate determination are also explored. PMID:26185799

  15. Calibration-free inverse method for depth-profile analysis with laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Gaudiuso, R.

    2016-09-01

    The Calibration-free inverse method (CF-IM) is a variant of the classical CF approach that can be used for the determination of the plasma temperature using a single calibration standard. In this work, the IM was suitably modified in order to test its applicability to the depth-resolved elemental analyses of stratified samples. The single calibration standard was used as a sort of reference sample to model the acquisition conditions of the spectra, to investigate the effect of the acquisition geometry, and to account for possible crater-induced changes in the acquired spectra and plasma parameters. Thus, a depth profile of the standard sample was performed in order to obtain a plasma temperature profile, which in turn was employed, together with the experimental electron density profile, for the depth profile calibration-free analysis. The methodology was also applied to archaeological samples, with the purpose of testing the method with weathered and layered samples, and compared with the results of classical LIBS with calibration lines.

  16. Initial beam size study for passive scatter proton therapy. II. Changes in delivered depth dose profiles

    SciTech Connect

    Polf, Jerimy C.; Harvey, Mark C.; Smith, Alfred R.

    2007-11-15

    In passively scattered proton radiotherapy, a clinically useful treatment beam is produced by spreading a small proton 'pencil beam' extracted from the accelerator to create both a uniform dose profile laterally and a uniform spread-out Bragg peak (SOBP) in depth. Lateral spreading and range modulation of the beam are accomplished using specially designed components within the treatment delivery nozzle. The purpose of this study was to determine how changes in the size of the initial proton pencil beam affect the delivery of dose with a passive scatter treatment nozzle. Monte Carlo calculations were used to study changes of the beam's in-air energy distribution at the exit of the nozzle and the central axis depth dose profiles in water resulting from changes in the incident beam size. Our results indicate that the width of the delivered SOBP decreases as the size of the initial beam increases.

  17. Experimental analysis of bruises in human volunteers using radiometric depth profiling and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-07-01

    We combine pulsed photothermal radiometry (PPTR) depth profiling with diffuse reflectance spectroscopy (DRS) measurements for a comprehensive analysis of bruise evolution in vivo. While PPTR enables extraction of detailed depth distribution and concentration profiles of selected absorbers (e.g. melanin, hemoglobin), DRS provides information in a wide range of visible wavelengths and thus offers an additional insight into dynamics of the hemoglobin degradation products. Combining the two approaches enables us to quantitatively characterize bruise evolution dynamics. Our results indicate temporal variations of the bruise evolution parameters in the course of bruise self-healing process. The obtained parameter values and trends represent a basis for a future development of an objective technique for bruise age determination.

  18. Oxygen bleed-in during SIMS depth profiling: curse or blessing?

    NASA Astrophysics Data System (ADS)

    Zalm, P. C.; Vriezema, C. J.

    1992-02-01

    Oxygen flooding of the target during SIMS depth profiling finds widespread application foranumber of reasons. Among others it enhances the (positive) secondary ionization efficiency, helps in suppressing bombardment-induced surface topography development and reduces the transition time to steady-state erosion conditions. These attractive properties are offset by a number of artefacts that may be introduced by O 2 inlet. A summary of vices and virtues, largely based on existing knowledge, is presented. Then one of the few open questions is addressed, namely to what extent O 2 bleed-in ffects depth resolution. This is examined in some detail by studying ultrashallow dopant profiles of B, P, Ga or Sb in Si by SIMS with and without O 2 leak.

  19. Depth profiling and imaging capabilities of an ultrashort pulse laser ablation time of flight mass spectrometer

    PubMed Central

    Cui, Yang; Moore, Jerry F.; Milasinovic, Slobodan; Liu, Yaoming; Gordon, Robert J.; Hanley, Luke

    2012-01-01

    An ultrafast laser ablation time-of-flight mass spectrometer (AToF-MS) and associated data acquisition software that permits imaging at micron-scale resolution and sub-micron-scale depth profiling are described. The ion funnel-based source of this instrument can be operated at pressures ranging from 10−8 to ∼0.3 mbar. Mass spectra may be collected and stored at a rate of 1 kHz by the data acquisition system, allowing the instrument to be coupled with standard commercial Ti:sapphire lasers. The capabilities of the AToF-MS instrument are demonstrated on metal foils and semiconductor wafers using a Ti:sapphire laser emitting 800 nm, ∼75 fs pulses at 1 kHz. Results show that elemental quantification and depth profiling are feasible with this instrument. PMID:23020378

  20. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  1. NOTE: Spectra from 2.5-15 µm of tissue phantom materials, optical clearing agents and ex vivo human skin: implications for depth profiling of human skin

    NASA Astrophysics Data System (ADS)

    Viator, John A.; Choi, Bernard; Peavy, George M.; Kimel, Sol; Nelson, J. Stuart

    2003-01-01

    Infrared measurements have been used to profile or image biological tissue, including human skin. Usually, analysis of such measurements has assumed that infrared absorption is due to water and collagen. Such an assumption may be reasonable for soft tissue, but introduction of exogenous agents into skin or the measurement of tissue phantoms has raised the question of their infrared absorption spectrum. We used Fourier transform infrared spectroscopy in attenuated total reflection mode to measure the infrared absorption spectra, in the range of 2-15 µm, of water, polyacrylamide, Intralipid, collagen gels, four hyperosmotic clearing agents (glycerol, 1,3-butylene glycol, trimethylolpropane, TopicareTM), and ex vivo human stratum corneum and dermis. The absorption spectra of the phantom materials were similar to that of water, although additional structure was noted in the range of 6-10 µm. The absorption spectra of the clearing agents were more complex, with molecular absorption bands dominating between 6 and 12 µm. Dermis was similar to water, with collagen structure evident in the 6-10 µm range. Stratum corneum had a significantly lower absorption than dermis due to a lower content of water. These results suggest that the assumption of water-dominated absorption in the 2.5-6 µm range is valid. At longer wavelengths, clearing agent absorption spectra differ significantly from the water spectrum. This spectral information can be used in pulsed photothermal radiometry or utilized in the interpretation of reconstructions in which a constant μir is used. In such cases, overestimating μir will underestimate chromophore depth and vice versa, although the effect is dependent on actual chromophore depth.

  2. Threading Dislocation Characterization and Stress Mapping Depth Profiling via Ray Tracing Technique

    NASA Astrophysics Data System (ADS)

    Zhou, Tianyi

    Zinc oxide (ZnO) has been well known as a transparent, dielectric, piezoelectric and wide band gap material. The potential capabilities have been demonstrated for a wide range of applications such as piezoelectric transducer, gas sensor, optical waveguides and transparent electrode. It could also be applied as a substrate material for GaN-based devices. However, while some applications have already been realized, issues relating to crystalline defects remain a barrier to the successful realization of several others. In this thesis, the central focus of Chapter II is to characterize threading dislocations in hydrothermal grown ZnO substrates through simulation work as well as other techniques. The goal of this study is to find the origin of threading dislocations and design strategies to mitigate their negative effects by either reducing their densities or completely eliminating them. In Chapter III, the technique of SMART (stress mapping analysis via ray tracing) is discussed in detail to measure residue stress in packaged silicon circuits. Residual stress plays an important role in the performance and lifetime of single crystal device material. There are mainly two advantages of SMART compared with other techniques: (a) all six components of the stress tensor could be evaluated; (b) it is non-destructive and no damaging trace will be left on the sample. In this study, our goal is to build a relationship between stress distribution and depth. The concept of penetration depth is critically important in this study and its value may cause great changes for real space stress distribution. A new function is applied to get better fitting curves. Data in this study is obtained from various penetration depth, which represents exponentially decaying weighted average of actual stress value or in other words this stress profile is Laplace transform of real stress profile. Mathematical procedure is described to determine real stress profile from Laplace profile. Experiment

  3. Depth profiling of mechanical degradation of PV backsheets after UV exposure

    NASA Astrophysics Data System (ADS)

    Gu, Xiaohong; Krommenhoek, Peter J.; Lin, Chiao-Chi; Yu, Li-Chieh; Nguyen, Tinh; Watson, Stephanie S.

    2015-09-01

    Polymeric multilayer backsheets protect the photovoltaic modules from damage of moisture and ultraviolet (UV) while providing electrical insulation. Due to the multilayer structures, the properties of the inner layers of the backsheets, including their interfaces, during weathering are not well known. In this study, a commercial type of PPE (polyethylene terephthalate (PET)/PET/ethylene vinyl acetate (EVA)) backsheet films was selected as a model system for a depth profiling study of mechanical properties of a backsheet film during UV exposure. The NIST SPHERE (Simulated Photodegradation via High Energy Radiant Exposure) was used for the accelerated laboratory exposure of the materials with UV at 85°C and two relative humidities (RH) of 5 % (dry) and 60 % (humid). Cryomicrotomy was used to obtain cross-sectional PPE samples. Mechanical depth profiling of the cross-sections of aged and unaged samples was conducted by nanoindentation, and a peak-force based quantitative nanomechanical atomic force microscopy (QNM-AFM) mapping techniquewas used to investigate the microstructure and adhesion properties of the adhesive tie layers. The nanoindentation results show the stiffening of the elastic modulus in the PET outer and pigmented EVA layers. From QNM-AFM, the microstructures and adhesion properties of the adhesive layers between PET outer and core layers and between PET core and EVA inner layers are revealed and found to degrade significantly after aging under humidity environment. The results from mechanical depth profiling of the PPE backsheet are further related to the previous chemical depth profiling of the same material, providing new insights into the effects of accelerated UV and humidity on the degradation of multilayer backsheet.

  4. Variations in bacterial and fungal community composition along the soil depth profiles determined by pyrosequencing

    NASA Astrophysics Data System (ADS)

    Ko, D.; Yoo, G.; Jun, S. C.; Yun, S. T.; Chung, H.

    2015-12-01

    Soil microorganisms play key roles in nutrient cycling, and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depth, we analyzed soil microbial activities and bacterial and fungal community composition in a soil profile of a fallow field located in central Korea. Soil samples were taken using 120-cm soil cores. To analyze the composition of bacterial and fungal communities, barcoded pyrosequnecing analysis of 16S rRNA genes (bacteria) and ITS region (fungi) was conducted. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1 and 17.5%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3 and 0.4%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7%, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively), a dominant fungal group at this site, showed no significant difference along the soil profile. To examine the vertical difference of microbial activities, activity of five extracellular enzymes that take part in cycling of C, N, and P in soil ecosystems, beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-xylosidase, beta-1,4-N-acetylglucosaminidase, and acid phosphatase were analyzed. The soil enzyme activity declined with soil depth. For example, acid phosphatase activity was 88.5 (± 14.6 (± 1 SE)), 30.0 (± 5.9), 18.0 (± 3.5), 14.1 (± 3.7), and 10.7 (± 3.8) nmol g-1 hr-1, at 15-, 30-, 60-, 90-, and 120-cm depth, respectively. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of

  5. Determining concentration depth profiles of thin foam films with neutral impact collision ion scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridings, Christiaan; Andersson, Gunther G.

    2010-11-01

    Equipment is developed to measure the concentration depth profiles in foam films with the vacuum based technique neutral impact collision ion scattering spectroscopy. Thin foam films have not previously been investigated using vacuum based techniques, hence specialized methods and equipment have been developed for generating and equilibrating of foam films under vacuum. A specialized film holder has been developed that encloses the foam film in a pressure cell. The pressure cell is air-tight except for apertures that allow for the entrance and exit of the ion beam to facilitate the analysis with the ion scattering technique. The cell is supplied with a reservoir of solvent which evaporates upon evacuating the main chamber. This causes the cell to be maintained at the vapor pressure of the solvent, thus minimizing further evaporation from the films. In order to investigate the effect of varying the pressure over the films, a hydrostatic pressure is applied to the foam films. Concentration depth profiles of the elements in a thin foam film made from a solution of glycerol and the cationic surfactant hexadecyltrimethylammonium bromide (C16TAB) were measured. The measured concentration depth profiles are used to compare the charge distribution in foam films with the charge distribution at the surface of a bulk solution. A greater charge separation was observed at the films' surface compared to the bulk surface, which implies a greater electrostatic force contribution to the stabilization of thin foam films.

  6. Comparison of Air Fluorescence and Ionization Measurements of E.M. Shower Depth Profiles: Test of a UHECR Detector Technique

    SciTech Connect

    Belz, J.; Cao, Z.; Huentemeyer, P.; Jui, C.C.H.; Martens, K.; Matthews, J.; Maestas, M.; Smith, J.; Sokolsky, P.; Springer, R.W.; Thomas, J.; Thomas, S.; Chen, P.; Field, Clive; Hast, C.; Iverson, R.; Ng, J.S.T.; Odian, A.; Reil, K.; Vincke, H.; Walz, D.; /SLAC /Montana U. /Rutgers U., Piscataway /Taiwan, Natl. Taiwan U.

    2005-10-07

    Measurements are reported on the fluorescence of air as a function of depth in electromagnetic showers initiated by bunches of 28.5 GeV electrons. The light yield is compared with the expected and observed depth profiles of ionization in the showers. It validates the use of atmospheric fluorescence profiles in measuring ultra high energy cosmic rays.

  7. Implication of Land Use and Belowground Weather on Nitrous Oxide Soil Depth Profiles and Denitrification Potential

    NASA Astrophysics Data System (ADS)

    Phillips, R. L.; Song, B.; Saliendra, N.; Liebig, M. A.

    2013-12-01

    oxygen profiles followed similar patterns for cropland and prairie, ranging from 12 to 21%, with median values of 19 and 20% at both depths. We did not observe linear concentration gradients between 15 and 90 cm depths, likely due to differences in rates of production and consumption throughout the soil profile. Potential rates of denitrification at 0-15 cm were over two times higher in the cropland, as compared to prairie. We conclude that N2O production occurs not only close to the surface but also nearly a meter beneath both undisturbed prairie and cropland. Greater surface fluxes and N2O concentrations at all depths in the cropland under variable conditions point to enhanced N2O production in the absence of synthetic N addition from 2009-2013. While denitrification potential in the laboratory was greater beneath this alfalfa field, the soil oxygen profile measurements indicated conditions favorable for complete denitrification of N to N2 were rare at near-surface and sub-surface soil depths. Microbial N2O production and consumption processes vary with soil depth and land use in the absence of synthetic N inputs, and further investigation is warranted.

  8. Simulation and measurement of AES depth profiles; a case study of the C/Ta/C/Si system

    NASA Astrophysics Data System (ADS)

    Zommer, Ludomir; Jablonski, Alexander; Kotis, László; Safran, Gyorgy; Menyhárd, Miklós

    2010-04-01

    A multilayer sample (C (23.3 nm)/Ta (26.5 nm)/C (22.7 nm)/Si substrate) was submitted to AES depth profiling by Ar + ions of energy 1 keV and angles of incidence of 72°, 78°, and 82°. The shapes of the as-measured depth profiles were strongly different emphasizing that the ion-bombardment conditions strongly affects the shapes of measured depth profiles. We simulated the depth profile measured at an angle of incidence of 72° by calculating the backscattering factor, applying attenuation lengths available in the literature, and simulating the ion-bombardment-induced specimen alteration with a TRIDYN simulation and a trial and error method. The good agreement between the calculated and measured depth profiles justified the method applied.

  9. Depth Estimation from the Scaling Power Spectral Density of Nonstationary Gravity Profile

    NASA Astrophysics Data System (ADS)

    Bansal, A. R.; Dimri, V. P.

    A technique to estimate the depth to anomalous sources from the scaling power spectra of long nonstationary gravity profiles is presented. The nonstationary profile is divided into piecewise stationary segments based on the criterion of optimum gate length in which the time-varying and time-invariant autocorrelation functions are similar. The division of a nonstationary into piecewise stationary allows identification of the portion of the crust with different geological histories, and using the stationary portion of the gravity profiles, more consistent depths to the anomalous sources have been obtained. The technique is tested with the synthetic gravity profile and applied along the Jaipur-Raipur geotransect in western and central India. The geotransect has been divided into four stationary parts: Vindhyan low, Bundelkhand low, Narmada rift and Chhattisgarh basin; each section corresponding to a different geological formation. Forward modeling of gravity data using results of each stationary section is carried out to propose the subsurface structure along the Jaipur-Raipur transect.

  10. Hemispheric aerosol vertical profiles: anthropogenic impacts on optical depth and cloud nuclei.

    PubMed

    Clarke, Antony; Kapustin, Vladimir

    2010-09-17

    Understanding the effect of anthropogenic combustion upon aerosol optical depth (AOD), clouds, and their radiative forcing requires regionally representative aerosol profiles. In this work, we examine more than 1000 vertical profiles from 11 major airborne campaigns in the Pacific hemisphere and confirm that regional enhancements in aerosol light scattering, mass, and number are associated with carbon monoxide from combustion and can exceed values in unperturbed regions by more than one order of magnitude. Related regional increases in a proxy for cloud condensation nuclei (CCN) and AOD imply that direct and indirect aerosol radiative effects are coupled issues linked globally to aged combustion. These profiles constrain the influence of combustion on regional AOD and CCN suitable for challenging climate model performance and informing satellite retrievals.

  11. Analyses of thin films and surfaces by cold neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Soni, K. K.

    2004-11-01

    Neutron depth profiling (NDP) has been employed to examine manufacturing processes and starting materials for several high-technology applications. NDP combines nuclear and atomic physics processes to determine the concentration profile of several light elements in the near surface region (∼1-8 μm) of smooth surfaces. The method is both quantitative and non-destructive. Analyses are performed at the Center for Neutron Research at NIST on samples prepared at Corning Incorporated. Two types of samples have been analyzed: (1) Boron profiles are measured in glasses to determine B loss due to its volatilization during manufacturing. Surface depletion of B is a key characteristic of borosilicate materials for both chemical vapor deposition and conventional melting processes. (2) For lithium niobate, a quantitative measure of Li concentration can differentiate congruent and stoichiometric compositions and any surface depletion in commercial wafers.

  12. Technical note: A bootstrapped LOESS regression approach for comparing soil depth profiles

    NASA Astrophysics Data System (ADS)

    Keith, Aidan M.; Henrys, Peter A.; Rowe, Rebecca L.; McNamara, Niall P.

    2016-07-01

    Understanding the consequences of different land uses for the soil system is important to make better informed decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped LOESS regressions (BLRs). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil organic carbon (SOC). While this straightforward non-parametric approach may be most useful in comparing SOC profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles.

  13. Technical note: A new approach for comparing soil depth profiles using bootstrapped Loess regression (BLR)

    NASA Astrophysics Data System (ADS)

    Keith, A. M.; Henrys, P.; Rowe, R. L.; McNamara, N. P.

    2015-12-01

    Understanding the consequences of different land uses for the soil system is important to better inform decisions based on sustainability. The ability to assess change in soil properties, throughout the soil profile, is a critical step in this process. We present an approach to examine differences in soil depth profiles between land uses using bootstrapped Loess regressions (BLR). This non-parametric approach is data-driven, unconstrained by distributional model parameters and provides the ability to determine significant effects of land use at specific locations down a soil profile. We demonstrate an example of the BLR approach using data from a study examining the impacts of bioenergy land use change on soil carbon (C). While this straightforward non-parametric approach may be most useful in comparing soil C or organic matter profiles between land uses, it can be applied to any soil property which has been measured at satisfactory resolution down the soil profile. It is hoped that further studies of land use and land management, based on new or existing data, can make use of this approach to examine differences in soil profiles.

  14. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    PubMed Central

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-01-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies. PMID:27721460

  15. The effect of particle properties on the depth profile of buoyant plastics in the ocean

    NASA Astrophysics Data System (ADS)

    Kooi, Merel; Reisser, Julia; Slat, Boyan; Ferrari, Francesco F.; Schmid, Moritz S.; Cunsolo, Serena; Brambini, Roberto; Noble, Kimberly; Sirks, Lys-Anne; Linders, Theo E. W.; Schoeneich-Argent, Rosanna I.; Koelmans, Albert A.

    2016-10-01

    Most studies on buoyant microplastics in the marine environment rely on sea surface sampling. Consequently, microplastic amounts can be underestimated, as turbulence leads to vertical mixing. Models that correct for vertical mixing are based on limited data. In this study we report measurements of the depth profile of buoyant microplastics in the North Atlantic subtropical gyre, from 0 to 5 m depth. Microplastics were separated into size classes (0.5–1.5 and 1.5–5.0 mm) and types (‘fragments’ and ‘lines’), and associated with a sea state. Microplastic concentrations decreased exponentially with depth, with both sea state and particle properties affecting the steepness of the decrease. Concentrations approached zero within 5 m depth, indicating that most buoyant microplastics are present on or near the surface. Plastic rise velocities were also measured, and were found to differ significantly for different sizes and shapes. Our results suggest that (1) surface samplers such as manta trawls underestimate total buoyant microplastic amounts by a factor of 1.04–30.0 and (2) estimations of depth-integrated buoyant plastic concentrations should be done across different particle sizes and types. Our findings can assist with improving buoyant ocean plastic vertical mixing models, mass balance exercises, impact assessments and mitigation strategies.

  16. Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water

    NASA Astrophysics Data System (ADS)

    Mueller, Matthias H.; Alaoui, Abdallah; Kuells, Christoph; Leistert, Hannes; Meusburger, Katrin; Stumpp, Christine; Weiler, Markus; Alewell, Christine

    2014-11-01

    Assessing temporal variations in soil water flow is important, especially at the hillslope scale, to identify mechanisms of runoff and flood generation and pathways for nutrients and pollutants in soils. While surface processes are well considered and parameterized, the assessment of subsurface processes at the hillslope scale is still challenging since measurement of hydrological pathways is connected to high efforts in time, money and personnel work. The latter might not even be possible in alpine environments with harsh winter processes. Soil water stable isotope profiles may offer a time-integrating fingerprint of subsurface water pathways. In this study, we investigated the suitability of soil water stable isotope (δ18O) depth profiles to identify water flow paths along two transects of steep subalpine hillslopes in the Swiss Alps. We applied a one-dimensional advection-dispersion model using δ18O values of precipitation (ranging from -24.7 to -2.9‰) as input data to simulate the δ18O profiles of soil water. The variability of δ18O values with depth within each soil profile and a comparison of the simulated and measured δ18O profiles were used to infer information about subsurface hydrological pathways. The temporal pattern of δ18O in precipitation was found in several profiles, ranging from -14.5 to -4.0‰. This suggests that vertical percolation plays an important role even at slope angles of up to 46°. Lateral subsurface flow and/or mixing of soil water at lower slope angles might occur in deeper soil layers and at sites near a small stream. The difference between several observed and simulated δ18O profiles revealed spatially highly variable infiltration patterns during the snowmelt periods: The δ18O value of snow (-17.7 ± 1.9‰) was absent in several measured δ18O profiles but present in the respective simulated δ18O profiles. This indicated overland flow and/or preferential flow through the soil profile during the melt period. The applied

  17. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  18. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  19. {sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815

    SciTech Connect

    Jull, A.J.T.; Cloudt, S.; Donahue, D.J.; Sisterson, J.M.; Reedy, R.C.; Masarik, J.

    1998-09-01

    Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C were observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.

  20. Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles

    PubMed Central

    Dattolo, Emanuela; Gu, Jenny; Bayer, Philipp E.; Mazzuca, Silvia; Serra, Ilia A.; Spadafora, Antonia; Bernardo, Letizia; Natali, Lucia; Cavallini, Andrea; Procaccini, Gabriele

    2013-01-01

    For seagrasses, seasonal and daily variations in light and temperature represent the mains factors driving their distribution along the bathymetric cline. Changes in these environmental factors, due to climatic and anthropogenic effects, can compromise their survival. In a framework of conservation and restoration, it becomes crucial to improve our knowledge about the physiological plasticity of seagrass species along environmental gradients. Here, we aimed to identify differences in transcriptomic and proteomic profiles, involved in the acclimation along the depth gradient in the seagrass Posidonia oceanica, and to improve the available molecular resources in this species, which is an important requisite for the application of eco-genomic approaches. To do that, from plant growing in shallow (−5 m) and deep (−25 m) portions of a single meadow, (i) we generated two reciprocal Expressed Sequences Tags (EST) libraries using a Suppressive Subtractive Hybridization (SSH) approach, to obtain depth/specific transcriptional profiles, and (ii) we identified proteins differentially expressed, using the highly innovative USIS mass spectrometry methodology, coupled with 1D-SDS electrophoresis and labeling free approach. Mass spectra were searched in the open source Global Proteome Machine (GPM) engine against plant databases and with the X!Tandem algorithm against a local database. Transcriptional analysis showed both quantitative and qualitative differences between depths. EST libraries had only the 3% of transcripts in common. A total of 315 peptides belonging to 64 proteins were identified by mass spectrometry. ATP synthase subunits were among the most abundant proteins in both conditions. Both approaches identified genes and proteins in pathways related to energy metabolism, transport and genetic information processing, that appear to be the most involved in depth acclimation in P. oceanica. Their putative rules in acclimation to depth were discussed. PMID:23785376

  1. Comparison of fullerene and large argon clusters for the molecular depth profiling of amino acid multilayers.

    PubMed

    Wehbe, N; Mouhib, T; Delcorte, A; Bertrand, P; Moellers, R; Niehuis, E; Houssiau, L

    2014-01-01

    A major challenge regarding the characterization of multilayer films is to perform high-resolution molecular depth profiling of, in particular, organic materials. This experimental work compares the performance of C60(+) and Ar1700(+) for the depth profiling of model multilayer organic films. In particular, the conditions under which the original interface widths (depth resolution) were preserved were investigated as a function of the sputtering energy. The multilayer samples consisted of three thin δ-layers (~8 nm) of the amino acid tyrosine embedded between four thicker layers (~93 nm) of the amino acid phenylalanine, all evaporated on to a silicon substrate under high vacuum. When C60(+) was used for sputtering, the interface quality degraded with depth through an increase of the apparent width and a decay of the signal intensity. Due to the continuous sputtering yield decline with increasing the C60(+) dose, the second and third δ-layers were shifted with respect to the first one; this deterioration was more pronounced at 10 keV, when the third δ-layer, and a fortiori the silicon substrate, could not be reached even after prolonged sputtering. When large argon clusters, Ar1700(+), were used for sputtering, a stable molecular signal and constant sputtering yield were achieved throughout the erosion process. The depth resolution parameters calculated for all δ-layers were very similar irrespective of the impact energy. The experimental interface widths of approximately 10 nm were barely larger than the theoretical thickness of 8 nm for the evaporated δ-layers.

  2. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    SciTech Connect

    Barlow, Anders J. Portoles, Jose F.; Cumpson, Peter J.

    2014-08-07

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-κ dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025 nm/min (3.95 × 10{sup −2} amu/atom in ion) for 6 keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

  3. Depth profile of optically recorded patterns in light-sensitive liquid-crystal elastomers.

    PubMed

    Gregorc, Marko; Zalar, Boštjan; Domenici, Valentina; Ambrožič, Gabriela; Drevenšek-Olenik, Irena; Fally, Martin; Čopič, Martin

    2011-09-01

    We investigated nonlinear absorption and photobleaching processes in a liquid-crystal elastomer doped with light-sensitive azobenzene moiety. A conventional one-dimensional holographic grating was recorded in the material with the use of two crossed UV laser beams and the angular dependence of the diffraction efficiency in the vicinity of the Bragg peak was analyzed. These measurements gave information on the depth to which trans to cis isomerization had progressed into the sample as a function of the UV irradiation time. Using a numerical model that takes into account the propagation of writing beams and rate equations for the local concentration of the absorbing trans conformer, we computed the expected spatial distribution of the trans and cis conformers and the shape of the corresponding Bragg diffraction peak for different irradiation doses. Due to residual absorption of the cis conformers the depth of the recording progresses logarithmically with time and is limited by the thermal relaxation from the cis to trans conformation. PMID:22060390

  4. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-05-08

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  5. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  6. Uplifting of palsa peatlands by permafrost identified by stable isotope depth profiles

    NASA Astrophysics Data System (ADS)

    Krüger, Jan Paul; Conen, Franz; Leifeld, Jens; Alewell, Christine

    2015-04-01

    Natural abundances of stable isotopes are a widespread tool to investigate biogeochemical processes in soils. Palsas are peatlands with an ice core and are common in the discontinuous permafrost region. Elevated parts of palsa peatlands, called hummocks, were uplifted by permafrost out of the influence of groundwater. Here we used the combination of δ15N values and C/N ratio along depth profiles to identify perturbation of these soils. In the years 2009 and 2012 we took in total 14 peat cores from hummocks in two palsa peatlands near Abisko, northern Sweden. Peat samples were analysed in 2 to 4 cm layers for stable isotope ratios and concentrations of C and N. The uplifting of the hummocks by permafrost could be detected by stable isotope depth patterns with the highest δ15N value at permafrost onset, a so-called turning point. Regression analyses indicated in 11 of 14 peat cores increasing δ15N values above and decreasing values below the turning point. This is in accordance with the depth patterns of δ13C values and C/N ratios in these palsa peatlands. Onset of permafrost aggradation identified by the highest δ15N value in the profile and calculated from peat accumulation rates show ages ranging from 80 to 545 years and indicate a mean (±SD) peat age at the turning points of 242 (±66) years for Stordalen and 365 (±53) years for Storflaket peatland. The mean peat ages at turning points are within the period of the Little Ice Age. Furthermore, we tested if the disturbance, in this case the uplifting of the peat material, can be displayed in the relation of δ15N and C/N ratio following the concept of Conen et al. (2013). In unperturbed sites soil δ15N values cover a relatively narrow range at any particular C/N ratio. Changes in N cycling, i.e. N loss or gain, results in the loss or gain of 15N depleted forms. This leads to larger or smaller δ15N values than usual at the observed C/N ratio. All, except one, turning point show a perturbation in the depth

  7. Ti-U-Th-Pb Depth Profiles of Hadean Zircons: Implications for the Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Abbott, S. S.; Harrison, M.; Mojzsis, S. J.; Schmitt, A. K.

    2011-12-01

    The Late Heavy Bombardment (LHB) is a hypothesized spike in the flux of bolides that impacted the surface of the moon, and by inference the Earth from 3.8 to 4.0 Ga. Evidence for the LHB comes largely from K-Ar ages of Apollo-era lunar samples interpreted to be ejecta formed during meteorite impacts. Few localities on Earth preserve even a scant terrestrial rock record prior to >4 Ga, which limits the search for terrestrial evidence of the LHB. Perhaps the best accessible record can be found in Hadean detrital zircons from the Jack Hills region of Western Australia, which may provide such evidence in the form of epitaxial rims grown during heating events that might have recorded a thermal signature of impacts. Their preserved isotopic signatures can be used to infer temperature histories that may provide insight into the environmental source conditions during the LHB-era. Specifically, are overgrowths formed under such anomalously high temperatures that we are compelled to infer their growth in response to impact heating during the LHB? This potentially can be resolved by comparing crystallization temperatures of LHB-era zircons to temperature spectra of terrestrial Hadean and impact-formed zircons. Terrestrial Hadean zircons yield apparent crystallization temperatures of 680±25oC whereas impact melt zircons yield higher average temperatures of ca. 780oC. We developed a SIMS method simultaneously combining the empirical Ti-in-zircon thermometry with U-Th-Pb. By depth profiling in this manner, we can obtain continuous depth vs. age and temperature data and thus identify temperatures of sub-μm overgrowths that grew epitaxially on detrital cores. Of the eight Hadean zircons Ti-U-Th-Pb depth profiled in this study, four had rims of LHB-era age. A 2D probability density function of age vs. temperature for the depth profiles shows a bimodal temperature distribution, with generally higher crystallization temperatures for ~3.8-4.0 Ga (i.e., LHB-era) zircon rims (ca.~760

  8. Characterizing contaminant concentrations with depth by using the USGS well profiler in Oklahoma, 2003-9

    USGS Publications Warehouse

    Smith, S. Jerrod; Becker, Carol J.

    2011-01-01

    In 2007, the USGS well profiler was used to investigate saline water intrusion in a deep public-supply well completed in the Ozark (Roubidoux) aquifer. In northeast Oklahoma, where the Ozark aquifer is known to be susceptible to contamination from mining activities, the well profiler also could be used to investigate sources (depths) of metals contamination and to identify routes of entry of metals to production wells.Water suppliers can consider well rehabilitation as a potential remediation strategy because of the ability to identify changes in contaminant concentrations with depth in individual wells with the USGS well profiler. Well rehabilitation methods, which are relatively inexpensive compared to drilling and completing new wells, involve modifying the construction or operation of a well to enhance the production of water from zones with lesser concentrations of a contaminant or to limit the production of water from zones with greater concentrations of a contaminant. One of the most effective well rehabilitation methods is zonal isolation, in which water from contaminated zones is excluded from production through installation of cement plugs or packers. By using relatively simple and inexpensive well rehabilitation methods, water suppliers may be able to decrease exposure of customers to contaminants and avoid costly installation of additional wells, conveyance infrastructure, and treatment technologies.

  9. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    SciTech Connect

    Olsen, C.R.; Simpson, H.J.; Peng, T.H.; Bopp, R.F.; Trier, R.M.

    1981-11-01

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed /sup 134/Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of /sup 137/Cs and /sup 239,240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm/sup 2//yr, or less. In some areas of the harbor adjacent to New York City, where fine-particle accumulation rates are generally 3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm/sup 2//yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation. 10 figures.

  10. Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments

    SciTech Connect

    Olsen, C.R.; Simpson, H.J.; Peng, T.; Bopp, R.F.; Trier, R.M.

    1981-11-20

    Measured anthropogenic radionuclide profiles in sediment cores from the Hudson River estuary were compared with profiles computed by using known input histories of radionuclides to the estuary and mixing coefficients which decreased exponentially with depth in the sediment. Observed /sup 134/Cs sediment depth profiles were used in the mixing rate computation because reactor releases were the only significant source for this nuclide, whereas the inputs of /sup 137/Cs and /sup 239.240/Pu to the estuary were complicated by runoff or erosion in upstream areas, in addition to direct fallout from precipitation. Our estimates for the rates of surface sediment mixing in the low salinity reach of the estuary range from 0.25 to 1 cm/sup 2//yr, or less. In some areas of the harbor adjacent to New York City, were fine-particle accumulation rates are generally >3 cm/yr, and often as high as 10 to 20 cm/yr, sediment mixing rates as high as 10 cm/sup 2//yr would have little effect on radionuclide peak distributions. Consequently, anthropogenic radionuclide maximum activities in subsurface sediments of the Hudson appear to be useful as time-stratigraphic reference levels, which can be correlated with periods of maximum radionuclide inputs for estimating rates and patterns of sediment accumulation.

  11. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  12. Modelling Rooting Depth and Soil Strength in a Drying Soil Profile

    PubMed

    Bengough

    1997-06-01

    A combined root growth and water extraction model is described that simulates the affects of mechanical impedance on root elongation in soil. The model simulates the vertical redistribution of water in the soil profile, water uptake by plant roots, and the effects of decreasing water content on increasing soil strength and decreasing the root elongation rate. The modelling approach is quite general and can be applied to any soil for which a relation can be defined between root elongation and penetrometer resistance. By definition this excludes soils that contain a large proportion of continuous channels through which roots can grow unimpeded. Root elongation rate is calculated as a function of the penetrometer resistance which is determined by the soil water content. Use of the model is illustrated using input data for a sandy loam soil. The results confirm reports in the literature that the depth of water extraction can exceed the rooting depth. The increase in mechanical impedance to root growth due to this water extraction restricted the maximum rooting depth attained, and this limited the depth of soil from which a crop could extract water and nutrients. This study highlighted the lack of published data sets for single crop/soil combinations containing both the strength/root growth information and the hydraulic conductivity characteristics necessary for this type of model. Copyright 1997 Academic Press Limited PMID:9344728

  13. Peat soil organic matter composition depth profiles - is the diplotelmic model real?

    NASA Astrophysics Data System (ADS)

    Boothroyd, Ian; Clay, Gareth; Moody, Catherine; Archer, Elaine; Dixon, Simon; Worrall, Fred

    2016-04-01

    Measures of bulk density and organic matter composition provide important insights into peat formation, degradation and hydrology as well as carbon and nutrient cycles, and indeed underpin the diplotelmic model of peat formation. This study presents soil core data from 23 upland and lowland peat sites across the United Kingdom. A series of soil cores up to ~3m depth were analysed for bulk density, gross heat value (energy content) and carbon, hydrogen, nitrogen and oxygen composition. Atomic ratios of C/N, H/C and O/C were used as indicators of the origin and quality of soil organic matter. Results show no consistent soil depth profiles evident across multiple sites, this challenges whether historical interpretations of peat soil formation and structure are appropriate.

  14. Secondary ion mass spectroscopy depth profiling of hydrogen-intercalated graphene on SiC

    NASA Astrophysics Data System (ADS)

    Michałowski, Paweł Piotr; Kaszub, Wawrzyniec; Merkulov, Alexandre; Strupiński, Włodek

    2016-07-01

    For a better comprehension of hydrogen intercalation of graphene grown on a silicon carbide substrate, an advanced analytical technique is required. We report that with a carefully established measurement procedure it is possible to obtain a reliable and reproducible depth profile of bi-layer graphene (theoretical thickness of 0.69 nm) grown on the silicon carbide substrate by the Chemical Vapor Deposition method. Furthermore, we show that with depth resolution as good as 0.2 nm/decade, both hydrogen coming from the intercalation process and organic contamination can be precisely localized. As expected, hydrogen was found at the interface between graphene and the SiC substrate, while organic contamination was accumulated on the surface of graphene and did not penetrate into it. Such a precise measurement may prove to be invaluable for further characterization of 2D materials.

  15. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images

    USGS Publications Warehouse

    Crowley, J.K.; Brickey, D.W.; Rowan, L.C.

    1989-01-01

    Airborne imaging spectrometer data collected in the near-infrared (1.2-2.4 ??m) wavelength range were used to study the spectral expression of metamorphic minerals and rocks in the Ruby Mountains of southwestern Montana. The data were analyzed by using a new data enhancement procedure-the construction of relative absorption band-depth (RBD) images. RBD images, like bandratio images, are designed to detect diagnostic mineral absorption features, while minimizing reflectance variations related to topographic slope and albedo differences. To produce an RBD image, several data channels near an absorption band shoulder are summed and then divided by the sum of several channels located near the band minimum. RBD images are both highly specific and sensitive to the presence of particular mineral absorption features. Further, the technique does not distort or subdue spectral features as sometimes occurs when using other data normalization methods. By using RBD images, a number of rock and soil units were distinguished in the Ruby Mountains including weathered quartz - feldspar pegmatites, marbles of several compositions, and soils developed over poorly exposed mica schists. The RBD technique is especially well suited for detecting weak near-infrared spectral features produced by soils, which may permit improved mapping of subtle lithologic and structural details in semiarid terrains. The observation of soils rich in talc, an important industrial commodity in the study area, also indicates that RBD images may be useful for mineral exploration. ?? 1989.

  16. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  17. Measured depth-dependence of waveguide invariant in shallow water with a summer profile.

    PubMed

    Turgut, Altan; Fialkowski, Laurie T; Schindall, Jeffrey A

    2016-06-01

    Acoustic-intensity striation patterns were measured in the time-frequency domain using an L-shaped array and two simultaneously towed broadband (350-650 Hz) sources at depths above and below the thermocline under summer profile conditions. Distributions of the waveguide invariant parameter β, extracted from the acoustic striation patterns, peak at different values when receivers are above or below the thermocline for a source that is below the thermocline. However, the distributions show similar characteristics when the source is above the thermocline. Experimental results are verified by a numerical analysis of phase slowness, group slowness, and relative amplitudes of acoustic modes.

  18. Measured depth-dependence of waveguide invariant in shallow water with a summer profile.

    PubMed

    Turgut, Altan; Fialkowski, Laurie T; Schindall, Jeffrey A

    2016-06-01

    Acoustic-intensity striation patterns were measured in the time-frequency domain using an L-shaped array and two simultaneously towed broadband (350-650 Hz) sources at depths above and below the thermocline under summer profile conditions. Distributions of the waveguide invariant parameter β, extracted from the acoustic striation patterns, peak at different values when receivers are above or below the thermocline for a source that is below the thermocline. However, the distributions show similar characteristics when the source is above the thermocline. Experimental results are verified by a numerical analysis of phase slowness, group slowness, and relative amplitudes of acoustic modes. PMID:27369170

  19. A neural network method for restoring the initial impurity concentration distribution from data of ion sputter depth profiling

    NASA Astrophysics Data System (ADS)

    Shyrokorad, D. V.; Kornich, G. V.

    2016-07-01

    A new approach to solving the problem of restoring the initial impurity concentration distribution from data of ion sputter depth profiling is proposed. The algorithm of impurity profile restoration is based on using an artificial neural network with the input signals representing surface concentrations of impurity determined at sequential moments of sputter depth profiling. The artificial neural network is trained for various depths and thicknesses of the impurity-containing layer and various values of parameters of the adopted model equation of diffusion-like ion mixing.

  20. Depths, Diameters, and Profiles of Small Lunar Craters From LROC NAC Stereo Images

    NASA Astrophysics Data System (ADS)

    Stopar, J. D.; Robinson, M.; Barnouin, O. S.; Tran, T.

    2010-12-01

    Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images (pixel scale ~0.5 m) provide new 3-D views of small craters (40m>D>200m). We extracted topographic profiles from 85 of these craters in mare and highland terrains between 18.1-19.1°N and 5.2-5.4°E to investigate relationships among crater shape, age, and target. Obvious secondary craters (e.g., clustered) and moderately- to heavily-degraded craters were excluded. The freshest craters included in the study have crisp rims, bright ejecta, and no superposed craters. The depth, diameter, and profiles of each crater were determined from a NAC-derived DTM (M119808916/M119815703) tied to LOLA topography with better than 1 m vertical resolution (see [1]). Depth/diameter ratios for the selected craters are generally between 0.12 and 0.2. Crater profiles were classified into one of 3 categories: V-shaped, U-shaped, or intermediate (craters on steep slopes were excluded). Craters were then morphologically classified according to [2], where crater shape is determined by changes in material strength between subsurface layers, resulting in bowl-shaped, flat-bottomed, concentric, or central-mound crater forms. In this study, craters with U-shaped profiles tend to be small (<60 m) and flat-bottomed, while V-shaped craters have steep slopes (~20°), little to no floor, and a range of diameters. Both fresh and relatively degraded craters display the full range of profile shapes (from U to V and all stages in between). We found it difficult to differentiate U-shaped craters from V-shaped craters without the DTM, and we saw no clear correlation between morphologic and profile classification. Further study is still needed to increase our crater statistics and expand on the relatively small population of craters included here. For the craters in this study, we found that block abundances correlate with relative crater degradation state as defined by [3], where abundant blocks signal fresher craters; however

  1. Analysis of airborne imaging spectrometer data for the Ruby Mountains, Montana, by use of absorption-band-depth images

    NASA Technical Reports Server (NTRS)

    Brickey, David W.; Crowley, James K.; Rowan, Lawrence C.

    1987-01-01

    Airborne Imaging Spectrometer-1 (AIS-1) data were obtained for an area of amphibolite grade metamorphic rocks that have moderate rangeland vegetation cover. Although rock exposures are sparse and patchy at this site, soils are visible through the vegetation and typically comprise 20 to 30 percent of the surface area. Channel averaged low band depth images for diagnostic soil rock absorption bands. Sets of three such images were combined to produce color composite band depth images. This relative simple approach did not require extensive calibration efforts and was effective for discerning a number of spectrally distinctive rocks and soils, including soils having high talc concentrations. The results show that the high spectral and spatial resolution of AIS-1 and future sensors hold considerable promise for mapping mineral variations in soil, even in moderately vegetated areas.

  2. Objective characterization of bruise evolution using photothermal depth profiling and Monte Carlo modeling

    NASA Astrophysics Data System (ADS)

    Vidovič, Luka; Milanič, Matija; Majaron, Boris

    2015-01-01

    Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.

  3. Depth Profile Of Radiolytic Fluence On Europa: Implications for Remote Sensing and In-Situ Analyses

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.

    2003-05-01

    Europa's surface is bombarded by high fluxes of ionizing radiation (primarily high-energy electrons and protons) that destroy existing molecules and produce new species. The depth of direct radiolysis is ˜ 1 mm, but the upper surface is being continuously overturned by micrometeroid impact ``gardening," burying exposed material and bringing material from depth to the surface. Continual exposure and redistribution produces a thick layer of radiolyzed matter whose composition is different than that of the unexposed, pristine material (Carlson et al., Science, 283, 2062, 1999; 286, 97, 1999). Biomarker molecules that could indicate biotic processes on Europa would be degraded and become less diagnostic. The cumulative energy deposition (fluence) and its variation with depth indicates the extent of radiolytic decomposition and the sampling depth that is necessary to obtain unmodified samples. The fluence profile was computed using fluxes compiled by Cooper et al. (Icarus 149, 133, 2001), with the electron deposition concentrated on the trailing hemisphere (Paranicas et al., Geophys. Res. Lett. 28, 672, 2001)) and uniform proton irradiation. Two gardening models were used (Cooper et al. and Phillips and Chyba, LPSC 2001) and both synchronous and asynchronous rotations were considered. A surface age of 10 My was assumed, with the crust composed of fresh, unexposed material 10 My ago. The time development of the fluence in the optical layer was also computed. The depth of significant fluence is ˜ 1 meter, and the exposure is sufficient to destroy even the most radiation resistant molecules many times over (Carlson et al., Icarus 157, 456, 2002). The molecules within the upper meter will be in radiolytic equilibrium and different from the original parent mixture. The fluence levels are about 107 Mrad; a level of ˜ 10 Mrad is fatal to Deinococcus radiodurans. Remote-sensing observations will sense radiolytically altered material except where very recent impacts have

  4. Diffusion of lithium-6 isotopes in lithium aluminate ceramics using neutron depth profiling

    NASA Astrophysics Data System (ADS)

    McWhinney, Hylton G.; James, William D.; Schweikert, Emile A.; Williams, John R.; Hollenberg, Glen; Welsh, John; Sereatan, Washington

    1993-07-01

    Lithium Ceramics offer tremendous potential as a source for the production of tritium ( 3H) for fusion power reactors. Their successful application will depend to a great extent upon the diffusion properties of the 6Li within the matrix. Consequently knowledge od 6Li concentration gradients in the ceramic matrices is an important requirement in the continued development of the technology. In this investigation, the neutron depth profile (NDP) technique has been applied to the study of concentration profiles of 6Li in lithium aluminate ceramics, doped with 1.8%, 50% and 95% 6Li isotopic concentrations. Specimen for analysis were prepared at Battelle (PNL) as pellet discs. Samples for diffusion studies were arranged as diffusion couples in the following manner: 1.8% 6Li discs/85% 6Li powder. Experiments were performed at the Texas A&M Nuclear Science Center Reactor Building, utilizing 1 MW equivalent thermal neutron fluxes 3 × 10 11n/ m2s. The depth probed by the technique is approximately 15 μ.m. Diffusion coefficients are in the range of 2.1 × 10 -12 to 7.0 × 10 -11m2s-1 for 1.8% 6Li-doped ceramics annealed at 1200 and 1400° C, for 4 to 48-h anneal times.

  5. Dual-detection confocal microscopy: high-speed surface profiling without depth scanning

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Ryoung; Gweon, Dae-Gab; Yoo, Hongki

    2016-03-01

    We propose a new method for three-dimensional (3-D) imaging without depth scanning that we refer to as the dual-detection confocal microscopy (DDCM). Compared to conventional confocal microscopy, DDCM utilizes two pinholes of different sizes. DDCM generates two axial response curves which have different stiffness according to the pinhole diameters. The two axial response curves can draw the characteristics curve of the system which shows the relationship between the axial position of the sample and the intensity ratio. Utilizing the characteristic curve, the DDCM reconstructs a 3-D surface profile with a single 2-D scanning. The height of each pixel is calculated by the intensity ratio of the pixel and the intensity ratio curve. Since the height information can be obtained directly from the characteristic curve without depth scanning, a major advantage of DDCM over the conventional confocal microscopy is a speed. The 3-D surface profiling time is dramatically reduced. Furthermore, DDCM can measure 3-D images without the influence of the sample condition since the intensity ratio is independent of the quantum yield and reflectance. We present two types of DDCM, such as a fluorescence microscopy and a reflectance microscopy. In addition, we extend the measurement range axially by varying the pupil function. Here, we demonstrate the working principle of DDCM and the feasibility of the proposed methods.

  6. Analysis of the interface and its position in C60(n+) secondary ion mass spectrometry depth profiling.

    PubMed

    Green, F M; Shard, A G; Gilmore, I S; Seah, M P

    2009-01-01

    C60(n+) ions have been shown to be extremely successful for SIMS depth profiling of a wide range of organic materials, causing significantly less degradation of the molecular information than more traditional primary ions. This work focuses on examining the definition of the interface in a C60(n+) SIMS depth profile for an organic overlayer on a wafer substrate. First it investigates the optimum method to define the organic/inorganic interface position. Variations of up to 8 nm in the interface position can arise from different definitions of the interface position in the samples investigated here. Second, it looks into the reasons behind large interfacial widths, i.e., poor depth resolution, seen in C60(n+) depth profiling. This work confirms that, for Irganox 1010 deposited on a wafer, the depth resolution at the Irganox 1010/substrate interface is directly correlated to the roughening of material. C60n+ PMID:19117445

  7. Non-destructive Measurement of Residual Stress Depth Profile in Laser-peened Steel at SPring-8

    SciTech Connect

    Sato, Masugu; Kajiwara, Kentaro; Sano, Yuji; Tanaka, Hirotomo; Akita, Koichi

    2007-01-19

    We investigated the residual stress depth profile near the surface of steel treated by laser peening without coating using X-ray diffraction at SPring-8. This investigation was carried out using a constant penetration depth sin2{psi} method. In this method, the sin2{psi} diagram is measured controlling both the {psi} angle and the X-ray penetration depth simultaneously with a combination of the {omega} and {chi} axes of the 4-circle goniometer. This method makes it possible to evaluate the residual stress and its depth profile in material with a stress gradient precisely and non-destructively. As a result, we confirmed that a compressive residual stress was successfully formed all over the range of the depth profile in the steel treated properly by laser peening without coating.

  8. Non-destructive Measurement of Residual Stress Depth Profile in Laser-peened Steel at SPring-8

    NASA Astrophysics Data System (ADS)

    Sato, Masugu; Sano, Yuji; Kajiwara, Kentaro; Tanaka, Hirotomo; Akita, Koichi

    2007-01-01

    We investigated the residual stress depth profile near the surface of steel treated by laser peening without coating using X-ray diffraction at SPring-8. This investigation was carried out using a constant penetration depth sin2ψ method. In this method, the sin2ψ diagram is measured controlling both the ψ angle and the X-ray penetration depth simultaneously with a combination of the ω and χ axes of the 4-circle goniometer. This method makes it possible to evaluate the residual stress and its depth profile in material with a stress gradient precisely and non-destructively. As a result, we confirmed that a compressive residual stress was successfully formed all over the range of the depth profile in the steel treated properly by laser peening without coating.

  9. Thermal depth profiling of materials for defect detection using hot disk technique

    NASA Astrophysics Data System (ADS)

    Mihiretie, B. M.; Cederkrantz, D.; Sundin, M.; Rosén, A.; Otterberg, H.; Hinton, Å.; Berg, B.; Karlsteen, M.

    2016-08-01

    A novel application of the hot disk transient plane source technique is described. The new application yields the thermal conductivity of materials as a function of the thermal penetration depth which opens up opportunities in nondestructive testing of inhomogeneous materials. The system uses the hot disk sensor placed on the material surface to create a time varying temperature field. The thermal conductivity is then deduced from temperature evolution of the sensor, whereas the probing depth (the distance the heat front advanced away from the source) is related to the product of measurement time and thermal diffusivity. The presence of inhomogeneity in the structure is manifested in thermal conductivity versus probing depth plot. Such a plot for homogeneous materials provides fairly constant value. The deviation from the homogeneous curve caused by defects in the structure is used for inhomogeneity detection. The size and location of the defect in the structure determines the sensitivity and possibility of detection. In addition, a complementary finite element numerical simulation through COMSOL Multiphysics is employed to solve the heat transfer equation. Temperature field profile of a model material is obtained from these simulations. The average rise in temperature of the heat source is calculated and used to demonstrate the effect of the presence of inhomogeneity in the system.

  10. Dual beam organic depth profiling using large argon cluster ion beams

    PubMed Central

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  11. Estimating the Depth of Stratigraphic Units from Marine Seismic Profiles Using Nonstationary Geostatistics

    SciTech Connect

    Chihi, Hayet; Galli, Alain; Ravenne, Christian; Tesson, Michel; Marsily, Ghislain de

    2000-03-15

    The object of this study is to build a three-dimensional (3D) geometric model of the stratigraphic units of the margin of the Rhone River on the basis of geophysical investigations by a network of seismic profiles at sea. The geometry of these units is described by depth charts of each surface identified by seismic profiling, which is done by geostatistics. The modeling starts by a statistical analysis by which we determine the parameters that enable us to calculate the variograms of the identified surfaces. After having determined the statistical parameters, we calculate the variograms of the variable Depth. By analyzing the behavior of the variogram we then can deduce whether the situation is stationary and if the variable has an anisotropic behavior. We tried the following two nonstationary methods to obtain our estimates: (a) The method of universal kriging if the underlying variogram was directly accessible. (b) The method of increments if the underlying variogram was not directly accessible. After having modeled the variograms of the increments and of the variable itself, we calculated the surfaces by kriging the variable Depth on a small-mesh estimation grid. The two methods then are compared and their respective advantages and disadvantages are discussed, as well as their fields of application. These methods are capable of being used widely in earth sciences for automatic mapping of geometric surfaces or for variables such as a piezometric surface or a concentration, which are not 'stationary,' that is, essentially, possess a gradient or a tendency to develop systematically in space.

  12. Comparison of stable boundary layer depth estimation from sodar and profile mast.

    NASA Astrophysics Data System (ADS)

    Dieudonne, Elsa; Anderson, Philip

    2015-04-01

    The depth of the atmospheric turbulent mixing layer next to the earths surface, hz, is a key parameter in analysis and modeling of the interaction of the atmosphere with the surface. The transfer of momentum, heat, moisture and trace gases are to a large extent governed by this depth, which to a first approximation acts as a finite reservoir to these quantities. Correct estimates of the evolution of hz assists the would allow accurate prognosis of the near-surface accumulation of these variables, that is, wind speed, temperature, humidity and tracer concentration. Measuring hz however is not simple, especially where stable stratification acts to reduce internal mixing, and indeed, it is not clear whether hz is similar for momentum, heat and tracer. Two methods are compared here, to assess their similarity: firstly using acoustic back-scatter is used as an indicator of turbulent strength, the upper limit implying a change to laminar flow and the top of the boundary layer. Secondly, turbulence kinetic energy profiles, TKE(z), are extrapolated to estimate z for TKE(z) = 0, again implying laminar flow. Both techniques have the implied benefit of being able to run continually (via sodar and turbulence mast respectively) with the prospect of continual, autonomous data analysis generating time series of hz. This report examines monostatic sodar echo and sonic anemometer-derived turbulence profile data from Halley Station on the Brunt Ice Shelf Antarctica, during the austral winter of 2003. We report that the two techniques frequently show significant disagreement in estimated depth, and still require manual intervention, but further progress is possible.

  13. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics.

    PubMed

    Manohara, S R; Hanagodimath, S M; Gerward, L

    2011-11-15

    Energy absorption geometric progression (GP) fitting parameters and the corresponding buildup factors have been computed for human organs and tissues, such as adipose tissue, blood (whole), cortical bone, brain (grey/white matter), breast tissue, eye lens, lung tissue, skeletal muscle, ovary, testis, soft tissue, and soft tissue (4-component), for the photon energy range 0.015-15 MeV and for penetration depths up to 40 mfp (mean free path). The chemical composition of human organs and tissues is seen to influence the energy absorption buildup factors. It is also found that the buildup factor of human organs and tissues changes significantly with the change of incident photon energy and effective atomic number, Z(eff). These changes are due to the dominance of different photon interaction processes in different energy regions and different chemical compositions of human organs and tissues. With the proper knowledge of buildup factors of human organs and tissues, energy absorption in the human body can be carefully controlled. The present results will help in estimating safe dose levels for radiotherapy patients and also useful in diagnostics and dosimetry. The tissue-equivalent materials for skeletal muscle, adipose tissue, cortical bone, and lung tissue are also discussed. It is observed that water and MS20 are good tissue equivalent materials for skeletal muscle in the extended energy range.

  14. Temperature and depth profiles recorded during dives of elephant seals reflect distinct ocean environments

    NASA Astrophysics Data System (ADS)

    Campagna, Claudio; Rivas, Andrés L.; Marin, M. Rosa

    2000-03-01

    Foraging adult southern elephant seals, Mirounga leonina, from Penı´nsula Valdés, Argentina, dive continuously while travelling across the continental shelf towards deep waters of the SW Atlantic. This study attempted to identify distinct ocean environments encountered by these seals during foraging migrations based on bathymetric and water temperature profiles, and to interpret these profiles in terms of mixing and systems of currents. Depth and water temperature were obtained with data loggers carried by 14 diving adult animals during spring (October-December) and summer (February-March) months. Dive depths allowed us to unmistakably differentiate extensive areas of the SW Atlantic: the Patagonian shelf, shelf slope and open waters of the Argentine Basin. Water temperature profiles added further details to the latter general oceanographic areas, and could be related to large-scale oceanographic processes that led to different water column structures. Temperature data reflected the mixing effects of winds and tides in coastal waters, the formation of a thermocline in mid-shelf areas, the northward flow of the sub-antartic Malvinas Current at the edge of the shelf, and the effect of the subtropical Brazil Current further east over deep off-shelf waters. Some of these distinct areas are known for their enhanced primary production associated with frontal systems. The study shows that elephant seals could be useful, low-cost platforms to obtain oceanographic data. Studies that require extensive sampling of physical variables in large areas over long periods of time would benefit from this approach, pending on more precise and frequent locations of animals at sea.

  15. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    USGS Publications Warehouse

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  16. Atmospheric profiling via satellite to satellite occultations near water and ozone absorption lines for weather and climate

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Stovern, M.; Sammler, K.; Reed, H.; Erickson, D.; McCormick, C.; Griggs, E.

    2016-05-01

    Significantly reducing weather and climate prediction uncertainty requires global observations with substantially higher information content than present observations provide. While GPS occultations have provided a major advance, GPS observations of the atmosphere are limited by wavelengths chosen specifically to minimize interaction with the atmosphere. Significantly more information can be obtained via satellite to satellite occultations made at wavelengths chosen specifically to characterize the atmosphere. Here we describe such a system that will probe cm- and mmwavelength water vapor absorption lines called the Active Temperature, Ozone and Moisture Microwave Spectrometer (ATOMMS). Profiling both the speed and absorption of light enables ATOMMS to profile temperature, pressure and humidity simultaneously, which GPS occultations cannot do, as well as profile clouds and turbulence. We summarize the ATOMMS concept and its theoretical performance. We describe field measurements made with a prototype ATOMMS instrument and several important capabilities demonstrated with those ground based measurements including retrieving temporal variations in path-averaged water vapor to 1%, in clear, cloudy and rainy conditions, up to optical depths of 17, remotely sensing turbulence and determining rain rates. We conclude with a vision of a future ATOMMS low Earth orbiting satellite constellation designed to take advantage of synergies between observational needs for weather and climate, ATOMMS unprecedented orbital remote sensing capabilities and recent cubesat technological innovations that enable a constellation of dozens of very small spacecraft to achieve many critical, but as yet unfulfilled, monitoring and forecasting needs.

  17. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    SciTech Connect

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  18. In vivo diffuse reflectance micro-spectroscopy for correction of Raman depth profiles acquired on skin

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Manfait, Michel; Dinten, Jean-Marc

    2016-04-01

    Confocal Raman microspectroscopy is a relevant and useful tool to perform in vivo diagnosis of cutaneous tissues noninvasively and without labeling. This optical technique provides in-depth molecular and conformational characterization of skin. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering elastic scattering in biological tissues. In this purpose, a correction model was constructed using skin scattering properties as parameters thus enabling quantitative analysis. The work presented here is a technique of in vivo Diffuse Reflectance Micro-Spectroscopy called Micro-DRS. It achieves optical properties characterization in the skin layers probed by Raman microspectroscopy. The Micro-DRS setup can easily be coupled to a confocal Raman micro-probe to perform simultaneous measurements. Thanks to Monte Carlo simulations and experimental results obtained on homemade solid phantoms mimicking skin optical properties, we show that it is possible to measure the absorption coefficient μa, the reduced scattering coefficient μs', the scattering coefficient μs and the anisotropy of scattering g with this new apparatus. The measured scattering properties can be used subsequently as parameters in our correction model. Coupled to a Raman micro-spectrometer, Micro-DRS enables a quantitative analysis when tracking drug penetration through skin and it can be used independently to provide additional diagnosing criterions.

  19. Laser ablation-ICP-MS depth profiling to study ancient glass surface degradation.

    PubMed

    Panighello, Serena; Van Elteren, Johannes T; Orsega, Emilio F; Moretto, Ligia M

    2015-05-01

    In general the analysis of archeological glass represents a challenge for a wide variety of objects because of the presence of physical and/or chemical damage on the surface of the artifact, also known as weathering or corrosion. To retrieve accurate bulk elemental information by laser ablation-inductively coupled plasma-mass spectrometry (ICP-MS), the original, pristine glass needs to be "reached", thereby penetrating the alteration layer which is often more than 10 μm thick. To study this alteration layer the laser was operated in the drilling mode, either with a low (1 Hz) or a high (10 Hz) pulse repetition rate for a period of 50 s yielding detailed spatial information for ca. 20 elements over a shallow depth (ca. 5 μm) or less-detailed spatial information for 50-60 elements over a greater depth (ca. 50 μm). Quantitative elemental depth profiles (in wt%) were obtained with the so-called sum normalization calibration protocol, based on summation of the elements as their oxides to 100 wt%. We were able to associate the increase of SiO2 (in wt%) in the alteration layer to the volumetric mass density change in the glass as a result of depletion of Na2O and K2O. Also the interaction of the number of laser shots with the alteration layer is shown experimentally via depth measurements using profilometry. Chemical and physical changes in four ancient glass artifacts, directly and indirectly measureable by laser drilling, were studied as a function of internal and external factors such as age, composition, and exposure conditions.

  20. Nanoparticles skin absorption: New aspects for a safety profile evaluation.

    PubMed

    Larese Filon, Francesca; Mauro, Marcella; Adami, Gianpiero; Bovenzi, Massimo; Crosera, Matteo

    2015-07-01

    Nanoparticles (NPs) skin absorption is a wide issue, which needs to be better understood. The attempt of this review is to summarize the scientific evidence concerning open questions, i.e.: the role of NPs intrinsic characteristics (size, shape, charge, surface properties), the penetration of NPs through the intact or impaired skin barrier, the penetration pathways which should be considered and the role of NPs interaction in physiological media. The outcomes suggest that one main difference should be made between metal and non-metal NPs. Both kinds have a secondary NPs size which is given after interaction in physiological media, and allows a size-dependent skin penetration: NPs⩽4nm can penetrate and permeate intact skin, NPs size between 4 and 20nm can potentially permeate intact and damaged skin, NPs size between 21 and 45nm can penetrate and permeate only damaged skin, NPs size>45nm cannot penetrate nor permeate the skin. Other aspects play an important role, mostly for metal NPs, i.e., dissolution in physiological media, which can cause local and systemic effects, the sensitizing or toxic potential and the tendency to create aggregates. This paper suggests a decision tree to evaluate the potential risk for consumers and workers exposed to NPs.

  1. Depth-discrete Geochemical Profiling in Groundwater Using an Innovative In Situ Approach

    NASA Astrophysics Data System (ADS)

    Levison, J.; MacDonald, G.

    2014-12-01

    The presence of nitrate in groundwater is often associated with agricultural activity. Leaching below the root zone to aquifers from agricultural areas is a critical problem in many jurisdictions where concentrations are above drinking water guidelines. Traditionally, nitrate and other water quality parameters are collected using purge and sample techniques. Often this "snapshot" data both disrupts the natural subsurface flow system and is not detailed enough to determine critical water quality or quantity conditions. In this study, depth-discrete, continuous and in situ monitoring techniques are developed. While nitrate is the focus, parameters including temperature, dissolved oxygen (DO), turbidity, redox potential (ORP) and electrical conductivity (EC), are also monitored. Research sites examine a range of hydrogeological conditions from supply wells located in shallow, unconfined sandy aquifers (Norfolk County, Ontario, Canada) to fractured sedimentary bedrock aquifers (Guelph, Ontario) impacted by agricultural activity. The innovative groundwater quality sampling method uses the Submersible Ultraviolet Nitrate Analyzer (SUNATM) as well as the robust YSI EXO2 Water Quality SondeTM. Depth-discrete well profiling is used to evaluate vertical stratification of nitrate and field parameters along the entire borehole with a focus on the screened interval. The high resolution datasets show zones of changing water quality corresponding to different formations. In open bedrock boreholes in Guelph, distinct intervals were identified at different depths for pH, EC, DO and ORP. In the shallower wells in Norfolk County, increases in DO and EC along the screened interval suggest the presence of fresh groundwater representative of the aquifer, with potential implications for in situ long-term monitoring of groundwater parameters. Detailed profiles of DO and ORP at both sites can be combined with nitrate profile data to determine potential zones of denitrification. Water

  2. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function.

    PubMed

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg(-1) respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer.

  3. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01

    Understanding spatial variation of soil organic carbon (SOC) in three-dimensional direction is helpful for land use management. Due to the effect of profile depths and soil texture on vertical distribution of SOC, the stationary assumption for SOC cannot be met in the vertical direction. Therefore the three-dimensional (3D) ordinary kriging technique cannot be directly used to map the distribution of SOC at a regional scale. The objectives of this study were to map the 3D distribution of SOC at a regional scale by combining kriging method with the profile depth function of SOC (KPDF), and to explore the effects of soil texture and land use type on vertical distribution of SOC in a fluvial plain. A total of 605 samples were collected from 121 soil profiles (0.0 to 1.0 m, 0.20 m increment) in Quzhou County, China and SOC contents were determined for each soil sample. The KPDF method was used to obtain the 3D map of SOC at the county scale. The results showed that the exponential equation well described the vertical distribution of mean values of the SOC contents. The coefficients of determination, root mean squared error and mean prediction error between the measured and the predicted SOC contents were 0.52, 1.82 and -0.24 g kg-1 respectively, suggesting that the KPDF method could be used to produce a 3D map of SOC content. The surface SOC contents were high in the mid-west and south regions, and low values lay in the southeast corner. The SOC contents showed significant positive correlations between the five different depths and the correlations of SOC contents were larger in adjacent layers than in non-adjacent layers. Soil texture and land use type had significant effects on the spatial distribution of SOC. The influence of land use type was more important than that of soil texture in the surface soil, and soil texture played a more important role in influencing the SOC levels for 0.2-0.4 m layer. PMID:26047012

  4. Optical depth ratios and metal-line absorption around z≈2.3 star-forming galaxies: insights from observations and simulations

    NASA Astrophysics Data System (ADS)

    Turner, Monica; Schaye, Joop; Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison

    2015-01-01

    We study metal-line absorption around 854 z≈2.3 star-forming galaxies taken from the Keck Baryonic Structure Survey. The galaxies in this survey lie in the fields of 15 hyper-luminous background QSOs, with galaxy impact parameters ranging from 35 proper kpc (pkpc) to 2 proper Mpc (pMpc). Using the pixel optical depth technique, we present the first galaxy-centered 2-D maps of the median absorption by OVI, NV, CIV, CIII, and SiIV, as well as updated results for HI. At small galactocentric radii we detect a strong enhancement of the absorption relative to randomly located regions that extend out to at least 180 pkpc in the transverse direction, and ±240 km s-1 along the line-of-sight (LOS, ˜1 pMpc in the case of pure Hubble flow) for all ions except NV. Limiting the sample to the 340 galaxies with redshifts measured from nebular emission lines does not decrease the extent of the enhancement along the LOS compared to that in the transverse direction, which rules out redshift errors as the source of the observed redshift-space anisotropy and implies that we have detected the signature of gas peculiar velocities from infall, outflows, or virial motions. Looking next at optical depth ratios, we isolate pixel pairs at small galactocentric distances (within 180 pkpc in the transverse direction and 170 km s-1 along the LOS) and find that the optical depth of OVI at fixed HI is enhanced with respect to the full sample. Comparison with CLOUDY models, and assuming photoionisation, results in nearly solar metallicities at intergalactic overdensities, which we consider to be unphysical. Invoking collisional ionisation, we are able to place a lower limit on [O/H] of ˜1/100th solar, and conclude that we are likely probing collisionally ionised gas near galaxies. Finally, we turn to the EAGLE cosmological hydrodynamical simulations to interpret our results, and furthermore to study the evolution of the column density profiles as a function of impact parameter for different

  5. Development of an ion time-of-flight spectrometer for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Cetiner, Mustafa Sacit

    Ion time-of-flight spectrometry techniques are investigated for applicability to neutron depth profiling. Time-of-flight techniques are used extensively in a wide range of scientific and technological applications including energy and mass spectroscopy. Neutron depth profiling is a near-surface analysis technique that gives concentration distribution versus depth for certain technologically important light elements. The technique uses thermal or sub-thermal neutrons to initiate (n, p) or (n, alpha) reactions. Concentration versus depth distribution is obtained by the transformation of the energy spectrum into depth distribution by using stopping force tables of the projectiles in the substrate, and by converting the number of counts into concentration using a standard sample of known dose value. Conventionally, neutron depth profiling measurements are based on charged particle spectrometry, which employs semiconductor detectors such as a surface barrier detector (SBD) and the associated electronics. Measurements with semiconductor detectors are affected by a number of broadening mechanisms, which result from the interactions between the projectile ion and the detector material as well as fluctuations in the signal generation process. These are inherent features of the detection mechanism that involve the semiconductor detectors and cannot be avoided. Ion time-of-flight spectrometry offers highly precise measurement capabilities, particularly for slow particles. For high-energy low-mass particles, measurement resolution tends to degrade with all other parameters fixed. The threshold for more precise ion energy measurements with respect to conventional techniques, such as direct energy measurement by a surface barrier detector, is directly related to the design and operating parameters of the device. Time-of-flight spectrometry involves correlated detection of two signals by a coincidence unit. In ion time-of-flight spectroscopy, the ion generates the primary input

  6. ERD spectrum to depth profile conversion program for Windows®

    NASA Astrophysics Data System (ADS)

    Schiettekatte, F.; Ross, G. G.

    1997-02-01

    Alegria is a new PC-based program to convert ERD and some NRA spectra into depth profiles. The version 1.0 of the program is intended for one implant in one substrate, but will be improved for multi-element detection and multilayers. It is a user friendly Windows application that takes advantage of the Windows functionalities such as "drag and drop" for file managing, multitasking, full memory access, etc. The stopping power is evaluated trough fitting formulae. The iterative integration of the stopping power is made by the RUNGE-KUTTA adaptive step algorithm according to the atomic concentration found in the previous iteration. A demonstration, showing the progression of the solution with the iterations, and an application are presented.

  7. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  8. C and N depth profiles of SiCN layers determined with nuclear reaction analyses and AES

    NASA Astrophysics Data System (ADS)

    Link, F.; Baumann, H.; Bethge, K.; Klewe-Nebenius, H.; Bruns, M.

    1998-04-01

    Si 1C xN y layers were prepared by sequential implantation of 40 keV 13C- and 50 keV 15N-ions into c-Si <1 1 1> samples near RT. The carbon and nitrogen depth distributions were measured using the resonant nuclear (p,γ) reactions 15N(p,αγ) 12C at Eres=429 keV and 13C(p,γ) 14N at Eres=1748 keV, respectively. The measured raw data of depth profiling (gamma yield versus the proton beam energy) are converted to concentration-depth profiles of the elements C, N and Si with a common depth scale by using a new developed computer algorithm. These concentration profiles are compared with those obtained with Auger Electron Spectroscopy (AES) and non-Rutherford Backscattering Spectrometry (n-RBS).

  9. Using cosmogenic depth-profiles to establish the timing of glaciations in southernmost South America

    NASA Astrophysics Data System (ADS)

    Darvill, Christopher; Bentley, Mike; Stokes, Chris

    2014-05-01

    Ice sheets in southernmost South America (52 to 54°S) are likely to have been sensitive to oceanic and atmospheric forcing, but the timing of glaciations is poorly constrained. This uncertainty represents a significant gap in our understanding of the southern hemisphere terrestrial-climatic record and stems from two unresolved issues. First, the nature of advance(s) and retreat(s) of the southernmost ice lobes is relatively unknown. Secondly, there is a difficulty in establishing age constraints beyond the Last Glacial Maximum (LGM), with previous cosmogenic nuclide exposure data from boulders yielding ages that are significantly younger (ca. LGM) than the previously hypothesised ages of the ice limits (ca. MIS 8 to 12). This discrepancy was ascribed to post-depositional processes (exhumation and erosion) acting on the boulders. This paper presents the preliminary results of an on-going investigation into the timing of glaciations for these ice lobes, focussing on glacial geomorphological mapping, ice lobe reconstruction and an alternative cosmogenic nuclide depth-profile approach to dating former ice limits. The glacial geomorphological mapping allows ice-sheet reconstruction and highlights locations where there are clear relationships between glaciofluvial outwash and corresponding ice limits. These are the target locations for cosmogenic outwash depth-profiles, which are being used to date the surface of outwash (rather than moraine boulders) whilst accounting for issues of erosion, exhumation and inheritance. The aim is to produce robust ages for the pre-'LGM' limits of the southernmost ice lobes in order to show when ice advances occurred and how this relates to wider Southern Hemispheric climatic change.

  10. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles.

    PubMed

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki

    2016-04-01

    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions.

  11. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover.

    PubMed

    Lee, Eun-Hee; Moon, Kyung-Eun; Kim, Tae Gwan; Cho, Kyung-Suk

    2014-08-20

    The depth profiles of the CH4 oxidation potentials and the methanotrophic community were characterized in a lab-scale soil mixture biocover. The soil mixture samples were collected from the top (0-10cm), middle (10-40cm), and bottom (40-50cm) layers of the biocover where most of methane was oxidized at the top layer due to consumption of O2. Batch tests using serum bottles showed that the middle and bottom samples displayed CH4 oxidation activity under aerobic conditions, and their CH4 oxidation rates were 85 and 71% of the rate of top sample (8.40μmolgdry sample(-1)h(-1)), respectively. The numbers of methanotrophs in the middle and bottom were not significantly different from those in the top sample. There was no statistical difference in the community stability indices (diversity and evenness) among the methanotrophic communities of the three layer samples, even though the community structures were distinguished from each other. Based on microarray analysis, type I and type II methanotrophs were equally present in the top sample, while type I was more dominant than type II in the middle and bottom samples. We suggested that the qualitative difference in the community structures was probably caused by the difference in the depth profiles of the CH4 and O2 concentrations. The results for the CH4 oxidation potential, methanotrophic biomass, and community stability indices in the middle and bottom layer samples indicated that the deeper layer in the methanotrophic biocover serves as a bioresource reservoir for sustainable CH4 mitigation.

  12. Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs.

    PubMed

    Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert

    2004-06-01

    Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.

  13. Measuring Compositions in Organic Depth Profiling: Results from a VAMAS Interlaboratory Study

    SciTech Connect

    Shard, A. G.; Havelund, Rasmus; Spencer, Steve J.; Gilmore, I. S.; Alexander, Morgan R.; Angerer, Tina B.; Aoyagi, Satoka; Barnes, Jean P.; Benayad, Anass; Bernasik, Andrzej; Ceccone, Giacomo; Counsell, Jonathan D.; Deeks, Christopher; Fletcher, John S.; Graham, Daniel J.; Heuser, Christian; Lee, Tae G.; Marie, Camille; Marzec, Mateusz M.; Mishra, Gautam; Rading, Derk; Renault, Oliver; Scurr, David J.; Shon, Hyun K.; Spampinato, Valentina; Tian, Hua; Wang, Fuyi; Winograd, Nicholas; Wu, Kui; Wucher, Andreas; Zhou, Yufan; Zhu, Zihua

    2015-07-23

    We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study on the measurement of composition in organic depth profiling. Layered samples with known binary compositions of Irganox 1010 and either Irganox 1098 or Fmoc-pentafluoro-L-phenylalanine in each layer were manufactured in a single batch and distributed to more than 20 participating laboratories. The samples were analyzed using argon cluster ion sputtering and either X-ray Photoelectron Spectroscopy (XPS) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) to generate depth profiles. Participants were asked to estimate the volume fractions in two of the layers and were provided with the compositions of all other layers. Participants using XPS provided volume fractions within 0.03 of the nominal values. Participants using ToF-SIMS either made no attempt, or used various methods that gave results ranging in error from 0.02 to over 0.10 in volume fraction, the latter representing a 50% relative error for a nominal volume fraction of 0.2. Error was predominantly caused by inadequacy in the ability to compensate for primary ion intensity variations and the matrix effect in SIMS. Matrix effects in these materials appear to be more pronounced as the number of atoms in both the primary analytical ion and the secondary ion increase. Using the participants’ data we show that organic SIMS matrix effects can be measured and are remarkably consistent between instruments. We provide recommendations for identifying and compensating for matrix effects. Finally we demonstrate, using a simple normalization method, that virtually all ToF-SIMS participants could have obtained estimates of volume fraction that were at least as accurate and consistent as XPS.

  14. Depth profiling analysis of solar wind helium collected in diamond-like carbon film from Genesis

    SciTech Connect

    Bajo, Ken-ichi; Olinger, Chad T.; Jurewicz, Amy J.G.; Burnett, Donald S.; Sakaguchi, Isao; Suzuki, Taku; Itose, Satoru; Ishihara, Morio; Uchino, Kiichiro; Wieler, Rainer; Yurimoto, Hisayoshi

    2015-10-01

    The distribution of solar-wind ions in Genesis mission collectors, as determined by depth profiling analysis, constrains the physics of ion solid interactions involving the solar wind. Thus, they provide an experimental basis for revealing ancient solar activities represented by solar-wind implants in natural samples. We measured the first depth profile of ⁴He in a collector; the shallow implantation (peaking at <20 nm) required us to use sputtered neutral mass spectrometry with post-photoionization by a strong field. The solar wind He fluence calculated using depth profiling is ~8.5 x 10¹⁴ cm⁻². The shape of the solar wind ⁴He depth profile is consistent with TRIM simulations using the observed ⁴He velocity distribution during the Genesis mission. It is therefore likely that all solar-wind elements heavier than H are completely intact in this Genesis collector and, consequently, the solar particle energy distributions for each element can be calculated from their depth profiles. Ancient solar activities and space weathering of solar system objects could be quantitatively reproduced by solar particle implantation profiles.

  15. Numerical oxidation model for gamma radiation-sterilized UHMWPE: consideration of dose-depth profile.

    PubMed

    Blanchet, T A; Burroughs, B R

    2001-01-01

    Gamma sterilization of UHMWPE hip and knee joint replacement components secondarily creates free radicals along the polymer chains. Though crosslinking between radicals may improve mechanical properties, typical post-irradiation environments (air shelf storage or in vivo service) may instead favor scission reactions with oxygen from the surroundings. As such aging of irradiated UHMWPE joint replacement components has important consequences such as osteolysis, increased insight has been sought through descriptive models of this oxidation process. The quantitative numerical model presented here accounts for a free radical concentration that varies with position (because of irradiation dose-depth profile) and time (because of free radical decay through crosslinking). A moving front of diffusing O(2) is allowed to traverse the UHMWPE medium containing depth- and time-dependent free radical concentration, and these diffusing molecules react with available free radicals persisting at the front. This model's capabilities are illustrated in three examples of irradiated UHMWPE aging behavior: In room-temperature air (shelf-aging), in atmospheres of augmented oxygen partial pressure and temperature intended to accelerate aging while otherwise remaining simulative of real-time aging; and following post-irradiation vacuum storage intended to consume free radicals through complete crosslinking, but often performed to an incomplete extent.

  16. Historical Tracking of Nitrate in Contrasting Vineyard Using Water Isotopes and Nitrate Depth Profiles

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Erhardt, M.; Riedel, M.; Weiler, M.

    2015-12-01

    The European Water Framework Directive (EWFD) aims to achieve a good chemical status for the groundwater bodies in Europe by the year 2015. Despite the effort to reduce the nitrate pollution from agriculture within the last two decades, there are still many groundwater aquifers that exceed nitrate concentrations above the EWFD threshold of 50 mg/l. Viticulture is seen as a major contributor of nitrate leaching and sowing of a green cover was shown to have a positive effect on lowering the nitrate loads in the upper 90 cm of the soil. However, the consequences for nitrate leaching into the subsoil were not yet tested. We analyzed the nitrate concentrations and pore water stable isotope composition to a depth of 380 cm in soil profiles under an old vineyard and a young vineyard with either soil tillage or permanent green cover in between the grapevines. The pore water stable isotopes were used to calibrate a soil physical model, which was then used to infer the age of the soil water at different depths. This way, we could relate elevated nitrate concentrations below an old vineyard to tillage processes that took place during the winter two years before the sampling. We further showed that the elevated nitrate concentration in the subsoil of a young vineyard can be related to the soil tillage prior to the planting of the new vineyard. If the soil is kept bare due to tillage, a nitrate concentration of 200 kg NO3--N/ha is found in 290 to 380 cm depth 2.5 years after the installation of the vineyard. The amount of nitrate leaching is considerably reduced due to a seeded green cover between the grapevines that takes up a high share of the mobilized nitrate reducing a potential contamination of the groundwater.

  17. Direct observation of depth profile of magnetic moment by magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Mun, Bongjin Simon; Yang, See-Hun; Mannella, Norman; Kay, Alex W.; Kim, Sang-Koog; Kortright, Jeffrey B.; Underwood, Jim H.; Hussain, Zahid; Fadley, Charles S.

    2001-03-01

    The magnetic properties at the interface between Fe and Cr wedge layers are investigated with a new depth-resolved soft x-ray photoemission spectroscopy (SXPS)[1], combined with magnetic circular dichroism (MCD). The layers of Fe (10 A)/ Cr (50 A wedge- shaped) are grown on a periodic multilayer (B 4 C(22.5A)/W(17.1 A)) _40, which provides the strong standing wave effects of 40 The unique angular dependence of photoelectron intensity of Fe and Cr has been observed at each different Cr wedge thickness and show excellent agreement with the theoretical calculation. To maximize the enhancement and contrast of standing wave effect inside of sample, the sample position is tuned to the Bragg angle position, at which the MCD measurement with SXPS along the different thickness of Cr wedge layer provides the depth profile of the magnetic moment of Fe and Cr. A strong antiparallel coupling across the interface of Cr magnetic moment is clearly resolved while the apparent reduction of Fe magnetic moment is observed near the interface. This observation is consistent with the other works on the same system [2] and even describes how the magnetic moment behaves inside of the sample from the top surface to the interface in one single sample preparation. In this experiment, a new depth-resolved SXPS has been successfully implemented to magnetic multilayer system and prove to be powerful technique to study the buried interface of magnetic system, as proposed by our former work [1]. [1] S.-H. Yang, B. S. Mun, A.W. Kay, S.-K. Kim, J. B. Kortright , J.H. Underwood, Z. Hussain, C. S. Fadley, Surf. Sci. 461 L557-L564 (2000) [2] G. Panaccione, F. Sirotti, E. Narducci, and G. Rossi, Phys. Rev. B 55, 389 (1997)

  18. Depth and Shape of the 0.94-microm Water Vapor Absorption Band for Clear and Cloudy Skies.

    PubMed

    Volz, F E

    1969-11-01

    Sky radiation near zenith and solar radiation in the rhosigmatau band region were recorded by means of a rotating interference filter (lambda0.98-0.88 microm) and a silicon detector. Although the spectral resolution of the simple spectrometer was not high, the water vapor content of the cloud free atmosphere was obtained with reasonable accuracy. The band depth of the radiation from thin, bright clouds was only slightly greater than that of the cloud free atmosphere, but dense and dark clouds showed deep bands mainly caused by increased path length as a result of multiple scattering. Considerable distortion of the band due to absorption by liquid water is observed in the radiation from very dark and dense clouds, and sometimes during snowfall. Some laboratory measurements are also discussed.

  19. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  20. Wind-Speed Profile and Roughness Sublayer Depth Modelling in Urban Boundary Layers

    NASA Astrophysics Data System (ADS)

    Pelliccioni, Armando; Monti, Paolo; Leuzzi, Giovanni

    2016-08-01

    We propose a new formulation for the wind-speed profile in the urban boundary layer, which can be viewed as a generalisation of the commonly used logarithmic law. The model is based on the assumption that the role played by the classical aerodynamic roughness length and the displacement height in the logarithmic law is taken by a sole variable, the local length scale, which follows a pattern of exponential decrease with height. Starting from wind-speed profiles collected at Villa Pamphili park, Rome, Italy, an empirical fit is used to determine the model parameters. The results show that the local length scale depends also on the friction velocity and that, with appropriate normalization, it reduces to a family of curves that spreads according to the planar area fraction. Another novel aspect is the estimation of the roughness sublayer depth, which can be expressed as a function of the friction velocity and morphometric quantities such as the building height and the planar area fraction. It is also found that the rate of growth with height of the Prandtl mixing length linked to the new formulation is, just above the canopy, lower than the canonical value 0.41, and approaches the latter value well above the roughness sublayer. The model performance is tested by comparison with laboratory and field data reported in the literature.

  1. Thermal depth profiling of vascular lesions: automated regularization of reconstruction algorithms

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Choi, Bernard; Zhang, Jenny R.; Kim, Jeehyun; Nelson, J. Stuart

    2008-03-01

    Pulsed photo-thermal radiometry (PPTR) is a non-invasive, non-contact diagnostic technique used to locate cutaneous chromophores such as melanin (epidermis) and hemoglobin (vascular structures). Clinical utility of PPTR is limited because it typically requires trained user intervention to regularize the inversion solution. Herein, the feasibility of automated regularization was studied. A second objective of this study was to depart from modeling port wine stain PWS, a vascular skin lesion frequently studied with PPTR, as strictly layered structures since this may influence conclusions regarding PPTR reconstruction quality. Average blood vessel depths, diameters and densities derived from histology of 30 PWS patients were used to generate 15 randomized lesion geometries for which we simulated PPTR signals. Reconstruction accuracy for subjective regularization was compared with that for automated regularization methods. The objective regularization approach performed better. However, the average difference was much smaller than the variation between the 15 simulated profiles. Reconstruction quality depended more on the actual profile to be reconstructed than on the reconstruction algorithm or regularization method. Similar, or better, accuracy reconstructions can be achieved with an automated regularization procedure which enhances prospects for user friendly implementation of PPTR to optimize laser therapy on an individual patient basis.

  2. Absorption profile of a planetary atmosphere: a proposal for a scattering independent determination.

    PubMed

    Fymat, A L; Lenoble, J

    1972-10-01

    The use of scattering theory to infer atmospheric optical parameters requires the separation of absorption and scattering. It is demonstrated that a gradient flux relation exists that would provide the absorption (altitude) profile independently of scattering and irrespective of the state of polarization of the light field. The relation is derived for an atmosphere of plane-parallel or spherical geometry and for broad (continuum) and narrow (spectral line) frequency bands. The results are shown to hold, in particular, for the polarizations induced by both Rayleigh and Mie scattering in the field. Experimental setups are proposed for each of the cases considered of atmospheric geometry and frequency bandwidth. A final discussion considers the relevance of the present determination of the atmospheric absorption profile to the related problems of aerosol relative concentration, interpretation of radiometric and spectrometric data formed in the presence of scattering, clouds morphology, and radiative heat budget of the atmosphere.

  3. Will solid-state drives accelerate your bioinformatics? In-depth profiling, performance analysis and beyond.

    PubMed

    Lee, Sungmin; Min, Hyeyoung; Yoon, Sungroh

    2016-07-01

    A wide variety of large-scale data have been produced in bioinformatics. In response, the need for efficient handling of biomedical big data has been partly met by parallel computing. However, the time demand of many bioinformatics programs still remains high for large-scale practical uses because of factors that hinder acceleration by parallelization. Recently, new generations of storage devices have emerged, such as NAND flash-based solid-state drives (SSDs), and with the renewed interest in near-data processing, they are increasingly becoming acceleration methods that can accompany parallel processing. In certain cases, a simple drop-in replacement of hard disk drives by SSDs results in dramatic speedup. Despite the various advantages and continuous cost reduction of SSDs, there has been little review of SSD-based profiling and performance exploration of important but time-consuming bioinformatics programs. For an informative review, we perform in-depth profiling and analysis of 23 key bioinformatics programs using multiple types of devices. Based on the insight we obtain from this research, we further discuss issues related to design and optimize bioinformatics algorithms and pipelines to fully exploit SSDs. The programs we profile cover traditional and emerging areas of importance, such as alignment, assembly, mapping, expression analysis, variant calling and metagenomics. We explain how acceleration by parallelization can be combined with SSDs for improved performance and also how using SSDs can expedite important bioinformatics pipelines, such as variant calling by the Genome Analysis Toolkit and transcriptome analysis using RNA sequencing. We hope that this review can provide useful directions and tips to accompany future bioinformatics algorithm design procedures that properly consider new generations of powerful storage devices. PMID:26330577

  4. What Can Radiocarbon Depth Profiles Tell Us About The LGM Circulation?

    NASA Astrophysics Data System (ADS)

    Burke, A.; Stewart, A.; Adkins, J. F.; Ferrari, R. M.; Thompson, A. F.; Jansen, M. F.

    2014-12-01

    Published reconstructions of radiocarbon in the Atlantic sector of the Southern Ocean indicate that there is a mid-depth maximum in radiocarbon age during the last glacial maximum (LGM). This is in contrast to the modern ocean where intense mixing between water masses along shared density surfaces (isopycnals) results in a relatively homogenous radiocarbon profile. A recent study (Ferrari et al. 2014) suggested that the extended Antarctic sea ice cover during the LGM necessitated a shallower boundary between the upper and lower branches of the meridional overturning circulation (MOC). This shoaled boundary lay above major topographic features and their associated strong diapycnal mixing, which isolated dense southern-sourced water in the lower branch of the overturning circulation. This isolation would have allowed radiocarbon to decay, and thus provides a possible explanation for the mid-depth radiocarbon age bulge. We test this hypothesis using an idealized, 2D, residual-mean dynamical model of the global overturning circulation. Concentration distributions of a decaying tracer that is advected by the simulated overturning are compared to published radiocarbon data. We test the sensitivity of the mid-depth radiocarbon age to changes in sea ice extent, wind strength, and isopycnal and diapycnal diffusion. The mid-depth radiocarbon age bulge is most likely caused by the different circulation geometry, associated with increased sea ice extent. In particular, with an LGM-like sea ice extent the upper and lower branches of the MOC no longer share isopycnals, so radiocarbon-rich northern-sourced water is no longer mixed rapidly into the southern-sourced water. However, this process alone cannot explain the magnitude of the glacial radiocarbon anomalies; additional isolation (e.g. from reduced air-sea gas exchange associated with the increased sea ice) is required. Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson (2014), Antarctic sea

  5. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  6. Atmospheric Profiling Combining the Features of GPS ro & Mls: Satellite to Satellite Occultations Near Water & Ozone Absorption Lines

    NASA Astrophysics Data System (ADS)

    Kursinski, E. R.; Ward, D.; Otarola, A. C.; McGhee, J.; Reed, H.; Erickson, D.

    2015-12-01

    Assessing climate models & their predictions requires observations that determine the state of the real climate system precisely and unambiguously, independently from models. For this purpose, we have been developing a new orbiting remote sensing system called the Active Temperature, Ozone & Moisture Microwave Spectrometer (ATOMMS) which is a cross between GPS RO and the Microwave Limb Sounder. ATOMMS actively probes water vapor, ozone & other absorption lines at cm & mm wavelengths in a satellite to satellite occultation geometry to simultaneously profile temperature, pressure, water vapor and ozone as well as other important constituents. Individual profiles of water vapor, temperature & pressure heights will extend from near the surface into the mesosphere with ~1%, 0.4K and 10 m precision respectively and still better accuracy, with 100 m vertical resolution. Ozone profiles will extend upward from the upper troposphere. Line of sight wind profiles will extend upwards from the mid-stratosphere. ATOMMS is a doubly differential absorption system which eliminates drift and both sees clouds and sees thru them, to deliver performance in clouds within a factor of 2 of the performance in clear skies. This all-weather sampling combined with insensitivity to surface emissivity avoids sampling biases that limit most existing satellite records. ATOMMS will profile slant liquid water in clouds & rain and as well as turbulence via scintillations ("twinkling of a star"). Using prototype ATOMMS instrumentation that we developed with funding from NSF, several ATOMMS ground field campaigns precisely measured water vapor, cloud amount, rainfall, turbulence and absorption line spectroscopy. ATOMMS's dynamic range was demonstrated as water vapor was derived to 1% precision in optical depths up to 17. We are developing high altitude aircraft to aircraft instrumentation to further demonstrate ATOMMS performance, refine spectroscopy & support future field campaigns. Our vision is a

  7. Measurement of temperature profiles in flames by emission-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.

    1972-01-01

    An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.

  8. Solvent effects on the vibronic one-photon absorption profiles of dioxaborine heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Hua; Halik, Marcus; Wang, Chuan-Kui; Marder, Seth R.; Luo, Yi

    2005-11-01

    The vibronic profiles of one-photon absorption spectra of dioxaborine heterocycles in gas phase and solution have been calculated at the Hartree-Fock and density-functional-theory levels. The polarizable continuum model has been applied to simulate the solvent effect, while the linear coupling model is used to compute the Franck-Condon and Herzberg-Teller contributions. It is found that a good agreement between theory and experiment can be achieved when the solvent effect and electron correlation are taken into account simultaneously. For the first excited charge-transfer state, the maximum of its Herzberg-Teller profile is blueshifted from that of the Franck-Condon profile. The shifted energy is found to be around 0.2eV, which agrees well with the measured energy difference between two- and one-photon absorptions of the first excited state.

  9. Molecular depth profiling of organic photovoltaic heterojunction layers by ToF-SIMS: comparative evaluation of three sputtering beams.

    PubMed

    Mouhib, T; Poleunis, C; Wehbe, N; Michels, J J; Galagan, Y; Houssiau, L; Bertrand, P; Delcorte, A

    2013-11-21

    With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.

  10. Depth profiles of bacterioplankton assemblages and their activities in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Celussi, Mauro; Cataletto, Bruno; Fonda Umani, Serena; Del Negro, Paola

    2009-12-01

    The identification of bacterial community structure has led, since the beginning of the 1990s, to the idea that bacterioplankton populations are stratified in the water column and that diverse lineages with mostly unknown phenotypes dominate marine microbial communities. The diversity of depth-related assemblages is also reflected in their patterns of activities, as bacteria affiliated to different groups can express different activities in a given ecosystem. We analysed bacterial assemblages (DGGE fingerprinting) and their activities (prokaryotic carbon production, protease, phosphatase, chitinase, beta-glucosidase and lipase activities) in two areas in the Ross Sea, differing mainly in their productivity regime: two stations are located in the Terra Nova Bay polynya area (highly productive during summer) and two close to Cape Adare (low phytoplankton biomass and activity). At every station a pronounced stratification of bacterial assemblages was identified, highlighting epipelagic communities differing substantially from the mesopelagic and the bathypelagic communities. Multivariate analysis suggested that pressure and indirectly light-affected variables (i.e. oxygen and fluorescence) had a great effect on the bacterial communities outcompeting the possible influences of temperature and dissolved organic carbon concentration. Generally activities decreased with depth even though a signal of the Circumpolar Deep Water (CDW) at one of the northern stations corresponded to an increase in some of the degradative activities, generating some 'hot spots' in the profile. We also found that similar assemblages express similar metabolic requirements reflected in analogous patterns of activity (similar degradative potential and leucine uptake rate). Furthermore, the presence of eukaryotic chloroplasts' 16S rDNA in deep samples highlighted how in some cases the dense surface-water formation (in this case High Salinity Shelf Water—HSSW) and downwelling can affect, at least

  11. Millennial-scale hard rock erosion rates deduced from luminescence-depth profiles

    NASA Astrophysics Data System (ADS)

    Sohbati, R.; Liu, J.; Murray, A. S.; Jain, M.; Pederson, J. L.; Guralnik, B.; Egholm, D. L.; Gupta, S.

    2015-12-01

    Optically stimulated luminescence (OSL) is a well-established Quaternary dating method that is conventionally used to determine the time when sedimentary grains were last exposed to daylight. Recently, a very different approach to this concept has helped develop a new technique to estimate the length of time a rock surface was exposed to daylight. When a rock surface is first exposed to daylight the charge population (and so the latent luminescence signal) trapped in its constituent minerals (e.g. quartz and feldspar) starts to decrease. This charge had accumulated due to previous exposure to natural ionizing radiation. As the surface is exposed to light for longer periods, the latent luminescence signal is reduced farther into the rock. In a rock surface which has been exposed to light for a prolonged period (decades to millennia), the remaining luminescence will be zero (fully bleached) at the surface and then increase, initially exponentially, before approaching saturation at a depth where charge detrapping due to light penetration is negligible compared to the rate of charge trapping due to the environmental dose rate. By modelling the characteristic shape of luminescence resetting with depth into rock surfaces, Sohbati et al. (2012) proposed a new surface-exposure dating technique based on OSL. Here we further develop the current model to include the effect of erosion rate on luminescence-depth profiles. By fitting the model to local known-age calibration samples, we first determine the site-specific resetting rates of the luminescence signal at rock surfaces. We then use the calibration values in a numerical model to derive the steady-state erosion rate for rocks of different mineralogy and different geological settings. The preliminary erosion rates obtained from glacial and landslide granite boulders from the Chinese Pamir Plateau are ~1 mm.ka-1, whereas active streambeds of Permian sandstone in the Grabens district of Canyonlands National Park, Utah, are

  12. Impact of nitrogen depth profiles on the electrical properties of crystalline high-K gate dielectrics

    NASA Astrophysics Data System (ADS)

    Huang, Jhih-Jie; Tsai, Yi-Jen; Tsai, Meng-Chen; Huang, Li-Tien; Lee, Min-Hung; Chen, Miin-Jang

    2015-01-01

    The electrical characteristics of crystalline ZrO2 gate dielectrics with different nitrogen depth profiles were investigated, which were treated by the in-situ atomic layer doping of nitrogen and post-deposition nitridation processes, respectively, using remote NH3 plasma at a low treatment temperature of 250 °C. The crystalline ZrO2 gate dielectric of the tetragonal/cubic phase was formed by post-metallization annealing (PMA) at a low temperature of 450 °C, resulting in an increase of the dielectric constant. As compared with the in-situ atomic layer doping of nitrogen, the post-deposition nitrogen process leads to a lower capacitance equivalent thickness of 1.13 nm with a low leakage current density of 1.35 × 10-5 A/cm2. The enhanced capacitance density caused by the post-deposition nitrogen treatment may be ascribed to the high nitrogen concentration at the top surface of gate dielectric, giving rise to the suppression of oxygen diffusion from the ambient toward the interface and so a thinner interfacial layer. The result reveals that the nitrogen incorporation at the top surface of gate oxide is favorable to the scaling of crystalline high-K gate dielectrics.

  13. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    PubMed Central

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; Liu, Kai; Kirby, B. J.; Borchers, Julie A.; Maranville, Brian B.

    2016-01-01

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films. PMID:27447691

  14. RBS and PIXE study of gallium depth profiling in ZSM-5 gallo-aluminosilicate zeolites

    NASA Astrophysics Data System (ADS)

    Gabelica, Zelimir; Demortier, Guy

    1998-03-01

    Gallium concentration depth profiling in various as-synthesised and post-synthesis thermally treated Ga- and (Ga,Al)-ZSM-5 zeolites was quantitatively evaluated by RBS. This technique proved for the first time that Ga-ZSM-5 synthesised in the presence of methylamine involves a homogeneous Ga framework distribution. When both Al and Ga are present in the gel precursor, they form mixed complexes with methylamine and incorporate the zeolite lattice at different rates while some unreacted Ga-amino complex overcoats the outer rim of the crystals. Gallosilicates synthesised in the fluoride medium show a fairly homogeneous Ga incorporation with an increased Ga concentration on surface due to its overcoating by residual Ga fluoro complexes. Post-synthesis thermal treatments result in a partial degalliation of the framework that could be quantified by RBS. The nature, mobility and location of the extra framework Ga species markedly depend on the calcination conditions. A rapid calcination in dry conditions leads to the formation of extra framework Ga oxides that migrate towards the crystal core. Under milder heating, these species stay homogeneously partitioned within the crystal channels. Under a humid atmosphere, the extra framework Ga species migrate towards the crystal surface, the migration being enhanced by a partial reduction of Ga during non-oxidative treatments. Humid air treatment maintains the homogeneous distribution of both Ga 2O 3 and residual Ga 3+ framework ions.

  15. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit

    NASA Astrophysics Data System (ADS)

    Gilbert, Dustin A.; Grutter, Alexander J.; Arenholz, Elke; Liu, Kai; Kirby, B. J.; Borchers, Julie A.; Maranville, Brian B.

    2016-07-01

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films.

  16. Structural and magnetic depth profiles of magneto-ionic heterostructures beyond the interface limit.

    PubMed

    Gilbert, Dustin A; Grutter, Alexander J; Arenholz, Elke; Liu, Kai; Kirby, B J; Borchers, Julie A; Maranville, Brian B

    2016-01-01

    Electric field control of magnetism provides a promising route towards ultralow power information storage and sensor technologies. The effects of magneto-ionic motion have been prominently featured in the modification of interface characteristics. Here, we demonstrate magnetoelectric coupling moderated by voltage-driven oxygen migration beyond the interface in relatively thick AlOx/GdOx/Co(15 nm) films. Oxygen migration and Co magnetization are quantitatively mapped with polarized neutron reflectometry under electro-thermal conditioning. The depth-resolved profiles uniquely identify interfacial and bulk behaviours and a semi-reversible control of the magnetization. Magnetometry measurements suggest changes in the microstructure which disrupt long-range ferromagnetic ordering, resulting in an additional magnetically soft phase. X-ray spectroscopy confirms changes in the Co oxidation state, but not in the Gd, suggesting that the GdOx transmits oxygen but does not source or sink it. These results together provide crucial insight into controlling magnetism via magneto-ionic motion, both at interfaces and throughout the bulk of the films. PMID:27447691

  17. Profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets using gastrointestinal simulation technology.

    PubMed

    Wu, Chunnuan; Sun, Le; Sun, Jin; Yang, Yajun; Ren, Congcong; Ai, Xiaoyu; Lian, He; He, Zhonggui

    2013-09-10

    The aim of the present study was to correlate in vitro properties of drug formulation to its in vivo performance, and to elucidate the deciding properties of oral absorption. Gastrointestinal simulation technology (GST) was used to simulate the in vivo plasma concentration-time curve and was implemented by GastroPlus™ software. Lansoprazole, a typical BCS class II drug, was chosen as a model drug. Firstly, physicochemical and pharmacokinetic parameters of lansoprazole were determined or collected from literature to construct the model. Validation of the developed model was performed by comparison of the predicted and the experimental plasma concentration data. We found that the predicted curve was in a good agreement with the experimental data. Then, parameter sensitivity analysis (PSA) was performed to find the key parameters of oral absorption. The absorption was particularly sensitive to dose, solubility and particle size for lansoprazole enteric-coated tablets. With a single dose of 30 mg and the solubility of 0.04 mg/ml, the absorption was complete. A good absorption could be achieved with lansoprazole particle radius down to about 25 μm. In summary, GST is a useful tool for profiling biopharmaceutical deciding properties of absorption of lansoprazole enteric-coated tablets and guiding the formulation optimization.

  18. Determination of the particulate extinction-coefficient profile and the column-integrated lidar ratios using the backscatter-coefficient and optical-depth profiles.

    PubMed

    Kovalev, Vladimir A; Hao, Wei Min; Wold, Cyle

    2007-12-20

    A new method is considered that can be used for inverting data obtained from a combined elastic-inelastic lidar or a high spectral resolution lidar operating in a one-directional mode, or an elastic lidar operating in a multiangle mode. The particulate extinction coefficient is retrieved from the simultaneously measured profiles of the particulate backscatter coefficient and the particulate optical depth. The stepwise profile of the column-integrated lidar ratio is found that provides best matching of the initial (inverted) profile of the optical depth to that obtained by the inversion of the backscatter-coefficient profile. The retrieval of the extinction coefficient is made without using numerical differentiation. The method reduces the level of random noise in the retrieved extinction coefficient to the level of noise in the inverted backscatter coefficient. Examples of simulated and experimental data are presented.

  19. Recovery of acetylene absorption line profile basing on tunable diode laser spectroscopy with intensity modulation and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Li; Thursby, Graham; Stewart, George; Arsad, Norhana; Uttamchandani, Deepak; Culshaw, Brian; Wang, Yiding

    2010-04-01

    A novel and direct absorption line recovery technique based on tunable diode laser spectroscopy with intensity modulation is presented. Photoacoustic spectroscopy is applied for high sensitivity, zero background and efficient acoustic enhancement at a low modulation frequency. A micro-electromechanical systems (MEMS) mirror driven by an electrothermal actuator is used for generating laser intensity modulation (without wavelength modulation) through the external reflection. The MEMS mirror with 10μm thick structure material layer and 100nm thick gold coating is formed as a circular mirror of 2mm diameter attached to an electrothermal actuator and is fabricated on a chip that is wire-bonded and placed on a PCB holder. Low modulation frequency is adopted (since the resonant frequencies of the photoacoustic gas cell and the electrothermal actuator are different) and intrinsic high signal amplitude characteristics in low frequency region achieved from measured frequency responses for the MEMS mirror and the gas cell. Based on the property of photoacoustic spectroscopy and Beer's law that detectable sensitivity is a function of input laser intensity in the case of constant gas concentration and laser path length, a Keopsys erbium doped fibre amplifier (EDFA) with opto-communication C band and high output power up to 1W is chosen to increase the laser power. High modulation depth is achieved through adjusting the MEMS mirror's reflection position and driving voltage. In order to scan through the target gas absorption line, the temperature swept method is adopted for the tunable distributed feed-back (DFB) diode laser working at 1535nm that accesses the near-infrared vibration-rotation spectrum of acetylene. The profile of acetylene P17 absorption line at 1535.39nm is recovered ideally for ~100 parts-per-million (ppm) acetylene balanced by nitrogen. The experimental signal to noise ratio (SNR) of absorption line recovery for 500mW laser power was ~80 and hence the

  20. Estimating the absorption coefficient of the bottom layer in four-layered turbid mediums based on the time-domain depth sensitivity of near-infrared light reflectance.

    PubMed

    Sato, Chie; Shimada, Miho; Tanikawa, Yukari; Hoshi, Yoko

    2013-09-01

    Expanding our previously proposed "time segment analysis" for a two-layered turbid medium, this study attempted to selectively determine the absorption coefficient (μa) of the bottom layer in a four-layered human head model with time-domain near-infrared measurements. The difference curve in the temporal profiles of the light attenuation between an object and a reference medium, which are obtained from Monte Carlo simulations, is divided into segments along the time axis, and a slope for each segment is calculated to obtain the depth-dependent μa(μaseg). The reduced scattering coefficient (μs') of the reference is determined by curve fitting with the temporal point spread function derived from the analytical solution of the diffusion equation to the time-resolved reflectance of the object. The deviation of μaseg from the actual μa is expressed by a function of the ratio of μaseg in an earlier time segment to that in a later segment for mediums with different optical properties and thicknesses of the upper layers. Using this function, it is possible to determine the μa of the bottom layer in a four-layered epoxy resin-based phantom. These results suggest that the method reported here has potential for determining the μa of the cerebral tissue in humans.

  1. Bioturbation depths, rates and processes in Massachusetts Bay sediments inferred from modeling of 210Pb and 239 + 240Pu profiles

    USGS Publications Warehouse

    Crusius, John; Bothner, Michael H.; Sommerfield, Christopher K.

    2004-01-01

    Profiles of 210Pb and 239 + Pu from sediment cores collected throughout Massachusetts Bay (water depths of 36-192 m) are interpreted with the aid of a numerical sediment-mixing model to infer bioturbation depths, rates and processes. The nuclide data suggest extensive bioturbation to depths of 25-35 cm. Roughly half the cores have 210Pb and 239 + 240Pu profiles that decrease monotonically from the surface and are consistent with biodiffusive mixing. Bioturbation rates are reasonably well constrained by these profiles and vary from ~0.7 to ~40 cm2 yr-1. As a result of this extensive reworking, however, sediment ages cannot be accurately determined from these radionuclides and only upper limits on sedimentation rates (of ~0.3 cm yr-1) can be inferred. The other half of the radionuclide profiles are characterized by subsurface maxima in each nuclide, which cannot be reproduced by biodiffusive mixing models. A numerical model is used to demonstrate that mixing caused by organisms that feed at the sediment surface and defecate below the surface can cause the subsurface maxima, as suggested by previous work. The deep penetration depths of excess 210Pb and 239 + 240Pu suggest either that the organisms release material over a range of >15 cm depth or that biodiffusive mixing mediated by other organisms is occurring at depth. Additional constraints from surficial sediment 234Th data suggest that in this half of the cores, the vast majority of the present-day flux of recent, nuclide-bearing material to these core sites is transported over a timescale of a month or more to a depth of a few centimeters below the sediment surface. As a consequence of the complex mixing processes, surface sediments include material spanning a range of ages and will not accurately record recent changes in contaminant deposition.

  2. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  3. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  4. Absorption-line profiles in a companion spectrum of a mass-losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1992-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10 (exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  5. Soft X-ray absorption spectroscopic studies with different probing depths: Effect of an electrolyte additive on electrode surfaces

    NASA Astrophysics Data System (ADS)

    Yogi, Chihiro; Takamatsu, Daiko; Yamanaka, Keisuke; Arai, Hajime; Uchimoto, Yoshiharu; Kojima, Kazuo; Watanabe, Iwao; Ohta, Toshiaki; Ogumi, Zenpachi

    2014-02-01

    A solid electrolyte interphase (SEI) formed on a model LiCoO2 electrode was analyzed by the ultra-soft X-ray absorption spectroscopy (XAS). The data of Li K-, B K-, C K-, O K-, and Co L-edges spectra for the SEI film on the electrode were collected using three detection methods with different probing depths. The electrode was prepared by a pulsed laser deposition method. All the spectral data consistently indicated that the SEI film containing lithium carbonate was instantly formed just after the soak of the electrode into the electrolyte solution and that it decomposed during the repeated charge-discharge reactions. The decomposition of the SEI film seems to cause the deterioration in lithium ion battery cycle performance. By adding lithium bis(oxalate) borate (LiBOB) to the electrolyte the decomposition could be suppressed leading to longer cycle life. It was found that some of the Co ions at the electrode surface were reduced to Co(II) during the charge-discharge reactions and this reaction could also be suppressed by the addition of LiBOB.

  6. Enhancing optical absorption in InP and GaAs utilizing profile etching

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Fatemi, Navid S.; Landis, Geoffrey A.

    1991-01-01

    The current state of profile etching in GaAs and InP is summarized, including data on novel geometries attainable as a function of etchant temperature, composition, and rate; substrate orientation; carrier concentration; and oxide thickness between substrate and photoresist. V-grooved solar cells were manufactured with both GaAs and InP, and the improved optical absorption was demonstrated. Preferred parameters for various applications are listed and discussed.

  7. Preliminary measurements with an automated compact differential absorption lidar for the profiling of water vapor.

    PubMed

    Machol, Janet L; Ayers, Tom; Schwenz, Karl T; Koenig, Keith W; Hardesty, R Michael; Senff, Christoph J; Krainak, Michael A; Abshire, James B; Bravo, Hector E; Sandberg, Scott P

    2004-05-20

    The design and preliminary tests of an automated differential absorption lidar (DIAL) that profiles water vapor in the lower troposphere are presented. The instrument, named CODI (for compact DIAL), has been developed to be eye safe, low cost, weatherproof, and portable. The lidar design and its unattended operation are described. Nighttime intercomparisons with in situ sensors and a radiosonde are shown. Desired improvements to the lidar, including a more powerful laser, are also discussed.

  8. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  9. Early pharmaceutical profiling to predict oral drug absorption: current status and unmet needs.

    PubMed

    Bergström, Christel A S; Holm, René; Jørgensen, Søren Astrup; Andersson, Sara B E; Artursson, Per; Beato, Stefania; Borde, Anders; Box, Karl; Brewster, Marcus; Dressman, Jennifer; Feng, Kung-I; Halbert, Gavin; Kostewicz, Edmund; McAllister, Mark; Muenster, Uwe; Thinnes, Julian; Taylor, Robert; Mullertz, Anette

    2014-06-16

    Preformulation measurements are used to estimate the fraction absorbed in vivo for orally administered compounds and thereby allow an early evaluation of the need for enabling formulations. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the pharmaceutical profiling methods available, with focus on in silico and in vitro models typically used to forecast active pharmaceutical ingredient's (APIs) in vivo performance after oral administration. An overview of the composition of human, animal and simulated gastrointestinal (GI) fluids is provided and state-of-the art methodologies to study API properties impacting on oral absorption are reviewed. Assays performed during early development, i.e. physicochemical characterization, dissolution profiles under physiological conditions, permeability assays and the impact of excipients on these properties are discussed in detail and future demands on pharmaceutical profiling are identified. It is expected that innovative computational and experimental methods that better describe molecular processes involved in vivo during dissolution and absorption of APIs will be developed in the OrBiTo. These methods will provide early insights into successful pathways (medicinal chemistry or formulation strategy) and are anticipated to increase the number of new APIs with good oral absorption being discovered.

  10. Analytical model and measurements of the target erosion depth profile of balanced and unbalanced planar magnetron cathodes

    NASA Astrophysics Data System (ADS)

    Pereira, P. J. S.; Escrivão, M. L.; Teixeira, M. R.; Maneira, M. J. P.; Nunes, Y.

    2014-12-01

    The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 × 10-3 m. The experimental data reveal that the target erosion depth profile is a function of the angle θ made by B with a horizontal line defined by z = 2 × 10-3 m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle θ. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.

  11. Depth profiling of gold nanoparticles and characterization of point spread functions in reconstructed and human skin using multiphoton microscopy.

    PubMed

    Labouta, Hagar I; Hampel, Martina; Thude, Sibylle; Reutlinger, Katharina; Kostka, Karl-Heinz; Schneider, Marc

    2012-01-01

    Multiphoton microscopy has become popular in studying dermal nanoparticle penetration. This necessitates studying the imaging parameters of multiphoton microscopy in skin as an imaging medium, in terms of achievable detection depths and the resolution limit. This would simulate real-case scenarios rather than depending on theoretical values determined under ideal conditions. This study has focused on depth profiling of sub-resolution gold nanoparticles (AuNP) in reconstructed (fixed and unfixed) and human skin using multiphoton microscopy. Point spread functions (PSF) were determined for the used water-immersion objective of 63×/NA = 1.2. Factors such as skin-tissue compactness and the presence of wrinkles were found to deteriorate the accuracy of depth profiling. A broad range of AuNP detectable depths (20-100 μm) in reconstructed skin was observed. AuNP could only be detected up to ∼14 μm depth in human skin. Lateral (0.5 ± 0.1 μm) and axial (1.0 ± 0.3 μm) PSF in reconstructed and human specimens were determined. Skin cells and intercellular components didn't degrade the PSF with depth. In summary, the imaging parameters of multiphoton microscopy in skin and practical limitations encountered in tracking nanoparticle penetration using this approach were investigated.

  12. Depth-resolved water column spectral absorption of sunlight by phytoplankon during the Southern Ocean Gas Exchange (SOGasEx) Lagrangian tracer experiments

    NASA Astrophysics Data System (ADS)

    Hargreaves, B. R.

    2008-12-01

    Optical measurements made during gas exchange tracer experiments in the Southern Ocean, Atlantic sector near 51°S, 38°W from March-April 2008 (SOGasEx) were used to develop daily integrated depth- resolved PAR absorbed by phytoplankton. Particulate and phytoplankton pigment spectral absorption coefficients (ap and aph), and methanol-extracted chlorophyll-a concentrations (chl-a) from discrete samples within and below the upper mixed layer (40 stations) were combined with data from optical casts where chlorophyll-a and cdom fluorescence and PAR scalar irradiance were measured (11 stations), PAR Kd was measured from a buoy free of ship shadow for 0-5m (11 stations), and Wetlabs AC-9 whole water absorption coefficients to 150m were measured (14 stations, with 3 in common with fluorescence data) to estimate depth-resolved values for both total spectral absorption and spectral PAR irradiance. By combining depth-adjusted spectral absorption of phytoplankton pigments (aph) with depth-adjusted PAR spectral irradiance we estimated depth-resolved daily PAR irradiance absorbed by photosynthetic pigments. These data can be compared with time-integrated primary production measurements conducted on deck where solar exposure or lamp exposure was modified to simulate a range of depths. Such a synthesis should improve our estimates of depth-integrated daily primary production, and ultimately contribute to refining estimates of carbon export rates to be incorporated into a carbon budget and CO2 air-sea flux models for the SOGasEx experiments.

  13. Confocal Raman microspectroscopy on excised human skin: uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation.

    PubMed

    Tfayli, A; Piot, O; Manfait, M

    2008-05-01

    Confocal Raman microspectroscopy represents the advantage of giving structural and conformational information on samples without any destructive treatment. Recently, several studies were achieved to study the skin hydration, endogenous and exogenous molecules repartition in the skin using the confocal feature of this technique. Meanwhile, when working through a material boundary with a different refractive index, the main limitation remains the spatial precision, especially the distortion in the depth and the depth resolution. Recently, several authors described mathematical models to correct the depth and the resolution values. In this study, we combined theoretical approaches, proposed by different authors with experimental measurements to try to find out the most appropriate approach for correction. We then applied the corrections on in-depth profiles tracking the penetration of Metronidazole, a drug produced by Galderma for rosacea treatment, through excised human skin. PMID:19343645

  14. Confocal Raman microspectroscopy on excised human skin: uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation.

    PubMed

    Tfayli, A; Piot, O; Manfait, M

    2008-05-01

    Confocal Raman microspectroscopy represents the advantage of giving structural and conformational information on samples without any destructive treatment. Recently, several studies were achieved to study the skin hydration, endogenous and exogenous molecules repartition in the skin using the confocal feature of this technique. Meanwhile, when working through a material boundary with a different refractive index, the main limitation remains the spatial precision, especially the distortion in the depth and the depth resolution. Recently, several authors described mathematical models to correct the depth and the resolution values. In this study, we combined theoretical approaches, proposed by different authors with experimental measurements to try to find out the most appropriate approach for correction. We then applied the corrections on in-depth profiles tracking the penetration of Metronidazole, a drug produced by Galderma for rosacea treatment, through excised human skin.

  15. Large damage threshold and small electron escape depth in X-ray absorption spectroscopy of a conjugated polymer thin film.

    PubMed

    Chua, Lay-Lay; Dipankar, Mandal; Sivaramakrishnan, Sankaran; Gao, Xingyu; Qi, Dongchen; Wee, Andrew T S; Ho, Peter K H

    2006-09-26

    The information depth of near-edge X-ray absorption fine structure spectroscopy in the total electron yield mode (TEY-NEXAFS) is given by the escape depth of the TEY electrons z(TEY). This is determined by the effective ranges both of the inelastically scattered secondary electrons and of the primary excited electron before they thermalize below the vacuum level. For regioregular poly(3-hexylthiophene) (rreg-P3HT) thin films, we have measured the total electron emission efficiency to be 0.028 +/- 0.005 e/ph at an incident photon energy of 320 eV. The range of the primary electron was computed using optical dielectric-loss theory to be 7.5 nm. The range of the secondary electrons was then found by modeling to be 3.0 nm. This gives z(TEY) to be 2.5 nm, which is considerably less than the often-assumed value of 10 nm in the literature. It is also considerably smaller than the computed electron-electron scattering inelastic mean free path in the material, which suggests the predominance of electron-phonon scattering. Thus, TEY-NEXAFS has sufficient surface sensitivity to probe the frontier molecular layers of these organic conjugated polymers. In a second aspect of this report, the rreg-P3HT films have been characterized by in-situ core and valence photoemission spectroscopies and by ex-situ microattenuated total-reflection vibrational spectroscopy as a function of irradiation dose. No damage was observed in composition, bonding, orientation, and surface morphology under typical TEY-NEXAFS spectral acquisition conditions. For an integrated TEY that exceeds 2 x 10(-3) C cm(-2), however, the material degrades via alkyl side-chain dehydrogenation to unsaturated units, cross linking, ring opening of the backbone, and sulfur extrusion. Given that secondary electrons are the dominant cause of radiation damage, this exposure threshold measured by integrated TEY should also be valid at other X-ray energies.

  16. Depth profile characterization of Zn-TiO2 nanocomposite films by pulsed radiofrequency glow discharge-optical emission spectrometry.

    PubMed

    Alberts, Deborah; Fernández, Beatriz; Frade, Tania; Gomes, Anabela; Pereira, Maria Isabel da Silva; Pereiro, Rosario; Sanz-Medel, Alfredo

    2011-04-15

    In recent years particular effort is being devoted towards the development of radiofrequency (rf) pulsed glow discharges (GDs) coupled to optical emission spectrometry (OES) for depth profile analysis of materials with technological interest. In this work, pulsed rf-GD-OES is investigated for the fast and sensitive depth characterization of Zn-TiO(2) nanocomposite films deposited on conductive substrates (Ti and steel). The first part of this work focuses on assessing the advantages of pulsed GDs, in comparison with the continuous GD, in terms of analytical emission intensities and emission yields. Next, the capability of pulsed rf-GD-OES for determination of thickness and compositional depth profiles is demonstrated by resorting to a simple multi-matrix calibration procedure. A rf forward power of 75 W, a pressure of 600 Pa, 10 kHz pulse frequency and 50% duty cycle were selected as GD operation parameters.Quantitative depth profiles obtained with the GD proposed methodology for Zn-TiO(2) nanocomposite films, prepared by the occlusion electrodeposition method using pulsed reverse current electrolysis, have proved to be in good agreement with results achieved by complementary techniques, including scanning electron microscopy and inductively coupled plasma-mass spectrometry. The work carried out demonstrates that pulsed rf-GD-OES is a promising tool for the fast analytical characterization of nanocomposite films. PMID:21376989

  17. TOPICAL REVIEW: Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool

    NASA Astrophysics Data System (ADS)

    Jeynes, C.; Barradas, N. P.; Marriott, P. K.; Boudreault, G.; Jenkin, M.; Wendler, E.; Webb, R. P.

    2003-04-01

    Rutherford backscattering spectrometry (RBS) and related techniques have long been used to determine the elemental depth profiles in films a few nanometres to a few microns thick. However, although obtaining spectra is very easy, solving the inverse problem of extracting the depth profiles from the spectra is not possible analytically except for special cases. It is because these special cases include important classes of samples, and because skilled analysts are adept at extracting useful qualitative information from the data, that ion beam analysis is still an important technique. We have recently solved this inverse problem using the simulated annealing algorithm. We have implemented the solution in the `IBA DataFurnace' code, which has been developed into a very versatile and general new software tool that analysts can now use to rapidly extract quantitative accurate depth profiles from real samples on an industrial scale. We review the features, applicability and validation of this new code together with other approaches to handling IBA (ion beam analysis) data, with particular attention being given to determining both the absolute accuracy of the depth profiles and statistically accurate error estimates. We include examples of analyses using RBS, non-Rutherford elastic scattering, elastic recoil detection and non-resonant nuclear reactions. High depth resolution and the use of multiple techniques simultaneously are both discussed. There is usually systematic ambiguity in IBA data and Butler's example of ambiguity (1990 Nucl. Instrum. Methods B 45 160-5) is reanalysed. Analyses are shown: of evaporated, sputtered, oxidized, ion implanted, ion beam mixed and annealed materials; of semiconductors, optical and magnetic multilayers, superconductors, tribological films and metals; and of oxides on Si, mixed metal silicides, boron nitride, GaN, SiC, mixed metal oxides, YBCO and polymers.

  18. Time resolved metal line profile by near-ultraviolet tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Vitelaru, C.; de Poucques, L.; Minea, T. M.; Popa, G.

    2011-03-01

    Pulsed systems are extensively used to produce active species such as atoms, radicals, excited states, etc. The tunable diode laser absorption spectroscopy (TD-LAS) is successfully used to quantify the density of absorbing species, but especially for stationary or slow changing systems. The time resolved-direct absorption profile (TR-DAP) measurement method by TD-LAS, with time resolution of μs is proposed here as an extension of the regular use of diode laser absorption spectroscopy. The spectral narrowness of laser diodes, especially in the blue range (˜0.01 pm), combined with the nanosecond fast trigger of the magnetron pulsed plasma and long trace recording on the oscilloscope (period of second scale) permit the detection of the sputtered titanium metal evolution in the afterglow (˜ms). TR-DAP method can follow the time-dependence of the temperature (Doppler profile) and the density (deduced from the absorbance) of any medium and heavy species in a pulsed system.

  19. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume

    USGS Publications Warehouse

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M.; Bailey, Zach; Pruden, Amy

    2014-01-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.

  20. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume.

    PubMed

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M; Bailey, Zach; Pruden, Amy

    2014-10-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates.

  1. Insights into biodegradation through depth-resolved microbial community functional and structural profiling of a crude-oil contaminant plume.

    PubMed

    Fahrenfeld, Nicole; Cozzarelli, Isabelle M; Bailey, Zach; Pruden, Amy

    2014-10-01

    Small-scale geochemical gradients are a key feature of aquifer contaminant plumes, highlighting the need for functional and structural profiling of corresponding microbial communities on a similar scale. The purpose of this study was to characterize the microbial functional and structural diversity with depth across representative redox zones of a hydrocarbon plume and an adjacent wetland, at the Bemidji Oil Spill site. A combination of quantitative PCR, denaturing gradient gel electrophoresis, and pyrosequencing were applied to vertically sampled sediment cores. Levels of the methanogenic marker gene, methyl coenzyme-M reductase A (mcrA), increased with depth near the oil body center, but were variable with depth further downgradient. Benzoate degradation N (bzdN) hydrocarbon-degradation gene, common to facultatively anaerobic Azoarcus spp., was found at all locations, but was highest near the oil body center. Microbial community structural differences were observed across sediment cores, and bacterial classes containing known hydrocarbon degraders were found to be low in relative abundance. Depth-resolved functional and structural profiling revealed the strongest gradients in the iron-reducing zone, displaying the greatest variability with depth. This study provides important insight into biogeochemical characteristics in different regions of contaminant plumes, which will aid in improving models of contaminant fate and natural attenuation rates. PMID:24760171

  2. DS86 neutron dose: Monte Carlo analysis for depth profile of 152Eu activity in a large stone sample.

    PubMed

    Endo, S; Iwatani, K; Oka, T; Hoshi, M; Shizuma, K; Imanaka, T; Takada, J; Fujita, S; Hasai, H

    1999-06-01

    The depth profile of 152Eu activity induced in a large granite stone pillar by Hiroshima atomic bomb neutrons was calculated by a Monte Carlo N-Particle Transport Code (MCNP). The pillar was on the Motoyasu Bridge, located at a distance of 132 m (WSW) from the hypocenter. It was a square column with a horizontal sectional size of 82.5 cm x 82.5 cm and height of 179 cm. Twenty-one cells from the north to south surface at the central height of the column were specified for the calculation and 152Eu activities for each cell were calculated. The incident neutron spectrum was assumed to be the angular fluence data of the Dosimetry System 1986 (DS86). The angular dependence of the spectrum was taken into account by dividing the whole solid angle into twenty-six directions. The calculated depth profile of specific activity did not agree with the measured profile. A discrepancy was found in the absolute values at each depth with a mean multiplication factor of 0.58 and also in the shape of the relative profile. The results indicated that a reassessment of the neutron energy spectrum in DS86 is required for correct dose estimation.

  3. The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos

    USGS Publications Warehouse

    Constantz, J.; Thomas, C.L.

    1996-01-01

    Temporal variations in a streambed temperature profile between 30 and 300 cm beneath Tijeras Arroyo, New Mexico, were analyzed at 30-min intervals for 1990 to estimate the depth, duration, and rate of percolation during streamflows. The depth of percolation was clearly documented by the rapid response of the streambed temperature profile to streamflows. Results indicate that the streambed possessed small thermal gradients with significant diurnal variations from late November to late May, indicating that ephemeral streamflows created continuous, advection-dominated beat transport to depths below 300 cm during this period. Timing and duration of percolation suggested by temporal variations in the temperature profile were verified by comparison with measured streamflow records for the study reach over 1990. Percolation rates were estimated using a technique based on the travel time of the daily maximum temperature into the streambed. Percolation rates were compared with streambed seepage rates determined from measurements of streamflow loss, stream surface area, and stream evaporative loss for the entire study reach. Travel time estimates of streambed percolation rates ranged from 9 to 40 cm/hr, while streamflow estimates of streambed seepage rates ranged from 6 to 26 cm/hr during the study period. Discrepancies between streambed percolation and seepage rates may be caused by differences in the areal extent of measurements for percolation versus seepages rates. In summary, the depth, timing, and duration of streamflow- induced percolation were well documented by temporal variations in a single streambed temperature profile, while rates of percolation based on the temperature profile were about double the seepage rates based on streamflow records for the entire study reach.

  4. Aluminum 26, {sup 10}Be, and {sup 36}Cl depth profiles in the Canyon Diablo iron meteorite

    SciTech Connect

    Michlovich, E.S.; Elmore, D.; Vogt, S.; Lipschutz, M.E.; Masarik, J.; Reedy, R.C.

    1994-11-25

    The authors have measured activities of the long-lived cosmogenic radionuclides {sup 26}Al, {sup 10}Be, and {sup 36}Cl in 12 fragments of the iron meteorite Canyon Diablo and have constructed production rate-versus-depth profiles of those radionuclides. Profiles determined using differential particle fluxes calculated with the LAHET code system are in good agreement with {sup 26}Al, {sup 10}Be, and {sup 36}Cl experimental data, but the agreement for {sup 36}Cl was obtained only after neutron-induced cross sections were modified. Profiles calculated with lunar particle fluxes are much lower than experimental Canyon Diablo profiles. The cosmic ray exposure ages of most samples are near 540 m.y. 34 refs., 4 figs., 2 tabs.

  5. Wetlands and Aquatic Processes: A Bed Sediment Sampler for Precise Depth Profiling of Contaminant Concentrations in Aquatic Environments

    SciTech Connect

    Quinn, Nigel W. T.; Clyde, John R.

    1997-11-01

    A bed sediment and detritus sampler has been dec eloped for use in aquatic environments, such as in canals, rivers or lakes, for determining precise depth profiles of contaminants, The device is superior to currently available commercial push-tube and piston samplers in its simplicity, ease of use and its ability to retrieve and extrude sample cores. The sampler has been used with success during the past 12 mo to determine a profile of bed sediment Se concentrations within an earth-lined canal, alternatively used for conveyance of agricultural drainage and wetland water supply.

  6. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; Mao, Yuhao

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are

  7. Depth profiling of inks in authentic and counterfeit banknotes by electrospray laser desorption ionization/mass spectrometry.

    PubMed

    Kao, Yi-Ying; Cheng, Sy-Chyi; Cheng, Chu-Nian; Shiea, Jentaie

    2016-01-01

    Electrospray laser desorption ionization is an ambient ionization technique that generates neutrals via laser desorption and ionizes those neutrals in an electrospray plume and was utilized to characterize inks in different layers of copy paper and banknotes of various currencies. Depth profiling of inks was performed on overlapping color bands on copy paper by repeatedly scanning the line with a pulsed laser beam operated at a fixed energy. The molecules in the ink on a banknote were desorbed by irradiating the banknote surface with a laser beam operated at different energies, with results indicating that different ions were detected at different depths. The analysis of authentic $US100, $100 RMB and $1000 NTD banknotes indicated that ions detected in 'color-shifting' and 'typography' regions were significantly different. Additionally, the abundances of some ions dramatically changed with the depth of the aforementioned regions. This approach was used to distinguish authentic $1000 NTD banknotes from counterfeits. Copyright © 2015 John Wiley & Sons, Ltd.

  8. The global extrapolation of numerical methods for computing concentration profiles in percutaneous drug absorption.

    PubMed

    Twizell, E H

    1989-01-01

    A family of numerical methods is developed and analyzed for the numerical solution of the parabolic partial differential equation together with the associated initial and boundary conditions, which arise in a mathematical model of the transient stage of percutaneous drug absorption. Two global extrapolation procedures are described, the first in time only, the second in both space and time, for improving the accuracy of the computed concentration profiles. The behaviours of two members of the family of methods, before and after extrapolation, are examined by repeating a number of experiments reported in the literature. Modifications to the algorithms, which are necessary in computing concentration profiles after the ointment is removed at the steady state, are outlined.

  9. Evaluation of depth and profile cavity after laser ablation with different energy of Er:YAG laser radiation

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinkova, Helena; Hamal, Karel; Krejsa, Otakar; Kubelka, Jiri; Prochazka, Stanislav

    1996-01-01

    Depth and profile cavity were studied after laser ablation with different energy of Er:YAG laser beam. Longitudinal sections of extracted human teeth were cut and polished to the flat surfaces. The thickness of layer of prepared teeth was from 3 to 5 mm. The check group contained glazed samples of ivory with the similar thickness. The Er:YAG laser drilling machine was operating in a free-running mode. For the preparation we used the energy up to 500 mJ. The repetition rate was 1 or 2 Hz. The laser radiation was focused on the tooth surface using CaF2 lens (f equals 55 mm). During the experiment, teeth were steady and the radiation was delivered by the mechanical arm which was fixed in a special holder. The fine water mist (water - 50 ml/min with the pressure to atm, air-pressure three atm) was used. Samples with the flat surfaces from the enamel, dentin and ivory were irradiated with five different energies from 100 to 500 mJ. Quantities of one, five, ten, twenty and thirty pulses were used. The depth of cavity and its profile were observed and measured. It was found that depth of cavity depends on the value of energy, type of hard dental tissue and number of pulses. With increasing energy or number of pulses the saturation effect in depth of holes in dentine or enamel were proved.

  10. Depth profile analysis of amorphous silicon thin film solar cells by pulsed radiofrequency glow discharge time of flight mass spectrometry.

    PubMed

    Alvarez-Toral, Aitor; Sanchez, Pascal; Menéndez, Armando; Pereiro, Rosario; Sanz-Medel, Alfredo; Fernández, Beatriz

    2015-02-01

    Among the different solar cell technologies, amorphous silicon (a-Si:H) thin film solar cells (TFSCs) are today very promising and, so, TFSCs analytical characterization for quality control issues is increasingly demanding. In this line, depth profile analysis of a-Si:H TFSCs on steel substrate has been investigated by using pulsed radiofrequency glow discharge-time of flight mass spectrometry (rf-PGD-TOFMS). First, to discriminate potential polyatomic interferences for several analytes (e.g., (28)Si(+), (31)P(+), and (16)O(+)) appropriate time positions along the GD pulse profile were selected. A multi-matrix calibration approach, using homogeneous certified reference materials without hydrogen as well as coated laboratory-made standards containing hydrogen, was employed for the methodological calibration. Different calibration strategies (in terms of time interval selection on the pulse profile within the afterglow region) have been compared, searching for optimal calibration graphs correlation. Results showed that reliable and fast quantitative depth profile analysis of a-Si:H TFSCs by rf-PGD-TOFMS can be achieved. PMID:25404156

  11. Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique.

    PubMed

    Sizov, A; Cederkrantz, D; Salmi, L; Rosén, A; Jacobson, L; Gustafsson, S E; Gustavsson, M

    2016-07-01

    Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate-yet reproducible-estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.

  12. Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique

    NASA Astrophysics Data System (ADS)

    Sizov, A.; Cederkrantz, D.; Salmi, L.; Rosén, A.; Jacobson, L.; Gustafsson, S. E.; Gustavsson, M.

    2016-07-01

    Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate - yet reproducible - estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects.

  13. Thermal conductivity versus depth profiling of inhomogeneous materials using the hot disc technique.

    PubMed

    Sizov, A; Cederkrantz, D; Salmi, L; Rosén, A; Jacobson, L; Gustafsson, S E; Gustavsson, M

    2016-07-01

    Transient measurements of thermal conductivity are performed with hot disc sensors on samples having a thermal conductivity variation adjacent to the sample surface. A modified computational approach is introduced, which provides a method of connecting the time-variable to a corresponding depth-position. This allows highly approximate-yet reproducible-estimations of the thermal conductivity vs. depth. Tests are made on samples incorporating different degrees of sharp structural defects at a certain depth position inside a sample. The proposed methodology opens up new possibilities to perform non-destructive testing; for instance, verifying thermal conductivity homogeneity in a sample, or estimating the thickness of a deviating zone near the sample surface (such as a skin tumor), or testing for presence of other defects. PMID:27475584

  14. Evaluating the impact of sequencing depth on transcriptome profiling in human adipose.

    PubMed

    Liu, Yichuan; Ferguson, Jane F; Xue, Chenyi; Silverman, Ian M; Gregory, Brian; Reilly, Muredach P; Li, Mingyao

    2013-01-01

    Recent advances in RNA sequencing (RNA-Seq) have enabled the discovery of novel transcriptomic variations that are not possible with traditional microarray-based methods. Tissue and cell specific transcriptome changes during pathophysiological stress in disease cases versus controls and in response to therapies are of particular interest to investigators studying cardiometabolic diseases. Thus, knowledge on the relationships between sequencing depth and detection of transcriptomic variation is needed for designing RNA-Seq experiments and for interpreting results of analyses. Using deeply sequenced Illumina HiSeq 2000 101 bp paired-end RNA-Seq data derived from adipose of a healthy individual before and after systemic administration of endotoxin (LPS), we investigated the sequencing depths needed for studies of gene expression and alternative splicing (AS). In order to detect expressed genes and AS events, we found that ∼100 to 150 million (M) filtered reads were needed. However, the requirement on sequencing depth for the detection of LPS modulated differential expression (DE) and differential alternative splicing (DAS) was much higher. To detect 80% of events, ∼300 M filtered reads were needed for DE analysis whereas at least 400 M filtered reads were necessary for detecting DAS. Although the majority of expressed genes and AS events can be detected with modest sequencing depths (∼100 M filtered reads), the estimated gene expression levels and exon/intron inclusion levels were less accurate. We report the first study that evaluates the relationship between RNA-Seq depth and the ability to detect DE and DAS in human adipose. Our results suggest that a much higher sequencing depth is needed to reliably identify DAS events than for DE genes.

  15. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  16. Profiling the depth of caesium-137 contamination in concrete via a relative linear attenuation model.

    PubMed

    Shippen, Alan; Joyce, Malcolm J

    2010-01-01

    An application of the relative attenuation of X rays and gamma rays for the measurement of depth of radioactive contamination in concrete and is described, based upon the photon energy spectrum of caesium-137. This has been tested on two bespoke phantoms with pressed/cast concrete and silica sand highlighting the potential for sub-millimetre depth resolution. This research highlights the importance of the ease of calibration, prior to application in the field, and improved knowledge of materials composition in legacy facilities.

  17. XPS depth profiling of an ultrathin bioorganic film with an argon gas cluster ion beam.

    PubMed

    Dietrich, Paul M; Nietzold, Carolin; Weise, Matthias; Unger, Wolfgang E S; Alnabulsi, Saad; Moulder, John

    2016-06-02

    The growing interest in artificial bioorganic interfaces as a platform for applications in emerging areas as personalized medicine, clinical diagnostics, biosensing, biofilms, prevention of biofouling, and other fields of bioengineering is the origin of a need for in detail multitechnique characterizations of such layers and interfaces. The in-depth analysis of biointerfaces is of special interest as the properties of functional bioorganic coatings can be dramatically affected by in-depth variations of composition. In worst cases, the functionality of a device produced using such coatings can be substantially reduced or even fully lost.

  18. Voigt profile introduces optical depth dependent systematic errors - Detected in high resolution laboratory spectra of water

    NASA Astrophysics Data System (ADS)

    Birk, Manfred; Wagner, Georg

    2016-02-01

    The Voigt profile commonly used in radiative transfer modeling of Earth's and planets' atmospheres for remote sensing/climate modeling produces systematic errors so far not accounted for. Saturated lines are systematically too narrow when calculated from pressure broadening parameters based on the analysis of laboratory data with the Voigt profile. This is caused by line narrowing effects leading to systematically too small fitted broadening parameters when applying the Voigt profile. These effective values are still valid to model non-saturated lines with sufficient accuracy. Saturated lines dominated by the wings of the line profile are sufficiently accurately modeled with a Voigt profile with the correct broadening parameters and are thus systematically too narrow when calculated with the effective values. The systematic error was quantified by mid infrared laboratory spectroscopy of the water ν2 fundamental. Correct Voigt profile based pressure broadening parameters for saturated lines were 3-4% larger than the effective ones in the spectroscopic database. Impacts on remote sensing and climate modeling are expected. Combination of saturated and non-saturated lines in the spectroscopic analysis will quantify line narrowing with unprecedented precision.

  19. Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles

    NASA Astrophysics Data System (ADS)

    Balachandra Swamy, A. C.

    EXTENDED ABSTRACT Pulsed HF radiowave absorption measurements at 2.1 MHZ. over Delhi under quiet and solar flare conditions and related electron density height profiles A.C.Balachandra swmay & Late C.S.G.K. Setty Absorption of radio waves in the ionosphere is of great practical importance for radio communication and navigation systems. The first attempt to measure the absolute magnitude of the radiowave absorption were made by appletion and Ratcliffe (1930) using the frequency change method for medium frequency waves reflected from the E-region. They concluded from their experiment that the main part of the attenuation occurred below the reflection level and named the absorption region, D-region of the ionosphere. One of the basic properties of the ionosphere is the absorption of high Frequency Radiowaves. HF radiowave absorption results mainly from collisions between electrons (which are set into forced oscillations by the electric field of the wave) and neutral air particles, the RF energy abstracted from the wave being converted into thermal energy. The radiowave absorption in the ionosphere depends on electron density and collision frequency. The most important absorbing regions are the D-region and the lower E-region (50-100 Km.) The regular diurnal variation of the electron density in this height range is caused mainly by the changes in the depth of penetration of solar XUV radiations with solar zenith angle under quiet solar conditions. In 1937 Dellinger J.H.identified fade outs in high frequency radio circuits as due to abnormal ionospheric absorption associated with solar flares. The onset of the fade out was usually rapid and the duration was typically tens of minutes like that of the visible flare, because of the sudden onset, the immediate effects of solar flares are known collectively as sudden Ionospheric Disturbances (STD). The phenomenon discovered by Dellinger is usually called a short Wave Fadeout(SWF). Since the SWF is due to abnormal absorption

  20. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species. PMID:26911022

  1. [Depth Profiles of Methane Oxidation Kinetics and the Related Methanotrophic Community in a Simulated Landfill Cover].

    PubMed

    Xing, Zhi-lin; Zhao, Tian-tao; Gao, Yan-hui; He, Zhi; Yang, Xu; Peng, Xu-ya

    2015-11-01

    Simulated landfill cover with real time online monitoring system was developed using cover soils. Then the system started and the concentrations of bio-gas in various depths were continuously monitored, and it was found that the system ran continually and stably after 2-3 h when methane flux changed. After that, the relationship between regularity of methane oxidation and methane flux in landfill cover was analyzed. The results indicated that concentration of oxygen decreased with increasing methane flux when the depth was deeper than 20 cm, and no obvious correlation between oxygen concentration in landfill cover surface and methane flux, however, methane oxidation rate showed positive correlation with methane flux in various depths (range of R2 was 0.851-0.999). Kinetics of CH4 oxidation in landfill cover was fitted by CH4 -O2 dual-substrate model (range of R2 was 0.902-0.955), the half-saturation constant K(m) increasing with depth was 0.157-0.729 in dynamic condition. Finally, methanotrophs community structure in original cover soil sample and that in simulated landfill cover were investigated by high-throughout sequencing technology, and the statistics indicated that the abundance and species of methanotrophs in simulated landfill cover significantly increased compared with those in original cover soil sample, and type I methanotrophs including Methylobacter and Methylophilaceae and type II methanotrophs Methylocystis were dominant species.

  2. Depth profile of persistent and emerging organic pollutants upstream of the Three Gorges Dam gathered in 2012/2013.

    PubMed

    Deyerling, Dominik; Wang, Jingxian; Bi, Yonghong; Peng, Chengrong; Pfister, Gerd; Henkelmann, Bernhard; Schramm, Karl-Werner

    2016-03-01

    Persistent and emerging organic pollutants were sampled in September 2012 and 2013 at a sampling site in front of the Three Gorges Dam near Maoping (China) in a water depth between 11 and 61 m to generate a depth profile of analytes. A novel compact water sampling system with self-packed glass cartridges was employed for the on-site enrichment of approximately 300 L of water per sample to enable the detection of low analytes levels in the picogram per liter-scale in the large water body. The overall performance of the sampling system was acceptable for the qualitative detection of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), perfluoroalkylic acids (PFAAs), pharmaceutical residues and polar pesticides. Strongly particle-associated analytes like PAHs and PCBs resided mainly in the glass wool filter of the sampling system, whereas all other compounds have mainly been enriched on the XAD-resin of the self-packed glass cartridges. The sampling results revealed qualitative information on the presence, depth distribution and origin of the investigated compounds. Although the depth profile of PAHs, PCBs, OCPs, and PFAAs appeared to be homogeneous, pharmaceuticals and polar pesticides were detected in distinct different patterns with water depth. Source analysis with diagnostic ratios for PAHs revealed their origin to be pyrogenic (burning of coal, wood and grass). In contrast, most PCBs and OCPs had to be regarded as legacy pollutants which have been released into the environment in former times and still remain present due to their persistence. The abundance of emerging organic pollutants could be confirmed, and their most abundant compounds could be identified as perfluorooctanoic acid, diclofenac and atrazine among investigated PFAAs, pharmaceuticals and polar pesticides, respectively.

  3. Depth profile of persistent and emerging organic pollutants upstream of the Three Gorges Dam gathered in 2012/2013.

    PubMed

    Deyerling, Dominik; Wang, Jingxian; Bi, Yonghong; Peng, Chengrong; Pfister, Gerd; Henkelmann, Bernhard; Schramm, Karl-Werner

    2016-03-01

    Persistent and emerging organic pollutants were sampled in September 2012 and 2013 at a sampling site in front of the Three Gorges Dam near Maoping (China) in a water depth between 11 and 61 m to generate a depth profile of analytes. A novel compact water sampling system with self-packed glass cartridges was employed for the on-site enrichment of approximately 300 L of water per sample to enable the detection of low analytes levels in the picogram per liter-scale in the large water body. The overall performance of the sampling system was acceptable for the qualitative detection of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), perfluoroalkylic acids (PFAAs), pharmaceutical residues and polar pesticides. Strongly particle-associated analytes like PAHs and PCBs resided mainly in the glass wool filter of the sampling system, whereas all other compounds have mainly been enriched on the XAD-resin of the self-packed glass cartridges. The sampling results revealed qualitative information on the presence, depth distribution and origin of the investigated compounds. Although the depth profile of PAHs, PCBs, OCPs, and PFAAs appeared to be homogeneous, pharmaceuticals and polar pesticides were detected in distinct different patterns with water depth. Source analysis with diagnostic ratios for PAHs revealed their origin to be pyrogenic (burning of coal, wood and grass). In contrast, most PCBs and OCPs had to be regarded as legacy pollutants which have been released into the environment in former times and still remain present due to their persistence. The abundance of emerging organic pollutants could be confirmed, and their most abundant compounds could be identified as perfluorooctanoic acid, diclofenac and atrazine among investigated PFAAs, pharmaceuticals and polar pesticides, respectively. PMID:26585456

  4. Be-10 and Cl-36 depth profiles in an Apollo 15 drill core

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Arnold, J. R.; Elmore, D.; Ma, X. Z.

    1984-01-01

    The present study of galactic cosmic ray production profiles by means of tandem accelerator mass spectrometry has measured cosmic ray-produced Be-10 and Cl-36, whose half-attenuation lengths are respectively calculated to be 120 and 132 g/sq cm. The measured half-attenuation lengths for Be-10 are noted to be slightly longer than predicted by the Reedy-Arnold (1972) theoretical model. Secondary thermal neutron production from Cl-35 is invoked as an explanation for the flatter and deeper maximum seen in the Cl-36 profile.

  5. Depth profile of a time-reversal focus in an elastic solid

    SciTech Connect

    Remillieux, Marcel C.; Anderson, Brian E.; Ulrich, T. J.; Le Bas, Pierre -Yves; Payan, Cedric

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb’s problem and the use of the diffraction limit.

  6. Surface analysis and depth profiling of corrosion products formed in lead pipes used to supply low alkalinity drinking water.

    PubMed

    Davidson, C M; Peters, N J; Britton, A; Brady, L; Gardiner, P H E; Lewis, B D

    2004-01-01

    Modern analytical techniques have been applied to investigate the nature of lead pipe corrosion products formed in pH adjusted, orthophosphate-treated, low alkalinity water, under supply conditions. Depth profiling and surface analysis have been carried out on pipe samples obtained from the water distribution system in Glasgow, Scotland, UK. X-ray diffraction spectrometry identified basic lead carbonate, lead oxide and lead phosphate as the principal components. Scanning electron microscopy/energy-dispersive x-ray spectrometry revealed the crystalline structure within the corrosion product and also showed spatial correlations existed between calcium, iron, lead, oxygen and phosphorus. Elemental profiling, conducted by means of secondary ion mass spectrometry (SIMS) and secondary neutrals mass spectrometry (SNMS) indicated that the corrosion product was not uniform with depth. However, no clear stratification was apparent. Indeed, counts obtained for carbonate, phosphate and oxide were well correlated within the depth range probed by SIMS. SNMS showed relationships existed between carbon, calcium, iron, and phosphorus within the bulk of the scale, as well as at the surface. SIMS imaging confirmed the relationship between calcium and lead and suggested there might also be an association between chloride and phosphorus.

  7. Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoa

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Rassoulzadegan, F.; Thingstad, T. F.

    2004-08-01

    t is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the structure of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that a similar amount of bacterial production is allocated to viruses and heterotrophic nanoflagellates, and that heterotrophic nanoflagellates are the important remineralizers.

  8. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    SciTech Connect

    Rye, B.J. |; Machol, J.L.; Grund, C.J.; Hardesty, R.M.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  9. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles.

    PubMed

    Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J

    2012-08-21

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.

  10. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles

    PubMed Central

    Abbott, Sunshine S.; Harrison, T. Mark; Schmitt, Axel K.; Mojzsis, Stephen J.

    2012-01-01

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85–3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85–3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840–875 °C) than do older or younger zircons or zircon domains (approximately 630–750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB. PMID:22869711

  11. A search for thermal excursions from ancient extraterrestrial impacts using Hadean zircon Ti-U-Th-Pb depth profiles.

    PubMed

    Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J

    2012-08-21

    Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB. PMID:22869711

  12. Integrative fitting of absorption line profiles with high accuracy, robustness, and speed

    NASA Astrophysics Data System (ADS)

    Skrotzki, Julian; Habig, Jan Christoph; Ebert, Volker

    2014-08-01

    The principle of the integrative evaluation of absorption line profiles relies on the numeric integration of absorption line signals to retrieve absorber concentrations, e.g., of trace gases. Thus, it is a fast and robust technique. However, previous implementations of the integrative evaluation principle showed shortcomings in terms of accuracy and the lack of a fit quality indicator. This has motivated the development of an advanced integrative (AI) fitting algorithm. The AI fitting algorithm retains the advantages of previous integrative implementations—robustness and speed—and is able to achieve high accuracy by introduction of a novel iterative fitting process. A comparison of the AI fitting algorithm with the widely used Levenberg-Marquardt (LM) fitting algorithm indicates that the AI algorithm has advantages in terms of robustness due to its independence from appropriately chosen start values for the initialization of the fitting process. In addition, the AI fitting algorithm shows speed advantages typically resulting in a factor of three to four shorter computational times on a standard personal computer. The LM algorithm on the other hand retains advantages in terms of a much higher flexibility, as the AI fitting algorithm is restricted to the evaluation of single absorption lines with precomputed line width. Comparing both fitting algorithms for the specific application of in situ laser hygrometry at 1,370 nm using direct tunable diode laser absorption spectroscopy (TDLAS) suggests that the accuracy of the AI algorithm is equivalent to that of the LM algorithm. For example, a signal-to-noise ratio of 80 and better typically yields a deviation of <1 % between both fitting algorithms. The properties of the AI fitting algorithm make it an interesting alternative if robustness and speed are crucial in an application and if the restriction to a single absorption line is possible. These conditions are fulfilled for the 1,370 nm TDLAS hygrometry at the

  13. The dark side of the hyporheic zone: Depth profiles of nitrogen and its processing in stream sediments

    USGS Publications Warehouse

    Stelzer, R.S.; Bartsch, L.A.; Richardson, W.B.; Strauss, E.A.

    2011-01-01

    1.Although it is well known that sediments can be hot spots for nitrogen transformation in streams, many previous studies have confined measurements of denitrification and nitrate retention to shallow sediments (<5cm deep). We determined the extent of nitrate processing in deeper sediments of a sand plains stream (Emmons Creek) by measuring denitrification in core sections to a depth of 25cm and by assessing vertical nitrate profiles, with peepers and piezometers, to a depth of 70cm. 2.Denitrification rates of sediment slurries based on acetylene block were higher in shallower core sections. However, core sections deeper than 5cm accounted for 68% of the mean depth-integrated denitrification rate. 3.Vertical hydraulic gradient and vertical profiles of pore water chloride concentration suggested that deep ground water upwelled through shallow sediments before discharging to the stream channel. The results of a two-source mixing model based on chloride concentrations suggested that the hyporheic zone was very shallow (<5cm) in Emmons Creek. 4.Vertical profiles showed that nitrate concentration in shallow ground water was about 10-60% of the nitrate concentration of deep ground water. The mean nitrate concentrations of deep and shallow ground water were 2.17 and 0.73mgNO3-NL-1, respectively. 5.Deep ground water tended to be oxic (6.9mgO2L-1) but approached anoxia (0.8mgO2L-1) after passing through shallow, organic carbon-rich sediments, which suggests that the decline in the nitrate concentrations of upwelling ground water was because of denitrification. 6.Collectively, our results suggest that there is substantial nitrate removal occurring in deep sediments, below the hyporheic zone, in Emmons Creek. Our findings suggest that not accounting for nitrate removal in deep sediments could lead to underestimates of nitrogen processing in streams and catchments. ?? 2011 Blackwell Publishing Ltd.

  14. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Lu, Xiancai; Liu, Huan; Li, Juan; Zhu, Xiangyu; Lu, Jianjun; Wang, Rucheng

    2014-02-01

    In supergene environments, microbial activities significantly enhance sulfide oxidation and result in the release of heavy metals, causing serious contamination of soils and waters. As the most commonly encountered arsenic mineral in nature, arsenopyrite (FeAsS) accounts for arsenic contaminants in various environments. In order to investigate the geochemical behavior of arsenic during microbial oxidation of arsenopyrite, (2 3 0) surfaces of arsenopyrite slices were characterized after acidic (pH 2.00) and oxidative decomposition with or without an acidophilic microorganism Acidithiobacillus ferrooxidans. The morphology as well as chemical and elemental depth profiles of the oxidized arsenopyrite surface were investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. With the mediation of bacteria, cell-shaped and acicular pits were observed on the reacted arsenopyrite surface, and the concentration of released arsenic species in solution was 50 times as high as that of the abiotic reaction after 10 days reaction. Fine-scale XPS depth profiles of the reacted arsenopyrite surfaces after both microbial and abiotic oxidation provided insights into the changes in chemical states of the elements in arsenopyrite surface layers. Within the 450 nm surface layer of abiotically oxidized arsenopyrite, Fe(III)-oxides appeared and gradually increased towards the surface, and detectable sulfite and monovalent arsenic appeared above 50 nm. In comparison, higher contents of ferric sulfate, sulfite, and arsenite were found in the surface layer of approximately 3 μm of the microbially oxidized arsenopyrite. Intermediates, such as Fe(III)-AsS and S0, were detectable in the presence of bacteria. Changes of oxidative species derived from XPS depth profiles show the oxidation sequence is Fe > As = S in abiotic oxidation, and Fe > S > As in microbial oxidation. Based on these results, a possible reaction path of microbial oxidation was proposed in a concept model.

  15. Depth profile study of Ti implanted Si at very high doses

    NASA Astrophysics Data System (ADS)

    Olea, J.; Pastor, D.; Toledano-Luque, M.; Mártil, I.; González-Díaz, G.

    2011-09-01

    A detailed study on the resulting impurity profile in Si samples implanted with high doses of Ti and subsequently annealed by pulsed-laser melting (PLM) is reported. Two different effects are shown to rule the impurity profile redistribution during the annealing. During the melting stage, the thickness of the implanted layer increases while the maximum peak concentration decreases (box-shaped effect). On the contrary, during the solidifying stage, the thickness of the layer decreases and the maximum peak concentration increases (snow-plow effect). Both effects are more pronounced as the energy density of the annealing increases. Moreover, as a direct consequence of the snow-plow effect, part of the impurities is expelled from the sample through the surface.

  16. Depth profile of a time-reversal focus in an elastic solid

    DOE PAGES

    Remillieux, Marcel C.; Anderson, Brian E.; Ulrich, T. J.; Le Bas, Pierre -Yves; Payan, Cedric

    2015-04-01

    The out-of-plane velocity component is focused on the flat surface of an isotropic solid sample using the principle of time reversal. This experiment is often reproduced in the context of nondestructive testing for imaging features near the surface of the sample. However, it is not clear how deep the focus extends into the bulk of the sample and what its profile is. In this paper, this question is answered using both numerical simulations and experimental data. The profiles of the foci are expressed in terms of the wavelengths of the dominant waves, based on the interpretation of the Lamb’s problemmore » and the use of the diffraction limit.« less

  17. New Electrodeposition Technique for Controlling Depth Profile of CuInSe2 Thin Films for Solar Cell Application

    NASA Astrophysics Data System (ADS)

    Nakamura, Sigeyuki

    2005-04-01

    It is known that the efficiency of CuInSe2 (CIS)-based solar cells can be improved using a CIS layer with a composition that can be modulated to be In-rich near the pn junction interface. In this work, a new electrodeposition technique for preparing CIS thin films with a controlled composition depth profile was developed. CIS thin films having a bilayer structure, that is, with the Cu-rich and In-rich layers, were successfully deposited from one electrolyte only by changing the substrate potential during electrodeposition.

  18. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    SciTech Connect

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  19. Oral absorption profiles of sulfonamides in Shiba goats: a comparison among sulfadimidine, sulfadiazine and sulfanilamide

    PubMed Central

    ELBADAWY, Mohamed; ISHIHARA, Yusuke; ABOUBAKR, Mohamed; SASAKI, Kazuaki; SHIMODA, Minoru

    2016-01-01

    The oral pharmacokinetics of three sulfonamides, sulfadimidine (pKa 7.5), sulfadiazine (pKa 6.5) and sulfanilamide (pKa 10.5), with different rates of unionization in rumen juice, were compared in Shiba goats to clarify the relationship between drug absorption profiles after their oral administration as well as their degree of unionization in the rumen. Sulfonamides were administered either into the left jugular vein or orally to five male goats at doses of 10 mg/kg body weight, using a crossover design with at least a 3-week washout period. The Tmax of sulfadimidine, sulfadiazine and sulfanilamide reached 2.0 ± 1.2, 6.0 ± 0.0, and 7.8 ± 1.6 hr, respectively, after their oral administration, and this was followed by their slow elimination due to a slow rate of drug absorption from the gastrointestinal tract. The MAT and t1/2ka of sulfadiazine (13.2 ± 2.0 and 10.9 ± 1.08 hr) were significantly longer than those of sulfanilamide (9.09 ± 1.67 and 7.46 ± 1.70 hr) and sulfadimidine (7.52 ± 0.85 and 5.17 ± 0.66 hr). These results suggest that the absorption rates of highly unionized drugs (such as sulfanilamide and sulfadimidine) from the forestomach of goats may be markedly higher than less unionized ones (such as sulfadiazine). The mean oral bioavailability of sulfadiazine was high (83.9 ± 17.0%), whereas those of sulfadimidine and sulfanilamide were low (44.9 ± 16.4% and 49.2 ± 2.11%, respectively). PMID:27010464

  20. The XPS depth profiling and tribological characterization of ion-plated gold on various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1983-01-01

    Friction properties were measured with a gold film; the graded interface between gold and nickel substrate; and the nickel substrate. All sliding was conducted against hard silicon carbide pins in two processes. In the adhesive process, friction arises primarily from adhesion between sliding surfaces. In the abrasion process, friction occurs as a result of the hard pin sliding against the film, indenting into it, and plowing a series of grooves. Copper and 440 C stainless steel substrates were also used. Results indicate that the friction related to both adhesion and abrasion is influenced by coating depth. The trends in friction behavior as a function of film depth are, however, just the opposite. The graded interface exhibited the highest adhesion and friction, while the graded interface resulted in the lowest abrasion and friction. The coefficient of friction due to abrasion is inversely related to the hardness. The greater the hardness of the surface, the lower is the abrasion and friction. The microhardness in the graded interface exhibited the highest hardness due to an alloy hardening effect. Almost no graded interface between the vapor-deposited gold film and the substrates was detected.

  1. Assessment of Zooplankton Community Composition along a Depth Profile in the Central Red Sea

    PubMed Central

    Pearman, John K.; Irigoien, Xabier

    2015-01-01

    The composition of zooplankton in the water column has received limited attention in the main body of the Red Sea and this study investigates the change in the community both spatially and temporally across 11 stations in the central Red Sea. Using molecular methods to target the v9 region of the 18S rRNA gene a total of approximately 11.5 million reads were sequenced resulting in 2528 operational taxonomic units (OTUs) at 97% similarity. The phylum Arthropoda dominated in terms of reads accounting for on average 86.2% and 65.3% for neuston nets and vertical multinets respectively. A reduction in the number of OTUs was noticed with depth for both total metazoa and Maxillopoda whilst there was also a significant change in the composition of the Maxillopoda community. The genus Corycaeus had a higher proportion of reads in the epipelagic zone with Pleuromamma becoming increasingly dominant with depth. No significant difference was observed in the community between night and day sampling however there was a significant difference in the zooplankton community between two sampling periods separated by 10 days. PMID:26186220

  2. Clay composition and swelling potential estimation of soils using depth of absorption bands in the SWIR (1100-2500 nm) spectral domain

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Granjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Presence of clay minerals is traditionally a good estimator of soils swelling and shrinking behavior. Montmorillonite (i.e. smectite group), illite, kaolinite are the most common minerals in soils and are usually associated to high, moderate, and low swelling potential when they are present in significant amount. Characterization of swelling potential and identification of clay minerals of soils using conventional analysis are slow, expensive, and does not permit integrated measurements. SWIR (1100-2500 nm) spectral domain are characterized by significant spectral absorption bands related to clay content that can be used to recognize main clay minerals. Hyperspectral laboratory using an ASD Fieldspec Pro spectrometer provides thus a rapid and less expensive field surface sensing that permits to measure soil spectral properties. This study presents a new laboratory reflectance spectroscopy method that used depth of clay diagnostic absorption bands (1400 nm, 1900 nm, and 2200 nm) to compare natural soils to synthetic montmorillonite-illite-kaolinite mixtures. We observe in mixtures that illite, montmorillonite, and kaolinite content respectively strongly influence the depth of absorption bands at 1400 nm (D1400), 1900 nm (D1900), and 2200 nm (D2200). To attenuate or removed effects of abundance and grain size, depth of absorption bands ratios were thus used to performed (i) 3D (using D1900/D2200, D1400/D1900, and D2200/D1400 as axis), and (ii) 2D (using D1400/D1900 and D1900/D2200 as axis) diagrams of synthetic mixtures. In this case we supposed that the overall reduction or growth of depth absorption bands should be similarly affected by the abundance and grain size of materials in soil. In 3D and 2D diagrams, the mixtures define a triangular shape formed by two clay minerals as external envelop and the three clay minerals mixtures

  3. Depth-resolved x-ray absorption fine structure study of Fe/Si interfaces using x-ray standing waves

    SciTech Connect

    Gupta, Ajay; Rajput, Parasmani; Meneghini, Carlo

    2007-11-15

    X-ray standing waves generated by total external reflection (TER) from an underlayer of Au have been used to perform depth resolved x-ray absorption fine structure (XAFS) studies on a Si/Fe/Si trilayer in which intermixing has been induced by irradiation with 100 MeV Au ions. It is demonstrated that the technique has a sufficient depth resolution so as to elucidate the depth distribution of various phases formed across the interfaces. Irradiation to a fluence of 1x10{sup 13} ions/cm{sup 2} results in complete mixing of the Fe layer. It is observed that in the center of the intermixed layer, the short-range order around Fe ions is similar to the FeSi phase. Moving away from the center, Si concentration increases and the local structure around Fe becomes similar to that of the FeSi{sub 2} phase. On the other hand, depth integrated XAFS data could have been interpreted in terms of a homogeneous FeSi{sub 2} type of short-range order in the system. Thus, the depth selectivity achieved using TER standing waves combined with the sensitivity of XAFS to local order around a specific element makes it a valuable tool for studying layered materials.

  4. Study of the signal response of the MÖNCH 25μm pitch hybrid pixel detector at different photon absorption depths

    NASA Astrophysics Data System (ADS)

    Cartier, S.; Bergamaschi, A.; Dinapoli, R.; Greiffenberg, D.; Johnson, I.; Jungmann-Smith, J. H.; Mezza, D.; Mozzanica, A.; Shi, X.; Tinti, G.; Schmitt, B.; Stampanoni, M.

    2015-03-01

    MÖNCH is a 25 μm pitch hybrid silicon pixel detector with a charge integrating analog read-out front-end in each pixel. The small pixel size brings new challenges in bump-bonding, power consumption and chip design. The MÖNCH02 prototype ASIC, manufactured in UMC 110 nm technology with a field of view of 4×4 mm2 and 160×160 pixels, has been characterized in the single photon regime, i.e. with less than one photon acquired per frame on average on a 3×3 pixel cluster. The low noise and small pixel size allow spatial interpolation with high resolution. Understanding charge sharing as a function of the photon absorption depth and sensor bias is a key for optimal processing of single photon data for high resolution imaging. To characterize the charge collection of the detector, the sensor was illuminated with a 20 keV photon beam in edge-on configuration at the SYRMEP beamline of Elettra. By slicing the beam by means of a 5 μm slit and scanning through the 320 μm silicon sensor depth, the charge collection is characterized as a function of the photon absorption depth for different sensor bias voltages.

  5. Uranium-236 as a new oceanic tracer: A first depth profile in the Japan Sea and comparison with caesium-137

    PubMed Central

    Sakaguchi, Aya; Kadokura, Akinobu; Steier, Peter; Takahashi, Yoshio; Shizuma, Kiyoshi; Hoshi, Masaharu; Nakakuki, Tomoeki; Yamamoto, Masayoshi

    2012-01-01

    We present a feasibility study for using 236U as an oceanic circulation tracer based on depth profiles of 236U and 137Cs in the Japan/East Sea. The concentration of the predominantly anthropogenic 236U, measured with Accelerator Mass Spectrometry (AMS), decreased from (13±3)×106 atom/kg in surface water to (1.6±0.3)×106 atom/kg close to the sea floor (2800 m). The profile has a smooth trend with depth and concentration values are generally proportional to that of 137Cs for the same water samples, but with a slightly lower ratio of 137Cs/236U below 2000 m. The cumulative inventory of dissolved 236U in the water column was estimated to be (13.7±0.9)×1012 atom/m2, which is similar to the global-fallout level (17.8×1012 atom/m2) in Japan. Additional analyses of suspended solids (SS) and bottom sediments yielded negligible amounts of 236U. Our results suggest that 236U behaves as a conservative nuclide in seawater, with potential advantages over other tracers of oceanic circulation. PMID:23564965

  6. Uranium-236 as a new oceanic tracer: A first depth profile in the Japan Sea and comparison with caesium-137

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Aya; Kadokura, Akinobu; Steier, Peter; Takahashi, Yoshio; Shizuma, Kiyoshi; Hoshi, Masaharu; Nakakuki, Tomoeki; Yamamoto, Masayoshi

    2012-06-01

    We present a feasibility study for using 236U as an oceanic circulation tracer based on depth profiles of 236U and 137Cs in the Japan/East Sea. The concentration of the predominantly anthropogenic 236U, measured with Accelerator Mass Spectrometry (AMS), decreased from (13±3)×106 atom/kg in surface water to (1.6±0.3)×106 atom/kg close to the sea floor (2800 m). The profile has a smooth trend with depth and concentration values are generally proportional to that of 137Cs for the same water samples, but with a slightly lower ratio of 137Cs/236U below 2000 m. The cumulative inventory of dissolved 236U in the water column was estimated to be (13.7±0.9)×1012 atom/m2, which is similar to the global-fallout level (17.8×1012 atom/m2) in Japan. Additional analyses of suspended solids (SS) and bottom sediments yielded negligible amounts of 236U. Our results suggest that 236U behaves as a conservative nuclide in seawater, with potential advantages over other tracers of oceanic circulation.

  7. Uranium-236 as a new oceanic tracer: A first depth profile in the Japan Sea and comparison with caesium-137.

    PubMed

    Sakaguchi, Aya; Kadokura, Akinobu; Steier, Peter; Takahashi, Yoshio; Shizuma, Kiyoshi; Hoshi, Masaharu; Nakakuki, Tomoeki; Yamamoto, Masayoshi

    2012-06-01

    We present a feasibility study for using (236)U as an oceanic circulation tracer based on depth profiles of (236)U and (137)Cs in the Japan/East Sea. The concentration of the predominantly anthropogenic (236)U, measured with Accelerator Mass Spectrometry (AMS), decreased from (13±3)×10(6) atom/kg in surface water to (1.6±0.3)×10(6) atom/kg close to the sea floor (2800 m). The profile has a smooth trend with depth and concentration values are generally proportional to that of (137)Cs for the same water samples, but with a slightly lower ratio of (137)Cs/(236)U below 2000 m. The cumulative inventory of dissolved (236)U in the water column was estimated to be (13.7±0.9)×10(12) atom/m(2), which is similar to the global-fallout level (17.8×10(12) atom/m(2)) in Japan. Additional analyses of suspended solids (SS) and bottom sediments yielded negligible amounts of (236)U. Our results suggest that (236)U behaves as a conservative nuclide in seawater, with potential advantages over other tracers of oceanic circulation.

  8. Characterization of oxide layers on amorphous Zr-based alloys by Auger electron spectroscopy with sputter depth profiling

    NASA Astrophysics Data System (ADS)

    Baunack, S.; Mudali, U. Kamachi; Gebert, A.

    2005-09-01

    Amorphous Zr-Cu-Ni-Al-[Ti, Nb] ribbons prepared by melt spinning under argon atmosphere were subjected to electrochemical investigations. Passive films developed at potentiostatic anodic polarization in sulphuric acid solution were investigated by Auger electron spectroscopy (AES) and sputter depth profiling. Changes in the shape of the Auger peaks have been analyzed by factor analysis of the spectra obtained during depth profiling. Pronounced changes in shape and position occur for the Zr, Al, and Ti Auger transitions, but not for Cu and Ni. At least three different peak shapes for O(KVV) were found and attributed to different oxygen binding states. The alloy composition has no significant effect on the thickness and composition of the oxide layer. In multi-element alloys preferential sputtering is a common phenomenon. In the steady state of sputtering, a significant depletion in Cu is found. At the oxide/metal interface, a distinct enrichment of copper is found for all alloys and treatments. The degree of this Cu enrichment depends on the pretreatment. It is higher for the electrochemically-passivated samples than for samples with oxide layers grown during melt spinning.

  9. The Miscibility and Depth Profile of PCBM in P3HT: Thermodynamic Information to Improve Organic Photovoltaics

    SciTech Connect

    Dadmun, Mark D

    2012-01-01

    Recent work has shown that poly(3-hexylthiophene) (P3HT) and the surface functionalized fullerene 1-(3-methyloxycarbonyl)propy(1-phenyl [6,6]) C61 (PCBM) are much more miscible than originally thought, and the evidence of this miscibility requires a return to understanding the optimal morphology and structure of organic photovoltaic active layers. This manuscript describes the results of experiments that were designed to provide quantitative thermodynamic information on the miscibility, interdiffusion, and depth profile of P3HT:PCBM thin films that are formed by thermally annealing initial bilayers. It is found that the resultant thin films consist of a bulk layer that is not influenced by the air or substrate surface. The composition of PCBM in this bulk layer increases with increased PCBM loading in the original bilayer until the bulk layer contains 22 vol% PCBM. The introduction of additional PCBM into the sample does not increase the amount of PCBM dispersed in this bulk layer. This observation is interpreted to indicate that the miscibility limit of PCBM in P3HT is 22 vol%, while the precise characterization of the depth profiles in these films shows that the PCBM selectively segregates to the silicon and near air surface. The selective segregation of the PCBM near the air surface is ascribed to an entropic driving force.

  10. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    NASA Astrophysics Data System (ADS)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  11. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  12. Near-Surface Shear Wave Velocity Versus Depth Profiles, VS30, and NEHRP Classifications for 27 Sites in Puerto Rico

    USGS Publications Warehouse

    Odum, Jack K.; Williams, Robert A.; Stephenson, William J.; Worley, David M.; von Hillebrandt-Andrade, Christa; Asencio, Eugenio; Irizarry, Harold; Cameron, Antonio

    2007-01-01

    In 2004 and 2005 the Puerto Rico Seismic Network (PRSN), Puerto Rico Strong Motion Program (PRSMP) and the Geology Department at the University of Puerto Rico-Mayaguez (UPRM) collaborated with the U.S. Geological Survey to study near-surface shear-wave (Vs) and compressional-wave (Vp) velocities in and around major urban areas of Puerto Rico. Using noninvasive seismic refraction-reflection profiling techniques, we acquired velocities at 27 locations. Surveyed sites were predominantly selected on the premise that they were generally representative of near-surface materials associated with the primary geologic units located within the urbanized areas of Puerto Rico. Geologic units surveyed included Cretaceous intrusive and volcaniclastic bedrock, Tertiary sedimentary and volcanic units, and Quaternary unconsolidated eolian, fluvial, beach, and lagoon deposits. From the data we developed Vs and Vp depth versus velocity columns, calculated average Vs to 30-m depth (VS30), and derived NEHRP (National Earthquake Hazards Reduction Program) site classifications for all sites except one where results did not reach 30-m depth. The distribution of estimated NEHRP classes is as follows: three class 'E' (VS30 below 180 m/s), nine class 'D' (VS30 between 180 and 360 m/s), ten class 'C' (VS30 between 360 and 760 m/s), and four class 'B' (VS30 greater than 760 m/s). Results are being used to calibrate site response at seismograph stations and in the development of regional and local shakemap models for Puerto Rico.

  13. Atomic/molecular depth profiling of nanometric-metallized polymer thin films by secondary ion mass spectrometry.

    PubMed

    Téllez, Helena; Vadillo, José Miguel; Laserna, José Javier

    2010-02-01

    The capability of secondary ion mass spectrometry (SIMS) to perform atomic and molecular in-depth analysis in complex nanometric-metallized thin polymer films used to manufacture capacitors is demonstrated through three different case studies related to failure analysis. The excellent repeatability and sensitivity of the technique allow us to study the degradation process of the nanometric-metallized layer in the capacitor films and the accurate location of the metal-polymer interface. The analysis of the sample is challenging due to the extreme difference in conductivity between layers, and the reduced thickness of the metallization grown on top of a rough polymeric base. However, SIMS has provided reliable and reproducible results with relative standard deviation (RSD) values better than 1.5% in the metallic layer thickness estimation. The detailed information of atomic and molecular ion in-depth distributions provided by SIMS depth profiling has allowed the identification of different factors (demetallization, generation of interstitial oxide regions, and diffusion processes or modification in the metallization thickness) that can be directly related to the origin of the lack of performance of the mounted devices.

  14. Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling.

    PubMed

    Singec, Ilyas; Crain, Andrew M; Hou, Junjie; Tobe, Brian T D; Talantova, Maria; Winquist, Alicia A; Doctor, Kutbuddin S; Choy, Jennifer; Huang, Xiayu; La Monaca, Esther; Horn, David M; Wolf, Dieter A; Lipton, Stuart A; Gutierrez, Gustavo J; Brill, Laurence M; Snyder, Evan Y

    2016-09-13

    Controlled differentiation of human embryonic stem cells (hESCs) can be utilized for precise analysis of cell type identities during early development. We established a highly efficient neural induction strategy and an improved analytical platform, and determined proteomic and phosphoproteomic profiles of hESCs and their specified multipotent neural stem cell derivatives (hNSCs). This quantitative dataset (nearly 13,000 proteins and 60,000 phosphorylation sites) provides unique molecular insights into pluripotency and neural lineage entry. Systems-level comparative analysis of proteins (e.g., transcription factors, epigenetic regulators, kinase families), phosphorylation sites, and numerous biological pathways allowed the identification of distinct signatures in pluripotent and multipotent cells. Furthermore, as predicted by the dataset, we functionally validated an autocrine/paracrine mechanism by demonstrating that the secreted protein midkine is a regulator of neural specification. This resource is freely available to the scientific community, including a searchable website, PluriProt. PMID:27569059

  15. ChemCam Depth Profiles at Gale Crater to Assess Coating and Alteration Distribution and Chemistry

    NASA Astrophysics Data System (ADS)

    Blaney, D. L.; Clegg, S. M.; Wiens, R. C.; Maurice, S.; Lanza, N.; Bridges, N.

    2014-12-01

    Coating and rock alteration formation on Mars is constrained by both the availability of water and rock composition. Detection of these materials depends on the both formation rate and the rate of abrasion that these alteration products and coatings experience. ChemCam on the Curiosity rover can investigate coating/alteration formation and preservation by looking at chemical composition as a function of depth into the rock. ChemCam LIBS works by firing a laser focused to a 350 - 550 mm diameter spot that produces plasma from the rock. Spectra of elemental emission lines are recorded from 240-850 nm and used to determine the elemental composition of the rock. A chemical composition is generated from each individual spectrum. Each laser firing penetrates deeper into the rock allowing for a composition as a function of depth to be determined. By comparing geochemical trends from the beginning and end of the observations evidence for coatings and alteration can be assessed by geologic setting and rock type. Previous ChemCam work has identified Li variations (Ollila et al 2014) and MnO coatings (Lanza et al 2014) on a few rocks with high abundances of these elements. However this work is the first systematic assessment of alteration and coatings in the entire data set. From landing until Sol 583 there were 2,610 good quality ChemCam rock and outcrop observations. These measurements were assessed for internal elemental composition variability by the calculation of heterogeneity index. Only 7% (178) had positive internal heterogeneity. However, internal heterogeneity can be due to other factors besides coatings and alteration. Thick soil coverage and differential sampling of materials in coarse-grained rocks also produce positive heterogeneity indexes. The actual number of potential coatings at Gale is significantly lower. For most of Gale, current geochemical alteration rates are slower the rate of abrasion. This result is consistent with limited availability of water in

  16. Does strip-tillage could limit the drop of yields on soils of reduced depth of profiles in loess areas?

    NASA Astrophysics Data System (ADS)

    Rejman, Jerzy; Rafalska-Przysucha, Anna; Jadzczyszyn, Jan; Rodzik, Jan

    2016-04-01

    Strip tillage restrict a tillage operation to seed rows and enables a combination of tillage, sowing and application of fertilizers during one pass of agricultural machines. The practice decreases the costs of fuel and limits the risk of water erosion by the increase of infiltration of soil water. In the studies, we put a hypothesis that strip tillage is a tool to increase the yields on soils of reduced profiles. Studies were carried out in the loess area of the Lublin Upland (Poland). The site is cultivated from the beginning of the 18th century, and strip tillage is performed from 2008. All plant residues is left after harvest in the field and mixed with the soil by disc harrow. Measurements of solum depth (Ap-BC), soil properties and parameters of plant growth were carried out in 108 points in the field of the area of 4 ha. Crops included winter wheat (2014) and maize (2015). Studies showed that the profiles of Haplic Luvisol were largely truncated or overbuilt due to erosion and moldboard plow in the past. Solum depth ranged from 0.2 to 3.6 m (mean=1.29 m, CV=64%), and soils with the non-eroded, slightly, moderately, severely, very severely eroded and depositional profiles represented 13, 32, 10, 5, 8 and 32% of total number of cores, respectively. In a result of modification of profiles, clay content ranged from 84 to 222 (145; 16%) in the layer of 0-15 cm, whereas SOC concentration remained on relatively low level and ranged from 4.3 to 16.8 g/kg (9.1; 21.4%). Soil water content (SWC) within depth of 1-m profile was differentiated at the start of measurements in the middle of June 2015. The SWC was the highest in non-eroded and depositional soils and the smallest in severely and very severely eroded soils. The difference of 5% has maintained during the whole growing season and did not affect the growth of plants till the phase of flowering. Then, the plants on shallower soils passed quicker to the next phenological phases in comparison to the plants on deeper

  17. Depth Profiles of Persistent Organic Pollutants in the North and Tropical Atlantic Ocean.

    PubMed

    Sun, Caoxin; Soltwedel, Thomas; Bauerfeind, Eduard; Adelman, Dave A; Lohmann, Rainer

    2016-06-21

    Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g., sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L(-1)) were similar to previous measurements. At both sites, PCB concentrations showed subsurface maxima (tropical Atlantic Ocean -800 m, North Atlantic -500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners' subcooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26% of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean. PMID:27174500

  18. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertania, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration*

    2014-12-01

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax ), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  19. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    SciTech Connect

    Aab, A.; et al.

    2014-12-31

    Using the data taken at the Pierre Auger Observatory between December 2004 and December 2012, we have examined the implications of the distributions of depths of atmospheric shower maximum (Xmax), using a hybrid technique, for composition and hadronic interaction models. We do this by fitting the distributions with predictions from a variety of hadronic interaction models for variations in the composition of the primary cosmic rays and examining the quality of the fit. Regardless of what interaction model is assumed, we find that our data are not well described by a mix of protons and iron nuclei over most of the energy range. Acceptable fits can be obtained when intermediate masses are included, and when this is done consistent results for the proton and iron-nuclei contributions can be found using the available models. We observe a strong energy dependence of the resulting proton fractions, and find no support from any of the models for a significant contribution from iron nuclei. However, we also observe a significant disagreement between the models with respect to the relative contributions of the intermediate components.

  20. Depth Profiles of Persistent Organic Pollutants in the North and Tropical Atlantic Ocean.

    PubMed

    Sun, Caoxin; Soltwedel, Thomas; Bauerfeind, Eduard; Adelman, Dave A; Lohmann, Rainer

    2016-06-21

    Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g., sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L(-1)) were similar to previous measurements. At both sites, PCB concentrations showed subsurface maxima (tropical Atlantic Ocean -800 m, North Atlantic -500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners' subcooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26% of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean.

  1. A study of the properties of beryllium doped silicon with particular emphasis on diffusion mechanisms: Profiles of depth dependent conductivity as determined by electrical surface probes

    NASA Technical Reports Server (NTRS)

    Franks, R. K.; Robertson, J. B.

    1972-01-01

    Very large diffusion coefficients were encountered and required the determination of impurity profiles for samples approximately 1 cm thick. Since conductivity values are readily converted into concentrations of electrically active impurities, the major problem became that of accurately determining the conductivity profiles of beryllium diffused silicon samples. Four-point probe measurements on samples having depth conductivities are interpreted in terms of conductivity profiles, based on an exact solution of the problem of exponentially depth dependent conductivity. Applications include surface conductivity determination where the form of the conductivity profile is known, and conductivity profile determination from probe measurements taken as the sample surface is progressively lapped away. The application is limited to samples having conductivity monotonically decreasing with depth from the probed surface.

  2. Mass Spectral Analysis of Water Column Samples from a Single Depth Profile Near the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Boysen, A. K.; Kujawinski, E. B.

    2010-12-01

    The Deepwater Horizon oil spill is the largest offshore oil spill in history, spilling an estimated 4.9 million barrels of oil. Additionally, over 1.8 million gallons of dispersants have been applied, both through underwater and surface applications. The depth and volume of this spill as well as the underwater dispersant applications likely allowed for the dissolution of oil components into the water column during transport to the ocean surface. We examined the water-soluble components of dissolved organic matter, oil, and dispersants at various depths and locations within 10km of the wellhead in order to assess the degree of oil dissolution into the water column. Here we present results from analysis of four samples from a depth profile collected 1.16km from the wellhead. We used ultrahigh resolution negative-ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, a technique that has been used to characterize both DOM and crude oil. We compared oil from the wellhead with the composition of different extracts from the water samples and observed hundreds of compounds which are present in both the original oil and the water column. The oil compounds contained in the extracts were similar for all four depths. Compounds within the heteroatom classes N and O were most abundant in the source oil, while oil compounds in the formula classes O2 and SO3 were enhanced in the water samples. Compounds from these classes may be good markers for tracing the impact of this spill in the Gulf of Mexico ecosystem.

  3. Quantification of Hydrogen Concentrations in Surface and Interface Layers and Bulk Materials through Depth Profiling with Nuclear Reaction Analysis.

    PubMed

    Wilde, Markus; Ohno, Satoshi; Ogura, Shohei; Fukutani, Katsuyuki; Matsuzaki, Hiroyuki

    2016-03-29

    Nuclear reaction analysis (NRA) via the resonant (1)H((15)N,αγ)(12)C reaction is a highly effective method of depth profiling that quantitatively and non-destructively reveals the hydrogen density distribution at surfaces, at interfaces, and in the volume of solid materials with high depth resolution. The technique applies a (15)N ion beam of 6.385 MeV provided by an electrostatic accelerator and specifically detects the (1)H isotope in depths up to about 2 μm from the target surface. Surface H coverages are measured with a sensitivity in the order of ~10(13) cm(-2) (~1% of a typical atomic monolayer density) and H volume concentrations with a detection limit of ~10(18) cm(-3) (~100 at. ppm). The near-surface depth resolution is 2-5 nm for surface-normal (15)N ion incidence onto the target and can be enhanced to values below 1 nm for very flat targets by adopting a surface-grazing incidence geometry. The method is versatile and readily applied to any high vacuum compatible homogeneous material with a smooth surface (no pores). Electrically conductive targets usually tolerate the ion beam irradiation with negligible degradation. Hydrogen quantitation and correct depth analysis require knowledge of the elementary composition (besides hydrogen) and mass density of the target material. Especially in combination with ultra-high vacuum methods for in-situ target preparation and characterization, (1)H((15)N,αγ)(12)C NRA is ideally suited for hydrogen analysis at atomically controlled surfaces and nanostructured interfaces. We exemplarily demonstrate here the application of (15)N NRA at the MALT Tandem accelerator facility of the University of Tokyo to (1) quantitatively measure the surface coverage and the bulk concentration of hydrogen in the near-surface region of a H2 exposed Pd(110) single crystal, and (2) to determine the depth location and layer density of hydrogen near the interfaces of thin SiO2 films on Si(100).

  4. Slip rate and locking depth from GPS profiles across the southern Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Le Beon, Maryline; Klinger, Yann; Amrat, Abdel Qader; Agnon, Amotz; Dorbath, Louis; Baer, Gidon; Ruegg, Jean-Claude; Charade, Olivier; Mayyas, Omar

    2008-11-01

    The Dead Sea Transform is a major strike-slip fault bounding the Arabia plate and the Sinai subplate. On the basis of two GPS campaign measurements, 6 years apart, at 17 sites distributed in Israel and Jordan, complemented by Israeli permanent stations, we compute the present-day deformation across the southern segment of the Dead Sea Transform, the Wadi Araba fault. Elastic locked-fault modeling of fault-parallel velocities provides a slip rate of 4.9 ± 1.4 mm/a and a best fit locking depth of ˜12 km. This slip rate is slightly higher than previous results based only on Israeli permanent GPS stations data, which are located west of the fault. It is in good agreement with results based on offset geomorphologic and geologic features that average longer periods of time (10 ka to 1 Ma). Projection in ITRF2000 reference frame allows using our data, combined with results published earlier, to further study the kinematics between Arabia, Nubia, and Sinai. Systematic combination of Euler poles available in the literature, in addition to our new set of data, shows that a wide range of Arabia-Sinai pole positions and angular velocities predict reasonable slip rate on the Dead Sea fault. We highlight uncertainties of calculating such poles due to the small size of the blocks and their slow relative motion along a short and almost straight strand of the transform fault, which lead to a large trade-off between pole location and angular velocity.

  5. An ALMA Early Science survey of molecular absorption lines toward PKS 1830-211. Analysis of the absorption profiles

    NASA Astrophysics Data System (ADS)

    Muller, S.; Combes, F.; Guélin, M.; Gérin, M.; Aalto, S.; Beelen, A.; Black, J. H.; Curran, S. J.; Darling, J.; V-Trung, Dinh; García-Burillo, S.; Henkel, C.; Horellou, C.; Martín, S.; Martí-Vidal, I.; Menten, K. M.; Murphy, M. T.; Ott, J.; Wiklind, T.; Zwaan, M. A.

    2014-06-01

    We present the first results of an ALMA spectral survey of strong absorption lines for common interstellar species in the z = 0.89 molecular absorber toward the lensed blazar PKS 1830-211. The dataset brings essential information on the structure and composition of the absorbing gas in the foreground galaxy. In particular, we find absorption over large velocity intervals (≳100 km s-1) toward both lensed images of the blazar. This suggests either that the galaxy inclination is intermediate and that we sample velocity gradients or streaming motions in the disk plane, that the molecular gas has a large vertical distribution or extraplanar components, or that the absorber is not a simple spiral galaxy but might be a merger system. The number of detected species is now reaching a total of 42 different species plus 14 different rare isotopologues toward the SW image, and 14 species toward the NE line-of-sight. The abundances of CH, H2O, HCO+, HCN, and NH3 relative to H2 are found to be comparable to those in the Galactic diffuse medium. Of all the lines detected so far toward PKS 1830-211, the ground-state line of ortho-water has the deepest absorption. We argue that ground-state lines of water have the best potential for detecting diffuse molecular gas in absorption at high redshift. Appendix is available in electronic form at http://www.aanda.orgThe reduced spectrum (FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A112

  6. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  7. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue

    NASA Astrophysics Data System (ADS)

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  8. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  9. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue.

    PubMed

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  10. Oxygen depth profiling by resonant backscattering and glow discharge optical emission spectroscopy of Ti-6Al-4V alloy oxidized by ion implantation and plasma based treatment

    NASA Astrophysics Data System (ADS)

    Nsengiyumva, S.; Topic, M.; Pichon, L.; Comrie, C. M.; Mtshali, C.

    2016-10-01

    Oxygen depth profiling by means of 16O(α,α)16O backscattering and glow discharge optical emission spectroscopy (GDOES) was investigated in two different sets of Ti-6Al-4V samples. The first set was made of Ti-6Al-4V samples implanted at room temperature and 550 °C with 50 and 150 keV O+ ions at fluences ranging from 1.5 × 1017 to 6.0 × 1017 ions/cm2. The second set consisted of Ti-6Al-4V samples treated at 550 °C for 7 h and 24 h under low pressure (8 Pa) oxygen, eventually with RF plasma activation. These results are part of a wider investigation on Ti-6Al-4V motivated by recent publications which have shown that an oxide layer can enhance hydrogen absorption and can then promote Ti-6Al-4V alloys as efficient hydrogen storage materials. The results obtained by the two characterization techniques were compared and discussed, enabling to adjust the dependence to the oxygen concentration of the sputtering rates to be used in the time-to-depth transformation required in GDOES analysis. Considering the low thickness of oxidized alloy, usual procedures employed in GDOES depth calculation were indeed not adapted. Once calibrated thanks to the resonant RBS, GDOES can then be easily employed as fast characterization of oxidized and/or hydrogenated surface of Ti-6Al-4V. The obtained results show that the oxygen content into the surface oxidized layer slightly increases in samples implanted at higher fluence and higher temperature. However the overall oxidized layer thickness (<200 nm) remains within the projected ion depth range and is not significantly increased by thermal diffusion at 550 °C. Taken into account the initial oxide layer, the incorporated oxygen quantity mainly corresponds to the implanted fluence but it can be slightly higher with 550 °C implantation, indicating a slight additional oxidation by residual oxygen or surface contamination. The oxygen penetrations and contents in samples oxidized by thermally activated diffusion treatments were more

  11. In‐depth molecular profiling of the biphasic components of uterine carcinosarcomas

    PubMed Central

    McConechy, Melissa K; Hoang, Lien N; Chui, Michael Herman; Senz, Janine; Yang, Winnie; Rozenberg, Nirit; Mackenzie, Robertson; McAlpine, Jessica N; Huntsman, David G; Clarke, Blaise A; Gilks, Cyril Blake

    2015-01-01

    Abstract Uterine carcinosarcoma is a clinically aggressive malignancy composed of a mix of carcinomatous and sarcomatous elements. We performed targeted next‐generation sequencing of 27 uterine cancer and sarcoma genes together with immunohistochemical analyses of selected proteins in 30 uterine carcinosarcomas. This included 13 cases in which the distinct carcinoma and sarcoma components were sequenced separately and 10 cases where the metastatic tumours were analysed in addition to the primary tumours. We identified non‐synonymous somatic mutations in 90% of the cases, with 27 of 30 cases (90%) harbouring TP53 alterations. The PI3K pathway was the most commonly mutated signalling pathway with mutations identified in PIK3CA, PTEN, PIK3R1, and/or PIK3R2 in two‐thirds of the cases. Mutations in FBXW7, PPP2R1A, ARID1A and KRAS were demonstrated in a minority of cases. In cases where the carcinomatous and sarcomatous components were separately analysed, most of the mutations identified were present in both components, indicating a common origin for the two components. Furthermore, the same TP53 alterations and/or PI3K pathway mutations seen in the primary tumours were also identified in the metastatic sites. Overall, carcinosarcomas exhibited heterogeneous molecular features that resemble the heterogeneity seen in endometrial carcinomas, with some showing endometrioid carcinoma‐like and others showing serous carcinoma‐like mutation profiles. While patients with serous‐like tumours presented more frequently with advanced‐stage disease compared to patients with endometrioid‐like tumours, there was no statistical difference in outcome between the two groups. Our results provide insights into the oncogenesis of uterine carcinosarcoma and identify targetable mutations that represent early oncogenic events. The findings of the different molecular types of uterine carcinosarcoma that parallel the different molecular types in endometrial carcinoma may have

  12. Vertical and Horizontal Corneal Epithelial Thickness Profile Using Ultra-High Resolution and Long Scan Depth Optical Coherence Tomography

    PubMed Central

    Jiang, Hong; Xu, Zhe; Perez, Victor; Wang, Jianhua

    2014-01-01

    Purpose To determine the vertical and horizontal thickness profiles of the corneal epithelium in vivo using ultra-long scan depth and ultra-high resolution spectral domain optical coherence tomography (SD-OCT). Methods A SD-OCT was developed with an axial resolution of ∼3.3 µm in tissue and an extended scan depth. Forty-two eyes of 21 subjects were imaged twice. The entire horizontal and vertical corneal epithelial thickness profiles were evaluated. The coefficient of repeatability (CoR) and intraclass correlation (ICC) of the tests and interobserver variability were analyzed. Results The full width of the horizontal epithelium was detected, whereas part of the superior epithelium was not shown for the covered super eyelid. The mean central epithelial corneal thickness was 52.0±3.2 µm for the first measurement and 52.3±3.4 µm for the second measurement (P>.05). In the central zone (0–3.0 mm), the paracentral zones (3.0–6.0 mm) and the peripheral zones (6.0–10.0 mm), the mean epithelial thickness ranged from 51 to 53 µm, 52 to 57 µm, and 58 to 72 µm, respectively. There was no difference between the two tests at both meridians and in the right and left eyes (P>.05). The ICCs of the two tests ranged from 0.70 to 0.97 and the CoRs ranged from 2.5 µm to 7.8 µm from the center to the periphery, corresponding to 5.6% to 10.6% (CoR%). The ICCs of the two observers ranged from 0.72 to 0.93 and the CoRs ranged from 4.5 µm to 10.4 µm from the center to the periphery, corresponding to 8.7% to 15.2% (CoR%). Conclusions This study demonstrated good repeatability of ultra-high resolution and long scan depth SD-OCT to evaluate the entire thickness profiles of the corneal epithelium. The epithelial thickness increases from the center toward the limbus. PMID:24844566

  13. 2D Self-Similar Profile for Laser Beam Propagation in Medium with Saturating Multi-Photon Absorption

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.; Zakharova, Irina G.

    2016-02-01

    We study a self-similar mode of 2D laser beam propagation in media with multiphoton absorption (MA) taking into account a resonant nonlinearity and nonlinear absorption saturating. An analytical solution of the corresponding equations describing the problems under consideration is derived using an eigenvalue problem method generalization for soliton- like solution finding. The developed solution is used as incident beam profile and phase front for computer simulation of the 2D laser beam propagation. In particular, we demonstrate numerically that the laser beam propagation in a self-similar mode occurs within a certain distance, which depends on medium properties. Under certain relations between the nonlinear absorption and resonant nonlinearity, and cubic nonlinear response, we observe the super long distance of the beam propagation without any beam profile distributions.

  14. Conformational behaviour of humic substances at different depths along a profile of a Lithosol under loblolly (Pinus taeda) plantation

    NASA Astrophysics Data System (ADS)

    Conte, P.; Maia, C. M. B. F.; de Pasquale, C.; Alonzo, G.

    2009-04-01

    The conformation of natural organic matter (NOM) plays a key role in many physical and chemical processes including interactions with organic and inorganic pollutants and soil aggregates stability thus directly influencing soil quality. NOM conformation can be studied by solid state NMR spectroscopy with cross polarization and magic angle spinning (CPMAS NMR). In the present study we applied CPMAS 13C NMR spectroscopy on three humic acid fractions (HA) each extracted from a different horizon in a Lithosol profile under Pinus taeda. Results showed that the most superficial HA was also the most aliphatic in character. Amount of aromatic moieties and hydrophilic HA constituents increased along the profile. Cross polarization (TCH) and longitudinal relaxation protons times in the rotating frame (T1rho(H)) were measured and compared only for the NMR signals generated by carboxyls and alkyls. This because the signal intensity for the aromatic, C-O and C-N systems was very low, thereby preventing suitable evaluation of TCH and T1rho(H) values for such systems. The cross polarization times of carboxyls decreased, whereas those of the alkyl moieties increased with depth. Conversely, T1rho(H) values increased for both COOH and alkyl groups along the profile. Polarization transfer from protons to carbons is affected by the dipolar interactions among the nuclei. The stronger the H-C dipolar interaction, the faster is the rate of the energy exchange. All the factors affecting the dipolar interaction strength also influence the rate of magnetization transfer. Among the others, fast molecular tumbling and poor proton density around the carbons are responsible for long TCH values. Molecular tumbling and proton density also affect T1rho(H) values. Namely, the larger the molecular tumbling and the proton density, the faster is the proton longitudinal relaxation rate in the rotating frame (shorter T1rho(H) values). The decrease of TCH values of COOH groups along the profile was

  15. DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples.

    PubMed

    Liao, Zhiyu; Sinjab, Faris; Gibson, Graham; Padgett, Miles; Notingher, Ioan

    2016-06-13

    Spectral depth-profiling of optically turbid samples is of high interest to a broad range of applications. We present a method for measuring spatially-offset Raman spectroscopy (SORS) over a range of length scales by incorporating a digital micro-mirror device (DMD) into a sample-conjugate plane in the detection optical path. The DMD can be arbitrarily programmed to collect/reject light at spatial positions in the 2D sample-conjugate plane, allowing spatially offset Raman measurements. We demonstrate several detection geometries, including annular and simultaneous multi-offset modalities, for both macro- and micro-SORS measurements, all on the same instrument. Compared to other SORS modalities, DMD-based SORS provides more flexibility with only minimal additional experimental complexity for subsurface Raman collection. PMID:27410290

  16. Profiling tropospheric water vapour with a coherent infrared differential absorption lidar: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Baron, Philippe; Ishii, Shoken; Mizutani, Kohei; Itabe, Toshikazu; Yasui, Motoaki

    2012-11-01

    In the last decade the precision of coherent Doppler differential absorption lidar (DIAL) has been greatly improved in near and middle infra-red domains for measuring greenhouse gases such as CO2, CH4 and winds. The National Institute of Information and Communications Technology (NICT, Japan) has developed and is operating a CO2 and wind measuring ground-based coherent DIAL at 2.05 μm (4878 cm-1). The application of this technology from space is now considered. In this analysis we study the use of the NICT DIAL for profiling tropospheric water vapour from space. We present the methodology to select the spectral lines and summarized the results of the selected lines between 4000 and 7000 cm-1. The choice of the frequency offset, the pulse energy and repetition frequency are discussed. Retrieval simulations from the line at 4580 cm-1 (2.18 μm) suitable for the boundary layer and the stronger one at 5621 cm-1 (1.78 μm) for sounding the boundary layer and the middle troposphere, are shown.

  17. Field-deployable diode-laser-based differential absorption lidar (DIAL) for profiling water vapor

    NASA Astrophysics Data System (ADS)

    Spuler, S. M.; Repasky, K. S.; Morley, B.; Moen, D.; Hayman, M.; Nehrir, A. R.

    2015-03-01

    A field-deployable water vapor profiling instrument that builds on the foundation of the preceding generations of diode-laser-based differential absorption lidar (DIAL) laboratory prototypes was constructed and tested. Significant advances are discussed, including a unique shared telescope design that allows expansion of the outgoing beam for eye-safe operation with optomechanical and thermal stability; multistage optical filtering enabling measurement during daytime bright-cloud conditions; rapid spectral switching between the online and offline wavelengths enabling measurements during changing atmospheric conditions; and enhanced performance at lower ranges by the introduction of a new filter design and the addition of a wide field-of-view channel. Performance modeling, testing, and intercomparisons are performed and discussed. In general, the instrument has a 150 m range resolution with a 10 min temporal resolution; 1 min temporal resolution in the lowest 2 km of the atmosphere is demonstrated. The instrument is shown capable of autonomous long-term field operation - 50 days with a > 95% uptime - under a broad set of atmospheric conditions and potentially forms the basis for a ground-based network of eye-safe autonomous instruments needed for the atmospheric sciences research and forecasting communities.

  18. Large area and depth-profiling dislocation imaging and strain analysis in Si/SiGe/Si heterostructures.

    PubMed

    Chen, Xin; Zuo, Daniel; Kim, Seongwon; Mabon, James; Sardela, Mauro; Wen, Jianguo; Zuo, Jian-Min

    2014-10-01

    We demonstrate the combined use of large area depth-profiling dislocation imaging and quantitative composition and strain measurement for a strained Si/SiGe/Si sample based on nondestructive techniques of electron beam-induced current (EBIC) and X-ray diffraction reciprocal space mapping (XRD RSM). Depth and improved spatial resolution is achieved for dislocation imaging in EBIC by using different electron beam energies at a low temperature of ~7 K. Images recorded clearly show dislocations distributed in three regions of the sample: deep dislocation networks concentrated in the "strained" SiGe region, shallow misfit dislocations at the top Si/SiGe interface, and threading dislocations connecting the two regions. Dislocation densities at the top of the sample can be measured directly from the EBIC results. XRD RSM reveals separated peaks, allowing a quantitative measurement of composition and strain corresponding to different layers of different composition ratios. High-resolution scanning transmission electron microscopy cross-section analysis clearly shows the individual composition layers and the dislocation lines in the layers, which supports the EBIC and XRD RSM results.

  19. High-resolution chemical depth profiling of solid material using a miniature laser ablation/ionization mass spectrometer.

    PubMed

    Grimaudo, Valentine; Moreno-García, Pavel; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2015-02-17

    High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.

  20. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry.

    PubMed

    Seah, Martin P; Havelund, Rasmus; Gilmore, Ian S

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 (+) cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature. Graphical Abstract ᅟ. PMID:27106601

  1. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry.

    PubMed

    Seah, Martin P; Havelund, Rasmus; Gilmore, Ian S

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 (+) cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature. Graphical Abstract ᅟ.

  2. Systematic Temperature Effects in the Argon Cluster Ion Sputter Depth Profiling of Organic Materials Using Secondary Ion Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Seah, Martin P.; Havelund, Rasmus; Gilmore, Ian S.

    2016-08-01

    A study is presented of the effects of sample temperature on the sputter depth profiling of two organic materials, NPB ( N,N'-Di(1-naphthyl)- N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and Irganox 1010, using a 5 keV Ar2000 + cluster ion beam and analysis by secondary ion mass spectrometry. It is shown that at low temperatures, the yields increase slowly with temperature in accordance with the Universal Sputtering Yield equation where the energy term is now modified by Trouton's rule. This occurs up to a transition temperature, T T, which is, in turn, approximately 0.8 T M, where T M is the sample melting temperature in Kelvin. For NPB and Irganox 1010, these transition temperatures are close to 15 °C and 0 °C, respectively. Above this temperature, the rate of increase of the sputtering yield rises by an order of magnitude. During sputtering, the depth resolution also changes with temperature with a very small change occurring below T T. At higher temperatures, the depth resolution improves but then rapidly degrades, possibly as a result first of local crater surface diffusion and then of bulk inter-diffusion. The secondary ion spectra also change with temperature with the intensities of the molecular entities increasing least. This agrees with a model in which the molecular entities arise near the crater rim. It is recommended that for consistent results, measurements for organic materials are always made at temperatures significantly below T T or 0.8 T M, and this is generally below room temperature.

  3. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    NASA Astrophysics Data System (ADS)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  4. Depth profiling of Stratum corneum hydration in vivo: a comparison between conductance and confocal Raman spectroscopic measurements.

    PubMed

    Boncheva, Mila; de Sterke, Johanna; Caspers, Peter J; Puppels, Gerwin J

    2009-10-01

    The high-frequency electrical conductance of tape-stripped human skin in vivo can be used to evaluate the hydration profile of Stratum corneum (SC). Tape-stripping provides access to the underlying SC layers, and the conductance of these layers (as measured by the Skicon instrument) correlates well with their water content, as demonstrated by independent confocal Raman spectroscopic measurements. The correlation shows high inter-individual variance and is not linear over the full measurement range of the instrument, but is helpful to discriminate between dry, normal and highly hydrated SC. The depth profile of hydration in tape-stripped SC corresponds to the one in intact SC only if the barrier function of the skin is not impaired. Thus, conductometry of tape-stripped skin must be used in conjunction with a method that allows to estimate the barrier damage inflicted to SC during the tape-stripping procedure, for example, measurement of the trans-epidermal water loss. The methodology described here is simple, rapid and minimally invasive, and it employs commercially available instrumentation that is cheap, portable and easy to use. This approach is applicable to in vivo estimation of the SC hydration in studies in the areas of dermatology, skin care and transdermal drug delivery.

  5. Detection of harmonics and recovery of the absorption line profile using logarithmic-transformed wavelength modulation spectroscopy

    NASA Astrophysics Data System (ADS)

    Cong, Menglong; Sun, Dandan

    2016-07-01

    A versatile signal processing strategy for eliminating the residual amplitude modulation (RAM) and distortion in tunable diode laser wavelength modulation spectroscopy is theoretically demonstrated and experimentally validated. The strategy involves logarithmic transformation and differential detection, which are achieved using a homemade circuit. Through the logarithmic transformation, the optical intensity modulation of the laser, which performs as the source of RAM and distortion, is separated from the absorption-induced power attenuation and further balanced during the differential detection. The first harmonic, which is proportional to the first-order derivative of the absorption line profile in the case of a small modulation index, is extracted along with the second harmonic and is integrated for the recovery of the absorption line profile. The experiments are carried out for CH4 at its R(3) absorption line of the 2ν3 overtone for validation of the system, and the derived results are found to be in good agreement with the theoretical simulations. These promising results indicate the high potential of the strategy for absorption spectrum-based determination of gas properties.

  6. Cenozoic variations in the South Atlantic carbonate saturation profile: Insights from the Walvis depth-transect (ODP Leg 208)

    NASA Astrophysics Data System (ADS)

    Schellenberg, S. A.; Nielsen, J. L.

    2004-12-01

    Ocean Drilling Program Leg 208 Science Party (D. Kroon, J. C. Zachos, P. Blum, J. Bowles, P. Gaillot, T. Hasegawa, E. C. Hawthorne, D. A. Hodell, D. C. Kelly, J. Jung, S. M. Keller, Y. Lee, D. C. Leuschner, Z. Liu, K. C. Lohmann, L. Lourens, S. Monechi, M. Nicolo, I. Raffi, C. Riesselman, U. Röhl, D. Schmidt, A. Sluijs, D. Thomas, E. Thomas, H. Vallius) Carbonate saturation profiles are complex and dynamic products of processes operating on temporospatial scales from the "short-term local" (e.g. carbonate export production) to the "long-term global" (e.g. carbonate-silicate weathering, shelf:basin carbonate partitioning). Established, if admittedly crude, proxies for reconstructing carbonate saturation from sediments include wt% carbonate, where values of 0-20% are typically attributed to deposition below the carbonate compensation depth (CCD), and planktonic foraminifer fragmentation, where enhanced fragmentation is typically attributed to deposition below the lysocline. Ocean Drilling Program Leg 208 successfully drilled a six-site Walvis Ridge depth-transect spanning modern water depths from 2,717 to 4,755 m. Exceptional core recovery, well-constrained biomagnetostratigraphy, and standard crustal subsidence corrections provide a working age-depth framework for contouring ship-board wt% carbonate determinations and identifying the following first-order features of the regional CCD: (1) >3.5 km position from 60-48 Ma punctuated by a major transient shoaling to <2 km during the Paleocene-Eocene Thermal Maximum at ˜55 Ma; (2) shoaling to ˜2.75 km from 48 to 44 Ma; (3) subsequent deepening to >4.25 km from 37 to 28 Ma; (4) marked high amplitude fluctuations from 28 to 20 Ma followed by deepening to >4.75 km; (5) transient shoaling to ˜4 km around 15 Ma followed by deepening to >4.75 km by ˜12 Ma. These first-order features are broadly congruent with classic Atlantic CCD reconstructions by van Andel (1975) and Berger and Roth (1975). A wealth of higher frequency

  7. Atmospheric Backscatter Profiles at 1572nm from Pulsed Lidar Measurments of CO2 Column Absorption from the 2011 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Sun, X.; Ramanathan, A.; Mao, J.; Abshire, J. B.

    2012-12-01

    We present height-resolved backscatter profiles from the NASA Goddard Space Flight Center's CO2 sounder lidar, rich in detail, which shows clear evidence of multiple backscatter layers, clouds, and aerosols allowing for the identification of the Planetary Boundary Layer (PBL). This data is recorded as a consequence of our pulsed lidar measurements of the CO2 column absorption. The CO2 Sounder is a pulsed lidar for active remote measurements of CO2 abundance from an airborne platform and is one candidate for the lidar on the NASA ASCENDS mission. The lidar uses a scanning, pulsed laser and fiber amplifier in a Master Oscillator Power Amplifier (MOPA) configuration to measure CO2 absorption at 1572.335 nm, lineshape, range to scattering surface and backscatter profiles. The laser is scanned across the absorption feature measuring at 30 discrete wavelengths/scan and ~300 scans/sec. The time-resolved return signal, with a temporal resolution of 8ns, is detected by a photon-counting PMT fiber coupled to a modified commercial, 2m focal length f10 Schmidt-Cassegrain telescope. The column density for CO2 is estimated from the differential optical depth (DOD) of the scanned absorption line using an integrated-path differential absorption (IPDA) technique and the optical path from the time of flight. A backscatter profile of the measured column is recorded for every pulse of every scan and integrated for 1 second. The backscatter profiles we will show are determined from the receivers photon counting record using a cross-correaltion technique (sliding inner product) with a vertical resolution of better than 300m, set by the 1μs pulse width from the MOPA. The range to the surface can be determined to a few meters. Major benefits of a pulsed technique using time-resolved detection to measure lineshape, is the unambiguous detection of the ground return, intervening clouds, aerosols and information on the vertical distribution of CO2. This technique can uniquely identify the

  8. Depth-related changes in community structure of culturable mineral weathering bacteria and in weathering patterns caused by them along two contrasting soil profiles.

    PubMed

    Huang, Jing; Sheng, Xia-Fang; Xi, Jun; He, Lin-Yan; Huang, Zhi; Wang, Qi; Zhang, Zhen-Dong

    2014-01-01

    Bacteria play important roles in mineral weathering and soil formation. However, few reports of mineral weathering bacteria inhabiting subsurfaces of soil profiles have been published, raising the question of whether the subsurface weathering bacteria are fundamentally distinct from those in surface communities. To address this question, we isolated and characterized mineral weathering bacteria from two contrasting soil profiles with respect to their role in the weathering pattern evolution, their place in the community structure, and their depth-related changes in these two soil profiles. The effectiveness and pattern of bacterial mineral weathering were different in the two profiles and among the horizons within the respective profiles. The abundance of highly effective mineral weathering bacteria in the Changshu profile was significantly greater in the deepest horizon than in the upper horizons, whereas in the Yanting profile it was significantly greater in the upper horizons than in the deeper horizons. Most of the mineral weathering bacteria from the upper horizons of the Changshu profile and from the deeper horizons of the Yanting profile significantly acidified the culture media in the mineral weathering process. The proportion of siderophore-producing bacteria in the Changshu profile was similar in all horizons except in the Bg2 horizon, whereas the proportion of siderophore-producing bacteria in the Yanting profile was higher in the upper horizons than in the deeper horizons. Both profiles existed in different highly depth-specific culturable mineral weathering community structures. The depth-related changes in culturable weathering communities were primarily attributable to minor bacterial groups rather than to a change in the major population structure.

  9. Simultaneous depth-profiling of electrical and elemental properties of ion-implanted arsenic in silicon by combining secondary-ion mass spectrometry with resistivity measurements

    NASA Astrophysics Data System (ADS)

    Bennett, N. S.; Wong, C. S.; McNally, P. J.

    2016-07-01

    A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)—a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

  10. Recovery of x-ray absorption spectral profile in etched TiO{sub 2} thin films

    SciTech Connect

    Sano, Keiji; Niibe, Masahito; Kawakami, Retsuo; Nakano, Yoshitaka

    2015-05-15

    Near edge x-ray absorption fine structure (NEXAFS) spectra of plasma-etched TiO{sub 2} thin films were observed using the total fluorescence yield method involving visible emission. The disrupted spectrum recovered its as-grown (nonetched) profile, upon soft x-ray (SX) irradiation. This recovery was investigated by ultraviolet (UV) irradiation, spatial distribution measurements, exposing recovered samples to air, and NEXAFS measurements of ultrafine TiO{sub 2} particles. The spectral profile recovered upon UV irradiation, and at sample positions outside of the SX irradiation site. The recovered spectral profiles were disrupted again, upon exposure to air. Nonetched ultrafine TiO{sub 2} particles also exhibited a disrupted spectral profile, which was recovered upon SX irradiation. The spectral recovery is explained by a model involving electrons trapped in oxygen vacancies generated by etching.

  11. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    NASA Technical Reports Server (NTRS)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  12. One-Sample based Single-Valued Estimation of the Interface Profile from Intersubband Integrated Absorption Intensity Data

    NASA Astrophysics Data System (ADS)

    Nhu Thao, Dinh; Thanh Tien, Nguyen; Toan, Huynh Ngoc; Nhat Quang, Doan

    2016-07-01

    We prove the integrated absorption intensity due to intersubband optical transition in a quantum well (QW) to be a function of the correlation length of the interface roughness profile and independent of the roughness amplitude. We then develop a novel way to perform single-valued estimation of the interface roughness profile of QW from experiments conducted merely on one sample. The new method that we propose in this paper would be replicable and more economical than the traditional counterparts, which usually require at least two samples.

  13. Complex use of the diffraction techniques in depth profiling of the crystal lattice parameter and composition of InGaAs/GaAs gradient layers

    NASA Astrophysics Data System (ADS)

    Baidakova, M. V.; Kirilenko, D. A.; Sitnikova, A. A.; Yagovkina, M. A.; Klimko, G. V.; Sorokin, S. V.; Sedova, I. V.; Ivanov, S. V.; Romanov, A. E.

    2016-05-01

    A technique is proposed for testing thick (1 μm and larger) gradient layers with the composition and relaxation degree alternating over the layer depth on the basis of comparative analysis of X-ray scattered intensity maps in the reciprocal space and depth profiles of the crystal lattice parameters obtained by electron microdiffraction. The informativity of the proposed technique is demonstrated using the example of an In x Ga1- x As/GaAs layer with linear depth variation in x. Complex representation of the diffraction data in the form of the depth-profiled reciprocal space map allows taking into account the additional relaxation caused by thinning electron microscopy specimens.

  14. New Techniques of LASS-ICPMS Depth Profiling Applied to Detrital Zircon from the Central Alps-Apennines System

    NASA Astrophysics Data System (ADS)

    Anfinson, O. A.; Smye, A.; Stockli, D. F.

    2014-12-01

    Detrital zircon U-Pb age dating has become a widely used tool for determining sediment provenance in basins and orogenic systems. While traditional LA-ICPMS zircon geochronology is powerful, it has limitations when source regions are characterized by monotonous or non-diagnostic crystallization ages or by major sediment recycling and homogenization, leading to minimal zircon age variability. In the central Alps of Switzerland and Italy, for example, similar Cadomian, Caledonian, and Variscan zircons dominate with only minor Alpine ages. Samples collected from Oligocene-Miocene strata deposited in both the northern (Swiss Molasse) and southern (Apenninic foredeep) Alpine foreland basins document shifts in the relative abundance of Cadomian, Caledonian, Variscan and Alpine aged detrital zircon, but the exact source region and genesis of the grains remains poorly constrained based on zircon U-Pb age data alone. Laser Ablation Split Stream (LASS)-ICPMS depth profiling of detrital zircon allows for the simultaneous recovery of multiple ages and of chemical/petrogenetic data from single zircons, and has the potential to shed additional light on provenance. This study applies this approach to Oligocene-Miocene strata of the Swiss Molasse Basin and Apenninic foredeep. Recent advances in LA-ICPMS sample cell technology allow for reliable recovery of age and trace element data during progressive ablation into zircons. Decreased washout (<.3 sec) reduces vertical signal smearing during ablation and penetration into unpolished, tape-mounted grains. In contrast to traditional polished mount zircon spot-analysis, depth-profiling of unpolished grains minimizes zonal mixing given that ablation pits are commonly oriented perpendicular to growth zones. Split-stream analysis of U-Pb isotopic data and REE/trace element abundances during ablation improves petrochronologic resolution to the further elucidated the growth history and genesis of individual zircon grains. Results from the

  15. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    NASA Technical Reports Server (NTRS)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  16. A model for the vertical sound speed and absorption profiles in Titan's atmosphere based on Cassini-Huygens data.

    PubMed

    Petculescu, Andi; Achi, Peter

    2012-05-01

    Measurements of thermodynamic quantities in Titan's atmosphere during the descent of Huygens in 2005 are used to predict the vertical profiles for the speed and intrinsic attenuation (or absorption) of sound. The calculations are done using one author's previous model modified to accommodate non-ideal equations of state. The vertical temperature profile places the tropopause about 40 km above the surface. In the model, a binary nitrogen-methane composition is assumed for Titan's atmosphere, quantified by the methane fraction measured by the gas chromatograph/mass spectrometer (GCMS) onboard Huygens. To more accurately constrain the acoustic wave number, the variation of thermophysical properties (specific heats, viscosity, and thermal conductivity) with altitude is included via data extracted from the NIST Chemistry WebBook [URL webbook.nist.gov, National Institute of Standards and Technology Chemistry WebBook (Last accessed 10/20/2011)]. The predicted speed of sound profile fits well inside the spread of the data recorded by Huygens' active acoustic sensor. In the N(2)-dominated atmosphere, the sound waves have negligible relaxational dispersion and mostly classical (thermo-viscous) absorption. The cold and dense environment of Titan can sustain acoustic waves over large distances with relatively small transmission losses, as evidenced by the small absorption. A ray-tracing program is used to assess the bounds imposed by the zonal wind-measured by the Doppler Wind Experiment on Huygens-on long-range propagation.

  17. Analyses of hydrogen in quartz and in sapphire using depth profiling by ERDA at atmospheric pressure: Comparison with resonant NRA and SIMS

    NASA Astrophysics Data System (ADS)

    Reiche, Ina; Castaing, Jacques; Calligaro, Thomas; Salomon, Joseph; Aucouturier, Marc; Reinholz, Uwe; Weise, Hans-Peter

    2006-08-01

    Hydrogen is present in anhydrous materials as a result of their synthesis and of their environment during conservation. IBA provides techniques to measure H concentration depth profiles allowing to identify various aspects of the materials including the history of objects such as gemstones used in cultural heritage. A newly established ERDA set-up, using an external microbeam of alpha particles, has been developed to study hydrated near-surface layers in quartz and sapphire by non-destructive H depth profiling in different atmospheres. The samples were also analysed using resonant NRA and SIMS.

  18. Formation of blade and slot die coated small molecule multilayers for OLED applications studied theoretically and by XPS depth profiling

    NASA Astrophysics Data System (ADS)

    Peters, Katharina; Raupp, Sebastian; Hummel, Helga; Bruns, Michael; Scharfer, Philip; Schabel, Wilhelm

    2016-06-01

    Slot die coaters especially designed for low material consumption and doctor blades were used to process small molecule solutions for organic light-emitting diodes (OLEDs). Optimum process parameters were developed for the large-scale coating techniques to generate stable single and multiple layers only a few nanometers thick. Achieving a multilayer architecture for solution-processed OLEDs is the most challenging step. X-ray photoelectron spectroscopy sputter depth profiling was performed to determine defined interfaces between coated organic layers. Commercially available small molecules NPB (N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine) and BAlq (Bis(8-hdroxy-2methylquinoline)-(4-phenylphenoxy)aluminum), originally developed for vacuum deposition, were used as hole, respectively electron transport material. Defined double-layers were processed with both scalable coating methods using the orthogonal solvent approach. The use of non-orthogonal solvents resulted in complete intermixing of the material. The results are explained by calculations of solubilities and simulating drying and diffusion kinetics of the small molecule solutions.

  19. Determination of hydrogen diffusion coefficients in F82H by hydrogen depth profiling with a tritium imaging plate technique

    SciTech Connect

    Higaki, M.; Otsuka, T.; Hashizume, K.; Tokunaga, K.; Ezato, K.; Suzuki, S.; Enoeda, M.; Akiba, M.

    2015-03-15

    Hydrogen diffusion coefficients in a reduced activation ferritic/martensitic steel (F82H) and an oxide dispersion strengthened F82H (ODS-F82H) have been determined from depth profiles of plasma-loaded hydrogen with a tritium imaging plate technique (TIPT) in the temperature range from 298 K to 523 K. Data on hydrogen diffusion coefficients, D, in F82H, are summarized as D [m{sup 2}*s{sup -1}] =1.1*10{sup -7}exp(-16[kJ mol{sup -1}]/RT). The present data indicate almost no trapping effect on hydrogen diffusion due to an excess entry of energetic hydrogen by the plasma loading, which results in saturation of the trapping sites at the surface and even in the bulk. In the case of ODS-F82H, data of hydrogen diffusion coefficients are summarized as D [m{sup 2}*s{sup -1}] =2.2*10{sup -7}exp(-30[kJ mol{sup -1}]/RT) indicating a remarkable trapping effect on hydrogen diffusion caused by tiny oxide particles (Y{sub 2}O{sub 3}) in the bulk of F82H. Such oxide particles introduced in the bulk may play an effective role not only on enhancement of mechanical strength but also on suppression of hydrogen penetration by plasma loading.

  20. Effects of thermal treatment and depth profiling analysis of solution processed bulk-heterojunction organic photovoltaic cells.

    PubMed

    Mbule, Pontsho S; Swart, Hendrik C; Ntwaeaborwa, Odireleng M

    2014-12-15

    We report the use of solution processed zinc oxide (ZnO) nanoparticles as a buffer layer inserted between the top metal electrode and the photo-active layer in bulk-heterojunction (BHJ) organic solar cell (OSC) devices. The photovoltaic properties were compared for devices annealed before (Device A) or after (Device B) the deposition of the Al top electrode. The post-annealing treatment was shown to improve the power conversion efficiency up to 2.93% and the fill factor (FF) up to 63% under AM1.5 (100mW/cm(2)) illumination. We performed the depth profile/interface analysis and elemental mapping using the time-of-flight secondary ion mass spectrometry (TOF-SIMS). Signals arising from (27)Al, (16)O, (12)C, (32)S, (64)Zn, (28)Si, (120)Sn and (115)In give an indication of successive deposition of Al, ZnO, P3HT:PCBM and PEDOT:PSS layers on ITO coated glass substrates. Furthermore, we discuss the surface imaging and visualize the chemical information on the surface of the devices.

  1. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence

    2014-05-01

    In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.

  2. Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic Ice Sheet Divide Ice Core

    NASA Astrophysics Data System (ADS)

    Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.

    2009-12-01

    Concentrations of cosmogenic 10Be in polar ice samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in ice cores also provides independent chronological markers to tie Antarctic to Greenland ice cores and to tie Holocene ice cores to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide core, WDC06A. The ice samples are typically 1-2 kg and represent 2-4 m of ice, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC core, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) ice cores, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar ice cores, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide ice core with that in other Antarctic as well as Greenland ice cores and with the 14C treering record. Acknowledgment. This

  3. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  4. Depth profiling of ultra trace metal impurities in polytetrafluoroethylene wares by surface scraping and acid-vapor extraction followed by ICP-MS analysis.

    PubMed

    Tanaka, Masafumi; Takahashi, Makoto

    2002-10-01

    This paper describes the development of the depth profiling method of ultra trace metal impurities in polytetrafluoroethylene (PTFE) wares based on contamination-free sampling followed by acid-vapor extraction and its application to evaluate the washing method for PTFE wares. A contamination-free sampling process was achieved by scraping the surface of PTFE wares with the cleft face of a silicon wafer followed by exposing the PTFE scraped to highly pure acid-vapor. The concentration of metal impurities in extractants was determined by ICP-MS equipped with an electrothermal vaporizer (ETV-ICP-MS). The blank values of Al, Cr, Fe, Ni and Cu by the depth profiling method were 0.006, 0.004, 0.005, 0.002 and 0.003 ng, respectively. By analyzing the depth profile of beakers, the distributions of ultra trace (ng g(-1) level) metal impurities were clarified. An examination of the washing methods by the depth profiling method also clarified that exposing to acid-vapor was more effective than the acid-dipping method for the elimination of metal impurities.

  5. Auger electron spectroscopy study and depth profile analyses of the CaS:Eu2+ pulsed laser deposited thin luminescent films

    NASA Astrophysics Data System (ADS)

    Nyenge, R. L.; Swart, H. C.; Ntwaeaborwa, O. M.

    2016-06-01

    This paper presents the results of a study of the chemical composition, depth profile analyses of pulsed laser deposited CaS:Eu2+ thin films grown at different substrate temperatures. Using Auger electron spectroscopy, we have shown that the thin film grown in an argon atmosphere shows sulfur deficiency as the substrate temperature is increased from 200 to 650 °C.

  6. Collateral geochemical impacts of agricultural nitrogen enrichment from 1963 to 1985: a southern Wisconsin ground water depth profile.

    PubMed

    Browne, Bryant A; Kraft, George J; Bowling, Juliane M; Devita, William M; Mechenich, David J

    2008-01-01

    In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by

  7. Comparative study of the X-ray reflectivity and in-depth profile of a-C, B₄C and Ni coatings at 0.1-2 keV.

    PubMed

    Kozhevnikov, I V; Filatova, E O; Sokolov, A A; Konashuk, A S; Siewert, F; Störmer, M; Gaudin, J; Keitel, B; Samoylova, L; Sinn, H

    2015-03-01

    The use of soft X-rays near the carbon edge of absorption (270-300 eV) greatly enhances studies in various branches of science. However, the choice of reflecting coatings for mirrors operating in free-electron and X-ray free-electron laser (FEL and XFEL) beamlines in this spectral range is not so evident and experimental justifications of the mirror efficiency are rather limited. In the present paper it is demonstrated experimentally that the reflectivity of B4C- and Ni-coated grazing-incidence mirrors is high enough for their operation in FEL or XFEL beamlines near the carbon K-edge of absorption. The minimal reflectivity of both mirrors proves to exceed 80% near the carbon absorption edge at a grazing angle of 0.6°. An in-depth profile of the chemical elements composing the reflecting coatings is reconstructed based on analysis of a set of reflectivity curves measured versus the grazing angle at different photon energies in the soft X-ray spectral region. This allows us to predict correctly the mirror reflectivity at any X-ray energy and any grazing angle.

  8. Effect of acetylation and succinylation on solubility profile, water absorption capacity, oil absorption capacity and emulsifying properties of mucuna bean (Mucuna pruriens) protein concentrate.

    PubMed

    Lawal, O S; Adebowale, K O

    2004-04-01

    Mucuna protein concentrate was acylated with succinic and acetic anhydride. The effects of acylation on solubility, water absorption capacity, oil absorption capacity and emulsifying properties were investigated. The pH-dependent solubility profile of unmodified mucuna protein concentrate (U-mpc) showed a decrease in solubility with decrease in pH and resolubilisation at pH values acidic to isoelectric pH (pH 4). Apart from pH 2, both acetylated mucuna protein concentrates (A-mpc) and succinylated mucuna protein concentrate (S-mpc) had improved solubility over the unmodified derivative. Acylation increased the water absorption capacity (WAC) at all levels of ionic strength (0.1-1.0 M). WAC of the protein samples increased with increase in ionic strength up to 0.2 M after which a decline occurred with increase in ionic strength from 0.4-1.0 M. When protein solutions were prepared in salts of various ions, increase in WAC followed the Hofmeister series in the order: NaSCN < NaClO4 < NaI < NaBr < NaCl < Na2SO. Acetylation improved the oil absorption capacity while the lipophilic tendency reduced the following succinylation. Emulsifying capacity increased with increase in concentration up to 2, 4 and 5% w/v for U-mpc, A-mpc and S-mpc, respectively, after which an increase in concentration reduced the emulsifying capacity. Both acetylation and succinylation significantly (P < 0.05) improved the emulsifying capacity at pH 4-10. Initial increase in ionic strength up to 0.4 M for U-mpc and 0.4 M for A-mpc and S-mpc increased the emulsion capacity progressively. Further increase in ionic strength reduced emulsion capacity (EC). Contrary to the effect of various salts on WAC, increase in EC generally follows the series Na2SO4 < NaCl < NaBr < NaI < NaClO4 < NaSCN. At all levels of ionic strength studied, S-mpc had a better emulsifying activity (EA) than both A-mpc and U-mpc. EA and emulsifying stability (ES) were pH-dependent. Maximum EA and ES were recorded at pH 10. ES of

  9. Atmospheric Backscatter Profiles at 765nm and 1572nm from Pulsed Lidar Measurements of CO2 and O2 Column Absorption from the 2013 ASCENDS Flight Campaign

    NASA Astrophysics Data System (ADS)

    Allan, G. R.; Riris, H.; Hasselbrack, W.; Rodriguez, M.; Ramanathan, A.; Sun, X.; Mao, J.; Abshire, J. B.

    2013-12-01

    We present height-resolved, range corrected, backscatter profiles from NASA GSFC's two-channel (CO2 & O2) sounder, an Integrated Path Differential Absorption (IPDA) lidar, which measures simultaneously both carbon dioxide & oxygen column absorptions. These backscatter profiles show clear evidence of multiple backscattering layers, clouds & aerosols, which allows for the identification of the Planetary Boundary Layer (PBL). The backscatter measurements enable sampling of the vertical distribution of CO2 in the atmosphere when broken & thin clouds are present & may help identify sources & sinks within the PBL as opposed to natural variations in the vertical distribution of CO2. The CO2 Sounder is an airborne pulsed lidar for active remote measurements of CO2 abundance & is a candidate for NASA's ASCENDS mission (Active Sensing of CO2 Emissions over Nights, Days & Seasons). The O2 channel measures atmospheric pressure in the same air column to calculate the dry mixing ratio of CO2. The lidars use a scanning, pulsed laser & fiber amplifier in a Master Oscillator Power Amplifier configuration to measure lineshape, range to scattering surface & backscatter profiles. The CO2 channel operates at 1572.335 nm. The O2 channel uses similar technology but frequency doubles the output from ~1530nm to the O2 A-band absorption around 765nm. Both lasers are scanned across the absorption feature of interest sampling the line at a fixed number of discrete wavelengths per scan around ~300 scans per second. The time-resolved return signal is detected by photon-counting detectors with a temporal resolution of a few nanoseconds. The CO2 channel uses a PMT while the O2 channel uses Single Photon Counting Modules. The detectors are fiber coupled to a 2m f10 Schmidt-Cassegrain telescope. The column density of the gas of interest is estimated from the differential optical depths of the scanned absorption using the IPDA technique & the optical path from the time of flight. A backscatter

  10. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  11. Possibilities of LA-ICP-MS technique for the spatial elemental analysis of the recent fish scales: Line scan vs. depth profiling

    NASA Astrophysics Data System (ADS)

    Holá, Markéta; Kalvoda, Jiří; Nováková, Hana; Škoda, Radek; Kanický, Viktor

    2011-01-01

    LA-ICP-MS and solution based ICP-MS in combination with electron microprobe are presented as a method for the determination of the elemental spatial distribution in fish scales which represent an example of a heterogeneous layered bone structure. Two different LA-ICP-MS techniques were tested on recent common carp ( Cyprinus carpio) scales: A line scan through the whole fish scale perpendicular to the growth rings. The ablation crater of 55 μm width and 50 μm depth allowed analysis of the elemental distribution in the external layer. Suitable ablation conditions providing a deeper ablation crater gave average values from the external HAP layer and the collagen basal plate. Depth profiling using spot analysis was tested in fish scales for the first time. Spot analysis allows information to be obtained about the depth profile of the elements at the selected position on the sample. The combination of all mentioned laser ablation techniques provides complete information about the elemental distribution in the fish scale samples. The results were compared with the solution based ICP-MS and EMP analyses. The fact that the results of depth profiling are in a good agreement both with EMP and PIXE results and, with the assumed ways of incorporation of the studied elements in the HAP structure, suggests a very good potential for this method.

  12. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California

    PubMed Central

    Beman, J. M.; Bertics, Victoria J.; Braunschweiler, Thomas; Wilson, Jesse M.

    2012-01-01

    Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, and NO3−) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 107 genes g–1) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria. PMID:22837756

  13. Computer Program for Calculation of a Gas Temperature Profile by Infrared Emission: Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1977-01-01

    A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.

  14. Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques

    NASA Astrophysics Data System (ADS)

    Matynia, A.; Idir, M.; Molet, J.; Roche, C.; de Persis, S.; Pillier, L.

    2012-08-01

    A high-pressure combustion chamber enclosing counterflow burners was set-up at ICARE-CNRS laboratory. It allows the stabilization of flat twin premixed flames at atmospheric and high pressure. In this study, lean and stoichiometric methane/air counterflow premixed flames were studied at various pressures (0.1 MPa to 0.7 MPa). Relative OH concentration profiles were measured by Laser Induced Fluorescence. Great care was attached to the determination of the fluorescence signal by taking into account the line broadening and deexcitation by quenching which both arise at high pressure. Subsequently, OH profiles were calibrated in concentration by laser absorption technique associated with planar laser induced fluorescence. Results are successfully compared with literature. The good quality of the results attests of the experimental set-up ability to allow the study of flame structure at high pressure.

  15. Detrital zircon LASS-ICP-MS petrochronologic depth profiling for determining source-to-sink relationships in the Central Alps.

    NASA Astrophysics Data System (ADS)

    Anfinson, O. A.; Stockli, D. F.; Stockli, L.; Malusa', M. G.

    2015-12-01

    Laser Ablation-Split Stream Depth Profiling (LASS-DP) ICP-MS petrochronology of detrital zircon (DZ) from Oligocene-Miocene strata in the Molasse and Northern Apennines showcases, in the light of the well-constrained depositional history of these successions, the advantages of this novel approach compared to traditional single and split-stream detrital zircon techniques in elucidating sediment provenance and source-to-sink relationships. While DZ U-Pb data from Oligocene-Miocene strata deposited in both the Molasse and Northern Apennines document shifts in the relative abundance of Cadomian, Caledonian, Variscan and Alpine aged detrital zircon, the source regions remain ambiguous due to non-diagnostic crystallization ages, leading to minimal zircon age variability. In contrast, DZ LASS-DP-ICP-MS petrochronology allows for the simultaneous recovery of multiple U-Pb ages and corresponding geochemical data, and thus dramatically increases our ability to resolve the petrogenetic history of individual DZ grains. The technique shows the immense power of determining the growth history of single DZ grains (rim to core relationships) and identifying/resolving the presence and age of thin magmatic/metamorphic overgrowths. Rupelian turbidites in the Apenninic foredeep exhibit a DZ population with consistent <5 mm Cretaceous metamorphic overgrowths that would likely not be resolved as a coherent population in polished sections. LASS-DP ICP-MS analysis of Caledonian and Variscan detrital zircon populations from the Molasse Basin show a distinct shift in rim-core age pairs in individual zircons that point to the erosion of different source during progressive Alpine unroofing. The geochemical data confirm a crustally derived magmatic source for the majority of the detrital zircon grains within the basin. While this technique, in comparison to traditional polished mounts, might underrepresent older core ages, this slight bias is clearly offset by the better definition and

  16. Far wing depolarization of light - Generalized absorption profiles. [in laser fluorescence spectroscopy of Sr vapor

    NASA Technical Reports Server (NTRS)

    Thomann, P.; Burnett, K.; Cooper, J.

    1981-01-01

    An absorption (and/or emission) event which takes place during a strong collision is called a 'correlated event'. It is discussed how correlated events affect the far red wing depolarization of fluorescence. Attention is given to an atomic vapor which is irradiated by linearly polarized light of a frequency on the red side of the resonance line. Two limiting cases are considered, corresponding to excitation in the impact region and in the quasi-static wing. In the quasi-static wing, absorption of a photon followed by fluorescence (rather than Rayleigh scattering), occurs mostly during a collision. Correlated events dominate the scattering process. Expressions derived for the polarization of the fluorescent light are applied to far red wing depolarization. It is found that the polarization of the fluorescent light does not go to zero in the far wing, but depends crucially on the detailed nature of the anisotropy in the long-range part of the interatomic potential.

  17. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  18. Depth profiling the solid electrolyte interphase on lithium titanate (Li4Ti5O12) using synchrotron-based photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nordh, Tim; Younesi, Reza; Brandell, Daniel; Edström, Kristina

    2015-10-01

    The presence of a surface layer on lithium titanate (Li4Ti5O12, LTO) anodes, which has been a topic of debate in scientific literature, is here investigated with tunable high surface sensitive synchrotron-based photoelectron spectroscopy (PES) to obtain a reliable depth profile of the interphase. Li||LTO cells with electrolytes consisting of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate:diethyl carbonate (LiPF6 in EC:DEC) were cycled in two different voltage windows of 1.0-2.0 V and 1.4-2.0 V. LTO electrodes were characterized after 5 and 100 cycles. Also the pristine electrode as such, and an electrode soaked in the electrolyte were analyzed by varying the photon energies enabling depth profiling of the outermost surface layer. The main components of the surface layer were found to be ethers, P-O containing compounds, and lithium fluoride.

  19. Velocity profile of thin film flows measured using a confocal microscopy particle image velocimetry system with simultaneous multi depth position

    NASA Astrophysics Data System (ADS)

    Kikuchi, K.; Mochizuki, O.

    2015-02-01

    In this paper, we report a technique for simultaneously visualizing flows near walls at nano-depth positions. To achieve such a high interval of depth gradient, we developed a tilted observation technique in a particle image velocimetry (PIV) system based on confocal microscopy. The focal plane along the bottom of the flow channel was tilted by tilting the micro-channel, enabling depth scanning in the microscopic field of view. Our system is suitable for measuring 3D two-component flow fields. The depth interval was approximately 220 nm over a depth range of 10 μm, depending on the tilt angle of the micro-channel. Applying the proposed system, we visualized the near-wall flow in a drainage film flow under laminar conditions to the depth of approximately 30 μm via vertical scanning from the bottom to the free surface. The velocity gradient was proportional to the distance from the wall, consistent with theoretical predictions. From the measured near-wall velocity gradient, we calculated the wall shear stress. The measurement accuracy was approximately 1.3 times higher in our proposed method than in the conventional confocal micro-PIV method.

  20. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan.

    PubMed

    Matsuda, Norihiro; Mikami, Satoshi; Shimoura, Susumu; Takahashi, Junko; Nakano, Masakazu; Shimada, Kiyotaka; Uno, Kiichiro; Hagiwara, Shigetomo; Saito, Kimiaki

    2015-01-01

    During the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident, radioactive cesium was released in the environment and deposited on the soils. Depth profiles of radioactive cesium in contaminated soils provide useful information not only for radiation protection and decontamination operations but also for geoscience and radioecology studies. Soil samples were collected using a scraper plate three times between December 2011 and December 2012 at 84 or 85 locations within a 100-km radius of the Fukushima Dai-ichi NPP. In most of the obtained radioactive cesium depth profiles, it was possible to fit the concentration to a function of mass depth as either an exponential or hyperbolic secant function. By using those functions, following three parameters were estimated: (i) relaxation mass depth β (g cm(-2)), (ii) effective relaxation mass depth βeff (g cm(-2)), which is defined for a hyperbolic secant function as the relaxation mass depth of an equivalent exponential function giving the same air kerma rate at 1 m above the ground as the inventory, and (iii) 1/10 depth L1/10 (cm), at which the soil contains 90% of the inventory. The average β value (wet weight) including ones by hyperbolic secant function in December 2012, was 1.29 times higher than that in December 2011. In fact, it was observed that depth profiles at some study sites deviated from the typical exponential distributions over time. These results indicate the gradual downward migration of radioactive cesium in the soils. The L1/10 values in December 2012 were summarized and presented on a map surrounding the Fukushima Dai-ichi NPP, and the average value of L1/10 was 3.01 cm (n = 82) at this time. It was found that radioactive cesium remained within 5 cm of the ground surface at most study sites (71 sites). The sech function can also be used to estimate the downward migration rate V (kg m(-2) y(-1)). The V values in December 2012 (n = 25) were in good agreement with those found by a

  1. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan.

    PubMed

    Matsuda, Norihiro; Mikami, Satoshi; Shimoura, Susumu; Takahashi, Junko; Nakano, Masakazu; Shimada, Kiyotaka; Uno, Kiichiro; Hagiwara, Shigetomo; Saito, Kimiaki

    2015-01-01

    During the Fukushima Dai-ichi Nuclear Power Plant (NPP) accident, radioactive cesium was released in the environment and deposited on the soils. Depth profiles of radioactive cesium in contaminated soils provide useful information not only for radiation protection and decontamination operations but also for geoscience and radioecology studies. Soil samples were collected using a scraper plate three times between December 2011 and December 2012 at 84 or 85 locations within a 100-km radius of the Fukushima Dai-ichi NPP. In most of the obtained radioactive cesium depth profiles, it was possible to fit the concentration to a function of mass depth as either an exponential or hyperbolic secant function. By using those functions, following three parameters were estimated: (i) relaxation mass depth β (g cm(-2)), (ii) effective relaxation mass depth βeff (g cm(-2)), which is defined for a hyperbolic secant function as the relaxation mass depth of an equivalent exponential function giving the same air kerma rate at 1 m above the ground as the inventory, and (iii) 1/10 depth L1/10 (cm), at which the soil contains 90% of the inventory. The average β value (wet weight) including ones by hyperbolic secant function in December 2012, was 1.29 times higher than that in December 2011. In fact, it was observed that depth profiles at some study sites deviated from the typical exponential distributions over time. These results indicate the gradual downward migration of radioactive cesium in the soils. The L1/10 values in December 2012 were summarized and presented on a map surrounding the Fukushima Dai-ichi NPP, and the average value of L1/10 was 3.01 cm (n = 82) at this time. It was found that radioactive cesium remained within 5 cm of the ground surface at most study sites (71 sites). The sech function can also be used to estimate the downward migration rate V (kg m(-2) y(-1)). The V values in December 2012 (n = 25) were in good agreement with those found by a

  2. Depth profile reconstructions of electronic transport properties in H{sup +} MeV-energy ion-implanted n-Si wafers using photocarrier radiometry

    SciTech Connect

    Tai, Rui; Wang, Chinhua Hu, Jingpei; Mandelis, Andreas

    2014-07-21

    A depth profiling technique using photocarrier radiometry (PCR) is demonstrated and used for the reconstruction of continuously varying electronic transport properties (carrier lifetime and electronic diffusivity) in the interim region between the ion residence layer and the bulk crystalline layer in H{sup +} implanted semiconductor wafers with high implantation energies (∼MeV). This defect-rich region, which is normally assumed to be part of the homogeneous “substrate” in all existing two- and three-layer models, was sliced into many virtual thin layers along the depth direction so that the continuously and monotonically variable electronic properties across its thickness can be considered uniform within each virtual layer. The depth profile reconstruction of both carrier life time and diffusivity in H{sup +} implanted wafers with several implantation doses (3 × 10{sup 14}, 3 × 10{sup 15}, and 3 × 10{sup 16} cm{sup −2}) and different implantation energies (from 0.75 to 2.0 MeV) is presented. This all-optical PCR method provides a fast non-destructive way of characterizing sub-surface process-induced electronic defect profiles in devices under fabrication at any intermediate stage before final metallization and possibly lead to process correction and optimization well before electrical testing and defect diagnosis becomes possible.

  3. Europium-152 depth profile of a stone bridge pillar exposed to the Hiroshima atomic bomb: 152Eu activities for analysis of the neutron spectrum.

    PubMed

    Hasai, H; Iwatani, K; Shizuma, K; Hoshi, M; Yokoro, K; Sawada, S; Kosako, T; Morishima, H

    1987-09-01

    The 152Eu activity depth profile of a granite pillar of the Motoyasu bridge located 132 m from the Hiroshima atomic bomb hypocenter was assessed. The pillars each measured 82 cm in depth, 82 cm in width and 193 cm in height. One of the pillars was bored and 6.8-cm-diameter core samples were removed and cut into 2-cm-thick disks. Two gamma rays of 152Eu, 122 keV and 344 keV, in each disk were measured using a low background, gamma-ray spectrometer, and the activity distribution was determined as a function of depth in the granite. A concentration of stable Eu in the granite was determined by activation analysis. The specific radioactivity of 152Eu and 154Eu at the pillar surface was determined to have been 117 and 24 Bq per mg Eu, respectively, at the time of detonation. The value of 152Eu agrees within 20% of that calculated by Loewe. The depth profile of 152Eu in granite demonstrates a distinct difference from the estimates made only by thermal neutrons. Present data provide valuable information for the analysis of the neutron spectrum of the Hiroshima atomic bomb and its intensity.

  4. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    NASA Technical Reports Server (NTRS)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  5. Complex X-ray Absorption and the Fe K(alpha) Profile in NGC 3516

    NASA Technical Reports Server (NTRS)

    Turner, T. J.; Kraemer, S. B.; George, I. M.; Reeves, J. N.; Botorff, M. C.

    2004-01-01

    We present data from simultaneous Chandra, XMM-Newton and BeppoSAX observations of the Seyfert 1 galaxy NGC 3516, taken during 2001 April and November. We have investigated the nature of the very flat observed X-ray spectrum. Chandra grating data show the presence of X-ray absorption lines, revealing two distinct components of the absorbing gas, one which is consistent with our previous model of the UV/X-ray absorber while the other, which is outflowing at a velocity of approximately 1100 kilometers per second, has a larger column density and is much more highly ionized. The broad-band spectral characteristics of the X-ray continuum observed with XMM during 2001 April, reveal the presence of a third layer of absorption consisting of a very large column (approximately 2.5 x 10(exp 23) per square centimeter) of highly ionized gas with a covering fraction approximately 50%. This low covering fraction suggests that the absorber lies within a few 1t-days of the X-ray source and/or is filamentary in structure. Interestingly, these absorbers are not in thermal equilibrium with one another. The two new components are too highly ionized to be radiatively accelerated, which we suggest is evidence for a hydromagnetic origin for the outflow. Applying our model to the November dataset, we can account for the spectral variability primarily by a drop in the ionization states of the absorbers, as expected by the change in the continuum flux. When this complex absorption is accounted for we find the underlying continuum to be typical of Seyfert 1 galaxies. The spectral curvature attributed to the high column absorber, in turn, reduces estimates of the flux and extent of any broad Fe emission line from the accretion disk.

  6. Application of Physiologically Based Absorption Modeling to Characterize the Pharmacokinetic Profiles of Oral Extended Release Methylphenidate Products in Adults

    PubMed Central

    Yang, Xiaoxia; Duan, John; Fisher, Jeffrey

    2016-01-01

    A previously presented physiologically-based pharmacokinetic model for immediate release (IR) methylphenidate (MPH) was extended to characterize the pharmacokinetic behaviors of oral extended release (ER) MPH formulations in adults for the first time. Information on the anatomy and physiology of the gastrointestinal (GI) tract, together with the biopharmaceutical properties of MPH, was integrated into the original model, with model parameters representing hepatic metabolism and intestinal non-specific loss recalibrated against in vitro and in vivo kinetic data sets with IR MPH. A Weibull function was implemented to describe the dissolution of different ER formulations. A variety of mathematical functions can be utilized to account for the engineered release/dissolution technologies to achieve better model performance. The physiological absorption model tracked well the plasma concentration profiles in adults receiving a multilayer-release MPH formulation or Metadate CD, while some degree of discrepancy was observed between predicted and observed plasma concentration profiles for Ritalin LA and Medikinet Retard. A local sensitivity analysis demonstrated that model parameters associated with the GI tract significantly influenced model predicted plasma MPH concentrations, albeit to varying degrees, suggesting the importance of better understanding the GI tract physiology, along with the intestinal non-specific loss of MPH. The model provides a quantitative tool to predict the biphasic plasma time course data for ER MPH, helping elucidate factors responsible for the diverse plasma MPH concentration profiles following oral dosing of different ER formulations. PMID:27723791

  7. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  8. Depth profiles of temperature, specific conductance and oxygen concentration in Lake Powell, Arizona-Utah, 1992-95

    USGS Publications Warehouse

    Marzolf, G. Richard; Hart, Robert J.; Stephens, Doyle W.

    1998-01-01

    The depth distribution of temperature in lakes and reservoirs establishes vertical-density gradients that regulate the distribution of a wide array of chemical and biological features. In Lake Powell, the depth at which inflowing river water enters the reservoir is controlled by the water temperature of the river compared to the vertical-thermal structure of the reservoir in late spring and early summer. The measurements reported here document the longitudinal and vertical pattern of temperature, specific conductance, and oxygen concentration on several dates in 1992, 1994, and 1995.

  9. Ion microscopy with resonant ionization mass spectrometry : time-of-flight depth profiling with improved isotopic precision.

    SciTech Connect

    Pellin, M. J.; Veryovkin, I. V.; Levine, J.; Zinovev, A.; Davis, A. M.; Stephan, T.; Tripa, C. E.; King, B. V.; Savina, M. R.

    2010-01-01

    There are four generally mutually exclusive requirements that plague many mass spectrometric measurements of trace constituents: (1) the small size (limited by the depth probed) of many interesting materials requires high useful yields to simply detect some trace elements, (2) the low concentrations of interesting elements require efficient discrimination from isobaric interferences, (3) it is often necessary to measure the depth distribution of elements with high surface and low bulk contributions, and (4) many applications require precise isotopic analysis. Resonant ionization mass spectrometry has made dramatic progress in addressing these difficulties over the past five years.

  10. Variations in the depth distribution of phosphorus in soil profiles and implications for model-based catchment-scale predictions of phosphorus delivery to surface waters

    NASA Astrophysics Data System (ADS)

    Owens, P. N.; Deeks, L. K.; Wood, G. A.; Betson, M. J.; Lord, E. I.; Davison, P. S.

    2008-02-01

    SummaryThe PSYCHIC process-based model for predicting sediment and phosphorus (P) transfer within catchments uses spatial data on soil-P derived from the National Soil Inventory (NSI) data set. These soil-P values are based on bulked 0-15 cm depth and do not account for variations in soil-P with depth. We describe the depth distribution of soil-P (total and Olsen) in grassland and arable soils for the dominant soil types in the two PSYCHIC study catchments: the Avon and the Wye, UK. There were clear variations in soil-P (particularly Olsen-P) concentrations with depth in untilled grassland soils while concentrations of total-P were broadly constant within the plough layer of arable soils. Concentrations of Olsen-P in arable soils, however, exhibited maximum values near the soil surface reflecting surface applications of fertilisers and manures between consecutive ploughing events. When the soil-P concentrations for the surface soil (0-5 cm average) were compared to both the profile-averaged (0-15 cm) and the NSI (0-15 cm) values, those for the surface soil were considerably greater than those for the average 0-15 cm depth. Modelled estimates of P loss using the depth-weighted average soil-P concentrations for the 0-5 cm depth layer were up to 14% greater than those based on the NSI data set due to the preferential accumulation of P at the soil surface. These findings have important implications for the use of soil-P data (and other data) in models to predict P losses from land to water and the interpretation of these predictions for river basin management.

  11. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  12. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  13. Chemical weathering of a marine terrace chronosequence, Santa Cruz, California I: Interpreting rates and controls based on soil concentration-depth profiles

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Vivit, D.V.; Blum, A.E.; Stonestrom, D.A.; Anderson, S.P.

    2008-01-01

    The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America. Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr-1). During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective

  14. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes.

    PubMed

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-01

    In order to reveal the physical processes taking place within the "μ10" microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p(5)((2)P(0) (3/2))6s[3/2](0) (2) which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10(18) m(-3) order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the μ10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  15. Measurement of axial neutral density profiles in a microwave discharge ion thruster by laser absorption spectroscopy with optical fiber probes

    SciTech Connect

    Tsukizaki, Ryudo; Koizumi, Hiroyuki; Nishiyama, Kazutaka; Kuninaka, Hitoshi

    2011-12-15

    In order to reveal the physical processes taking place within the ''{mu}10'' microwave discharge ion thruster, internal plasma diagnosis is indispensable. However, the ability of metallic probes to access microwave plasmas biased at a high voltage is limited from the standpoints of the disturbance created in the electric field and electrical isolation. In this study, the axial density profiles of excited neutral xenon were successfully measured under ion beam acceleration by using a novel laser absorption spectroscopy system. The target of the measurement was metastable Xe I 5p{sup 5}({sup 2}P{sup 0}{sub 3/2})6s[{sup 3}/{sub 2}]{sup 0}{sub 2} which absorbed a wavelength of 823.16 nm. Signals from laser absorption spectroscopy that swept a single-mode optical fiber probe along the line of sight were differentiated and converted into axial number densities of the metastable neutral particles in the plasma source. These measurements revealed a 10{sup 18} m{sup -3} order of metastable neutral particles situated in the waveguide, which caused two different modes during the operation of the {mu}10 thruster. This paper reports a novel spectroscopic measurement system with axial resolution for microwave plasma sources utilizing optical fiber probes.

  16. Into the Deep: Variability in Soil Microbial Communities and Carbon Turnover Along a Tropical Forest Soil Depth Profile

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; McFarlane, K. J.; Heckman, K. A.; Reed, S.; Wood, T. E.

    2015-12-01

    Tropical forest soils store more carbon (C) than any other terrestrial ecosystem and exchange vast amounts of CO2, water, and energy with the atmosphere. Much of this C is leached and stored within deeper soil layers, but we know exceedingly little about the fate of this C or the microbial communities that drive deep soil biogeochemistry. From the data that do exist, most organic matter (OM) in tropical soils appears associated with mineral particles, suggesting deep soils may provide greater C stabilization due to organo-metal co-precipitation and mineral-surface interactions. However, few studies have evaluated sub-surface soils in tropical ecosystems, the turnover times of deep soil C, and sensitivity of this C to global environmental change. To address this critical research need, we quantified C pools, microbial communities and soil radiocarbon turnover times in bulk soils and soil fractions [free light (unprotected), dense (mineral-associated)] from 0-140 cm in replicate soil pits in the Luquillo Experimental Forest, Puerto Rico. Unsurprisingly, we found soil C, nitrogen, and root and microbial biomass all declined exponentially with depth; total C stocks dropped from 5.5 % at the surface to <0.5% at 140cm depth. Soil OM 14C and mean turnover times were variable across replicate horizons, ranging from 3-1500 years at the surface (0-20 cm), to 5000-40,000 years at 140 cm depth. Soil C in the mineral associated fraction was much older than the free light fraction C, which reflected modern 14C at all depths. In comparison to temperate deciduous forests, these 14C values reflect far older soil C, and OM decomposition that highly favors free light C pools, even at depth. While previous work suggests these low C tropical subsoils contain small but metabolically active microbial communities at depths of ~100cm, these organisms appear highly OM limited, and preferentially degrade recent inputs. In the coming half century, tropical forests are predicted to see a 2 - 5

  17. Pattern and intensity of human impact on coral reefs depend on depth along the reef profile and on the descriptor adopted

    NASA Astrophysics Data System (ADS)

    Nepote, Ettore; Bianchi, Carlo Nike; Chiantore, Mariachiara; Morri, Carla; Montefalcone, Monica

    2016-09-01

    Coral reefs are threatened by multiple global and local disturbances. The Maldives, already heavily hit by the 1998 mass bleaching event, are currently affected also by growing tourism and coastal development that may add to global impacts. Most of the studies investigating effects of local disturbances on coral reefs assessed the response of communities along a horizontal distance from the impact source. This study investigated the status of a Maldivian coral reef around an island where an international touristic airport has been recently (2009-2011) built, at different depths along the reef profile (5-20 m depth) and considering the change in the percentage of cover of five different non-taxonomic descriptors assessed through underwater visual surveys: hard corals, soft corals, other invertebrates, macroalgae and abiotic attributes. Eight reefs in areas not affected by any coastal development were used as controls and showed a reduction of hard coral cover and an increase of abiotic attributes (i.e. sand, rock, coral rubble) at the impacted reef. However, hard coral cover, the most widely used descriptor of coral reef health, was not sufficient on its own to detect subtle indirect effects that occurred down the reef profile. Selecting an array of descriptors and considering different depths, where corals may find a refuge from climate impacts, could guide the efforts of minimising local human pressures on coral reefs.

  18. Application of slope-polishing technique for depth profile of selenized CIGS by micro-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Min-Su; Kang, Jeong-yoon; Kim, SeongYeon; Kim, JunHo; Jeon, Chan-Wook

    2016-08-01

    Micro-Raman analysis was carried out on two Cu(In,Ga)Se2 films to determine the location of the secondary phases, which were suspected of being formed during the selenization process of Cu-In-Ga metallic precursor films. A slope polishing technique using a dimple grinder was applied to physically expand the film thickness by several hundred fold, which allowed high resolution Raman analysis. Various secondary phases including CuxSe, InSe, Se, and MoySe at different depths were identified without need for time-consuming sputter etching, which may adversely affect the film chemistry. With the help of the new sample preparation method for depth analysis of thin film, a precise decision on the location of those secondary phases along the film thickness and better understanding of the reaction mechanism was enabled.

  19. Diclofenac metabolic profile following in vitro percutaneous absorption through viable human skin.

    PubMed

    Tanojo, H; Wester, R C; Shainhouse, J Z; Maibach, H I

    1999-01-01

    The extent of metabolism of diclofenac sodium in excised viable human skin was investigated using combination HPLC and radioactivity assay. In an earlier diffusion experiment using an in vitro flow-through diffusion system, radiolabelled diclofenac sodium in either lotion (Pennsaid) or aqueous solution was applied to viable human skin, either as single dose or multiple dose (8 times over 2 days). In this study, the receptor fluid samples from the diffusion experiment were subjected to extraction and the aliquot was analysed using HPLC to separate diclofenac and authentic metabolites. Based on the radioactivity of each HPLC fraction, the collection time of the fractions was compared with the retention time of diclofenac and metabolites in standard solutions. The samples from a single or multiple dose application of lotion showed radioactivity in mainly one fraction, whose retention time corresponded with diclofenac. Other HPLC fractions showed none or only small amounts of radioactivity within the error range of the assay. The same results were obtained with the pooled samples from the application of the lotion or of aqueous solution. The results suggest that diclofenac sodium does not undergo metabolism in viable human epidermis during percutaneous absorption in vitro. Hence, with topical application to human skin in vivo, diclofenac will be delivered with minimal, if any, metabolism.

  20. Effects of bioactive components of sea cucumber on the serum, liver lipid profile and lipid absorption.

    PubMed

    Hu, Xiao-Qian; Xu, Jie; Xue, Yong; Li, Zhao-Jie; Wang, Jing-Feng; Wang, Jia-Hui; Xue, Chang-Hu; Wang, Yu-Ming

    2012-01-01

    Several studies had indicated that the whole body of sea cucumber had beneficial effects on lipid metabolism. However, little information has been known on the individual functions of its bioactive components, and this study was undertaken to compare the different effects on improving lipid metabolism. The rats were assigned to seven groups: control, whole sea cucumber, saponins, polysaccharides, collagen peptides, dregs and non-saponin residues. After 28 d of feeding, the serum total cholesterol, triglyceride, high-density lipoprotein-cholesterol, and hepatic lipid concentrations were examined. The results indicated that a dietary saponin supplement significantly suppressed adipose accumulation, and reduced serum and hepatic lipids. Saponin proved to be more effective than the other isolated components, so is considered to be the main lipid-lowering component in sea cucumber. The possible mechanism by which saponins improved lipid metabolism was also investigated. The saponins of sea cucumber suppressed and delayed TG and TC absorption which could be related to the pancreatic lipase inhibiting effect of saponins. This may be an important mechanism to explain its lipid-lowering effect on rats.

  1. Time-resolved OCT-μPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Menon, Prahlad G.; Kowalski, William; Pekkan, Kerem

    2013-01-01

    In vivo acquisition of endothelial wall shear stress requires instantaneous depth-resolved whole-field pulsatile flow profile measurements in microcirculation. High-accuracy, quantitative and non- invasive velocimetry techniques are essential for emerging real-time mechano-genomic investigations. To address these research needs, a novel biological flow quantification technique, OCT-μPIV, was developed utilizing high-speed optical coherence tomography (OCT) integrated with microscopic Particle Image Velocimetry (μPIV). This technique offers the unique advantage of simultaneously acquiring blood flow profiles and vessel anatomy along arbitrarily oriented sagittal planes. The process is instantaneous and enables real-time 3D flow reconstruction without the need for computationally intensive image processing compared to state-of-the-art velocimetry techniques. To evaluate the line-scanning direction and speed, four sets of parametric synthetic OCT-μPIV data were generated using an in-house code. Based on this investigation, an in vitro experiment was designed at the fastest scan speed while preserving the region of interest providing the depth-resolved velocity profiles spanning across the width of a micro-fabricated channel. High-agreement with the analytical flow profiles was achieved for different flow rates and seed particle types and sizes. Finally, by employing blood cells as non-invasive seeding particles, in vivo embryonic vascular velocity profiles in multiple vessels were measured in the early chick embryo. The pulsatile flow frequency and peak velocity measurements were also acquired with OCT-μPIV, which agreed well with previous reported values. These results demonstrate the potential utility of this technique to conduct practical microfluidic and non-invasive in vivo studies for embryonic blood flows.

  2. Time-resolved OCT-μPIV: a new microscopic PIV technique for noninvasive depth-resolved pulsatile flow profile acquisition

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yuan; Menon, Prahlad G.; Kowalski, William; Pekkan, Kerem

    2012-12-01

    In vivo acquisition of endothelial wall shear stress requires instantaneous depth-resolved whole-field pulsatile flow profile measurements in microcirculation. High-accuracy, quantitative and non- invasive velocimetry techniques are essential for emerging real-time mechano-genomic investigations. To address these research needs, a novel biological flow quantification technique, OCT-μPIV, was developed utilizing high-speed optical coherence tomography (OCT) integrated with microscopic Particle Image Velocimetry (μPIV). This technique offers the unique advantage of simultaneously acquiring blood flow profiles and vessel anatomy along arbitrarily oriented sagittal planes. The process is instantaneous and enables real-time 3D flow reconstruction without the need for computationally intensive image processing compared to state-of-the-art velocimetry techniques. To evaluate the line-scanning direction and speed, four sets of parametric synthetic OCT-μPIV data were generated using an in-house code. Based on this investigation, an in vitro experiment was designed at the fastest scan speed while preserving the region of interest providing the depth-resolved velocity profiles spanning across the width of a micro-fabricated channel. High-agreement with the analytical flow profiles was achieved for different flow rates and seed particle types and sizes. Finally, by employing blood cells as non-invasive seeding particles, in vivo embryonic vascular velocity profiles in multiple vessels were measured in the early chick embryo. The pulsatile flow frequency and peak velocity measurements were also acquired with OCT-μPIV, which agreed well with previous reported values. These results demonstrate the potential utility of this technique to conduct practical microfluidic and non-invasive in vivo studies for embryonic blood flows.

  3. ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS

    SciTech Connect

    Lee, Hee-Won

    2013-08-01

    Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption line profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.

  4. Penetration depth and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} polycrystalline films by ferromagnetic resonance and spin pumping

    SciTech Connect

    Merodio, P.; Ghosh, A.; Lemonias, C.; Gautier, E.; Ebels, U.; Chshiev, M.; Béa, H. E-mail: helene.bea@cea.fr; Baltz, V. E-mail: helene.bea@cea.fr

    2014-01-20

    Spintronics relies on the spin dependent transport properties of ferromagnets (Fs). Although antiferromagnets (AFs) are used for their magnetic properties only, some fundamental F-spintronics phenomena like spin transfer torque, domain wall motion, and tunnel anisotropic magnetoresistance also occur with AFs, thus making AF-spintronics attractive. Here, room temperature critical depths and absorption mechanisms of spin currents in Ir{sub 20}Mn{sub 80} and Fe{sub 50}Mn{sub 50} are determined by F-resonance and spin pumping. In particular, we find room temperature critical depths originating from different absorption mechanisms: dephasing for Ir{sub 20}Mn{sub 80} and spin flipping for Fe{sub 50}Mn{sub 50}.

  5. Observing mixed layer depth, nitrate and chlorophyll concentrations in the northwestern Mediterranean: A combined satellite and NO3 profiling floats experiment

    NASA Astrophysics Data System (ADS)

    D'Ortenzio, Fabrizio; Lavigne, Hélöise; Besson, Florent; Claustre, Hervé; Coppola, Laurent; Garcia, Nicole; Laës-Huon, Agathe; Le Reste, Serge; Malardé, Damien; Migon, Christophe; Morin, Pascal; Mortier, Laurent; Poteau, Antoine; Prieur, Louis; Raimbault, Patrick; Testor, Pierre

    2014-09-01

    Two profiling floats, equipped with nitrate concentration sensors were deployed in the northwestern Mediterranean from summer 2012 to summer 2013. Satellite ocean color data were extracted to evaluate surface chlorophyll concentration at float locations. Time series of mixed layer depths and nitrate and chlorophyll concentrations were analyzed to characterize the interplay between the physical-chemical and biological dynamics in the area. Deep convection (mixed layer depth > 1000 m) was observed in January-February, although high-nitrate surface concentrations could be already observed in December. Chlorophyll increase is observed since December, although high values were observed only in March. The early nitrate availability in subsurface layers, which is likely due to the permanent cyclonic circulation of the area, appears to drive the bloom onset. The additional nitrate supply associated to the deep convection events, although strengthening the overall nitrate uptake, seems decoupled of the December increase of chlorophyll.

  6. Compositional depth profile of a native oxide LPCVD MNOS structure using X-ray photoelectron spectroscopy and chemical etching

    NASA Technical Reports Server (NTRS)

    Wurzbach, J. A.; Grunthaner, F. J.

    1983-01-01

    It is pointed out that there is no report of an unambiguous analysis of the composition and interfacial structure of MNOS (metal-nitride oxide semiconductor) systems, despite the technological importance of these systems. The present investigation is concerned with a study of an MNOS structure on the basis of a technique involving the use of X-ray photoelectron spectroscopy (XPS) with a controlled stopped-flow chemical-etching procedure. XPS is sensitive to the structure of surface layers, while stopped-flow etching permits the controlled removal of overlying material on a scale of atomic layers, to expose new surface layers as a function of thickness. Therefore, with careful analysis of observed intensities at measured depths, this combination of techniques provides depth resolution between 5 and 10 A. According to the obtained data there is intact SiO2 at the substrate interface. There appears to be a thin layer containing excess bonds to silicon on top of the SiO2.

  7. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-09-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  8. X-Ray Photoelectron Spectroscopy Depth Profiling of Electrochemically Prepared Thin Oxide Layers on Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Donik, Črtomir; Kocijan, Aleksandra; Mandrino, Djordje; Jenko, Monika

    2011-10-01

    The surface oxidation of duplex stainless steel (DSS 2205) was studied by X-ray photoelectron spectroscopy (XPS). The experiments were performed on the alloy after controlled oxidation in a chloride-enriched solution at controlled potentials. The evolution of the passive film formed on the DSS in a chloride solution was studied using cyclic voltammetry with XPS surface characterization at selected potentials. The evolution of the oxide films and its specific compositions formed on the DSS was studied as a function of depth. Fe/Cr oxidized layers and oxide thicknesses were observed and correlated with the various potentiostatic potentials. The importance of Mo and Cr inside the oxide films in this article is studied and described, whereas their role in the protective layer, as oxides, is significant.

  9. Measurements of the Depth of Maximum of Air-Shower Profiles at the Pierre Auger Observatory and their Composition Implications

    NASA Astrophysics Data System (ADS)

    de Souza, V.

    We describe how the analysis of air showers detected by the Pierre Auger Observatory leads to an accurate determination of the depth of maximum (Xmax). First, the analysis of the air-shower which leads to the reconstruction of Xmax is discussed. The properties of the detector and its measurement biases are treated and carefully taken into consideration. The Xmax results are interpreted in terms of composition, where the interpretation depends mainly on the hadronic interaction models. A global fit of the Xmax distribution yields an estimate of the abundance of four primaries species. The analysis represents the most statistically significant composition information ever obtained for energies above 1017.8 eV. The scenario that emerges shows no support for a strong flux of iron nuclei and a strong energy dependence of the proton fraction.

  10. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.

    PubMed

    Zachhuber, Bernhard; Gasser, Christoph; Ramer, Georg; Chrysostom, Engelene t H; Lendl, Bernhard

    2012-08-01

    Time-resolved stand-off Raman spectroscopy was used to determine both the position and identity of substances relative to each other at remote distances (up to tens of meters). Spectral information of three xylene isomers, toluene, and sodium chlorate was obtained at a distance of 12 m from the setup. Pairs and triplets of these samples were placed at varying distances (10-60 cm) relative to each other. Via the photon time of flight the distance between the individual samples was determined to an accuracy of 7% (corresponding to a few cm) of the physically measured distance. Furthermore, at a distance of 40 m, time-resolved Raman depth profiling was used to detect sodium chlorate in a white plastic container that was non-transparent to the human eye. The combination of the ranging capabilities of Raman LIDAR (sample location usually determined using prior knowledge of the analyte of interest) with stand-off Raman spectroscopy (analyte detection at remote distances) provides the capability for depth profile identification of unknown substances and analysis of concealed content in distant objects. To achieve these results, a 532 nm laser with a pulse length of 4.4 ns was synchronized to an intensified charge-coupled device camera with a minimum gate width of 500 ps. For automated data analysis a multivariate curve resolution algorithm was employed. PMID:22800681

  11. Depth profiling for the identification of unknown substances and concealed content at remote distances using time-resolved stand-off Raman spectroscopy.

    PubMed

    Zachhuber, Bernhard; Gasser, Christoph; Ramer, Georg; Chrysostom, Engelene t H; Lendl, Bernhard

    2012-08-01

    Time-resolved stand-off Raman spectroscopy was used to determine both the position and identity of substances relative to each other at remote distances (up to tens of meters). Spectral information of three xylene isomers, toluene, and sodium chlorate was obtained at a distance of 12 m from the setup. Pairs and triplets of these samples were placed at varying distances (10-60 cm) relative to each other. Via the photon time of flight the distance between the individual samples was determined to an accuracy of 7% (corresponding to a few cm) of the physically measured distance. Furthermore, at a distance of 40 m, time-resolved Raman depth profiling was used to detect sodium chlorate in a white plastic container that was non-transparent to the human eye. The combination of the ranging capabilities of Raman LIDAR (sample location usually determined using prior knowledge of the analyte of interest) with stand-off Raman spectroscopy (analyte detection at remote distances) provides the capability for depth profile identification of unknown substances and analysis of concealed content in distant objects. To achieve these results, a 532 nm laser with a pulse length of 4.4 ns was synchronized to an intensified charge-coupled device camera with a minimum gate width of 500 ps. For automated data analysis a multivariate curve resolution algorithm was employed.

  12. ERD measurement of depth profiles of H and Li in Pt-coated LiCoO2 thin films

    NASA Astrophysics Data System (ADS)

    Tsuchiya, B.; Morita, K.; Iriyama, Y.; Majima, T.; Tsuchida, H.

    2013-11-01

    By combining elastic recoil detection (ERD) analysis with Rutherford backscattering spectrometry (RBS) using 9.0-MeV oxygen-ion (O4+) probe beams from a tandem accelerator, we simultaneously investigated the distributions of lithium (Li), hydrogen (H), cobalt (Co), and platinum (Pt) in 20 nm Pt/260 nm LiCoO2 multi-layer thin films acting as the positive electrode in a solid-state Li+ ion battery and, deposited on Li1.4Ti2Si0.4P2.6O12-AlPO4 (LATP) substrates by using pulsed laser deposition. Measurement of the ERD and RBS spectra revealed the effects of Pt deposition on the hydrogen absorption characteristics of the LiCoO2 thin films, with segregation of Co to the surface as a catalyst. We speculate from the results that the presence of H in the LiCoO2 thin films has a marked influence on Li+ ion conduction in Li-battery systems.

  13. Depth profiles of spectral and hydrological characteristics of water and their relation to abundances of green sulfur bacteria in the stratified lakes of the White Sea

    NASA Astrophysics Data System (ADS)

    Kharcheva, Anastasia V.; Krasnova, Elena D.; Gorlenko, Vladimir M.; Lunina, Olga N.; Savvichev, Alexander S.; Voronov, Dmitry A.; Zhiltsova, Anna A.; Patsaeva, Svetlana V.

    2016-04-01

    We analyze the results received from two expeditions performed in August-September 2013, August-September 2014 and February 2015 in the Kandalaksha Bay of the White Sea. Depth profiles of hydrological characteristics and optical properties of water were recorded for five marine lakes being on different stages of isolation from the White Sea. Those relic lakes demonstrate a tendency to meromixis and are characterized by apparent stratification of the water bodies from the brackish top layer to the bottom salt water. Maximal concentrations of anoxygenic phototrophs (green sulfur bacteria) were found at depths close to the redox interface in all the studied lakes. To discriminate differently pigmented groups of microorganisms the fluorescence emission spectra of bacteriochlorophylls from the living cells were used. We puzzle out the data on light spectrum propagation through the water body in each lake using optical properties of water (attenuation spectra) in the UV, visible and NIR ranges, as well as direct measurements of the total irradiances at various depths. The changes in optical characteristics of water in the stratified reservoirs due to cromophoric dissolved organic matter (CDOM) and microbial pigments affect the light intensity and its spectral distribution at each water layer thus influencing the living conditions for differently pigmented phototrophic microorganisms and determining the composition of microbial community.

  14. Quantitative depth profiling of Ce(3+) in Pt/CeO2 by in situ high-energy XPS in a hydrogen atmosphere.

    PubMed

    Kato, Shunsuke; Ammann, Markus; Huthwelker, Thomas; Paun, Cristina; Lampimäki, Markus; Lee, Ming-Tao; Rothensteiner, Matthäus; van Bokhoven, Jeroen A

    2015-02-21

    The redox property of ceria is a key factor in the catalytic activity of ceria-based catalysts. The oxidation state of well-defined ceria nanocubes in gas environments was analysed in situ by a novel combination of near-ambient pressure X-ray Photoelectron Spectroscopy (XPS) and high-energy XPS at a synchrotron X-ray source. In situ high-energy XPS is a promising new tool to determine the electronic structure of matter under defined conditions. The aim was to quantitatively determine the degree of cerium reduction in a nano-structured ceria-supported platinum catalyst as a function of the gas environment. To obtain a non-destructive depth profile at near-ambient pressure, in situ high-energy XPS analysis was performed by varying the kinetic energy of photoelectrons from 1 to 5 keV, and, thus, the probing depth. In ceria nanocubes doped with platinum, oxygen vacancies formed only in the uppermost layers of ceria in an atmosphere of 1 mbar hydrogen and 403 K. For pristine ceria nanocubes, no change in the cerium oxidation state in various hydrogen or oxygen atmospheres was observed as a function of probing depth. In the absence of platinum, hydrogen does not dissociate and, thus, does not lead to reduction of ceria.

  15. Improved stratigraphic dating at a low accumulation Alpine ice core through laser ablation trace element profiling at sub-mm depth resolution

    NASA Astrophysics Data System (ADS)

    Bohleber, Pascal; Spaulding, Nicole; Mayewski, Paul; Sneed, Sharon; Handley, Mike; Erhardt, Tobias; Wagenbach, Dietmar

    2015-04-01

    The small scale Colle Gnifetti glacier saddle (4450 m asl, Monte Rosa region) is the only ice core drilling site in the European Alps with a net accumulation low enough to offer multi-millennia climate records. However, a robust interpretation of such long term records (i.e. mineral dust, stable water isotopes) at the Colle Gnifetti (CG) multi core array is strongly challenged by depositional noise associated with a highly irregular annual layer stratigraphy. In combination with a relatively large vertical strain rate and rapid layer thinning, annual layer counting gets increasingly ambiguous as of approximately 100 years. In addition, this prevents clear attribution of likely volcanic horizons to historical eruption dates. To improve stratigraphic dating under such intricate conditions, we deployed laser ablation (LA) ICP-MS at sub-mm sample resolution. We present here the first LA impurity profiles from a new Colle Gnifetti ice core drilled 73 m to bedrock in 2013 at a site where the net snow accumulation is around 20 cm w.e. per year. We contrast the LA signal variability (including Ca, Fe, Na) to continuous flow analyses (CFA) records at cm-resolution (Ca, Na, melt water conductivity, micro- particle) recorded over the whole core length. Of special concern are the lower 28 m to bedrock, which have been continuously profiled in LA Ca, thus offering the direct comparison of Ca-signals between CFA and LA. By this means, we first validate at upper depths LA based annual layer identification through agreement with CFA based counting efforts before demonstrating the LA based counting still works at depths where CFA derived annual layers become spurious since embedded in strong, multi-year cycles. Finally, LA ice core profiling of our CG core has potential for not only dating improvement but also reveals benefits in resolving highly thinned basal ice sections including accounting for micro-structural features such as grain boundaries.

  16. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications.

    PubMed

    Wulfmeyer, V; Bösenberg, J

    1998-06-20

    The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m(3) in the near range using 75 m and-depending on the meteorological conditions-approximately 0.25 g/m(3) at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites. PMID:18273352

  17. Ground-based differential absorption lidar for water-vapor profiling: assessment of accuracy, resolution, and meteorological applications.

    PubMed

    Wulfmeyer, V; Bösenberg, J

    1998-06-20

    The accuracy and the resolution of water-vapor measurements by use of the ground-based differential absorption lidar (DIAL) system of the Max-Planck-Institute (MPI) are determined. A theoretical analysis, intercomparisons with radiosondes, and measurements in high-altitude clouds allow the conclusion that, with the MPI DIAL system, water-vapor measurements with a systematic error of <5% in the whole troposphere can be performed. Special emphasis is laid on the outstanding daytime and nighttime performance of the DIAL system in the lower troposphere. With a time resolution of 1 min the statistical error varies between 0.05 g/m(3) in the near range using 75 m and-depending on the meteorological conditions-approximately 0.25 g/m(3) at 2 km using 150-m vertical resolution. When the eddy correlation method is applied, this accuracy and resolution are sufficient to determine water-vapor flux profiles in the convective boundary layer with a statistical error of <10% in each data point to approximately 1700 m. The results have contributed to the fact that the DIAL method has finally won recognition as an excellent tool for tropospheric research, in particular for boundary layer research and as a calibration standard for radiosondes and satellites.

  18. Depth Profiling of N and C in Ion Implanted ZnO and Si Using Deuterium Induced Nuclear Reaction Analysis

    SciTech Connect

    Kennedy, John; Murmu, Peter; Markwitz, Andreas

    2008-11-03

    Nuclear Reaction Analysis (NRA) with deuteron ion beams has been used to probe for ion implanted nitrogen and carbon with high sensitivity in zinc oxide and silicon single crystals. The ion implanted N was measured using 1.4 MeV deuteron ion beams and was found to be in agreement with calculated values. The limit of detection for N in ZnO is 8x10{sup 14} ions cm{sup -2}. Raman measurements of the ion implanted samples showed three additional modes at 275, 504, and 644 cm{sup -1} compared to the un-implanted ZnO crystals. The NRA and Raman results provided information on the N concentration, depth distribution, and structural changes that occur in dependence on the nitrogen ion fluences. The deuterium induced {sup 12}C(d,p){sup 13}C reaction was used to measure the carbon impurity/dose in ion implanted silicon. It was found that the use of a large cold shield (liquid nitrogen trap) in the ion implanter chamber greatly reduces the amount of carbon impurity on the surface of ion implanted silicon. Various implantations with N{sub 2}, O{sub 2}, NO, NO{sub 2} and Pb ions were performed with and without cooling of the liquid nitrogen trap. Simultaneous detection of ppm-level concentrations of {sup 12}C, {sup 16}O and {sup 14}N enables highly sensitive measurement of impurities that may be incorporated during the fabrication process, transport of the samples and/or storage of the samples in air.

  19. Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method.

    PubMed

    Ashtikar, Mukul; Matthäus, Christian; Schmitt, Michael; Krafft, Christoph; Fahr, Alfred; Popp, Jürgen

    2013-12-18

    The stratum corneum is a strong barrier that must be overcome to achieve successful transdermal delivery of a pharmaceutical agent. Many strategies have been developed to enhance the permeation through this barrier. Traditionally, drug penetration through the stratum corneum is evaluated by employing tape-stripping protocols and measuring the content of the analyte. Although effective, this method cannot provide a detailed information regarding the penetration pathways. To address this issue various microscopic techniques have been employed. Raman microscopy offers the advantage of label free imaging and provides spectral information regarding the chemical integrity of the drug as well as the tissue. In this paper we present a relatively simple method to obtain XZ-Raman profiles of human stratum corneum using confocal Raman microscopy on intact full thickness skin biopsies. The spectral datasets were analysed using a spectral unmixing algorithm. The spectral information obtained, highlights the different components of the tissue and the presence of drug. We present Raman images of untreated skin and diffusion patterns for deuterated water and beta-carotene after Franz-cell diffusion experiment.

  20. Feasibility of depth profiling of Zn-based coatings by laser ablation inductively coupled plasma optical emission and mass spectrometry using infrared Nd:YAG and ArF* lasers

    NASA Astrophysics Data System (ADS)

    Hrdlička, Aleš; Otruba, Vítĕzslav; Novotný, Karel; Günther, Detlef; Kanický, Viktor

    2005-03-01

    The feasibility of depth profiling of zinc-coated iron sheets by laser ablation (LA) was studied using an Nd:YAG laser (1064 nm) with inductively coupled plasma optical emission spectrometry (ICP-OES), and an excimer ArF* laser (193 nm) with a beam homogenizer. The latter was coupled to an ICP with mass spectrometry (ICP-MS). Fixed-spot ablation was applied. Both LA systems were capable of providing depth profiles that approach the profiles obtained by glow discharge optical emission spectroscopy (GD-OES) and electron probe X-ray microanalysis (EPXMA). For Nd:YAG laser an artefact consisting of zinc depth profile signal tailing appeared, enlarging thus erroneously diffusional coating-substrate interface profile. However, the ArF* system partially reduced but not suppressed that phenomenon. For both LA systems the Fe signal from the substrate increased with depth as expected and reached a plateau. The depth resolution (depth range corresponding to 84%-16% change in the full signal) achieved was several micrometers. Ablation rate was found to depend on ablation spot area at constant irradiance. Consequently, ablated volume per shot dependence on pulse energy exhibits deviation from linear course.

  1. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers

    PubMed Central

    Cui, Yang; Hanley, Luke

    2015-01-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  2. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1 017.8 eV

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Müller, S.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2014-12-01

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1 017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. The energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  3. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $$10^{17.8}$$ eV

    DOE PAGES

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations formore » different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.« less

  4. Small-Angle Fibre Diffraction Studies of Cornela Matrix Structure: A Depth-Profiled Investigation of the Human Eye-Bank Cornea

    SciTech Connect

    Quantock,A.; Boote, C.; Young, R.; Hayes, S.; Tanioka, H.; Kawasaki, S.; Ohta, N.; Lida, T.; Yagi, N.; et al.

    2007-01-01

    In the cornea of the eye light transmission is facilitated by the regular arrangement and uniform diameter of collagen fibrils that constitute the bulk of the extracellular corneal matrix. Matrix architecture, in turn, is believed to be governed by interactions between collagen fibrils and proteoglycan molecules modified with sulfated glycosaminoglycan side chains. Here, we outline the contribution made by small-angle X-ray scattering studies of the cornea in understanding the role of sulfated glycosaminoglycans in the control of collagen architecture in cornea, and present new depth-profiled microbeam data from swollen human eye-bank corneas that indicate no significant change in collagen fibril diameter throughout the tissue, but a lower collagen interfibrillar spacing in the anterior-most stromal regions compared with the ultrastructure of the deeper cornea.

  5. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information.

    PubMed

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan W; Jin, Ke; Du, Yingge; Neeway, James J; Ryan, Joseph V; Hu, Dehong; Zhang, Kelvin H L; Hong, Mina; Le Guernic, Solenne; Thevuthasan, Suntharampilai; Wang, Fuyi; Zhu, Zihua

    2015-08-01

    The use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass (SON68) and layered hole-perovskite oxide thin films were selected as model systems because of their fundamental and practical significance. Our results show that high sputter rates and accurate interfacial information can be achieved simultaneously for argon cluster sputtering, whereas this is not the case for cesium and oxygen sputtering. Therefore, the implementation of an argon cluster sputtering source can significantly improve the analysis efficiency of insulating materials and, thus, can expand its applications to the study of glass corrosion, perovskite oxide thin film characterization, and many other systems of interest.

  6. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above $10^{17.8}$ eV

    SciTech Connect

    Aab, Alexander

    2014-12-31

    We report a study of the distributions of the depth of maximum, Xmax, of extensive air-shower profiles with energies above 1017.8 eV as observed with the fluorescence telescopes of the Pierre Auger Observatory. The analysis method for selecting a data sample with minimal sampling bias is described in detail as well as the experimental cross-checks and systematic uncertainties. Furthermore, we discuss the detector acceptance and the resolution of the Xmax measurement and provide parametrizations thereof as a function of energy. Finally, the energy dependence of the mean and standard deviation of the Xmax distributions are compared to air-shower simulations for different nuclear primaries and interpreted in terms of the mean and variance of the logarithmic mass distribution at the top of the atmosphere.

  7. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    PubMed

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872

  8. Argon Cluster Sputtering Source for ToF-SIMS Depth Profiling of Insulating Materials: High Sputter Rate and Accurate Interfacial Information

    SciTech Connect

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan; Jin, Ke; Du, Yingge; Neeway, James J.; Ryan, Joseph V.; Hu, Dehong; Zhang, Hongliang; Hong, Mina; Le Guernic, Solenne; Thevuthasan, Suntharampillai; Wang, Fuyi; Zhu, Zihua

    2015-08-01

    For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputter rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.

  9. Cathodoluminescence guided zircon Hf isotope depth profiling: Mobilization of the Lu-Hf system during (U)HP rock exhumation in the Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.

    2015-04-01

    Cathodoluminescence image guided Hf isotope depth profiling by laser ablation of zircons from two quartzofeldspathic host gneisses constrains the Lu-Hf system's behavior during rapid exhumation of (U)HP rocks in the Woodlark Rift, Papua New Guinea. Investigation of the depth profiling technique in individual and composite zircon standards demonstrates that it is possible to resolve ~ 8 μm thick domains in which εHf(present) differs by as little as 4 units. In a metasedimentary gneiss, 2.89 ± 0.29 Ma zircon overgrowths on Cretaceous aged inherited cores have radiogenic εHf(present) indicating growth in a medium that was originally in equilibrium with garnet undergoing recrystallization (the 'garnet effect' of Zheng et al., 2005). In a separate gneiss sample that originated as an exhumation related anatectic melt, 3.66 ± 0.13 Ma zircons lacking inheritance contain sub-domains that differ from each other by > 15 εHf(present). Some of these sub-domains are radiogenic and can be explained by the 'garnet effect', whereas others also contain highly elevated Lu and Yb in addition to their radiogenic Hf compositions, thus necessitating a medium derived from the complete breakdown of garnet. Zircons in this sample also contain non-radiogenic sub-domains that grew in the presence of Hf mobilized from the surrounding rocks of the subducted and metamorphosed remnants of the Australian continental margin. The results confirm that rapid exhumation of (U)HP rocks can result in the following: 1) transmission of radiogenic Hf (and sometimes Lu and the other HREE) from garnet bearing mafic lithologies into the quartzofeldspathic gneisses, and 2) mobilization and transport of unradiogenic Hf present within the quartzofeldspathic remnants of subducted continental crust.

  10. Depth profiling of taxol-loaded poly(styrene- b-isobutylene- b-styrene) using Ga + and C 60+ ion beams

    NASA Astrophysics Data System (ADS)

    Braun, R. M.; Cheng, J.; Parsonage, E. E.; Moeller, J.; Winograd, N.

    2006-07-01

    The surface of a triblock copolymer, containing a solid-phase drug, was investigated using 15 keV Ga + and 20 keV C 60+ ion beams. Overall, the results illustrate the successful use of a cluster ion beam for greatly enhancing the molecular ion and high-mass fragment ion intensities from the surface and bulk of the polymer system. The use of C 60+ also established the ability to see through common overlayers like poly(dimethyl siloxane) which was not possible using atomic ion sources. Moreover, the use of C 60+ allowed depth profiles to be obtained using primary ion dose densities in excess of 6 × 10 14 C 60+/cm 2. Resulting sputter craters possess relatively flat bottoms without the need for sample rotation and reached depths of ca. 2 μm. AFM results illustrate the more gentile removal of surface species using cluster ions. Specifically, phase contrast and topographic images suggest the relatively high ion doses do not significantly alter the phase distribution or surface topography of the polymer. However, a slight increase in rms roughness was noticed.

  11. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings

    PubMed Central

    Godson, Henry Finlay; Ravikumar, M.; Sathiyan, S.; Ganesh, K. M.; Ponmalar, Y. Retna; Varatharaj, C.

    2016-01-01

    The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (DS), depth of dose maximum (Dmax), percentage dose at 10 cm (D10), penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC) alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative DS(38.1%) with photon field diode in parallel orientation was higher than electron field diode (EFD) (27.9%) values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D10 depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields. PMID:27051165

  12. Interstitial oxygen related defects and nanovoids in Au implanted a-SiO2 glass depth profiled by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravelli, L.; Macchi, C.; Mariazzi, S.; Mazzoldi, P.; Egger, W.; Hugenschmidt, C.; Somoza, A.; Brusa, R. S.

    2015-12-01

    Samples of amorphous silica were implanted with Au ions at an energy of 190 keV and fluences of 1× {{10}14} ions cm-2and 5× {{10}14} ions cm-2 at room temperature. The damage produced by ion implantation and its evolution with the thermal treatment at 800 °C for one hour in nitrogen atmosphere was depth profiled using three positron annihilation techniques: Doppler broadening spectroscopy, positron annihilation lifetime spectroscopy and coincidence Doppler broadening spectroscopy. Around the ion projected range of {{R}\\text{p}}=67 nm, a size reduction of the silica matrix intrinsic nanovoids points out a local densification of the material. Oxygen related defects were found to be present at depths four times the ion projected range, showing a high mobility of oxygen molecules from the densified and stressed region towards the bulk. The 800 °C thermal treatment leads to a recovery of the silica intrinsic nanovoids only in the deeper damaged region and the defect distribution, probed by positrons, shrinks around the ion projected range where the Au atoms aggregate. Open volume defects at the interface between Au and the amorphous matrix were evidenced in both the as implanted and in the thermal treated samples. A practically complete disappearance of the intrinsic nanovoids was observed around {{R}\\text{p}} when the implantation fluence was increased by two orders of magnitude (3× {{10}16} ions cm-2). In this case, the oxygen defects move to a depth five times larger than {{R}\\text{p}} .

  13. Analysis of small field percent depth dose and profiles: Comparison of measurements with various detectors and effects of detector orientation with different jaw settings.

    PubMed

    Godson, Henry Finlay; Ravikumar, M; Sathiyan, S; Ganesh, K M; Ponmalar, Y Retna; Varatharaj, C

    2016-01-01

    The advent of modern technologies in radiotherapy poses an increased challenge in the determination of dosimetric parameters of small fields that exhibit a high degree of uncertainty. Percent depth dose and beam profiles were acquired using different detectors in two different orientations. The parameters such as relative surface dose (D S), depth of dose maximum (D max), percentage dose at 10 cm (D 10), penumbral width, flatness, and symmetry were evaluated with different detectors. The dosimetric data were acquired for fields defined by jaws alone, multileaf collimator (MLC) alone, and by MLC while the jaws were positioned at 0, 0.25, 0.5, and 1.0 cm away from MLC leaf-end using a Varian linear accelerator with 6 MV photon beam. The accuracy in the measurement of dosimetric parameters with various detectors for three different field definitions was evaluated. The relative D S(38.1%) with photon field diode in parallel orientation was higher than electron field diode (EFD) (27.9%) values for 1 cm ×1 cm field. An overestimation of 5.7% and 8.6% in D 10 depth were observed for 1 cm ×1 cm field with RK ion chamber in parallel and perpendicular orientation, respectively, for the fields defined by MLC while jaw positioned at the edge of the field when compared to EFD values in parallel orientation. For this field definition, the in-plane penumbral widths obtained with ion chamber in parallel and perpendicular orientation were 3.9 mm, 5.6 mm for 1 cm ×1 cm field, respectively. Among all detectors used in the study, the unshielded diodes were found to be an appropriate choice of detector for the measurement of beam parameters in small fields. PMID:27051165

  14. Depth profiling of oxidized a-C:D Layers on Be -- A comparison of {sup 4}He RBS and {sup 28}Si ERD analysis

    SciTech Connect

    Roth, J.; Mayer, M.; Walsh, D.; Wampler, W.R.

    1997-06-01

    In applications dealing with the deposition of amorphous hydrogenated carbon layers or in the determination of the composition of deposited layers on the walls of nuclear fusion plasma experiments, the analysis of mixtures of light elements on heavy substrates is necessary. Depth profiling by means of RBS is often difficult due to the overlap of the backscattering intensities of different constituents from different depths. The erosion and reaction of deposited amorphous deuterated carbon (a-C:D) films with a Be substrate due to annealing in air poses an analytical challenge especially if simultaneously the exchange of hydrogen isotopes should be monitored. The analysis of the different recoiling atoms from collisions with heavy ions in Elastic Recoil Detection (ERD) can provide a tool which resolves all constituents in a single analysis. In the present study the composition of intermixed layers on Be containing H, D, Be, C and O has been analyzed using conventional {sup 4}He RBS at 2.2 MeV together with 2.5 MeV {sup 4}He ERD for hydrogen isotope analysis. At these energies, an overlap of signals from different constituents could be avoided in most cases. As alternative method heavy ion ERD using Si{sup 7+} ions extracted from a 5 MeV Tandem Van de Graff accelerator was investigated. At a scattering angle of 30{degree} Si ions could not be scattered into the detector and a solid state detector without protecting foil could be used. Even in the intermixed layers at terminal energies of 5 MeV the heavy constituents could be separated while signals from recoiling hydrogen and deuterium atoms could be resolved on top of the signal from the Be substrate. For the analysis of the RBS and ERD data the newly developed spectra simulation program SIMNRA has been used which includes a large data bank for scattering and nuclear reaction cross sections. The depth profiles of all constituents extracted from the simulation are compared for both methods.

  15. Characterisation of natural organic matter (NOM) in depth profile of Mediterranean Sea by 3D-Fluorescence following with PARAFAC treatment

    NASA Astrophysics Data System (ADS)

    Huiyu, Z.; Durrieu, G.; Redon, R.; Heimbuerger, L.; Mounier, S.

    2009-12-01

    A periodic series of samplings have made during one year(2008) organized by Ifremer into the central Ligurian Sea(DYFAMED site, 43°25’N, 07°52’E, Mediterranean Sea). Spectra were mesured by spectrofluorimetry(HITACHI 4500) at excitation wavelengths from 250nm to 500nm and emission wavelengths from 200nm to 550nm, both wavelength slits for 5nm, scan speed is 2400nm/min. Parallel factors analysis(PARAFAC) software is a powerful statistical technique to treat the 3D-fluorescence spectra leading to the decomposition by a number of independent fluorescent compounds 1 and 2. Found 4 fluorescent components representing the fluorescence maxima of previously identified moieties: [Tyr] maximal excitation wavelength and emission wavelength 265nm/305nm (tyrosine-like); [Trp] maximal λEX/λEM=280nm/340nm(Peak T, tryptophan-like group); [M] maximal λEX/λEM=295nm/410nm(Peak M, marine humic-like substance) and a double maximum component [CA] with maximal λEX/λEM=335nm/445nm(Peak C, visible humic-like group) and λEX/λEM=250nm/445nm(Peak A, UV humic-like substance). Fluorescence contribution of each component at different logarithmic depths(Fig.2) shows that the most concentrated fluorophores zone is deeper than 100m, which is different from the results of dissolved organic carbon(DOC) concentration which the most concentrated zone is on the seasurface(B.Avril,2002).The humic-like substances are generally less fluorescent, particularly the M compound. An important peak contribution of marine humic-like substance has appeared in May at the profound 100m and 2200m, although the other fluorophores kept their values reasonable. The intensity maxima was closed to 100m, while an augmentation of protein substances in the deep sea(about 400 m) following by a shut immediate at 600 m in the months July, August and September. It is probably due to the sufficient heat from the sea surface; micro-organism could modify their position in the depth profile in the seawater. Thanks to

  16. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  17. Improvement of the gas cluster ion beam-(GCIB)-based molecular secondary ion mass spectroscopy (SIMS) depth profile with O2(+) cosputtering.

    PubMed

    Chu, Yi-Hsuan; Liao, Hua-Yang; Lin, Kang-Yi; Chang, Hsun-Yun; Kao, Wei-Lun; Kuo, Ding-Yuan; You, Yun-Wen; Chu, Kuo-Jui; Wu, Chen-Yi; Shyue, Jing-Jong

    2016-04-21

    Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit. Because the intensity of high mass molecular ions is intrinsically low, enhancing the intensity of these secondary ions while preserving the sample in its original state is the key to highly sensitive molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as a model material and analyzed using Time-of-Flight SIMS (ToF-SIMS) with a pulsed Bi3(2+) primary ion. The optimized hardware of a 10 kV Ar2500(+) Gas Cluster Ion Beam (GCIB) with a low kinetic energy (200-500 V) oxygen ion (O2(+)) as a cosputter beam was employed for generating depth profiles and for examining the effect of beam parameters. The results were then quantitatively analyzed using an established erosion model. It was found that the ion intensity of the PET monomer ([M + H](+)) and its large molecular fragment ([M - C2H4O + H](+)) steadily declined during single GCIB sputtering, with distortion of the distribution information. However, under an optimized GCIB-O2(+) cosputter, the secondary ion intensity quickly reached a steady state and retained >95% intensity with respect to the pristine surface, although the damage cross-section was larger than that of single GCIB sputtering. This improvement was due to the oxidation of molecules and the formation of -OH groups that serve as proton donors to particles emitted from the surface. As a result, the ionization yield was enhanced and damage to the chemical structure was masked. Although O2(+) is known to alter the chemical structure and cause damage accumulation, the concurrently used GCIB could

  18. Interpretation of Stratified Fill, Frost Depths, Water Tables, and Massive Ice within Multi-Frequency Ground-Penetrating Radar Profiles Recorded Beneath Highways in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Arcone, S. A.

    2014-12-01

    Road Radar generally refers to ground-penetrating radar (GPR) surveys intended to investigate pavement construction using pulses centered above 1 GHz. In interior Alaska thick sand and gravel grading and its frozen state by late winter generally afford up to 10 m of signal penetration at lower frequencies. Consequently, this penetration potentially allows identification of pavement issues involving frost heave and thaw settlement, while the smooth surface allows assessment of GPR performance in permafrost areas under ideal survey conditions. Here I discuss profiles using pulse center frequencies from 50 to 360 MHz, recorded over sections of the Steese and Elliott Highways within and just north of Fairbanks, respectively, and of the Tok Highway near Glennallen. Construction fill is easily recognized by its stratification; where marginally present along the Elliott it is replaced by steeply dipping horizons from the underlying schist. The frost depth and water table horizons are recognized by phase attributes of the reflected pulse, as dictated by the contrasts present in dielectric permittivity, their relative depths, and their continuity. Undulating stratification in the sand and gravel fill indicates thaw settlement, as caused by the melting of buried massive ice. The Tok section reveals the top and likely the bottom of massive ice. Generally, signal penetration is greatly reduced beneath the water table and so the highest resolution, at 360 MHz, covers all horizons. There is rare evidence of a permafrost table because it is most likely masked or nearly coincident with the water table. Permafrost penetration in frozen silts is a long-standing problem for GPR, for which I discuss a possible cause related to Maxwell-Wagner dielectric relaxation losses associated with unfrozen water.

  19. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  20. Zircon U-Pb and trace element zoning characteristics in an anatectic granulite domain: Insights from LASS-ICP-MS depth profiling

    NASA Astrophysics Data System (ADS)

    Marsh, Jeffrey H.; Stockli, Daniel F.

    2015-12-01

    Understanding the geochemical characteristics of metamorphic zircon, and how they may be modified by recrystallization processes, is fundamental to defining the timescales of tectonic processes affecting continental lithosphere. We utilize laser ablation split-stream (LASS)-ICP-MS depth-profiling analysis to obtain a continuous rim-to-core record of the U-Pb ages and trace-element composition preserved within variably recrystallized zircon from different rock types within a well-studied granulite domain in the western Grenville Province, Canada. Detailed analysis of the depth-resolved signal enables definition of chemically distinct (homogeneous) internal domains and heterogeneous intervening zones that can generally be correlated with textural features observed in CL. Three age populations have been distinguished within the ~ 35 μm deep profiles that correlate well with the established timing of protolith formation, granulite-facies metamorphism, and amphibolite-facies shearing, respectively. The U-Pb isotopic system and Th/U ratios in much of the crystal interiors have undergone considerable modification, as evidenced by a linear correlation between 207Pb/206Pb age and Th/U ratio. Interior and rim domains commonly contain blurred or faded oscillatory zoning patterns, suggesting that solid-state recrystallization is at least partially responsible for the modified U-Th-Pb composition. A number of systematic trends in trace element composition are also observed between interior domains and recrystallized rims, including 1) decreased Th/U (to ~ 0.1), 2) tighter clustering of Hf concentrations, 3) decreased total REE, 4) unchanged Eu anomalies, and 5) a widened spread of HREE enrichment values (YbN/GdN). Both YbN/GdN vs. Th/U and U/Ce vs. Th plots show increasing degree of compositional differentiation from protolith zircon as a function of metamorphic reworking processes (i.e. sample type). The transition zones between interior and rim domains exhibit textural

  1. THE RADIAL AND AZIMUTHAL PROFILES OF Mg II ABSORPTION AROUND 0.5 < z < 0.9 zCOSMOS GALAXIES OF DIFFERENT COLORS, MASSES, AND ENVIRONMENTS

    SciTech Connect

    Bordoloi, R.; Lilly, S. J.; Knobel, C.; Kampczyk, P.; Carollo, C. M.; Bolzonella, M.; Zucca, E.; Zamorani, G.; Bardelli, S.; Iovino, A.; Contini, T.; Kneib, J.-P.; Le Fevre, O.; Renzini, A.; Scodeggio, M.; Balestra, I.; Bongiorno, A.; Caputi, K.; Cucciati, O.; and others

    2011-12-10

    We map the radial and azimuthal distribution of Mg II gas within {approx} 200 kpc (physical) of {approx} 4000 galaxies at redshifts 0.5 < z < 0.9 using co-added spectra of more than 5000 background galaxies at z > 1. We investigate the variation of Mg II rest-frame equivalent width (EW) as a function of the radial impact parameter for different subsets of foreground galaxies selected in terms of their rest-frame colors and masses. Blue galaxies have a significantly higher average Mg II EW at close galactocentric radii as compared to the red galaxies. Among the blue galaxies, there is a correlation between Mg II EW and galactic stellar mass of the host galaxy. We also find that the distribution of Mg II absorption around group galaxies is more extended than that for non-group galaxies, and that groups as a whole have more extended radial profiles than individual galaxies. Interestingly, these effects can be satisfactorily modeled by a simple superposition of the absorption profiles of individual member galaxies, assuming that these are the same as those of non-group galaxies, suggesting that the group environment may not significantly enhance or diminish the Mg II absorption of individual galaxies. We show that there is a strong azimuthal dependence of the Mg II absorption within 50 kpc of inclined disk-dominated galaxies, indicating the presence of a strongly bipolar outflow aligned along the disk rotation axis. There is no significant dependence of Mg II absorption on the apparent inclination angle of disk-dominated galaxies.

  2. Hadean Crustal Processes Revealed from Oxygen Isotopes and U-Th-Pb Depth Profiling of Pre-4.0 Ga Detrital Zircons from Western Australia

    NASA Technical Reports Server (NTRS)

    Trail, D.; Mojzsis, S. J.; Harrison, T. M.

    2005-01-01

    Because physical and chemical processes of the past are determined from analysis of a preserved geologic record, little is known about terrestrial crustal processes of the first 500 Ma during the so-called Hadean Eon. What is known from direct measurements has been derived almost exclusively from the study of greater than 4.0 Ga detrital zircons from the Jack Hills, Western Australia. The geochemistry of these zircons has direct application to understanding the origin and evolution of the rocks during the Hadean because: (i) U-Th-Pb age determinations by ion microprobe suggests the presence of crust as early as 4.37 Ga, or shortly after lunar formation; (ii) high-resolution U-Th-Pb zircon depth profiles reported here reveal several episodes of zircon growth in the Hadean previously unrecognized; (iii) core regions of pre-4.0 Ga zircons with igneous compositions are enriched in O-18 and contain metaluminous and peraluminous mineral inclusions, both features indicative of S-type grainitod protoliths. Study of these ancient zircons provides a unique window into the first half billion years that permits assessment of the potential of the Hadean Earth to host an emergent biosphere.

  3. Atomic-resolved depth profile of strain and cation intermixing around LaAlO3/SrTiO3 interfaces.

    PubMed

    Zaid, H; Berger, M H; Jalabert, D; Walls, M; Akrobetu, R; Fongkaew, I; Lambrecht, W R L; Goble, N J; Gao, X P A; Berger, P; Sehirlioglu, A

    2016-01-01

    Novel behavior has been observed at the interface of LaAlO3/SrTiO3 heterostructures such as two dimensional metallic conductivity, magnetic scattering and superconductivity. However, both the origins and quantification of such behavior have been complicated due to an interplay of mechanical, chemical and electronic factors. Here chemical and strain profiles near the interface of LaAlO3/SrTiO3 heterostructures are correlated. Conductive and insulating samples have been processed, with thicknesses respectively above and below the commonly admitted conductivity threshold. The intermixing and structural distortions within the crystal lattice have been quantitatively measured near the interface with a depth resolution of unit cell size. A strong link between intermixing and structural distortions at such interfaces is highlighted: intermixing was more pronounced in the hetero-couple with conductive interface, whereas in-plane compressive strains extended deeper within the substrate of the hetero-couple with the insulating interface. This allows a better understanding of the interface local mechanisms leading to the conductivity. PMID:27301609

  4. Aging of Zerovalent Iron in Synthetic Groundwater: X-ray Photoelectron Spectroscopy Depth Profiling Characterization and Depassivation with Uniform Magnetic Field.

    PubMed

    Xu, Hanyang; Sun, Yuankui; Li, Jinxiang; Li, Fengmin; Guan, Xiaohong

    2016-08-01

    Scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) depth profiling were employed to characterize the aged zerovalent iron (AZVI) samples incubated in synthetic groundwater. The AZVI samples prepared under different conditions exhibited the passive layers of different morphologies, amounts, and constituents. Owing to the accumulation of iron oxides on their surface, all the prepared AZVI samples were much less reactive than the pristine ZVI for Se(IV) removal. However, the reactivity of all AZVI samples toward Se(IV) sequestration could be significantly enhanced by applying a uniform magnetic field (UMF). Moreover, the flux intensity of UMF necessary to depassivate an AZVI sample was strongly dependent on the properties of its passive layer. The UMF of 1 mT was strong enough to restore the reactivity of the AZVI samples with Fe3O4 as the major constituent of the passive film or with a thin layer of α-Fe2O3 and γ-FeOOH in the external passive film. The flux intensity of UMF necessary to depassivate the AZVI samples would increase to 2 mT or even 5 mT if the AZVI samples were covered with passive films being thicker, denser, and contained more γ-FeOOH and α-Fe2O3. Furthermore, increasing the flux intensity of UMF facilitated the reduction of Se(IV) to Se(0) by AZVI samples. PMID:27384928

  5. Atomic-resolved depth profile of strain and cation intermixing around LaAlO3/SrTiO3 interfaces

    NASA Astrophysics Data System (ADS)

    Zaid, H.; Berger, M. H.; Jalabert, D.; Walls, M.; Akrobetu, R.; Fongkaew, I.; Lambrecht, W. R. L.; Goble, N. J.; Gao, X. P. A.; Berger, P.; Sehirlioglu, A.

    2016-06-01

    Novel behavior has been observed at the interface of LaAlO3/SrTiO3 heterostructures such as two dimensional metallic conductivity, magnetic scattering and superconductivity. However, both the origins and quantification of such behavior have been complicated due to an interplay of mechanical, chemical and electronic factors. Here chemical and strain profiles near the interface of LaAlO3/SrTiO3 heterostructures are correlated. Conductive and insulating samples have been processed, with thicknesses respectively above and below the commonly admitted conductivity threshold. The intermixing and structural distortions within the crystal lattice have been quantitatively measured near the interface with a depth resolution of unit cell size. A strong link between intermixing and structural distortions at such interfaces is highlighted: intermixing was more pronounced in the hetero-couple with conductive interface, whereas in-plane compressive strains extended deeper within the substrate of the hetero-couple with the insulating interface. This allows a better understanding of the interface local mechanisms leading to the conductivity.

  6. Atomic-resolved depth profile of strain and cation intermixing around LaAlO3/SrTiO3 interfaces

    PubMed Central

    Zaid, H.; Berger, M. H.; Jalabert, D.; Walls, M.; Akrobetu, R.; Fongkaew, I.; Lambrecht, W. R. L.; Goble, N. J.; Gao, X. P. A.; Berger, P.; Sehirlioglu, A.

    2016-01-01

    Novel behavior has been observed at the interface of LaAlO3/SrTiO3 heterostructures such as two dimensional metallic conductivity, magnetic scattering and superconductivity. However, both the origins and quantification of such behavior have been complicated due to an interplay of mechanical, chemical and electronic factors. Here chemical and strain profiles near the interface of LaAlO3/SrTiO3 heterostructures are correlated. Conductive and insulating samples have been processed, with thicknesses respectively above and below the commonly admitted conductivity threshold. The intermixing and structural distortions within the crystal lattice have been quantitatively measured near the interface with a depth resolution of unit cell size. A strong link between intermixing and structural distortions at such interfaces is highlighted: intermixing was more pronounced in the hetero-couple with conductive interface, whereas in-plane compressive strains extended deeper within the substrate of the hetero-couple with the insulating interface. This allows a better understanding of the interface local mechanisms leading to the conductivity. PMID:27301609

  7. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture.

    PubMed

    Kuang, Ping; Eyderman, Sergey; Hsieh, Mei-Li; Post, Anthony; John, Sajeev; Lin, Shawn-Yu

    2016-06-28

    In this work, a teepee-like photonic crystal (PC) structure on crystalline silicon (c-Si) is experimentally demonstrated, which fulfills two critical criteria in solar energy harvesting by (i) its Gaussian-type gradient-index profile for excellent antireflection and (ii) near-orthogonal energy flow and vortex-like field concentration via the parallel-to-interface refraction effect inside the structure for enhanced light trapping. For the PC structure on 500-μm-thick c-Si, the average reflection is only ∼0.7% for λ = 400-1000 nm. For the same structure on a much thinner c-Si ( t = 10 μm), the absorption is near unity (A ∼ 99%) for visible wavelengths, while the absorption in the weakly absorbing range (λ ∼ 1000 nm) is significantly increased to 79%, comparing to only 6% absorption for a 10-μm-thick planar c-Si. In addition, the average absorption (∼94.7%) of the PC structure on 10 μm c-Si for λ = 400-1000 nm is only ∼3.8% less than the average absorption (∼98.5%) of the PC structure on 500 μm c-Si, while the equivalent silicon solid content is reduced by 50 times. Furthermore, the angular dependence measurements show that the high absorption is sustained over a wide angle range (θinc = 0-60°) for teepee-like PC structure on both 500 and 10-μm-thick c-Si.

  8. Potentials and pitfalls of depth profile (10Be), burial isochron (26Al/10Be) and palaeomagnetic techniques for dating Early Pleistocene terrace deposits of the Moselle valley (Germany)

    NASA Astrophysics Data System (ADS)

    Rixhon, Gilles; Cordier, Stéphane; May, Simon Matthias; Kelterbaum, Daniel; Szemkus, Nina; Keulertz, Rebecca; Dunai, Tibor; Binnie, Steven; Hambach, Ulrich; Scheidt, Stephanie; Brueckner, Helmut

    2016-04-01

    Throughout the river network of the Rhenish Massif the so-called main terraces complex (MTC) forms the morphological transition between a wide upper palaeovalley and a deeply incised lower valley. The youngest level of this complex (YMT), directly located at the edge of the incised valley, represents a dominant geomorphic feature; it is often used as a reference level to identify the beginning of the main middle Pleistocene incision episode (Demoulin & Hallot, 2009). Although the main terraces are particularly well preserved in the lower Moselle valley, a questionable age of ca. 800 ka is assumed for the YMT, mainly based on the uncertain extrapolation of controversially interpreted palaeomagnetic data obtained in the Rhine valley. In this study, we applied terrestrial cosmogenic nuclide (TCN) dating (10Be/26Al) and palaeomagnetic dating to Moselle fluvial sediments of the MTC. To unravel the spatio-temporal characteristics of the Pleistocene evolution of the valley, several sites along the lower Moselle were sampled following two distinct TCN dating strategies: depth profiles where the original terrace (palaeo-) surface is well preserved and did not experience a major post-depositional burial (e.g., loess cover); and the isochron technique, where the sediment thickness exceeds 4.5-5 m. One terrace deposit was sampled for both approaches (reference site). In addition, palaeomagnetic sampling was systematically performed in each terrace sampled for TCN measurements. The TCN dating techniques show contrasting results for our reference site. Three main issues are observed for the depth profile method: (i) an inability of the modeled profile to constrain the 10Be concentration of the uppermost sample; (ii) an overestimated density value as model output; and (iii) a probable concentration steady state of the terrace deposits. By contrast, the isochron method yields a burial age estimate of 1.26 +0.29/-0.25 Ma, although one sample showed a depleted 26Al/10Be ratio

  9. Mars Ozone Absorption Line Shapes from Infrared Heterodyne Spectra Applied to GCM-Predicted Ozone Profiles and to MEX/SPICAM Column Retrievals

    NASA Technical Reports Server (NTRS)

    Fast, Kelly E.; Kostiuk, T.; Annen, J.; Hewagama, T.; Delgado, J.; Livengood, T. A.; Lefevre, F.

    2008-01-01

    We present the application of infrared heterodyne line shapes of ozone on Mars to those produced by radiative transfer modeling of ozone profiles predicted by general circulation models (GCM), and to contemporaneous column abundances measured by Mars Express SPICAM. Ozone is an important tracer of photochemistry Mars' atmosphere, serving as an observable with which to test predictions of photochemistry-coupled GCMs. Infrared heterodyne spectroscopy at 9.5 microns with spectral resolving power >1,000,000 is the only technique that can directly measure fully-resolved line shapes of Martian ozone features from the surface of the Earth. Measurements were made with Goddard Space Flight Center's Heterodyne instrument for Planetary Wind And Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii on February 21-24 2008 UT at Ls=35deg on or near the MEX orbital path. The HIPWAC observations were used to test GCM predictions. For example, a GCM-generated ozone profile for 60degN 112degW was scaled so that a radiative transfer calculation of its absorption line shape matched an observed HIPWAC absorption feature at the same areographic position, local time, and season. The RMS deviation of the model from the data was slightly smaller for the GCM-generated profile than for a line shape produced by a constant-with-height profile, even though the total column abundances were the same, showing potential for testing and constraining GCM ozone-profiles. The resulting ozone column abundance from matching the model to the HIPWAC line shape was 60% higher than that observed by SPICAM at the same areographic position one day earlier and 2.5 hours earlier in local time. This could be due to day-to-day, diurnal, or north polar region variability, or to measurement sensitivity to the ozone column and its distribution, and these possibilities will be explored. This work was supported by NASA's Planetary Astronomy Program.

  10. Overcoming low Ge ionization and erosion rate variation for quantitative ultralow energy secondary ion mass spectrometry depth profiles of Si(1-x)Ge(x)/Ge quantum well structures.

    PubMed

    Morris, Richard J H; Dowsett, Mark G; Beanland, Richard; Dobbie, Andrew; Myronov, Maksym; Leadley, David R

    2012-03-01

    We specify the O(2)(+) probe conditions and subsequent data analysis required to obtain high depth resolution secondary ion mass spectrometry profiles from multiple Ge/Si(1-x)Ge(x) quantum well structures (0.6 ≤ x ≤ 1). Using an O(2)(+) beam at normal incidence and with energies >500 eV, we show that the measured Ge signal is not monotonic with concentration, the net result being an unrepresentative and unquantifiable depth profile. This behavior is attributed to a reduced Ge ionization rate as x approaches 1. At lower beam energies the signal behaves monotonically with Ge fraction, indicating that the Ge atoms are now ionizing more readily for the whole range of x, enabling quantitative profiles to be obtained. To establish the depth scale a point-by-point approach based on previously determined erosion rates as a function of x is shown to produce quantum well thicknesses in excellent agreement with those obtained using transmission electron microscopy. The findings presented here demonstrate that to obtain reliable quantitative depth profiles from Ge containing samples requires O(2)(+) ions below 500 eV and correct account to be taken of the erosion rate variation that exists between layers of different matrix composition.

  11. Infrared heterodyne spectroscopy of astronomical and laboratory sources at 8.5 micron. [absorption line profiles of nitrogen oxide and black body emission from Moon and Mars

    NASA Technical Reports Server (NTRS)

    Mumma, M.; Kostiuk, T.; Cohen, S.; Buhl, D.; Vonthuna, P. C.

    1974-01-01

    The first infrared heterodyne spectrometer using tuneable semiconductor (PbSe) diode lasers has been constructed and was used near 8.5 micron to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz and the minimum detectable (black body) power was 1 x 10 to the minus 16th power watts for 8 minutes of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.

  12. Experimental investigations of absorption and dispersion profiles of a strongly driven transition: [ital ssV]-shaped three-level system with a strong probe

    SciTech Connect

    Wei, C.; Manson, N.B.; Martin, J.P.D. )

    1995-02-01

    This paper reports on experimental investigations of absorption, dispersion, and amplitude profiles of the Autler-Townes doublet in a [ital ssV]-shaped three-level system where the probe field intensities varied from weak to strong. The experiments were carried out on the ground-state hyperfine transitions of the nitrogen-vacancy color center in diamond using the Raman heterodyne technique, a sensitive optically detected magnetic resonance technique. A strong pump field is on resonance with the [ital I][sub [ital z

  13. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  14. Stratospheric N(2)O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1).

    PubMed

    Rinsland, C P; Goldman, A; Murcray, F J; Murcray, D G; Smith, M A; Seals, R K; Larsen, J C; Rinsland, P L

    1982-12-01

    A nonlinear least-squares fitting procedure has been used to derive the stratospheric N(2)O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880 cm(-1). The atmospheric spectra were recorded during sunset from a float altitude of 33 km with the University of Denver 0.02-cm(-1) resolution interferometer near Alamogordo, N.M. (33 degrees N), on 10 Oct. 1979. The laboratory data were used to determine the N(2)O line intensities. The measurements indicate an N(2)O mixing ratio of 264 ppbv near 15 km decreasing to 155 ppbv near 28 km. PMID:20401069

  15. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Astrophysics Data System (ADS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-12-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  16. In situ produced 10Be depth profiles and luminescence data tracing climatic and tectonic control on terrace formation, Danube River, Central Europe, Hungary

    NASA Astrophysics Data System (ADS)

    Ruszkiczay-Rüdiger, Zsófia; Braucher, Régis; Novothny, Ágnes; Csillag, Gábor; Fodor, László; Molnár, Gábor; Madarász, Balázs; Aster Team

    2015-04-01

    The terrace sequence of the Hungarian part of the Danube valley preserves a record of varying tectonic uplift rates along the river course and throughout several climate stages. To establish the chronology of formation of these terraces, two different dating methods on alluvial terraces were used: 1) in situ produced cosmogenic 10Be, which yield the time of abandonment of the terrace and 2) luminescence dating, which provides burial ages of the sediment. In situ produced cosmogenic 10Be samples originated from vertical depth profiles to enable the determination of both the exposure time and the denudation rate at each locality. We used Monte Carlo approach to model the denudation rate-corrected exposure ages. Post-IR IRSL measurements were carried out on K-feldspar samples to obtain the ages of sedimentation. The highest and oldest terrace remnants (tIV-VI) yield a minimum 10Be exposure age of 800 ka close to MIS 22, the onset of major continental glaciations of Quaternary age, suggesting climatic signal of the abandonment of the uppermost terrace levels. For the lower terraces it was possible to reveal close correlation with MIS stages using IRSL ages. The new chronology enables the distinction of tIIb (60-110 ka; MIS 4-5d) and tIIIa (130-190 ka; MIS 6) in the study area. Surface denudation rates were well constrained by the cosmogenic 10Be depth profiles between 5.9 m/Ma and 10.0 m/Ma for all terraces. Maximum incision rates of the Danube were calculated for middle and late Pleistocene times. These rates were increasing from west to east, toward the more elevated Transdanubian Range from 0.05 mm/a to 0.12 mm/a. Incision rates derived from the age of the low terraces (0.13 mm/a) may suggest a slight acceleration of uplift towards present. Our research was supported by the OTKA PD83610, PD100315, NK60455, K062478, K83150 and F042799, the French-Hungarian Balaton-Tét Project (FR-32/2007; TÉT_11-2-2012-0005), the Bolyai János Scholarship of the Hungarian Academy

  17. Molecular Depth Profiling of Sucrose Films: A Comparative Study of C₆₀n⁺ Ions and Traditional Cs⁺ and O₂⁺ Ions

    SciTech Connect

    Zhu, Zihua; Nachimuthu, Ponnusamy; Lea, Alan S.

    2009-10-15

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) depth profiling of sucrose thin films were investigated using 10 keV C60+, 20 keV C602+, 30 keV C603+, 250 eV, 500 eV and 1000 eV Cs+ and O2+ as sputtering ions. With C60n+ ions, the molecular ion signal initially decreases, and reaches a steady-state that is about 38-51% of its original intensity, depending on the energy of the C60n+ ions. On the contrary, with Cs+ and O2+ sputtering, molecular ion signals decrease quickly to the noise level, even using low energy (250 eV) sputtering ions. In addition, the sucrose/Si interface by C60+ sputtering is much narrower than that of Cs+ and O2+ sputtering. To understand the mechanisms of sputtering-induced damage by these ions, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the bottoms of these sputter craters. XPS data show very little chemical change in the C60+ sputter crater, while considerable amorphous carbon was found in the O2+ and Cs+ sputter craters, indicating extensive decomposition of the sucrose molecules. AFM images show a very flat bottom in the C60+ sputter crater, while the Cs+ and O2+ sputter crater bottoms are significantly rougher than that of the C60+ sputter crater. Based on above data, we developed a simple model to explain different damage mechanisms during sputtering process.

  18. Summer depth distribution profiles of dissolved CO2 and O2 in shallow temperate lakes reveal trophic state and lake type specific differences.

    PubMed

    Laas, Alo; Cremona, Fabien; Meinson, Pille; Rõõm, Eva-Ingrid; Nõges, Tiina; Nõges, Peeter

    2016-10-01

    Knowledge about dissolved oxygen (DO) and carbon dioxide (CO2) distribution in lakes has increased considerably over the last decades. However, studies about high resolution dynamics of dissolved CO2 in different types of lakes over daily or weekly time scales are still very scarce. We measured summertime vertical DO and CO2 profiles at sub-hourly intervals during one week in eight Estonian lakes representing different lake types according to European Water Framework Directive. The lakes showed considerable differences in thermal stratification and vertical distribution of dissolved oxygen and CO2 as well as different diurnal dynamics over the measurement period. We observed a continuous CO2 supersaturation in the upper mixed layer of the alkalitrophic (calcareous groundwater-fed) lake and the dark soft-water lake showing them as CO2 emitting "chimneys" although with different underlying mechanisms. In three lake types strong undersaturation with CO2 occurred in the surface layer characterising them as CO2 sinks for the measurement period while in another three types the surface layer CO2 was mostly in equilibrium with the atmosphere. Factor analysis showed that DO% in the surface layer and the strength of its relationship with CO2% were positively related to alkalinity and negatively to trophic state and DOC gradients, whereas deeper lakes were characterised by higher surface concentration but smaller spatial and temporal variability of CO2. Multiple regression analysis revealed lake area, maximum depth and the light attenuation coefficient as variables affecting the largest number of gas regime indicators. We conclude that the trophic status of lakes in combination with type specific features such as morphometry, alkalinity and colour (DOC) determines the distribution and dynamics of dissolved CO2 and DO, which therefore may indicate functional differences in carbon cycling among lakes.

  19. Summer depth distribution profiles of dissolved CO2 and O2 in shallow temperate lakes reveal trophic state and lake type specific differences.

    PubMed

    Laas, Alo; Cremona, Fabien; Meinson, Pille; Rõõm, Eva-Ingrid; Nõges, Tiina; Nõges, Peeter

    2016-10-01

    Knowledge about dissolved oxygen (DO) and carbon dioxide (CO2) distribution in lakes has increased considerably over the last decades. However, studies about high resolution dynamics of dissolved CO2 in different types of lakes over daily or weekly time scales are still very scarce. We measured summertime vertical DO and CO2 profiles at sub-hourly intervals during one week in eight Estonian lakes representing different lake types according to European Water Framework Directive. The lakes showed considerable differences in thermal stratification and vertical distribution of dissolved oxygen and CO2 as well as different diurnal dynamics over the measurement period. We observed a continuous CO2 supersaturation in the upper mixed layer of the alkalitrophic (calcareous groundwater-fed) lake and the dark soft-water lake showing them as CO2 emitting "chimneys" although with different underlying mechanisms. In three lake types strong undersaturation with CO2 occurred in the surface layer characterising them as CO2 sinks for the measurement period while in another three types the surface layer CO2 was mostly in equilibrium with the atmosphere. Factor analysis showed that DO% in the surface layer and the strength of its relationship with CO2% were positively related to alkalinity and negatively to trophic state and DOC gradients, whereas deeper lakes were characterised by higher surface concentration but smaller spatial and temporal variability of CO2. Multiple regression analysis revealed lake area, maximum depth and the light attenuation coefficient as variables affecting the largest number of gas regime indicators. We conclude that the trophic status of lakes in combination with type specific features such as morphometry, alkalinity and colour (DOC) determines the distribution and dynamics of dissolved CO2 and DO, which therefore may indicate functional differences in carbon cycling among lakes. PMID:27213672

  20. Formation, trapping, and ejection of radiolytic O{sub 2} from ion-irradiated water ice studied by sputter depth profiling

    SciTech Connect

    Teolis, B. D.; Shi, J.; Baragiola, R. A.

    2009-04-07

    We report experimental studies of 100 keV Ar{sup +} ion irradiation of ice leading to the formation of molecular oxygen and its trapping and ejection from the surface, at temperatures between 80 and 150 K. The use of a mass spectrometer and a quartz-crystal microbalance and sputter depth profiling at 20 K with low energy Ar ions allowed us to obtain a consistent picture of the complex radiolytic mechanism. We show that the dependence of O{sub 2} sputtering on ion fluence is mainly due to the buildup of trapped O{sub 2} near the surface. A small proportion of the O{sub 2} is ejected above 130 K immediately upon creation from a precursor such as OH or H{sub 2}O{sub 2}. The distribution of trapped oxygen peaks at or near the surface and is shallower than the ion range. Measurements of sputtering of H{sub 2} help to elucidate the role of this molecule in the process of O{sub 2} formation: out-diffusion leading to oxygen enrichment near the surface. The competing phenomena of OH diffusion away from the ion track and hydrogen escape from the ice and their temperature dependence are used to explain the finding of opposite temperature dependencies of O{sub 2} and H{sub 2}O{sub 2} synthesis. Based on the new data and understanding, we discuss the application of our findings to ices in the outer solar system and interstellar space.

  1. Apparent Depth.

    ERIC Educational Resources Information Center

    Nassar, Antonio B.

    1994-01-01

    Discusses a well-known optical refraction problem where the depth of an object in a liquid is determined. Proposes that many texts incorrectly solve the problem. Provides theory, equations, and diagrams. (MVL)

  2. Stratospheric NO and NO2 profiles at sunset from analysis of high-resolution balloon-borne infrared solar absorption spectra obtained at 33 deg N and calculations with a time-dependent photochemical model

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Boughner, R. E.; Larsen, J. C.; Goldman, A.; Murcray, F. J.; Murcray, D. G.

    1984-01-01

    Simultaneous stratospheric vertical profiles of NO and NO2 at sunset were derived from an analysis of infrared solar absorption spectra recorded from a float altitude of 33 km with an interferometer system during a balloon flight. A nonlinear least squares procedure was used to analyze the spectral data in regions of absorption by NO and NO2 lines. Normalized factors, determined from calculations of time dependent altitude profiles with a detailed photochemical model, were included in the onion peeling analysis to correct for the rapid diurnal changes in NO and NO2 concentrations with time near sunset. The CO2 profile was also derived from the analysis and is reported.

  3. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    NASA Technical Reports Server (NTRS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  4. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  5. On the computation of a retina resistivity profile for applications in multi-scale modeling of electrical stimulation and absorption

    NASA Astrophysics Data System (ADS)

    Loizos, Kyle; RamRakhyani, Anil Kumar; Anderson, James; Marc, Robert; Lazzi, Gianluca

    2016-06-01

    This study proposes a methodology for computationally estimating resistive properties of tissue in multi-scale computational models, used for studying the interaction of electromagnetic fields with neural tissue, with applications to both dosimetry and neuroprosthetics. Traditionally, models at bulk tissue- and cellular-level scales are solved independently, linking resulting voltage from existing resistive tissue-scale models as extracellular sources to cellular models. This allows for solving the effects that external electric fields have on cellular activity. There are two major limitations to this approach: first, the resistive properties of the tissue need to be chosen, of which there are contradicting measurements in literature; second, the measurements of resistivity themselves may be inaccurate, leading to the mentioned contradicting results found across different studies. Our proposed methodology allows for constructing computed resistivity profiles using knowledge of only the neural morphology within the multi-scale model, resulting in a practical implementation of the effective medium theory; this bypasses concerns regarding the choice of resistive properties and accuracy of measurement setups. A multi-scale model of retina is constructed with an external electrode to serve as a test bench for analyzing existing and resulting resistivity profiles, and validation is presented through the reconstruction of a published resistivity profile of retina tissue. Results include a computed resistivity profile of retina tissue for use with a retina multi-scale model used to analyze effects of external electric fields on neural activity.

  6. On the computation of a retina resistivity profile for applications in multi-scale modeling of electrical stimulation and absorption

    PubMed Central

    Loizos, Kyle; RamRakhyani, Anil Kumar; Anderson, James; Marc, Robert; Lazzi, Gianluca

    2016-01-01

    This study proposes a methodology for computationally estimating resistive properties of tissue in multi-scale computational models, used for studying the interaction of electromagnetic fields with neural tissue, with applications to both dosimetry and neuroprosthetics. Traditionally, models at bulk tissue- and cellular-level scales are solved independently, linking resulting voltage from existing resistive tissue-scale models as extracellular sources to cellular models. This allows for solving the effects that external electric fields have on cellular activity. There are two major limitations to this approach: first, the resistive properties of the tissue need to be chosen, of which there are contradicting measurements in literature; second, the measurements of resistivity themselves may be inaccurate, leading to the mentioned contradicting results found across different studies. Our proposed methodology allows for constructing computed resistivity profiles using knowledge of only the neural morphology within the multi-scale model, resulting in a practical implementation of the effective medium theory; this bypasses concerns regarding the choice of resistive properties and accuracy of measurement setups. A multi-scale model of retina is constructed with an external electrode to serve as a test bench for analyzing existing and resulting resistivity profiles, and validation is presented through the reconstruction of a published resistivity profile of retina tissue. Results include a computed resistivity profile of retina tissue for use with a retina multi-scale model used to analyze effects of external electric fields on neural activity. PMID:27223656

  7. LINKING Lyα AND LOW-IONIZATION TRANSITIONS AT LOW OPTICAL DEPTH

    SciTech Connect

    Jaskot, A. E.; Oey, M. S.

    2014-08-20

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles show reduced signs of resonant scattering. Instead, the Lyα profiles resemble the Hα line profiles of evolved star ejecta, suggesting that the Lyα emission originates from a low column density and similar outflow geometry. The weak C II absorption and presence of non-resonant C II* emission in these GPs support this interpretation and imply a low LyC optical depth along the line of sight. In two additional GPs, weak Lyα emission and strong C II absorption suggest a higher optical depth. These two GPs differ in their Lyα profile shapes and C II* emission strengths, however, indicating different inclinations of the outflows to our line of sight. With these four GPs as examples, we explain the observed trends linking Lyα, C II, and C II* in stacked LAE spectra, in the context of optical depth and geometric effects. Specifically, in some galaxies with strong Lyα emission, a low LyC optical depth may allow Lyα to escape with reduced scattering. Furthermore, C II absorption, C II* emission, and Lyα profile shape can reveal the optical depth, constrain the orientation of neutral outflows in LAEs, and identify candidate LyC emitters.

  8. Evaluation of Air Pollution Applications of AERONET and MODIS Aerosol Column Optical Depth by Comparison with In Situ Measurements of Aerosol Light Scattering and Absorption for Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S.; Arnott, W. P.; Moosmuller, H.; Colucci, D.

    2012-12-01

    Reno, Nevada, USA is subject to typical urban aerosol, wind-blown dust, and occasional biomass burning smoke from anthropogenic and natural fires. Reno has complex air flow at levels relevant for aerosol transport. At times recirculating mountain and urban flow arrives from the Sierra Nevada, San Francisco, CA and Sacramento, CA. The urban plumes are further modified by biogenic forest emissions and secondary aerosol formation during transport over the Sierra Nevada Mountains to Reno. This complicates the use of MODIS aerosol optical depth (AOD) for air quality measurements in Reno. Our laboratory at the University of Nevada Reno has collocated multispectral photoacoustic instruments and reciprocal nephelometers to measure light absorption and light scattering coefficients as well as an AERONET operated CIMEL CE-318 ground-based sunphotometer. Preliminary measurements from August 2011 indicate substantially larger Cimel AOD than could be accounted for by use of the in situ aerosol extinction measurements combined with mixing height estimate. This poster presents new results comparing AERONET AOD and single scattering albedo and MODIS AOD with in situ measurements for summer and fall 2012, along with extensive back trajectory analysis, to evaluate conditions when satellite measurement may be useful for air pollution applications in Reno.

  9. Annealing effects of in-depth profile and band discontinuity in TiN/LaO/HfSiO/SiO{sub 2}/Si gate stack structure studied by angle-resolved photoemission spectroscopy from backside

    SciTech Connect

    Toyoda, S.; Kumigashira, H.; Oshima, M.; Kamada, H.; Tanimura, T.; Ohtsuka, T.; Hata, Y.; Niwa, M.

    2010-01-25

    We have investigated annealing effects on in-depth profile and band discontinuity for a metal gate/high-k gate stack structure on a Si substrate using backside angle-resolved photoemission spectroscopy with synchrotron radiation. In-depth profiles analyzed from angle-resolved photoemission spectroscopy show that La atoms diffuse through the HfSiO layer and reach interfacial SiO{sub 2} layers by rapid thermal annealing. Chemical shift of Si 2p core-level spectra suggests that there are changes in the band discontinuity at the high-k/SiO{sub 2} interface, which is well related to the V{sub th} shift based on the interface dipole model.

  10. Helium-3 and boron-10 concentration and depth measurements in alloys and semiconductors using NDP

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Saglam, Mehmet; Wehring, Bernard W.

    1999-02-01

    Neutron Depth Profiling (NDP) is a nondestructive near surface technique that is used to measure concentration versus absolute depth of several isotopes of light mass elements in various substrates. NDP is based on absorption reaction of thermal neutrons with the isotope of interest. Charged particles and recoil atoms are generated in the reaction. The depth profiles are determined by measuring the residual energy of the charged particles or the recoil atoms. The NDP technique has became an increasingly important method to measure depth profiles of 3He and 10B in alloys and semiconductor materials. A permanent NDP facility has been installed on the tangential beam port of the University of Texas (UT) TRIGA Mark-II research reactor. One of the standard applications of the UT-NDP facility involves the determination of boron profiles of borophosphosilicate glass (BPSG) samples. NDP is also being used in combination with electron microscopy measurements to determine radiation damage and microstructural changes in stainless steel samples. This is done to study the long-term effects of high-dose alpha irradiation for weapons grade plutonium encapsulation. Measurements of implanted boron-10 concentration and depth profiles of semiconductor materials in order to calibrate commercial implanters is another application at the UT-NDP facility. The concentration and depth profiles measured with NDP and SIMS are compared with reported data given by various vendors or different implanters in order to verify implant quality of semiconductor wafers. The results of the measurements and other possible applications of NDP are presented.

  11. On the Ammonia Absorption on Saturn

    NASA Astrophysics Data System (ADS)

    Tejfel, Victor G.; Karimov, A. M.; Lyssenko, P. G.; Kharitonova, G. A.

    2015-11-01

    The ammonia absorption bands centered at wavelengths of 645 and 787 nm in the visible spectrum of Saturn are very weak and overlapped with more strong absorption bands of methane. Therefore, the allocation of these bands is extremely difficult. In fact, the NH3 band 787 nm is completely masked by methane. The NH3 645 nm absorption band is superimposed on a relatively weak shortwave wing of CH4 band, in which the absorption maximum lies at the wavelength of 667 nm. In 2009, during the equinox on Saturn we have obtained the series of zonal spectrograms by scanning of the planet disk from the southern to the northern polar limb. Besides studies of latitudinal variation of the methane absorption bands we have done an attempt to trace the behavior of the absorption of ammonia in the band 645 nm. Simple selection of the pure NH3 profile of the band was not very reliable. Therefore, after normalizing to the ring spectrum and to the level of the continuous spectrum for entire band ranging from 630 to 680 nm in the equivalent widths were calculated for shortwave part of this band (630-652 nm), where the ammonia absorption is present, and a portion of the band CH4 652-680 nm. In any method of eliminating the weak part of the methane uptake in the short wing show an increased ammonia absorption in the northern hemisphere compared to the south. This same feature is observed also in the behavior of weak absorption bands of methane in contrast to the more powerful, such as CH4 725 and 787 nm. This is due to the conditions of absorption bands formation in the clouds at multiple scattering. Weak absorption bands of methane and ammonia are formed on the large effective optical depths and their behavior reflects the differences in the degree of uniformity of the aerosol component of the atmosphere of Saturn.

  12. Chemical analysis of solid materials by a LIMS instrument designed for space research: 2D elemental imaging, sub-nm depth profiling and molecular surface analysis

    NASA Astrophysics Data System (ADS)

    Moreno-García, Pavel; Grimaudo, Valentine; Riedo, Andreas; Neuland, Maike B.; Tulej, Marek; Broekmann, Peter; Wurz, Peter

    2016-04-01

    Direct quantitative chemical analysis with high lateral and vertical resolution of solid materials is of prime importance for the development of a wide variety of research fields, including e.g., astrobiology, archeology, mineralogy, electronics, among many others. Nowadays, studies carried out by complementary state-of-the-art analytical techniques such as Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), Secondary Ion Mass Spectrometry (SIMS), Glow Discharge Time-of-Flight Mass Spectrometry (GD-TOF-MS) or Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) provide extensive insight into the chemical composition and allow for a deep understanding of processes that might have fashioned the outmost layers of an analyte due to its interaction with the surrounding environment. Nonetheless, these investigations typically employ equipment that is not suitable for implementation on spacecraft, where requirements concerning weight, size and power consumption are very strict. In recent years Laser Ablation/Ionization Mass Spectrometry (LIMS) has re-emerged as a powerful analytical technique suitable not only for laboratory but also for space applications.[1-3] Its improved performance and measurement capabilities result from the use of cutting edge ultra-short femtosecond laser sources, improved vacuum technology and fast electronics. Because of its ultimate compactness, simplicity and robustness it has already proven to be a very suitable analytical tool for elemental and isotope investigations in space research.[4] In this contribution we demonstrate extended capabilities of our LMS instrument by means of three case studies: i) 2D chemical imaging performed on an Allende meteorite sample,[5] ii) depth profiling with unprecedented sub-nm vertical resolution on Cu electrodeposited interconnects[6,7] and iii) preliminary molecular desorption of polymers without assistance of matrix or functionalized substrates.[8] On the whole

  13. The retrieval of atmospheric constituent mixing-ratio profiles from solar absorption spectra. Ph.D. Thesis. Interim Technical Report

    NASA Technical Reports Server (NTRS)

    Shaffer, W. A.

    1983-01-01

    Methods used to determine various atmospheric gas distributions are summarized. The experimentally determined mixing ratio profiles (the mixing ratio of a gas is the ratio of the number of gas molecules to the number of air molecules) of some atmospheric gases are shown. In most in situ experiments stratospheric gas samples are collected at several altitudes by balloon, aircraft, or rocket. These samples are then analyzed by various methods. Mixing ratio profiles of Ci, ClO, and OH were determined by laser induced fluorescence of samples. Others have analyzed gas samples by gas chromatography in order to determine the molecular abundances of CCl2F2, CCl4, CCl3F, CFCl3, CF2Cl2, CHClF2, CH3CCl3, CH4, CO, C2Cl3F3, C2Cl4, C2HCl3, C2H2, C2H4, C2H6, C3H8, C6H6, C7H8, H2, and N2O.

  14. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  15. Monosaccharide absorption activity of Arabidopsis roots depends on expression profiles of transporter genes under high salinity conditions.

    PubMed

    Yamada, Kohji; Kanai, Motoki; Osakabe, Yuriko; Ohiraki, Haruka; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2011-12-16

    Plant roots are able to absorb sugars from the rhizosphere but also release sugars and other metabolites that are critical for growth and environmental signaling. Reabsorption of released sugar molecules could help reduce the loss of photosynthetically fixed carbon through the roots. Although biochemical analyses have revealed monosaccharide uptake mechanisms in roots, the transporters that are involved in this process have not yet been fully characterized. In the present study we demonstrate that Arabidopsis STP1 and STP13 play important roles in roots during the absorption of monosaccharides from the rhizosphere. Among 14 STP transporter genes, we found that STP1 had the highest transcript level and that STP1 was a major contributor for monosaccharide uptake under normal conditions. In contrast, STP13 was found to be induced by abiotic stress, with low expression under normal conditions. We analyzed the role of STP13 in roots under high salinity conditions where membranes of the epidermal cells were damaged, and we detected an increase in the amount of STP13-dependent glucose uptake. Furthermore, the amount of glucose efflux from stp13 mutants was higher than that from wild type plants under high salinity conditions. These results indicate that STP13 can reabsorb the monosaccharides that are released by damaged cells under high salinity conditions. Overall, our data indicate that sugar uptake capacity in Arabidopsis roots changes in response to environmental stresses and that this activity is dependent on the expression pattern of sugar transporters. PMID:22041897

  16. Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution x-ray diffraction

    SciTech Connect

    Kuchuk, A. V.; Stanchu, H. V.; Kladko, V. P.; Belyaev, A. E.; Li, Chen; Ware, M. E.; Mazur, Yu. I.; Salamo, G. J.

    2014-12-14

    Here, we demonstrate X-ray fitting through kinematical simulations of the intensity profiles of symmetric reflections for epitaxial compositionally graded layers of AlGaN grown by molecular beam epitaxy pseudomorphically on [0001]-oriented GaN substrates. These detailed simulations depict obvious differences between changes in thickness, maximum concentration, and concentration profile of the graded layers. Through comparison of these simulations with as-grown samples, we can reliably determine these parameters, most important of which are the profiles of the concentration and strain which determine much of the electrical properties of the film. In addition to learning about these parameters for the characterization of thin film properties, these fitting techniques create opportunities to calibrate growth rates and control composition profiles of AlGaN layers with a single growth rather than multiple growths as has been done traditionally.

  17. Nonlinear absorption mechanisms during femtosecond laser surface ablation of silica glass

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Startseva, E. D.; Khmelnitskii, R. A.

    2016-03-01

    Spatial profiles of single-shot microcraters produced by tightly focused femtosecond laser pulses with variable pulse energies are measured by means of a laser confocal microscope. Dependences of crater depth on laser intensity at different pulse energies appear as overlapping saturating curves with the same threshold, indicating the presence of nonlinear absorption and absence of nonlocal ablation effects. A monotonic twofold increase in absorption nonlinearity is related to the transition from minor defect-band absorption to fundamental band-to-band absorption.

  18. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization.

    PubMed

    Yamamoto, Yuhei; Shirasaki, Toshihiro; Yonetani, Akira; Imai, Shoji

    2015-01-01

    The measurement conditions for determining boron using graphite furnace-atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L(-1) when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS.

  19. On-line diffusion profile of a lipophilic model dye in different depths of a hair follicle in human scalp skin.

    PubMed

    Grams, Ylva Y; Whitehead, Lynne; Lamers, Gerda; Sturmann, Nico; Bouwstra, Joke A

    2005-10-01

    In skin and hair research, drug targeting to the hair follicle is of great interest in the treatment of skin diseases. The aim of this study is to visualize on-line the diffusion processes of a model fluorophore into the hair follicle at different depths using fresh human scalp skin and confocal laser scanning microscopy. Up to a depth of 500 microm in the skin, a fast increase of fluorescence is observed in the gap followed by accumulation of the dye in the hair cuticle. Penetration was also observed via the stratum corneum and the epidermis. Little label reached depths greater than 2000 microm. Fat cells accumulated the label fastest, followed by the cuticular area and the outer root sheath of the hair follicle. Sweat glands revealed very low staining, whereas the bulb at a depth of 4000 microm was visualized only by autofluorescence. From this study, we conclude that on-line visualization is a promising technique to access diffusion processes in deep skin layers even on a cellular level. Furthermore, we conclude that the gap and the cuticle play an important role in the initial diffusion period with the label in the cuticle originating from the gap.

  20. Results of a comprehensive atmospheric aerosol-radiation experiment in the southwestern United States. I - Size distribution, extinction optical depth and vertical profiles of aerosols suspended in the atmosphere. II - Radiation flux measurements and

    NASA Technical Reports Server (NTRS)

    Deluisi, J. J.; Furukawa, F. M.; Gillette, D. A.; Schuster, B. G.; Charlson, R. J.; Porch, W. M.; Fegley, R. W.; Herman, B. M.; Rabinoff, R. A.; Twitty, J. T.

    1976-01-01

    Results are reported for a field test that was aimed at acquiring a sufficient set of measurements of aerosol properties required as input for radiative-transfer calculations relevant to the earth's radiation balance. These measurements include aerosol extinction and size distributions, vertical profiles of aerosols, and radiation fluxes. Physically consistent, vertically inhomogeneous models of the aerosol characteristics of a turbid atmosphere over a desert and an agricultural region are constructed by using direct and indirect sampling techniques. These results are applied for a theoretical interpretation of airborne radiation-flux measurements. The absorption term of the complex refractive index of aerosols is estimated, a regional variation in the refractive index is noted, and the magnitude of solar-radiation absorption by aerosols and atmospheric molecules is determined.

  1. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Sohrin, Rumi; Imazawa, Manabu; Fukuda, Hideki; Suzuki, Yoshimi

    2010-08-01

    Studies in epipelagic waters report higher heterotrophic microbial biomass in the productive high latitudes than in the oligotrophic low latitudes; however, biogeographical data are scarce in the deep ocean. To examine the hypothesis that the observed latitudinal differences in heterotrophic microbial biomass in the epipelagic zone also occur at depth, abundance and biomass of heterotrophic prokaryotes, nanoflagellates (HNF), and ciliates were determined at depths of 5-5000 m in the central Pacific between August and September of 2005. Heterotrophic microbial biomass increased from the tropical to the subarctic region over the full water column, with latitudinal differences in prokaryotic biomass increasing from 2.3-fold in the epipelagic zone to 4.4-fold in the bathypelagic zone. However, the latitudinal difference in HNF and ciliate biomass decreased with depth. In the mesopelagic zone, the vertical attenuation rate of prokaryotic abundance, which was calculated as the linear regression slope of log-log plot of abundance versus depth, ranged from -0.55 to -1.26 and was more pronounced (steeper slope) in the lower latitudes. In contrast, the vertical attenuation rate of HNF in the mesopelagic zone (-1.06 to -1.27) did not differ with latitude. In the subarctic, the attenuation rate of HNF was 1.7 times steeper than for prokaryotes. These results suggest the accumulation of prokaryotes in the deep subarctic Pacific, possibly due to low grazing pressure. Although the vertical attenuation rate of ciliates was steepest in the bathypelagic zone, HNF abundance did not further decrease at depths below 1000 m, except for at 2000 m where HNF was lowest across the study area. Ciliate abundance ranged 0.3-0.8 cells l -1 at 4000 m, and were below the detection limit (<0.1 cells l -1) at 5000 m. To our knowledge, this study presents the first data for ciliates below 2000 m.

  2. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOEpatents

    Finot, Marc; Kesler, Olivera; Suresh, Subra

    1998-01-01

    A technique for determining properties such as Young's modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined.

  3. Method and apparatus for the evaluation of a depth profile of thermo-mechanical properties of layered and graded materials and coatings

    DOEpatents

    Finot, M.; Kesler, O.; Suresh, S.

    1998-12-08

    A technique for determining properties such as Young`s modulus, coefficient of thermal expansion, and residual stress of individual layers within a multi-layered sample is presented. The technique involves preparation of a series of samples, each including one additional layer relative to the preceding sample. By comparison of each sample to a preceding sample, properties of the topmost layer can be determined, and residual stress at any depth in each sample, resulting from deposition of the top layer, can be determined. 11 figs.

  4. Depth profiles of the interfacial strains of Si0.7Ge0.3/Si using three-beam Bragg-surface diffraction

    PubMed Central

    Zheng, Yan-Zong; Soo, Yun-Liang; Chang, Shih-Lin

    2016-01-01

    Interfacial strains are important factors affecting the structural and physical properties of crystalline multilayers and heterojunctions, and the performance of the devices made of multilayers used, for example, in nanowires, optoelectronic components, and many other applications. Currently existing strain measurement methods, such as grazing incidence X-ray diffraction (GIXD), cross-section transmission electron microscope, TEM, and coherent diffractive imaging, CDI, are limited by either the nanometer spatial resolution, penetration depth, or a destructive nature. Here we report a new non-destructive method of direct mapping the interfacial strain of [001] Si0.7Ge0.3/Si along the depth up to ~287 nm below the interface using three-beam Bragg-surface X-ray diffraction (BSD), where one wide-angle symmetric Bragg reflection and a surface reflection are simultaneously involved. Our method combining with the dynamical diffraction theory simulation can uniquely provide unit cell dimensions layer by layer, and is applicable to thicker samples. PMID:27156699

  5. Intercomparison of NO2 Slant Column Densities and Vertical Profiles Inferred from Balloon-borne Measurements of Solar Absorption Spectra in the IR and UV/vis

    NASA Astrophysics Data System (ADS)

    Butz, A.; Boesch, H.; Camy-Peyret, C.; Dorf, M.; Dufour, G.; Payan, S.; Weidner, F.; Pfeilsticker, K.

    2003-04-01

    During a series of LPMA/DOAS (Laboratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spectroscopy) stratospheric balloon flights direct solar spectra in the UV/vis and near IR were simultaneously measured by the onboard installed Fourier Transform (LPMA) and two channel grating spectrometer (DOAS). The measurements were conducted in spring and summer at high and midlatitudes during ascent of the balloon into the stratosphere (30 - 40 km) and solar occultation at balloon float altitude. Here we present a direct intercomparison of the NO_2 slant column densities (SCDs) and vertical profiles retrieved from UV/vis-DOAS and IR-LPMA measurements for a wide range of geophysical conditions (ambient pressure and temperature and solar illumination). The comparison study thus allows us to verify the applied retrieval procedures, i.e., the underlying spectroscopic dataset as well as the inversion algorithms. First intercomparison studies showed a sizeable discrepancy between NO_2 inferred by LPMA in the IR and DOAS in the visible spectral range indicating deficiencies in the spectral retrieval techniques. After introducing a temperature correction scheme for the DOAS retrieval and a new LPMA MULTIFIT procedure which minimizes the correlations of the fitting parameters by performing the inversion simultaneously in several micro-windows, a reasonably good agreement between NO_2 inferred from both instruments is found.

  6. Effect of Clouds on the Calculated Vertical Distribution of Shortwave Absorption in the Tropics

    SciTech Connect

    McFarlane, Sally A.; Mather, James H.; Ackerman, Thomas P.; Liu, Zheng

    2008-09-23

    High vertical resolution profiles of cloud properties were obtained from cloud radars operated by the Atmospheric Radiation Measurement (ARM) program on the islands of Nauru and Manus in the Tropical Western Pacific (TWP). Broadband flux calculations using a correlated k-distribution model were performed to estimate the effect of clouds on the total column and vertical distribution of shortwave absorption at these tropical sites. Sensitivity studies were performed to examine the role of precipitable water vapor, cloud vertical location, optical depth, and particle size on the SW column absorption. On average, observed clouds had little impact on the calculated total SW column absorption at the two sites, but a significant impact on the vertical distribution of SW absorption. Differences in the column amount, vertical profiles, and diurnal cycle of SW absorption at the two sites were due primarily to differences in cirrus cloud frequency.

  7. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  8. Comparison of the bedrock depth from array measurements of Rayleigh waves associated with microtremor and seismic profile obtained the Seismic Reflection Data, Eskisehir Basin, Turkey

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Karabulut, Savaş; Özel, Oğuz

    2015-04-01

    Ground motion estimation for future earthquakes is one of the most challenging problems in seismology and earthquake engineering. The bedrock depth has a considerable seismic risk for the urban area of Eskişehir. In this study, multiple station microtremor measurement methods which are more practical, non-distructive, fast and economical compared to seismic reflection method were implemented. These method using microtremor recordings have become a very useful data for microzonation studies because of their simple acquisition and analysis. Extensive ambient noise measurements were performed in the basin of Eskisehir from June 2010 to spring 2012. We use data recorded by a broadband seismometer and digitizer CMG-6TD, Guralp seismometer. Some of the measurement locations, the CMG-6TD sensor was located into 30 cm-deep holes in the ground to avoid strongly wind-generated, long-period noise. Dominant frequency (f), bed-rock depth (h) and shear-wave velocity (Vs) were determined from Spatial Autocorrelation (SPAC) methods. With the SPAC Method, it is possible to constrain the velocity structure underlying the site using microtremor array measurements. The results obtained were compared to the 96-channel seismic reflection data with explosive energy source. Several seismic reflection surveys with P-Gun seismic source have been performed on the same place with array measurements. We used two types of seismic sources: 36 cartridge Gun. Shot interval was 10 meters, group interval (one geophone per group, 48 geophones in total) was 10 meters, near offset was 10 meters, far offset was 480 meters, CDP interval was 5 meters. We adapted the 'Off-End Spread' technique while using the Gun. Reflection images within the sedimentary section correlate well with the velocity structure obtained from SPAC.

  9. Compositional analysis and depth profiling of thin film CrO{sub 2} by heavy ion ERDA and standard RBS: a comparison

    SciTech Connect

    Khamlich, S.; Msimanga, M.; Pineda-Vargas, C.A.; Nuru, Z.Y.; McCrindle, R.; Maaza, M.

    2012-08-15

    Chromium dioxide (CrO{sub 2}) thin film has generated considerable interest in applied research due to the wide variety of its technological applications. It has been extensively investigated in recent years, attracting the attention of researchers working on spintronic heterostructures and in the magnetic recording industry. However, its synthesis is usually a difficult task due to its metastable nature and various synthesis techniques are being investigated. In this work a polycrystalline thin film of CrO{sub 2} was prepared by electron beam vaporization of Cr{sub 2}O{sub 3} onto a Si substrate. The polycrystalline structure was confirmed through XRD analysis. The stoichiometry and elemental depth distribution of the deposited film were measured by ion beam nuclear analytical techniques heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS), which both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Moreover, the analysis carried out highlights the importance of complementary usage of the two techniques to obtain a more complete description of elemental content and depth distribution in thin films. - Graphical abstract: Heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS) both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Highlights: Black-Right-Pointing-Pointer Thin films of CrO{sub 2} have been grown by e-beam evaporation of Cr{sub 2}O{sub 3} target in vacuum. Black-Right-Pointing-Pointer The composition was determined by heavy ion-ERDA and RBS. Black-Right-Pointing-Pointer HI-ERDA and RBS provided information on the light and heavy elements, respectively.

  10. A new, simple and precise method for measuring cyclotron proton beam energies using the activity vs. depth profile of zinc-65 in a thick target of stacked copper foils.

    PubMed

    Asad, A H; Chan, S; Cryer, D; Burrage, J W; Siddiqui, S A; Price, R I

    2015-11-01

    The proton beam energy of an isochronous 18MeV cyclotron was determined using a novel version of the stacked copper-foils technique. This simple method used stacked foils of natural copper forming 'thick' targets to produce Zn radioisotopes by the well-documented (p,x) monitor-reactions. Primary beam energy was calculated using the (65)Zn activity vs. depth profile in the target, with the results obtained using (62)Zn and (63)Zn (as comparators) in close agreement. Results from separate measurements using foil thicknesses of 100, 75, 50 or 25µm to form the stacks also concurred closely. Energy was determined by iterative least-squares comparison of the normalized measured activity profile in a target-stack with the equivalent calculated normalized profile, using 'energy' as the regression variable. The technique exploits the uniqueness of the shape of the activity vs. depth profile of the monitor isotope in the target stack for a specified incident energy. The energy using (65)Zn activity profiles and 50-μm foils alone was 18.03±0.02 [SD] MeV (95%CI=17.98-18.08), and 18.06±0.12MeV (95%CI=18.02-18.10; NS) when combining results from all isotopes and foil thicknesses. When the beam energy was re-measured using (65)Zn and 50-μm foils only, following a major upgrade of the ion sources and nonmagnetic beam controls the results were 18.11±0.05MeV (95%CI=18.00-18.23; NS compared with 'before'). Since measurement of only one Zn monitor isotope is required to determine the normalized activity profile this indirect yet precise technique does not require a direct beam-current measurement or a gamma-spectroscopy efficiency calibrated with standard sources, though a characteristic photopeak must be identified. It has some advantages over published methods using the ratio of cross sections of monitor reactions, including the ability to determine energies across a broader range and without need for customized beam degraders. PMID:26226219

  11. Accurate argon cluster-ion sputter yields: Measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry

    SciTech Connect

    Cumpson, Peter J.; Portoles, Jose F.; Barlow, Anders J.; Sano, Naoko

    2013-09-28

    Argon Gas Cluster-Ion Beam sources are likely to become widely used on x-ray photoelectron spectroscopy and secondary ion mass spectrometry instruments in the next few years. At typical energies used for sputter depth profiling the average argon atom in the cluster has a kinetic energy comparable with the sputter threshold, meaning that for the first time in practical surface analysis a quantitative model of sputter yields near threshold is needed. We develop a simple equation based on a very simple model. Though greatly simplified it is likely to have realistic limiting behaviour and can be made useful for estimating sputter yields by fitting its three parameters to experimental data. We measure argon cluster-ion sputter yield using a quartz crystal microbalance close to the sputter threshold, for silicon dioxide, poly(methyl methacrylate), and polystyrene and (along with data for gold from the existing literature) perform least-squares fits of our new sputter yield equation to this data. The equation performs well, with smaller residuals than for earlier empirical models, but more importantly it is very easy to use in the design and quantification of sputter depth-profiling experiments.

  12. Accurate argon cluster-ion sputter yields: Measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cumpson, Peter J.; Portoles, Jose F.; Barlow, Anders J.; Sano, Naoko

    2013-09-01

    Argon Gas Cluster-Ion Beam sources are likely to become widely used on x-ray photoelectron spectroscopy and secondary ion mass spectrometry instruments in the next few years. At typical energies used for sputter depth profiling the average argon atom in the cluster has a kinetic energy comparable with the sputter threshold, meaning that for the first time in practical surface analysis a quantitative model of sputter yields near threshold is needed. We develop a simple equation based on a very simple model. Though greatly simplified it is likely to have realistic limiting behaviour and can be made useful for estimating sputter yields by fitting its three parameters to experimental data. We measure argon cluster-ion sputter yield using a quartz crystal microbalance close to the sputter threshold, for silicon dioxide, poly(methyl methacrylate), and polystyrene and (along with data for gold from the existing literature) perform least-squares fits of our new sputter yield equation to this data. The equation performs well, with smaller residuals than for earlier empirical models, but more importantly it is very easy to use in the design and quantification of sputter depth-profiling experiments.

  13. Constraining Gas Diffusivity-Soil Water Content Relationships in Forest Soils Using Surface Chamber Fluxes and Depth Profiles of Multiple Trace Gases

    NASA Astrophysics Data System (ADS)

    Dore, J. E.; Kaiser, K.; Seybold, E. C.; McGlynn, B. L.

    2012-12-01

    Forest soils are sources of carbon dioxide (CO2) to the atmosphere and can act as either sources or sinks of methane (CH4) and nitrous oxide (N2O), depending on redox conditions and other factors. Soil moisture is an important control on microbial activity, redox conditions and gas diffusivity. Direct chamber measurements of soil-air CO2 fluxes are facilitated by the availability of sensitive, portable infrared sensors; however, corresponding CH4 and N2O fluxes typically require the collection of time-course physical samples from the chamber with subsequent analyses by gas chromatography (GC). Vertical profiles of soil gas concentrations may also be used to derive CH4 and N2O fluxes by the gradient method; this method requires much less time and many fewer GC samples than the direct chamber method, but requires that effective soil gas diffusivities are known. In practice, soil gas diffusivity is often difficult to accurately estimate using a modeling approach. In our study, we apply both the chamber and gradient methods to estimate soil trace gas fluxes across a complex Rocky Mountain forested watershed in central Montana. We combine chamber flux measurements of CO2 (by infrared sensor) and CH4 and N2O (by GC) with co-located soil gas profiles to determine effective diffusivity in soil for each gas simultaneously, over-determining the diffusion equations and providing constraints on both the chamber and gradient methodologies. We then relate these soil gas diffusivities to soil type and volumetric water content in an effort to arrive at empirical parameterizations that may be used to estimate gas diffusivities across the watershed, thereby facilitating more accurate, frequent and widespread gradient-based measurements of trace gas fluxes across our study system. Our empirical approach to constraining soil gas diffusivity is well suited for trace gas flux studies over complex landscapes in general.

  14. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric/tropospheric column partitioning from visible direct sun DOAS measurements

    NASA Astrophysics Data System (ADS)

    Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.

    2014-06-01

    This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles < 75° with a well known photon path, we assume that the retrieved total column NO2 T can be represented as a sum of the NO2 stratospheric and tropospheric Ts multiplied by the corresponding stratospheric and tropospheric fractions of the total SCDNO2. We use Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T

  15. An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption?

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-11-01

    We report on a short XMM-Newton observation of the radio-quiet narrow-line Seyfert 1 galaxy PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 and 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad (FWHM velocity of 110,000 km s-1) iron K-shell emission line. The line centroid energy at 7.3 keV appears blueshifted with respect to the iron Kα emission band between 6.4 and 6.97 keV, while the blue wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of >60° is required to model the extreme blue wing of the line. Furthermore, the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG 1402+261 above 2 keV is dominated by the pure-reflection component from the disk, while little or none of the direct hard power law is observed. Alternatively, the spectrum above 2 keV may be explained by an ionized absorber, if the column density is sufficiently high (NH>3×1023 cm-2) and if the matter is ionized enough to produce a deep (τ~1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high-velocity outflow, perhaps similar to those that appear to be observed in several other high accretion rate active galactic nuclei. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection and outflow scenarios.

  16. H{alpha} ABSORPTION IN TRANSITING EXOPLANET ATMOSPHERES

    SciTech Connect

    Christie, Duncan; Arras, Phil; Li Zhiyun E-mail: pla7y@virginia.edu

    2013-08-01

    Absorption of stellar H{alpha} by the upper atmosphere of the planet HD 189733b has recently been detected by Jensen et al. Motivated by this observation, we have developed a model for atomic hydrogen in the n = 2 state and compared the resulting H{alpha} line profile to the observations. The model atmosphere is in hydrostatic balance, as well as thermal and photoionization equilibrium. Collisional and radiative transitions are included in the determination of the n = 2 state level population. We find that H{alpha} absorption is dominated by an optical depth {tau} {approx} 1 shell, composed of hydrogen in the metastable 2s state that is located below the hydrogen ionization layer. The number density of the 2s state within the shell is found to vary slowly with radius, while that of the 1s state falls rapidly. Thus while the Ly{alpha} absorption, for a certain wavelength, occurs inside a relatively well defined impact parameter, the contribution to H{alpha} absorption is roughly uniform over the entire atomic hydrogen layer. The model can approximately reproduce the observed Ly{alpha} and H{alpha} integrated transit depths for HD 189733b by using an ionization rate enhanced over that expected for the star by an order of magnitude. For HD 209458b, we are unable to explain the asymmetric H{alpha} line profile observed by Jensen et al., as the model produces a symmetric line profile with transit depth comparable to that of HD 189733b. In an appendix, we study the effect of the stellar Ly{alpha} absorption on the net cooling rate.

  17. Meteoric Beryllium-10 Inventories and Depth Distributions to Constrain Estimates of Post-Settlement Erosion and Soil Profile Truncation in the U.S. Corn Belt: Prospects and Challenges

    NASA Astrophysics Data System (ADS)

    Jelinski, N.; Willenbring, J. K.; Yoo, K.; Olson, K.; Lobb, D. A.; Schumacher, T. E.; Papiernik, S.

    2012-12-01

    Of paramount importance in the Corn Belt landscape of the Midwestern U.S. is the long-term sustainability of agricultural soils affected by tillage, water and wind erosion. These factors have important consequences for geomorphic change, soil organic carbon, nutrient status and crop productivity. Meteoric Beryllium-10 has an advantage over other radioisotope tracers because it is long-lived, is cosmogenically derived, and is relatively immobile in the slightly acidic to slightly alkaline conditions that predominate throughout the Corn Belt. However, it has been under-utilized in major human impacted landscapes as an independent tracer of long-term geomorphic and geochemical change. Here, we use meteoric Beryllium-10 inventories and depth distributions to constrain estimates of post-settlement erosion and soil profile truncation at a well-characterized site near Cyrus, Minnesota. We compare results derived from Beryllium-10 inventories with other, more traditionally used tracers of geomorphic and geochemical change in this region, including Cesium-137 inventories, soil organic carbon distributions, fly-ash concentrations, depth to carbonates, soil profile descriptions, and tillage and water erosion models. This suite of indicators provides a powerful context against which Beryllium-10 can be used to better understand the full magnitude of post-settlement geomorphic change in eroding portions of the landscape, reaching beyond previous estimates. We discuss how our results and methodology can shed light on elusive processes such as the dynamic replacement of soil organic carbon and changes to in-situ nutrient release and mineral weathering. Lastly, we discuss the major opportunities that exist for scaling-up by using this same methodology on multiple study sites and in conjunction with LIDAR and other geospatial data.

  18. Linking Lyα and Low-ionization Transitions at Low Optical Depth

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.

    2014-08-01

    We suggest that low optical depth in the Lyman continuum (LyC) may relate the Lyα emission, C II and Si II absorption, and C II* and Si II* emission seen in high-redshift galaxies. We base this analysis on Hubble Space Telescope Cosmic Origins Spectrograph spectra of four Green Pea (GP) galaxies, which may be analogs of z > 2 Lyα emitters (LAEs). In the two GPs with the strongest Lyα emission, the Lyα line profiles</