Sample records for absorption differential phase

  1. Phase jitter in a differential phase experiment.

    NASA Technical Reports Server (NTRS)

    Tanenbaum, B. S.; Connolly, D. J.; Austin, G. L.

    1973-01-01

    Austin (1971) had concluded that, because of the 'phase jitter,' the differential phase experiment is useful over a more limited height range than the differential absorption experiment. Several observations are presented to show that this conclusion is premature. It is pointed out that the logical basis of the differential absorption experiment also requires that the O- and X-mode echoes, at a given time, come from the same irregularities. Austin's calculations are believed to contain a systematic error above 80 km.

  2. Differential phase measurements of D-region partial reflections

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Sechrist, C. F., Jr.

    1972-01-01

    Differential phase partial reflection measurements were used to deduce D region electron density profiles. The phase difference was measured by taking sums and differences of amplitudes received on an array of crossed dipoles. The reflection model used was derived from Fresnel reflection theory. Seven profiles obtained over the period from 13 October 1971 to 5 November 1971 are presented, along with the results from simultaneous measurements of differential absorption. Some possible sources of error and error propagation are discussed. A collision frequency profile was deduced from the electron concentration calculated from differential phase and differential absorption.

  3. Improved detection sensitivity of D-mannitol crystalline phase content using differential spectral phase shift terahertz spectroscopy measurements.

    PubMed

    Allard, Jean-François; Cornet, Alain; Debacq, Christophe; Meurens, Marc; Houde, Daniel; Morris, Denis

    2011-02-28

    We report quantitative measurement of the relative proportion of δ- and β-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

  4. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    PubMed Central

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Åslund, Magnus

    2012-01-01

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption contrast. Talbot interferometry with a plane wave increased detectability for 0.1-mm tumor and glandular structures by a factor of 3–4 at equal dose, whereas absorption contrast was the preferred method for structures larger than ∼0.5 mm. Microcalcifications are small, but differ from soft tissue in atomic number more than density, which is favored by absorption contrast, and Talbot interferometry was barely beneficial at all within the resolution limit of the system. Further, Talbot interferometry favored detection of “sharp” as opposed to “smooth” structures, and discrimination tasks by about 50% compared to detection tasks. The technique was relatively insensitive to spectrum bandwidth, whereas the projected source size was more important. If equal photon economy was added as a restriction, phase-contrast efficiency was reduced so that the benefit for detection tasks almost vanished compared to absorption contrast, but discrimination tasks were still improved close to a factor of 2 at the resolution limit. Conclusions: Cascaded-systems analysis enables comprehensive and intuitive evaluation of phase-contrast efficiency in relation to absorption contrast under requirements of equal dose, equal geometry, and equal photon economy. The benefit of Talbot interferometry was highly dependent on task, in particular detection versus discrimination tasks, and target size, shape, and material. Requiring equal photon economy weakened the benefit of Talbot interferometry in mammography. PMID:22957600

  5. Methods to mitigate data truncation artifacts in multi-contrast tomosynthesis image reconstructions

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    Differential phase contrast imaging is a promising new image modality that utilizes the refraction rather than the absorption of x-rays to image an object. A Talbot-Lau interferometer may be used to permit differential phase contrast imaging with a conventional medical x-ray source and detector. However, the current size of the gratings fabricated for these interferometers are often relatively small. As a result, data truncation image artifacts are often observed in a tomographic acquisition and reconstruction. When data are truncated in x-ray absorption imaging, the methods have been introduced to mitigate the truncation artifacts. However, the same strategy to mitigate absorption truncation artifacts may not be appropriate for differential phase contrast or dark field tomographic imaging. In this work, several new methods to mitigate data truncation artifacts in a multi-contrast imaging system have been proposed and evaluated for tomosynthesis data acquisitions. The proposed methods were validated using experimental data acquired for a bovine udder as well as several cadaver breast specimens using a benchtop system at our facility.

  6. Differential phase contrast with a segmented detector in a scanning X-ray microprobe

    PubMed Central

    Hornberger, B.; de Jonge, M. D.; Feser, M.; Holl, P.; Holzner, C.; Jacobsen, C.; Legnini, D.; Paterson, D.; Rehak, P.; Strüder, L.; Vogt, S.

    2008-01-01

    Scanning X-ray microprobes are unique tools for the nanoscale investigation of specimens from the life, environmental, materials and other fields of sciences. Typically they utilize absorption and fluorescence as contrast mechanisms. Phase contrast is a complementary technique that can provide strong contrast with reduced radiation dose for weakly absorbing structures in the multi-keV range. In this paper the development of a segmented charge-integrating silicon detector which provides simultaneous absorption and differential phase contrast is reported. The detector can be used together with a fluorescence detector for the simultaneous acquisition of transmission and fluorescence data. It can be used over a wide range of photon energies, photon rates and exposure times at third-generation synchrotron radiation sources, and is currently operating at two beamlines at the Advanced Photon Source. Images obtained at around 2 keV and 10 keV demonstrate the superiority of phase contrast over absorption for specimens composed of light elements. PMID:18552427

  7. An algebraic iterative reconstruction technique for differential X-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz

    2013-09-01

    Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.

  8. A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography.

    PubMed

    Hauser, Nik; Wang, Zhentian; Kubik-Huch, Rahel A; Trippel, Mafalda; Singer, Gad; Hohl, Michael K; Roessl, Ewald; Köhler, Thomas; van Stevendaal, Udo; Wieberneit, Nataly; Stampanoni, Marco

    2014-03-01

    Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.

  9. Thermodynamic evidence of flexibility in H2O and CO2 absorption of transition metal ion exchanged zeolite LTA.

    PubMed

    Guo, Xin; Wu, Lili; Navrotsky, Alexandra

    2018-02-07

    Gas absorption calorimetry has been employed to probe the intercation of water and carbon dioxide with transition metal ion (TM = Mn 2+ , Fe 2+ , Co 2+ , Cu 2+ , and Zn 2+ ) exchanged zeolite A samples. There appears to be a two-phase region, indicative of a guest-induced flexibility transition, separating hydrated zeolite A and its dehydrated form, both of which have variable water content in the single phase region. The differential enthalpy of absorption as a function of water loading directly identifies different strengths of multiple interactions along with possible binding mechanisms of Zn-A and Mn-A exhibiting the highest water absorption with most exothermic initial enthalpies of -125.28 ± 4.82 and -115.30 ± 2.56 kJ mol -1 . Zn-A and Mn-A also show moderately good capture ability for CO 2 with zero-coverage negative enthalpies of -55.59 ± 2.48 and -44.07 ± 1.53 kJ mol -1 . The thermodynamic information derived from differential enthalpy, chemical potential and differential entropy elucidated the multistage interactive behavior of small guest molecules (H 2 O/CO 2 ) and ion-exchanged frameworks.

  10. Cross-phase modulation-induced spectral broadening in silicon waveguides.

    PubMed

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Rey, Isabella H; Krauss, Thomas F; Schröder, Jochen; Eggleton, Benjamin J

    2016-01-11

    We analytically and experimentally investigate cross-phase modulation (XPM) in silicon waveguides. In contrast to the well known result in pure Kerr media, the spectral broadening ratio of XPM to self-phase modulation is not two in the presence of either two-photon absorption (TPA) or free carriers. The physical origin of this change is different for each effect. In the case of TPA, this nonlinear absorption attenuates and slightly modifies the pulse shape due to differential absorption in the pulse peak and wings. When free carriers are present two different mechanisms modify the dynamics. First, free-carrier absorption performs a similar role to TPA, but is additionally asymmetric due to the delayed free-carrier response. Second, free-carrier dispersion induces an asymmetric blue phase shift which competes directly with the symmetric Kerr-induced XPM red shift. We confirm this analysis with pump-probe experiments in a silicon photonic crystal waveguide.

  11. D-region differential-phase measurements and ionization variability studies

    NASA Technical Reports Server (NTRS)

    Weiland, R. M.; Bowhill, S. A.

    1978-01-01

    Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations.

  12. Noise in x-ray grating-based phase-contrast imaging.

    PubMed

    Weber, Thomas; Bartl, Peter; Bayer, Florian; Durst, Jürgen; Haas, Wilhelm; Michel, Thilo; Ritter, André; Anton, Gisela

    2011-07-01

    Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photon counting. Additionally, simulations regarding this topic were performed. It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.

  13. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    PubMed

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  14. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2017-09-01

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  16. Noise in x-ray grating-based phase-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas; Bartl, Peter; Bayer, Florian

    Purpose: Grating-based x-ray phase-contrast imaging is a fast developing new modality not only for medical imaging, but as well for other fields such as material sciences. While these many possible applications arise, the knowledge of the noise behavior is essential. Methods: In this work, the authors used a least squares fitting algorithm to calculate the noise behavior of the three quantities absorption, differential phase, and dark-field image. Further, the calculated error formula of the differential phase image was verified by measurements. Therefore, a Talbot interferometer was setup, using a microfocus x-ray tube as source and a Timepix detector for photonmore » counting. Additionally, simulations regarding this topic were performed. Results: It turned out that the variance of the reconstructed phase is only dependent of the total number of photons used to generate the phase image and the visibility of the experimental setup. These results could be evaluated in measurements as well as in simulations. Furthermore, the correlation between absorption and dark-field image was calculated. Conclusions: These results provide the understanding of the noise characteristics of grating-based phase-contrast imaging and will help to improve image quality.« less

  17. Spatial resolution characterization of differential phase contrast CT systems via modulation transfer function (MTF) measurements

    NASA Astrophysics Data System (ADS)

    Li, Ke; Zambelli, Joseph; Bevins, Nicholas; Ge, Yongshuai; Chen, Guang-Hong

    2013-06-01

    By adding a Talbot-Lau interferometer to a conventional x-ray absorption computed tomography (CT) imaging system, both differential phase contrast (DPC) signal and absorption contrast signal can be simultaneously measured from the same set of CT measurements. The imaging performance of such multi-contrast x-ray CT imaging systems can be characterized with standard metrics such as noise variance, noise power spectrum, contrast-to-noise ratio, modulation transfer function (MTF), and task-based detectability index. Among these metrics, the measurement of the MTF can be challenging in DPC-CT systems due to several confounding factors such as phase wrapping and the difficulty of using fine wires as probes. To address these technical challenges, this paper discusses a viable and reliable method to experimentally measure the MTF of DPC-CT. It has been found that the spatial resolution of DPC-CT is degraded, when compared to that of the corresponding absorption CT, due to the presence of a source grating G0 in the Talbot-Lau interferometer. An effective MTF was introduced and experimentally estimated to describe the impact of the Talbot-Lau interferometer on the system MTF.

  18. Experimental research in the phase change materials based on paraffin and expanded perlite

    NASA Astrophysics Data System (ADS)

    Jiesheng, Liu; Faping, Li; Xiaoqiang, Gong; Rongtang, Zhang

    2018-06-01

    In this study, paraffin (PA)/expanded perlite (EP) form-stable phase change material (PCM) was first fabricated using the direct impregnation method without vacuum treatment. Absorptive capacity results showed that the PA/EP composite can obtain good absorptive capacity with the temperature 80 °C and the time 2 h. Compared with the water absorption of EP, the decrease in the water absorption of PA/EP form-stable proved that the absorption of PA into porous EP has been carried out successfully. Scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) results show that paraffin can be well impregnated into EP pores and has good compatibility with it. Differential scanning calorimetry (DSC) results reveal that paraffin/EP composite PCM has melting temperature and latent heat of 53.6 °C and 91.3 J/g, respectively. The durability cycles results suggest that form-stable PA/EP PCM shows good durability.

  19. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-10-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).

  20. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    PubMed

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  1. Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.; Le Croissette, D. H.

    1973-01-01

    Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.

  2. Grating-based x-ray differential phase contrast imaging with twin peaks in phase-stepping curves—phase retrieval and dewrapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Xie, Huiqiao; Tang, Xiangyang, E-mail: xiangyang.tang@emory.edu

    Purpose: X-ray differential phase contrast CT implemented with Talbot interferometry employs phase-stepping to extract information of x-ray attenuation, phase shift, and small-angle scattering. Since inaccuracy may exist in the absorption grating G{sub 2} due to an imperfect fabrication, the effective period of G{sub 2} can be as large as twice the nominal period, leading to a phenomenon of twin peaks that differ remarkably in their heights. In this work, the authors investigate how to retrieve and dewrap the phase signal from the phase-stepping curve (PSC) with the feature of twin peaks for x-ray phase contrast imaging. Methods: Based on themore » paraxial Fresnel–Kirchhoff theory, the analytical formulae to characterize the phenomenon of twin peaks in the PSC are derived. Then an approach to dewrap the retrieved phase signal by jointly using the phases of the first- and second-order Fourier components is proposed. Through an experimental investigation using a prototype x-ray phase contrast imaging system implemented with Talbot interferometry, the authors evaluate and verify the derived analytic formulae and the proposed approach for phase retrieval and dewrapping. Results: According to theoretical analysis, the twin-peak phenomenon in PSC is a consequence of combined effects, including the inaccuracy in absorption grating G{sub 2}, mismatch between phase grating and x-ray source spectrum, and finite size of x-ray tube’s focal spot. The proposed approach is experimentally evaluated by scanning a phantom consisting of organic materials and a lab mouse. The preliminary data show that compared to scanning G{sub 2} over only one single nominal period and correcting the measured phase signal with an intuitive phase dewrapping method that is being used in the field, stepping G{sub 2} over twice its nominal period and dewrapping the measured phase signal with the proposed approach can significantly improve the quality of x-ray differential phase contrast imaging in both radiograph and CT. Conclusions: Using the phase retrieval and dewrapping methods proposed to deal with the phenomenon of twin peaks in PSCs and phase wrapping, the performance of grating-based x-ray differential phase contrast radiography and CT can be significantly improved.« less

  3. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  4. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  5. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  6. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  7. Correction of data truncation artifacts in differential phase contrast (DPC) tomosynthesis imaging

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-10-01

    The use of grating based Talbot-Lau interferometry permits the acquisition of differential phase contrast (DPC) imaging with a conventional medical x-ray source and detector. However, due to the limited area of the gratings, limited area of the detector, or both, data truncation image artifacts are often observed in tomographic DPC acquisitions and reconstructions, such as tomosynthesis (limited-angle tomography). When data are truncated in the conventional x-ray absorption tomosynthesis imaging, a variety of methods have been developed to mitigate the truncation artifacts. However, the same strategies used to mitigate absorption truncation artifacts do not yield satisfactory reconstruction results in DPC tomosynthesis reconstruction. In this work, several new methods have been proposed to mitigate data truncation artifacts in a DPC tomosynthesis system. The proposed methods have been validated using experimental data of a mammography accreditation phantom, a bovine udder, as well as several human cadaver breast specimens using a bench-top DPC imaging system at our facility.

  8. Testing of Cerex Open Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Industrial facilities, energy production, and refining operations can be significant sources of gas-phase air pollutants. Some industrial emissions originate from fugitive sources (leaks) or process malfunctions and can be mitigated if identified. In recent amendments to the Nati...

  9. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    NASA Astrophysics Data System (ADS)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  10. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1981-01-01

    Near-infrared spectral reflectance data are presented for systematic variations in weight percent of two component mixtures of ferromagnesium and iron oxide minerals used to study the dark materials on Mars. Olivine spectral features are greatly reduced in contrast by admixture of other phases but remain distinctive even for low olivine contents. Clinopyroxene and orthopyroxene mixtures show resolved pyroxene absorptions near 2 microns. Limonite greatly modifies pyroxene and olivine reflectance, but does not fully eliminate distinctive spectral characteristics. Using only spectral data in the 1 micron region, it is difficult to differentiate orthopyroxene and limonite in a mixture. All composite mineral absorptions were either weaker than or intermediate in strength to the end-member absorptions and have bandwidths greater than or equal to those for the end members. In general, spectral properties in an intimate mixture combine in a complex, nonadditive manner, with features demonstrating a regular but usually nonlinear variation as a function of end-member phase proportions.

  11. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Marone, F.; Hintermüller, C.; Bensadoun, J.-C.; Aebischer, P.; Stampanoni, M.

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  12. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  13. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    PubMed Central

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-01

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation. PMID:24387511

  14. MERLIN (Methane Remote Sensing Lidar Mission): an Overview

    NASA Astrophysics Data System (ADS)

    Pierangelo, C.; Millet, B.; Esteve, F.; Alpers, M.; Ehret, G.; Flamant, P.; Berthier, S.; Gibert, F.; Chomette, O.; Edouart, D.; Deniel, C.; Bousquet, P.; Chevallier, F.

    2016-06-01

    The Methane Remote Sensing Lidar Mission (MERLIN), currently in phase B, is a joint cooperation between France and Germany on the development, launch and operation of a methane (CH4) monitoring satellite. MERLIN is focused on global measurements of the spatial and temporal gradients of atmospheric CH4, the second most anthropogenic gas, with a precision and accuracy sufficient to constrain Methane fluxes significantly better than with the current observation network. For the first time, measurements of atmospheric composition will be performed from space thanks to an IPDA (Integrated Path Differential Absorption) LIDAR (Light Detecting And Ranging). This payload is under the responsibility of the German space agency (DLR), while the platform (MYRIADE Evolutions product line) is developed by the French space agency (CNES). The IPDA technique relies on DIAL (Differential Absorption LIDAR) measurements using a pulsed laser emitting at two wavelengths, one wavelength accurately locked on a spectral feature of the methane absorption line, and the other wavelength free from absorption to be used as reference. This technique enables measurements in all seasons, at all latitudes. It also guarantees almost no contamination by aerosols or water vapour cross-sensitivity, and thus has the advantage of an extremely low level of systematic error on the dry-air column mixing ratio of CH4.

  15. High-performance dispersive Raman and absorption spectroscopy as tools for drug identification

    NASA Astrophysics Data System (ADS)

    Pawluczyk, Olga; Andrey, Sam; Nogas, Paul; Roy, Andrew; Pawluczyk, Romuald

    2009-02-01

    Due to increasing availability of pharmaceuticals from many sources, a need is growing to quickly and efficiently analyze substances in terms of the consistency and accuracy of their chemical composition. Differences in chemical composition occur at very low concentrations, so that highly sensitive analytical methods become crucial. Recent progress in dispersive spectroscopy with the use of 2-dimensional detector arrays, permits for signal integration along a long (up to 12 mm long) entrance slit of a spectrometer, thereby increasing signal to noise ratio and improving the ability to detect small concentration changes. This is achieved with a non-scanning, non-destructive system. Two different methods using P&P Optica high performance spectrometers were used. High performance optical dispersion Raman and high performance optical absorption spectroscopy were employed to differentiate various acetaminophen-containing drugs, such as Tylenol and other generic brands, which differ in their ingredients. A 785 nm excitation wavelength was used in Raman measurements and strong Raman signals were observed in the spectral range 300-1800 cm-1. Measurements with the absorption spectrometer were performed in the wavelength range 620-1020 nm. Both Raman and absorption techniques used transmission light spectrometers with volume phase holographic gratings and provided sufficient spectral differences, often structural, allowing for drug differentiation.

  16. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    NASA Astrophysics Data System (ADS)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  17. Low-temperature hydrogen absorption into V and Nb metals from liquid hydrogen

    NASA Astrophysics Data System (ADS)

    Takata, H.; Ienaga, K.; Shiga, M.; Islam, Md S.; Inagaki, Y.; Tsujii, H.; Hashizume, K.; Kawae, T.

    2018-03-01

    We report experimental study on low-temperature hydrogen (H) absorption in vanadium (V) and niobium (Nb) nanocontacts below T = 20 K using a point-contact spectroscopy (PCS) technique. When a small bias voltage is applied between both sides of nanocontacts immersed in liquid H2, the differential conductance (dI/dV) and the second derivative (d2 I/dV 2) are changed from those for pure V and Nb nanocontacts. Further, the spectra approach to those for a high concentrated phase of H with increasing the bias voltage. The results indicate that in-situ investigation of H absorption process from liquid H2 is possible through dI/dV and d2 I/dV 2 measurements using the PCS technique.

  18. Glancing angle Talbot-Lau grating interferometers for phase contrast imaging at high x-ray energy

    NASA Astrophysics Data System (ADS)

    Stutman, D.; Finkenthal, M.

    2012-08-01

    A Talbot-Lau interferometer is demonstrated using micro-periodic gratings inclined at a glancing angle along the light propagation direction. Due to the increase in the effective thickness of the absorption gratings, the device enables differential phase contrast imaging at high x-ray energy, with improved fringe visibility (contrast). For instance, at 28° glancing angle, we obtain up to ˜35% overall interferometer contrast with a spectrum having ˜43 keV mean energy, suitable for medical applications. In addition, glancing angle interferometers could provide high contrast at energies above 100 keV, enabling industrial and security applications of phase contrast imaging.

  19. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang Hu

    A new process called phase enhanced gas-liquid absorption has been developed in its early stage. It was found that adding another phase into the absorption system of gas/aqueous phase could enhance the absorption rate. A system with three phases was studied. In the system, gas phase was carbon dioxide. Two liquid phases were used. One was organic phase. Another was aqueous phase. By addition of organic phase into the absorption system of CO{sub 2}-aqueous phase, the absorption rate of CO{sub 2} was increased significantly. CO{sub 2} finally accumulated into aqueous phase. The experimental results proved that (1) Absorption rate ofmore » carbon dioxide was enhanced by adding organic phase into gas aqueous phase system; (2) Organic phase played the role of transportation of gas solute (CO{sub 2}). Carbon dioxide finally accumulated into aqueous phase.« less

  20. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; hide

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  1. Method and apparatus for measuring butterfat and protein content using microwave absorption techniques

    DOEpatents

    Fryer, Michael O.; Hills, Andrea J.; Morrison, John L.

    2000-01-01

    A self calibrating method and apparatus for measuring butterfat and protein content based on measuring the microwave absorption of a sample of milk at several microwave frequencies. A microwave energy source injects microwave energy into the resonant cavity for absorption and reflection by the sample undergoing evaluation. A sample tube is centrally located in the resonant cavity passing therethrough and exposing the sample to the microwave energy. A portion of the energy is absorbed by the sample while another portion of the microwave energy is reflected back to an evaluation device such as a network analyzer. The frequency at which the reflected radiation is at a minimum within the cavity is combined with the scatter coefficient S.sub.11 as well as a phase change to calculate the butterfat content in the sample. The protein located within the sample may also be calculated in a likewise manner using the frequency, S.sub.11 and phase variables. A differential technique using a second resonant cavity containing a reference standard as a sample will normalize the measurements from the unknown sample and thus be self-calibrating. A shuttered mechanism will switch the microwave excitation between the unknown and the reference cavities. An integrated apparatus for measuring the butterfat content in milk using microwave absorption techniques is also presented.

  2. Investigations on nonlinear absorption and nonlinear refraction of a new photonic crystal using Z-scan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, T. C. S., E-mail: tcsshetty@gmail.com; Department of Post Graduate Studies in Physics, St Aloysius College; Sandeep, K. M.

    A new photonic material, (2E)-1-(3-chlorophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCPP) was synthesized and crystallised at room temperature. The functional groups of synthesised material were confirmed using FT-IR. The third order nonlinear optical (NLO) properties were investigated using Z-scan technique with 5 ns Nd:YAG laser pulses operating at a wavelength of 532 nm. Linear absorption spectrum of DCPP crystals shows an optical transmittance window and a lower cutoff wavelength of absorption at 380 nm. The direct transition band gap energy was determined using Tauc’s plot. The melting point and thermal stability of the crystal have been investigated by thermo gravimetric analysis/differential thermal analysis (TGA/DTA). Themore » Thermo gravimetric curve showed absence of any phase transition before melting point.« less

  3. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  4. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  5. Apparatus and method for performing two-frequency interferometry

    DOEpatents

    Johnston, Roger G.

    1990-01-01

    The present apparatus includes a two-frequency, Zeeman-effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained.

  6. Apparatus and method for performing two-frequency interferometry

    DOEpatents

    Johnston, R.G.

    1988-01-25

    The present apparatus includes a two-frequency, Zeeman Effect laser and matched, doubly refracting crystals in the construction of an accurate interferometer. Unlike other interferometric devices, the subject invention exhibits excellent phase stability owing to the use of single piece means for producing parallel interferometer arms, making the interferometer relatively insensitive to thermal and mechanical instabilities. Interferometers respond to differences in optical path length between their two arms. Unlike many interferometric techniques, which require the measurement of the location of interference fringes in a brightly illuminated background, the present invention permits the determination of the optical path length difference by measuring the phase of an electronic sine wave. The present apparatus is demonstrated as a differential thermooptic spectrometer for measuring differential optical absorption simply and accurately which is but one of many applications therefor. The relative intensities of the heating beams along each arm of the interferometer can be easily adjusted by observing a zero phase difference with identical samples when this condition is obtained. 6 figs.

  7. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  8. Alpha-lactalbumin effect on myo-inositol intestinal absorption: in vivo and in vitro.

    PubMed

    Monastra, Giovanni; Ferruzza, Simonetta; Sambuy, Yula; Ranaldi, Giulia; Ferrari, Daniela

    2018-05-08

    . Myo-inositol is a natural molecule with important therapeutic applications and an impaired oral absorption may result in a reduced clinical effect. Aim of this study was to determine if the combined oral administration of α-lactalbumin and myo-inositol in healthy subjects, could increase the plasma level of myo-inositol administered alone. In vitro studies on human differentiated intestinal Caco-2 cells were also conducted to identify the mechanisms involved in myo-inositol absorption. The in vivo study was conducted on healthy volunteers in two phases. Subjects received a single oral myo-inositol dose. After 7 days washout, the same subjects were administered a single dose of myo-inositol and α-lactalbumin. Cmax, Tmax and AUC for myo-inositol in plasma were calculated from samples collected at different times. Transepithelial myo-inositol passage, with or without addition of digested α-lactalbumin, was measured in vitro in differentiated Caco-2 cells and compared to transepithelial electrical resistance and phenol red passage. The bioavailability of myo-inositol was modified by the concomitant administration of α-lactalbumin. Although peak concentration of myo-inositol at 180 min (Tmax) was similar for both treatments, administration of α-lactalbumin with myo-inositol in a single dose, significantly increased the plasma concentrations of myo-inositol compared to when administered alone. In vitro, myo-inositol absorption in Caco-2 cells was improved in the presence of digested α-lactalbumin, and this change was associated with an increase in tight junction permeability. Better myo-inositol absorption when orally administered with α-lactalbumin can be beneficial in non-responder patients. Preliminary in vitro findings suggest that peptides deriving from α-lactalbumin digestion may modulate tight junction permeability allowing increased absorption of myo-inositol. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Extraction and characterization of mixed phase KNO2-KNO3 nanocrystals derived from flat-leaf green spinach

    NASA Astrophysics Data System (ADS)

    Hazarika, S.; Mohanta, D.

    2013-01-01

    Naturally available green spinach, which is a rich source of potassium, was used as the key ingredient to extract mixed-phase ferroelectric crystals of nitrite and nitrate derivatives (KNO2 + KNO3). The KNO3 phase was found to be dominant for higher pH values, as revealed by the x-ray diffraction patterns. The characteristic optical absorption spectra exhibited intra-band π-π* electronic transitions, whereas Fourier transform infrared spectra exhibited characteristic N-O stretching vibrations. Differential scanning calorimetry revealed a broad endothermic peak at ˜121.8 °C, highlighting a transition from phase II to I via phase III of KNO3. Obtaining nanoscale ferroelectrics via the adoption of green synthesis is economically viable for large-scale production and possible application in ferroelectric elements/devices.

  10. Laser system for natural gas detection. Phase 1: Laboratory feasibility studies

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Hinkley, E. D., Jr.

    1982-01-01

    This project demonstrated the feasibility of using laser remote sensing technology as a tool for leak survey work in natural gas distribution systems. A laboratory device was assembled using a pair of helium neon (HeNe) lasers to measure methane. One HeNe laser emits radiation at a wavelength of 3.3922 micrometers, which corresponds to a strong absorption feature of methane, while the other emits radiation at a wavelength of 3.3911 micrometers, which corresponds to a weak absorption by methane. As a particular area is scanned for leaks, the laser is pointed at convenient topographic targets within its operating range, about 25 m. A portion of the backscattered radiation is collected by a receiver and focused onto an indium antimonide (InSb) photodetector, cooled to 77K. Methane concentrations were determined from the differential absorption at the two wavelengths for the backscattered radiation.

  11. Selective determination of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by means of flameless atomic-absorption spectrophotometry with a carbon-tube atomizer.

    PubMed

    Kamada, T

    The extraction behaviour of arsenic(III) and arsenic(V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone in organic solvents has been investigated by means of nameless atomic-absorption spectrophotometry with a carbon-tube atomizer. The selective extraction of arsenic(III) and differential determination of arsenic(III) and arsenic(V) have been developed. With ammonium pyrrolidinedithiocarbamate and methyl isobutyl ketone or nitrobenzene, when the aqueous phase/solvent volume ratio is 5 and the injection volume in the carbon tube is 20 mul, the sensitivities for 1% absorption are 0.4 and 0.5 part per milliard of arsenic, respectively. The relative standard deviations are ca. 3%. Interference by many metal ions can be prevented by masking with EDTA. The proposed methods are applied satisfactorily for determination of As(III) and As(V) in various types of water.

  12. Quantitative X-ray Differential Interference Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi

    Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences

  13. Remote air pollution measurement

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1975-01-01

    This paper presents a discussion and comparison of the Raman method, the resonance and fluorescence backscatter method, long path absorption methods and the differential absorption method for remote air pollution measurement. A comparison of the above remote detection methods shows that the absorption methods offer the most sensitivity at the least required transmitted energy. Topographical absorption provides the advantage of a single ended measurement, and differential absorption offers the additional advantage of a fully depth resolved absorption measurement. Recent experimental results confirming the range and sensitivity of the methods are presented.

  14. Differential-optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S.

    1977-01-01

    Two-cell spectrophone detects trace amounts of atmospheric pollutants by measuring absorption coefficients of gases with various laser sources. Device measures pressure difference between two tapered cells with differential manometer. Background signal is reduced by balanced window heating and balanced carrier gas absorption in two cells.

  15. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.

  16. Frequency-Agile Differential Cavity Ring-Down Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reed, Zachary; Hodges, Joseph

    2015-06-01

    The ultimate precision of highly sensitive cavity-enhanced spectroscopic measurements is often limited by interferences (etalons) caused by weak coupled-cavity effects. Differential measurements of ring-down decay constants have previously been demonstrated to largely cancel these effects, but the measurement acquisition rates were relatively low [1,2]. We have previously demonstrated the use of frequency agile rapid scanning cavity ring-down spectroscopy (FARS-CRDS) for acquisition of absorption spectra [3]. Here, the method of rapidly scanned, frequency-agile differential cavity ring-down spectroscopy (FADS-CRDS) is presented for reducing the effect of these interferences and other shot-to-shot statistical variations in measured decay times. To this end, an electro-optic phase modulator (EOM) with a bandwidth of 20 GHz is driven by a microwave source, generating pairs of sidebands on the probe laser. The optical resonator acts as a highly selective optical filter to all laser frequencies except for one tunable sideband. This sideband may be stepped arbitrarily from mode-to-mode of the ring-down cavity, at a rate limited only by the cavity buildup/decay time. The ability to probe any cavity mode across the EOM bandwidth enables a variety of methods for generating differential spectra. The differential mode spacing may be changed, and the effect of this method on suppressing the various coupled-cavity interactions present in the system is discussed. Alternatively, each mode may also be differentially referenced to a single point, providing immunity to temporal variations in the base losses of the cavity while allowing for conventional spectral fitting approaches. Differential measurements of absorption are acquired at 3.3 kHz and a minimum detectable absorption coefficient of 5 x10-12 cm-1 in 1 s averaging time is achieved. 1. J. Courtois, K. Bielska, and J.T Hodges J. Opt. Soc. Am. B, 30, 1486-1495, 2013 2. H.F. Huang and K.K. Lehmann App. Optics 49, 1378-1387, 2010 3. G.-W. Truong, K.O. Douglass, S.E. Maxwell, R.D. van Zee, D.F. Plusquellic, J.T. Hodges, and D.A. Long Nature Photonics, 7, 532-534, 2013

  17. COMPENSATIONAL THREE-WAVELENGTH DIFFERENTIAL-ABSORPTION LIDAR TECHNIQUE FOR REDUCING THE INFLUENCE OF DIFFERENTIAL SCATTERING ON OZONE-CONCENTRATION MEASUREMENTS.

    EPA Science Inventory

    A three-wavelength differential-absorption lidar (DIAL) technique for the UV spectral region is presented that reduces the influence of aerosol differential scattering on measured O3-concentration profiles. The principal advantage of this approach is that, to a good first approxi...

  18. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  19. Purification of selenium by zone refining

    NASA Astrophysics Data System (ADS)

    Burger, A.; Henderson, D. O.; Morgan, S. H.; Feng, J.; Silberman, E.

    1990-11-01

    We studied the purification of Se using zone refining, with emphasis on the efficiency of this technique in removing the Cu impurity, which is known to be related to a trapping center in CdSe. After 78 passes it was found that Cu accumulates at one end section of the ingot, while at the opposite end the level was below the detection limit of the atomic absorption spectroscopic analysis employed. Infrared spectroscopic data, differential solubility and differential scanning calorimetry measurements also indicate that the effective distribution coefficient, k, for the Cu solute, is less than 1. A model for the various phases present during zone melting is presented and the possibility of segregating impurities having k>1 is discussed.

  20. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator.

    PubMed

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel S; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  1. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  2. Optical determination of crystal phase in semiconductor nanocrystals

    PubMed Central

    Lim, Sung Jun; Schleife, André; Smith, Andrew M.

    2017-01-01

    Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577

  3. An Eulerian model for scavenging of pollutants by raindrops

    NASA Astrophysics Data System (ADS)

    Kumar, Sudarshan

    An Eulerian model for simulating the coupled processes of gas-phase depletion and aqueousphase accumulation of the pollutant species during a rain event has been formulated. The model is capable of taking into account any realistic vertical profile of pollutant species concentrations and time-dependent initial aqueous-phase concentrations at the cloud base. The model considers the processes of single species absorption and dissociation in the aqueous phase. The coupled partial differential equations constituting the model are discretized into a set of ordinary differential equations by using the Galerkin method with chapeau functions as the basis functions. These equations are solved to obtain the pollutant concentrations of the gas phase and raindrops as well as the pH of raindrops as a function of time and distance below cloud-base. Simulations are performed for scavenging of gaseous HNO 3, H 2O 2, SO 2, formaldehyde and NH 3. For the case of highly soluble HNO 3 and H 2O 2, raindrops are far from equilibrium with the gas phase and their capacity for absorption of these gases is undiminished even as they reach ground level. The gas-phase concentrations for these species decrease exponentially with time and the washout is determined primarily by the rain intensity and mass-transfer coefficient of the gaseous species to the raindrops. The pollutant species concentrations in raindrops are an almost linear function of the distance below the cloud base. For the simulation conditions considered in this study, the half-life periods of these gases for removal from the atmosphere range from 15 to 40 min. For SO 2 and formaldehyde, the aqueous-phase concentrations approach equilibrium as the drops fall to ground level and the gas-phase concentrations show large gradients in the vertical. Half-life periods for SO 2 range from 1.3 to 13 h depending on the initial raindrop pH and rain intensity. For formaldehyde, the half-life ranges from 19 to 63 min. Solubility of NH 3 is a strong function of the raindrop pH. As NH 3 is absorbed, the raindrop pH increases and NH 3 solubility decreases. For pre-acidified drops (pH = 4.6), ammonia solubility is very high and the drops are far from equilibrium with the gas phase throughout the falling period. The half-life for ammonia ranges from 11 min to over 3 h in our simulations.

  4. Optical Measurement of Radiocarbon below Unity Fraction Modern by Linear Absorption Spectroscopy.

    PubMed

    Fleisher, Adam J; Long, David A; Liu, Qingnan; Gameson, Lyn; Hodges, Joseph T

    2017-09-21

    High-precision measurements of radiocarbon ( 14 C) near or below a fraction modern 14 C of 1 (F 14 C ≤ 1) are challenging and costly. An accurate, ultrasensitive linear absorption approach to detecting 14 C would provide a simple and robust benchtop alternative to off-site accelerator mass spectrometry facilities. Here we report the quantitative measurement of 14 C in gas-phase samples of CO 2 with F 14 C < 1 using cavity ring-down spectroscopy in the linear absorption regime. Repeated analysis of CO 2 derived from the combustion of either biogenic or petrogenic sources revealed a robust ability to differentiate samples with F 14 C < 1. With a combined uncertainty of 14 C/ 12 C = 130 fmol/mol (F 14 C = 0.11), initial performance of the calibration-free instrument is sufficient to investigate a variety of applications in radiocarbon measurement science including the study of biofuels and bioplastics, illicitly traded specimens, bomb dating, and atmospheric transport.

  5. A Feasibility Study for Simultaneous Measurements of Water Vapor and Precipitation Parameters using a Three-frequency Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.; Tian, L.

    2005-01-01

    The radar return powers from a three-frequency radar, with center frequency at 22.235 GHz and upper and lower frequencies chosen with equal water vapor absorption coefficients, can be used to estimate water vapor density and parameters of the precipitation. A linear combination of differential measurements between the center and lower frequencies on one hand and the upper and lower frequencies on the other provide an estimate of differential water vapor absorption. The coupling between the precipitation and water vapor estimates is generally weak but increases with bandwidth and the amount of non-Rayleigh scattering of the hydrometeors. The coupling leads to biases in the estimates of water vapor absorption that are related primarily to the phase state and the median mass diameter of the hydrometeors. For a down-looking radar, path-averaged estimates of water vapor absorption are possible under rain-free as well as raining conditions by using the surface returns at the three frequencies. Simulations of the water vapor attenuation retrieval show that the largest source of error typically arises from the variance in the measured radar return powers. Although the error can be mitigated by a combination of a high pulse repetition frequency, pulse compression, and averaging in range and time, the radar receiver must be stable over the averaging period. For fractional bandwidths of 20% or less, the potential exists for simultaneous measurements at the three frequencies with a single antenna and transceiver, thereby significantly reducing the cost and mass of the system.

  6. Investigating Li 2NiO 2–Li 2CuO 2 Solid Solutions as High-Capacity Cathode Materials for Li-Ion Batteries

    DOE PAGES

    Xu, Jing; Renfrew, Sara; Marcus, Matthew A.; ...

    2017-05-11

    Li 2Ni 1–xCu xO 2 solid solutions were prepared by a solid-state method to study the correlation between composition and electrochemical performance. Cu incorporation improved the phase purity of Li 2Ni 1–xCu xO 2 with orthorhombic Immm structure, resulting in enhanced capacity. However, the electrochemical profiles suggested Cu incorporation did not prevent irreversible phase transformation during the electrochemical process, instead, it likely influenced the phase transformation upon lithium removal. By combining ex situ X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and differential electrochemical mass spectrometry (DEMS) measurements, this study elucidates the relevant phase transformation (e.g., crystal structure, local environment, andmore » charge compensation) and participation of electrons from lattice oxygen during the first cycle in these complex oxides.« less

  7. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    PubMed

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  8. Wavelength-modulated differential photothermal radiometry: Theory and experimental applications to glucose detection in water

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas; Guo, Xinxin

    2011-10-01

    A differential photothermal radiometry method, wavelength-modulated differential photothermal radiometry (WM-DPTR), has been developed theoretically and experimentally for noninvasive, noncontact biological analyte detection, such as blood glucose monitoring. WM-DPTR features analyte specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the base line of a prominent and isolated mid-IR analyte absorption band (here the carbon-oxygen-carbon bond in the pyran ring of the glucose molecule). A theoretical photothermal model of WM-DPTR signal generation and detection has been developed. Simulation results on water-glucose phantoms with the human blood range (0-300 mg/dl) glucose concentration demonstrated high sensitivity and resolution to meet wide clinical detection requirements. The model has also been validated by experimental data of the glucose-water system obtained using WM-DPTR.

  9. Evolution of ferroelectric SrBi2Nb2O9 phase embedded in tellurite glass

    NASA Astrophysics Data System (ADS)

    Mohamed, E. A.

    2017-12-01

    Glasses with the composition, [(100-x)TeO2- x(SrO-Bi2O3-Nb2O5)] with x = 20, 30 and 40 (in mol %) were prepared. The X-ray diffraction (XRD) pattern and differential thermal analysis (DTA) for the as-prepared samples confirmed the amorphous and glassy characteristics, respectively. The SrBi2Nb2O9 phase in tellurite glass for HT773 sample at x = 40 mol % is formed and confirmed by the Rietveld refinement. DTA curves for all glass samples exhibit two endothermic dips while the two broad exothermic peaks at lower x reduced to one at higher x. Infrared (IR) results revealed that the glassy matrix are composed of TeO3, TeO3+1, TeO4, BiO6 and NbO6 structural units. The changes in the density (ρ), molar volume (Vm), oxygen molar volume (V0) and oxygen packing fraction (OPD) have correlated with structural changes in the glass network. The optical studies show an absorption bands below the absorption edge in the glass samples.

  10. A facility for gas- and condensed-phase measurements behind shock waves

    NASA Astrophysics Data System (ADS)

    Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.

    2005-09-01

    A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.

  11. Phase contrast imaging of buccal mucosa tissues-Feasibility study

    NASA Astrophysics Data System (ADS)

    Fatima, A.; Tripathi, S.; Shripathi, T.; Kulkarni, V. K.; Banda, N. R.; Agrawal, A. K.; Sarkar, P. S.; Kashyap, Y.; Sinha, A.

    2015-06-01

    Phase Contrast Imaging (PCI) technique has been used to interpret physical parameters obtained from the image taken on the normal buccal mucosa tissue extracted from cheek of a patient. The advantages of this method over the conventional imaging techniques are discussed. PCI technique uses the X-ray phase shift at the edges differentiated by very minute density differences and the edge enhanced high contrast images reveal details of soft tissues. The contrast in the images produced is related to changes in the X-ray refractive index of the tissues resulting in higher clarity compared with conventional absorption based X-ray imaging. The results show that this type of imaging has better ability to visualize microstructures of biological soft tissues with good contrast, which can lead to the diagnosis of lesions at an early stage of the diseases.

  12. Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses

    PubMed Central

    Yan, Hanfei; Chu, Yong S.; Maser, Jörg; Nazaretski, Evgeny; Kim, Jungdae; Kang, Hyon Chol; Lombardo, Jeffrey J.; Chiu, Wilson K. S.

    2013-01-01

    For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts. PMID:23419650

  13. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00223d

  14. Improved diagnostic differentiation of renal cystic lesions with phase-contrast computed tomography (PCCT)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willner, Marian; Fingerle, Alexander; Herzen, Julia; Münzel, Daniela; Hahn, Dieter; Rummeny, Ernst J.; Pfeiffer, Franz

    2012-03-01

    The diagnostic quality of phase-contrast computed tomography (PCCT) is one the unexplored areas in medical imaging; at the same time, it seems to offer the opportunity as a fast and highly sensitive diagnostic tool. Conventional computed tomography (CT) has had an enormous impact on medicine, while it is limited in soft-tissue contrast. One example that portrays this challenge is the differentiation between benign and malignant renal cysts. In this work we report on a feasibility study to determine the usefulness of PCCT in differentiation of renal cysts. A renal phantom was imaged with a grating-based PCCT system consisting of a standard rotating anode x-ray tube (40 kV, 70 mA) and a Pilatus II photoncounting detector (pixel size: 172 μm). The phantom is composed of a renal equivalent soft-tissue and cystic lesions grouped in non-enhancing cyst and hemorrhage series and an iodine enhancing series. The acquired projection images (absorption and phase-contrast) are reconstructed with a standard filtered backprojection algorithm. For evaluation both reconstructions are compared in respect to contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and subjective image quality. We found that with PCCT a significantly improved differentiation between hemorrhage renal cysts from contrast enhancing malignant cysts is possible. If comparing PCCT and CT with respect to CNR and SNR, PCCT shows significant improvements. In conclusion, PCCT has the potential to improve the diagnostics and characterization of renal cysts without using any contrast agents. These results in combination with a non-synchrotron setup indicate a future paradigm shift in diagnostic computed tomography.

  15. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  16. Absorption of nitro-polycyclic aromatic hydrocarbons by biomembrane models: effect of the medium lipophilicity.

    PubMed

    Castelli, Francesco; Micieli, Dorotea; Ottimo, Sara; Minniti, Zelica; Sarpietro, Maria Grazia; Librando, Vito

    2008-10-01

    To demonstrate the relationship between the structure of nitro-polycyclic aromatic hydrocarbons and their effect on biomembranes, we have investigated the influence of three structurally different nitro-polycyclic aromatic hydrocarbons, 2-nitrofluorene, 2,7-dinitrofluorene and 3-nitrofluoranthene, on the thermotropic behavior of dimyristoylphosphatidylcholine multilamellar vesicles, used as biomembrane models, by means of differential scanning calorimetry. The obtained results indicate that the studied nitro-polycyclic aromatic hydrocarbons affected the thermotropic behavior of multilamellar vesicles to various extents, modifying the pretransition and the main phase transition peaks and shifting them to lower temperatures. The effect of the aqueous and lipophilic medium on the absorption process of these compounds by the biomembrane models has been also investigated revealing that the process is hindered by the aqueous medium but strongly allowed by the lipophilic medium.

  17. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  18. CH4 IPDA Lidar mission data simulator and processor for MERLIN: prototype development at LMD/CNRS/Ecole Polytechnique

    NASA Astrophysics Data System (ADS)

    Olivier, Chomette; Armante, Raymond; Crevoisier, Cyril; Delahaye, Thibault; Edouart, Dimitri; Gibert, Fabien; Nahan, Frédéric; Tellier, Yoann

    2018-04-01

    The MEthane Remote sensing Lidar missioN (MERLIN), currently in phase C, is a joint cooperation between France and Germany on the development of a spatial Integrated Path Differential Absorption (IPDA) LIDAR (LIght Detecting And Ranging) to conduct global observations of atmospheric methane. This presentation will focus on the status of a LIDAR mission data simulator and processor developed at LMD (Laboratoire de Météorologie Dynamique), Ecole Polytechnique, France, for MERLIN to assess the performances in realistic observational situations.

  19. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber

    PubMed Central

    Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong

    2011-01-01

    We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood. PMID:21280906

  20. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  1. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less

  2. Photometric properties of Ceres from telescopic observations using Dawn Framing Camera color filters

    NASA Astrophysics Data System (ADS)

    Reddy, Vishnu; Li, Jian-Yang; Gary, Bruce L.; Sanchez, Juan A.; Stephens, Robert D.; Megna, Ralph; Coley, Daniel; Nathues, Andreas; Le Corre, Lucille; Hoffmann, Martin

    2015-11-01

    The dwarf planet Ceres is likely differentiated similar to the terrestrial planets but with a water/ice dominated mantle and an aqueously altered crust. Detailed modeling of Ceres' phase function has never been performed to understand its surface properties. The Dawn spacecraft began orbital science operations at the dwarf planet in April 2015. We observed Ceres with flight spares of the seven Dawn Framing Camera color filters mounted on ground-based telescopes over the course of three years to model its phase function versus wavelength. Our analysis shows that the modeled geometric albedos derived from both the IAU HG model and the Hapke model are consistent with a flat and featureless spectrum of Ceres, although the values are ∼10% higher than previous measurements. Our models also suggest a wavelength dependence of Ceres' phase function. The IAU G-parameter and the Hapke single-particle phase function parameter, g, are both consistent with decreasing (shallower) phase slope with increasing wavelength. Such a wavelength dependence of phase function is consistent with reddening of spectral slope with increasing phase angle, or phase-reddening. This phase reddening is consistent with previous spectra of Ceres obtained at various phase angles archived in the literature, and consistent with the fact that the modeled geometric albedo spectrum of Ceres is the bluest of all spectra because it represents the spectrum at 0° phase angle. Ground-based FC color filter lightcurve data are consistent with HST albedo maps confirming that Ceres' lightcurve is dominated by albedo and not shape. We detected a positive correlation between 1.1-μm absorption band depth and geometric albedo suggesting brighter areas on Ceres have absorption bands that are deeper. We did not see the "extreme" slope values measured by Perna et al. (Perna, D., et al. [2015]. Astron. Astrophys. 575 (L1-6)), which they have attributed to "resurfacing episodes" on Ceres.

  3. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prates, P. B.; Maliska, A. M.; Ferreira, A. S.

    A thermodynamic analysis of the Cr-Ge system suggested that it was possible to produce a nanostructured Cr{sub 3}Ge phase by mechanical alloying. The same analysis showed that, due to low activation energies, Cr-poor crystalline and/or amorphous alloy could also be formed. In fact, when the experiment was performed, Cr{sub 11}Ge{sub 19} and amorphous phases were present for small milling times. For milling times larger than 15 h these additional phases decomposed and only the nanostructured Cr{sub 3}Ge phase remained up to the highest milling time used (32 h). From the differential scanning calorimetry measurements, the Avrami exponent n was obtained, indicating thatmore » the nucleation and growth of the nanostructured Cr{sub 3}Ge phase may be restricted to one or two dimensions, where the Cr and Ge atoms diffuse along the surface and grain boundaries. In addition, contributions from three-dimensional diffusion with a constant nucleation rate may be present. The thermal diffusivity of the nanostructured Cr{sub 3}Ge phase was determined by photoacoustic absorption spectroscopy measurements.« less

  5. Investigation on the energy absorption performance of a fixed-bottom pressure-differential wave energy converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babarit, A.; Wendt, F.; Yu, Y. -H.

    2017-04-01

    In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicatemore » that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.« less

  6. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract.

    PubMed

    Redan, Benjamin W; Albaugh, George P; Charron, Craig S; Novotny, Janet A; Ferruzzi, Mario G

    2017-04-05

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P < 0.05) decrease in the percentage of cumulative transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P < 0.05) alterations in mRNA expression of key phase II metabolizing enzymes and transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.

  7. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  8. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    PubMed

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  9. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    PubMed Central

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-01

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870

  10. Double-pulse 1.57  μm integrated path differential absorption lidar ground validation for atmospheric carbon dioxide measurement.

    PubMed

    Du, Juan; Zhu, Yadan; Li, Shiguang; Zhang, Junxuan; Sun, Yanguang; Zang, Huaguo; Liu, Dan; Ma, Xiuhua; Bi, Decang; Liu, Jiqiao; Zhu, Xiaolei; Chen, Weibiao

    2017-09-01

    A ground-based double-pulse integrated path differential absorption (IPDA) instrument for carbon dioxide (CO 2 ) concentration measurements at 1572 nm has been developed. A ground experiment was implemented under different conditions with a known wall located about 1.17 km away acting as the scattering hard target. Off-/offline testing of a laser transmitter was conducted to estimate the instrument systematic and random errors. Results showed a differential absorption optical depth (DAOD) offset of 0.0046 existing in the instrument. On-/offline testing was done to achieve the actual DAOD resulting from the CO 2 absorption. With 18 s pulses average, it demonstrated that a CO 2 concentration measurement of 432.71±2.42  ppm with 0.56% uncertainty was achieved. The IPDA ranging led to a measurement uncertainty of 1.5 m.

  11. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  12. Linear information retrieval method in X-ray grating-based phase contrast imaging and its interchangeability with tomographic reconstruction

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Gao, K.; Wang, Z. L.; Shao, Q. G.; Hu, R. F.; Wei, C. X.; Zan, G. B.; Wali, F.; Luo, R. H.; Zhu, P. P.; Tian, Y. C.

    2017-06-01

    In X-ray grating-based phase contrast imaging, information retrieval is necessary for quantitative research, especially for phase tomography. However, numerous and repetitive processes have to be performed for tomographic reconstruction. In this paper, we report a novel information retrieval method, which enables retrieving phase and absorption information by means of a linear combination of two mutually conjugate images. Thanks to the distributive law of the multiplication as well as the commutative law and associative law of the addition, the information retrieval can be performed after tomographic reconstruction, thus simplifying the information retrieval procedure dramatically. The theoretical model of this method is established in both parallel beam geometry for Talbot interferometer and fan beam geometry for Talbot-Lau interferometer. Numerical experiments are also performed to confirm the feasibility and validity of the proposed method. In addition, we discuss its possibility in cone beam geometry and its advantages compared with other methods. Moreover, this method can also be employed in other differential phase contrast imaging methods, such as diffraction enhanced imaging, non-interferometric imaging, and edge illumination.

  13. Ultra-violet and visible absorption characterization of explosives by differential reflectometry.

    PubMed

    Dubroca, Thierry; Moyant, Kyle; Hummel, Rolf E

    2013-03-15

    This study presents some optical properties of TNT (2,4,6-trinitrotoluene), RDX, HMX and tetryl, specifically their absorption spectra as a function of concentration in various solvents in the ultraviolet and visible portion of the electromagnetic spectrum. We utilize a standoff explosives detection method, called differential reflectometry (DR). TNT was diluted in six different solvents (acetone, acetonitrile, ethanol, ethyl acetate, methanol, and toluene), which allowed for a direct comparison of absorption features over a wide range of concentrations. A line-shape analysis was adopted with great accuracy (R(2)>0.99) to model the absorption features of TNT in differential reflectivity spectra. We observed a blue shift in the pertinent absorption band with decreasing TNT concentration for all solvents. Moreover, using this technique, it was found that for all utilized solvents the concentration of TNT as well as of RDX, HMX, and tetryl, measured as a function of the transition wavelength of the ultra-violet absorption edge in differential reflectivity spectra shows three distinct regions. A model is presented to explain this behavior which is based on intermolecular hydrogen bonding of explosives molecules with themselves (or lack thereof) at different concentrations. Other intermolecular forces such as dipole-dipole interactions, London dispersion forces and π-stacking contribute to slight variations in the resulting spectra, which were determined to be rather insignificant in comparison to hydrogen bonding. The results are aimed towards a better understanding of the DR spectra of explosives energetic materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Spectrally resolved interferometric observations of α Cephei and physical modeling of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Delaa, O.; Zorec, J.; Domiciano de Souza, A.; Mourard, D.; Perraut, K.; Stee, Ph.; Frémat, Y.; Monnier, J.; Kraus, S.; Che, X.; Bério, Ph.; Bonneau, D.; Clausse, J. M.; Challouf, M.; Ligi, R.; Meilland, A.; Nardetto, N.; Spang, A.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2013-07-01

    Context. When a given observational quantity depends on several stellar physical parameters, it is generally very difficult to obtain observational constraints for each of them individually. Therefore, we studied under which conditions constraints for some individual parameters can be achieved for fast rotators, knowing that their geometry is modified by the rapid rotation which causes a non-uniform surface brightness distribution. Aims: We aim to study the sensitivity of interferometric observables on the position angle of the rotation axis (PA) of a rapidly rotating star, and whether other physical parameters can influence the determination of PA, and also the influence of the surface differential rotation on the determination of the β exponent in the gravity darkening law that enters the interpretation of interferometric observations, using α Cep as a test star. Methods: We used differential phases obtained from observations carried out in the Hα absorption line of α Cep with the VEGA/CHARA interferometer at high spectral resolution, R = 30 000 to study the kinematics in the atmosphere of the star. Results: We studied the influence of the gravity darkening effect (GDE) on the determination of the PA of the rotation axis of α Cep and determined its value, PA = -157-10°+17°. We conclude that the GDE has a weak influence on the dispersed phases. We showed that the surface differential rotation can have a rather strong influence on the determination of the gravity darkening exponent. A new method of determining the inclination angle of the stellar rotational axis is suggested. We conclude that differential phases obtained with spectro-interferometry carried out on the Hα line can in principle lead to an estimate of the stellar inclination angle i. However, to determine both i and the differential rotation parameter α, lines free from the Stark effect and that have collision-dominated source functions are to be preferred.

  15. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.

  16. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    PubMed

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  17. Multi beam observations of cosmic radio noise using a VHF radar with beam forming by a Butler matrix

    NASA Astrophysics Data System (ADS)

    Renkwitz, T.; Singer, W.; Latteck, R.; Rapp, M.

    2011-08-01

    The Leibniz-Institute of Atmospheric Physics (IAP) in Kühlungsborn started to install a new MST radar on the North-Norwegian island Andøya (69.30° N, 16.04° E) in 2009. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the previous ALWIN radar which has been successfully operated for more than 10 years. The MAARSY radar provides increased temporal and spatial resolution combined with a flexible sequential point-to-point steering of the radar beam. To increase the spatiotemporal resolution of the observations a 16-port Butler matrix has been built and implemented to the radar. In conjunction with 64 Yagi antennas of the former ALWIN antenna array the Butler matrix simultaneously provides 16 individual beams. The beam forming capability of the Butler matrix arrangement has been verified observing the galactic cosmic radio noise of the supernova remnant Cassiopeia A. Furthermore, this multi beam configuration has been used in passive experiments to estimate the cosmic noise absorption at 53.5 MHz during events of enhanced solar and geomagnetic activity as indicators for enhanced ionization at altitudes below 90 km. These observations are well correlated with simultaneous observations of corresponding beams of the co-located imaging riometer AIRIS (69.14° N, 16.02° E) at 38.2 MHz. In addition, enhanced cosmic noise absorption goes along with enhanced electron densities at altitudes below about 90 km as observed with the co-located Saura MF radar using differential absorption and differential phase measurements.

  18. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  19. Differential Influences of Ethanol on Early Exposure to Racemic Methylphenidate Compared with Dexmethylphenidate in Humans

    PubMed Central

    Straughn, Arthur B.; Reeves, Owen T.; Bernstein, Hilary; Bell, Guinevere H.; Anderson, Erica R.; Malcolm, Robert J.

    2013-01-01

    Enantioselective hydrolysis of oral racemic methylphenidate (dl-MPH) by carboxylesterase 1 (CES1) limits the absolute bioavailability of the pharmacologically active d-MPH isomer to approximately 30% and that of the inactive l-MPH to only 1–2%. Coadministration of dl-MPH with ethanol results in elevated d-MPH plasma concentrations accompanied by CES1-mediated enantioselective transesterification of l-MPH to l-ethylphenidate (EPH). The present study tested the hypothesis that administration of the pure isomer dexmethylphenidate (d-MPH) will overcome the influence of ethanol on d-MPH absorption by eliminating competitive CES1-mediated presystemic metabolism of l-MPH to l-EPH. Twenty-four healthy volunteers received dl-MPH (0.3 mg/kg) or d-MPH (0.15 mg/kg), with or without ethanol (0.6 g/kg). During the absorption phase of dl-MPH, concomitant ethanol significantly elevated d-MPH plasma concentrations (44–99%; P < 0.005). Furthermore, immediately following the ethanol drink the subjective effects of “high,” “good,” “like,” “stimulated,” and overall “effect” were significantly potentiated (P ≤ 0.01). Plasma l-EPH concentrations exceeded those of l-MPH. Ethanol combined with pure d-MPH did not elevate plasma d-MPH concentrations during the absorption phase, and the ethanol-induced potentiation of subjective effects was delayed relative to dl-MPH-ethanol. These findings are consistent with l-MPH competitively inhibiting presystemic CES1 metabolism of d-MPH. Ethanol increased the d-MPH area under the curve (AUC)0-inf by 21% following dl-MPH (P < 0.001) and 14% for d-MPH (P = 0.001). In men receiving d-MPH-ethanol, the d-MPH absorption partial AUC0.5–2 hours was 2.1 times greater and the time to maximum concentration (Tmax) occurred 1.1 hours earlier than in women, consistent with an increased rate of d-MPH absorption reducing hepatic extraction. More rapid absorption of d-MPH carries implications for increased abuse liability. PMID:23104969

  20. Pastes: what do they contain? How do they work?

    PubMed

    Juch, R D; Rufli, T; Surber, C

    1994-01-01

    Pastes are semisolid stiff preparations containing a high proportion of finely powdered material. Powders such as zinc oxide, titanium dioxide, starch, kaolin or talc are incorporated in high concentrations into a preferably lipophilic, greasy vehicle. A clinically distinctive feature which is generally attributed to pastes is the quality to absorb exudates by nature of the powder or other absorptive components. Reviewing the various pharmacopoeias serious doubts arise from the various formulas of pastes and their absorptive features. The zinc oxide pastes of the USP XXII, the DAB 10 and BP 88 (US, German and British pharmacopoeias). are composed of petrolatum, zinc oxide and starch. Petrolatum, a highly lipophilic, water-immiscible vehicle surrounds the powder particles preventing any absorption of water or exudates. The goal of our investigation was to test a simple experimental setting to characterize the clinically important absorptive feature of powders and pastes. The absorptive features of the powders were determined by the method of Enslin. The absorptive features of the paste preparations were calculated from the weight difference between the paste preparation before and after incubation with water using a simple standardized procedure. The absorptive features of titanium dioxide, zinc oxide, kaolin, corn starch and methylcellulose powder in pharmacopoeia quality were determined. Zinc oxide and kaolin powder showed the highest absorption of 1,000 mg water/g powder (100%). The water absorption of corn starch and titanium dioxide was 700 and 450 mg/g powder, respectively. The absorptive features of a series of paste preparations were studied in a simple experimental setting. The data show that two-phase pastes consisting of two immiscible components, one (the dispersed or inner phase; powder) being suspended in the other (the continuous or outer phase; lipophilic vehicle), have no absorptive features. In contrast, three-phase pastes consisting of a hydrophilic two-phase emulsion with high concentrations of incorporated powder (cream pastes) show considerable water uptake. We conclude that the classical two-phase pastes such as the zinc oxide pastes have no absorptive features. On the contrary, these formulations are highly occlusive. Therefore lipophilic pastes are only indicated when protection of intact skin against aggressive body exudates and humidity is required. The hydrophilic three-phase pastes or cream pastes show considerable water uptake and fulfil common expectations of pastes to dry the skin.

  1. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs.

    PubMed

    Gurunath, S; Nanjwade, Baswaraj K; Patila, P A

    2014-07-01

    Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2-2%). Gibbs free energy [Formula: see text] values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability.

  2. Enhanced solubility and intestinal absorption of candesartan cilexetil solid dispersions using everted rat intestinal sacs

    PubMed Central

    Gurunath, S.; Nanjwade, Baswaraj K.; Patila, P.A.

    2013-01-01

    Objective Candesartan cilexetil (CAN) is a poor aqueous soluble compound and a P-glycoprotein (P-gp) efflux pump substrate. These key factors are responsible for its incomplete intestinal absorption. Methods In this study, we investigated to enhance the absorption of CAN by improving its solubility and inhibiting intestinal P-gp activity. A phase solubility method was used to evaluate the aqueous solubility of CAN in PVP K30 (0.2–2%). Gibbs free energy (ΔGtro) values were all negative. Solubility was enhanced by the freeze drying technique. The in vitro dissolution was evaluated using the USP paddle method. The interaction between drug and carrier was evaluated by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) studies. Naringin was selected as P-gp inhibitor. Absorption studies were performed using the everted gut sac model from rat jejunum. The drug analysis was performed by HPLC. Results FTIR spectra revealed no interaction between drug and PVP K30. From XRD and DSC data, CAN was in the amorphous form, which explains the cumulative release of drug from its prepared systems. We noticed an enhancement of CAN absorption by improving its solubility and inhibiting the P-gp activity. The significant results (p < 0.05) were obtained for freeze dried solid dispersions in the presence of P-gp inhibitor than without naringin (15 mg/kg) with an absorption enhancement of 8-fold. Conclusion Naringin, a natural flavonoid, has no undesirable side effects. Therefore, it could be employed as an excipient in the form of solid dispersions to increase CAN intestinal absorption and its oral bioavailability. PMID:25067902

  3. Mechanical Energy and Propulsion in Ergometer Double Poling by Cross-country Skiers.

    PubMed

    Danielsen, Jørgen; Sandbakk, Øyvind; Holmberg, Hans-Christer; Ettema, Gertjan

    2015-12-01

    This study aims to investigate fluctuations in total mechanical energy of the body (Ebody) in relation to external ergometer work (Werg) during the poling and recovery phases of simulated double-poling cross-country skiing. Nine male cross-country skiers (mean ± SD age, 24 ± 5 yr; mean ± SD body mass, 81.7 ± 6.5 kg) performed 4-min submaximal tests at low-intensity, moderate-intensity, and high-intensity levels and a 3-min all-out test on a ski ergometer. Motion capture analysis and load cell recordings were used to measure body kinematics and dynamics. From these, Werg, Ebody (sum of the translational, rotational, and gravitational potential energies of all segments), and their time differentials (power P) were calculated. Ptot--the rate of energy absorption or generation by muscles-tendons--was defined as the sum of Pbody and Perg. Ebody showed large fluctuations over the movement cycle, decreasing during poling and increasing during the recovery phase. The fluctuation in Pbody was almost perfectly out of phase with Perg. Some muscle-tendon energy absorption was observed at the onset of poling. For the rest of poling and throughout the recovery phase, muscles-tendons generated energy to do Werg and to increase Ebody. Approximately 50% of cycle Ptot occurred during recovery for all intensity levels. In double poling, the extensive contribution of the lower extremities and trunk to whole-body muscle-tendon work during recovery facilitates a "direct" transfer of Ebody to Werg during the poling phase. This observation reveals that double poling involves a unique movement pattern different from most other forms of legged terrestrial locomotion, which are characterized primarily by inverted pendulum or spring-mass types of movement.

  4. The gas-phase absorption spectrum of a neutral GFP model chromophore.

    PubMed

    Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H

    2007-01-01

    We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.

  5. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  6. Scalable, large area compound array refractive lens for hard X-rays

    NASA Astrophysics Data System (ADS)

    Reich, Stefan; dos Santos Rolo, Tomy; Letzel, Alexander; Baumbach, Tilo; Plech, Anton

    2018-04-01

    We demonstrate the fabrication of a 2D Compound Array Refractive Lens (CARL) for multi-contrast X-ray imaging. The CARL consists of six stacked polyimide foils with each displaying a 2D array of lenses with a 65 μm pitch aiming for a sensitivity on sub-micrometer structures with a (few-)micrometer resolution in sensing through phase and scattering contrast at multiple keV. The parabolic lenses are formed by indents in the foils by a paraboloid needle. The ability for fast single-exposure multi-contrast imaging is demonstrated by filming the kinetics of pulsed laser ablation in liquid. The three contrast channels, absorption, differential phase, and scattering, are imaged with a time resolution of 25 μs. By changing the sample-detector distance, it is possible to distinguish between nanoparticles and microbubbles.

  7. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  8. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  9. Triple-Pulse Integrated Path Differential Absorption Lidar for Carbon Dioxide Measurement - Novel Lidar Technologies and Techniques with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  10. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process.

    PubMed

    Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji

    2016-04-01

    The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of gastric pH on the oral absorption of poorly water-soluble drugs were consistent with observations in humans. In conclusion, the D/P system with the gastric phase may be a useful tool for better predicting the oral absorption of poorly water-soluble basic drugs. In addition, the effects of gastric pH on the oral absorption of poorly water-soluble drugs may be evaluated by the D/P system with and without the gastric phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  12. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).

    PubMed

    Li, Yalong; Zhang, Xiaoxing; Li, Xin; Cui, Zhaolun; Xiao, Hai

    2018-01-01

    Air-insulated switchgear cabinets play a role in the protection and control of the modern power grid, and partial discharge (PD) switchgear is a long-term process in the non-normal operation of one of the situations; thus, condition monitoring of the switchgear is important. The air-insulated switchgear during PD enables the decomposition of air components, namely, O 3 and NO. A set of experimental platforms was designed on the basis of the principle of ultraviolet differential optical absorption spectroscopy (UV-DOAS) to detect O 3 and NO concentrations in air-insulated switchgear. Differential absorption algorithm and wavelet transform were used to extract effective absorption spectra; a linear relationship between O 3 and NO concentrations and absorption spectrum data were established. O 3 detection linearity was up to 0.9992 and the detection limit was at 3.76 ppm. NO detection linearity was up to 0.9990 and the detection limit was at 0.64 ppm. Results indicate that detection platform is suitable for detecting trace O 3 and NO gases produced by PD of the air-insulated switchgear.

  13. Step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions.

    PubMed

    Liu, Lixian; Mandelis, Andreas; Huan, Huiting; Michaelian, Kirk H

    2017-04-01

    The determination of small absorption coefficients of trace gases in the atmosphere constitutes a challenge for analytical air contaminant measurements, especially in the presence of strongly absorbing backgrounds. A step-scan differential Fourier transform infrared photoacoustic spectroscopy (DFTIR-PAS) method was developed to suppress the coherent external noise and spurious photoacoustic (PA) signals caused by strongly absorbing backgrounds. The infrared absorption spectra of acetylene (C2H2) and local air were used to verify the performance of the step-scan DFTIR-PAS method. A linear amplitude response to C2H2 concentrations from 100 to 5000 ppmv was observed, leading to a theoretical detection limit of 5 ppmv. The differential mode was capable of eliminating the coherent noise and dominant background gas signals, thereby revealing the presence of the otherwise hidden C2H2 weak absorption. Thus, the step-scan DFTIR-PAS modality was demonstrated to be an effective approach for monitoring weakly absorbing gases with absorption bands overlapped by strongly absorbing background species.

  14. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  15. Fourier transform infrared spectroscopic analysis of cell differentiation

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Kimura, Akinori; Kushibiki, Toshihiro; Awazu, Kunio

    2007-02-01

    Stem cells and its differentiations have got a lot of attentions in regenerative medicine. The process of differentiations, the formation of tissues, has become better understood by the study using a lot of cell types progressively. These studies of cells and tissue dynamics at molecular levels are carried out through various approaches like histochemical methods, application of molecular biology and immunology. However, in case of using regenerative sources (cells, tissues and biomaterials etc.) clinically, they are measured and quality-controlled by non-invasive methods from the view point of safety. Recently, the use of Fourier Transform Infrared spectroscopy (FT-IR) has been used to monitor biochemical changes in cells, and has gained considerable importance. The objective of this study is to establish the infrared spectroscopy of cell differentiation as a quality control of cell sources for regenerative medicine. In the present study, as a basic study, we examined the adipose differentiation kinetics of preadipocyte (3T3-L1) and the osteoblast differentiation kinetics of bone marrow mesenchymal stem cells (Kusa-A1) to analyze the infrared absorption spectra. As a result, we achieved to analyze the adipose differentiation kinetics using the infrared absorption peak at 1739 cm-1 derived from ester bonds of triglyceride and osteoblast differentiation kinetics using the infrared absorption peak at 1030 cm-1 derived from phosphate groups of calcium phosphate.

  16. Diode laser differential absorption spectrometry for measurements of some parameters of condensed media.

    PubMed

    Liger, V V; Bolshov, M A; Kuritsyn, Yu A; Krivtsun, V M; Zybin, A V; Niemax, K

    2007-04-01

    A method of diode laser differential absorption spectrometry (DLDAS) is proposed. The method is based on the detection of absorption spectra variations caused by the changes of a parameter of a condensed media (temperature, composition of the components of a mixture, pH, etc.). Some simple theoretical background of the proposed technique is presented. The potentialities of the method are demonstrated in the experiments on remote contactless measurement of the temperature of aqueous solutions and measurement of the deviations of the composition of a mixture of dyes from the equilibrium state.

  17. Optical remote measurement of toxic gases

    NASA Technical Reports Server (NTRS)

    Grant, W. B.; Kagann, R. H.; McClenny, W. A.

    1992-01-01

    Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.

  18. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  19. Combining the absorptive and radiative loss in metasurfaces for multi-spectral shaping of the electromagnetic scattering.

    PubMed

    Pan, Wenbo; Huang, Cheng; Pu, Mingbo; Ma, Xiaoliang; Cui, Jianhua; Zhao, Bo; Luo, Xiangang

    2016-02-19

    The absorptive and radiative losses are two fundamental aspects of the electromagnetic responses, which are widely occurring in many different systems such as waveguides, solar cells, and antennas. Here we proposed a metasurface to realize the control of the absorptive and radiative loss and to reduce the radar cross section (RCS) in multi-frequency bands. The anti-phase gradient and absorptive metasurfaces were designed that consists of metallic square patch and square loop structure inserted with resistors, acting as an phase gradient material in the X and Ku band, while behaving as an absorber in the S band. The simulation and experiment results verified the double-band, wideband and polarization-independent RCS reduction by the absorptive and anti-phase gradient metasurfaces.

  20. Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3

    NASA Astrophysics Data System (ADS)

    Kadlec, C.; Goian, V.; Rushchanskii, K. Z.; Kužel, P.; Ležaić, M.; Kohn, K.; Pisarev, R. V.; Kamba, S.

    2011-11-01

    Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability μa [H(ω) oriented within the hexagonal plane] below the Néel temperature TN. This excitation softens from 41 to 32 cm-1 upon heating and finally disappears above TN. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity ɛc within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases upon heating toward room temperature, thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both ɛc and ɛa spectra, and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons, however their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon-paramagnon differential absorption processes. The latter is enabled by strong short-range in-plane spin correlations in the paramagnetic phase.

  1. Controlled delivery of basal insulin from phase-sensitive polymeric systems after subcutaneous administration: in vitro release, stability, biocompatibility, in vivo absorption, and bioactivity of insulin.

    PubMed

    Al-Tahami, Khaled; Oak, Mayura; Singh, Jagdish

    2011-06-01

    The purpose of this study was to investigate the phase-sensitive delivery systems (D,L-polylactide in triacetin) for controlled delivery of insulin at basal level. The effect of varying concentration of zinc, polymer, and insulin on the in vitro release of insulin was evaluated. Stability of released insulin was investigated by differential scanning calorimetry, circular dichroism, and matrix-assisted laser desorption/ionization time of flight mass spectrometry. In Vivo insulin absorption and bioactivity were studied in diabetic rats. In vitro and In Vivo biocompatibility of delivery systems were evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and skin histology, respectively. Extended release profiles of insulin for 2, 4, and 8 weeks from delivery systems containing 20%, 30%, and 40% (w/v) polymer concentration was observed. A ratio of 1:5 insulin hexamer to zinc was shown to be optimum. Physical and chemical stability of released insulin was greatly conserved. In Vivo studies demonstrated controlled release of insulin with reduction in blood glucose for approximately 1 month. In vitro and In Vivo studies demonstrated that the delivery system was biocompatible and controlled the delivery of insulin for longer durations after single subcutaneous injection. Copyright © 2010 Wiley-Liss, Inc.

  2. Mini-DIAL system measurements coupled with multivariate data analysis to identify TIC and TIM simulants: preliminary absorption database analysis.

    NASA Astrophysics Data System (ADS)

    Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.

    2017-01-01

    Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.

  3. Thermal luminescence spectroscopy chemical imaging sensor.

    PubMed

    Carrieri, Arthur H; Buican, Tudor N; Roese, Erik S; Sutter, James; Samuels, Alan C

    2012-10-01

    The authors present a pseudo-active chemical imaging sensor model embodying irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. We elaborate on various optimizations, simulations, and animations of the integrated sensor design and apply it to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor must measure and process a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.

  4. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  5. Interpretation of the prominence differential emissions measure for 3 geometries

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Orrall, F. Q.

    1986-01-01

    Researchers have used prominence extreme ultraviolet line intensities observed from Skylab to derive the differential emission measure Q(T) in the prominence-corona (PC) interface from 3 x 10,000 to 3 times 1 million K, including the effects of Lyman Continuum absorption. Using lines both shortward and longward of the Lyman limit, researchers have estimated the importance of absorption as function of temperature. The magnitude of the absorption, as well as its rate of increase as a function of temperature, place limits on the thread scales and the character of the interfilar medium. Researchers have calculated models based on three assumed geometries: (1) threads with hot sheaths and cool cores; (2) isothermal threads; and (3) threads with longitudinal temperature gradients along the magnetic field. Comparison of the absorption computed from these models with the observed absorption in prominences shows that none of the geometries is totally satisfactory.

  6. Lidar/DIAL detection of bomb factories

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Puiu, Adriana; Rosa, Olga; Palucci, Antonio

    2013-10-01

    One of the aims of the project BONAS (BOmb factory detection by Networks of Advanced Sensors) is to develop a lidar/DIAL (differential absorption lidar) to detect precursors employed in the manufacturing of improvised explosive devices (IEDs). At first, a spectroscopic study has been carried out: the infrared (IR) gas phase spectrum of acetone, one of the more important IED precursors, has been procured from available databases and checked with cell measurements. Then, the feasibility of a lidar/DIAL for the detection of acetone vapors has been shown in laboratory, simulating the experimental conditions of a field campaign. Eventually, having in mind measurements in a real scenario, an interferent study has been performed, looking for all known compounds that share with acetone IR absorption in the spectral band selected for its detection. Possible interfering species were investigated, simulating both urban and industrial atmospheres and limits of acetone detection in both environments were identified. This study confirmed that a lidar/DIAL can detect low concentration of acetone at considerable distances.

  7. Effectiveness of X-ray grating interferometry for non-destructive inspection of packaged devices

    NASA Astrophysics Data System (ADS)

    Uehara, Masato; Yashiro, Wataru; Momose, Atsushi

    2013-10-01

    It is difficult to inspect packaged devices such as IC packages and power modules because the devices contain various components, such as semiconductors, metals, ceramics, and resin. In this paper, we demonstrated the effectiveness of X-ray grating interferometry (XGI) using a laboratory X-ray tube for the industrial inspection of packaged devices. The obtained conventional absorption image showed heavy-elemental components such as metal wires and electrodes, but the image did not reveal the defects in the light-elemental components. On the other hand, the differential phase-contrast image obtained by XGI revealed microvoids and scars in the encapsulant of the samples. The visibility contrast image also obtained by XGI showed some cracks in the ceramic insulator of power module sample. In addition, the image showed the silicon plate surrounded by the encapsulant having the same X-ray absorption coefficient. While these defects and components are invisible in the conventional industrial X-ray imaging, XGI thus has an attractive potential for the industrial inspection of the packaged devices.

  8. Anisotropy of band gap absorption in TlGaSe2 semiconductor by ferroelectric phase transformation

    NASA Astrophysics Data System (ADS)

    Gulbinas, Karolis; Grivickas, Vytautas; Gavryushin, Vladimir

    2014-12-01

    The depth-resolved free-carrier absorption and the photo-acoustic response are used to examine the band-gap absorption in 2D-TlGaSe2 layered semiconductor after its transformation into the ferroelectric F-phase below 107 K. The absorption exhibits unusual behavior with a biaxial character in respect to the light polarization on the layer plane. A spectral analysis shows that the anisotropy is associated to the lowest Γ-direct optical transition. The Γ-absorption and the localized exciton at 2.11 eV are dipole-prohibited or partially allowed in two nearly perpendicular polarization directions. The shift of anisotropy axis in respect to crystallographic a- and b-directions demonstrates the non-equivalent zigzag rearrangement of the interlayer connecting Tl+ ions, which is responsible for occurrence of the F-phase.

  9. Near-infrared tunable multiple broadband perfect absorber base on VO2 semi-shell arrays photonic microstructure and gold reflector

    NASA Astrophysics Data System (ADS)

    Liang, Jiran; Li, Peng; Zhou, Liwei; Guo, Jinbang; Zhao, Yirui

    2018-01-01

    We proposed a metamaterial absorber which is aimed to achieve a multiple broadband absorption and tunable absorption peak in the near-infrared region. The absorber is based on VO2 semi-shell coated on the top of silica nano-particle array supported on the gold-reflective layer. Measured results show that the absorber has the multiple broadband with the absorption magnitudes more than 95% in the near infrared region. The absorption peaks can be tuned through the VO2 phase transition from metallic phase to insulator phase in the short wavelength (before λ = 1500 nm), when VO2 is at the metallic state, an absorption band appears in the long wavelength (after λ = 1500 nm). The simulation results closely match those of measured. The absorption intensity becomes stronger and absorption peaks have red shift with the increase of thickness of VO2 semi-shell. Thus, this designed tunable absorption intensity and position absorber based on VO2 can be a good choice for enhancing the performance of multiple band, this would be beneficial to the field of photo detectors, sensor and solar cell.

  10. Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry.

    PubMed

    Sperling, M; Yin, X; Welz, B

    1992-03-01

    A rapid, sensitive and selective method for the differential determination of CrIII and CrVI in natural waters is described. Chromium(vi) can be determined directly by flow injection on-line sorbent extraction preconcentration coupled with electrothermal atomic absorption spectrometry using sodium diethyldithiocarbamate as the complexing agent and C18 bonded silica reversed-phase sorbent as the column material. Total Cr can be determined after oxidation of CrIII to CrVI by potassium peroxydisulfate. Chromium(III) can be calculated by difference. The optimum conditions for sorbent extraction of CrVI and oxidation of CrIII to CrVI are evaluated. A 12-fold enhancement in sensitivity compared with direct introduction of 40 microliters samples was achieved after preconcentration for 60 s, giving detection limits of 16 ng l-1 for CrVI and 18 ng l-1 for total Cr (based on 3 sigma). Results obtained for sea-water and river water reference materials were all within the certified range for total Cr with a precision of better than 10% relative standard deviation in the range 100-200 ng l-1. The selectivity of the determination of CrVI was evaluated by analysing spiked reference materials in the presence of CrIII, resulting in quantitative recovery of CrVI.

  11. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    PubMed

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  12. Sun protection enhancement of titanium dioxide crystals by the use of carnauba wax nanoparticles: the synergistic interaction between organic and inorganic sunscreens at nanoscale.

    PubMed

    Villalobos-Hernández, J R; Müller-Goymann, C C

    2006-09-28

    Carnauba wax is partially composed of cinnamates. The rational combination of cinnamates and titanium dioxide has shown a synergistic effect to improve the sun protection factor (SPF) of cosmetic preparations. However, the mechanism of this interaction has not been fully understood. In this study, an ethanolic extract of the carnauba wax and an ethanolic solution of a typical cinnamate derivative, ethylcinnamate, were prepared and their UV absorption and SPF either alone or in the presence of titanium dioxide were compared. The titanium dioxide crystals and the cinnamates solutions were also distributed into a matrix composed of saturated fatty acids to emulate the structure of the crystallized carnauba wax. SPF, differential scanning calorimetry (DSC) and X-ray studies of these matrices were performed. Additionally, carnauba wax nanosuspensions containing titanium dioxide either in the lipid phase or in the aqueous phase were prepared to evaluate their SPFs and their physical structure. Strong UV absorption was observed in diluted suspensions of titanium dioxide after the addition of cinnamates. The saturated fatty acid matrices probably favored the adsorption of the cinnamates at the surface of titanium dioxide crystals, which was reflected by an increase in the SPF. No modification of the crystal structure of the fatty acid matrices was observed after the addition of cinnamates or titanium dioxide. The distribution of the titanium dioxide inside the lipid phase of the nanosuspensions was more effective to reach higher SPFs than that at the aqueous phase. The close contact between the carnauba wax and the titanium dioxide crystals after the high-pressure homogenization process was confirmed by transmission electron microscopy (TEM).

  13. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury.

    PubMed

    Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A

    2010-12-01

    Greater total energy absorption by the lower extremity musculature during landing may reduce stresses placed on capsuloligamentous tissues with differences in joint contributions to energy absorption potentially affecting anterior cruciate ligament injury risk. However, the relationships between energy absorption and prospectively identified biomechanical factors associated with non-contact anterior cruciate ligament injury have yet to be demonstrated. Sagittal plane total, hip, knee and ankle energy absorption, and peak vertical ground reaction force, anterior tibial shear force, knee flexion and knee valgus angles, and internal hip extension and knee varus moments were measured in 27 individuals (14 females, 13 males) performing double leg jump landings. Correlation coefficients assessed the relationships between energy absorption during three time intervals (initial impact phase, terminal phase, and total landing) and biomechanical factors related to anterior cruciate ligament injury. More favorable values of biomechanical factors related to non-contact anterior cruciate ligament injury were associated with: 1) Lesser total (R(2)=0.178-0.558), hip (R(2)=0.229-0.651) and ankle (R(2)=0.280), but greater knee (R(2)=0.147) energy absorption during the initial impact phase; 2) Greater total (R(2)=0.170-0.845), hip (R(2)=0.599), knee (R(2)=0.236-0.834), and ankle (R(2)=0.276) energy absorption during the terminal phase of landing; and 3) Greater knee (R(2)=0.158-0.709), but lesser hip (R(2)=0.309) and ankle (R(2)=0.210-0.319) energy absorption during the total landing period. These results suggest that biomechanical factors related to anterior cruciate ligament injury are influenced by both the magnitude and timing of lower extremity energy absorption during landing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  15. Inhibition of linear absorption in opaque materials using phase-locked harmonic generation.

    PubMed

    Centini, Marco; Roppo, Vito; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-09-12

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

  16. Multinucleon pion absorption on {sup 4}He into the pppn final state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, A.; Backenstoss, G.; Koehler, J.

    1997-10-01

    Results from a 4{pi} solid angle measurement of the reaction {pi}{sup +4}He{r_arrow}pppn at incident pion energies of T{sub {pi}{sup +}}= 70, 118, 162, 239, and 330 MeV are presented. Integrated cross sections are given for the reactions where three nucleons participate, leading to energetic (ppp) or (ppn) final states, and for states where four nucleons are involved (pppn). The two three-nucleon absorption modes were investigated in particular, and an energy dependent isospin ratio of the cross sections of {sigma}{sub ppn}/ {sigma}{sub ppp}=3.6{plus_minus}1.3, 2.6 {plus_minus}0.5, 1.8{plus_minus}0.3, 1.4{plus_minus} 0.2, and 1.8{plus_minus}0.6 was determined from 70 to 330 MeV. The differential cross sectionsmore » were described by a complete set of eight independent variables and compared to simple cascade and phase space models. From this analysis the contributions from initial state interactions to the multinucleon absorption cross sections were found to be more important at higher pion energies, while those from final state interactions are stronger at lower energies. However, both mechanisms combined were found to account for not more than one-third of the total pppn multinucleon yield. The remaining strength is reasonably well reproduced by phase space models, but shows a dependence on the incident pion{close_quote}s orbital angular momentum. The isospin structure of the (ppp) and (ppn) final states is not understood, nor are some structures in their distributions. The four-nucleon yield (pppn) was found to be weak (1{endash}8{percent} of the total absorption cross section) and shows no evidence for a {open_quotes}double- {Delta}{close_quotes} excitation. {copyright} {ital 1997} {ital The American Physical Society}« less

  17. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations.

    PubMed

    Deng, Jiushuai; Li, Shimei; Zhou, Yuanyuan; Liang, Luyang; Zhao, Biao; Zhang, Xi; Zhang, Rui

    2018-01-01

    Core-shell flower-like composites were successfully prepared by a simple polyol method. These composites were formed by coating dual-phased (face-centered cubic [fcc] and hexagonal close-packed [hcp]) Co with amorphous CoO nanosheets. The microwave absorption properties of the flower-like Co@CoO paraffin composites with various Co@CoO amounts were then investigated. Results showed that the paraffin-based composite containing 70wt% flower-like Co@CoO displayed excellent microwave absorption properties (R E =24.74dB·GHz/mm). The minimum reflection loss of -30.4dB was obtained at 16.1GHz with a small thickness of 1.5mm, and 1.5mm bandwidth reached 4.6GHz (13.4-18GHz) below -10dB (90% microwave absorption). The excellent microwave absorption properties of flower-like Co@CoO are attributed to the synergetic effect between magnetic loss and dielectric loss, and the magnetic loss makes a main contribution to absorption. The core-shell flower-like structures with dual Co phases also contributed to microwave absorption. The amorphous CoO nanosheets were able to generate multiple reflections and exhibit scattering. In addition, the novel absorption mechanism that enhanced interfacial polarization was proposed. This enhancement resulted from the presence of interfaces between the hcp and fcc phases and between the core-shell Co@CoO composites. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Microstructure and hydrogenation properties of a melt-spun non-stoichiometric Zr-based Laves phase alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Yunlong; Li, Jinshan

    2016-01-15

    Alloy with composition of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} off normal stoichiometric proportion is selected to investigate the effect of defects introduced by non-stoichiometry on hydrogenation kinetics of Zr–Ti–V Laves phase alloys. Microstructure and phase constituent of melt-spun ribbons have been investigated in this work. The activation process, hydrogenation kinetics, thermodynamics characteristics and hydride phase constituent of as-cast alloy and melt-spun ribbons are also compared. Comparing with the as-cast alloy, the dominant Laves phase ZrV{sub 2} is preserved, V-BCC phase is reduced and α-Zr phase is replaced by a small amount of Zr{sub 3}V{sub 3}O phase in melt-spun ribbons. Melt-spun ribbonsmore » exhibit easy activation and fast initial hydrogen absorption on account of the increased specific surface area. However, the decrease in unit cell volume of the dominant phase leads to the decrease in hydrogen absorption capacity. Melt-spinning technique raises the equilibrium pressure and decreases the stability of hydride due to the decrease of unit cell volume and the elimination of α-Zr phase, respectively. Melt-spun ribbons with fine grains show improved hydrogen absorption kinetics comparing with that of the as-cast alloy. Meanwhile, the prevalent micro twins observed within melt-spun ribbons are believed to account for the improved hydrogen absorption kinetics. - Highlights: • Role of defects on hydrogenation kinetics of Zr-based alloys is proposed. • Microstructure and hydrogenation properties of as-cast/melt-spun alloy are compared. • Melt-spinning technique improves the hydrogenation kinetics of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} alloy. • Refined grains and twin defects account for improved hydrogen absorption kinetics.« less

  19. Characterization of histological subtypes of clear cell renal cell carcinoma using contrast-enhanced ultrasound (CEUS).

    PubMed

    Reimann, R; Rübenthaler, J; Hristova, P; Staehler, M; Reiser, M; Clevert, D A

    2015-10-16

    The aim of this study was to analyze the histological subtypes of clear cell renal cell carcinoma (RCC) examined by means of contrast-enhanced ultrasound (CEUS) and a second generation blood pool agent (SonoVue®, Bracco, Milan, Italy) during the pre-operative phase. 29 patients with histologically proven subtypes of clear cell RCC were examined. A total of three patients were diagnosed with highly differentiated clear cell RCC, 21 out of 29 cases with moderately differentiated clear cell RCC and five out of 29 patients had insufficiently differentiated clear cell RCC. An experienced radiologist examined the patients with CEUS. The following parameters were analyzed: maximum signal intensity (PEAK), time elapsed until PEAK is reached (MTT), local blood flow (RBF), area under the time intensity curve (AUC) and the signal intensity (SI) during the course of time. For the groups all comparisons are made based on healthy renal parenchyma. In the clear cell RCC significant differences (significance level p < 0.05) between cancerous tissue and the healthy renal parenchyma were noticed in all four parameters. Therefore, the clear cell RCC stands out due to its reduced blood volume. However, it reached the PEAK reading relatively rapidly and its signal intensity was always lower than that of the healthy renal parenchyma. In the arterial phase retarded absorption of the contrast agent was observed, followed by fast washing out of the contrast agent bubbles.In all three histological subgroups no significant differences were noticed in PEAK and SI. However, the diagrams showed the possible bias, that the group of the insufficiently differentiated clear cell RCC had the highest PEAK-value and the highest signal intensity when compared with highly and moderately differentiated clear cell RCC. Our study suggests that CEUS may be an additional tool for non-invasive characterisation and differentiation of the three histological subtypes of clear cell RCC. Furthermore, it seems to have an additional diagnostic value in daily clinical.

  20. The capability of fluoroscopic systems to determine differential Roentgen-ray absorption

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Crepeau, R. L.

    1975-01-01

    A clinical fluoroscopic unit used in conjunction with a TV image digitization system was investigated to determine its capability to evaluate differential absorption between two areas in the same field. Fractional contrasts and minimum detectability for air, several concentrations of Renografin-60, and aluminum were studied using phantoms of various thicknesses. Results showed that the videometric response, when treated as contrast, shows a linear response with absorber thickness up to considerable thicknesses.

  1. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong

    2017-11-01

    Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.

  2. Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis.

    PubMed

    Chong, B E; Hamler, R L; Lubman, D M; Ethier, S P; Rosenspire, A J; Miller, F R

    2001-03-15

    Nonporous (NPS) RP-HPLC has been used to rapidly separate proteins from whole cell lysates of human breast cell lines. The nonporous separation involves the use of hard-sphere silica beads of 1.5-microm diameter coated with C18, which can be used to separate proteins ranging from 5 to 90 kDa. Using only 30-40 microg of total protein, the protein molecular weights are detectable on-line using an ESI-oaTOF MS. Of hundreds of proteins detected in this mass range, approxinately 75-80 are more highly expressed. The molecular weight profiles can be displayed as a mass map analogous to a virtual "1-D gel" and differentially expressed proteins can be compared by image analysis. The separated proteins can also be detected by UV absorption and differentially expressed proteins quantified. The eluting proteins can be collected in the liquid phase and the molecular weight and peptide maps determined by MALDI-TOF MS for identification. It is demonstrated that the expressed protein profiles change during neoplastic progression and that many oncoproteins are readily detected. It is also shown that the response of premalignant cancer cells to estradiol can be rapidly screened by this method, demonstrating significant changes in response to an external agent. Ultimately, the proteins can be studied by peptide mapping to search for posttranslational modifications of the oncoproteins accompanying progression.

  3. Effect of thermal radiation and suction on convective heat transfer of nanofluid along a wedge in the presence of heat generation/absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasmani, Ruhaila Md; Bhuvaneswari, M.; Sivasankaran, S.

    2015-10-22

    An analysis is presented to find the effects of thermal radiation and heat generation/absorption on convection heat transfer of nanofluid past a wedge in the presence of wall suction. The governing partial differential equations are transformed into a system of ordinary differential equations using similarity transformation. The resulting system is solved numerically using a fourth-order Runge–Kutta method with shooting technique. Numerical computations are carried out for different values of dimensionless parameters to predict the effects of wedge angle, thermophoresis, Brownian motion, heat generation/absorption, thermal radiation and suction. It is found that the temperature increases significantly when the value of themore » heat generation/absorption parameter increases. But the opposite observation is found for the effect of thermal radiation.« less

  4. The variable stellar wind of Rigel probed at high spatial and spectral resolution

    NASA Astrophysics Data System (ADS)

    Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.

    2014-06-01

    Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures. Based on observations collected at the European Southern Observatory (ESO Programmes 078.D-0355 and 084.D-0393) and at the Observatorio Cerro Armazones (OCA) in Chile.Appendices are available in electronic form at http://www.aanda.orgReduced BESO data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A125

  5. Real-space study of the optical absorption in alternative phases of silicon

    NASA Astrophysics Data System (ADS)

    Ong, Chin Shen; Coh, Sinisa; Cohen, Marvin L.; Louie, Steven G.

    2017-12-01

    We introduce a real-space approach to understand the relationship between optical absorption and crystal structure. We apply this approach to alternative phases of silicon, with a focus on the Si20 crystal phase as a case study. We find that about 83% of the changes in the calculated low-energy absorption in Si20 as compared to Si in the diamond structure can be attributed to reducing the differences between the on-site energies of the bonding and antibonding orbitals as well as increasing the hopping integrals for specific Si-Si bonds.

  6. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  7. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    NASA Technical Reports Server (NTRS)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  8. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  9. Pulsed Discharge Nozzle Cavity Ring Down Spectroscopy of Cold PAH Ions

    NASA Technical Reports Server (NTRS)

    Biennier, Ludovic; Salama, Farid; Allamandola, Louis J.; Scherer, James J.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    The gas-phase electronic absorption spectra of the naphthalene (C10H8(+)) and acenaphthene (C12H10(+)) cations have been measured in the visible range in a free 10 jet planar expansion in an attempt to collect data in an astrophysically relevant environment. The direct absorption spectra of two out of four bands measured of the gas-phase cold naphthalene cation along with the gas-phase vibronic absorption spectrum of the cold acenaphthene cation are reported for the first time. The study has been carried out using the ultrasensitive and versatile technique of cavity ringdown spectroscopy (CRDS) coupled to a pulsed discharge slit nozzle (PDN). The new CRDS-PDN set up is described and its characteristics are evaluated. The direct-absorption spectra of the PAH ions are discussed and compared to the gas-phase and solid-phase data available in the literature. The analysis of the results show that cold, free flying PAH ions are generated in the argon discharge primarily through soft Penning ionization. This enables the intrinsic band profiles to be measured, a key requirement for astrophysical applications.

  10. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    PubMed

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis of TiCr2 intermetallic compound from mechanically activated starting powders via calcio-thermic co-reduction

    NASA Astrophysics Data System (ADS)

    Bayat, O.; Khavandi, A. R.; Ghasemzadeh, R.

    2017-05-01

    Effect of mechanical activation of TiO2 and Cr2O3 oxides as starting materials was investigated for direct synthesis of TiCr2. Differential thermal analysis (DTA) indicated that increasing the ball milling time resulted in lower exothermic reaction temperatures between molten Ca-Cr2O3 and molten Ca-TiO2. A model-free Kissinger type method was applied to DTA data to evaluate the reaction kinetics. The results reveal that the activation energy of the exothermic reactions decreased with increasing the milling time. The structure, oxygen content, and average particle sizes of the obtained TiCr2 product were affected by the ball milling time of the starting materials. Increasing the milling time from 10 to 40 h decreased the average particle size and oxygen content of the obtained TiCr2 from 10 to 2 μm and from 1690 to 1290 ppm, respectively. The X-ray diffraction (XRD) results showed that TiCr2 compounds with metastable bcc phase can be produced using nano-sized starting materials, while only a slight amount of bcc phase can be obtained in the TiCr2 compounds, using micron-sized starting materials. The TiCr2 obtained by this method had a hydrogen absorption capability of 0.63 wt % and the kinetics of the hydrogen absorption increased for the 40 h milled sample.

  12. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOEpatents

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  13. Absorption fluids data survey

    NASA Astrophysics Data System (ADS)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  14. Synthesis and structural characterization of CdS nanoparticles

    NASA Astrophysics Data System (ADS)

    Kotkata, M. F.; Masoud, A. E.; Mohamed, M. B.; Mahmoud, E. A.

    2009-08-01

    Amorphous CdS nanoparticles capped with cetyltrimethyl ammonium bromide (CTAB) were synthesised under various conditions using a coprecipitation method. A blue shift in the band gap was observed in the UV-visible absorption spectra indicating the formation of nanoparticles of an approximate size of 8 nm. The recorded transmission electron micrographs confirmed this result. The phase-nature, phase transformation as well as the structure of the synthesised CdS nanoparticles have been extensively characterized using X-ray diffraction (XRD), radial distribution function (RDF), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman scattering (RS) and/or heat stage X-ray diffraction (HSXRD). Analysis of the obtained results revealed that the synthesised amorphous CdS nanoparticles could be transformed into CdS nanocrystals having a zinc blende or a wurtzite structure, relying on the applied heat treatment scheme. The rate of nanocrystal growth depends on the aging period, prior filtering the reacted materials, and its relation to the quality of the capping process. Five days aging period tends to enhance the stability of the grown phase with a remarkable surface stability.

  15. Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids

    DOEpatents

    Robinson, Mark R.; Ward, Kenneth J.; Eaton, Robert P.; Haaland, David M.

    1990-01-01

    The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.

  16. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    NASA Astrophysics Data System (ADS)

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  17. Airborne differential absorption lidar system for water vapor investigations

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  18. Studies of the differential absorption rocket experiment. [to measure atmospheric electron density

    NASA Technical Reports Server (NTRS)

    Ginther, J. C.; Smith, L. G.

    1975-01-01

    Investigations of the ionosphere, in the rocket program of the Aeronomy Laboratory, include a propagation experiment, the data from which may be analyzed in several modes. This report considers in detail the differential absorption experiment. The sources of error and limitations of sensitivity are discussed. Methods of enhancing the performance of the experiment are described. Some changes have been made in the system and the improvement demonstrated. Suggestions are made for further development of the experiment.

  19. Micro-pulse, differential absorption lidar (dial) network for measuring the spatial and temporal distribution of water vapor in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Hayman, Matt; Nehrir, Amin

    2018-04-01

    The National Center for Atmospheric Research (NCAR) and Montana State Univeristy (MSU) are developing a test network of five micro-pulse differential absorption lidars to continuously measure high-vertical-resolution water vapor in the lower atmosphere. The instruments are accurate, yet low-cost; operate unattended, and eye-safe - all key features to enable the larger network needed to characterize atmospheric moisture variability which influences important processes related to weather and climate.

  20. Laser-Based Remote Sensing of Explosives by a Differential Absorption and Scattering Method

    NASA Astrophysics Data System (ADS)

    Ayrapetyan, V. S.

    2018-01-01

    A multifunctional IR parametric laser system is developed and tested for remote detection and identification of atmospheric gases, including explosive and chemically aggressive substances. Calculations and experimental studies of remote determination of the spectroscopic parameters of the best known explosive substances TNT, RDX, and PETN are carried out. The feasibility of high sensitivity detection ( 1 ppm) of these substances with the aid of a multifunctional IR parametric light source by differential absorption and scattering is demonstrated.

  1. Lidar investigations of ozone in the upper troposphere - lower stratosphere: technique and results of measurements

    NASA Astrophysics Data System (ADS)

    Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.

    2016-12-01

    Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.

  2. Pitfalls in gastrointestinal permeability measurement in ICU patients with multiple organ failure using differential sugar absorption.

    PubMed

    Oudemans-van Straaten, Heleen M; van der Voort, Peter J; Hoek, Frans J; Bosman, Rob J; van der Spoel, Johan I; Zandstra, Durk F

    2002-02-01

    To assess whether gastrointestinal permeability (GIP) at intensive care unit (ICU) admission, measured by differential sugar absorption, is related to severity of disease and multiple organ failure (MOF). Post hoc, to analyse the relation between the urinary sugar recovery and renal function. Prospective observational cohort study. Eighteen-bed general ICU of a teaching hospital. Sixty-four ventilated patients admitted with MOF. GIP was assessed within 24 h using cellobiose (C), sucrose (S) and mannitol (M) absorption. Severity of disease: APACHE II and III, SAPS II and MPM II systems. Organ failure: SOFA, MODS and Goris score. The median urinary recovery of C was 0.147% (range 0.004-2.145%), of S 0.249% (0.001-3.656%) and of M 10.7% (0.6-270%). In 16 patients, M recovery was over 100% of the oral dose. They received red blood cell transfusion (RBC). In the non-transfused, the median cellobiose/mannitol (CM) ratio was 0.015 (0.0004-0.550). CM ratio was not related to severity of disease and inversely related to the SOFA score ( r=-0.30, p=0.04). Post hoc regression analysis showed that recoveries of C, S and M were positively related to urinary volume. Recoveries of C and S, but not of M, were positively related to creatinine clearance. The CM ratio corrected for diuresis, but was inversely related to creatinine clearance. Differential C, S and M absorption testing is unreliable after RBC transfusion, since bank blood contains mannitol. The excretion of C and S, but not of M, is limited by renal dysfunction. Differential sugar absorption is not reliable to test GIP in MOF patients, since non-permeability related factors act as confounders.

  3. Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Liwen F.; Wright, Joshua; Perdue, Brian R.

    Following previous work predicting the electronic response of the Chevrel phase Mo6S8 upon Mg insertion (Thole et al., Phys. Chem. Chem. Phys., 2015, 17, 22548), we provide the experimental proof, evident in X-ray absorption spectroscopy, to illustrate the charge compensation mechanism of the Chevrel phase compound during Mg insertion and de-insertion processes.

  4. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin.

    PubMed

    Liu, Ying; Wang, Lan; Zhao, Yiqing; He, Man; Zhang, Xin; Niu, Mengmeng; Feng, Nianping

    2014-12-10

    Nanostructured lipid carriers and microemulsions effectively deliver poorly water-soluble drugs. However, few studies have investigated their ability and difference in improving drug bioavailability, especially the factors contributed to the difference. Thus, this study was aimed at investigating their efficiency in bioavailability enhancement based on studying two key processes that occur in NLC and ME during traverse along the intestinal tract: the solubilization process and the intestinal permeability process. The nanostructured lipid carriers and microemulsions had the same composition except that the former were prepared with solid lipids and the latter with liquid lipids; both were evaluated for particle size and zeta potential. Transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction were performed to characterize their properties. Furthermore, in vitro drug release, in situ intestinal absorption, and in vitro lipolysis were studied. The bioavailability of luteolin delivered using nanostructured lipid carriers in rats was compared with that delivered using microemulsions and suspensions. The in vitro analysis revealed different release mechanisms for luteolin in nanostructured lipid carriers and microemulsions, although the in situ intestinal absorption was similar. The in vitro lipolysis data indicated that digestion speed and extent were higher for microemulsions than for nanostructured lipid carriers, and that more of the former partitioned to the aqueous phase. The in vivo bioavailability analysis in rats indicated that the oral absorption and bioavailability of luteolin delivered using nanostructured lipid carriers and microemulsions were higher than those of luteolin suspensions. Nanostructured lipid carriers and microemulsions improved luteolin's oral bioavailability in rats. The rapid lipid digestion and much more drug solubilized available for absorption in microemulsions may contribute to better absorption and higher bioavailability. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Drug marker absorption in relation to pellet size, gastric motility and viscous meals in humans

    NASA Technical Reports Server (NTRS)

    Rhie, J. K.; Hayashi, Y.; Welage, L. S.; Frens, J.; Wald, R. J.; Barnett, J. L.; Amidon, G. E.; Putcha, L.; Amidon, G. L.

    1998-01-01

    PURPOSE: The objective of this study was to evaluate drug marker absorption in relation to the gastric emptying (GE) of 0.7 mm and 3.6 mm enteric coated pellets as a function of viscosity and the underlying gastric motility. METHODS: Twelve subjects were evaluated in a 3-way crossover study. 0.7 mm caffeine and 3.6 mm acetaminophen enteric coated pellets were concurrently administered with a viscous caloric meal at the levels of 4000, 6000 and 8000 cP. Gastric motility was simultaneously measured with antral manometry and compared to time events in the plasma profiles of the drug markers. RESULTS: Caffeine, from the 0.7 mm pellets, was observed significantly earlier in the plasma than acetaminophen, from the 3.6 mm pellets, at all levels of viscosity. Motility related size differentiated GE was consistently observed at all viscosity levels, however, less variability was observed with the 4000 cP meal. Specifically, the onset of absorption from the of 3.6 mm pellets correlated with the onset of Phase II fasted state contractions (r = 0.929, p < 0.01). CONCLUSIONS: The timeframe of drug marker absorption and the onset of motility events were not altered within the range of viscosities evaluated. Rather, the differences in drug marker profiles from the non-digestible solids were most likely the result of the interaction between viscosity and motility influencing antral flow dynamics. The administration of the two sizes of pellets and a viscous caloric meal with subsequent monitoring of drug marker profiles is useful as a reference to assess the influence of motility patterns on the absorption profile of orally administered agents.

  6. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  7. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  8. Field localization and enhancement of phase-locked second- and third-order harmonic generation in absorbing semiconductor cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roppo, V.; Charles M. Bowden Research Facility, US Army RDECOM, Redstone Arsenal, Alabama 35803; Cojocaru, C.

    We predict and experimentally observe the enhancement by three orders of magnitude of phase mismatched second and third harmonic generation in a GaAs cavity at 650 and 433 nm, respectively, well above the absorption edge. Phase locking between the pump and the harmonics changes the effective dispersion of the medium and inhibits absorption. Despite hostile conditions the harmonics resonate inside the cavity and become amplified leading to relatively large conversion efficiencies. Field localization thus plays a pivotal role despite the presence of absorption, and ushers in a new class of semiconductor-based devices in the visible and uv ranges.

  9. Tunable lasers for water vapor measurements and other lidar applications

    NASA Technical Reports Server (NTRS)

    Gammon, R. W.; Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    A tunable dye laser suitable for differential absorption (DIAL) measurements of water vapor in the troposphere was constructed. A multi-pass absorption cell for calibration was also constructed for use in atmospheric DIAL measurements of water vapor.

  10. Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region.

    PubMed

    Thakur, Pooja; Tan, Bo; Venkatakrishnan, Krishnan

    2015-10-19

    Inadequate absorption of Near Infrared (NIR) photons by conventional silicon solar cells has been a major stumbling block towards the attainment of a high efficiency "full spectrum" solar cell. An effective enhancement in the absorption of such photons is desired as they account for a considerable portion of the tappable solar energy. In this work, we report a remarkable gain observed in the absorption of photons in the near infrared and visible region (400 nm-1000 nm) by a novel multi-phased oxide of titanium. Synthesised via a single step ultra-fast laser pulse interaction with pure titanium, characterisation studies have identified this oxide of titanium to be multi-phased and composed of Ti3O, (TiO.716)3.76 and TiO2 (rutile). Computed to have an average band gap value of 2.39 eV, this ultrafast laser induced multi-phased titanium oxide has especially exhibited steady absorption capability in the NIR range of 750-1000 nm, which to the best of our knowledge, was never reported before. The unique NIR absorption properties of the laser functionalised titanium coupled with the simplicity and versatility of the ultrafast laser interaction process involved thereby provides tremendous potential towards the photon sensitization of titanium and thereafter for the inception of a "full spectrum" solar device.

  11. Cooperative CO2 Absorption Isotherms from a Bifunctional Guanidine and Bifunctional Alcohol.

    PubMed

    Steinhardt, Rachel; Hiew, Stanley C; Mohapatra, Hemakesh; Nguyen, Du; Oh, Zachary; Truong, Richard; Esser-Kahn, Aaron

    2017-12-27

    Designing new liquids for CO 2 absorption is a challenge in CO 2 removal. Here, achieving low regeneration energies while keeping high selectivity and large capacity are current challenges. Recent cooperative metal-organic frameworks have shown the potential to address many of these challenges. However, many absorbent systems and designs rely on liquid capture agents. We present herein a liquid absorption system which exhibits cooperative CO 2 absorption isotherms. Upon introduction, CO 2 uptake is initially suppressed, followed by an abrupt increase in absorption. The liquid consists of a bifunctional guanidine and bifunctional alcohol, which, when dissolved in bis(2-methoxyethyl) ether, forms a secondary viscous phase within seconds in response to increases in CO 2 . The precipitation of this second viscous phase drives CO 2 absorption from the gas phase. The isotherm of the bifunctional system differs starkly from the analogous monofunctional system, which exhibits limited CO 2 uptake across the same pressure range. In our system, CO 2 absorption is strongly solvent dependent. In DMSO, both systems exhibit hyperbolic isotherms and no precipitation occurs. Subsequent 1 H NMR experiments confirmed the formation of distinct alkylcarbonate species having either one or two molecules of CO 2 bound. The solvent and structure relationships derived from these results can be used to tailor new liquid absorption systems to the conditions of a given CO 2 separation process.

  12. Phase Imaging using Focusing Polycapillary Optics

    NASA Astrophysics Data System (ADS)

    Bashir, Sajid

    The interaction of X rays in diagnostic energy range with soft tissues can be described by Compton scattering and by the complex refractive index, which together characterize the attenuation properties of the tissue and the phase imparted to X rays passing through it. Many soft tissues exhibit extremely similar attenuation, so that their discrimination using conventional radiography, which generates contrast in an image through differential attenuation, is challenging. However, these tissues will impart phase differences significantly greater than attenuation differences to the X rays passing through them, so that phase-contrast imaging techniques can enable their discrimination. A major limitation to the widespread adoption of phase-contrast techniques is that phase contrast requires significant spatial coherence of the X-ray beam, which in turn requires specialized sources. For tabletop sources, this often requires a small (usually in the range of 10-50 micron) X-ray source. In this work, polycapillary optics were employed to create a small secondary source from a large spot rotating anode. Polycapillary optics consist of arrays of small hollow glass tubes through which X rays can be guided by total internal reflection from the tube walls. By tapering the tubes to guide the X rays to a point, they can be focused to a small spot which can be used as a secondary source. The polycapillary optic was first aligned with the X-ray source. The spot size was measured using a computed radiography image plate. Images were taken at a variety of optic-to-object and object-to-detector distances and phase-contrast edge enhancement was observed. Conventional absorption images were also acquired at a small object-to detector distances for comparison. Background division was performed to remove strong non-uniformity due to the optics. Differential phase contrast reconstruction demonstrates promising preliminary results. This manuscript is divided into six chapters. The second chapter describes the limitations of conventional imaging methods and benefits of the phase imaging. Chapter three covers different types of X-ray photon interactions with matter. Chapter four describes the experimental set-up and different types of images acquired along with their analysis. Chapter five summarizes the findings in this project and describes future work as well.

  13. Interplay of wavelength, fluence and spot-size in free-electron laser ablation of cornea.

    PubMed

    Hutson, M Shane; Ivanov, Borislav; Jayasinghe, Aroshan; Adunas, Gilma; Xiao, Yaowu; Guo, Mingsheng; Kozub, John

    2009-06-08

    Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-microm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes--an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

  14. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating

    NASA Astrophysics Data System (ADS)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar

    2017-08-01

    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  15. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The relationship between structural and optical properties of Se-Ge-As glasses

    NASA Astrophysics Data System (ADS)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  17. Contrasting eigenvalue and singular-value spectra for lasing and antilasing in a PT -symmetric periodic structure

    NASA Astrophysics Data System (ADS)

    Ge, Li; Feng, Liang

    2017-01-01

    It has been proposed and demonstrated that lasing and coherent perfect absorption (CPA or "antilasing") coexist in parity-time (PT ) symmetric photonic systems. In this work we show that the spectral signature of such a CPA laser displayed by the singular value spectrum of the scattering matrix (S ) can be orders of magnitude wider than that displayed by the eigenvalue spectrum of S . Since the former reflects how strongly light can be absorbed or amplified and the latter announces the spontaneous symmetry breaking of S , these contrasting spectral signatures indicate that near perfect absorption and extremely strong amplification can be achieved even in the PT -symmetric phase of S , which is known for and defined by its flux-conserving eigenstates. We also show that these contrasting spectral signatures are accompanied by strikingly different sensitivities to disorder and imperfection, suggesting that the eigenvalue spectrum is potentially suitable for sensing and the singular value spectrum for robust switching. A differential light amplifier may also be devised based on these two spectra.

  18. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  19. The differential absorption hard x-ray spectrometer at the Z facility

    DOE PAGES

    Bell, Kate S.; Coverdale, Christine A.; Ampleford, David J.; ...

    2017-08-03

    The Differential Absorption Hard X-ray (DAHX) spectrometer is a diagnostic developed to measure time-resolved radiation between 60 keV and 2 MeV at the Z Facility. It consists of an array of 7 Si PIN diodes in a tungsten housing that provides collimation and coarse spectral resolution through differential filters. DAHX is a revitalization of the Hard X-Ray Spectrometer (HXRS) that was fielded on Z prior to refurbishment in 2006. DAHX has been tailored to the present radiation environment in Z to provide information on the power, spectral shape, and time profile of the hard emission by plasma radiation sources drivenmore » by the Z Machine.« less

  20. 46 CFR 282.24 - Protection and indemnity insurance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... differential. The adjustment of the wage percentage differential shall not be used for Japan, where operators incur minimal costs for deductible absorptions, rather than no costs. For Japan, the insurance related...

  1. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  2. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer

    NASA Astrophysics Data System (ADS)

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-01

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO2, HCHO, SO2, H2O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg.

  3. Fourier Transform Infrared Absorption Spectroscopy of Gas-Phase and Surface Reaction Products during Si Etching in Inductively Coupled Cl2 Plasmas

    NASA Astrophysics Data System (ADS)

    Miyata, Hiroki; Tsuda, Hirotaka; Fukushima, Daisuke; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2011-10-01

    A better understanding of plasma-surface interactions is indispensable during etching, including the behavior of reaction or etch products, because the products on surfaces and in the plasma are important in passivation layer formation through their redeposition on surfaces. In practice, the nanometer-scale control of plasma etching would still rely largely on such passivation layer formation as well as ion-enhanced etching on feature surfaces. This paper presents in situ Fourier transform infrared (FTIR) absorption spectroscopy of gas-phase and surface reaction products during inductively coupled plasma (ICP) etching of Si in Cl2. The observation was made in the gas phase by transmission absorption spectroscopy (TAS), and also on the substrate surface by reflection absorption spectroscopy (RAS). The quantum chemical calculation was also made of the vibrational frequency of silicon chloride molecules. The deconvolution of the TAS spectrum revealed absorption features of Si2Cl6 and SiClx (x = 1-3) as well as SiCl4, while that of the RAS spectrum revealed relatively increased absorption features of unsaturated silicon chlorides. A different behavior was also observed in bias power dependence between the TAS and RAS spectra.

  4. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  5. Surface-plasmon mediated total absorption of light into silicon.

    PubMed

    Yoon, Jae Woong; Park, Woo Jae; Lee, Kyu Jin; Song, Seok Ho; Magnusson, Robert

    2011-10-10

    We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.

  6. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of optical absorption in polycrystalline CVD diamond plates by the phase photothermal method at a wavelength of 10.6 μm

    NASA Astrophysics Data System (ADS)

    Luk'yanov, A. Yu; Ral'chenko, Viktor G.; Khomich, A. V.; Serdtsev, E. V.; Volkov, P. V.; Savel'ev, A. V.; Konov, Vitalii I.

    2008-12-01

    A highly-efficient phase photothermal method is developed for quantitative measurements of the small optical absorption coefficient in thin plates made of highly transparent materials in which bulk losses significantly exceed surface losses. The bulk absorption coefficient at 10.6 μm is estimated in polycrystalline diamond plates grown from the vapour phase (a CVD diamond). The results are compared with those for natural and synthetic diamond single crystals and with the concentrations of nitrogen and hydrogen impurities. The absorption coefficient of the best samples of the CVD diamond did not exceed 0.06 cm-1, which, taking into account the high thermal conductivity of the CVD diamond (1800-2200 W mK-1 at room temperature), makes this material attractive for fabricating output windows of high-power CO2 lasers, especially for manufacturing large-size optics.

  7. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  8. Fabrication and characterization of bioactive glass-ceramic using soda-lime-silica waste glass.

    PubMed

    Abbasi, Mojtaba; Hashemi, Babak

    2014-04-01

    Soda-lime-silica waste glass was used to synthesize a bioactive glass-ceramic through solid-state reactions. In comparison with the conventional route, that is, the melt-quenching and subsequent heat treatment, the present work is an economical technique. Structural and thermal properties of the samples were examined by X-ray diffraction (XRD) and differential thermal analysis (DTA). The in vitro test was utilized to assess the bioactivity level of the samples by Hanks' solution as simulated body fluid (SBF). Bioactivity assessment by atomic absorption spectroscopy (AAS) and scanning electron microscopy (SEM) was revealed that the samples with smaller amount of crystalline phase had a higher level of bioactivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The Influence of Trace Gases Absorption on Differential Ring Cross Sections

    NASA Astrophysics Data System (ADS)

    Han, Dong; Zhao, Keyi

    2017-04-01

    The Ring effect refers to the filling in of Fraunhofer lines, which is known as solar absorption lines, caused almost entirely by rotational Raman scattering. The rotational Raman scattering by N2 and O2 in the atmosphere is the main factor that leads to Ring effect. The Ring effect is one significant limitation to the accuracy of the retrieval of trace gas constituents in atmosphere, while using satellite data with Differential Optical Absorption Spectroscopy technique. In this study, firstly the solar spectrum is convolved with rotational Raman cross sections of atmosphere, which is calculated with rotational Raman cross sections of N2 and O2, divided by the original solar spectrum, with a cubic polynomial subtracted off, to create differential Ring spectrum Ring1. Secondly, the Ring effect for pure Raman scattering of the Fraunhofer spectrum plus the contribution from interference by terrestrial absorption which always comes from a kind of trace gas (e.g., O3) are derived. To allow for more generality, the optically thin term as well as the next term in the expansion for the Beer-Lambert law are calculated.Ring1, Ring2, and Ring3are the Fraunhofer only, 1st terrestrial correction, and 2nd terrestrial correction for DOAS fitting.

  10. Validation of double-pulse 1572 nm integrated path differential absorption lidar measurement of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Du, Juan; Liu, Jiqiao; Bi, Decang; Ma, Xiuhua; Hou, Xia; Zhu, Xiaolei; Chen, Weibiao

    2018-04-01

    A ground-based double-pulse 1572 nm integrated path differential absorption (IPDA) lidar was developed for carbon dioxide (CO2) column concentrations measurement. The lidar measured the CO2 concentrations continuously by receiving the scattered echo signal from a building about 1300 m away. The other two instruments of TDLAS and in-situ CO2 analyzer measured the CO2 concentrations on the same time. A CO2 concentration measurement of 430 ppm with 1.637 ppm standard error was achieved.

  11. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edner, H.; Ragnarson, P.; Svanberg, S.

    The authors present measurements of the total flux of sulfur dioxide from three Italian volcanoes Etna, Stromboli, and Vulcano, measured in a three day period in Sept, 1992. The fluxes were measured from shipboard by means of an active differential absorption lidar technique, and a passive differential optical absorption spectroscopy technique. Corrections had to be applied to the passive optical technique because the light source paths were not well defined. The total fluxes were found to be roughly 25, 180, and 1300 tons/day for Vulcano, Stromboli, and Etna, respectively. 43 refs., 10 figs., 6 tabs.

  13. LIDAR technology developments in support of ESA Earth observation missions

    NASA Astrophysics Data System (ADS)

    Durand, Yannig; Caron, Jérôme; Hélière, Arnaud; Bézy, Jean-Loup; Meynart, Roland

    2017-11-01

    Critical lidar technology developments have been ongoing at the European Space Agency (ESA) in support of EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer), the 6th Earth Explorer mission, and A-SCOPE (Advanced Space Carbon and Climate Observation of Planet Earth), one of the candidates for the 7th Earth Explorer mission. EarthCARE is embarking an Atmospheric backscatter Lidar (ATLID) while A-SCOPE is based on a Total Column Differential Absorption Lidar. As EarthCARE phase B has just started, the pre-development activities, aiming at validating the technologies used in the flight design and at verifying the overall instrument performance, are almost completed. On the other hand, A-SCOPE pre-phase A has just finished. Therefore technology developments are in progress, addressing critical subsystems or components with the lowest TRL, selected in the proposed instrument concepts. The activities described in this paper span over a broad range, addressing all critical elements of a lidar from the transmitter to the receiver.

  14. The 2nd phase of the LEANDRE program: Water-vapor DIAL measurement

    NASA Technical Reports Server (NTRS)

    Quaglia, P.; Bruneau, D.; Pelon, J.

    1992-01-01

    As a follow-on of the backscattered lidar, a differential absorption lidar (LEANDRE 2) is now being developed as part of the LEANDRE program for airborne meteorological studies. The primary measurement objective of LEANDRE 2 is water vapor. Pressure and temperature measurements are aimed at a second stage. The goals are to obtain a horizontal resolution of a few hundred meters for a vertical resolution of less than a hundred meters, with an absolute accuracy of 10 percent for humidity measurement. As compatibility is an important feature between the 2 first phases of LEANDRE, most of the LEANDRE 1 sub-system will be used and adapted for LEANDRE 2. For example, detection electronics, central computer, detectors and telescope will be the same. However, important modifications have to be done on the laser source, and spectral control has to be added. Most of the work is thus devoted to those developments, and the status is presented here.

  15. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  16. Fluid Absorption and Release of Nonwovens and their Response to Compression

    NASA Astrophysics Data System (ADS)

    Bateny, Fatemeh

    Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.

  17. Low-Absorption Liquid Crystals for Infrared Beam Steering

    DTIC Science & Technology

    2013-10-22

    Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic mixture, deuteration, nematic phase, birefringence, overtone...absorption compounds for LWIR and SWIR are also investigated. Key words: Low absorption, MWIR, chlorinated liquid crystals, fluorination, FTIR, eutectic ...the melting point significantly. We did careful investigation and formed a eutectic mixture consisting of five fluorinated compounds without any

  18. Quantitative phase imaging of retinal cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    LaForest, Timothé; Carpentras, Dino; Kowalczuk, Laura; Behar-Cohen, Francine; Moser, Christophe

    2017-02-01

    Vision process is ruled by several cells layers of the retina. Before reaching the photoreceptors, light entering the eye has to pass through a few hundreds of micrometers thick layer of ganglion and neurons cells. Macular degeneration is a non-curable disease of themacula occurring with age. This disease can be diagnosed at an early stage by imaging neuronal cells in the retina and observing their death chronically. These cells are phase objects locatedon a background that presents an absorption pattern and so difficult to see with standard imagingtechniques in vivo. Phase imaging methods usually need the illumination system to be on the opposite side of the sample with respect to theimaging system. This is a constraintand a challenge for phase imaging in-vivo. Recently, the possibility of performing phase contrast imaging from one side using properties of scattering media has been shown. This phase contrast imaging is based on the back illumination generated by the sample itself. Here, we present a reflection phase imaging technique based on oblique back-illumination. The oblique back-illumination creates a dark field image of the sample. Generating asymmetric oblique illumination allows obtaining differential phase contrast image, which in turn can be processed to recover a quantitative phase image. In the case of the eye, a transcleral illumination can generate oblique incident light on the retina and the choroidal layer.The back reflected light is then collected by the eye lens to produce dark field image. We show experimental results of retinal phase imagesin ex vivo samples of human and pig retina.

  19. Pharmacokinetics of insulin following intravenous and subcutaneous administration in canines.

    PubMed

    Ravis, W R; Comerci, C; Ganjam, V K

    1986-01-01

    Studies were conducted to examine the absorption and disposition kinetics of insulin in dogs following intravenous (IV) and subcutaneous (SC) administration of commercial preparations. After IV and SC dosing, the plasma levels were described by models which considered basal insulin level contributions. Intersubject variation in the disposition kinetics was small with half-lives of 0.52 +/- 0.05 h and total body clearances of 16.21 +/- 2.08 ml min-1 kg-1. Calculated insulin plasma secretion rates in the canines were 14.4 +/- 3.3 mUh-1 kg-1. Following SC injection of regular insulin, the rate and extent of absorption were noted to be quite variable. The absorption process appeared first-order with half-life values of 2.3 +/- 1.3 h and extents of absorption of 78 +/- 15 per cent with a range of 55-101 per cent. Insulin absorption from SC NPH preparations was evaluated as being composed of two zero-order release phases, a rapid and a slow release phase. With a dose of 1.65 U kg-1, the rapid release phase had an average duration of 1.5 h and a rate of 580 +/- 269 mUh-1 (4.2 per cent of dose) while the slow phase had a zero-order rate of 237 +/- 92 mU h-1 which continued beyond 12 h. The extent of absorption from the NPH preparation was 23.6 +/- 5.1 per cent and was significantly lower than that for the regular injection.

  20. Numerical investigation of differential phase noise and its power penalty for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2007-11-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  1. WALES: water vapour lidar experiment in space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J.-L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2017-11-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  2. Crystal structure, Hirshfeld surfaces computational study and physicochemical characterization of the hybrid material (C7H10N)2[SnCl6]·H2O

    NASA Astrophysics Data System (ADS)

    BelhajSalah, S.; Abdelbaky, Mohammed S. M.; García-Granda, Santiago; Essalah, K.; Ben Nasr, C.; Mrad, M. L.

    2018-01-01

    A novel hybrid compound, bis(4-methylanilinium)hexachlorostannate(IV) monohydrate, formulated as (C7H10N)2[SnCl6]·H2O, has been prepared and characterized by powder and single crystal X-ray diffraction (XRD), Hirshfeld surface analysis, infrared spectroscopy (IR), optical study, differential thermal analysis(DTA) and X-ray photoelectron spectroscopy analysis (XPS). The title compound crystallizes in the monoclinic space group P21/c with a = 13.093(1)Å, b = 7.093(6)Å, c = 24.152(2)Å, β = 98.536(4)⁰ and V = 2218.4(4) Å3. Their crystal structure exhibits alternating inorganic layers parallel to the (ab) plane at z = n/2. The different entities, [SnCl6]2-, organic cations and water molecules, are connected via hydrogen bonds to form a three-dimensional network. The powder XRD data confirms the phase purity of the crystalline sample. The intermolecular interactions were investigated by Hirshfeld surfaces. The vibrational absorption bands were identified by IR spectroscopy and have been discussed. The optical properties of the crystal were studied by using optical absorption, UV-visible absorption and photoluminescence spectroscopy studies. The compound was also characterized by DTA to determine its thermal behavior with respect to the temperature. Finally, XPS technique is reported for analyzing the surface chemistry of this compound.

  3. WALES: WAter vapour Lidar Experiment in Space

    NASA Astrophysics Data System (ADS)

    Guerin, F.; Pain, Th.; Palmade, J. L.; Pailharey, E.; Giraud, D.; Jubineau, F.

    2004-06-01

    The WAter vapour Lidar Experiment in Space (WALES) mission aims at providing water vapour profiles with high accuracy and vertical resolution through the troposphere and the lower stratosphere on a global scale using an instrument based on Differential Absorption Lidar (DIAL) observation technique, and mounted on an Earth orbiting satellite. This active DIAL technique will also provide data on the cloud coverage by means of the signal reflection on the cloud layers. In DIAL operation, backscatter lidar signals at two wavelengths - at least - are detected. One wavelength (λ ON) is highly absorbed by the species of interest, while the other (λ OFF) is backscattered with minimal absorption. This difference in absorption at the two transmitted wavelengths leads to the determination of the concentration of the species of interest. The DIAL is therefore a dual-wavelength lidar in which the signals detected at the two wavelengths are processed to extract the absolute density of water vapour. The Phase A study performed by ALCATEL Space and their partners under contract of the European Space Agency has led to a credible and innovative concept of instrument, based on a mission performance modelling. The challenge is to foster the scientific return while minimising the development risks and costs of instrument development, in particular the laser transmitter. The paper describes the payload design and the implementation on a low Earth orbiting (LEO) satellite.

  4. Energy absorption as a predictor of leg impedance in highly trained females.

    PubMed

    Kulas, Anthony S; Schmitz, Randy J; Schultz, Sandra J; Watson, Mary Allen; Perrin, David H

    2006-08-01

    Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.

  5. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  6. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  7. Optimized retrievals of precipitable water from the VAS 'split window'

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Robinson, Wayne D.; Uccellini, Louis W.

    1987-01-01

    Precipitable water fields have been retrieved from the VISSR Atmospheric Sounder (VAS) using a radiation transfer model for the differential water vapor absorption between the 11- and 12-micron 'split window' channels. Previous moisture retrievals using only the split window channels provided very good space-time continuity but poor absolute accuracy. This note describes how retrieval errors can be significantly reduced from plus or minus 0.9 to plus or minus 0.6 gm/sq cm by empirically optimizing the effective air temperature and absorption coefficients used in the two-channel model. The differential absorption between the VAS 11- and 12-micron channels, empirically estimated from 135 colocated VAS-RAOB observations, is found to be approximately 50 percent smaller than the theoretical estimates. Similar discrepancies have been noted previously between theoretical and empirical absorption coefficients applied to the retrieval of sea surface temperatures using radiances observed by VAS and polar-orbiting satellites. These discrepancies indicate that radiation transfer models for the 11-micron window appear to be less accurate than the satellite observations.

  8. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  9. Apparatus and Methods for Photoacoustic Measurement of Light Absorption of Particulate and Gaseous Species

    NASA Technical Reports Server (NTRS)

    Brown, William (Inventor); Yu, Zhenhong (Inventor); Kebabian, Paul L. (Inventor); Assif, James (Inventor)

    2017-01-01

    In one embodiment, a photoacoustic effect measurement instrument for measuring a species (e.g., a species of PM) in a gas employs a pair of differential acoustic cells including a sample cell that receives sample gas including the species, and a reference cell that receives a filtered version of the sample gas from which the species has been substantially removed. An excitation light source provides an amplitude modulated beam to each of the acoustic cells. An array of multiple microphones is mounted to each of the differential acoustic cells, and measures an acoustic wave generated in the respective acoustic cell by absorption of light by sample gas therein to produce a respective signal. The microphones are isolated from sample gas internal to the acoustic cell by a film. A preamplifier determines a differential signal and a controller calculates concentration of the species based on the differential signal.

  10. THE tilde{A}-tilde{X} AND tilde{B}-tilde{X} ABSORPTIONS OF NO_3 TRAPPED IN SOLID NEON

    NASA Astrophysics Data System (ADS)

    Jacox, Marilyn E.; Thompson, Warren E.

    2009-06-01

    Absorptions arising from the tilde{A}-tilde{X} transition of normal and isotopically substituted NO_3 have been observed between 7500 and 9500 cm^{-1}. Details of the spectra will be discussed and assignments will be proposed. Absorptions arising from the tilde{B}-tilde{X} transition of NO_3, with band origin near 15 000 cm^{-1}, have also been observed for the normal species and two of its isotopologues which possess D_{3h} symmetry. As in the gas phase, the absorptions are broadened because of predissociation. The observed band structure corresponds closely with that reported for the gas-phase molecule.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  12. Robust Accurate Non-Invasive Analyte Monitor

    DOEpatents

    Robinson, Mark R.

    1998-11-03

    An improved method and apparatus for determining noninvasively and in vivo one or more unknown values of a known characteristic, particularly the concentration of an analyte in human tissue. The method includes: (1) irradiating the tissue with infrared energy (400 nm-2400 nm) having at least several wavelengths in a given range of wavelengths so that there is differential absorption of at least some of the wavelengths by the tissue as a function of the wavelengths and the known characteristic, the differential absorption causeing intensity variations of the wavelengths incident from the tissue; (2) providing a first path through the tissue; (3) optimizing the first path for a first sub-region of the range of wavelengths to maximize the differential absorption by at least some of the wavelengths in the first sub-region; (4) providing a second path through the tissue; and (5) optimizing the second path for a second sub-region of the range, to maximize the differential absorption by at least some of the wavelengths in the second sub-region. In the preferred embodiment a third path through the tissue is provided for, which path is optimized for a third sub-region of the range. With this arrangement, spectral variations which are the result of tissue differences (e.g., melanin and temperature) can be reduced. At least one of the paths represents a partial transmission path through the tissue. This partial transmission path may pass through the nail of a finger once and, preferably, twice. Also included are apparatus for: (1) reducing the arterial pulsations within the tissue; and (2) maximizing the blood content i the tissue.

  13. Evidence for Different Reaction Pathways for Liquid and Granular Micronutrients in a Calcareous Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hettiarachchi, Ganga M.; McLaughlin, Mike J.; Scheckel, Kirk G.

    2008-06-16

    The benefits of Mn and Zn fluid fertilizers over conventional granular products in calcareous sandy loam soils have been agronomically demonstrated. We hypothesized that the differences in the effectiveness between granular and fluid Mn and Zn fertilizers is due to different Mn and Zn reaction processes in and around fertilizer granules and fluid fertilizer bands. We used a combination of several synchrotron-based x-ray techniques, namely, spatially resolved micro-x-ray fluorescence (?-XRF), micro-x-ray absorption near edge structure spectroscopy (?-XANES), and bulk-XANES and -extended x-ray absorption fine structure (EXAFS) spectroscopy, along with several laboratory-based x-ray techniques to speciate different fertilizer-derived Mn and Znmore » species in highly calcareous soils to understand the chemistry underlying the observed differential behavior of fluid and granular micronutrient forms. Micro-XRF mapping of soil-fertilizer reactions zones indicated that the mobility of Mn and Zn from liquid fertilizer was greater than that observed for equivalent granular sources of these micronutrients in soil. After application of these micronutrient fertilizers to soil, Mn and Zn from liquid fertilizers were found to remain in comparatively more soluble solid forms, such as hydrated Mn phosphate-like, Mn calcite-like, adsorbed Zn-like, and Zn silicate-like phases, whereas Mn and Zn from equivalent granular sources tended to transform into comparatively less soluble solid forms such as Mn oxide-like, Mn carbonate-like, and Zn phosphate-like phases.« less

  14. Lead is not off center in PbTe: the importance of r-space phase information in extended x-ray absorption fine structure spectroscopy.

    PubMed

    Keiber, T; Bridges, F; Sales, B C

    2013-08-30

    PbTe is a well-known thermoelectric material. Recent x-ray total scattering studies suggest that Pb moves off center along 100 in PbTe, by ∼0.2  Å at 300 K, producing a split Pb-Te pair distribution. We present an extended x-ray absorption fine structure spectroscopy (EXAFS) study of PbTe (and Tl doped PbTe) to determine if Pb or Te is off center. EXAFS provides sensitive r- or k-space phase information which can differentiate between a split peak for the Pb-Te distribution (indicative of off-center Pb) and a thermally broadened peak. We find no evidence for a split peak for Pb-Te or Te-Pb. At 300 K, the vibration amplitude for Pb-Te (or Te-Pb) is large; this thermally induced disorder is indicative of weak bonds, and the large disorder is consistent with the low thermal conductivity at 300 K. We also find evidence of an anharmonic potential for the nearest Pb-Te bonds, consistent with the overall anharmonicity found for the phonon modes. This effect is modeled by a "skew" factor (C3) which significantly improves the fit of the Pb-Te and Te-Pb peaks for the high temperature EXAFS data; C3 becomes significant above approximately 150-200 K. The consequences of these results will be discussed.

  15. Synthesis and characterization of metastable, 20 nm-sized Pna2{sub 1}-LiCoPO{sub 4} nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.

    The majority of research activities on LiCoPO{sub 4} are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna2{sub 1} modification. Herein, we present a comprehensive study on the structure–property relationships of 15–20 nm Pna2{sub 1}-LiCoPO{sub 4} nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L{sub 2,3}-edge X-ray absorption spectroscopic data confirmmore » the local tetrahedral symmetry of Co{sup 2+}. Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO{sub 4} at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated. - Graphical abstract: Blue nano-sized Pna2{sub 1}-LiCoPO{sub 4,} featuring tetrahedrally-coordinated Co{sup 2+}, was synthesized in a rapid one-step microwave-assisted solvothermal process. The phase relation between this metastable and the stable polymorph was analyzed and electrochemical properties are discussed. - Highlights: • Preparation of uniform 15–20 nm nanospheres of metastable Pna2{sub 1}-LiCoPO{sub 4} polymorph. • Structure redetermination shows cation-mixing (Co blocking Li sites). • In situ investigation of phase transformation to olivine Pnma-LiCoPO{sub 4} at 527 °C. • Pna2{sub 1}-LiCoPO{sub 4} reemerges as a stable high-temperature phase above 800 °C. • X-ray absorption spectroscopy confirms local tetrahedral symmetry (T{sub d} Co{sup 2+}).« less

  16. SU-E-I-76: Optimizing Imaging Parameters for a Novel Radiographic Imaging System for the Detection of Corrosion in Aluminum Aircraft Structures.

    PubMed

    Hammonds, J; Price, R; Donnelly, E; Pickens, D

    2012-06-01

    A laboratory-based phase-contrast radiography/tomosynthesis imaging system previously (Med. Phys. Vol. 38, 2353 May 2011) for improved detection of low-contrast soft-tissue masses was used to evaluate the sensitivity for detecting the presence of thin layers of corrosion on aluminum aircraft structures. The evaluation utilized a test object of aluminum (2.5 inch × 2.5 inch × 1/8 inch) on which different geometric patterns of 0.0038 inch thick anodized aluminum oxide was deposited. A circular area of radius 1 inch centered on the phantom's midpoint was milled to an approximate thickness of 0.022 inches. The x-ray source used for this investigation was a dual focal spot, tungsten anode x-ray tube. The focal used during the investigation has a nominal size of 0.010 mm. The active area of the imager is 17.1 cm × 23.9 cm (2016 × 2816 pixels) with a pixel pitch of 0.085 mm. X-ray tube voltages ranged from 20-40 kVp and source- to-object and object-to-image distances were varied from 20-100 cm. Performance of the phase-contrast mode was compared to conventional absorption-based radiography using contrast ratio and contrast-to-noise ratios (C/N). Phase-contrast performance was based on edge-enhancement index (EEI) and the edge-enhancement-to-noise (EE/N) ratio. for absorption-based radiography, the best C/N ratio was observed at the lowest kVp value (20 kVp). The optimum sampling angle for tomosynthesis was +/- 8 degrees. Comparing C/N to EE/N demonstrated the phase-contrast techniques improve the conspicuity of the oxide layer edges. This work provides the optimal parameters that a radiographic imaging system would need to differentiate the two different compounds of aluminum. Subcontractee from Positron Systems Inc. (Boise, Idaho) through United States Air Force grant (AF083-225). © 2012 American Association of Physicists in Medicine.

  17. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase

    PubMed Central

    Gennaro, Sylvain D.; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V.; Maier, Stefan A.; Oulton, Rupert F.

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode’s scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  18. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    PubMed

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  19. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  20. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  1. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Differential Gene Expression Approach

    EPA Science Inventory

    Absorption, distribution, metabolism, and excretion (ADME) parameters represent important connections between exposure to chemicals and the activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. ADME parameters u...

  2. On the state of the emitter of the 3.3 micron unidentified infrared band - Absorption spectroscopy of polycyclic aromatic hydrocarbon species

    NASA Technical Reports Server (NTRS)

    Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.

    1991-01-01

    Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.

  3. Enhanced x-ray imaging for a thin film cochlear implant with metal artefacts using phase retrieval tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arhatari, B. D.; ARC Centre of Excellence for Coherent X-ray Science, Melbourne; Harris, A. R.

    Phase retrieval tomography has been successfully used to enhance imaging in systems that exhibit poor absorption contrast. However, when highly absorbing regions are present in a sample, so-called metal artefacts can appear in the tomographic reconstruction. We demonstrate that straightforward approaches for metal artefact reconstruction, developed in absorption contrast tomography, can be applied when using phase retrieval. Using a prototype thin film cochlear implant that has high and low absorption components made from iridium (or platinum) and plastic, respectively, we show that segmentation of the various components is possible and hence measurement of the electrode geometry and relative location tomore » other regions of interest can be achieved.« less

  4. Unidirectional reflectionless phenomenon in ultracompact non-Hermitian plasmonic waveguide system based on phase coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Bai, Ruiping; Gu, Xintong; Jin, Yingjiu; Qiao Zhang, Ying; Jin, Xing Ri; Zhang, Shou; Lee, YoungPak

    2017-12-01

    Unidirectional reflectionless phenomenon is theoretically investigated based on phase coupling in an ultracompact non-Hermitian plasmonic waveguide system, which consists of two metal-insulator-metal (MIM) stub resonators side coupled to a MIM plasmonic waveguide. By appropriately tuning the phase difference between two stub resonators, the reflectivity for forward direction reaches to 0.91 and backward direction is close to 0 at the exception point (EP), while the backward absorption reaches to 0.98 and the forward absorption is close to 0.05. Hence, the unidirectional coherent perfect absorption (CPA) is realized at the vicinity of EP. This work will provide potential applications in the filter, sensor, plasmonic diode-like device, and so on.

  5. All-dielectric planar chiral metasurface with gradient geometric phase.

    PubMed

    Ma, Zhijie; Li, Yi; Li, Yang; Gong, Yandong; Maier, Stefan A; Hong, Minghui

    2018-03-05

    Planar optical chirality of a metasurface measures its differential response between left and right circularly polarized (CP) lights and governs the asymmetric transmission of CP lights. In 2D ultra-thin plasmonic structures the circular dichroism is limited to 25% in theory and it requires high absorption loss. Here we propose and numerically demonstrate a planar chiral all-dielectric metasurface that exhibits giant circular dichroism and transmission asymmetry over 0.8 for circularly polarized lights with negligible loss, without bringing in bianisotropy or violating reciprocity. The metasurface consists of arrays of high refractive index germanium Z-shape resonators that break the in-plane mirror symmetry and induce cross-polarization conversion. Furthermore, at the transmission peak of one handedness, the transmitted light is efficiently converted into the opposite circular polarization state, with a designated geometric phase depending on the orientation angle of the optical element. In this way, the optical component sets before and after the metasurface to filter the light of certain circular polarization states are not needed and the metasurface can function under any linear polarization, in contrast to the conventional setup for geometry phase based metasurfaces. Anomalous transmission and two-dimensional holography based on the geometric phase chiral metasurface are numerically demonstrate as proofs of concept.

  6. Zn1-xCdxSe/ZnSe multiple quantum well photomodulators

    NASA Astrophysics Data System (ADS)

    Tang, Jiuyao; Kawakami, Yoichi; Fujita, Shizuo; Fujita, Shigeo

    1996-10-01

    ZnCdSe/ZnSe multiple quantum well (MQW) transmission and reflection photomodulators operating at room temperature were fabricated employing quantum-confined Stark effect on the exciton absorption. Samples were grown on p-type GaAs substrates by MBE with an i-Zn0.87Cd0.13Se/ZnSe MQW heterostructure sandwiched by a ZnSe p-n junction. The transmission modulator was constructed with a Zn0.87Cd0.13Se/ZnSe MQW glued onto a piece of ITO film-covered glass with silver paste and epoxy. To avoid absorption in GaAs substrates, a window with a diameter of about 2 mm was opened using a selective etch. For the reflective use an Al mirror was deposited on the glass back surface, the device then operates in reflection with the light to be modulated making a double pass through the active quantum well region, thereby increasing the modulation amplitude. Measurement results are given in this paper for transmission, reflection, differential transmission, differential absorption, and differential reflection as a function of the incident photon wavelength and the applied field.

  7. [Spectroscopic analysis of the interaction of ethanol and acid phosphatase from wheat germ].

    PubMed

    Xu, Dong-mei; Liu, Guang-shen; Wang, Li-ming; Liu, Wei-ping

    2004-11-01

    Conformational and activity changes of acid phosphatase from wheat germ in ethanol solutions of different concentrations were measured by fluorescence spectra and differential UV-absorption spectra. The effect of ethanol on kinetics of acid phosphatase was determined by using the double reciprocal plot. The results indicate the ethanol has a significant effect on the activity and conformation of acid phosphatase. The activity of acid phosphatase decreased linearly with increasing the concentration of ethanol. Differential UV-absorption spectra of the enzyme denatured in ethanol solutions showed two positive peaks at 213 and 234 nm, respectively. The peaks on the differential UV-absorption spectra suggested that the conformation of enzyme molecule changed from orderly structure to out-of-order crispation. The fluorescence emission peak intensity of the enzyme gradually strengthened with increasing ethanol concentration, which is in concordance with the conformational change of the microenvironments of tyrosine and tryptophan residues. The results indicate that the expression of the enzyme activity correlates with the stability and integrity of the enzyme conformation to a great degree. Ethanol is uncompetitive inhibitor of acid phosphatase.

  8. Envelope and phase distribution of a resonance transmission through a complex environment

    NASA Astrophysics Data System (ADS)

    Savin, Dmitry V.

    2018-06-01

    A transmission amplitude is considered for quantum or wave transport mediated by a single resonance coupled to the background of many chaotic states. Such a model provides a useful approach to quantify fluctuations in an established signal induced by a complex environment. Applying random matrix theory to the problem, we derive an exact result for the joint distribution of the transmission intensity (envelope) and the transmission phase at arbitrary coupling to the background with finite absorption. The intensity and phase are distributed within a certain region, revealing essential correlations even at strong absorption. In the latter limit, we obtain a simple asymptotic expression that provides a uniformly good approximation of the exact distribution within its whole support, thus going beyond the Rician distribution often used for such purposes. Exact results are also derived for the marginal distribution of the phase, including its limiting forms at weak and strong absorption.

  9. First-principles investigation on the mechanism of photocatalytic properties for cubic and orthorhombic KNbO3

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Qiang; Wu, Shao-Yi; Ding, Chang-Chun; Wu, Li-Na; Zhang, Gao-Jun

    2018-03-01

    The geometric structures, band structures, density of states and optical absorption spectra are studied for cubic and orthorhombic KNbO3 (C- and O-KNO) crystals by using first-principles calculations. Based on the above calculation results, the mechanisms of photocatalytic properties for both crystals are further theoretically investigated to deepen the understandings of their photocatalytic activity from the electronic level. Calculations for the effective masses of electron and hole are carried out to make comparison in photocatalytic performance between cubic and orthorhombic phases. Optical absorption in cubic phase is found to be stronger than that in orthorhombic phase. C-KNO has smaller electron effective mass, higher mobility of photogenerated electrons, lower electron-hole recombination rate and better light absorption capacity than O-KNO. So, the photocatalytic activity of cubic phase can be higher than orthorhombic one. The present work may be beneficial to explore the series of perovskite photocatalysts.

  10. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scatteringmore » sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langridge, Justin M.; Shillings, Alexander J. L.; Jones, Roderic L.

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modesmore » of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO{sub 2} (versus a laser broadband cavity ringdown spectrometer) and for H{sub 2}O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+{delta} absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO{sub 3} as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1{sigma} detection limit of 0.25 pptv for a 10 s acquisition time, which improves with further signal averaging to 0.09 pptv in 400 s. Finally, an example of the instrument's performance under field work conditions is presented, in this case of measurements of the sum of NO{sub 3}+N{sub 2}O{sub 5} concentrations in the marine boundary layer acquired during the Reactive Halogens in the Marine Boundary Layer field campaign.« less

  12. Quantification of signal detection performance degradation induced by phase-retrieval in propagation-based x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2016-04-01

    In propagation-based X-ray phase-contrast (PB XPC) imaging, the measured image contains a mixture of absorption- and phase-contrast. To obtain separate images of the projected absorption and phase (i.e., refractive) properties of a sample, phase retrieval methods can be employed. It has been suggested that phase-retrieval can always improve image quality in PB XPC imaging. However, when objective (task-based) measures of image quality are employed, this is not necessarily true and phase retrieval can be detrimental. In this work, signal detection theory is utilized to quantify the performance of a Hotelling observer (HO) for detecting a known signal in a known background. Two cases are considered. In the first case, the HO acts directly on the measured intensity data. In the second case, the HO acts on either the retrieved phase or absorption image. We demonstrate that the performance of the HO is superior when acting on the measured intensity data. The loss of task-specific information induced by phase-retrieval is quantified by computing the efficiency of the HO as the ratio of the test statistic signal-to-noise ratio (SNR) for the two cases. The effect of the system geometry on this efficiency is systematically investigated. Our findings confirm that phase-retrieval can impair signal detection performance in XPC imaging.

  13. Experimentally enhanced model-based deconvolution of propagation-based phase-contrast data

    NASA Astrophysics Data System (ADS)

    Pichotka, M.; Palma, K.; Hasn, S.; Jakubek, J.; Vavrik, D.

    2016-12-01

    In recent years phase-contrast has become a much investigated modality in radiographic imaging. The radiographic setups employed in phase-contrast imaging are typically rather costly and complex, e.g. high performance Talbot-Laue interferometers operated at synchrotron light sources. In-line phase-contrast imaging states the most pedestrian approach towards phase-contrast enhancement. Utilizing small angle deflection within the imaged sample and the entailed interference of the deflected and un-deflected beam during spatial propagation, in-line phase-contrast imaging only requires a well collimated X-ray source with a high contrast & high resolution detector. Employing high magnification the above conditions are intrinsically fulfilled in cone-beam micro-tomography. As opposed of 2D imaging, where contrast enhancement is generally considered beneficial, in tomographic modalities the in-line phase-contrast effect can be quite a nuisance since it renders the inverse problem posed by tomographic reconstruction inconsistent, thus causing reconstruction artifacts. We present an experimentally enhanced model-based approach to disentangle absorption and in-line phase-contrast. The approach employs comparison of transmission data to a system model computed iteratively on-line. By comparison of the forward model to absorption data acquired in continuous rotation strong local deviations of the data residual are successively identified as likely candidates for in-line phase-contrast. By inducing minimal vibrations (few mrad) to the sample around the peaks of such deviations the transmission signal can be decomposed into a constant absorptive fraction and an oscillating signal caused by phase-contrast which again allows to generate separate maps for absorption and phase-contrast. The contributions of phase-contrast and the corresponding artifacts are subsequently removed from the tomographic dataset. In principle, if a 3D handling of the sample is available, this method also allows to track discontinuities throughout the volume and therefore states a powerful tool in 3D defectoscopy.

  14. Simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2008-01-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  15. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry.

    PubMed

    Du, Yang; Huang, Jianheng; Lin, Danying; Niu, Hanben

    2012-08-01

    X-ray phase-contrast imaging based on grating interferometry is a technique with the potential to provide absorption, differential phase contrast, and dark-field signals simultaneously. The multi-line X-ray source used recently in grating interferometry has the advantage of high-energy X-rays for imaging of thick samples for most clinical and industrial investigations. However, it has a drawback of limited field of view (FOV), because of the axial extension of the X-ray emission area. In this paper, we analyze the effects of axial extension of the multi-line X-ray source on the FOV and its improvement in terms of Fresnel diffraction theory. Computer simulation results show that the FOV limitation can be overcome by use of an alternative X-ray tube with a specially designed multi-step anode. The FOV of this newly designed X-ray source can be approximately four times larger than that of the multi-line X-ray source in the same emission area. This might be beneficial for the applications of X-ray phase contrast imaging in materials science, biology, medicine, and industry.

  16. Preparation of nano-TiO2/diatomite-based porous ceramics and their photocatalytic kinetics for formaldehyde degradation

    NASA Astrophysics Data System (ADS)

    Gao, Ru-qin; Sun, Qian; Fang, Zhi; Li, Guo-ting; Jia, Meng-zhe; Hou, Xin-mei

    2018-01-01

    Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650°C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm-1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated under UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were κ = 0.576 mg·m-3·min-1 and K = 0.048 m3/mg.

  17. He-Ne and CW CO2 laser long-path systems for gas detection

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1986-01-01

    This paper describes the design and testing of a laboratory prototype dual He-Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual CW carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

  18. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.

  19. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  20. Development and operation of a real-time data acquisition system for the NASA-LaRC differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1985-01-01

    Computer hardware and software of the NASA multipurpose differential absorption lidar (DIAL) sysatem were improved. The NASA DIAL system is undergoing development and experimental deployment for remote measurement of atmospheric trace gas concentration from ground and aircraft platforms. A viable DIAL system was developed with the capability of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights were successfully performed on board the NASA/Goddard Flight Center Electra aircraft from 1980 to 1984. Improvements on the DIAL data acquisition system (DAS) are described.

  1. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  2. Development of a Pulsed 2-micron Laser Transmitter for CO2 Sensing from Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Bai, Yingxin; Petros, Mulugeta; Menzies, Robert T.

    2011-01-01

    NASA Langley Research Center (LaRC), in collaboration with NASA Jet Propulsion Laboratory (JPL), is engaged in the development and demonstration of a highly efficient, versatile, 2-micron pulsed laser that can be used in a pulsed Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) instrument to make precise, high-resolution CO2 measurements to investigate sources, sinks, and fluxes of CO2. This laser transmitter will feature performance characteristics needed for an ASCENDS system that will be capable of delivering the CO2 measurement precision required by the Earth Science Decadal Survey (DS).

  3. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  4. Design of an all-optical fractional-order differentiator with terahertz bandwidth based on a fiber Bragg grating in transmission.

    PubMed

    Liu, Xin; Shu, Xuewen

    2017-08-20

    All-optical fractional-order temporal differentiators with bandwidths reaching terahertz (THz) values are demonstrated with transmissive fiber Bragg gratings. Since the designed fractional-order differentiator is a minimum phase function, the reflective phase of the designed function can be chosen arbitrarily. As examples, we first design several 0.5th-order differentiators with bandwidths reaching the THz range for comparison. The reflective phases of the 0.5th-order differentiators are chosen to be linear phase, quadratic phase, cubic phase, and biquadratic phase, respectively. We find that both the maximum coupling coefficient and the spatial resolution of the designed grating increase when the reflective phase varies from quadratic function to cubic function to biquadratic function. Furthermore, when the reflective phase is chosen to be a quadratic function, the obtained grating coupling coefficient and period are more likely to be achieved in practice. Then we design fractional-order differentiators with different orders when the reflective phase is chosen to be a quadratic function. We see that when the designed order of the differentiator increases, the obtained maximum coupling coefficient also increases while the oscillation of the coupling coefficient decreases. Finally, we give the numerical performance of the designed 0.5th-order differentiator by showing its temporal response and calculating its cross-correlation coefficient.

  5. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  6. Imaging Nanometer Phase Coexistence at Defects During the Insulator-Metal Phase Transformation in VO2 Thin Films by Resonant Soft X-ray Holography.

    PubMed

    Vidas, Luciana; Günther, Christian M; Miller, Timothy A; Pfau, Bastian; Perez-Salinas, Daniel; Martínez, Elías; Schneider, Michael; Gührs, Erik; Gargiani, Pierluigi; Valvidares, Manuel; Marvel, Robert E; Hallman, Kent A; Haglund, Richard F; Eisebitt, Stefan; Wall, Simon

    2018-05-18

    We use resonant soft X-ray holography to image the insulator-metal phase transition in vanadium dioxide with element and polarization specificity and nanometer spatial resolution. We observe that nanoscale inhomogeneity in the film results in spatial-dependent transition pathways between the insulating and metallic states. Additional nanoscale phases form in the vicinity of defects which are not apparent in the initial or final states of the system, which would be missed in area-integrated X-ray absorption measurements. These intermediate phases are vital to understand the phase transition in VO 2 , and our results demonstrate how resonant imaging can be used to understand the electronic properties of phase-separated correlated materials obtained by X-ray absorption.

  7. Control of electromagnetically induced transparency via a hybrid semiconductor quantum dot-vanadium dioxide nanoparticle system

    NASA Astrophysics Data System (ADS)

    Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza

    2017-07-01

    We numerically investigate the electromagnetically induced transparency (EIT) of a hybrid system consisting of a three-level quantum dot (QD) in the vicinity of vanadium dioxide nanoparticle (VO2NP). VO2NP has semiconductor and metallic phases where the transition between the two phases occurs around a critical temperature. When the QD-VO2NP hybrid system interacts with continuous wave laser fields in an infrared regime, it supports a coherent coupling of exciton-polariton and exciton-plasmon polariton in semiconductor and metal phases of VO2NP, respectively. In our calculations a filling fraction factor controls the VO2NP phase transition. A probe and control laser field configuration is studied for the hybrid system to measure the absorption of QD through the filling fraction factor manipulations. We show that for the VO2NP semiconductor phase and proper geometrical configuration, the absorption spectrum profile of the QD represents an EIT with two peaks and a clear minimum. These two peaks merge to one through the VO2NP phase transition to metal. We also show that the absorption spectrum profile is modified by different orientations of the laser fields with the axis of the QD-VO2NP hybrid system. The innovation in comparison to other research in the field is that robust variation in the absorption profile through EIT is due to the phase transition in VO2NP without any structural change in the QD-VO2NP hybrid system. Our results can be employed to design nanothermal sensors, optical nanoswitches, and energy transfer devices.

  8. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells.

    PubMed

    Czyz, Jaroslaw; Guan, Kaomei; Zeng, Qinghua; Nikolova, Teodora; Meister, Armin; Schönborn, Frank; Schuderer, Jürgen; Kuster, Niels; Wobus, Anna M

    2004-05-01

    Effects of electromagnetic fields (EMF) simulating exposure to the Global System for Mobile Communications (GSM) signals were studied using pluripotent embryonic stem (ES) cells in vitro. Wild-type ES cells and ES cells deficient for the tumor suppressor p53 were exposed to pulse modulated EMF at 1.71 GHz, lower end of the uplink band of GSM 1800, under standardized and controlled conditions, and transcripts of regulatory genes were analyzed during in vitro differentiation. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (active during listening phases thus simulating a typical conversation), were applied to the cells at and below the basic safety limits for local exposures as defined for the general public by the International Commission on Nonionizing Radiation Protection (ICNIRP). GSM-217 EMF induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. No responses were observed in either cell type after EMF exposure to GSM-Talk applied at similar slot-averaged specific absorption rates (SAR), but at lower time-averaged SAR values. Cardiac differentiation and cell cycle characteristics were not affected in embryonic stem and embryonic carcinoma cells after exposure to GSM-217 EMF signals. Our data indicate that the genetic background determines cellular responses to GSM modulated EMF. Bioelectromagnetics 25:296-307, 2004. Copyright 2004 Wiley-Liss, Inc.

  9. Spectroscopy of Reaction Intermediates in Nitramine Decomposition and Combustion

    DTIC Science & Technology

    1991-06-20

    absorptions of gas-phase MMN reported by Dakhis and co-workers,5 6 the very strong absorption of MMN near 1332 cm - ’ did not appear. Unassigned...sharp NO 2 absorption. In Table I, the positions of these absorptions are compared with the infrared absorptions of MMN reported by Dakhis and co-workers...Chemistry and Physics of Energetic Materials, S. N. Bulusu, Ed., pp. 51-78 (Kluwer Academic Publishers, Dordrecht, 1990). 56. M. I. Dakhis , V. G

  10. Structure-properties relationships of novel poly(carbonate-co-amide) segmented copolymers with polyamide-6 as hard segments and polycarbonate as soft segments

    NASA Astrophysics Data System (ADS)

    Yang, Yunyun; Kong, Weibo; Yuan, Ye; Zhou, Changlin; Cai, Xufu

    2018-04-01

    Novel poly(carbonate-co-amide) (PCA) block copolymers are prepared with polycarbonate diol (PCD) as soft segments, polyamide-6 (PA6) as hard segments and 4,4'-diphenylmethane diisocyanate (MDI) as coupling agent through reactive processing. The reactive processing strategy is eco-friendly and resolve the incompatibility between polyamide segments and PCD segments in preparation processing. The chemical structure, crystalline properties, thermal properties, mechanical properties and water resistance were extensively studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermal gravity analysis (TGA), Dynamic mechanical analysis (DMA), tensile testing, water contact angle and water absorption, respectively. The as-prepared PCAs exhibit obvious microphase separation between the crystalline hard PA6 phase and amorphous PCD soft segments. Meanwhile, PCAs showed outstanding mechanical with the maximum tensile strength of 46.3 MPa and elongation at break of 909%. The contact angle and water absorption results indicate that PCAs demonstrate outstanding water resistance even though possess the hydrophilic surfaces. The TGA measurements prove that the thermal stability of PCA can satisfy the requirement of multiple-processing without decomposition.

  11. Thiazide-sensitive Na+ -Cl- cotransporter (NCC) gene inactivation results in increased duodenal Ca2+ absorption, enhanced osteoblast differentiation and elevated bone mineral density.

    PubMed

    Hsu, Yu-Juei; Yang, Sung-Sen; Cheng, Chih-Jen; Liu, Shu-Ting; Huang, Shih-Ming; Chau, Tom; Chu, Pauling; Salter, Donald M; Lee, Herng-Sheng; Lin, Shih-Hua

    2015-01-01

    Inactivation of the thiazide-sensitive sodium chloride cotransporter (NCC) due to genetic mutations in Gitelman's syndrome (GS) or pharmacological inhibition with thiazide diuretics causes hypocalciuria and increased bone mineral density (BMD) with unclear extrarenal calcium (Ca(2+) ) regulation. We investigated intestinal Ca(2+) absorption and bone Ca(2+) metabolism in nonsense Ncc Ser707X (S707X) homozygous knockin mice (Ncc(S707X/S707X) mice). Compared to wild-type and heterozygous knockin littermates, Ncc(S707X/S707X) mice had increased intestinal absorption of (45) Ca(2+) and expression of the active Ca(2+) transport machinery (transient receptor potential vanilloid 6, calbindin-D9K , and plasma membrane Ca(2+) ATPase isoform 1b). Ncc(S707X/S707X) mice had also significantly increased Ca(2+) content accompanied by greater mineral apposition rate (MAR) in their femurs and higher trabecular bone volume, cortical bone thickness, and BMD determined by μCT. Their osteoblast differentiation markers, such as bone alkaline phosphatase, procollagen I, osteocalcin, and osterix, were also significantly increased while osteoclast activity was unaffected. Analysis of marrow-derived bone cells, either treated with thiazide or directly cultured from Ncc S707X knockin mice, showed that the differentiation of osteoblasts was associated with increased phosphorylation of mechanical stress-induced focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). In conclusion, NCC inhibition stimulates duodenal Ca(2+) absorption as well as osteoblast differentiation and bone Ca(2+) storage, possibly through a FAK/ERK dependent mechanism. © 2014 American Society for Bone and Mineral Research.

  12. Psychological absorption. Affect investment in marijuana intoxication.

    PubMed

    Fabian, W D; Fishkin, S M

    1991-01-01

    Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.

  13. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  14. Influence of disorder on the photoinduced excitations in phenyl substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Brabec, Christoph J.; Winder, Christoph; Scharber, Markus C.; Sariciftci, N. Serdar; Hummelen, Jan C.; Svensson, Mattias; Andersson, Mats R.

    2001-10-01

    Regioregular poly(3-(4'-(1″,4″,7″-trioxaoctyl)phenyl)thiophenes) (PEOPTs) exhibit interesting properties for the use in polymer electronics. Exposing thin films of the amorphous, disordered phase (orange phase) of the "as prepared" polymer to chloroform vapor or annealing them by heat treatment results in a redshift of the absorption maximum due to the formation of nanocrystals in an ordered phase (blue phase). As such, PEOPT thus is a very interesting conjugated polymeric material, which exhibits two different phases with well-defined order/disorder characters on one-and-the-same material. This property opens up the unique possibility to investigate the role of order/disorder on the photoexcited pattern without being obscured by the differences in chemical structure by using different materials with different crystallinity. The fact, that blue phase PEOPT exhibits absorption edges at relatively low energies around 1.8 eV, thereby demonstrating an enhanced spectral absorption range as compared to the orange phase, makes them attractive for use in photodiodes and solar cells as well. The photoinduced charge generation efficiency in both phases of PEOPT is significantly enhanced by the addition of a strong electron acceptor such as fullerene C60, as observed by quenching of the luminescence and by photoinduced absorption measurements in the infrared and uv-visible regime. The average number and the lifetime of photoinduced carriers in composites of PEOPT with a methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are found to depend on the crystallinity of PEOPT in thin films, which gives rise to charged photoexcitations delocalized between polymer chains. Stronger bimolecular recombination in composites of the blue phase PEOPT with PCBM is observed as compared to the orange phase PEOPT/PCBM films. The origin of this enhanced recombination is found to be related to the hole mobility of the polymer.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.

    The fraction of plutonium absorbed after oral administration of Pu(VI) to 24-h-fasted mice was 19 X 10(-4), 13-fold higher than in fed mice, 1.4 X 10(-4). We have investigated the relevance of the high gastrointestinal (GI) absorption value for the 24-h-fasted animals in setting drinking water standards for humans. When fasting was initiated at the beginning of the active phase of the mouse's daily activity cycle (when they would normally eat), plutonium GI absorption rose from 2.8 X 10(-4) at zero-time to a level typical of the 24-h-fasted mouse after only 2 h of fasting. In contrast, in mice allowedmore » to eat for 4 h into their active phase prior to initiation of the fast (meal-fed mice), 8 h of fasting were required before GI absorption rose to a level similar to that of the 24-h-fasted mouse. The fraction of plutonium retained after gavage administration of Pu(VI) to 1-day-old rats was 74 X 10(-4), 70-fold higher than the value for fed adults. Retention after GI absorption in neonates remained 30- to 70-fold higher than in adults until weaning. One week after weaning, the fraction absorbed and retained by fed weanling rats was the same as that for fed adults, 1 X 10(-4). Drinking water standards for plutonium have been set based on GI absorption values for fed adult animals. The 10- to 100-fold increases in plutonium absorption in young and fasted animals reported by ourselves and others, and the rapid rise to fasted levels of absorption at the start of the animal's active phase, indicate that consideration should be given to elevated levels of plutonium absorption in young and fasted individuals.« less

  16. Cattaneo-Christov double-diffusion theory for three-dimensional flow of viscoelastic nanofluid with the effect of heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    2018-03-01

    The present research article focuses on three-dimensional flow of viscoelastic(second grade) nanofluid in the presence of Cattaneo-Christov double-diffusion theory. Flow caused is due to stretching sheet. Characteristics of heat transfer are interpreted by considering the heat generation/absorption. Nanofluid theory comprises of Brownian motion and thermophoresis. Cattaneo-Christov double-diffusion theory is introduced in the energy and concentration expressions. Such diffusions are developed as a part of formulating the thermal and solutal relaxation times framework. Suitable variables are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been explored through homotopic algorithm. Behavior of sundry variables on the velocities, temperature and concentration are scrutinized graphically. Numerical values of skin friction coefficients are also calculated and examined. Here thermal field enhances for heat generation parameter while reverse situation is noticed for heat absorption parameter.

  17. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  18. Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

    DOE PAGES

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    2016-03-04

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  19. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  20. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  1. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.

    2015-10-01

    We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.

  2. Differential Frequency Hopping (DFH) Modulation for Underwater Acoustic Communications and Networking

    DTIC Science & Technology

    2009-10-09

    trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was

  3. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.

  4. Photoacoustic Monitoring of Absorption Spectrum During the Dehydration Process of pasilla Chili Pepper

    NASA Astrophysics Data System (ADS)

    Zendejas-Leal, Blanca Estela; Barrientos-Sotelo, Víctor Rodrigo; Cano-Casas, Rogelio; Alvarado-Noguez, Margarita Lizeth; Hernández-Rosas, Juan; Cruz-Orea, Alfredo

    2018-07-01

    In this work, the optical absorption spectrum of peppers was monitored by phase-resolved photoacoustic spectroscopy during a dehydration process based on hot-air drying, yielding simultaneous information about changes in the exocarp and mesocarp. Our results show that between all of the dehydration processes of green Capsicum annuum L. variety pasilla peppers, only very small changes occur in the different phase angles, which has been correlated with the small changes in the exocarp thickness. The phase-resolved spectra of mesocarp show more clearly the evolution of the carotenoid compounds with respect to the optical absorption spectrum without phase resolving, due to the last spectrum having a band broadening in that region with more signals convolved. We have shown that not only do the ripened chili peppers produce new carotenoid compounds, but also we are probing that the dehydration process, beginning with the green stage, preserves the nutrimental content, similar to changes that occur in the natural ripening process.

  5. Operating range of a differential-absorption lidar based on a CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivashchenko, M V; Sherstov, I V

    2000-08-31

    The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)

  6. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  7. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  8. NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles. [DIfferential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Carter, A. F.; Shipley, S. T.; Siviter, J. H., Jr.; Hall, W. M.; Allen, R. J.; Butler, C. F.; Mayo, M. N.

    1983-01-01

    The hardware, operational characteristics, data processing system, and applications of the NASA airborne differential absorption lidar (DIAL) system are described. DIAL functions by assessing the average gas concentration over a specified range interval by analyzing the difference in lidar backscatter signals for laser wavelengths tuned on and off of the molecular absorption line of a gas under investigation. The system comprises two frequency-doubled Nd:YAG lasers pumping two high conversion efficiency tunable dye lasers emitting pulses separated by 100 microsec or less. The return signals are digitized and stored on magnetic tape. The signal collector consists of photomultiplier tubes implanted in a cassegrain telescope. Flight tests of the system involved on-measurements at 285.95 nm and off-measurements at 299.40 nm, which yielded a differential cross section of 1.74 x 10 to the -16th sq cm. In situ measurements with another plane at a nominal altitude of 3.2 km for comparison purposes showed accuracy to within 10% in and above the boundary layer. The system is considered as a test apparatus for more developed versions to be flown on the Shuttle

  9. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  10. Finite Element Analysis of Interaction of Laser Beam with Material in Laser Metal Powder Bed Fusion Process.

    PubMed

    Fu, Guang; Zhang, David Z; He, Allen N; Mao, Zhongfa; Zhang, Kaifei

    2018-05-10

    A deep understanding of the laser-material interaction mechanism, characterized by laser absorption, is very important in simulating the laser metal powder bed fusion (PBF) process. This is because the laser absorption of material affects the temperature distribution, which influences the thermal stress development and the final quality of parts. In this paper, a three-dimensional finite element analysis model of heat transfer taking into account the effect of material state and phase changes on laser absorption is presented to gain insight into the absorption mechanism, and the evolution of instantaneous absorptance in the laser metal PBF process. The results showed that the instantaneous absorptance was significantly affected by the time of laser radiation, as well as process parameters, such as hatch space, scanning velocity, and laser power, which were consistent with the experiment-based findings. The applicability of this model to temperature simulation was demonstrated by a comparative study, wherein the peak temperature in fusion process was simulated in two scenarios, with and without considering the effect of material state and phase changes on laser absorption, and the simulated results in the two scenarios were then compared with experimental data respectively.

  11. Conversion of laser energy to gas kinetic energy

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1976-01-01

    Techniques for the gas phase absorption of laser radiation for ultimate conversion to gas kinetic energy are discussed. Particular emphasis is placed on absorption by the vibration rotation bands of diatomic molecules at high pressures. This high pressure absorption appears to offer efficient conversion of laser energy to gas translational energy. Bleaching and chemical effects are minimized and the variation of the total absorption coefficient with temperature is minimal.

  12. Fluid synthesis and structure of a new polymorphic modification of boron nitride

    NASA Astrophysics Data System (ADS)

    Pokropivny, V. V.; Smolyar, A. S.; Ovsiannikova, L. I.; Pokropivny, A. V.; Kuts, V. A.; Lyashenko, V. I.; Nesterenko, Yu. V.

    2013-04-01

    A new previously unknown phase of boron nitride with a hardness of 0.41-0.63 GPa has been pre-pared by the supercritical fluid synthesis. The presence of a new phase is confirmed by the X-ray spectra and IR absorption spectra, where new reflections and bands are distinguished. The fundamental reflection of the X-ray diffraction pattern is d = 0.286-0.291 nm, and the characteristic band in the infrared absorption spectrum is observed at 704 cm-1. The X-ray diffraction pattern and the experimental and theoretical infrared absorption spectra show that a new synthesized boron nitride phase can be a cluster crystal (space group 211) with a simple cubic lattice. Cage clusters of a fullerene-like morphology B24N24 with point symmetry O are arranged in lattice sites.

  13. Tunable dual-band nearly perfect absorption based on a compound metallic grating

    NASA Astrophysics Data System (ADS)

    Gao, Hua; Zheng, Zhi-Yuan; Feng, Juan

    2017-02-01

    Traditional metallic gratings and novel metamaterials are two basic kinds of candidates for perfect absorption. Comparatively speaking, metallic grating is the preferred choice for the same absorption effect because it is structurally simpler and more convenient to fabricate. However, to date, most of the perfect absorption effects achieved based on metamaterials are also available using an metallic grating except the tunable dual(multi)-band perfect absorption. To fill this gap, in this paper, by adding subgrooves on the rear surface as well as inside the grating slits to a free-standing metallic grating, tunable dual-band perfect absorption is also obtained for the first time. The grooves inside the slits is to tune the frequency of the Cavity Mode(CM) resonance which enhances the transmission and suppresses the reflectance simultaneously. The grooves on the rear surface give rise to the phase resonance which not only suppresses the transmission but also reinforces the reflectance depression effect. Thus, when the phase resonance and the frequency tunable CM resonance occur together, transmission and reflection can be suppressed simultaneously, dual-band nearly perfect absorption with tunable frequencies is obtained. To our knowledge, this perfect absorption phenomenon is achieved for the first time in a designed metallic grating structure.

  14. Optical properties of transparent glass–ceramics containing lithium–mica nanocrystals: Crystallization effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khani, V.; Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir; Shakeri, M.S.

    2013-09-01

    Graphical abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals are studied and crystallization condition has been evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used for morphological variations and UV–vis absorption spectroscopy for comparative analysis of transparency. In order to investigate the optical properties of transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy are calculated. The results of the investigation illustrate that band gap is reduced with increases in crystallizationmore » time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes. - Highlights: • The optimum temperature and time of crystallization were determined. • Li–mica nanocrystals with size of <30 nm were formed using a two-step heat-treatment. • Optical band gap and Fermi energy of nanocrystalline materials decreased with increasing of crystallization temperature and time. • Urbach band tailing was decreased with increasing of crystallization condition. - Abstract: Optical properties of transparent Li{sub 2}O–MgO–Al{sub 2}O{sub 3}–SiO{sub 2}–F glasses containing lithium–mica nanocrystals were studied. The crystallization condition of these glasses was evaluated and optimized to produce transparent glass–ceramics. Crystallization temperatures were determined by differential thermal analysis and crystalline phases were identified and quantified by X-ray diffraction. Scanning electron microscopy was used to detect morphological changes and UV–vis absorption spectroscopy was used for comparative analysis of transparency. In order to investigate the optical properties of the transparent glass–ceramics, optical band gap, Fermi energy level and Urbach energy were calculated. The results of the investigation illustrate that the band gap is reduced with increases in crystallization time and temperature. Enhanced orderliness in the arrangement of atoms might be regarded as possible reasons for the above changes.« less

  15. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  16. Phase-resolved reflectance spectroscopy on layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1995-05-01

    In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.

  17. Time-varying sodium absorption in the Type Ia supernova 2013gh

    DOE PAGES

    Ferretti, Raphael; Amanullah, R.; Goobar, A.; ...

    2016-07-18

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims. To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all ofmore » which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods. In this paper, we have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results. Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 10 19 cm from the explosion. Conclusions. Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. Finally, the nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances.« less

  18. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  19. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    NASA Astrophysics Data System (ADS)

    McKay, Derek; Partamies, Noora; Vierinen, Juha

    2018-01-01

    The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1-2 h. During the growth phase, an equatorward moving, east-west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10 keV) and high- (> 10 keV) energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA) arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  20. Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components.

    PubMed

    Birru, Woldeamanuel A; Warren, Dallas B; Ibrahim, Ahmed; Williams, Hywel D; Benameur, Hassan; Porter, Christopher J H; Chalmers, David K; Pouton, Colin W

    2014-08-04

    Bile components play a significant role in the absorption of dietary fat, by solubilizing the products of fat digestion. The absorption of poorly water-soluble drugs from the gastrointestinal tract is often enhanced by interaction with the pathways of fat digestion and absorption. These processes can enhance drug absorption. Thus, the phase behavior of bile components and digested lipids is of great interest to pharmaceutical scientists who seek to optimize drug solubilization in the gut lumen. This can be achieved by dosing drugs after food or preferably by formulating the drug in a lipid-based delivery system. Phase diagrams of bile salts, lecithin, and water have been available for many years, but here we investigate the association structures that occur in dilute aqueous solution, in concentrations that are present in the gut lumen. More importantly, we have compared these structures with those that would be expected to be present in the intestine soon after secretion of bile. Phosphatidylcholines are rapidly hydrolyzed by pancreatic enzymes to yield equimolar mixtures of their monoacyl equivalents and fatty acids. We constructed phase diagrams that model the association structures formed by the products of digestion of biliary phospholipids. The micelle-vesicle phase boundary was clearly identifiable by dynamic light scattering and nephelometry. These data indicate that a significantly higher molar ratio of lipid to bile salt is required to cause a transition to lamellar phase (i.e., liposomes in dilute solution). Mixed micelles of digested bile have a higher capacity for solubilization of lipids and fat digestion products and can be expected to have a different capacity to solubilize lipophilic drugs. We suggest that mixtures of lysolecithin, fatty acid, and bile salts are a better model of molecular associations in the gut lumen, and such mixtures could be used to better understand the interaction of drugs with the fat digestion and absorption pathway.

  1. First application of liquid-metal-jet sources for small-animal imaging: high-resolution CT and phase-contrast tumor demarcation.

    PubMed

    Larsson, Daniel H; Lundström, Ulf; Westermark, Ulrica K; Arsenian Henriksson, Marie; Burvall, Anna; Hertz, Hans M

    2013-02-01

    Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga∕In∕Sn alloy and the other an In∕Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with ∼7 μm x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. High-resolution absorption imaging is demonstrated on mice with CT, showing 50 μm bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  2. A spectroscopic study of LMC X-4

    NASA Technical Reports Server (NTRS)

    Petro, L. D.; Hiltner, W. A.

    1982-01-01

    The orbital radial velocity semi-amplitude of the binary star system LMC X-4 primary was determined to be 37.9 + or - 2.4 km/s from measurements of the hydrogen absorption lines. The semi-amplitude of the He I and He II absorption lines are consistent with this, namely 44.9 + or - 5.0 and 37.3 + or - 5.3 km/s. The phase and shape of the radial velocity curves of the three ions are consistent with a circular orbit and an ephemeris based upon X-ray measurements of the neutron star, with the exception that the He II absorption line radial velocity curve has detectable shape distortion. Measurements of the He II LAMBOA 4686 emission line velocity are consistent with a phase shifted sine wave of semi-amplitude 535 km/s, a square wave of semi-amplitude 407 km/s, or high order harmonic fits. The spectral type was found to be 08.5 IV-V during X-ray eclipse. Variations to types as early as 07 occur, but not as a function or orbital phase. Absorption line peculiarities were noted on 6 of 58 spectra.

  3. Variable thickness double-refracting plate

    DOEpatents

    Hadeishi, Tetsuo

    1976-01-01

    This invention provides an A.C., cyclic, current-controlled, phase retardation plate that uses a magnetic clamp to produce stress birefringence. It was developed for an Isotope-Zeeman Atomic Absorption Spectrometer that uses polarization modulation to effect automatic background correction in atomic absorption trace-element measurements. To this end, the phase retardation plate of the invention is a variable thickness, photoelastic, double-refracting plate that is alternately stressed and released by the magnetic clamp selectively to modulate specific components selected from the group consisting of circularly and plane polarized Zeeman components that are produced in a dc magnetic field so that they correspond respectively to Zeeman reference and transmission-probe absorption components. The polarization modulation changes the phase of these polarized Zeeman components, designated as .sigma. reference and .pi. absorption components, so that every half cycle the components change from a transmission mode to a mode in which the .pi. component is blocked and the .sigma. components are transmitted. Thus, the Zeeman absorption component, which corresponds in amplitude to the amount of the trace element to be measured in a sample, is alternately transmitted and blocked by a linear polarizer, while the circularly polarized reference components are continuously transmitted thereby. The result is a sinusoidally varying output light amplitude whose average corresponds to the amount of the trace element present in the sample.

  4. Ab initio calculation of the electronic absorption spectrum of liquid water

    NASA Astrophysics Data System (ADS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-04-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  5. Analysis of Cement-Based Pastes Mixed with Waste Tire Rubber

    NASA Astrophysics Data System (ADS)

    Sola, O. C.; Ozyazgan, C.; Sayin, B.

    2017-03-01

    Using the methods of thermal gravimetry, differential thermal analysis, Furier transform infrared analysis, and capillary absorption, the properties of a cement composite produced by introducing waste tyre rubber into a cement mixture were investigated. It was found that the composite filled with the rubber had a much lower water absorption ability than the unfilled one.

  6. Fiber-Optic Gratings for Lidar Measurements of Water Vapor

    NASA Technical Reports Server (NTRS)

    Vann, Leila B.; DeYoung, Russell J.

    2006-01-01

    Narrow-band filters in the form of phase-shifted Fabry-Perot Bragg gratings incorporated into optical fibers are being developed for differential-absorption lidar (DIAL) instruments used to measure concentrations of atmospheric water vapor. The basic idea is to measure the relative amounts of pulsed laser light scattered from the atmosphere at two nearly equal wavelengths, one of which coincides with an absorption spectral peak of water molecules and the other corresponding to no water vapor absorption. As part of the DIAL measurement process, the scattered light is made to pass through a filter on the way to a photodetector. Omitting other details of DIAL for the sake of brevity, what is required of the filter is to provide a stop band that: Surrounds the water-vapor spectral absorption peaks at a wavelength of 946 nm, Has a spectral width of at least a couple of nanometers, Contains a pass band preferably no wider than necessary to accommodate the 946.0003-nm-wavelength water vapor absorption peak [which has 8.47 pm full width at half maximum (FWHM)], and Contains another pass band at the slightly shorter wavelength of 945.9 nm, where there is scattering of light from aerosol particles but no absorption by water molecules. Whereas filters used heretofore in DIAL have had bandwidths of =300 pm, recent progress in the art of fiber-optic Bragg-grating filters has made it feasible to reduce bandwidths to less than or equal to 20 pm and thereby to reduce background noise. Another benefit of substituting fiber-optic Bragg-grating filters for those now in use would be significant reductions in the weights of DIAL instruments. Yet another advantage of fiber-optic Bragg-grating filters is that their transmission spectra can be shifted to longer wavelengths by heating or stretching: hence, it is envisioned that future DIAL instruments would contain devices for fine adjustment of transmission wavelengths through stretching or heating of fiber-optic Bragg-grating filters nominally designed and fabricated to have transmission wavelengths that, in the absence of stretching, would be slightly too short.

  7. X-ray vector radiography of a human hand

    NASA Astrophysics Data System (ADS)

    Jud, Christoph; Braig, Eva; Dierolf, Martin; Eggl, Elena; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Münzel, Daniela

    2017-03-01

    Grating based x-ray phase-contrast reveals differential phase-contrast (DPC) and dark-field contrast (DFC) on top of the conventional absorption image. X-ray vector radiography (XVR) exploits the directional dependence of the DFC and yields the mean scattering strength, the degree of anisotropy and the orientation of scattering structures by combining several DFC-projections. Here, we perform an XVR of an ex vivo human hand specimen. Conventional attenuation images have a good contrast between the bones and the surrounding soft tissue. Within the bones, trabecular structures are visible. However, XVR detects subtler differences within the trabecular structure: there is isotropic scattering in the extremities of the phalanx in contrast to anisotropic scattering in its body. The orientation changes as well from relatively random in the extremities to an alignment along the longitudinal trabecular orientation in the body. In the other bones measured, a similar behavior was found. These findings indicate a deeper insight into the anatomical configuration using XVR compared to conventional radiography. Since microfractures cause a discontinuous trabecular structure, XVR could help to detect so-called radiographically occult fractures of the trabecular bones.

  8. Malignant hyperthermia and calcium-induced heat production.

    PubMed

    Ueda, I; Shinoda, F; Kamaya, H; Krishna, P R

    1994-05-01

    The abnormal increase in intracellular Ca++ in malignant hyperthermia (MH) is well documented, but the link between the increased Ca++ concentration and high temperature remains speculative. We investigated the possibility that the Ca(++)-induced change in the state of cell membranes may contribute to the temperature elevation. Calcium ion transforms phospholipid membranes from the fluid to solid state. This is analogous to the freezing of water, and liberates latent heat. Differential titration calorimetry (DTC) measures heat production or absorption during ligand binding to macromolecules. When CaCl2 solution was added to anionic dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidylglycerol (DMPG) vesicle membranes in incremental doses, DTC showed that the heat production suddenly increased when the Ca++ concentration exceeded about 120 microM. At this Ca++ concentration range, these lipid membranes underwent phase transition. The latent heat of transition was measured by differential scanning calorimetry (DSC). The values were 7.1 +/- 0.7 (SD, n = 4) kcal.mol-1 of DMPA and 6.8 +/- 0.7 (SD, n = 4) kcal.mol-1 of DMPG. The study shows that Ca++ produces heat when bound to lipid membranes. We are not proposing, however, that this is the sole source of heat. We contend that the lipid phase transition is one of the heat sources and it may trigger a hypermetabolic state by elevating the temperature of cell membranes. Because Ca++ is implicated as the second messenger in signal transduction, multiple systems may be involved. More studies are needed to clarify how Ca++ increases body temperature.

  9. Complex refractive index of Martian dust - Wavelength dependence and composition

    NASA Technical Reports Server (NTRS)

    Pang, K.; Ajello, J. M.

    1977-01-01

    The size distribution and complex refractive index of Martian dust-cloud particles observed in 1971 with the Mariner 9 UV spectrometer are determined by matching the observed single-scattering albedo and phase function with Mie-scattering calculations for size distributions of spheres. Values of phase function times single-scattering albedo are presented for 12 wavelength intervals in the range from 190 to 350 nm, and best-fit values are obtained for the absorption index. It is found that the absorption index of the dust particles increases with decreasing wavelength from 350 to about 210 nm and then drops off shortward of 210 nm, with a structural shoulder occurring in the absorption spectrum between 240 and 250 nm. A search for a candidate material that can explain the strong UV absorption yields TiO2, whose anatase polymorph has an absorption spectrum matching that of the Martian dust. The TiO2 content of the dust particles is estimated to be a few percent or less.

  10. Multinucleon pion absorption in the sup 4 He(. pi. sup + , ppp ) n reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P.; McAlister, J.; Olszewski, R.

    1991-04-01

    Three-proton emission cross sections for the {sup 4}He({pi}{sup +},{ital ppp}){ital n} reaction were measured at an incident pion kinetic energy of {ital T}{sub {pi}}{sup +}=165 MeV over a wide angular range in a kinematically complete experiment. Angular correlations, missing momentum distributions, and energy spectra are compared with three- and four-body phase-space Monte Carlo calculations. The results provide strong evidence that most of the three-proton coincidences result from three-nucleon absorption. From phase-space integration the total three-nucleon absorption cross section is estimated to be {sigma}{sup 3{ital N}}=4.8{plus minus}1.0 mb. The cross section involving four nucleons is small and is estimated to bemore » {sigma}{sup 4{ital N}}{lt}2 mb. On the scale of the total absorption cross section in {sup 4}He, multinucleon pion absorption seems to represent only a small fraction.« less

  11. [C6 H14 N]PbBr3 : An ABX3 -Type Semiconducting Perovskite Hybrid with Above-Room-Temperature Phase Transition.

    PubMed

    Zhang, Jing; Liu, Xitao; Li, Xianfeng; Han, Shiguo; Tao, Kewen; Wang, Yuyin; Ji, Chengmin; Sun, Zhihua; Luo, Junhua

    2018-04-16

    Organic-inorganic hybrid perovskites, with the formula ABX 3 (A=organic cation, B=metal cation, and X=halide; for example, CH 3 NH 3 PbI 3 ), have diverse and intriguing physical properties, such as semiconduction, phase transitions, and optical properties. Herein, a new ABX 3 -type semiconducting perovskite-like hybrid, (hexamethyleneimine)PbBr 3 (1), consisting of one-dimensional inorganic frameworks and cyclic organic cations, is reported. Notably, the inorganic moiety of 1 adopts a perovskite-like architecture and forms infinite columns composed of face-sharing PbBr 6 octahedra. Strikingly, the organic cation exhibits a highly flexible molecular configuration, which triggers an above-room-temperature phase transition, at T c =338.8 K; this is confirmed by differential scanning calorimetry (DSC), specific heat capacity (C p ), and dielectric measurements. Further structural analysis reveals that the phase transition originates from the molecular configurational distortion of the organic cations coupled with small-angle reorientation of the PbBr 6 octahedra inside the inorganic components. Moreover, temperature-dependent conductivity and UV/Vis absorption measurements reveal that 1 also displays semiconducting behavior below T c . It is believed that this work will pave a potential way to design multifeatured perovskite hybrids by utilizing cyclic organic amines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Differential Activity-Driven Instabilities in Biphasic Active Matter

    NASA Astrophysics Data System (ADS)

    Weber, Christoph A.; Rycroft, Chris H.; Mahadevan, L.

    2018-06-01

    Active stresses can cause instabilities in contractile gels and living tissues. Here we provide a generic hydrodynamic theory that treats these systems as a mixture of two phases of varying activity and different mechanical properties. We find that differential activity between the phases causes a uniform mixture to undergo a demixing instability. We follow the nonlinear evolution of the instability and characterize a phase diagram of the resulting patterns. Our study complements other instability mechanisms in mixtures driven by differential adhesion, differential diffusion, differential growth, and differential motion.

  13. Nonlinear absorption of short intense laser pulse in multispecies plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargarian, A.; Hajisharifi, K.; Mehdian, H.

    In the present paper, the detailed investigation concerning the effect of inclusion of heavy negative ions into the finite background plasma on the laser absorption has been carried out by employing particle-in-cell simulation method. For this purpose, in this configuration, the laser energy absorption relying on the nonlinear phenomena such as phase-mixing, wave-breaking, and scattering has been studied in the Raman-Brillouin regime. It is shown that the inclusion of heavy negative ions suppresses the scattering while increases the phase-mixing time. Moreover, it is illustrated that this inclusion can increase the laser absorption in finite plasma environment, after saturation. The obtainedmore » results are expected to be relevant to the experiments on the mass spectrometry with laser desorption techniques as well as on the laser-plasma interaction with application to particles acceleration.« less

  14. Depth distribution of secondary phases in kesterite Cu 2ZnSnS 4 by angle-resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.

    The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  15. Depth distribution of secondary phases in kesterite Cu 2ZnSnS 4 by angle-resolved X-ray absorption spectroscopy

    DOE PAGES

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.; ...

    2017-12-12

    The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  16. Measurement of HCl absorption coefficients with a DF laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    Absorption coefficients in the fundamental P-branch of HCl at several DF laser transitions from 2439.02/cm to 2862.87/cm have been measured experimentally. The 2-1 P(3) DF laser transition has been shown to overlap the P(6) HCl-37 absorption line within the halfwidth of an atmospherically broadened line. The absorption coefficient k was measured to be 5.64 plus or minus 0.28/(atm-cm) for a 0.27% mixture of HCl in N2 at a total pressure of 760 torr. A theoretical and experimental comparison of the pressure dependence of k showed that the 2-1 P(3) DF transition lies 1.32 plus or minus 0.15 GHz from the center of the P(6) HCl absorption line. Applications of these results to differential absorption lidar and to heterodyne detection are discussed.

  17. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  18. Tandem resonator reflectance modulator

    DOEpatents

    Fritz, I.J.; Wendt, J.R.

    1994-09-06

    A wide band optical modulator is grown on a substrate as tandem Fabry-Perot resonators including three mirrors spaced by two cavities. The absorption of one cavity is changed relative to the absorption of the other cavity by an applied electric field, to cause a change in total reflected light, as light reflecting from the outer mirrors is in phase and light reflecting from the inner mirror is out of phase with light from the outer mirrors. 8 figs.

  19. Gravimetric method for in vitro calibration of skin hydration measurements.

    PubMed

    Martinsen, Ørjan G; Grimnes, Sverre; Nilsen, Jon K; Tronstad, Christian; Jang, Wooyoung; Kim, Hongsig; Shin, Kunsoo; Naderi, Majid; Thielmann, Frank

    2008-02-01

    A novel method for in vitro calibration of skin hydration measurements is presented. The method combines gravimetric and electrical measurements and reveals an exponential dependency of measured electrical susceptance to absolute water content in the epidermal stratum corneum. The results also show that absorption of water into the stratum corneum exhibits three different phases with significant differences in absorption time constant. These phases probably correspond to bound, loosely bound, and bulk water.

  20. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    PubMed

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  1. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    NASA Astrophysics Data System (ADS)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  2. Phototransistors Development and their Applications to Lidar

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, Tamer F.; Ismail, Syed; Singh, Upendra N.

    2007-01-01

    Custom-designed two-micron phototransistors have been developed using Liquid Phase Epitaxy (LPE), Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD) techniques under Laser Risk Reduction Program (LRRP). The devices were characterized in the Detector Characterization Laboratory at NASA Langley Research Center. It appears that the performance of LPE- and MBE-grown phototransistors such as responsivity, noise-equivalent-power, and gain, are better than MOCVD-grown devices. Lidar tests have been conducted using LPE and MBE devices under the 2-micrometer CO2 Differential Absorption Lidar (DIAL) Instrument Incubator Program (IIP) at the National Center for Atmospheric Research (NCAR), Boulder, Colorado. The main focus of these tests was to examine the phototransistors performances as compared to commercial InGaAs avalanche photodiode by integrating them into the Raman-shifted Eye-safe Aerosol Lidar (REAL) operating at 1.543 micrometers. A simultaneous measurement of the atmospheric backscatter signals using the LPE phototransistors and the commercial APD demonstrated good agreement between these two devices. On the other hand, simultaneous detection of lidar backscatter signals using MBE-grown phototransistor and InGaAs APD, showed a general agreement between these two devices with a lower performance than LPE devices. These custom-built phototransistors were optimized for detection around 2-micrometer wavelength while the lidar tests were performed at 1.543 micrometers. Phototransistor operation at 2-micron will improve the performance of a lidar system operating at that wavelength. Measurements include detecting hard targets (Rocky Mountains), atmospheric structure consisting of cirrus clouds and boundary layer. These phototransistors may have potential for high sensitivity differential absorption lidar measurements of carbon dioxide and water vapor at 2.05-micrometers and 1.9-micrometers, respectively.

  3. Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS)

    NASA Astrophysics Data System (ADS)

    Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.

    2006-04-01

    Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.

  4. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  5. Quantitative Phase Composition of TiO 2-Coated Nanoporous-Au Monoliths by X-ray Absorption Spectroscopy and Correlations to Catalytic

    DOE PAGES

    Bagge-Hansen, Michael; Wichmann, Andre; Wittstock, Arne; ...

    2014-02-03

    Porous titania/metal composite materials have many potential applications in the fields of green catalysis, energy harvesting, and storage in which both the overall morphology of the nanoporous host material and the crystallographic phase of the titania (TiO 2) guest determine the material’s performance. New insights into the structure–function relationships of these materials were obtained by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy that, for example, provides quantitative crystallographic phase composition from ultrathin, nanostructured titania films, including sensitivity to amorphous components. We demonstrate that crystallographic phase, morphology, and catalytic activity of TiO 2-functionalized nanoporous gold (np-Au) can be controlled by amore » simple annealing procedure (T < 1300 K). The material was prepared by atomic layer deposition of ~2 nm thick TiO 2 on millimeter-sized samples of np-Au (40–50 nm mean ligament size) and catalytically investigated with respect to aerobic CO oxidation. Moreover, the annealing-induced changes in catalytic activity are correlated with concurrent morphology and phase changes as provided by cross-sectional scanning electron microscopy, transmission electron microscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy.« less

  6. Depth Profiles in Maize ( Zea mays L.) Seeds Studied by Photoacoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hernández-Aguilar, C.; Domínguez-Pacheco, A.; Cruz-Orea, A.; Zepeda-Bautista, R.

    2015-06-01

    Photoacoustic spectroscopy (PAS) has been used to analyze agricultural seeds and can be applied to the study of seed depth profiles of these complex samples composed of different structures. The sample depth profile can be obtained through the photoacoustic (PA) signal, amplitude, and phase at different light modulation frequencies. The PA signal phase is more sensitive to changes of thermal properties in layered samples than the PA signal amplitude. Hence, the PA signal phase can also be used to characterize layers at different depths. Thus, the objective of the present study was to obtain the optical absorption spectra of maize seeds ( Zea mays L.) by means of PAS at different light modulation frequencies (17 Hz, 30 Hz, and 50 Hz) and comparing these spectra with the ones obtained from the phase-resolved method in order to separate the optical absorption spectra of seed pericarp and endosperm. The results suggest the possibility of using the phase-resolved method to obtain optical absorption spectra of different seed structures, at different depths, without damaging the seed. Thus, PAS could be a nondestructive method for characterization of agricultural seeds and thus improve quality control in the food industry.

  7. Conversion of laser energy to gas kinetic energy

    NASA Technical Reports Server (NTRS)

    Caledonia, G. E.

    1975-01-01

    Techniques for the gas phase absorption of laser radiation for conversion to gas kinetic energy are discussed. Absorption by inverse Bremsstrahlung, in which laser energy is converted at a gas kinetic rate in a spectrally continuous process, is briefly described, and absorption by molecular vibrational rotation bands is discussed at length. High pressure absorption is proposed as a means of minimizing gas bleaching and dissociation, the major disadvantages of the molecular absorption process. A band model is presented for predicting the molecular absorption spectra in the high pressure absorption region and is applied to the CO molecule. Use of a rare gas seeded with Fe(CO)5 for converting vibrational modes to translation modes is described.

  8. Phase equilibria in the quasiternary system Ag2S-Ga2S3-In2S3 and optical properties of (Ga55In45)2S300, (Ga54.59In44.66Er0.75)2S300 single crystals

    NASA Astrophysics Data System (ADS)

    Ivashchenko, I. A.; Danyliuk, I. V.; Olekseyuk, I. D.; Pankevych, V. Z.; Halyan, V. V.

    2015-07-01

    The quasiternary system Ag2S-Ga2S3-In2S3 was investigated by differential thermal, X-ray diffraction analyses. The phase diagram of the Ga2S3-In2S3 system and nine polythermal sections, isothermal section at 820 K and the liquidus surface projection were constructed. The existence of the large solid solutions ranges of binary and ternary compounds was established. The range of the existence of the quaternary phase AgGaxIn5-xS8 (2.25≤x≤2.85) at 820 K was determined. The single crystals (Ga55In45)2S300 and (Ga54.59In44.66Er0.75)2S300 were grown by a directional crystallization method from solution-melt. Optical absorption spectra in the 500-1600 nm range were recorded. The luminescence of the (Ga54.59In44.66Er0.75)2S300 single crystal shows a maximum at 1530 nm for the excitation wavelengths of 532 and 980 nm at 80 and 300 K.

  9. Performance Modeling of an Airborne Raman Water Vapor Lidar

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Schwemmer, G.; Berkoff, T.; Plotkin, H.; Ramos-Izquierdo, L.; Pappalardo, G.

    2000-01-01

    A sophisticated Raman lidar numerical model had been developed. The model has been used to simulate the performance of two ground-based Raman water vapor lidar systems. After tuning the model using these ground-based measurements, the model is used to simulate the water vapor measurement capability of an airborne Raman lidar under both day-and night-time conditions for a wide range of water vapor conditions. The results indicate that, under many circumstances, the daytime measurements possess comparable resolution to an existing airborne differential absorption water vapor lidar while the nighttime measurement have higher resolution. In addition, a Raman lidar is capable of measurements not possible using a differential absorption system.

  10. The impacts of different expansion modes on performance of small solar energy firms: perspectives of absorptive capacity.

    PubMed

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-Long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance.

  11. Negative induced absorption and negative index of refraction for iron doped potash-alumina-borate glasses subjected to thermal-radiation treatment

    NASA Astrophysics Data System (ADS)

    Salakhitdinov, Amritdin; Ibragimova, Elvira; Salakhitdinova, Maysara

    2018-02-01

    This work experimentally revealed, that 60Co-gamma-irradiation of potash-alumina-borate glasses doped with 1 and 2 mass% of iron oxide to the dose of 1.7 MR in the temperature range of 150-300 °C induced differential optical density changes within - 6 ≤ Δ D ≤ 0 in the wave length range of 300-350 nm, which is characteristic for meta-material. Calculations have shown that variation of optical refraction index within - 0.05 ≤ Δ n ω ≤ 0.05 due to microstructure transformation causes changes in the differential absorption index of the glass - 0.5 < Δ α ω < 0.55.

  12. X-ray micro-tomography for investigations of brain tissues on cellular level

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based phase contrast data.

  13. Microstructures and hydrogen absorption/desorption properties of La-Ni alloys in the composition range of La-77.8--83.2 at.% Ni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, T.; Inui, H.; Yamaguchi, M.

    1997-12-01

    Alloys based on the intermetallic phase, LaNi{sub 5} have been used as negative electrode materials of rechargeable nickel-metal hydride (Ni-MH) batteries because of their fast activation, high storage-capacity, long cycle-life and excellent electrochemical charge/discharge kinetics. Here, microstructure and hydrogen absorption/desorption properties of La-Ni alloys have been investigated as a function of alloy composition in the range of La-77.8 {approximately} 83.2 at.% Ni, which corresponds to compositions between two intermetallic phases, La{sub 2}Ni{sub 7} and LaNi{sub 5}. The intermetallic phase, La{sub 5}Ni{sub 19} of the Ce{sub 5}Co{sub 19}-type is found for the first time to exist as an equilibrium phase atmore » a composition between La{sub 2}Ni{sub 7} and LaNi{sub 5}. This phase is stable at high temperatures around 1,000 C but decomposes into La{sub 2}Ni{sub 7} and LaNi{sub 5} below 900 C. Hydrogen absorption/desorption properties described in terms of pressure-composition isotherms decline with decreasing Ni content (i.e. with increasing volume fraction of intermetallic phases other than LaNi{sub 5}). In particular, the plateau at the equilibrium pressure corresponding to the hydrogen absorption in the LaNi{sub 5} phase is narrowed with decreasing Ni content and additional plateaus with higher equilibrium pressures come into existence. The degradation becomes more pronounced in the presence of La{sub 2}Ni{sub 7} than La{sub 5}Ni{sub 19}. This can be understood in terms of the ratio of the number of LaNi{sub 2} (Laves) unit layers to that of LaNi{sub 5} unit layers in the unit cell of the two intermetallic phases.« less

  14. Selective coherent perfect absorption in metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, Guangyu; Shi, Quanchao; Zhu, Zheng

    2014-11-17

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency.

  15. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  16. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiko, M. E., E-mail: m.e.boiko@mail.ioffe.ru; Sharkov, M. D.; Boiko, A. M.

    2013-12-15

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  17. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael; Allan, Graham R.; Hasselbrack, William E.; Stephen, Mark A.; Abshire, James B.

    2011-01-01

    We report on airborne measurements of atmospheric pressure using a fiber-laser based lidar operating in the oxygen A-band near 765 nm and the integrated path differential absorption measurement technique. Our lidar uses fiber optic technology and non-linear optics to generate tunable laser radiation at 765 nm, which overlaps an absorption line pair in the Oxygen A-band. We use a pulsed time resolved technique, which rapidly steps the laser wavelength across the absorption line pair, a 20 cm telescope and photon counting detector to measure Oxygen concentrations.

  18. Anomalous small-angle scattering as a way to solve the Babinet principle problem

    NASA Astrophysics Data System (ADS)

    Boiko, M. E.; Sharkov, M. D.; Boiko, A. M.; Bobyl, A. V.

    2013-12-01

    X-ray absorption spectra (XAS) have been used to determine the absorption edges of atoms present in a sample under study. A series of small-angle X-ray scattering (SAXS) measurements using different monochromatic X-ray beams at different wavelengths near the absorption edges is performed to solve the Babinet principle problem. The sizes of clusters containing atoms determined by the method of XAS were defined in SAXS experiments. In contrast to differential X-ray porosimetry, anomalous SAXS makes it possible to determine sizes of clusters of different atomic compositions.

  19. Differential carrier phase recovery for QPSK optical coherent systems with integrated tunable lasers.

    PubMed

    Fatadin, Irshaad; Ives, David; Savory, Seb J

    2013-04-22

    The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.

  20. Translation of Atherosclerotic Plaque Phase-Contrast CT Imaging from Synchrotron Radiation to a Conventional Lab-Based X-Ray Source

    PubMed Central

    Saam, Tobias; Herzen, Julia; Hetterich, Holger; Fill, Sandra; Willner, Marian; Stockmar, Marco; Achterhold, Klaus; Zanette, Irene; Weitkamp, Timm; Schüller, Ulrich; Auweter, Sigrid; Adam-Neumair, Silvia; Nikolaou, Konstantin; Reiser, Maximilian F.; Pfeiffer, Franz; Bamberg, Fabian

    2013-01-01

    Objectives Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT) at two different experimental set-ups: (i) applying synchrotron radiation and (ii) using a conventional X-ray tube. Materials and Methods Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm), or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm). Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR) between PC-CT and absorption images. Results In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p<0.001 with slope >0.53 per mm2, 95%-CI: 0.35 to 0.70). Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p<0.001). Inter-reader reproducibility was excellent (ICCs >0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively). Conclusion Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research. PMID:24039969

  1. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  2. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  3. High-resolution discrete absorption spectrum of α-methallyl free radical in the vapor phase

    NASA Astrophysics Data System (ADS)

    Bayrakçeken, Fuat; Telatar, Ziya; Arı, Fikret; Tunçyürek, Lale; Karaaslan, İpek; Yaman, Ali

    2006-09-01

    The α-methallyl free radical is formed in the flash photolysis of 3-methylbut-1-ene, and cis-pent-2-ene in the vapor phase, and then subsequent reactions have been investigated by kinetic spectroscopy and gas-liquid chromatography. The photolysis flash was of short duration and it was possible to follow the kinetics of the radicals' decay, which occurred predominantly by bimolecular recombination. The measured rate constant for the α-methallyl recombination was (3.5 ± 0.3) × 10 10 mol -1 l s -1 at 295 ± 2 K. The absolute extinction coefficients of the α-methallyl radical are calculated from the optical densities of the absorption bands. Detailed analysis of related absorption bands and lifetime measurements in the original α-methallyl high-resolution discrete absorption spectrum image were also carried out by image processing techniques.

  4. First Spectroscopic Identification of Massive Young Stellar Objects in the Galactic Center

    NASA Technical Reports Server (NTRS)

    An, Deokkeun; Ramirez, V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C.; Schultheis, Mathias; Stolovy, Susan R.; Cotera, Angela S.; Robitaille, Thomas P.; Smith, Howard A.

    2009-01-01

    We report the detection of several molecular gas-phase and ice absorption features in three photometrically-selected young stellar object (YSO) candidates in the central 280 pc of the Milky Way. Our spectra, obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, reveal gas-phase absorption from CO2 (15.0 microns), C2H2 (13.7 microns) and HCN (14.0 microns). We attribute this absorption to warm, dense gas in massive YSOs. We also detect strong and broad 15 microns CO2 ice absorption features, with a remarkable double-peaked structure. The prominent long-wavelength peak is due to CH3OH-rich ice grains, and is similar to those found in other known massive YSOs. Our IRS observa.tions demonstra.te the youth of these objects, and provide the first spectroscopic identification of massive YSOs in the Galactic Center.

  5. Upregulation of Zinc Absorption Matches Increases in Physiologic Requirements for Zinc in Women Consuming High- or Moderate-Phytate Diets during Late Pregnancy and Early Lactation.

    PubMed

    Hambidge, K Michael; Miller, Leland V; Mazariegos, Manolo; Westcott, Jamie; Solomons, Noel W; Raboy, Victor; Kemp, Jennifer F; Das, Abhik; Goco, Norman; Hartwell, Ty; Wright, Linda; Krebs, Nancy F

    2017-06-01

    Background: Estimated physiologic requirements (PRs) for zinc increase in late pregnancy and early lactation, but the effect on dietary zinc requirements is uncertain. Objective: The aim of this study was to determine changes in daily fractional absorbed zinc and total absorbed zinc (TAZ) from ad libitum diets of differing phytate contents in relation to physiologic zinc requirements during pregnancy and lactation. Methods: This was a prospective observational study of zinc absorption at 8 (phase 1) and 34 (phase 2) wk of gestation and 2 (phase 3) and 6 (phase 4) mo of lactation. Participants were indigenous Guatemalan women of childbearing age whose major food staple was maize and who had been randomly assigned in a larger study to either of 2 ad libitum feeding groups: low-phytate maize (LP; 1.6 mg/g; n = 14) or control maize (C; 7.1 mg/g; n = 8). Total dietary zinc (milligrams per day, TDZ) and phytate (milligrams per day) were determined from duplicate diets and fractional absorption (FAZ) by dual isotope ratio technique (TAZ = TDZ × FAZ). All variables were examined longitudinally and by group and compared with PRs. TAZ values at later phases were compared with phase 1. Measured TAZ was compared with predicted TAZ for nonpregnant, nonlactating (NPNL) women. Results: TAZ was greater in the LP group than in the C group at all phases. All variables increased from phase 1 to phases 2 and 3 and declined at phase 4. TAZ increased by 1.25 mg/d ( P = 0.045) in the C group and by 0.81 mg/d ( P = 0.058) in the LP group at phase 2. At phase 3, the increases were 2.66 mg/d ( P = 0.002) in the C group and 2.28 mg/d ( P = 0.0004) in the LP group, compared with a 1.37-mg/d increase in PR. Measured TAZ was greater than predicted values in phases 2-4. Conclusions: Upregulation of zinc absorption in late pregnancy and early lactation matches increases in PRs of pregnant and lactating women, regardless of dietary phytate, which has implications for dietary zinc requirements of pregnant and lactating women. © 2017 American Society for Nutrition.

  6. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    PubMed

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  7. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR OPERATION, CALIBRATION AND MAINTENANCE OF THE PERKIN-ELMER ZEEMAN/5000 SYSTEM ATOMIC ABSORPTION SPECTROMETER (BCO-L-6.0)

    EPA Science Inventory

    The purpose of this SOP is to outline the start-up, calibration, operation, and maintenance procedures for the Perkin-Elmer 5000 atomic absorption spectrophotometer (PE 5000 AA), and the Perkin Elmer 5000 Zeeman graphite furnace atomic absorption spectrophotometer (PE 5000Z GFAA)...

  8. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocer, Hasan; Department of Electrical Engineering, Turkish Military Academy, 06654 Ankara; Butun, Serkan

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20%more » and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68 °C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.« less

  9. Cavity ring-down spectroscopy in the liquid phase

    NASA Astrophysics Data System (ADS)

    Xu, Shucheng; Sha, Guohe; Xie, Jinchun

    2002-02-01

    A new application for cavity ring-down spectroscopic (CRDS) technique using a pulsed polarized light source has been developed in the absorption measurement of liquids for "colorless" organic compounds using both a single sample cell and double sample cells inserted in an optical cavity at Brewster angle. At present an experimental capability of measuring absorption coefficients as small as 2-5×10-7 cm-1 has been demonstrated by measurement of the absorption baselines. The first spectra for CRDS in the liquid phase, the C-H stretching fifth vibrational overtones of benzene in the pure liquid and hexane solution are obtained. The optical absorption length for liquids in both a single sample cell and double sample cells of 1 cm length is up to 900 cm due to multipass of light within an optical cavity. Compared to the thermal lens and optoacoustic spectroscopic techniques, the sensitivity for CRDS mainly depends on the optical absorption path of the sample (single passing path of the sample times multipass times), is not determined by the laser power and the length of the sample cell. The absolute absorption coefficient and band intensity for the sample are determined directly by the spectroscopy.

  10. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal.

    PubMed

    Suizu, Koji; Shibuya, Takayuki; Uchida, Hirohisa; Kawase, Kodo

    2010-02-15

    Terahertz (THz) wave generation based on nonlinear frequency conversion is a promising method for realizing a tunable monochromatic high-power THz-wave source. Unfortunately, many nonlinear crystals have strong absorption in the THz frequency region. This limits efficient and widely tunable THz-wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. Here, we propose a prism-coupled Cherenkov phase-matching (PCC-PM) method, in which a prism with a suitable refractive index at THz frequencies is coupled to a nonlinear crystal. This has the following advantages. Many crystals can be used as THz-wave emitters; the phase-matching condition inside the crystal does not have to be observed; the absorption of the crystal does not prevent efficient generation of radiation; and pump sources with arbitrary wavelengths can be employed. Here we demonstrate PCC-PM THz-wave generation using the organic crystal 4-dimethylamino-N-metyl-4-stilbazolium tosylate (DAST) and a Si prism coupler. We obtain THz-wave radiation with tunability of approximately 0.1 to 10 THz and with no deep absorption features resulting from the absorption spectrum of the crystal. The obtained spectra did not depend on the pump wavelength in the range 1300 to 1450 nm. This simple technique shows promise for generating THz radiation using a wide variety of nonlinear crystals.

  11. Phenylboronic acid modified solid-phase extraction column: Preparation, characterization, and application to the analysis of amino acids in sepia capsule by removing the maltose.

    PubMed

    Guo, Mengzhe; Yin, Dengyang; Han, Jie; Zhang, Liyan; Li, Xiao; He, Dandan; Du, Yan; Tang, Daoquan

    2016-09-01

    Maltose, a common auxiliary material of pharmaceutical preparation, may disturb the analysis of total amino acids in sepia capsule by aldolization. Therefore, it is necessary to remove the maltose through a convenient method. In this work, a phenylboronic acid modified solid-phase extraction column has been synthesized and used to remove the maltose. The materials were synthesized by one step "thiol-ene" reaction and the parameters of the column such as absorption capacity, recovery, and absorption specificity have been investigated. The results showed the column (0.5 cm of length × 0.5 cm of inner diameter) can absorb 4.6 mg maltose with a linear absorption and absorption specificity. Then this technique was applied in the quantification of amino acids in sepia capsule. After the optimization of the method, four kinds of amino acids, which were the most abundant, were quantified by high-performance liquid chromatography with diode array detection. The amounts of the four kinds of amino acids are 1.5∼2 times more than that without the treatment of solid-phase extraction column, which almost overcomes the influence of the maltose. All the results indicate that the phenylboronic acid modified solid-phase extraction column can successfully help to accurately quantify the total amino acids in sepia capsule. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  13. Ab initio calculation of the electronic absorption spectrum of liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less

  14. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    PubMed

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 < λ < 390 nm. To support this claim, we investigated how resonances in nanostructures can be shifted in wavelength by geometrical tuning. We find that dispersion in the refractive index can dominate over geometrical tuning and stop the possibility for such shifting. Our results open the door for using crystal-phase engineering to optimize the absorption in InP nanowire-based solar cells and photodetectors.

  15. Airborne Lidar measurements of the atmospheric pressure profile with tunable Alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Milrod, J.; Walden, H.

    1986-01-01

    The first remote measurements of the atmospheric pressure profile made from an airborne platform are described. The measurements utilize a differential absorption lidar and tunable solid state Alexandrite lasers. The pressure measurement technique uses a high resolution oxygen A band where the absorption is highly pressure sensitive due to collision broadening. Absorption troughs and regions of minimum absorption were used between pairs of stongly absorption lines for these measurements. The trough technique allows the measurement to be greatly desensitized to the effects of laser frequency instabilities. The lidar system was set up to measure pressure with the on-line laser tuned to the absorption trough at 13147.3/cm and with the reference laser tuned to a nonabsorbing frequency near 13170.0/cm. The lidar signal returns were sampled with a 200 range gate (30 vertical resoltion) and averaged over 100 shots.

  16. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  17. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  18. In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates

    NASA Astrophysics Data System (ADS)

    Proehl, Holger; Nitsche, Robert; Dienel, Thomas; Leo, Karl; Fritz, Torsten

    2005-04-01

    We report an investigation of the excitonic properties of thin crystalline films of the archetypal organic semiconductor PTCDA (3,4,9,10-perylenetetracarboxylic dianhydride) grown on poly- and single crystalline surfaces. A sensitive setup capable of measuring the optical properties of ultrathin organic molecular crystals via differential reflectance spectroscopy (DRS) is presented. This tool allows to carry out measurements in situ, i.e., during the actual film growth, and over a wide spectral range, even on single crystalline surfaces with high symmetry or metallic surfaces, where widely used techniques like reflection anisotropy spectroscopy (RAS) or fluorescence excitation spectroscopy fail. The spectra obtained by DRS resemble mainly the absorption of the films if transparent substrates are used, which simplifies the analysis. In the case of mono- to multilayer films of PTCDA on single crystalline muscovite mica(0001) and Au(111) substrates, the formation of the solid state absorption from monomer to dimer and further to crystal-like absorption spectra can be monitored.

  19. Highly ionized collimated outflow from HE 0238-1904

    NASA Astrophysics Data System (ADS)

    Muzahid, S.; Srianand, R.; Savage, B. D.; Narayanan, A.; Mohan, V.; Dewangan, G. C.

    2012-07-01

    We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238-1904 (zem≃ 0.629). Based on the similarities in the absorption-line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed ?, ? and ? from a single phase whereas the low-ionization species (e.g. N III, N IV and O IV) originate from a different phase. The measured ? ratio is found to be remarkably similar (within a factor of ˜2) in several individual absorption components kinematically spread over ˜1800 km s-1. Under photoionization this requires a fine-tuning between hydrogen density (nH) and the distance of the absorbing gas from the Quasi Stellar Object (QSO). Alternatively, this can also be explained by collisional ionization in hot gas with T≥ 105.7 K. Long-term stability favours the absorbing gas being located outside the broad-line region. We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.

  20. Z-scan theory for nonlocal nonlinear media with simultaneous nonlinear refraction and nonlinear absorption.

    PubMed

    Rashidian Vaziri, Mohammad Reza

    2013-07-10

    In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.

  1. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE PAGES

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    2017-10-16

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  2. Attosecond transient absorption of a bound wave packet coupled to a smooth continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlström, Jan Marcus; Pabst, Stefan; Lindroth, Eva

    Here, we investigate the possibility of using transient absorption of a coherent bound electron wave packet in hydrogen as an attosecond pulse characterization technique. In a recent work, we have shown that photoionization of such a coherent bound electron wave packet opens up for pulse characterization with unprecedented temporal accuracy—independent of the atomic structure—with maximal photoemission at all kinetic energies given a wave packet with zero relative phase. Here, we perform numerical propagation of the time-dependent Schrödinger equation and analytical calculations based on perturbation theory to show that the energy-resolved maximal absorption of photons from the attosecond pulse does not uniquely occur at a zero relative phase of the initial wave packet. Instead, maximal absorption occurs at different relative wave packet phases, distributed as a non-monotonous function with a smoothmore » $$-\\pi /2$$ shift across the central photon energy (given a Fourier-limited Gaussian pulse). Similar results are also found in helium. Our finding is surprising, because it implies that the energy-resolved photoelectrons are not mapped one-to-one with the energy-resolved absorbed photons of the attosecond pulse.« less

  3. Balmer Absorption Lines in FeLoBALs

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Iwata, I.; Ohta, K.; Tamura, N.; Ando, M.; Akiyama, M.; Kiuchi, G.; Nakanishi, K.

    2007-10-01

    We discovered non-stellar Balmer absorption lines in two many-narrow-trough FeLoBALs (mntBALs) by the near-infrared spectroscopy with Subaru/CISCO. Presence of the non-stellar Balmer absorption lines is known to date only in the Seyfert galaxy NGC 4151; thus our discovery is the first cases for quasars. Since all known active galactic nuclei with Balmer absorption lines share similar characteristics, it is suggested that there is a population of BAL quasars which have unique structures at their nuclei or unique evolutionary phase.

  4. Using machine-learning to optimize phase contrast in a low-cost cellphone microscope

    PubMed Central

    Wartmann, Rolf; Schadwinkel, Harald; Heintzmann, Rainer

    2018-01-01

    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light’s phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. Dedicated illumination approaches, tailored to the sample under investigation help to boost the contrast. This is achieved by a programmable illumination source, which also allows to measure the phase gradient using the differential phase contrast (DPC) [1, 2] or even the quantitative phase using the derived qDPC approach [3]. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 $ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements. PMID:29494620

  5. Tracking the insulator-to-metal phase transition in VO 2 with few-femtosecond extreme UV transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.

    We present coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO 2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M 2,3 edge is used to track the insulator-to-metal phase transition in VO 2 . This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase,more » and measures the phase-transition dynamics in the insulating phase. An understanding of the VO 2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V 3+/d 2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d 2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. In conclusion, the findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.« less

  6. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy

    PubMed Central

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; Kaplan, Christopher J.; Pouse, Winston; Marvel, Robert E.; Haglund, Richard F.; Neumark, Daniel M.; Leone, Stephen R.

    2017-01-01

    Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2. This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials. PMID:28827356

  7. Tracking the insulator-to-metal phase transition in VO 2 with few-femtosecond extreme UV transient absorption spectroscopy

    DOE PAGES

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; ...

    2017-08-21

    We present coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO 2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M 2,3 edge is used to track the insulator-to-metal phase transition in VO 2 . This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase,more » and measures the phase-transition dynamics in the insulating phase. An understanding of the VO 2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V 3+/d 2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d 2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. In conclusion, the findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.« less

  8. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.

    PubMed

    Boriskina, Svetlana V; Tsurimaki, Yoichiro

    2018-06-06

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  9. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Tsurimaki, Yoichiro

    2018-06-01

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  10. Time-varying sodium absorption in the Type Ia supernova 2013gh

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Johansson, J.; Vreeswijk, P. M.; Butler, R. P.; Cao, Y.; Cenko, S. B.; Doran, G.; Filippenko, A. V.; Freeland, E.; Hosseinzadeh, G.; Howell, D. A.; Lundqvist, P.; Mattila, S.; Nordin, J.; Nugent, P. E.; Petrushevska, T.; Valenti, S.; Vogt, S.; Wozniak, P.

    2016-07-01

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims: To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods: We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results: Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions: Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A40

  11. Three-photon absorption and nonlinear refraction of BaMgF4 in the ultraviolet region.

    PubMed

    Ma, Yanzhi; Chen, Junjie; Zheng, Yuanlin; Chen, Xianfeng

    2012-08-01

    The nonlinear refraction and nonlinear absorption phenomena are investigated in BaMgF(4) single crystal using the Z-scan technique in the ultraviolet region with a pulsed laser at 400 nm with 1 ps pulse duration. The remarkable nonlinear absorption behavior is identified to be three-photon absorption under the experimental conditions. In addition, both nonlinear refraction and nonlinear absorption have relatively large values and possess small anisotropy along three different crystallographic axes. The large values of nonlinear refractive index are demonstrated through the self-phase modulation effect.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jetmore » sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.« less

  13. Unraveling shock-induced chemistry using ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, David Steven

    The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state ofmore » materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.« less

  14. Metabolic changes associated with active water vapour absorption in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae): a microcalorimetric study.

    PubMed

    Hansen, Lars L; Westh, Peter; Wright, Jonathan C; Ramløv, Hans

    2006-03-01

    Water vapour absorption (WVA) is an important mechanism for water gain in several xeric insects. Theoretical calculations indicate that the energetic cost of WVA should be small (5-10% of standard metabolic rate) assuming realistic efficiencies. In this study we explored the relationship between WVA, metabolic heat flux (HFmet.) and CO2 release in larvae of Tenebrio molitor using microcalorimetry. By comparing metabolic heat flux with the catabolic rate estimated from VCO2 , we were able to differentiate anabolic and catabolic rates prior to and during WVA, while simultaneously monitoring water exchange. Three to four hours before the onset of WVA, larvae showed clear increases in HFmet. and catabolic flux, and a simultaneous decrease in anabolic flux. Following the onset of WVA, HFmet. decreased again until indistinguishable from control (non-absorbing) values. Possible factors contributing to the "preparatory phase" are discussed, including mobilization of Malpighian tubule transporters and muscular activity in the rectum. Absorbing larvae reduced the water activity of the calorimetric cell to 0.906, agreeing with gravimetric estimates of the critical equilibrium activity. Periods of movement during WVA coincided with decreased uptake fluxes, consistent with the animal's hydrostatic skeleton and the need to close the anus to generate pressure increases in the haemocoel.

  15. Analysis of ammonia separation from purge gases in microporous hollow fiber membrane contactors.

    PubMed

    Karami, M R; Keshavarz, P; Khorram, M; Mehdipour, M

    2013-09-15

    In this study, a mathematical model was developed to analyze the separation of ammonia from the purge gas of ammonia plants using microporous hollow fiber membrane contactors. A numerical procedure was proposed to solve the simultaneous linear and non linear partial differential equations in the liquid, membrane and gas phases for non-wetted or partially wetted conditions. An equation of state was applied in the model instead of Henry's law because of high solubility of ammonia in water. The experimental data of CO₂-water system in the literature was used to validate the model due to the lack of data for ammonia-water system. The model showed that the membrane contactor can separate ammonia very effectively and with recoveries higher than 99%. SEM images demonstrated that ammonia caused some micro-cracks on the surfaces of polypropylene fibers, which could be an indication of partial wetting of membrane in long term applications. However, the model results revealed that the membrane wetting did not have significant effect on the absorption of ammonia because of very high solubility of ammonia in water. It was also found that the effect of gas velocity on the absorption flux was much more than the effect of liquid velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Remote sensing of chemical warfare agent by CO2 -lidar

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.

    2014-11-01

    The possibilities of remote sensing of chemical warfare agent by differential absorption method were analyzed. The CO2 - laser emission lines suitable for sounding of chemical warfare agent with provision for disturbing absorptions by water vapor were choose. The detection range of chemical warfare agents was estimated for a lidar based on CO2 - laser The other factors influencing upon echolocation range were analyzed.

  17. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1, PArot = 65.6° ± 5°, for Fomalhaut. They were found to be compatible with previously published values from differential phase and visibility measurements, while we were able to determine, for the first time, the inclination angle i of Fomalhaut (i = 90° ± 9°) and δ Aquilae (i = 81° ± 13°), and the rotation-axis position angle PArot of δ Aquilae. Conclusions: Beyond the theoretical diffraction limit of an interferometer (ratio of the wavelength to the baseline), spatial super resolution is well suited to systematically estimating the angular diameters of rotating stars and their fundamental parameters with a few sets of baselines and the Earth-rotation synthesis provided a high enough spectral resolution. Based on observations performed at the European Southern Observatory, Chile, under ESO AMBER-consortium GTO program IDs 084.D-0456 081.D-0293 and 082.C-0376.Figure 5 is available in electronic form at http://www.aanda.org

  18. The mid-IR Absorption Cross Sections of α- and β-NAT (HNO3 · 3H2O) in the range 170 to 185 K and of metastable NAD (HNO3 · 2H2O) in the range 172 to 182 K

    NASA Astrophysics Data System (ADS)

    Iannarelli, R.; Rossi, M. J.

    2015-11-01

    Growth and Fourier transform infrared (FTIR) absorption in transmission of the title nitric acid hydrates have been performed in a stirred flow reactor (SFR) under tight control of the H2O and HNO3 deposition conditions affording a closed mass balance of the binary mixture. The gas and condensed phases have been simultaneously monitored using residual gas mass spectrometry and FTIR absorption spectroscopy, respectively. Barrierless nucleation of the metastable phases of both α-NAT (nitric acid trihydrate) and NAD (nitric acid dihydrate) has been observed when HNO3 was admitted to the SFR in the presence of a macroscopic thin film of pure H2O ice of typically 1 µm thickness. The stable β-NAT phase was spontaneously formed from the precursor α-NAT phase through irreversible thermal rearrangement beginning at 185 K. This facile growth scheme of nitric acid hydrates requires the presence of H2O ice at thicknesses in excess of approximately hundred nanometers. Absolute absorption cross sections in the mid-IR spectral range (700-4000 cm-1) of all three title compounds have been obtained after spectral subtraction of excess pure ice at temperatures characteristic of the upper troposphere/lower stratosphere. Prominent IR absorption frequencies correspond to the antisymmetric nitrate stretch vibration (ν3(NO3-)) in the range 1300 to 1420 cm-1 and the bands of hydrated protons in the range 1670 to 1850 cm-1 in addition to the antisymmetric O-H stretch vibration of bound H2O in the range 3380 to 3430 cm-1 for NAT.

  19. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adriano Junior, L.; Fonseca, T. L.; Castro, M. A.

    2016-06-21

    Theoretical results for the absorption spectrum and electric properties of the enol and keto tautomeric forms of anil derivatives in the gas-phase and in solution are presented. The electronic properties in chloroform, acetonitrile, methanol, and water were determined by carrying out sequential Monte Carlo simulations and quantum mechanics calculations based on the time dependent density functional theory and on the second-order Møller–Plesset perturbation theory method. The results illustrate the role played by electrostatic interactions in the electronic properties of anil derivatives in a liquid environment. There is a significant increase of the dipole moment in solution (20%-100%) relative to themore » gas-phase value. Solvent effects are mild for the absorption spectrum and linear polarizability but they can be particularly important for first hyperpolarizability. A large first hyperpolarizability contrast between the enol and keto forms is observed when absorption spectra present intense lowest-energy absorption bands. Dynamic results for the first hyperpolarizability are in qualitative agreement with the available experimental results.« less

  20. Hydrogenation properties of KSi and NaSi Zintl phases.

    PubMed

    Tang, Wan Si; Chotard, Jean-Noël; Raybaud, Pascal; Janot, Raphaël

    2012-10-14

    The recently reported KSi-KSiH(3) system can store 4.3 wt% of hydrogen reversibly with slow kinetics of several hours for complete absorption at 373 K and complete desorption at 473 K. From the kinetics measured at different temperatures, the Arrhenius plots give activation energies (E(a)) of 56.0 ± 5.7 kJ mol(-1) and 121 ± 17 kJ mol(-1) for the absorption and desorption processes, respectively. Ball-milling with 10 wt% of carbon strongly improves the kinetics of the system, i.e. specifically the initial rate of absorption becomes about one order of magnitude faster than that of pristine KSi. However, this fast absorption causes a disproportionation into KH and K(8)Si(46), instead of forming the KSiH(3) hydride from a slow absorption. This disproportionation, due to the formation of stable KH, leads to a total loss of reversibility. In a similar situation, when the pristine Zintl NaSi phase absorbs hydrogen, it likewise disproportionates into NaH and Na(8)Si(46), indicating a very poorly reversible reaction.

  1. Review of the absorption spectra of solid O2 and N2 as they relate to contamination of a cooled infrared telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1977-01-01

    During contamination studies for the liquid helium cooled shuttle infrared telescope facility, a literature search was conducted to determine the absorption spectra of the solid state of homonuclear molecules of O2 and N2, and ascertain what laboratory measurements of the solid have been made in the infrared. With the inclusion of one unpublished spectrum, the absorption spectrum of the solid oxygen molecule has been thoroughly studied from visible to millimeter wavelengths. Only two lines appear in the solid that do not also appear in the gas or liquid. A similar result is implied for the solid nitrogen molecule because it also is homonuclear. The observed infrared absorption lines result from lattice modes of the alpha phase of the solid, and disappear at the warmer temperatures of the beta, gamma, and liquid phases. They are not observed from polycrystalline forms of O2, while strong scattering is. Scattering, rather than absorption, is considered to be the principal natural contamination problem for cooled infrared telescopes in low earth orbit.

  2. Nonlinear absorption of Sb-based phase change materials due to the weakening of the resonant bond

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Wei, Jingsong; Gan, Fuxi

    2012-03-01

    The current study proposes a model based on the weakening of the resonant bond to explore the giant optical nonlinear saturable absorption of Sb-based phase change materials. In order to analyze the weakening of resonant bond effectively, we take the Sb2Te3 as an example. First-principle calculations show that both the Born effective charge and optical dielectric constant of crystalline Sb2Te3 in the 300 K to 500 K temperature range monotonically decrease with the temperature, indicating a weakening of the resonant bond. This weakening induces a decline in the absorption coefficient at a rate of 103 m-1 K-1, which results in a nonlinear saturable absorption coefficient in the order of 10-2 m/W. The nonlinear absorption characteristics of the crystalline Sb, Sb7Te3, and Sb2Te3 thin films at 405 nm laser wavelength are measured via z-scan technique using nanosecond laser pulses to validate the above-proposed model. The experimental results are in good agreement with theoretical prediction.

  3. HST/COS Far-ultraviolet Spectroscopic Analysis of U Geminorum Following a Wide Outburst

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Shara, Michael M.; Sion, Edward M.; Zurek, David

    2017-12-01

    We used the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope (HST) to obtain a series of four far-ultraviolet (FUV; 915-2148 Å) spectroscopic observations of the prototypical dwarf nova U Geminorum during its cooling following a two-week outburst. Our FUV spectral analysis of the data indicates that the white dwarf (WD) cools from a temperature of ˜41,500 K, 15 days after the peak of the outburst, to ˜36,250 K, 56 days after the peak of the outburst, assuming a massive WD (log(g) = 8.8) and a distance of 100.4 ± 3.7 pc. These results are self-consistent with a ˜1.1 M ⊙ WD with a 5000 ± 200 km radius. The spectra show absorption lines of H I, He II, C II III IV, N III IV, O VI, S IV, Si II III IV, Al III, Ar III, and Fe II, but no emission features. We find suprasolar abundances of nitrogen, confirming the anomalous high N/C ratio. The FUV light curve reveals a ±5% modulation with the orbital phase, showing dips near phases 0.25 and ˜0.75, where the spectra exhibit an increase in the depth of some absorption lines and in particular strong absorption lines from Si II, Al III, and Ar III. The phase dependence we observe is consistent with material overflowing the disk rim at the hot spot, reaching a maximum elevation near phase 0.75, falling back at smaller radii near phase 0.5 where it bounces off the disk surface, and again rising above the disk near phase ˜0.25. There is a large scatter in the absorption lines’ velocities, especially for the silicon lines, while the carbon lines seem to match more closely the orbital velocity of the WD. This indicates that many absorption lines are affected by—or form in—the overflowing stream material veiling the WD, making the analysis of the WD spectra more difficult. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  4. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity.

    PubMed

    Samburova, Vera; Connolly, Jessica; Gyawali, Madhu; Yatavelli, Reddy L N; Watts, Adam C; Chakrabarty, Rajan K; Zielinska, Barbara; Moosmüller, Hans; Khlystov, Andrey

    2016-10-15

    In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Parametric Investigation of Holographic Gratings and Optical Phase Conjugation Through Degenerate Four Wave Mixing in Saturable Absorptive/Resonant/Nonresonant Systems

    DTIC Science & Technology

    1991-11-26

    WAVE MIXING IN SATURABLE ABSORPTIVEIRESONANTINONRESONANT SYSTEMS I Final Report Putcha Venkateswarlu November 26, 1991 U.S. ARMY RESEARCH OFFICE GRANT...and Optical Phase Conjugation Through Degenerate Four Wave Mixin2 in Saturable Absorptive/Resonant/Nonresonant System DAAL03-87-G-0078 6. AUTHOR(S) P...author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other

  6. Enhancement and inhibition of second-harmonic generation and absorption in a negative index cavity.

    PubMed

    de Ceglia, Domenico; D'Orazio, Antonella; De Sario, Marco; Petruzzelli, Vincenzo; Prudenzano, Francesco; Centini, Marco; Cappeddu, Mirko G; Bloemer, Mark J; Scalora, Michael

    2007-02-01

    We study second-harmonic generation in a negative-index material cavity. The transmission spectrum shows a bandgap between the electric and magnetic plasma frequencies. The nonlinear process is made efficient by local phase-matching conditions between a forward-propagating pump and a backward-propagating second-harmonic signal. By simultaneously exciting the cavity with counterpropagating pulses, and by varying their relative phase difference, one is able to enhance or inhibit linear absorption and the second-harmonic conversion efficiency.

  7. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform.

    PubMed

    Larkin, Kieran G; Fletcher, Peter A

    2014-03-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform.

  8. Isotropic scalar image visualization of vector differential image data using the inverse Riesz transform

    PubMed Central

    Larkin, Kieran G.; Fletcher, Peter A.

    2014-01-01

    X-ray Talbot moiré interferometers can now simultaneously generate two differential phase images of a specimen. The conventional approach to integrating differential phase is unstable and often leads to images with loss of visible detail. We propose a new reconstruction method based on the inverse Riesz transform. The Riesz approach is stable and the final image retains visibility of high resolution detail without directional bias. The outline Riesz theory is developed and an experimentally acquired X-ray differential phase data set is presented for qualitative visual appraisal. The inverse Riesz phase image is compared with two alternatives: the integrated (quantitative) phase and the modulus of the gradient of the phase. The inverse Riesz transform has the computational advantages of a unitary linear operator, and is implemented directly as a complex multiplication in the Fourier domain also known as the spiral phase transform. PMID:24688823

  9. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  10. Temperature and emissivity measurements at the sapphire single crystal fiber growth process

    NASA Astrophysics Data System (ADS)

    Bufetova, G. A.; Rusanov, S. Ya.; Seregin, V. F.; Pyrkov, Yu. N.; Tsvetkov, V. B.

    2017-12-01

    We present a new method for evaluation the absorption coefficient of the crystal melt around the phase transition zone for the spectral range of semitransparency. The emissivity distribution across the crystallization front of the sapphire crystal fiber was measured at the quasi-stationary laser heated pedestal growth (LHPG) process (Fejer et al., 1984; Feigelson, 1986) and the data for solid state, melt and phase transition zone (melt-solid interface) were obtained. The sapphire melt absorption coefficient was estimated to be 14 ± 2 cm-1 in the spectral range 1-1.4 μm around the melt point. It is consistent with data, obtained by different other methods. This method can be applied to determine the absorption coefficient for other materials.

  11. Extendable nickel complex tapes that reach NIR absorptions.

    PubMed

    Audi, Hassib; Chen, Zhongrui; Charaf-Eddin, Azzam; D'Aléo, Anthony; Canard, Gabriel; Jacquemin, Denis; Siri, Olivier

    2014-12-14

    Stepwise synthesis of linear nickel complex oligomer tapes with no need for solid-phase support has been achieved. The control of the length in flat arrays allows a fine-tuning of the absorption properties from the UV to the NIR region.

  12. X-ray absorption of a warm dense aluminum plasma created by an ultra-short laser pulse

    NASA Astrophysics Data System (ADS)

    Lecherbourg, L.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J.-P.; Blancard, C.; Cossé, P.; Faussurier, G.; Shepherd, R.; Audebert, P.

    2007-05-01

    Point-projection K-shell absorption spectroscopy has been used to measure absorption spectra of transient aluminum plasma created by an ultra-short laser pulse. The 1s-2p and 1s-3p absorption lines of weakly ionized aluminum were measured for an extended range of densities in a low-temperature regime. Independent plasma characterization was obtained using frequency domain interferometry diagnostic (FDI) that allows the interpretation of the absorption spectra in terms of spectral opacities. A detailed opacity code using the density and temperature inferred from the FDI reproduce the measured absorption spectra except in the last stage of the recombination phase.

  13. Mass loss from pre-main-sequence accretion disks. I - The accelerating wind of FU Orionis

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, Scott J.

    1993-01-01

    We present evidence that the wind of the pre-main-sequence object FU Orionis arises from the surface of the luminous accretion disk. A disk wind model calculated assuming radiative equilibrium explains the differential behavior of the observed asymmetric absorption-line profiles. The model predicts that strong lines should be asymmetric and blueshifted, while weak lines should be symmetric and double-peaked due to disk rotation, in agreement with observations. We propose that many blueshifted 'shell' absorption features are not produced in a true shell of material, but rather form in a differentially expanding wind that is rapidly rotating. The inference of rapid rotation supports the proposal that pre-main-sequence disk winds are rotationally driven.

  14. Novel Technique and Technologies for Active Optical Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta

    2017-01-01

    The societal benefits of understanding climate change through identification of global carbon dioxide sources and sinks led to the desired NASA's active sensing of carbon dioxide emissions over nights, days, and seasons (ASCENDS) space-based missions of global carbon dioxide measurements. For more than 15 years, NASA Langley Research Center (LaRC) have developed several carbon dioxide active remote sensors using the differential absorption lidar (DIAL) technique operating at the two-micron wavelength. Currently, an airborne two-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development. This IPDA lidar measures carbon dioxide as well as water vapor, the dominant interfering molecule on carbon dioxide remote sensing. Advancement of this triple-pulse IPDA lidar development is presented.

  15. The Impacts of Different Expansion Modes on Performance of Small Solar Energy Firms: Perspectives of Absorptive Capacity

    PubMed Central

    Chen, Hsing Hung; Shen, Tao; Xu, Xin-long; Ma, Chao

    2013-01-01

    The characteristics of firm's expansion by differentiated products and diversified products are quite different. However, the study employing absorptive capacity to examine the impacts of different modes of expansion on performance of small solar energy firms has never been discussed before. Then, a conceptual model to analyze the tension between strategies and corporate performance is proposed to filling the vacancy. After practical investigation, the results show that stronger organizational institutions help small solar energy firms expanded by differentiated products increase consistency between strategies and corporate performance; oppositely, stronger working attitudes with weak management controls help small solar energy firms expanded by diversified products reduce variance between strategies and corporate performance. PMID:24453837

  16. Nanostructured Lipid Carriers (NLC) as Vehicles for Topical Administration of Sesamol: In Vitro Percutaneous Absorption Study and Evaluation of Antioxidant Activity.

    PubMed

    Puglia, Carmelo; Lauro, Maria Rosaria; Offerta, Alessia; Crascì, Lucia; Micicchè, Lucia; Panico, Anna Maria; Bonina, Francesco; Puglisi, Giovanni

    2017-03-01

    Sesamol is a natural phenolic compound extracted from Sesamum indicum seed oil. Sesamol is endowed with several beneficial effects, but its use as a topical agent is strongly compromised by unfavorable chemical-physical properties. Therefore, to improve its characteristics, the aim of the present work was the formulation of nanostructured lipid carriers as drug delivery systems for topical administration of sesamol.Two different nanostructured lipid carrier systems have been produced based on the same solid lipid (Compritol® 888 ATO) but in a mixture with two different kinds of oil phase such as Miglyol® 812 (nanostructured lipid carrier-M) and sesame oil (nanostructured lipid carrier-PLUS). Morphology and dimensional distribution of nanostructured lipid carriers have been characterized by differential scanning calorimetry and photon correlation spectroscopy, respectively. The release pattern of sesamol from nanostructured lipid carriers was evaluated in vitro determining drug percutaneous absorption through excised human skin. Furthermore, an oxygen radical absorbance capacity assay was used to determine their antioxidant activity.From the results obtained, the method used to formulate nanostructured lipid carriers led to a homogeneous dispersion of particles in a nanometric range. Sesamol has been encapsulated efficiently in both nanostructured lipid carriers, with higher encapsulation efficiency values (> 90 %) when sesame oil was used as the oil phase (nanostructured lipid carrier-PLUS). In vitro evidences show that nanostructured lipid carrier dispersions were able to control the rate of sesamol diffusion through the skin, with respect to the reference formulations.Furthermore, the oxygen radical absorbance capacity assay pointed out an interesting and prolonged antioxidant activity of sesamol, especially when vehiculated by nanostructured lipid carrier-PLUS. Georg Thieme Verlag KG Stuttgart · New York.

  17. Light extinction by Secondary Organic Aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-07-01

    Broadband optical cavity spectrometers are maturing as a technology for trace gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulphate particles the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  18. Light extinction by secondary organic aerosol: an intercomparison of three broadband cavity spectrometers

    NASA Astrophysics Data System (ADS)

    Varma, R. M.; Ball, S. M.; Brauers, T.; Dorn, H.-P.; Heitmann, U.; Jones, R. L.; Platt, U.; Pöhler, D.; Ruth, A. A.; Shillings, A. J. L.; Thieser, J.; Wahner, A.; Venables, D. S.

    2013-11-01

    Broadband optical cavity spectrometers are maturing as a technology for trace-gas detection, but only recently have they been used to retrieve the extinction coefficient of aerosols. Sensitive broadband extinction measurements allow explicit separation of gas and particle phase spectral contributions, as well as continuous spectral measurements of aerosol extinction in favourable cases. In this work, we report an intercomparison study of the aerosol extinction coefficients measured by three such instruments: a broadband cavity ring-down spectrometer (BBCRDS), a cavity-enhanced differential optical absorption spectrometer (CE-DOAS), and an incoherent broadband cavity-enhanced absorption spectrometer (IBBCEAS). Experiments were carried out in the SAPHIR atmospheric simulation chamber as part of the NO3Comp campaign to compare the measurement capabilities of NO3 and N2O5 instrumentation. Aerosol extinction coefficients between 655 and 690 nm are reported for secondary organic aerosols (SOA) formed by the NO3 oxidation of β-pinene under dry and humid conditions. Despite different measurement approaches and spectral analysis procedures, the three instruments retrieved aerosol extinction coefficients that were in close agreement. The refractive index of SOA formed from the β-pinene + NO3 reaction was 1.61, and was not measurably affected by the chamber humidity or by aging of the aerosol over several hours. This refractive index is significantly larger than SOA refractive indices observed in other studies of OH and ozone-initiated terpene oxidations, and may be caused by the large proportion of organic nitrates in the particle phase. In an experiment involving ammonium sulfate particles, the aerosol extinction coefficients as measured by IBBCEAS were found to be in reasonable agreement with those calculated using the Mie theory. The results of the study demonstrate the potential of broadband cavity spectrometers for determining the optical properties of aerosols.

  19. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    NASA Astrophysics Data System (ADS)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak

    In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less

  1. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  2. Measurement of water absorption capacity in wheat flour by a headspace gas chromatographic technique.

    PubMed

    Xie, Wei-Qi; Yu, Kong-Xian; Gong, Yi-Xian

    2018-04-17

    The purpose of this work is to introduce a new method for quantitatively analyzing water absorption capacity in wheat flour by a headspace gas chromatographic technique. This headspace gas chromatographic technique was based on measuring the water vapor released from a series of wheat flour samples with different contents of water addition. According to the different trends between the vapor and wheat flour phase before and after the water absorption capacity in wheat flour, a turning point (corresponding to water absorption capacity in wheat flour) can be obtained by fitting the data of the water gas chromatography peak area from different wheat flour samples. The data showed that the phase equilibrium in the vial can be achieved in 25 min at desired temperature (35°C). The relative standard deviation of the reaction headspace gas chromatographic technique in water absorption capacity determination was within 3.48%, the relative differences has been determined by comparing the water absorption capacity obtained from this new analytical technique with the data from the reference technique (i.e., the filtration method), which are less than 8.92%. The new headspace gas chromatographic method is automated, accurate and be a reliable tool for quantifying water absorption capacity in wheat flour in both laboratory research and mill applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Differential photoacoustic spectroscopy with continuous wave lasers for non-invasive blood glucose monitoring

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Tajima, T.; Seyama, M.

    2018-02-01

    We propose a differential photoacoustic spectroscopy (PAS), wherein two wavelengths of light with the same absorbance are selected, and differential signal is linearized by one of the two signals for a non-invasive blood glucose monitoring. PAS has the possibility to overcome the strong optical scattering in tissue, but there are still remaining issues: the water background and instability due to the variation in acoustic resonance conditions. A change in sample solution temperature is one of the causes of the variation in acoustic resonance conditions. Therefore, in this study, we investigated the sensitivity against glucose concentration under the condition where the temperature of the sample water solution ranges 30 to 40 °C. The glucose concentration change is simulated by shifting the wavelength of irradiated laser light, which can effectively change optical absorption. The temperature also affects optical absorption and the acoustic resonance condition (acoustic velocity). A distributed-feedback (DFB) laser, tunable wavelength laser (TWL) and an acoustic sensor were used to obtain the differential PAS signal. The wavelength of the DFB laser was 1.382 μm, and that of TWL was switched from 1.600 to 1.610 μm to simulate the glucose concentration change. Optical absorption by glucose occurs at around 1.600 μm. The sensitivities against temperature are almost the same: 1.9 and 1.8 %/°C for 1.600 and 1.610 μm. That is, the glucose dependence across the whole temperature range remains constant. This implies that temperature correction is available.

  4. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  5. Spectral reflectance "deconstruction" of the Murchison CM2 carbonaceous chondrite and implications for spectroscopic investigations of dark asteroids

    NASA Astrophysics Data System (ADS)

    Cloutis, Edward A.; Pietrasz, Valerie B.; Kiddell, Cain; Izawa, Matthew R. M.; Vernazza, Pierre; Burbine, Thomas H.; DeMeo, Francesca; Tait, Kimberly T.; Bell, James F.; Mann, Paul; Applin, Daniel M.; Reddy, Vishnu

    2018-05-01

    Carbonaceous chondrites (CCs) are important materials for understanding the early evolution of the solar system and delivery of volatiles and organic material to the early Earth. Presumed CC-like asteroids are also the targets of two current sample return missions: OSIRIS-REx to asteroid Bennu and Hayabusa-2 to asteroid Ryugu, and the Dawn orbital mission at asteroid Ceres. To improve our ability to identify and characterize CM2 CC-type parent bodies, we have examined how factors such as particle size, particle packing, and viewing geometry affect reflectance spectra of the Murchison CM2 CC. The derived relationships have implications for disc-resolved examinations of dark asteroids and sampleability. It has been found that reflectance spectra of slabs are more blue-sloped (reflectance decreasing toward longer wavelengths as measured by the 1.8/0.6 μm reflectance ratio), and generally darker, than powdered sample spectra. Decreasing the maximum grain size of a powdered sample results in progressively brighter and more red-sloped spectra. Decreasing the average grain size of a powdered sample results in a decrease in diagnostic absorption band depths, and redder and brighter spectra. Decreasing porosity of powders and variations in surface texture result in spectral changes that may be different as a function of viewing geometry. Increasing thickness of loose dust on a denser powdered substrate leads to a decrease in absorption band depths. Changes in viewing geometry lead to different changes in spectral metrics depending on whether the spectra are acquired in backscatter or forward-scatter geometries. In backscattered geometry, increasing phase angle leads to an initial increase and then decrease in spectral slope, and a general decrease in visible region reflectance and absorption band depths, and frequent decreases in absorption band minima positions. In forward scattering geometry, increasing phase angle leads to small non-systematic changes in spectral slope, and general decreases in visible region reflectance, and absorption band depths. The highest albedos and larger band depths are generally seen in the lowest phase angle backscattering geometry spectra. The reddest spectra are generally seen in the lowest phase angle backscatter geometry spectra. For the same phase angle, spectra acquired in forward scatter geometry are generally redder and darker and have shallower absorption bands than those acquired in backscatter geometry. Overall, backscatter geometry-acquired spectra are flatter, brighter, and have deeper 0.7 μm region absorption band depths than forward scatter geometry-acquired spectra. It was also found that the 0.7, 0.9, and 1.1 μm absorption bands in Murchison spectra, which are attributable to various Fe electronic processes, are ubiquitous and can be used to recognize CM2 chondrites regardless of the physical properties of the meteorite and viewing geometry.

  6. Poly High Internal Phase Emulsion for the Immobilization of Chemical Warfare Agents.

    PubMed

    Wright, Alexander J; Main, Marcus J; Cooper, Nicholas J; Blight, Barry A; Holder, Simon J

    2017-09-20

    We report a facile method for the absorption (characterized by the weight/weight swelling degree, Q) of a variety of chemical warfare agents (CWAs); including sulfur mustard (HD) (Q = 40) and V-series (VM, VX, i-Bu-VX, n-Bu-VX) of nerve agents (Q ≥ 45) and a simulant, methyl benzoate (Q = 55), through the use of a poly(styrene-co-vinyl benzyl chloride-co-divinylbenzene) lightly cross-linked poly high internal phase emulsion (polyHIPE). By varying the vinyl benzyl chloride (VBC) content and the volume of the internal phase of the precursor emulsion it is demonstrated that absorption is facilitated both by the swelling of the polymer and the uptake of liquid in the pores. In particular the sample prepared from a 95% internal emulsion water content showed rapid swelling (<5 min to total absorption) and the ability to swell both from a monolithic state and from a compressed state, making these systems ideal practical candidates for the rapid immobilization of CWAs.

  7. Gas-phase Absorptions of {{\\rm{C}}}_{42}{{\\rm{H}}}_{18}^{+} near 8300 Å below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2017-11-01

    The gas-phase electronic spectrum of {{{C}}}42{{{H}}}18+ ({{HBC}}+) with an origin band at 8281 \\mathringA has been measured below 10 {{K}} by photofragmentation of helium complexes ({{{C}}}42{{{H}}}18+{--}{{He}}n) in a radiofrequency trap. {{HBC}}+ is a medium-sized polycyclic aromatic hydrocarbon (PAH) cation, and using an ion trapping technique it has been possible to record a high-quality gas-phase spectrum to directly compare with astronomical observations. No diffuse interstellar bands (DIBs) have been reported at the wavelengths of the strongest absorption bands in the {{{C}}}42{{{H}}}18+ spectrum. Measurement of absolute absorption cross sections in the ion trap allows upper limits to the column density of this ion to be {10}12 {{cm}}-2, indicating that even PAH cations of this size, which are believed to be stable in the interstellar medium, should be excluded as candidates for at least the strong DIBs.

  8. Polarized optical absorption and photoluminescence measurements in single-crystal thin films of 4'-dimethylamino-N-methyl-4-stilbazolium tosylate

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya K.; Xu, Jianjun; Thakur, Mrinal

    1999-11-01

    Single-crystal thin films of the anhydrous (red) and the hydrated (orange) phases of the organic salt 4'-dimethylamino-N-methyl-4-stilbazolium tosylate were grown by a modification of the shear method. The optical absorption coefficients of the films were measured with light polarized along and normal to the dipole/molecular axis at both resonant and off-resonant wavelengths, and a strong dichroism was observed at the resonant wavelengths. The absorption measurements are important considering potential applications of these films (red phase) in high-speed single-pass thin-film electro-optic modulators [M. Thakur, J. Xu, A. Bhowmik, and L. Zhou, Appl. Phys. Lett. 74, 635 (1999)] and other photonic devices. Highly polarized photoluminescence (PL) has been observed in these films. The PL efficiencies of the red- and orange-phase single-crystal films were measured to be about 12% and 14%, respectively, which are significantly higher than the maximum PL efficiency measured in solution (3%).

  9. System for measuring multiphase flow using multiple pressure differentials

    DOEpatents

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  10. Live imaging of heart tube development in mouse reveals alternating phases of cardiac differentiation and morphogenesis

    PubMed Central

    Ivanovitch, Kenzo; Temiño, Susana

    2017-01-01

    During vertebrate heart development, two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here, we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development. PMID:29202929

  11. Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

    NASA Technical Reports Server (NTRS)

    Wormhoudt, Joda; Shorter, Joanne H.; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Freedman, Andrew; Campbell, Melissa; Chang, Clarence T.; Smith, Frederick D.

    2004-01-01

    The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (COP) from cabin air. Product water vapor measurements from a CDRA test bed at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the COP desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of approx. 40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact. Measured values of total water vapor evolved during a single desorption cycle were as low as 1 mg.

  12. Development of new and improved polymer matrix resin systems, phase 1

    NASA Technical Reports Server (NTRS)

    Hsu, M. S.

    1983-01-01

    Vinystilbazole (vinylstryrylpyridine) and vinylpolystyrulpyridine were prepared for the purpose of modifying bismaleimide composite resins. Cure studies of resins systems were investigated by differential scanning calorimetry. The vinylstyrylpyridine-modified bismaleimide composite resins were found to have lower cure and gel temperatures, and shorter cure times than the corresponding unmodified composite resins. The resin systems were reinforced with commercially avialable satin-weave carbon cloth. Prepregs were fabricated by solvent or hot melt techniques. Thermal stability, flammability, moisture absorption, and mechanical properties of the composites (such as flexural strength, modulus, tensile and short beam shear strength) were determined. Composite laminates showed substantial improvements in both processability and mechanical properties compared to he bismaleimide control systems. The vinylstyrylpyridine modified bismaleimide resins can be used as advanced matrix resins for graphite secondary structures where ease of processing, fireworthiness, and high temperature stability are required for aerospace applications.

  13. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily V.; Hall, Gregory E., E-mail: gehall@bnl.gov

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method ismore » capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.« less

  14. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  15. HARPA: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in the atmosphere above irregular terrain

    NASA Astrophysics Data System (ADS)

    Jones, R. M.; Riley, J. P.; Georges, T. M.

    1986-08-01

    The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.

  16. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  17. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  18. Influence of light absorption on relativistic self-focusing of Gaussian laser beam in cold quantum plasma

    NASA Astrophysics Data System (ADS)

    Patil, S. D.; Valkunde, A. T.; Vhanmore, B. D.; Urunkar, T. U.; Gavade, K. M.; Takale, M. V.

    2018-05-01

    When inter particle distance is comparable to the de Broglies wavelength of charged particles, quantum effects in plasmas are unavoidable. We have exploited an influence of light absorption on self-focusing of Gaussian laser beam in cold quantum plasma by considering relativistic nonlinearity. Nonlinear differential equation governing beam-width parameter has been established by using parabolic equation approach under paraxial and WKB approximations. The effect of light absorption on variation of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. It is found that light absorption plays vital role in weakening the relativistic self-focusing of laser beam during propagation in cold quantum plasma and gives reasonably interesting results.

  19. Radiative transitions involving the (2p2)(3 Pe) metastable autodetaching of H(-)

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Bhatia, A. K.; Temkin, A.

    1974-01-01

    The absorption coefficient for the free-bound transition H (ls) + e(-)+ h omega yields H(-)(2 sq p,(3)P(e)) is calculated (together with the differential emission rate for the inverse process) using ls - 2s - 2p close coupling continuum wave functions and a Hylleraas bound state wave function. A maximum in the absorption and emission spectra is found to occur at a photon wavelength of 1219.5 A, which is 2 A closer to the Lyman alpha line than predicted by the calculations of Drake, and is in closer agreement with the stellar absorption feature identified by Heap and Stecher. The free-bound absorption process appears to be a significant source of continuous ultraviolet opacity.

  20. The role of Gouy phase on the mechanical effects of Laguerre-Gaussian light interacting with atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lembessis, V. E., E-mail: vlempesis@ksu.edu.sa; Babiker, M.; Ellinas, D.

    2016-06-10

    We consider the case of Laguerre-Gaussian (LG) light with high values of radial index, p, and/or winding number l, focussing on the effects of the Gouy phase together with other phase contributions due to the curvature in a Laguerre Gaussian beam when it interacts with atoms at near resonance. We show here that these phase anomalies amount to a significant reduction of the axial wavevector and thus lead to additional contributions to the phase gradient in the vicinity of the focus plane. In consequence, the axial recoil effects due to the stimulated emission and absorption of light by the atommore » become smaller. This has important effects on the dissipative axial forces acting on the atom, on the momentum fluctuations associated with the photon absorption and stimulated emission and on diffraction of atoms through light masks created by LG beams.« less

  1. Differential utilization and transformation of sulfur allotropes, μ-S and α-S8, by moderate thermoacidophile Sulfobacillus thermosulfidooxidans.

    PubMed

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Zhu, Hong-rui; Ma, Chen-yan; Zheng, Lei; Zhao, Yi-dong; Qiu, Guan-zhou

    2014-10-01

    The utilization of amorphous μ-S and orthorhombic α-S8 by thermoacidophile Sulfobacillus thermosulfidooxidans was firstly investigated in terms of cell growth and sulfur oxidation behavior. The morphology and surface sulfur speciation transformation were evaluated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy and sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. The results showed that the strain grown on μ-S entered slower (about 1 day later) into the exponential phase, while grew faster in exponential phase and attained higher maximal cell density and lower pH than on α-S8. After bio-corrosion, both sulfur samples were evidently eroded, but only μ-S surface presented much porosity, while α-S8 maintained glabrous. μ-S began to be gradually converted into α-S8 from day 2 when the bacterial cells entered the exponential phase, with a final composition of 62.3% μ-S and 37.7% α-S8 on day 4 at the stationary phase. α-S8 was not found to transform into other species in the experiments with or without bacteria. These data indicated S. thermosulfidooxidans oxidized amorphous μ-S faster than orthorhombic α-S8, but the chain-like μ-S was transformed into cyclic α-S8 by S. thermosulfidooxidans. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Monomeric insulins and their experimental and clinical implications.

    PubMed

    Brange, J; Owens, D R; Kang, S; Vølund, A

    1990-09-01

    Due to the inherent pharmacokinetic properties of available insulins, normoglycemia is rarely, if ever, achieved in insulin-dependent diabetic patients without compromising their quality of life. Subcutaneous insulin absorption is influenced by many factors, among which the associated state of insulin (hexameric) in pharmaceutical formulation may be of importance. This review describes the development of a series of human insulin analogues with reduced tendency to self-association that, because of more rapid absorption, are better suited to meal-related therapy. DNA technology has made it possible to prepare insulins that remain dimeric or even monomeric at high concentration by introducing one or a few amino acid substitutions into human insulin. These analogues were characterized and used for elucidating the mechanisms involved in subcutaneous absorption and were investigated in preliminary clinical studies. Their relative receptor binding and in vitro potency (free-fat cell assay), ranging from 0.05 to 600% relative to human insulin, were strongly correlated (r = 0.97). In vivo, most of the analogues exhibited approximately 100% activity, explainable by a dominating receptor-mediated clearance. This was confirmed by clamp studies in which correlation between receptor binding and clearance was observed. Thus, an analogue with reduced binding and clearance gives higher circulating concentrations, counterbalancing the reduced potency at the cellular level. Absorption studies in pigs revealed a strong inverse correlation (r = 0.96) between the rate of subcutaneous absorption and the mean association state of the insulin analogues. These studies also demonstrated that monomeric insulins were absorbed three times faster than human insulin. In healthy subjects, rates of disappearance from subcutis were two to three times faster for dimeric and monomeric analogues than for human insulin. Concomitantly, a more rapid rise in plasma insulin concentration and an earlier hypoglycemic response with the analogues were observed. The monomeric insulin had no lag phase and followed a monoexponential course throughout the absorption process. In contrast, two phases in rate of absorption were identified for the dimer and three for the normal hexameric human insulin. The initial lag phase and the subsequent accelerated absorption of soluble insulin can now be explained by the associated state of native insulin in pharmaceutical formulation and its progressive dissociation into smaller units during the absorption process. In the light of these results, the effects of insulin concentration, injected volume, temperature, and massage on the absorption process are now also understood.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Miniaturized differential optical absorption spectroscopy (DOAS) system for the analysis of NO2

    NASA Astrophysics Data System (ADS)

    Morales, J. Alberto; Walsh, James E.; Treacy, Jack E.; Garland, Wendy E.

    2003-03-01

    Current trends in optical design engineering are leading to the development of new systems which can analyze atmospheric pollutants in a fast and easy way, allowing remote-sensing and miniaturization at a low cost. A small portable fiber-optic based system is presented for the spectroscopic analysis of a common gas pollutant, NO2. The novel optical set-up described consists of a small telescope that collects ultraviolet-visible light from a xenon lamp located 600 m away. The light is coupled into a portable diode array spectrometer through a fiber-optic cable and the system is controlled by a lap-top computer where the spectra are recorded. Using the spectrum of the lamp as a reference, the absorption spectrum of the open path between the lamp and the telescope is calculated. Known absorption features in the NO2 spectrum are used to calculate the concentration of the pollutant using the principles of Differential Optical Absorption Spectroscopy (DOAS). Calibration is carried by using sample gas bags of known concentration of the pollutant. The results obtained demonstrate that it is possible to detect and determine NO2 concentrations directly from the atmosphere at typical environment levels by using an inexpensive field based fiber-optic spectrometer system.

  4. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  5. Gas-phase infrared spectroscopy for determination of double bond configuration of monounsaturated compounds.

    PubMed

    Attygalle, A B; Svatos, A; Wilcox, C; Voerman, S

    1994-05-15

    Gas-phase Fourier-transform infrared spectra allow unambiguous determination of the configuration of the double bonds of long-chain unsaturated compounds bearing RCH=CHR' type bonds. Although the infrared absorption at 970-967 cm-1 has been used previously for the identification of trans bonds, the absorption at 3028-3011 cm-1 is conventionally considered to be incapable of distinguishing cis and trans isomers. In this paper, we present a large number of gas-phase spectra of monounsaturated long-chain acetates which demonstrate that an absorption, highly characteristic for the cis configuration, occurs at 3013-3011 cm-1, while trans compounds fail to show any bands in this region. However, if a double bond is present at the C-2 or C-3 carbon atoms, this cis=CH stretch absorption shows a hypsochromic shift to 3029-3028 and 3018-3017 cm-1, respectively. Similarly, if a cis double bond is present at the penultimate carbon atom, this band appears at 3022-3021 cm-1. All the spectra of trans alkenyl acetates showed the expected C-H wag absorption at 968-964 cm-1. In addition, the spectra of (E)-2-alkenyl acetates show a unique three-peak "finger-print" pattern which allows the identification of the position and configuration of this bond. Furthermore, by synthesizing and obtaining spectra of appropriate deuteriated compounds, we have proved that the 3013-3011 cm-1 band is representative of the C-H stretching vibration of cis compounds of RCH=CHR' type.

  6. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis

    PubMed Central

    Tian, Hua; Biehs, Brian; Chiu, Cecilia; Siebel, Chris; Wu, Yan; Costa, Mike; de Sauvage, Frederic J.; Klein, Ophir D.

    2015-01-01

    Summary Proper organ homeostasis requires tight control of adult stem cells and differentiation through integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a de-repression of the Wnt signaling pathway, leading to mis-expression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology. PMID:25818302

  7. Observation of confinement effects through liner and nonlinear absorption spectroscopy in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Rakesh Kumar, Y.; Narayana Rao, D.

    2015-02-01

    Cuprous oxide nano clusters, micro cubes and micro particles were successfully synthesized by reducing copper (II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction studies revealed the formation of pure single phase cubic. Raman spectrum shows the inevitable presence of CuO on the surface of the Cu2O powders which may have an impact on the stability of the phase. Transmission electron microscopy (TEM) data revealed that the morphology evolves from nanoclusters to micro cubes and micro particles by increasing the concentration of NaOH. Linear optical measurements show that the absorption peak maximum shifts towards red with changing morphology from nano clusters to micro cubes and micro particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm, 6 ns laser pulses. Samples exhibited saturable as well as reverse saturable absorption. The results show that the transition from SA to RSA is ascribed to excited-state absorption (ESA) induced by two-photon absorption (TPA) process. Due to confinement effects (enhanced band gap) we observed enhanced nonlinear absorption coefficient (βeff) in the case of nano-clusters compared to their micro-cubes and micro-particles.

  8. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase

    PubMed Central

    Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson

    2017-01-01

    Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo. PMID:27867185

  9. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase.

    PubMed

    Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson

    2017-01-01

    Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo.

  10. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  11. TU-CD-207-12: Impact of Anatomical Noise On Detection Performance of Microcalcifications in Multi-Contrast Breast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, J; Ge, Y; Li, K

    2015-06-15

    Purpose: The anatomical noise power spectra (NPS) for differential phase contrast (DPC) and dark field (DF) imaging have recently been characterized using a power-law model with two parameters, alpha and beta, an innovative extension to the methodology used in x-ray attenuation based breast imaging such as mammography, DBT, or cone-beam CT. Beta values of 3.6, 2.6, and 1.3 have been measured for absorption, DPC, and DF respectively for cadaver breasts imaged in the coronal plane; these dramatic differences should be reflected in their detection performance. The purpose of this study was to determine the impact of anatomical noise on breastmore » calcification detection and compare the detection performance of the three contrast mechanisms of a multi-contrast x-ray imaging system. Methods: In our studies, a calcification image object was segmented out of the multi-contrast images of a cadaver breast specimen. 50 measured total NPS were measured from breast cadavers directly. The ideal model observer detectability was calculated for a range of doses (5–100%) and a range of calcification sizes (diameter = 0.25–2.5 mm). Results: Overall we found the highest average detectability corresponded to DPC imaging (7.4 for 1 mm calc.), with DF the next highest (3.8 for 1 mm calc.), and absorption the lowest (3.2 for 1 mm calc.). However, absorption imaging also showed the slowest dependence on dose of the three modalities due to the significant anatomical noise. DPC showed a peak detectability for calcifications ∼1.25 mm in diameter, DF showed a peak for calcifications around 0.75 mm in diameter, and absorption imaging had no such peak in the range explored. Conclusion: Understanding imaging performance for DPC and DF is critical to transition these modalities to the clinic. The results presented here offer new insight into how these modalities complement absorption imaging to maximize the likelihood of detecting early breast cancers. J. Garrett, Y. Ge, K. Li: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX.« less

  12. [Similarities and differences in absorption characteristics and composition of CDOM between Taihu Lake and Chaohu Lake].

    PubMed

    Shi, Kun; Li, Yun-mei; Wang, Qiao; Yang, Yu; Jin, Xin; Wang, Yan-fei; Zhang, Hong; Yin, Bin

    2010-05-01

    Field experiments are conducted separately in Taihu Lake and Chaohu Lake on Apr. and Jun. 2009. The changes in absorption spectra of chromophoric dissolved organic matter (CDOM) characteristics are analyzed using spectral differential analysis technology. According the spectral differential characteristic of absorption coefficient; absorption coefficient from 240 to 450 nm is divided into different stages, and the value of spectral slope S is calculated in each stage. In Stage A, S value of CDOM in Taihu Lake and Chaohu Lake are 0.0166-0.0102 nm(-1) [average (0.0132 +/- 0.0017) nm(-1)], 0.029-0.017 nm(-1) [average (0.0214 +/- 0.0024) nm(-1)]. In Stage B, S values are 0.0187-0.0148 nm(-1) [average (0.0169 +/- 0.001) nm(-1)], 0.0179-0.0055 nm(-1) [average (0.0148 +/- 0.002) nm(-1)]. In Stage C, S values are 0.0208-0.0164 nm(-1) [average (0.0186 +/- 0.0009) nm(-1)], 0.0253-0.0161 nm(-1) [average (0.0197 +/- 0.002) nm(-1)]. The results can be concluded as: (1) Absorption coefficient of water in Taihu Lake, and its contribution to absorption of each component is less than that of water in Chaohu Lake, however the standardized absorption coefficient is larger than that in Chaohu Lake. (2) Both in Taihu Lake and Chaohu Lake, derivative spectra of CDOM absorption coefficient reached valley at 260nm, then rise to top at 290 nm, CDOM absorption coefficient can be delivered into three stages. (3) Generally speaking, content of CDOM in Taihu Lake is less than in Chaohu Lake. (4) pectrum slope (S value) of CDOM is related to composition of CDOM, when content of humic acid in CDOM gets higher, S value of Stage B is the most sensitive value, then is the S value of Stage C. Oppositely, S value of Stage B gets the most sensitive value, then is the S value of Stage A; the least sensitive value is in Stage B.

  13. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  14. Crystalline phase transformation of colloidal cadmium sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Ghali, M.; Eissa, A. M.; Mosaad, M. M.

    2017-03-01

    In this paper, we give a microscopic view concerning influence of the growth conditions on the physical properties of nanocrystals (NCs) thin films made of CdS, prepared using chemical bath deposition CBD technique. We show a crystalline phase transformation of CdS NCs from hexagonal wurtzite (W) structure to cubic zincblende (ZB) when the growth conditions change, particularly the solution pH values. This effect was confirmed using X-ray diffraction (XRD), transmission electron microscopy (TEM), optical absorption and photoluminescence (PL) measurements. The optical absorption spectra allow calculation of the bandgap value, Eg, where significant increase ˜200 meV in the CdS bandgap when transforming from Hexagonal to Cubic phase was found.

  15. Determination of absorption coefficient based on laser beam thermal blooming in gas-filled tube.

    PubMed

    Hafizi, B; Peñano, J; Fischer, R; DiComo, G; Ting, A

    2014-08-01

    Thermal blooming of a laser beam propagating in a gas-filled tube is investigated both analytically and experimentally. A self-consistent formulation taking into account heating of the gas and the resultant laser beam spreading (including diffraction) is presented. The heat equation is used to determine the temperature variation while the paraxial wave equation is solved in the eikonal approximation to determine the temporal and spatial variation of the Gaussian laser spot radius, Gouy phase (longitudinal phase delay), and wavefront curvature. The analysis is benchmarked against a thermal blooming experiment in the literature using a CO₂ laser beam propagating in a tube filled with air and propane. New experimental results are presented in which a CW fiber laser (1 μm) propagates in a tube filled with nitrogen and water vapor. By matching laboratory and theoretical results, the absorption coefficient of water vapor is found to agree with calculations using MODTRAN (the MODerate-resolution atmospheric TRANsmission molecular absorption database) and HITRAN (the HIgh-resolution atmospheric TRANsmission molecular absorption database).

  16. Mid-infrared laser-absorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness

    NASA Astrophysics Data System (ADS)

    Porter, J. M.; Jeffries, J. B.; Hanson, R. K.

    2011-02-01

    A novel two-wavelength mid-infrared laser-absorption diagnostic has been developed for simultaneous measurements of vapor-phase fuel mole fraction and liquid fuel film thickness. The diagnostic was demonstrated for time-resolved measurements of n-dodecane liquid films in the absence and presence of n-decane vapor at 25°C and 1 atm. Laser wavelengths were selected from FTIR measurements of the C-H stretching band of vapor n-decane and liquid n-dodecane near 3.4 μm (3000 cm-1). n-Dodecane film thicknesses <20 μm were accurately measured in the absence of vapor, and simultaneous measurements of n-dodecane liquid film thickness and n-decane vapor mole fraction (300 ppm) were measured with <10% uncertainty for film thicknesses <10 μm. A potential application of the measurement technique is to provide accurate values of vapor mole fraction in combustion environments where strong absorption by liquid fuel or oil films on windows make conventional direct absorption measurements of the gas problematic.

  17. Multi-wavelength differential absorption measurements of chemical species

    NASA Astrophysics Data System (ADS)

    Brown, David M.

    The probability of accurate detection and quantification of airborne species is enhanced when several optical wavelengths are used to measure the differential absorption of molecular spectral features. Characterization of minor atmospheric constituents, biological hazards, and chemical plumes containing multiple species is difficult when using current approaches because of weak signatures and the use of a limited number of wavelengths used for identification. Current broadband systems such as Differential Optical Absorption Spectroscopy (DOAS) have either limitations for long-range propagation, or require transmitter power levels that are unsafe for operation in urban environments. Passive hyperspectral imaging systems that utilize absorption of solar scatter at visible and infrared wavelengths, or use absorption of background thermal emission, have been employed routinely for detection of airborne chemical species. Passive approaches have operational limitations at various ranges, or under adverse atmospheric conditions because the source intensity and spectrum is often an unknown variable. The work presented here describes a measurement approach that uses a known source of a low transmitted power level for an active system, while retaining the benefits of broadband and extremely long-path absorption operations. An optimized passive imaging system also is described that operates in the 3 to 4 mum window of the mid-infrared. Such active and passive instruments can be configured to optimize the detection of several hydrocarbon gases, as well as many other species of interest. Measurements have provided the incentive to develop algorithms for the calculations of atmospheric species concentrations using multiple wavelengths. These algorithms are used to prepare simulations and make comparisons with experimental results from absorption data of a supercontinuum laser source. The MODTRAN model is used in preparing the simulations, and also in developing additional algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis. An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane. Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.

  18. Bilayer synergetic coupling double negative acoustic metasurface and cloak.

    PubMed

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-04-12

    In this paper, we propose a bilayer plate-type lightweight double negative metasurface based on a new synergetic coupling design concept, by which the perfect absorption, double negative bands, free manipulation of phase shifts with a 2π span and acoustic cloak can be successively realized. Firstly, the synergetic behavior between resonant and anti-resonant plates is presented to construct a bilayer unit in which each component respectively provides a pre-defined function in realizing the perfect absorption. Based on this bilayer structure, a double negative band with simultaneously negative effective mass density and bulk modulus is obtained, which, as a metasurface, can obtain continuous phase shifts almost completely covering a 2π range, thus facilitating the design of a three-dimensional (3D) acoustic cloak. In addition, based on this strong sound absorption concept, a two-dimensional (2D) omnidirectional broadband acoustical dark skin, covering between 800 to 6000 Hz, is also demonstrated through the proposed bilayer plate-type structure form. The proposed design concepts and metasurfaces have widespread potential application values in strong sound attenuation, filtering, superlens, imaging, cloak, and extraordinary wave steering, in which the attributes of strong absorption, double negative parameters or continuous phase shifts with full 2π span are required to realize the expected extraordinary physical features.

  19. Development, characterization, and in vitro and in vivo evaluation of benzocaine- and lidocaine-loaded nanostructrured lipid carriers.

    PubMed

    Puglia, Carmelo; Sarpietro, Maria Grazia; Bonina, Francesco; Castelli, Francesco; Zammataro, Magda; Chiechio, Santina

    2011-05-01

    The present study concerns the in vitro and in vivo evaluation of benzocaine (BENZO) and lidocaine (LIDO) topical delivery from nanostructured lipid carriers (NLCs). Morphology and dimensional distribution of NLCs have been, respectively, characterized by differential scanning calorimetry (DSC) and photon correlation spectroscopy. The release pattern of BENZO and LIDO from NLCs was evaluated in vitro determining drug percutaneous absorption through excised human skin. Radiant heat tail-flick test was carried out in mice to determine the antinociceptive effect of BENZO and LIDO from NLC. DSC studies revealed that the inner oil phase of NLC plays a significant role in stabilizing the particle architecture and increasing the drug solubility. In vitro evidences show that BENZO and LIDO, when incorporated in viscosized NLC dispersions, exhibited a lower flux with respect to formulations containing the free drugs in the aqueous phase. In vivo study enabled to demonstrate that BENZO and LIDO can be released in a prolonged fashion when incorporated into lipid carriers. The results obtained pointed out NLC capability to act as an effective drug reservoir, thus prolonging the anesthetic effect of BENZO and LIDO. Copyright © 2010 Wiley-Liss, Inc.

  20. Optical constants of solid methane and ethane from 10,000 to 450/cm. [in outer planets atmospheres

    NASA Technical Reports Server (NTRS)

    Pearl, J.; Ngoh, M.; Ospina, M.; Khanna, R.

    1991-01-01

    Near- and mid-IR spectra of thin films of crystalling phase I and phase II C2H6 are presented using a combined least squares and Kramers-Kronig analysis. Complex refractive indices derived from these data are also presented. To obtain material in phase I, samples are annealed at 33 K for about 30 min; phase II is obtained by recooling below the transition temperature of 20.4 K. The derived optical parameters are shown. The infrared spectrum of phase I CH4 exhibits broad structureless absorptions at about 1300 and 2600/cm. On cooling the sample below 20.4 K (phase II), the absorptions are sharpened, and each band develops fine structure. The present results and those of Roux et al. (1979) are compared. The agreement with the real parts is found to be excellent; given the difference in resolution, the agreement with the imaginary parts is also good.

  1. In situ neutron diffraction study of deuterium gas absorption by AB5+y alloys used as negative electrode materials for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Latroche, M.; Joubert, J.-M.; Guégan, A. Percheron; Isnard, O.

    2004-07-01

    LaNi5-type alloys store reversibly hydrogen and are used as negative electrode materials in Ni-MH batteries. Substitutions on La and Ni crystallographic sites have led to competitive materials with complex formulae Mm(Ni4.3-xMn0.4Al0.3Cox)1+y (Mm: mishmetal). Materials involving an unexpected metastable phase γ show the best cycle lives. This phase occurrence depends on the mishmetal composition, the cobalt rate and the over-stoichiometry. It is observed as a transitory phase only for charge in electrochemical process. To confirm the appearance of this phase during gas loading, in beam D2 gas absorption has been performed on two materials for which the γ phase is expected. Phase amounts and cell volumes have been measured by in situ neutron powder diffraction analysis under controlled gas pressure as a function of the state of charge.

  2. O2 on ganymede: Spectral characteristics and plasma formation mechanisms

    USGS Publications Warehouse

    Calvin, W.M.; Johnson, R.E.; Spencer, J.R.

    1996-01-01

    Weak absorption features in the visible reflectance spectrum of Jupiter's satellite Ganymede have been correlated to those observed in the spectrum of molecular oxygen. We examine the spectral characteristics of these absorption features in all phases of O2 and conclude that the molecular oxygen is most likely present at densities similar to the liquid or solid ??-phase. The contribution of O2 to spectral features observed on Ganymede in the near-infrared wavelength region affects the previous estimates of photon pathlength in ice. The concentration of the visible absorption features on the trailing hemisphere of Ganymede suggests an origin due to bombardment by magneto-spheric ions. We derive an approximate O2 formation rate from this mechanism and consider the state of O2 within the surface.

  3. Cross section of resonant Raman scattering of light by polyenes

    NASA Astrophysics Data System (ADS)

    Verdyugin, V. V.; Burshteyn, K. Ya.; Shorygin, P. P.

    1987-03-01

    An experimental study is presented of the resonant Raman spectra of beta carotene. Absolute differential cross sections are obtained for the most intensive Raman spectral lines with excitation at the absorption maximum. A theoretical analysis is presented of the variation in absolute differential cross section as a function of a number of conjunct double bonds in the polyenes.

  4. Diagnosis and Differential Diagnosis of Hydrocephalus in Adults.

    PubMed

    Langner, Sönke; Fleck, Steffen; Baldauf, Jörg; Mensel, Birger; Kühn, Jens Peter; Kirsch, Michael

    2017-08-01

    Purpose  Hydrocephalus is caused by an imbalance of production and absorption of cerebrospinal fluid (CSF) or obstruction of its pathways, resulting in ventricular dilatation and increased intracranial pressure. Imaging plays a crucial role in the diagnosis, differential diagnosis and planning of treatment. Methods  This review article presents the different types of hydrocephalus und their typical imaging appearance, describes imaging techniques, and discusses differential diagnoses of the different forms of hydrocephalus. Results and Conclusion  Imaging plays a central role in the diagnosis of hydrocephalus. While magnetic resonance (MR) imaging is the first-line imaging modality, computed tomography (CT) is often the first-line imaging test in emergency patients. Key points   · Occlusive hydrocephalus is caused by obstruction of CSF pathways.. · Malabsorptive hydrocephalus is caused by impaired CSF absorption.. · The MR imaging protocol should always include sagittal high-resolution T2-weighted images.. · When an inflammatory etiology is suspected, imaging with contrast agent administration is necessary.. Citation Format · Langner S, Fleck S, Baldauf J et al. Diagnosis and Differential Diagnosis of Hydrocephalus in Adults. Fortschr Röntgenstr 2017; 189: 728 - 739. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  6. Transdermal Bioavailability in Rats of Lidocaine in the Forms of Ionic Liquids, Salts, and Deep Eutectic.

    PubMed

    Berton, Paula; Di Bona, Kristin R; Yancey, Denise; Rizvi, Syed A A; Gray, Marquita; Gurau, Gabriela; Shamshina, Julia L; Rasco, Jane F; Rogers, Robin D

    2017-05-11

    Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague-Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components.

  7. Transdermal Bioavailability in Rats of Lidocaine in the Forms of Ionic Liquids, Salts, and Deep Eutectic

    PubMed Central

    2017-01-01

    Tuning the bioavailability of lidocaine was explored by its incorporation into the ionic liquid lidocainium docusate ([Lid][Doc]) and the deep eutectic Lidocaine·Ibuprofen (Lid·Ibu) and comparing the transdermal absorption of these with the crystalline salt lidocainium chloride ([Lid]Cl). Each form of lidocaine was dissolved in a vehicle cream and topically applied to Sprague–Dawley rats. The concentrations of the active pharmaceutical ingredients (APIs) in blood plasma were monitored over time as an indication of systemic absorption. The concentration of lidocaine in plasma varied between applied API-based creams, with faster and higher systemic absorption of the hydrogen bonded deep eutectic Lid·Ibu than the absorption of the salts [Lid]Cl or [Lid][Doc]. Interestingly, a differential transdermal absorption was observed between lidocaine and ibuprofen when Lid·Ibu was applied, possibly indicating different interactions with the tissue components. PMID:28523100

  8. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  9. Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    PubMed Central

    2007-01-01

    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism.

  10. Photoacoustic phasoscopy super-contrast imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin, E-mail: yjzheng@ntu.edu.sg

    2014-05-26

    Phasoscopy is a recently proposed concept correlating electromagnetic (EM) absorption and scattering properties based on energy conservation. Phase information can be extracted from EM absorption induced acoustic wave and scattered EM wave for biological tissue characterization. In this paper, an imaging modality, termed photoacoustic phasoscopy imaging (PAPS), is proposed and verified experimentally based on phasoscopy concept with laser illumination. Both endogenous photoacoustic wave and scattered photons are collected simultaneously to extract the phase information. The PAPS images are then reconstructed on vessel-mimicking phantom and ex vivo porcine tissues to show significantly improved contrast than conventional photoacoustic imaging.

  11. High-temperature measurements of methane and acetylene using quantum cascade laser absorption near 8 μm

    NASA Astrophysics Data System (ADS)

    Sajid, M. B.; Javed, T.; Farooq, A.

    2015-04-01

    The mid-infrared wavelength region near 8 μm contains absorption bands of several molecules such as water vapor, hydrogen peroxide, nitrous oxide, methane and acetylene. A new laser absorption sensor based on the ν4 band of methane and the ν4+ν5 band of acetylene is reported for interference-free, time-resolved measurements under combustion-relevant conditions. A detailed line-selection procedure was used to identify optimum transitions. Methane and acetylene were measured at the line centers of Q12 (1303.5 cm-1) and P23 (1275.5 cm-1) transitions, respectively. High-temperature absorption cross sections of methane and acetylene were measured at peaks (on-line) and valleys (off-line) of the selected absorption transitions. The differential absorption strategy was employed to eliminate interference absorption from large hydrocarbons. Experiments were performed behind reflected shock waves over a temperature range of 1200-2200 K, between pressures of 1-4 atm. The diagnostics were then applied to measure the respective species time-history profiles during the shock-heated pyrolysis of n-pentane.

  12. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  13. A differential optical absorption spectroscopy method for retrieval from ground-based Fourier transform spectrometers measurements of the direct solar beam

    NASA Astrophysics Data System (ADS)

    Huo, Yanfeng; Duan, Minzheng; Tian, Wenshou; Min, Qilong

    2015-08-01

    A differential optical absorption spectroscopy (DOAS)-like algorithm is developed to retrieve the column-averaged dryair mole fraction of carbon dioxide from ground-based hyper-spectral measurements of the direct solar beam. Different to the spectral fitting method, which minimizes the difference between the observed and simulated spectra, the ratios of multiple channel-pairs—one weak and one strong absorption channel—are used to retrieve from measurements of the shortwave infrared (SWIR) band. Based on sensitivity tests, a super channel-pair is carefully selected to reduce the effects of solar lines, water vapor, air temperature, pressure, instrument noise, and frequency shift on retrieval errors. The new algorithm reduces computational cost and the retrievals are less sensitive to temperature and H2O uncertainty than the spectral fitting method. Multi-day Total Carbon Column Observing Network (TCCON) measurements under clear-sky conditions at two sites (Tsukuba and Bremen) are used to derive xxxx for the algorithm evaluation and validation. The DOAS-like results agree very well with those of the TCCON algorithm after correction of an airmass-dependent bias.

  14. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  15. Modeling ultrasonic compression wave absorption during the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution.

    PubMed

    Marshall, Thomas; Challis, Richard E; Holmes, Andrew K; Tebbutt, John S

    2002-11-01

    Ultrasonic compression wave absorption is investigated as a means to monitor the seeded crystallization of copper (II) sulphate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution, and the changing nature of the continuous phase. The Allegra-Hawley scattering formulation is used to simulate ultrasonic absorption as crystallization proceeds. Experiments confirm that simulated attenuation is in agreement with measured results.

  16. Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy.

    PubMed

    Stiegler, Johannes M; Abate, Yohannes; Cvitkovic, Antonija; Romanyuk, Yaroslav E; Huber, Andreas J; Leone, Stephen R; Hillenbrand, Rainer

    2011-08-23

    Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption. © 2011 American Chemical Society

  17. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  18. Modern Progress and Modern Problems in High Resolution X-ray Absorption from the Cold Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Li, Haochuan; Heinz, Sebastian

    2018-01-01

    With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.

  19. NO plume mapping by laser-radar techniques.

    PubMed

    Edner, H; Sunesson, A; Svanberg, S

    1988-09-01

    Mapping of NO plumes by using laser-radar techniques has been demonstrated with a mobile differential absorption lidar system. The system was equipped with a narrow-linewidth Nd:YAG-pumped dye laser that, with doubling and mixing, generated pulse energies of 3-5 mJ at 226 nm, with a linewidth of 1pm. This permitted range-resolved measurements of NO, with a range of about 500 m. The detection limit was estimated to 3 microg/m(3), with an integration interval of 350 m. Spectroscopic studies on the gamma(0, 0) bandhead near 226.8 nm were performed with 1-pm resolution, and the differential absorption cross section was determined to be (6.6 +/- 0.6) x 10(-22) m(2), with a wavelength difference of 12 pm.

  20. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  1. Absorption effects in electron-sulfur-dioxide collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machado, L. E.; Sugohara, R. T.; Santos, A. S. dos

    2011-09-15

    A joint experimental-theoretical study on electron-SO{sub 2} collisions in the low and intermediate energy range is reported. More specifically, experimental elastic differential, integral, and momentum transfer cross sections in absolute scale are measured in the 100-1000 eV energy range using the relative-flow technique. Calculated elastic differential, integral, and momentum transfer cross sections as well as grand-total and total absorption cross sections are also presented in the 1-1000 eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics, whereas the Schwinger variational iterative method combined with the distorted-wave approximation is used to solve the scattering equations.more » Comparison of the present results is made with the theoretical and experimental results available in the literature.« less

  2. Opo lidar sounding of trace atmospheric gases in the 3 - 4 μm spectral range

    NASA Astrophysics Data System (ADS)

    Romanovskii, Oleg A.; Sadovnikov, Sergey A.; Kharchenko, Olga V.; Yakovlev, Semen V.

    2018-04-01

    The applicability of a KTA crystal-based laser system with optical parametric oscillators (OPO) generation to lidar sounding of the atmosphere in the spectral range 3-4 μm is studied in this work. A technique developed for lidar sounding of trace atmospheric gases (TAG) is based on differential absorption lidar (DIAL) method and differential optical absorption spectroscopy (DOAS). The DIAL-DOAS technique is tested to estimate its efficiency for lidar sounding of atmospheric trace gases. The numerical simulation performed shows that a KTA-based OPO laser is a promising source of radiation for remote DIAL-DOAS sounding of the TAGs under study along surface tropospheric paths. A possibility of using a PD38-03-PR photodiode for the DIAL gas analysis of the atmosphere is shown.

  3. Facile hydrothermal crystallization of NaLn(WO4)2 (Ln=La-Lu, and Y), phase/morphology evolution, and photoluminescence

    NASA Astrophysics Data System (ADS)

    Shi, Xiaofei; Li, Ji-Guang; Wang, Xuejiao; Zhu, Qi; Kim, Byung-Nam; Sun, Xudong

    2017-12-01

    Hydrothermal reaction of Ln nitrate and Na2WO4 at pH=8 and 200 °C for 24 hours, in the absence of any additive, has directly produced the scheelite-type sodium lanthanide tungstate of NaLn(WO4)2 for the larger Ln3+ of Ln=La-Dy (including Y, Group I) and an unknown compound that can be transformed into NaLn(WO4)2 by calcination at the low temperature of 600 °C for the smaller Ln3+ of Ln=Ho-Lu (Group II). With the successful synthesis of NaLn(WO4)2 for the full spectrum of Ln, the effects of lanthanide contraction on the structural features, crystal morphology, and IR responses of the compounds were clarified. The temperature- and time-course phase/morphology evolutions and the phase conversion upon calcination were thoroughly studied for the Group I and Group II compounds with Ln=La and Lu for example, respectively. Unknown intermediates were characterized by elemental analysis, IR absorption, thermogravimetry, and differential scanning calorimetry to better understand their chemical composition and coordination. The photoluminescence properties of NaEu(WO4)2 and NaTb(WO4)2, including excitation, emission, fluorescence decay, and quantum efficiency of luminescence, were also comparatively studied for the as-synthesized and calcination products.

  4. Elucidation of structure and nature of the PdO-Pd transformation using in situ PDF and XAS techniques.

    PubMed

    Keating, Jonathan; Sankar, Gopinathan; Hyde, Timothy I; Kohara, Shinji; Ohara, Koji

    2013-06-14

    The PdO-Pd phase transformation in a 4 wt% Pd/Al2O3 catalyst has been investigated using in situ X-ray absorption spectroscopy (XAS) and in situ X-ray total scattering (also known as high-energy X-ray diffraction) techniques. Both the partial and total pair distribution functions (PDF) from these respective techniques have been analysed in depth. New information from PDF analysis of total scattering data has been garnered using the differential PDF (d-PDF) approach where only correlations orginating from PdO and metallic Pd are extracted. This method circumvents problems encountered in characerising the catalytically active components due to the diffuse scattering from the disordered γ-Al2O3 support phase. Quantitative analysis of the palladium components within the catalyst allowed for the phase composition to be established at various temperatures. Above 850 °C it was found that PdO had converted to metallic Pd, however, the extent of reduction was of the order ca. 70% Pd metal and 30% PdO. Complementary in situ XANES and EXAFS were performed, with heating to high temperature and subsequent cooling in air, and the results of the analyses support the observations, that residual PdO is detected at elevated temperatures. Hysteresis in the transformation upon cooling is confirmed from XAS studies where reoxidation occurs below 680 °C.

  5. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density-functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption intomore » interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest-energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.« less

  6. Possible Detection of an Emission Cyclotron Resonance Scattering Feature from the Accretion-Powered Pulsar 4U 1626-67

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Terada, Y.; Tashiro, M. S.; Mihara, T.; Angelini, L.; Yamada, S.; Enoto, T.; Makishima, K.; Nakajima, M.; Yoshida, A.

    2012-01-01

    We present analysis of 4U 1626-67, a 7.7 s pulsar in a low-mass X-ray binary system, observed with the hard X-ray detector of the Japanese X-ray satellite Suzaku in 2006 March for a net exposure of 88 ks. The source was detected at an average 10-60 keY flux of approx 4 x 10-10 erg / sq cm/ s. The phase-averaged spectrum is reproduced well by combining a negative and positive power-law times exponential cutoff (NPEX) model modified at approx 37 keY by a cyclotron resonance scattering feature (CRSF). The phase-resolved analysis shows that the spectra at the bright phases are well fit by the NPEX with CRSF model. On the other hand. the spectrum in the dim phase lacks the NPEX high-energy cutoff component, and the CRSF can be reproduced by either an emission or an absorption profile. When fitting the dim phase spectrum with the NPEX plus Gaussian model. we find that the feature is better described in terms of an emission rather than an absorption profile. The statistical significance of this result, evaluated by means of an F test, is between 2.91 x 10(exp -3) and 1.53 x 10(exp -5), taking into account the systematic errors in the background evaluation of HXD-PIN. We find that the emission profile is more feasible than the absorption one for comparing the physical parameters in other phases. Therefore, we have possibly detected an emission line at the cyclotron resonance energy in the dim phase.

  7. Remote sensing of methane emissions by combining optical similitude absorption spectroscopy (OSAS) and lidar

    NASA Astrophysics Data System (ADS)

    Galtier, Sandrine; Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Sivignon, Jean-François; Miffre, Alain; Rairoux, Patrick

    2018-04-01

    Monitoring the emission of gases is difficult to achieve in industrial sites and in environments presenting poor infrastructures. Hence, robust methodologies should be developed and coupled to Lidar technology to allow remote sensing of gas emission. OSAS is a new methodology to evaluate gas concentration emission from spectrally integrated differential absorption measurements. Proof of concept of OSAS-Lidar for CH4 emission monitoring is here presented.

  8. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  9. Effect of phase and orbital wave parameter choices on CS and IOS degeneracy averaged differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khare, V.; Fitz, D.E.; Kouri, D.J.

    1980-09-15

    The effect of phase choice and partial wave parameter choice on CS and IOS inelastic degeneracy averaged differential cross sections is studied. An approximate simplified CS scattering amplitude for l-bar=1/2(l'+l) is derived and is shown to have a form which closely resembles the McGuire--Kouri scattering amplitude for odd ..delta..j transitions and reduces to it for even ..delta..j transitions. The choice of phase in the CS wave function is shown to result in different approximations which yield significantly different shapes for the degeneracy averaged differential cross section. Time reversal symmetry arguments are employed to select the proper phase choice. IOS calculationsmore » of the degeneracy averaged differential cross sections of He--CO, He--Cl and Ne--HD using l-bar=1/2(l+l') and the phase choice which ensures proper time reversal symmetry are found to correct the phase disagreement which was previously noted for odd ..delta..j transitions using l-bar=l or l' and either the time reversal phase or other phase choices.« less

  10. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin

    2018-03-01

    In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.

  11. Theoretical modeling on the laser-induced phase deformation of liquid crystal optical phased shifter

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuangqi; Wang, Xiangru; Zhuo, Rusheng; He, Xiaoxian; Wu, Liang; Wang, Xiaolin; Tan, Qinggui; Qiu, Qi

    2018-03-01

    To improve the working condition of liquid crystal phase shifter on incident laser power, a theoretical model on laser induced phase distortion is built on the physics of heat deposition and heat transfer. Four typical factors (absorption, heat sink structure, cooling fluid rate, and substrate) are analyzed to evaluate the influence of phase distortion when a relative high-power laser is pumped into the liquid crystal phase shifter. Flow rate of cooling fluid and heat sink structure are the most important two factors on improving the limit of incident laser power. Meanwhile, silicon wafer is suggested to replace the back glass contacting the heat sink, because of its higher heat transfer coefficient. If the device is fabricated on the conditions that: the total absorption is 5% and it has a strong heat sink structure with a flow rate of 0.01 m/s, when the incident laser power is 110W, the laser-induced phase deformation on the center is diminished to be less than 0.06, and the maximum temperature increase on the center is less than 1K degree.

  12. The pathogenesis of post-irradiation chronic diarrhoea: measurement of SeHCAT and B12 absorption for differential diagnosis determines treatment.

    PubMed

    Ludgate, S M; Merrick, M V

    1985-05-01

    The absorption of vitamin B12 and of a synthetic bile acid analogue 75SeHCAT was measured simultaneously in 26 patients presenting with persistent diarrhoea following pelvic irradiation for treatment of carcinoma of the cervix. Four groups were identified, namely patients with isolated bile acid malabsorption, patients with isolated B12 malabsorption, patients with malabsorption of both and those with malabsorption of neither compound. The therapeutic implications are different for each. Measurement of B12 and bile acid absorption comprises an important new test for the management of patients with this disabling and unpleasant complication of radiotherapy.

  13. Tunable infrared laser detection of pyrolysis products of explosives in soils

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Shorter, J. H.; McManus, J. B.; Kebabian, P. L.; Zahniser, M. S.; Kolb, Charles E.; Davis, W. M.; Cespedes, E. R.

    1996-07-01

    A research program involving two applications of tunable infrared laser differential absorption spectroscopy (TILDAS) with multipass, long-path absorption cells to the detection of explosives contamination in soils is reported. In the first application, sensitive, specific real-time species concentration measurements by TILDAS have led to new understanding of the processes involved in explosives detection by the heating of contaminated soils and the quantification of the resulting pyrolysis gases. In the second, we present results of our calculations of the properties of astigmatic off-axis resonator absorption cells, which show that useful TILDAS path lengths can be achieved inside a cone penetrometer probe.

  14. Role of the phase-matching condition in nondegenerate four-wave mixing in hot vapors for the generation of squeezed states of light

    NASA Astrophysics Data System (ADS)

    Turnbull, M. T.; Petrov, P. G.; Embrey, C. S.; Marino, A. M.; Boyer, V.

    2013-09-01

    Nondegenerate forward four-wave mixing in hot atomic vapors has been shown to produce strong quantum correlations between twin beams of light [McCormick , Opt. Lett.OPLEDP0146-959210.1364/OL.32.000178 32, 178 (2007)], in a configuration which minimizes losses by absorption. In this paper, we look at the role of the phase-matching condition in the trade-off that occurs between the efficiency of the nonlinear process and the absorption of the twin beams. To this effect, we develop a semiclassical model by deriving the atomic susceptibilities in the relevant double-Λ configuration and by solving the classical propagation of the twin-beam fields for parameters close to those found in typical experiments. These theoretical results are confirmed by a simple experimental study of the nonlinear gain experienced by the twin beams as a function of the phase mismatch. The model shows that the amount of phase mismatch is key to the realization of the physical conditions in which the absorption of the twin beams is minimized while the cross coupling between the twin beams is maintained at the level required for the generation of strong quantum correlations. The optimum is reached when the four-wave mixing process is not phase matched for fully resonant four-wave mixing.

  15. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO2 nanoparticle

    NASA Astrophysics Data System (ADS)

    Hatef, Ali; Zamani, Naser; Johnston, William

    2017-04-01

    We systematically investigate the optical response of a semiconductor quantum dot (QD) hybridized with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) region. The VO2NP features a semiconductor to metal phase change characteristic below and above a critical temperature that leads to an abrupt change in the particle’s optical properties. This feature means that the QD-VO2NP hybrid system can support the coherent coupling of exciton-polaritons and exciton-plasmon polaritons in the semiconductor and metal phases of the VO2NP, respectively. In our calculations, the VO2NP phase transition is modelled with a filling fraction (f), representing the fraction of the VO2NP in the metallic phase. The phase transition is driven by the hybrid system’s interaction with a continuous wave (CW) IR laser field. In this paper, we show how control over the filling fraction results in the enhancement or suppression of the QD’s linear absorption. These variations in the QD absorption is due to dramatic changes in the effective local field experienced by the QD and the non-radiative energy transfer from the QD to the VO2NP. The presented results have the potential to be applied to the design of thermal sensors at the nanoscale.

  16. Morphological and Electrochemical Characterization of Nanostructured Li 4Ti 5O 12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography

    DOE PAGES

    Kashkooli, Ali Ghorbani; Foreman, Evan; Farhad, Siamak; ...

    2017-09-21

    In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. Themore » tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.« less

  17. Jupiter's Polar Haze

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.

    1997-07-01

    The nature and distribution of stratospheric aerosols in the polar regions of Jupiter are investigated using a combination of ground-based, Hubble Space Telescope (HST), and Voyager IRIS measurements. Of particular interest are the connections between the enhanced UV absorption in the polar regions and the bright polar hoods evident in methane band images and the connections between the aerosol, the infrared "hot spot", and the auroras. Spatial maps of the hydrocarbon emissions constructed from the Voyager IRIS measurements reveal enhanced acetylene emission coincident with the region of enhanced methane emission but morphologically distinct from the region of enhanced ethane emission. This finding confirms the existence of altitude- dependent hydrocarbon chemistry. Ground-based and HST data reveal the presence of longitudinal structure in the latitudinal distribution of the aerosols (i.e., break-down in zonal symmetry) apparently associated with circulation anomalies induced by the polar hot spot. In addition, the HST data reveal a change in the aerosol properties (e.g., phase function) in the vicinity of the hot spot while ruling out changes in their height and/or optical depth distribution. The HST data also reveal differential UV absorption coincident with the aurora strengthening the connection between aerosol formation/hydrocarbon chemistry and the aurora. The spectral dependence of this absorption suggests enhancements of the higher order hydrocarbons (e.g., benzene). The mismatch in spatial resolution between infrared (Voyager IRIS/ground-based IRTF) and HST measurements coupled with the change in morphology of the hot spot as revealed by the structure of the methane/acetylene emission versus that of the ethane emission suggests the existence of more complex spatial structure and additional thermal emission anomalies associated with auroral processes unresolved by current infrared measurements

  18. Breath alcohol concentration determined with a new analyzer using free exhalation predicts almost precisely the arterial blood alcohol concentration.

    PubMed

    Lindberg, L; Brauer, S; Wollmer, P; Goldberg, L; Jones, A W; Olsson, S G

    2007-05-24

    A new breath alcohol (ethanol) analyzer has been developed, which allows free exhalation, standardizes measured exhaled alcohol concentration to fully saturated water vapor at a body temperature of 37 degrees C (43.95 mg/L) and includes a built-in self-calibration system. We evaluated the performance of this instrument by comparing standardized alcohol concentration in freely expired breath (BrAC) with arterial (ABAC) and venous (VBAC) blood alcohol concentrations in fifteen healthy volunteers who drank 0.6 g of alcohol per kg body weight. The precision (coefficient of variation, CV) of the analyzer based on in vivo duplicate measurements in all phases of the alcohol metabolism was 1.7%. The ABAC/BrAC ratio was 2251+/-46 (mean+/-S.D.) in the post-absorptive phase and the mean bias between ABAC and BrAC x 2251 was 0.0035 g/L with 95% limits of agreement of 0.033 and -0.026. The ABAC and BrAC x 2251 were highly correlated (r=0.998, p<0.001) and the regression relationship was ABAC = 0.00045 + 1.0069 x (BrAC x 2251) indicating excellent agreement and no fixed or proportional bias. In the absorption phase, ABAC exceeded BrAC x 2251 by at most 0.04+/-0.03 g/L when tests were made at 10 min post-dosing (p<0.05). The VBAC/BrAC ratio never stabilized and varied continuously between 1834 and 3259. There was a proportional bias between VBAC and BrAC x 2251 (ABAC) in the post-absorptive phase (p<0.001). The pharmacokinetic analysis of the elimination rates of alcohol and times to zero BAC confirmed that BrAC x 2251 and ABAC agreed very well with each other, but not with VBAC (p<0.001). We conclude that this new breath analyzer using free exhalation has a high precision for in vivo testing. The BrAC reflects very accurately ABAC in the post-absorption phase and substantially well in the absorption phase and thereby reflects the concentration of alcohol reaching the brain. Our findings highlight the magnitude of arterio-venous differences in alcohol concentration and support the use of breath alcohol analyzers as a stand-alone test for medical and legal purposes.

  19. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry.

    PubMed

    Yang, Yi; Tang, Xiangyang

    2012-12-01

    The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ(") (s)(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ = δ(s) + δ(f), where δ(f) corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ(s), which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the contrast generated by the second-order derivative is magnified substantially by the ratio of detector cell dimension over grating period, which plays a significant role in dark-field imaging implemented with the Talbot interferometry. The analytic formulae derived in this work to characterize the second-order differential phase contrast in the dark-field imaging implemented with the Talbot interferometry are of significance, which may initiate more activities in the research and development of x-ray differential phase contrast imaging for extensive preclinical and eventually clinical applications.

  20. X-Ray Absorption Measured in the Resonant Auger Scattering Mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hikosaka, Y.; Shigemasa, E.; Kaneyasu, T.

    2008-08-15

    We report both experimental and theoretical studies on x-ray absorption measured in the resonant Auger scattering mode of gas phase carbon monoxide near the O1s{yields}2{pi} region. Both experiment and theory display a crucial difference between the x-ray absorption profiles obtained in the conventional and resonant scattering modes. Lifetime vibrational interference is the main source of the difference. It is demonstrated that such interference, which arises from a coherent excitation to overlapping intermediate levels, ruins the idea for obtaining x-ray absorption spectra in a lifetime broadening free regime.

  1. Nonlinear absorption properties of silicene nanosheets.

    PubMed

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  2. Far-infrared response of spherical quantum dots: Dielectric effects and the generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Movilla, J. L.; Planelles, J.

    2007-05-01

    The influence of the dielectric environment on the far-infrared (FIR) absorption spectra of two-electron spherical quantum dots is theoretically studied. Effective mass and envelope function approaches with realistic steplike confining potentials are used. Special attention is paid to absorptions that are induced by the electron-electron interaction. High confining barriers make the FIR absorption coefficients almost independent of the quantum dot dielectric environment. Low barrier heights and strong dielectric mismatches preserve the strong fundamental (Kohn) mode but yield the cancellation of excited absorptions, thus monitoring dielectrically induced phase transitions from volume to surface states.

  3. Nonlinear absorption properties of silicene nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  4. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  5. Investigation of Celestial Solid Analogs

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.

    2003-01-01

    Our far infrared studies of both hydrophobic and hydrophilic aerogel grains have demonstrated that the mm and sub-mm wave absorption produced by the fundamental two level systems (TLS) mechanism represents a more significant contribution for these open grain structures than for bulk amorphous silicate grains. We found that the region with the anomalous temperature dependence of the spectral index due to the TLS excitations can extend in a fluffy material up to 80 per cm, which is well beyond its typical upper limit for bulk glasses. Currently there is no theoretical explanation for this surprising result. The effects of reduced dimensionality on the optical properties of carbonaceous grains have been studied with a systematic investigation of carbon aerogels. This spectroscopic approach has permitted a more reliable determination of the single grain mass normalized absorption coefficient based on the experimentally determined characteristics of the fluffy material rather than on first principles calculations involving the bulk properties of the substance. Our finding is that the electrical connectivity of the material is the main factor affecting its far infrared absorption coefficient. Another one of the main constituents of the interstellar dust, amorphous ice, has been investigated in the mm-wave region both in the high (HDA) and low (LDA) density amorphous phases and as a function of impurities. We found that doping either phase with ionic (LiCl) or molecular (methanol) impurities decreases the difference in the mm-wave absorption coefficient between the HDA and LDA ice phases so that the HDA spectrum can be used as an analog for impure ice absorption in the far infrared spectral region.

  6. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds.

    PubMed

    Domínguez-Avila, J Abraham; Wall-Medrano, Abraham; Velderrain-Rodríguez, Gustavo R; Chen, C-Y Oliver; Salazar-López, Norma Julieta; Robles-Sánchez, Maribel; González-Aguilar, Gustavo A

    2017-01-25

    The positive health effects of phenolic compounds (PCs) have been extensively reported in the literature. An understanding of their bioaccessibility and bioavailability is essential for the elucidation of their health benefits. Before reaching circulation and exerting bioactions in target tissues, numerous interactions take place before and during digestion with either the plant or host's macromolecules that directly impact the organism and modulate their own bioaccessibility and bioavailability. The present work is focused on the gastrointestinal (GI) interactions that are relevant to the absorption and metabolism of PCs and how these interactions impact their pharmacokinetic profiles. Non-digestible cell wall components (fiber) interact intimately with PCs and delay their absorption in the small intestine, instead carrying them to the large intestine. PCs not bound to fiber interact with digestible nutrients in the bolus where they interfere with the digestion and absorption of proteins, carbohydrates, lipids, cholesterol, bile salts and micronutrients through the inhibition of digestive enzymes and enterocyte transporters and the disruption of micelle formation. PCs internalized by enterocytes may reach circulation (through transcellular or paracellular transport), be effluxed back into the lumen (P-glycoprotein, P-gp) or be metabolized by phase I and phase II enzymes. Some PCs can inhibit P-gp or phase I/II enzymes, which can potentially lead to drug-nutrient interactions. The absorption and pharmacokinetic parameters are modified by all of the interactions within the digestive tract and by the presence of other PCs. Undesirable interactions have promoted the development of nanotechnological approaches to promote the bioaccessibility, bioavailability, and bioefficacy of PCs.

  7. Investigational study of tamoxifen phase I metabolites using chromatographic and spectroscopic analytical techniques.

    PubMed

    Teunissen, S F; Rosing, H; Seoane, M Dominguez; Brunsveld, L; Schellens, J H M; Schinkel, A H; Beijnen, J H

    2011-06-01

    A comprehensive overview is presented of currently known phase I metabolites of tamoxifen consisting of their systematic name and molecular structure. Reference standards are utilized to elucidate the MS(n) fragmentation patterns of these metabolites using a linear ion trap mass spectrometer. UV-absorption spectra are recorded and absorption maxima are defined. Serum extracts from ten breast cancer patients receiving 40mg tamoxifen once daily were qualitatively analyzed for tamoxifen phase I metabolites using a liquid chromatography-tandem mass spectrometry set-up. In total, 19 metabolites have been identified in these serum samples. Additionally a synthetic method for the preparation of the putative metabolite 3',4'-dihydroxytamoxifen is described. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Ground-based DIAL and IPDA Systems for Remote Sensing of CO2, CH4, and H2O near 1.6 µm

    NASA Astrophysics Data System (ADS)

    Wagner, G. A.; Plusquellic, D. F.

    2017-12-01

    Integrated path differential absorption (IPDA) and differential absorption LIDAR (DIAL) are well established methods to monitor atmospheric constituents. At NIST, IPDA and DIAL systems have been developed as standoff systems and their overall performance has been evaluated through intercomparisons including the traceability to point sensor measurements. The all-fiber IPDA system is based on a low-power (< 13 mW, eye-safe) electro-optic modulated continuous-wave laser to produce 123 frequencies at a scan repetition frequency of 10 kHz.1 The transmitter-receiver system measures backscatter from natural targets and is rastered during the measurements to reduce speckle effects. The receiver consists of a 28 cm telescope, photomultiplier tube, and a streaming data acquisition system for direct photon discrimination and counting. The eye-safe DIAL system is based on an optical parametric oscillator2,3 that operates at a pulse repetition frequency of 100 Hz and alternates between on-line and off-line frequencies with pulse energies of < 10 mJ/pulse. The receivers consist of two telescopes (near field: 28 cm; far field: 40 cm), photomultiplier tubes, and a 2 GS/s hybrid data acquisition system for photon counting and current detection. We demonstrate the performance of the DIAL and IPDA systems and present results of a CO2 IPDA/DIAL/point sensor traceability study performed in Boulder (CO, USA) in summer 2017. 1. G. A. Wagner and D. F. Plusquellic, "Ground-Based, Integrated Path Differential Absorption LIDAR Measurement of CO2, CH4 and H2O near 1.6 µm," Applied Optics, 55(23), 6292-6310 (2016). 2. D. J. Armstrong, and A. V. Smith, "150-mJ 1550-nm KTA OPO with Good Beam Quality and High Efficiency," SPIE, 5337, 71-80 (2004). 3. K. O. Douglass, S. E. Maxwell, D. F. Plusquellic, J. T. Hodges, R. D. van Zee, D. V. Samarov, J. R. Whetstone, "Construction of a High Power OPO Laser System for Differential Absorption LIDAR," SPIE, 8159, 81590D (2011).

  9. Mass Spectrometry Imaging proves differential absorption profiles of well-characterised permeability markers along the crypt-villus axis.

    PubMed

    Nilsson, Anna; Peric, Alexandra; Strimfors, Marie; Goodwin, Richard J A; Hayes, Martin A; Andrén, Per E; Hilgendorf, Constanze

    2017-07-25

    Knowledge about the region-specific absorption profiles from the gastrointestinal tract of orally administered drugs is a critical factor guiding dosage form selection in drug development. We have used a novel approach to study three well-characterized permeability and absorption marker drugs in the intestine. Propranolol and metoprolol (highly permeable compounds) and atenolol (low-moderate permeability compound) were orally co-administered to rats. The site of drug absorption was revealed by high spatial resolution matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and complemented by quantitative measurement of drug concentration in tissue homogenates. MALDI-MSI identified endogenous molecular markers that illustrated the villi structures and confirmed the different absorption sites assigned to histological landmarks for the three drugs. Propranolol and metoprolol showed a rapid absorption and shorter transit distance in contrast to atenolol, which was absorbed more slowly from more distal sites. This study provides novel insights into site specific absorption for each of the compounds along the crypt-villus axis, as well as confirming a proximal-distal absorption gradient along the intestine. The combined analytical approach allowed the quantification and spatial resolution of drug distribution in the intestine and provided experimental evidence for the suggested absorption behaviour of low and highly permeable compounds.

  10. Broadband absorption with gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hoyeong; Chalabi, Hamidreza; Alù, Andrea

    2018-03-01

    A metasurface with appropriately designed transverse spatial inhomogeneities can provide the desired phase redistribution in response to an incident wave with arbitrary incident angle. This property of gradient metasurfaces has been used to modify light propagation in unusual manners, to transform the impinging optical wavefront with large flexibility. In this work, we show how gradient metasurfaces can be tailored to offer high absorption in thin absorptive layers, and how to design realistic metasurfaces for this purpose using dielectric materials.

  11. Absorption of polycyclic aromatic hydrocarbons by a highly absorptive polymeric medium.

    PubMed

    Francisco, Olga; Idowu, Ifeoluwa; Friesen, Kelsey L; McDougall, Matthew; Choi, Sara Seoin; Bolluch, Patrique; Daramola, Oluwadamilola; Johnson, Wesley; Palace, Vince; Stetefeld, Jörg; Tomy, Gregg T

    2018-06-01

    The efficacy of a lightly cross-linked polymeric bead to absorb polycyclic aromatic hydrocarbons (PAHs) from the surface of fresh- and salt-water in a simulated oil-spill scenario was assessed in this study. A layer of PAHs at the water surface was created by first preparing the PAHs in hexane and then carefully spiking this mixture onto the surface of water. Beads were then applied to the surface of the organic phase and the amount of hydrocarbons absorbed by the beads was examined at prescribed time intervals and at different temperatures. Absorption of PAHs into the beads was exhaustive with ∼86 ± 4% being selectively removed from the organic phase by 120 s. First order reaction rates best described the uptake kinetics and absorption rates ranged from 0.0085 (naphthalene) to 0.0325 s- 1 (dibenzo[a,h]anthracene). Absorption of PAHs into the beads was driven by molecular volume (A 3 ). Uptake rates increased markedly for PAHs with molecular volumes between 130 A 3 and 190 A 3 . Beyond this molecular volume there was no apparent change in the rate of uptake. This study shows that these polymeric beads have a high affinity for PAHs and can be used under various environmental conditions with negligible difference in absorptive efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  13. The Recipe for the Extragalactic Soup

    NASA Astrophysics Data System (ADS)

    Masiero, J. R.; Charlton, J. C.; Churchill, C. W.

    2002-12-01

    The spectrum of the quasar PG 0117+212 is a prime example of the richness of information about intervening galaxies and matter that quasar spectra can possess. Along this line of sight there are 10 metal-line systems, as well as a number of HI-only systems and galactic absorption. We have analyzed the five MgII systems at redshifts 0.5 to 1.4, using data from Keck and other ground-based telescopes, and from the HST/STIS and FOS archives. By applying photoionization and collisional ionization models, we have constrained the phase structure of these systems, and derived the physical parameters for each phase. We will consider the relationships between the absorption and the known galaxies along the line of sight. Comparing to other quasar absorption line systems at intermediate redshifts, we will draw conclusions about the nature of the absorbing structures.

  14. Dissociation, absorption and ionization of some important sulfur oxoanions (S2On2- n = 2, 3, 4, 6, 7 and 8)

    NASA Astrophysics Data System (ADS)

    Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi

    2015-08-01

    In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.

  15. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform

    PubMed Central

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-01-01

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions. PMID:27188594

  16. Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope

    PubMed Central

    Wilson, Jesse W.; Samineni, Prathyush; Warren, Warren S.; Fischer, Martin C.

    2012-01-01

    Microscopy with nonlinear phase contrast is achieved by a simple modification to a nonlinear pump-probe microscope. The technique measures cross-phase modulation by detecting a pump-induced spectral shift in the probe pulse. Images with nonlinear phase contrast are acquired both in transparent and absorptive media. In paraffin-embedded biopsy sections, cross-phase modulation complements the chemically-specific pump-probe images with structural context. PMID:22567580

  17. A note on the generation of phase plane plots on a digital computer. [for solution of nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1980-01-01

    A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.

  18. 46 CFR 252.34 - Protection and indemnity insurance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... The adjustment of the wage percentage differential shall not be used for Japan, where operators incur minimal costs for deductible absorptions, rather than no costs. For Japan, the insurance related costs...

  19. Facile synthesis of ferromagnetic Ni doped CeO2 nanoparticles with enhanced anticancer activity

    NASA Astrophysics Data System (ADS)

    Abbas, Fazal; Jan, Tariq; Iqbal, Javed; Ahmad, Ishaq; Naqvi, M. Sajjad H.; Malik, Maaza

    2015-12-01

    NixCe1-xO2 (where x = 0, 0.01, 0.03, 0.05 and 0.07) nanoparticles were synthesized by soft chemical method and were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman, UV-vis absorption spectroscopy and vibrating sample magnetometer (VSM). XRD and Raman results indicated the formation of single phase cubic fluorite structure for the synthesized nanoparticles. Ni dopant induced excessive structural changes such as decrease in crystallite size as well as lattice constants and enhancement in oxygen vacancies in CeO2 crystal structure. These structural variations significantly influenced the optical and magnetic properties of CeO2 nanoparticles. The synthesized NixCe1-xO2 nanoparticles exhibited room temperature ferromagnetic behavior. Ni doping induced effects on the cytotoxicity of CeO2 nanoparticles were examined against HEK-293 healthy cell line and SH-SY5Y neuroblastoma cancer cell line. The prepared NixCe1-xO2 nanoparticles demonstrated differential cytotoxicity. Furthermore, anticancer activity of CeO2 nanoparticles observed to be significantly enhanced with Ni doping which was found to be strongly correlated with the level of reactive oxygen species (ROS) production. The prepared ferromagnetic NixCe1-xO2 nanoparticles with differential cytotoxic nature may be potential for future targeted cancer therapy.

  20. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  1. Photo-oxidation of Nitrophenols in the Aqueous Phase: Reaction Kinetics, Mechanistic Insights, and Evolution of Light Absorption

    NASA Astrophysics Data System (ADS)

    Hems, R.; Abbatt, J.

    2017-12-01

    Nitrophenols are a class of water soluble, light absorbing compounds which can make up a significant fraction of biomass burning brown carbon. The atmospheric lifetime and aging of these compounds can have important implications for their impact on climate through the aerosol direct effect. Recent studies have shown that brown carbon aerosols can be bleached of their colour by direct photolysis and photo-oxidation reactions on the timescale of hours to days. However, during aqueous phase photo-oxidation of nitrophenol compounds light absorption is sustained or enhanced, even after the parent nitrophenol molecule has been depleted. In this work, we use online aerosol chemical ionization mass spectrometry (aerosol-CIMS) to investigate the aqueous phase photo-oxidation mechanism and determine the second order rate constants for the reaction of OH radicals with three commonly detected nitrophenol compounds: nitrocatechol, nitroguaiacol, and dinitrophenol. These nitrophenol compounds are found to have aqueous phase lifetimes with respect to oxidation by the OH radical ranging between 5 - 11 hours. Our results indicate that functionalization of the parent nitrophenol molecule by addition of hydroxyl groups leads to the observed absorption enhancement. Further photo-oxidation forms breakdown products that no longer absorb significantly in the visible light range.

  2. High-Resolution Phase-Contrast Imaging of Submicron Particles in Unstained Lung Tissue

    NASA Astrophysics Data System (ADS)

    Schittny, J. C.; Barré, S. F.; Mokso, R.; Haberthür, D.; Semmler-Behnke, M.; Kreyling, W. G.; Tsuda, A.; Stampanoni, M.

    2011-09-01

    To access the risks and chances of deposition of submicron particles in the gas-exchange area of the lung, a precise three-dimensional (3D)-localization of the sites of deposition is essential—especially because local peaks of deposition are expected in the acinar tree and in individual alveoli. In this study we developed the workflow for such an investigation. We administered 200-nm gold particles to young adult rats by intratracheal instillation. After fixation and paraffin embedding, their lungs were imaged unstained using synchrotron radiation x-ray tomographic microscopy (SRXTM) at the beamline TOMCAT (Swiss Light Source, Villigen, Switzerland) at sample detector distances of 2.5 mm (absorption contrast) and of 52.5 mm (phase contrast). A segmentation based on a global threshold of grey levels was successfully done on absorption-contrast images for the gold and on the phase-contrast images for the tissue. The smallest spots containing gold possessed a size of 1-2 voxels of 370-nm side length. We conclude that a combination of phase and absorption contrast SRXTM imaging is necessary to obtain the correct segmentation of both tissue and gold particles. This method will be used for the 3D localization of deposited particles in the gas-exchange area of the lung.

  3. The Reverse Thermal Effect in Epoxy Resins and Moisture Absorption in Semi-Interpenetrating Polymer Networks.

    NASA Astrophysics Data System (ADS)

    El-Sa'Ad, Leila

    1989-12-01

    Available from UMI in association with The British Library. Requires signed TDF. Epoxy resins exhibit many desirable properties which make them ideal subjects for use as matrices of composite materials in many commercial, military and space applications. However, due to their high cross-link density they are often brittle. Epoxy resin networks have been modified by incorporating tough, ductile thermoplastics. Such systems are referred to as Semi-Interpenetrating Polymer Networks (Semi-IPN). Systematic modification to the thermoplastics backbone allowed the morphology of the blend to be controlled from a homogeneous one-phase structure to fully separated structures. The moisture absorption by composites in humid environments has been found to lead to a deterioration in the physical and mechanical properties of the matrix. Therefore, in order to utilize composites to their full potential, their response to hot/wet environments must be known. The aims of this investigation were two-fold. Firstly, to study the effect of varying the temperature of exposure at different stages in the absorption process on the water absorption behaviour of a TGDDM/DDS epoxy resin system. Secondly, to study water absorption characteristics, under isothermal conditions, of Semi-Interpenetrating Polymer Networks possessing different morphologies, and develop a theoretical model to evaluate the diffusion coefficients of the two-phase structures. The mathematical treatment used in this analysis was based on Fick's second law of diffusion. Tests were performed on specimens immersed in water at 10 ^circ, 40^circ and 70^circC, their absorption behaviour and swelling behaviour, as a consequence of water absorption, were investigated. The absorption results of the variable temperature absorption tests indicated a saturation dependence on the absorption behaviour. Specimens saturated at a high temperature will undergo further absorption when transferred to a lower temperature. This behaviour was termed the "reverse thermal effect". The swelling results suggested that it is more tightly bound water in the polymer which takes part in the reverse thermal effect. The absorption results for the Semi-Interpenetrating Polymer Networks suggested that the two key parameters which affected the moisture uptake were the morphology of the network and the percentage of epoxy resin in the system.

  4. Performance analysis of microcomputer based differential protection of UHV lines under selective phase switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatti, A.A.

    1990-04-01

    This paper examines the effects of primary and secondary fault quantities as well s of mutual couplings of neighboring circuits on the sensitivity of operation and threshold settings of a microcomputer based differential protection of UHV lines under selective phase switching. Microcomputer based selective phase switching allows the disconnection of minimum number of phases involved in a fault and requires the autoreclosing of these phases immediately after the extinction of secondary arc. During a primary fault a heavy current contribution to the healthy phases tends to cause an unwanted tripping. Faulty phases physically disconnected constitute an isolated fault which beingmore » coupled to the system affects the current and voltage levels of the healthy phases still retained in the system and may cause an unwanted tripping. The microcomputer based differential protection, appears to have poor performance when applied to uncompensated lines employing selective pole switching.« less

  5. Investigation of phase-change coatings for variable thermal control of spacecraft

    NASA Technical Reports Server (NTRS)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  6. X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  7. Effects of cerium on the hydrogen absorption-desorption properties of rare earth-Mg-Ni hydrogen-absorbing alloys

    NASA Astrophysics Data System (ADS)

    Yasuoka, Shigekazu; Ishida, Jun; Kishida, Kyosuke; Inui, Haruyuki

    2017-04-01

    The influence of Ce addition on the phase constitution, microstructure, hydrogen absorption/desorption properties and battery performances of newly developed rare earth (RE)-Mg-Ni hydrogen-absorbing superlattice alloys for negative electrode materials in Ni-metal hydride (MH) batteries were investigated. The partial substitution of RE (La and Nd) with Ce results in a higher discharge performance and a lower cycle life in the battery. The Ce addition greatly affects the phase constitution, which is mainly characterized by increased formation of the AB2 phase (A = RE or Mg and B = Ni or Al). The existence of the AB2 phase is found to accelerate alloy pulverization and oxidation when the alloys are used as negative electrode materials in Ni-MH model cells. The accelerated pulverization and oxidation are considered to be responsible for the observed higher discharge performance and lower cycle life in the batteries, respectively.

  8. Transmission Magnitude and Phase Control for Polarization-Preserving Reflectionless Metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Hoon; Ptitcyn, Grigorii; Díaz-Rubio, Ana; Tretyakov, Sergei A.

    2018-03-01

    For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens' meta-atoms are typically used to eliminate reflection and achieve a high-transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and antisymmetric scattering components, with Huygens' meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, full-power transmission and a 2 π transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.

  9. Choice of phase in the CS and IOS approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snider, R.F.

    1982-04-01

    With the recognition that the angular momentum representations of unit position and momentum directional states must have different but uniquely related phases, the previously presented expression of scattering amplitude in terms of IOS angle dependent phase shifts must be modified. This resolves a major disagreement between IOS and close coupled degeneracy averaged differential cross sections. It is found that the phase factors appearing in the differential cross section have nothing to do with any particular choice of decoupling parameter. As a consequence, the differential cross section is relatively insensitive to the choice of CS decoupling parameter. The phase relations obtainedmore » are also in agreement with those deduced from the Born approximation.« less

  10. Probabilistic modeling of percutaneous absorption for risk-based exposure assessments and transdermal drug delivery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford Kuofei

    Chemical transport through human skin can play a significant role in human exposure to toxic chemicals in the workplace, as well as to chemical/biological warfare agents in the battlefield. The viability of transdermal drug delivery also relies on chemical transport processes through the skin. Models of percutaneous absorption are needed for risk-based exposure assessments and drug-delivery analyses, but previous mechanistic models have been largely deterministic. A probabilistic, transient, three-phase model of percutaneous absorption of chemicals has been developed to assess the relative importance of uncertain parameters and processes that may be important to risk-based assessments. Penetration routes through the skinmore » that were modeled include the following: (1) intercellular diffusion through the multiphase stratum corneum; (2) aqueous-phase diffusion through sweat ducts; and (3) oil-phase diffusion through hair follicles. Uncertainty distributions were developed for the model parameters, and a Monte Carlo analysis was performed to simulate probability distributions of mass fluxes through each of the routes. Sensitivity analyses using stepwise linear regression were also performed to identify model parameters that were most important to the simulated mass fluxes at different times. This probabilistic analysis of percutaneous absorption (PAPA) method has been developed to improve risk-based exposure assessments and transdermal drug-delivery analyses, where parameters and processes can be highly uncertain.« less

  11. Gas phase absorption studies of photoactive yellow protein chromophore derivatives.

    PubMed

    Rocha-Rinza, Toms; Christiansen, Ove; Rajput, Jyoti; Gopalan, Aravind; Rahbek, Dennis B; Andersen, Lars H; Bochenkova, Anastasia V; Granovsky, Alexander A; Bravaya, Ksenia B; Nemukhin, Alexander V; Christiansen, Kasper Lincke; Nielsen, Mogens Brøndsted

    2009-08-27

    Photoabsorption spectra of deprotonated trans p-coumaric acid and two of its methyl substituted derivatives have been studied in gas phase both experimentally and theoretically. We have focused on the spectroscopic effect of the location of the two possible deprotonation sites on the trans p-coumaric acid which originate to either a phenoxide or a carboxylate. Surprisingly, the three chromophores were found to have the same absorption maximum at 430 nm, in spite of having different deprotonation positions. However, the absorption of the chromophore in polar solution is substantially different for the distinct deprotonation locations. We also report on the time scales and pathways of relaxation after photoexcitation for the three photoactive yellow protein chromophore derivatives. As a result of these experiments, we could detect the phenoxide isomer within the deprotonated trans p-coumaric acid in gas phase; however, the occurrence of the carboxylate is uncertain. Several computational methods were used simultaneously to provide insights and assistance in the interpretation of our experimental results. The calculated excitation energies S(0)-S(1) are in good agreement with experiment for those systems having a negative charge on a phenoxide moiety. Although our augmented multiconfigurational quasidegenerate perturbation theory calculations agree with experiment in the description of the absorption spectrum of anions with a carboxylate functional group, there are some puzzling disagreements between experiment and some calculational methods in the description of these systems.

  12. Nash equilibrium in differential games and the construction of the programmed iteration method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Averboukh, Yurii V

    This work is devoted to the study of nonzero-sum differential games. The set of payoffs in a situation of Nash equilibrium is examined. It is shown that the set of payoffs in a situation of Nash equilibrium coincides with the set of values of consistent functions which are fixed points of the program absorption operator. A condition for functions to be consistent is given in terms of the weak invariance of the graph of the functions under a certain differential inclusion. Bibliography: 18 titles.

  13. Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

    PubMed Central

    Lu, Hangwen; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei

    2016-01-01

    Differential phase contrast (DPC) is a non-interferometric quantitative phase imaging method achieved by using an asymmetric imaging procedure. We report a pupil modulation differential phase contrast (PMDPC) imaging method by filtering a sample’s Fourier domain with half-circle pupils. A phase gradient image is captured with each half-circle pupil, and a quantitative high resolution phase image is obtained after a deconvolution process with a minimum of two phase gradient images. Here, we introduce PMDPC quantitative phase image reconstruction algorithm and realize it experimentally in a 4f system with an SLM placed at the pupil plane. In our current experimental setup with the numerical aperture of 0.36, we obtain a quantitative phase image with a resolution of 1.73μm after computationally removing system aberrations and refocusing. We also extend the depth of field digitally by 20 times to ±50μm with a resolution of 1.76μm. PMID:27828473

  14. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  15. A Direct Detection 1.6μm DIAL with Three Wavelengths for Measurements of Vertical CO2 Concentration and Temperature Profiles in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Abo, M.; Shibata, Y.; Nagai, T.; Tsukamoto, M.

    2012-12-01

    We report the new 1.6 μm DIAL system that can measure the temperature profiles with the CO2 concentration profiles in the atmosphere because of improvement of measurement accuracy of the CO2 density and mixing ratio (ppm). We have developed a direct detection 1.6 μm differential absorption lidar (DIAL) technique to perform range-resolved measurements of vertical CO2 concentration profiles in the atmosphere [Sakaizawa et al. 2009]. Our 1.6 μm DIAL system consists of the Optical Parametric Generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate (500 Hz) and the receiving optics that included the near-infrared photomultiplier tube with high quantum efficiency operating at the photon counting mode and the telescope with larger aperture than that of the coherent detection method. Laser beams of three wavelengths around a CO2 absorption line is transmitted alternately to the atmosphere for measurements of CO2 concentration and temperature profiles. Moreover, a few retrieval algorithms of CO2-DIAL are also performed for improvement of measurement accuracy. The accurate vertical CO2 profiles in the troposphere are highly desirable in the inverse techniques to improve quantification and understanding of the global budget of CO2 and also global climate changes [Stephens et al. 2007]. In comparison with the ground-based monitoring network, CO2 measurements for vertical profiles in the troposphere have been limited to campaign-style aircraft and commercial airline observations with the limited spatial and temporal coverage. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency. References Sakaizawa, D., C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile, Applied Optics, Vol.48, No.4, pp.748-757, 2009. Stephens, B. B. et al., Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2, Science 316, pp.1732-1735, 2007.

  16. Quantum-enhanced spectroscopy with entangled multiphoton states

    NASA Astrophysics Data System (ADS)

    Dinani, Hossein T.; Gupta, Manish K.; Dowling, Jonathan P.; Berry, Dominic W.

    2016-06-01

    Traditionally, spectroscopy is performed by examining the position of absorption lines. However, at frequencies near the transition frequency, additional information can be obtained from the phase shift. In this work we consider the information about the transition frequency obtained from both the absorption and the phase shift, as quantified by the Fisher information in an interferometric measurement. We examine the use of multiple single-photon states, NOON states, and numerically optimized states that are entangled and have multiple photons. We find the optimized states that improve over the standard quantum limit set by independent single photons for some atom number densities.

  17. Microstructure and Thermal Reliability of Microcapsules Containing Phase Change Material with Self-Assembled Graphene/Organic Nano-Hybrid Shells.

    PubMed

    Wang, Xianfeng; Guo, Yandong; Su, Junfeng; Zhang, Xiaolong; Han, Ningxu; Wang, Xinyu

    2018-05-24

    In recent decades, microcapsules containing phase change materials (microPCMs) have been the center of much attention in the field of latent thermal energy storage. The aim of this work was to prepare and investigate the microstructure and thermal conductivity of microPCMs containing self-assembled graphene/organic hybrid shells. Paraffin was used as a phase change material, which was successfully microencapsulated by graphene and polymer forming hybrid composite shells. The physicochemical characters of microPCM samples were investigated including mean size, shell thickness, and chemical structure. Scanning electron microscope (SEM) results showed that the microPCMs were spherical particles and graphene enhanced the degree of smoothness of the shell surface. The existence of graphene in the shells was proved by using the methods of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). It was found that graphene hybrid shells were constructed by forces of electric charge absorption and long-molecular entanglement. MicroPCMs with graphene had a higher degradation temperature of 300 °C. Graphene greatly enhanced the thermal stability of microPCMs. The thermal conductivity tests indicated that the phase change temperature of microPCMs was regulated by the graphene additive because of enhancement of the thermal barrier of the hybrid shells. Differential scanning calorimetry (DSC) tests proved that the latent thermal energy capability of microPCMs had been improved with a higher heat conduction rate. In addition, infrared thermograph observations implied that the microPCMs had a sensitivity response to heat during the phase change cycling process because of the excellent thermal conductivity of graphene.

  18. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)

    1991-01-01

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.

  19. The application of UV LEDs for differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Geiko, Pavel P.; Smirnov, Sergey S.; Samokhvalov, Ignatii V.

    2018-04-01

    Modern UV LEDs represent a potentially very advantageous alternative to thermal light sources, in particular xenon arc lamps, which are the most common light sources in trace gas-analyzers. So, the light-emitting diodes are very attractive for use of as light sources for Long Path Differential Optical Absorption Spectroscopy (DOAS) measurements of trace gases in the open atmosphere. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes have now allowed us to construct a portable, long path DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. First of all, we are talking about the measurement of sulphur dioxide, carbon disulphide and, oxides of chlorine and bromine. The parallel measurements of sulfur dioxide using a certified gas analyzer, were conducted and showed good correlation.

  20. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

Top