Science.gov

Sample records for absorption differential phase

  1. Differential optoacoustic absorption detector

    NASA Technical Reports Server (NTRS)

    Shumate, M. S. (Inventor)

    1978-01-01

    A differential optoacoustic absorption detector employed two tapered cells in tandem or in parallel. When operated in tandem, two mirrors were used at one end remote from the source of the beam of light directed into one cell back through the other, and a lens to focus the light beam into the one cell at a principal focus half way between the reflecting mirror. Each cell was tapered to conform to the shape of the beam so that the volume of one was the same as for the other, and the volume of each received maximum illumination. The axes of the cells were placed as close to each other as possible in order to connect a differential pressure detector to the cells with connecting passages of minimum length. An alternative arrangement employed a beam splitter and two lenses to operate the cells in parallel.

  2. D-region electron densities obtained by differential absorption and phase measurements with a 3-MHz-Doppler radar

    NASA Astrophysics Data System (ADS)

    Singer, W.; Latteck, R.; Friedrich, M.; Dalin, P.; Kirkwood, S.; Engler, N.; Holdsworth, D.

    2005-08-01

    A Doppler radar at 3.17 MHz has been installed close to the Andøya Rocket Range as part of the ALOMAR observatory at Andenes, Norway (69.3°N, 16.0°E) in summer 2002 to improve the ground based capabilities for measurements of small scale features and electron number densities in the mesosphere. The main feature of the new radar is the transmitting/receiving antenna which is arranged as a Mills Cross of 29 crossed half-wave dipoles with a minimum beam width of about 7°. The modular transceiver system provides high flexibility in beam forming and pointing as well as in switching of the polarisation between ordinary and extraordinary mode on transmission and reception. Doppler winds and electron number densities can be measured between about 55 km and 90 km with a time resolution of 9 minutes. The electron number density profiles derived with differential absorption (DAE) and differential phase (DPE) measurements are in remarkable good agreement. We discuss the diurnal and seasonal variability of electron densities obtained at Andenes in 2004/2005, the response of D-region electron densities to geomagnetic disturbances and solar proton events. The results are compared with rocket measurements from Andenes and with observations from EISCAT VHF radar at Tromsø.

  3. Infrared differential absorption for atmospheric pollutant detection

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1974-01-01

    Progress made in the generation of tunable infrared radiation and its application to remote pollutant detection by the differential absorption method are summarized. It is recognized that future remote pollutant measurements depended critically on the availability of high energy tunable transmitters. Futhermore, due to eye safety requirements, the transmitted frequency must lie in the 1.4 micron to 13 micron infrared spectral range.

  4. Differential phase shift of partially reflected radio waves.

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.

    1971-01-01

    The addition of phase difference measurements to differential absorption experiments is shown to be both feasible and desirable. The phase information can provide a more sensitive measurement of electron density above about 75 km. The differential phase shift is only weakly dependent on collision frequency in this range, and so an accurate collision frequency profile is not a prerequisite. The differential phase shift and differential absorption measurements taken together can provide both electron density and collision frequency data from about 70 to 90 km.

  5. PHASE DIFFERENTIAL INDICATING CIRCUIT

    DOEpatents

    Kirsten, F.A.

    1962-01-01

    An electronic circuit for totalizing the net phase difference between two alternating current signals is designed which responds to both increasing and decreasing phase changes. A phase comparator provldes an output pulse for each 360 deg of phase difference occurring, there being a negative pulse for phase shtft in one direction and a positive pulse for a phase shift in the opposite direction. A counting circuit utilizing glow discharge tubes receives the negative and positive pulses at a single input terminal and provides a running net total, pulses of one polarity dded and pulses of the opposite polarity being subtracted. The glow discharge tubes may be decaded to increase the total count capacity. (AEC)

  6. First attempt to monitor atmospheric glyoxal using differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Lundin, Patrik; Somesfalean, Gabriel; Hu, Jiandong; Zhao, Guangyu; Svanberg, Sune; Bood, Joakim; Vrekoussis, Mihalis; Papayannis, Alexandros

    2012-11-01

    Glyoxal (CHOCHO), as an indicator of photochemical "hot spots", was for the first time the subject of a differential absorption lidar (DIAL) campaign. The strongest absorption line of glyoxal in the blue wavelength region - 455.1 nm - was chosen as the experimental absorption wavelength. In order to handle the effects of absorption cross-section variation of the interfering gas - nitrogen dioxide (NO2) - three-wavelength DIAL measurements simultaneously detecting glyoxal and NO2, were performed. The differential absorption curves, recorded in July 2012, indicate an extremely low glyoxal concentration in Lund, Sweden, although it is expected to be peaking at this time of the year.

  7. A Two Micron Coherent Differential Absorption Lidar Development

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo C.; Koch, Grady J.; Beyon, Jeffrey Y.; VanValkenburg, Randal L.; Kavaya, Michael J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-micron coherent Differential Absorption Lidar (DIAL)/Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument measures atmospheric CO2 profiles (by DIAL) from a ground platform. It allows the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop. Keywords: Differential Absorption Lidar, Near Infrared Laser,

  8. 3D differential phase contrast microscopy

    PubMed Central

    Chen, Michael; Tian, Lei; Waller, Laura

    2016-01-01

    We demonstrate 3D phase and absorption recovery from partially coherent intensity images captured with a programmable LED array source. Images are captured through-focus with four different illumination patterns. Using first Born and weak object approximations (WOA), a linear 3D differential phase contrast (DPC) model is derived. The partially coherent transfer functions relate the sample’s complex refractive index distribution to intensity measurements at varying defocus. Volumetric reconstruction is achieved by a global FFT-based method, without an intermediate 2D phase retrieval step. Because the illumination is spatially partially coherent, the transverse resolution of the reconstructed field achieves twice the NA of coherent systems and improved axial resolution. PMID:27867705

  9. Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.

    PubMed

    Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco

    2015-04-20

    Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

  10. CO2 Capture from Flue Gas by Phase Transitional Absorption

    SciTech Connect

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  11. Differential Phase Mode with the Keck Interferometer

    NASA Technical Reports Server (NTRS)

    Akeson, Rachel; Swain, Mark

    2000-01-01

    We describe the differential phase mode of the Keck Interferometer. The scientific goal of this mode is the direct detection and spectroscopic characterization of hot, Jupiter mass planets. We describe the differential phase effect, the basic observational mode, and the expected differential phase signatures for the extrasolar planets discovered through radial velocity searches.

  12. [Using Fourier transform to analyse differential optical absorption spectrum].

    PubMed

    Liu, Qian-Lin; Wang, Li-Shi; Huang, Xin-Jian

    2008-05-01

    According to the theory of differential optical absorption spectral technique, the differential optical absorption spectral monitoring equipment was designed. Aiming at two kinds of main pollutants, SO2 and NO2, in the atmosphere, this technique was used to monitor them. The present article puts forward the signal analysis method of Fourier transformation to process the above-mentioned two kinds of absorption spectra. The two approaches contain the removeal of noise and the fitting of the slow variety. On the frequency chart after the spectrum was transformed, the low frequency corresponded to the slow variety part and the high frequency corresponded to the noise part of the original spectrum, so through intercepting a certain frequency segment and using inverse Fourier transformation the slow variety part of the low frequency and the noise part of the high frequency of the absorption spectrum could be subtracted. After farther processing we can get a higher resolution differential absorption spectrum of the gas. According to the strength of the spectrum, we can calculate the concentration of the gas. After analysis and comparison with the conventional method, it is considered a new processing method of differential optical absorption spectral technique, and the method can fit the slow variety much better.

  13. Atmospheric Water Vapour Differential Absorption Measurements with an Infrared Sounder.

    DTIC Science & Technology

    1982-03-01

    such as amonia . As the differential absorption was only of the order of 2 dB for the above measurements (at 450 m range), the measurements were repeated...frequent(ref.7), and most seriously affect surface based radio frequency sensors and communications systems. Further development and refinement of the

  14. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  15. Towards quantitative atmospheric water vapor profiling with differential absorption lidar.

    PubMed

    Dinovitser, Alex; Gunn, Lachlan J; Abbott, Derek

    2015-08-24

    Differential Absorption Lidar (DIAL) is a powerful laser-based technique for trace gas profiling of the atmosphere. However, this technique is still under active development requiring precise and accurate wavelength stabilization, as well as accurate spectroscopic parameters of the specific resonance line and the effective absorption cross-section of the system. In this paper we describe a novel master laser system that extends our previous work for robust stabilization to virtually any number of multiple side-line laser wavelengths for the future probing to greater altitudes. In this paper, we also highlight the significance of laser spectral purity on DIAL accuracy, and illustrate a simple re-arrangement of a system for measuring effective absorption cross-section. We present a calibration technique where the laser light is guided to an absorption cell with 33 m path length, and a quantitative number density measurement is then used to obtain the effective absorption cross-section. The same absorption cell is then used for on-line laser stabilization, while microwave beat-frequencies are used to stabilize any number of off-line lasers. We present preliminary results using ∼300 nJ, 1 μs pulses at 3 kHz, with the seed laser operating as a nanojoule transmitter at 822.922 nm, and a receiver consisting of a photomultiplier tube (PMT) coupled to a 356 mm mirror.

  16. Low-temperature phase transitions in [Cd(DMSO)6](BF4)2 studied by differential scanning calorimetry, X-ray single crystal diffraction and infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Szostak, Elżbieta; Migdał-Mikuli, Anna; Bernard, Paweł

    2015-07-01

    The differential scanning calorimetry (DSC) measurements made for [Cd(DMSO)6](BF4)2, in the temperature range of 113-298 K revealed existence of two low-temperature solid-solid phase transitions: phase Cr 3 ↔ phase Cr 2 at Tc2 c = 218 K and phase Cr 2 ↔ phase Cr 1 at Tc1 c = 246 K. X-ray single crystal diffraction studies of [Cd(DMSO)6](BF4)2 have shown that these transitions are related to a crystal symmetry reduction from an orthorhombic crystallographic system (Fdd2, No. 43) to a monoclinic one (Cc, No. 9). The [Cd(DMSO)6](BF4)2 compound undergoes also series of reversible high temperature phase transitions but they are not a subject of this work and will be presented in our next paper. The characteristic changes of the FT-FIR, FT-MIR and FT-RS spectra of [Cd(DMSO)6](BF4)2 at the phase transitions' temperatures confirmed that phase transitions phase Cr 3 ↔ phase Cr 2 ↔ phase Cr 1 are related to the crystal structure change. It was also found that the reorientation of the BF4- anions and DMSO ligands freezes below 218 K.

  17. Stabilized master laser system for differential absorption lidar.

    PubMed

    Dinovitser, Alex; Hamilton, Murray W; Vincent, Robert A

    2010-06-10

    Wavelength accuracy and stability are key requirements for differential absorption lidar (DIAL). We present a control and timing design for the dual-stabilized cw master lasers in a pulsed master-oscillator power-amplifier configuration, which forms a robust low-cost water-vapor DIAL transmitter system. This design operates at 823 nm for water-vapor spectroscopy using Fabry-Perot-type laser diodes. However, the techniques described could be applied to other laser technologies at other wavelengths. The system can be extended with additional off-line or side-line wavelengths. The on-line master laser is locked to the center of a water absorption line, while the beat frequency between the on-line and the off-line is locked to 16 GHz using only a bandpass microwave filter and low-frequency electronics. Optical frequency stabilities of the order of 1 MHz are achieved.

  18. NASA three-laser airborne differential absorption lidar system electronics

    NASA Technical Reports Server (NTRS)

    Allen, R. J.; Copeland, G. D.

    1984-01-01

    The system control and signal conditioning electronics of the NASA three laser airborne differential absorption lidar (DIAL) system are described. The multipurpose DIAL system was developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. A brief description and photographs of the majority of electronics units developed under this contract are presented. The precision control system; which includes a master control unit, three combined NASA laser control interface/quantel control units, and three noise pulse discriminator/pockels cell pulser units; is described in detail. The need and design considerations for precision timing and control are discussed. Calibration procedures are included.

  19. Cost reduction in absorption chillers: Phase 2

    SciTech Connect

    Leigh, R.W.

    1989-02-01

    A research program at Brookhaven National Laboratory (BNL) has addressed the possibility of dramatically lowering the first costs of absorption chillers through lowered material intensity and the use of lower cost materials, primarily in the heat exchangers which make up the bulk of the operating components of these systems. This must be done while retaining the best performance characteristics available today, a gross design point coefficient of performance (COP) of 1.3 and a net design (seasonal) average COP of 1.0 (0.90) in a directly fired, double effect unit. We have investigated several possible routes to these goals, and here report on these findings, focusing on the areas that appear most promising. The candidate technologies include the use of polymer film heat exchangers in several applications, the use of thin strips of new, corrosion resistant alloys to replace thicker, less impervious metals in applications exposed to gas flames, and copper or cupro-nickel foils in contact with system water. The use of such materials is only possible in the context of new heat exchanger and system designs, which are also discussed. To lend focus, we have concentrated on a directly fired double effect system providing capacity only. If successful, these techniques will also find wide applicability in heat pumps, cogeneration systems, solar cooling, heat recovery and chemical process heat transfer. 46 refs., 24 figs., 22 tabs.

  20. Multi-phase galaxy formation and quasar absorption systems

    NASA Astrophysics Data System (ADS)

    Maller, Ariyeh H.

    2005-03-01

    The central problem of galaxy formation is understanding the cooling and condensation of gas in dark matter halos. It is now clear that to match observations this requires further physics than the simple assumptions of single phase gas cooling. A model of multi-phase cooling (maller & bullock 2004) can successfully account for the upper cutoff in the masses of galaxies and provides a natural explanation of many types of absorption systems (mo & miralda-escude 1996). Absorption systems are our best probes of the gaseous content of galaxy halos and therefore provide important constraints on models for gas cooling into galaxies. All physical processes that effect gas cooling redistribute gas and therefore are detectable in absorption systems. Detailed studies of the nature of gas in galaxy halos using absorption systems are crucial for building a correct theory of galaxy formation.

  1. Differential Absorption Lidar (DIAL) Measurements from Air and Space

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Ismail, S.; Grant, W. B.

    1998-01-01

    Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.

  2. Tunable IR differential absorption lidar for remote sensing of chemicals

    NASA Astrophysics Data System (ADS)

    Prasad, Coorg R.; Kabro, Pierre; Mathur, Savyasachee L.

    1999-10-01

    Standoff sensors for rapid remote detection of chemical emissions from either clandestine chemical production sites, chemical and biological warfare agents, concealed internal combustion engine emissions or rocket propellants from missiles are required for several DoD applications. The differential absorption lidar (DIAL) operating in the infrared wavelengths has established itself as a very effective tool for rapidly detecting many of the chemicals, with sufficient sensitivity with a range of several kilometers. The wavelengths required for this task lie within the atmospheric window regions 3 to 5 micrometers and 8 to 12 micrometers . We are currently developing a differential absorption lidar (DIAL) tunable in the 3 to 5 micrometers range for detecting low concentrations of chemical species with high sensitivity (5 ppb) and accuracy (error < 10%) measurements for greater than 5 km range. We have successfully established the feasibility of an innovative frequency agile laser source which is the crucial component of the infrared DIAL. A diode-pumped ytterbium YAG laser was built for pumping and rapidly tuning an optical parametric oscillator (OPO) over the mid-infra red region. Good performance (5 mJ/pulse) of the laser and low threshold wide infra red tuning of OPO (2.2 - 3.1 micrometers ) were demonstrated. The simulated performance of the topographical IR-DIAL showed that 5 ppb concentration can be measured at 5 km range with a 35 cm telescope.

  3. Bayesian estimation of differential interferometer phase

    SciTech Connect

    Stockton, John K.; Wu Xinan; Kasevich, Mark A.

    2007-09-15

    We apply Bayesian logic to optimally estimate the differential phase in a discrete-time, dual-interferometer measurement. This method is particularly relevant to the case of a gravity gradiometer, where the gravity gradient between cold-atom fountain interferometers can be estimated from the differential phase, despite the presence of large common phase (acceleration) fluctuations. Given an accurate model, the bias-free algorithm we present is optimal and leverages experimental knowledge of the system noise, classical or quantum, to outperform other typical estimators, including ellipse-fitting techniques.

  4. Local tomographic phase microscopy from differential projections

    NASA Astrophysics Data System (ADS)

    Vishnyakov, G. N.; Levin, G. G.; Minaev, V. L.; Nekrasov, N. A.

    2016-12-01

    It is proposed to use local tomography for optical studies of the internal structure of transparent phase microscopic objects, for example, living cells. From among the many local tomography methods that exist, the algorithms of back projection summation (in which partial derivatives of projections are used as projection data) are chosen. The application of local tomography to living cells is reasonable because, using optical phase microscopy, one can easily obtain projection data in the form of first-order derivatives of projections applying the methods of differential interference contrast and shear interferometry. The mathematical fundamentals of local tomography in differential projections are considered, and a computer simulation of different local tomography methods is performed. A tomographic phase microscope and the results of reconstructing a local tomogram of an erythrocyte from a set of experimental differential projections are described.

  5. Estimation of background gas concentration from differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Smith, Nadia; Livina, Valerie; Gardiner, Tom; Robinson, Rod; Innocenti, Fabrizio

    2016-10-01

    Approaches are considered to estimate the background concentration level of a target species in the atmosphere from an analysis of the measured data provided by the National Physical Laboratory's differential absorption lidar (DIAL) system. The estimation of the background concentration level is necessary for an accurate quantification of the concentration level of the target species within a plume, which is the quantity of interest. The focus of the paper is on methodologies for estimating the background concentration level and, in particular, contrasting the assumptions about the functional and statistical models that underpin those methodologies. An approach is described to characterise the noise in the recorded signals, which is necessary for a reliable estimate of the background concentration level. Results for measured data provided by a field measurement are presented, and ideas for future work are discussed.

  6. High resolution absorption spectrum of dianilino in the vapor phase.

    PubMed

    Bayrakçeken, Fuat

    2009-01-01

    Photophysical and photochemical properties of diradical in the first excited state is recorded for the very first time with the IR, band structure for dianilino molecule at room temperature, in the vapor phase. In this experiment high resolution absorption spectra of anilino free radical, dianilino, aniline in the vapor phase and silicon dioxide in the solid state were recorded by flash photolysis technique photographically. Silicon dioxide absorption band between 250 and 255 nm were also observed for the reaction cell, because the cell and windows of the cell material were spectrosilica grade fused quartz. And this absorption band also used as wavelength calibration for all the photoproducts formed in the reaction cell during optical pumping.

  7. Vapor-Phase Infrared Absorptivity Coefficient of HN1

    DTIC Science & Technology

    2013-08-01

    infrared spectrometer GC gas chromatography HD sulfur mustard HeNe helium–neon (laser) HgCdTe mercury–cadmium–telluride detector HN1, HN2, HN3...coefficient of the compound. 15. SUBJECT TERMS Vapor phase Saturator cell Infrared (IR) HN1 Vapor pressure Nitrogen mustard Vesicant...9 1 VAPOR-PHASE INFRARED ABSORPTIVITY COEFFICIENT OF HN1 1. INTRODUCTION The nitrogen mustards (HN1, HN2, and HN3) are similar to

  8. Methods for deacidizing gaseous mixtures by phase enhanced absorption

    DOEpatents

    Hu, Liang

    2012-11-27

    An improved process for deacidizing a gaseous mixture using phase enhanced gas-liquid absorption is described. The process utilizes a multiphasic absorbent that absorbs an acid gas at increased rate and leads to reduced overall energy costs for the deacidizing operation.

  9. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect

    Liang Hu

    2006-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer (transportation layer phase) is used for the increase of absorption rate. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the liquid mass transfer

  10. Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

    SciTech Connect

    Tim Fout

    2007-06-30

    A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) CO{sub 2}-water system and CO{sub 2}-water-organic layer system; (2) CO{sub 2}-Potassium Carbonate aqueous solution system and CO{sub 2}-Potassium Carbonate aqueous solution-organic layer system. CO{sub 2}-water and CO{sub 2}-Potassium Carbonate systems are the traditional gas-liquid absorption processes. The CO{sub 2}-water-organic layer and CO{sub 2}-Potassium Carbonate-organic layer systems are the novel absorption processes, phase enhanced absorption. As we mentioned early, organic layer is used for the increase of absorption rate, and plays the role of transportation of CO{sub 2}. Our study showed that the absorption rate can be increased by adding the organic layer. However, the enhanced factor is highly depended on the

  11. Phase measurement of fast light pulse in electromagnetically induced absorption.

    PubMed

    Lee, Yoon-Seok; Lee, Hee Jung; Moon, Han Seb

    2013-09-23

    We report the phase measurement of a fast light pulse in electromagnetically induced absorption (EIA) of the 5S₁/₂ (F = 2)-5P₃/₂ (F' = 3) transition of ⁸⁷Rb atoms. Using a beat-note interferometer method, a stable measurement without phase dithering of the phase of the probe pulse before and after it has passed through the EIA medium was achieved. Comparing the phases of the light pulse in air and that of the fast light pulse though the EIA medium, the phase of the fast light pulse at EIA resonance was not shifted and maintained to be the same as that of the free-space light pulse. The classical fidelity of the fast light pulse according to the advancement of the group velocity by adjusting the atomic density was estimated to be more than 97%.

  12. Micropulse water vapor differential absorption lidar: transmitter design and performance.

    PubMed

    Nehrir, Amin R; Repasky, Kevin S; Carlsten, John L

    2012-10-22

    An all diode-laser-based micropulse differential absorption lidar (DIAL) laser transmitter for tropospheric water vapor and aerosol profiling is presented. The micropulse DIAL (MPD) transmitter utilizes two continuous wave (cw) external cavity diode lasers (ECDL) to seed an actively pulsed, overdriven tapered semiconductor optical amplifier (TSOA). The MPD laser produces up to 7 watts of peak power over a 1 µs pulse duration (7 µJ) and a 10 kHz pulse repetition frequency. Spectral switching between the online and offline seed lasers is achieved on a 1Hz basis using a fiber optic switch to allow for more accurate sampling of the atmospheric volume between the online and offline laser shots. The high laser spectral purity of greater than 0.9996 coupled with the broad tunability of the laser transmitter will allow for accurate measurements of tropospheric water vapor in a wide range of geographic locations under varying atmospheric conditions. This paper describes the design and performance characteristics of a third generation MPD laser transmitter with enhanced laser performance over the previous generation DIAL system.

  13. Laser speckle effects on hard target differential absorption lidar

    SciTech Connect

    MacKerrow, E.P.; Tiee, J.J.; Fite, C.B.

    1996-04-01

    Reflection of laser light from a diffuse surface exhibits a complex interference pattern known as laser speckle. Measurement of the reflected intensity from remote targets, common to ``hard-target`` differential absorption lidar (DIAL) requires consideration of the statistical properties of the reflected light. The authors have explored the effects of laser speckle on the noise statistics for CO{sub 2} DIAL. For an ensemble of independent speckle patterns it is predicted that the variance for the measured intensity is inversely proportional to the number of speckle measured. They have used a rotating drum target to obtain a large number of independent speckle and have measured the predicted decrease in the variance after correlations due to system drifts were accounted for. Measurements have been made using both circular and linear polarized light. These measurements show a slight improvement in return signal statistics when circular polarization is used. The authors have conducted experiments at close range to isolate speckle phenomena from other phenomena, such as atmospheric turbulence and platform motion thus allowing them to gain a full understanding of speckle. They have also studied how to remove correlation in the data due to albedo inhomogeneities producing a more statistically independent ensemble of speckle patterns. They find that some types of correlation are difficult to remove from the data.

  14. Progress Report on Frequency - Modulated Differential Absorption Lidar

    SciTech Connect

    Cannon, Bret D.; Harper, Warren W.; Myers, Tanya L.; Taubman, Matthew S.; Williams, Richard M.; Schultz, John F.

    2001-12-15

    Modeling done at Pacific Northwest National Laboratory (PNNL) in FY2000 predicted improved sensitivity for remote chemical detection by differential absorption lidar (DIAL) if frequency-modulated (FM) lasers were used. This improved sensitivity results from faster averaging away of speckle noise and the recently developed quantum cascade (QC) lasers offer the first practical method for implementing this approach in the molecular fingerprint region of the infrared. To validate this model prediction, a simple laboratory bench FM-DIAL system was designed, assembled, tested, and laboratory-scale experiments were carried out during FY2001. Preliminary results of the FM DIAL experiments confirm the speckle averaging advantages predicted by the models. In addition, experiments were performed to explore the use of hybrid QC - CO2 lasers for achieving sufficient frequency-modulated laser power to enable field experiments at longer ranges (up to one kilometer or so). This approach will allow model validation at realistic ranges much sooner than would be possible if one had to first develop master oscillator - power amplifier systems utilizing only QC devices. Amplification of a QC laser with a CO2 laser was observed in the first hybrid laser experiments, but the low gain and narrow linewidth of the CO2 laser available for these experiments prevented production of a high-power FM laser beam.

  15. Rayleigh-backscattering doppler broadening correction for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Fan, Lanlan; Zhang, Yinchao; Chen, Siying; Guo, Pan; Chen, He

    2015-11-01

    The spectral broadening by Rayleigh backscattering can cause large changes in water vapor echo signals, causing errors when the water vapor concentration is inversed by differential absorption lidar (DIAL). A correction algorithm is proposed to revise the errors due to the effect of laser spectral broadening. The relative errors of water vapor are calculated in cases of different aerosol distribution and temperature changes before and after correction. The results show that measurement errors due to the Doppler broadening are more than 5% before correction and a 2% measurement error after corrected for the case of a smooth, background aerosol distribution. However, due to the high aerosol gradients and strong temperature inversion, errors can be up to 40% and 10% with no corrections for this effect, respectively. The relative errors can reduce to less than 2% after correction. Hence, the correction algorithm for Rayleigh Doppler broadening can improve detection accuracy in H2O DIAL measurements especially when it is applied to high aerosol concentration or strong temperature inversion.

  16. Differential Phase Interferometry with the Keck Telescopes

    NASA Technical Reports Server (NTRS)

    Vasisht, Gautam; Colavita, M. Mark

    2004-01-01

    We summarize the Differential Phase (DP) technique as well as the planned implementation at the Keck Interferometer. Multicolor phase measurements are potentially a powerful astrophysical probe - and can allow ground-based direct detection of extrasolar planets. Better than 0.1 mrad phase measurements in the infrared can allow the Keck Interferometer to detect radiation from the so-called hot-Jupiter or 'Roaster' class of planets. At JPL, we are presently developing and testing instrumentation that will enable these extremely sensitive measurements. First on-sky observations are expected to start in mid-2004. In this article we describe DP and other related techniques, provide an outline of the instrument and present results from preliminary laboratory experiments.

  17. 3D differential phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Tian, Lei; Waller, Laura

    2016-03-01

    We demonstrate three-dimensional (3D) optical phase and amplitude reconstruction based on coded source illumination using a programmable LED array. Multiple stacks of images along the optical axis are computed from recorded intensities captured by multiple images under off-axis illumination. Based on the first Born approximation, a linear differential phase contrast (DPC) model is built between 3D complex index of refraction and the intensity stacks. Therefore, 3D volume reconstruction can be achieved via a fast inversion method, without the intermediate 2D phase retrieval step. Our system employs spatially partially coherent illumination, so the transverse resolution achieves twice the NA of coherent systems, while axial resolution is also improved 2× as compared to holographic imaging.

  18. Differential-phase-shift quantum secret sharing.

    PubMed

    Inoue, K; Ohashi, T; Kukita, T; Watanebe, K; Hayashi, S; Honjo, T; Takesue, H

    2008-09-29

    A quantum secret sharing (QSS) protocol based on a differential-phase-shift scheme is proposed, which quantum mechanically provides a full secret key to one party and partial keys to two other parties. A weak coherent pulse train is utilized instead of individual photons as in conventional schemes. Compared with previous QSS protocols, the present one features a simple setup, is suitable for fiber transmission, and offers the possibility for a high key creation rate. An experiment is also carried out to demonstrate the operation.

  19. Optimization of A 2-Micron Laser Frequency Stabilization System for a Double-Pulse CO2 Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Yu, Jirong; Bai, Yingsin; Koch, Grady; Petros, Mulugeta; Trieu, Bo; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    A carbon dioxide (CO2) Differential Absorption Lidar (DIAL) for accurate CO2 concentration measurement requires a frequency locking system to achieve high frequency locking precision and stability. We describe the frequency locking system utilizing Frequency Modulation (FM), Phase Sensitive Detection (PSD), and Proportional Integration Derivative (PID) feedback servo loop, and report the optimization of the sensitivity of the system for the feed back loop based on the characteristics of a variable path-length CO2 gas cell. The CO2 gas cell is characterized with HITRAN database (2004). The method can be applied for any other frequency locking systems referring to gas absorption line.

  20. Photoisomerization of ethyl ferulate: A solution phase transient absorption study

    NASA Astrophysics Data System (ADS)

    Horbury, Michael D.; Baker, Lewis A.; Rodrigues, Natércia D. N.; Quan, Wen-Dong; Stavros, Vasilios G.

    2017-04-01

    Ethyl ferulate (ethyl 4-hydroxy-3-methoxycinnamate) is currently used as a sunscreening agent in commercial sunscreen blends. Recent time-resolved gas-phase measurements have demonstrated that it possesses long-lived (>ns) electronic excited states, counterintuitive to what one might anticipate for an effective sunscreening agent. In the present work, the photodynamics of ethyl ferulate in cyclohexane, are explored using time-resolved transient electronic absorption spectroscopy, upon photoexcitation to the 11ππ∗ and 21ππ∗ states. We demonstrate that ethyl ferulate undergoes efficient non-radiative decay to repopulate the electronic ground state, mediated by trans-cis isomerization. These results strongly suggest that even mild perturbations induced by a non-polar solvent, as may be found in a closer-to-market sunscreen blend, may contribute to our understanding of ethyl ferulate's role as a sunscreening agent.

  1. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  2. Microscopic description of intraband absorption in graphene: the occurrence of transient negative differential transmission.

    PubMed

    Kadi, Faris; Winzer, Torben; Malic, Ermin; Knorr, Andreas; Göttfert, F; Mittendorff, M; Winnerl, S; Helm, M

    2014-07-18

    We present a microscopic explanation of the controversially discussed transient negative differential transmission observed in degenerate optical pump-probe measurements in graphene. Our approach is based on the density matrix formalism allowing a time- and momentum-resolved study of carrier-light, carrier-carrier, and carrier-phonon interaction on microscopic footing. We show that phonon-assisted optical intraband transitions give rise to transient absorption in the optically excited hot carrier system counteracting pure absorption bleaching of interband transitions. While interband transition bleaching is relevant in the first hundreds of fs after the excitation, intraband absorption sets in at later times. In particular, in the low excitation regime, these intraband absorption processes prevail over the absorption bleaching resulting in a zero crossing of the differential transmission. Our findings are in good qualitative agreement with recent experimental pump-probe studies.

  3. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  4. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  5. PLZT block data composers operated in differential phase mode

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of a PLTZ block data composer as a matrix type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system was investigated. The system has readout contrast ratios of between 10 and 15 to 1. The differential phase mode has the advantage that strain bias is not required and thickness and strain variations in the PLZT are cancelled out.

  6. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  7. Retrieval of Aerosol Profiles using Multi Axis Differential Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Friess, U.; Apituley, A.; de Leeuw, G.; Platt, U.

    2009-04-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties like single scattering albedo, phase function and Angström exponent. In the scope of a joint research activity of the EU funded project EUSAAR (European Supersites for Atmospheric Aerosol Research) we have developed a new kind of DOAS instrument, which uses three miniature spectrometers to cover the near-ultraviolet to visible wavelength range (290-790nm), enabling to capture all absorption bands of the oxygen-dimer O4. Additionally, it is possible to point to any direction in the sky with a 2D telescope unit which is connected to the spectrometers via fiber optics. In May 2008, an intercomparison campaign with established aerosol measurement techniques took place in Cabauw/Netherlands, where simultaneous DOAS, LIDAR, Sun photometer and Nephelometer measurements were performed. We present first results of selected days from this period. The optical properties of aerosols retrieved by the DOAS measurement technique show very promising qualitative agreement with the established measurement techniques demonstrating the progress towards our goal of establishing the MAX-DOAS technique for retrieving optical properties of atmospheric aerosols. Quantitative comparison is ongoing.

  8. D-region differential-phase measurements and ionization variability studies

    NASA Technical Reports Server (NTRS)

    Weiland, R. M.; Bowhill, S. A.

    1978-01-01

    Measurements of electron densities in the D region are made by the partial-reflection differential-absorption and differential-phase techniques. The differential-phase data are obtained by a hard-wired phase-measuring system. Electron-sensity profiles obtained by the two techniques on six occasions are plotted and compared. Electron-density profiles obtained at the same time on 30 occasions during the years 1975 through 1977 are averaged to form a single profile for each technique. The effect of varying the assumed collision-frequency profile on these averaged profiles is studied. Time series of D-region electron-sensity data obtained by 3.4 minute intervals on six days during the summer of 1977 are examined for wave-like disturbances and tidal oscillations.

  9. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-01

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  10. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation.

    PubMed

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-03-22

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries.

  11. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  12. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  13. The concentration-estimation problem for multiple-wavelength differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Payne, A. N.

    1994-07-01

    We are seeking to develop a reliable methodology for multi-chemical detection and discrimination based upon multi-wavelength differential absorption lidar measurements. In this paper, we summarize some preliminary results of our efforts to devise suitable concentration-estimation algorithms for use in detection and discrimination schemes.

  14. [Concentration retrieving method of SO2 using differential optical absorption spectroscopy based on statistics].

    PubMed

    Liu, Bin; Sun, Chang-Ku; Zhang, Chi; Zhao, Yu-Mei; Liu, Jun-Ping

    2011-01-01

    A concentration retrieving method using statistics is presented, which is applied in differential optical absorption spectroscopy (DOAS) for measuring the concentration of SO2. The method uses the standard deviation of the differential absorption to represents the gas concentration. Principle component analysis (PCA) method is used to process the differential absorption spectrum. In the method, the basis data for the concentration retrieval of SO2 is the combination of the PCA processing result, the correlation coefficient, and the standard deviation of the differential absorption. The method is applied to a continuous emission monitoring system (CEMS) with optical path length of 0.3 m. Its measuring range for SO2 concentration is 0-5 800 mg x m(-3). The nonlinear calibration and the temperature compensation for the system were executed. The full scale error of the retrieving concentration is less than 0.7% FS. And the measuring result is -4.54 mg x m(-3) when the concentration of SO2 is zero.

  15. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    PubMed

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method.

  16. Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation.

    PubMed

    Yeap, Yan Yan; Trevaskis, Natalie L; Quach, Tim; Tso, Patrick; Charman, William N; Porter, Christopher J H

    2013-05-06

    The oral bioavailability of poorly water-soluble drugs (PWSD) is often significantly enhanced by coadministration with lipids in food or lipid-based oral formulations. Coadministration with lipids promotes drug solubilization in intestinal mixed micelles and vesicles, however, the mechanism(s) by which PWSD are absorbed from these dispersed phases remain poorly understood. Classically, drug absorption is believed to be a product of the drug concentration in free solution and the apparent permeability across the absorptive membrane. Solubilization in colloidal phases such as mixed micelles increases dissolution rate and total solubilized drug concentrations, but does not directly enhance (and may reduce) the free drug concentration. In the absence of changes to cellular permeability (which is often high for lipophilic, PWSD), significant changes to membrane flux are therefore unexpected. Realizing that increases in effective dissolution rate may be a significant driver of increases in drug absorption for PWSD, we explore here two alternate mechanisms by which membrane flux might also be enhanced: (1) collisional drug absorption where drug is directly transferred from lipid colloidal phases to the absorptive membrane, and (2) supersaturation-enhanced drug absorption where bile mediated dilution of lipid colloidal phases leads to a transient increase in supersaturation, thermodynamic activity and absorption. In the current study, collisional uptake mechanisms did not play a significant role in the absorption of a model PWSD, cinnarizine, from lipid colloidal phases. In contrast, bile-mediated dilution of model intestinal mixed micelles and vesicles led to drug supersaturation. For colloids that were principally micellar, supersaturation was maintained for a period sufficient to promote absorption. In contrast, for primarily vesicular systems, supersaturation resulted in rapid drug precipitation and no increase in drug absorption. This work suggests that ongoing

  17. X-ray optics for phase differential contrast: Design, optimization, simulation, fabrication

    NASA Astrophysics Data System (ADS)

    Aristov, V.; Chukalina, M.; Firsov, A.; Ishikawa, T.; Kikuta, S.; Kohmura, Y.; Svintsov, A.; Zaitsev, S.

    2000-05-01

    With increasing of X-ray energy an interesting situation appears when due to different dependence of refraction and absorption on X-ray energy a sample becomes transparent but still produces refraction. So such samples become unvisible for usual absorption methods but could be analyzed with variouse phase contrast methodes. The situation becomes more actual for higher X-ray energy especially for range 20-100 keV. F. Polack and D. Joyeux described an extension of an interferential differential phase contrast to scanning X-ray microscopy. The principle is to illuminate two points of an object with coherent radiation and detect the fringe shift induced by small phase differences. Fresnel mirrors have been suggested to split a X-ray beam in two coherent ones. In this paper it is proposed instead to use bifocal (multi-focal) lenses. Design and fabrication process of the lenses are described.

  18. Wavelength-locking-free 1.57µm differential absorption lidar for CO₂ sensing.

    PubMed

    Liu, Hao; Chen, Tao; Shu, Rong; Hong, Guanglie; Zheng, Long; Ge, Ye; Hu, Yihua

    2014-11-03

    We propose a novel wavelength-locking-free differential absorption lidar system for CO₂ sensing. The ON-line wavelength laser was wavelength modulated around a specific CO₂ absorption line to ensure that the emission from the ON-line laser hit the atmospheric CO₂ absorption line peak twice a cycle. In the meantime, the intensity of the ON-line and OFF-line wavelength lasers were sinusoidally intensity modulated to enhance the SNR of the back-scattered signal. As a consequence, the system configuration was simplified and the measurement error caused by the deviation of CO₂ absorption coefficient from the long-time ON-line wavelength drifting was completely eliminated. Furthermore, a more precise calibration method was developed which could simultaneously calibrate the offset and precision of the lidar detector. This method could be applied to other differential-absorption-based lidar systems. The result showed that a measurement precision of 0.525% for the column concentration was achieved in 1 s time interval through a path of 780m. We recorded the CO₂ concentration variation for 12 hours starting from mid-night, the result showed that the course of the concentration derived from the DIAL was in good agreement with that of the in situ CO₂ sensor only when the status of atmosphere was stable.

  19. Asymptotic phases in a cell differentiation model

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Kao, Chiu-Yen; Shih, Chih-Wen

    T cells of the immune system, upon maturation, differentiate into either Th1 or Th2 cells that have different functions. The decision to which cell type to differentiate depends on the concentrations of transcription factors T-bet ( x) and GATA-3 ( x). The population density of the T cells, ϕ(t,x,x), satisfies a conservation law ∂ϕ/∂t+(∂/∂x)(fϕ)+(∂/∂x)(fϕ)=gϕ where f depends on (t,x,x) and, in a nonlinear nonlocal way, on ϕ. It is proved that, as t→∞, ϕ(t,x,x) converges to a linear combination of 1, 2, or 4 Dirac measures. Numerical simulations and their biological implications are discussed.

  20. Pressure Measurements Using an Airborne Differential Absorption Lidar. Part 1; Analysis of the Systematic Error Sources

    NASA Technical Reports Server (NTRS)

    Flamant, Cyrille N.; Schwemmer, Geary K.; Korb, C. Laurence; Evans, Keith D.; Palm, Stephen P.

    1999-01-01

    Remote airborne measurements of the vertical and horizontal structure of the atmospheric pressure field in the lower troposphere are made with an oxygen differential absorption lidar (DIAL). A detailed analysis of this measurement technique is provided which includes corrections for imprecise knowledge of the detector background level, the oxygen absorption fine parameters, and variations in the laser output energy. In addition, we analyze other possible sources of systematic errors including spectral effects related to aerosol and molecular scattering interference by rotational Raman scattering and interference by isotopic oxygen fines.

  1. Differential spectra and phase space densities of trapped electrons at Jupiter

    NASA Technical Reports Server (NTRS)

    Mcilwain, C. E.; Fillius, R. W.

    1975-01-01

    Using Pioneer 10 data, differential spectra and phase-space densities have been constructed for trapped electrons at Jupiter. These quantities should assist in calculating synchrotron radiation from these particles and in evaluating the diffusion mechanisms that accelerate the particles. Absorption by the moons Io and Europa is evident, and injection by Io is demonstrated by a density peak in phase space, which demands a local source. There is also a rapid decrease in density between the moons, which could call for either a local loss mechanism or nonlocal losses fed by diffusion.

  2. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  3. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    PubMed

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  4. Spectrum sensing of trace C(2)H(2) detection in differential optical absorption spectroscopy technique.

    PubMed

    Chen, Xi; Dong, Xiaopeng

    2014-09-10

    An improved algorithm for trace C(2)H(2) detection is presented in this paper. The trace concentration is accurately calculated by focusing on the absorption spectrum from the frequency domain perspective. The advantage of the absorption spectroscopy frequency domain algorithm is its anti-interference capability. First, the influence of the background noise on the minimum detectable concentration is greatly reduced. Second, the time-consuming preprocess of spectra calibration in the differential optical absorption spectroscopy technique is skipped. Experimental results showed the detection limit of 50 ppm is achieved at a lightpath length of 0.2 m. This algorithm can be used in real-time spectrum analysis with high accuracy.

  5. Differential absorption lidar technique for measurement of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Weng, C. Y.

    1983-01-01

    A new two-wavelength lidar technique for remotely measuring the pressure profile using the trough absorption region between two strong lines in the oxygen A band is described. The theory of integrated vertical path, differential ranging, and horizontal-path pressure measurements is given, with methods to desensitize and correct for temperature effects. The properties of absorption troughs are described and shown to reduce errors due to laser frequency jitter by up to two orders of magnitude. A general analysis, including laser bandwidth effects, demonstrates that pressure measurements with an integrated-vertical-path technique are typically fifty times more accurate than with a differential ranging technique. Simulations show 0.1-0.3 percent accuracy for ground and Shuttle-based pressure-profile and surface-pressure experiments.

  6. [A new retrieval method for ozone concentration at the troposphere based on differential absorption lidar].

    PubMed

    Fan, Guang-Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Lu, Yi-Huai; Zhang, Tian-Shu; Dong, Yun-Sheng; Zhao, Xue-Song

    2012-12-01

    Aerosols interfere with differential absorption lidar ozone concentration measurement and can introduce significant errors. A new retrieval method was introduced, and ozone concentration and aerosol extinction coefficient were gained simultaneously based on the retrieval method. The variables were analyzed by experiment including aerosol lidar ratio, aerosol wavelength exponent, and aerosol-molecular ratio at the reference point. The results show that these parameters introduce error less than 8% below 1 km. The measurement error derives chiefly from signal noise and the parameters introduce error less than 3% above 1 km. Finally the vertical profile of tropospheric ozone concentration and aerosol extinction coefficient were derived by using this algorithm. The retrieval results of the algorithm and traditional dual-wavelength difference algorithm are compared and analyzed. Experimental results indicate that the algorithm is feasible, and the algorithm can reduce differential absorption lidar measurement error introduced by aerosol.

  7. Identification of Gas Phase PAHs in Absorption Towards Protostellar Sources

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The infrared emission bands (also known as the UIR bands.) have recently been observed in absorption at 3.25 micrometers in the ices surrounding a few proto-stellar objects at 11.2 micrometers in MonR2, and at 6.2 micrometers towards two sources near the galactic center. The UIR bands have been observed in emission for many years, but identifying these bands has proven to be both difficult and contentious as no one has yet found a single material that provides a good match to the features. However, most investigators agree that some form of carbon-based material with aromatic bonds is the most likely candidate, and many arguments favor free molecules (polycyclic aromatic hydrocarbons, PAHs) as the carriers of at least the narrow emission bands. Since the emission arises not from a single molecule but from a family of molecules, identifying which PAHs are contributing to the infrared emission bands is difficult. The identification is further complicated by the fact that the emission at short wavelengths is dominated by small molecules while at long wavelengths it is dominated by large molecules. Thus, for example, the emission at 3.3 micrometers is from a different mix of molecules than those which produce the 11.2 micrometer band. To complicate matters further, the molecular mix includes both neutral and ionic species. In absorption, the same mixture of molecules contributes at all wavelengths and the molecules should be neutral, potentially simplifying comparisons with lab data. Also, absorption strengths measured in the lab are directly applicable to interstellar absorption bands without the need to model an emission spectrum of an unknown mixture of ionized and neutral PAHs. In this paper we show that a mixture of argon matrix isolated PAH molecules can reproduce the 3.25 micrometers absorption band seen in the ISO SWS spectra of four embedded Infrared sources, S140 IRS1, AFGL 2591, Elias 29, and AFGL 989. In section 2 we describe the ISO SWS data analysis and

  8. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. I. MEASUREMENTS AND DESCRIPTION

    SciTech Connect

    Muterspaugh, Matthew W.; O'Connell, J.; Lane, Benjamin F.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M.; Wiktorowicz, Sloane J. E-mail: blane@draper.co

    2010-12-15

    The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 subarcsecond binary systems to determine precision binary orbits, study the geometries of triple and quadruple star systems, and discover previously unknown faint astrometric companions as small as giant planets. PHASES measurements made with the Palomar Testbed Interferometer (PTI) from 2002 until PTI ceased normal operations in late 2008 are presented. Infrared differential photometry of several PHASES targets were measured with Keck Adaptive Optics and are presented.

  9. Differential absorption lidars for remote sensing of atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Famiglietti, Joseph; Walden, Harvey; Prasad, Coorg

    1995-01-01

    A near infrared differential absorption lidar technique is developed using atmospheric oxygen as a tracer for high resolution vertical profiles of pressure and temperature with high accuracy. Solid-state tunable lasers and high-resolution spectrum analyzers are developed to carry out ground-based and airborne measurement demonstrations and results of the measurements presented. Numerical error analysis of high-altitude airborne and spaceborne experiments is carried out, and system concepts developed for their implementation.

  10. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  11. The capability of fluoroscopic systems to determine differential Roentgen-ray absorption

    NASA Technical Reports Server (NTRS)

    Baily, N. A.; Crepeau, R. L.

    1975-01-01

    A clinical fluoroscopic unit used in conjunction with a TV image digitization system was investigated to determine its capability to evaluate differential absorption between two areas in the same field. Fractional contrasts and minimum detectability for air, several concentrations of Renografin-60, and aluminum were studied using phantoms of various thicknesses. Results showed that the videometric response, when treated as contrast, shows a linear response with absorber thickness up to considerable thicknesses.

  12. Studies of the differential absorption rocket experiment. [to measure atmospheric electron density

    NASA Technical Reports Server (NTRS)

    Ginther, J. C.; Smith, L. G.

    1975-01-01

    Investigations of the ionosphere, in the rocket program of the Aeronomy Laboratory, include a propagation experiment, the data from which may be analyzed in several modes. This report considers in detail the differential absorption experiment. The sources of error and limitations of sensitivity are discussed. Methods of enhancing the performance of the experiment are described. Some changes have been made in the system and the improvement demonstrated. Suggestions are made for further development of the experiment.

  13. The optical fiber monitoring system of environmental parameters using multiwavelength and differential absorption technology

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Yan, Kuang; Huang, Zuohua; Wang, Ruirong

    2005-02-01

    Air pollution monitoring is an important aspect of environmental protection. The pollutants to be detected are usually more than one in air or smoke monitoring. Researching new techniques that can meet the demand of detecting the pollutants at the same time is important and necessary. The paper researched the method of detecting multi-parameters in one optical fiber gas sensing system. The system used multi-wavelength and time division multiplex technique to detect the concentration of SO2 and NO2 simultaneously based on gas' spectra absorption principle. The light differential absorption formula was deduced. The two strong and weak absorbing wavelengths were chosen as signal and reference relatively. To every gas, optical coupler and narrow-band optical filters were used to generate signal and reference light from a high brightness LED. The central wavelength of filters is identical to the strong or weak absorption wavelength respectively. The multi-channel signals were switched to one light beam using a 4x1 optical switch controlled by computer in designed time sequence. The output light after absorbing by gas was coupled on a high sensitivity PIN detector. To achieve high detecting sensitivity, the light source was modulated by a pulse signal. The power and temperature control circuits were also used to stabilize the output power and wavelength of light source. After differential absorption process, the concentration of different gas can be deduced in one set of common optical and electrical sensing system.

  14. Differential phase contrast OCT in transparant and scattering media

    NASA Astrophysics Data System (ADS)

    Sticker, Markus; Hitzenberger, Christoph K.; Leitgeb, Rainer; Fercher, Adolf F.

    2001-05-01

    Many biological objects have a poor contrast in microscopy when they are imaged on the basis of the intensity of transmitted and reflected light. For pure phase objects the differential phase contrast technique increases the contrast of the images. We combined the differential phase contrast technique with optical coherence tomography. Our setup is based on a Michelson interferometer with a polarization sensitive detection unit. We scan the sample with two orthogonally polarized beams, which are separated by a distance of 17.5 micrometers . The full interferometric signal of each object beam is recorded by a separate detector. We calculate the phase functions of the interferometric signal through analytic continuation by use of the Hilbert transformation. Subtracting the two phase functions we get the phase difference between the object beams. Now we can derive the path length difference of the object beams at a certain depth in the object where the light was backscattered. The method is independent of variations in the backscattering coefficient, which was a problem in an earlier version of our setup. To investigate the performance of the technique we measured pure phase objects in the nm range. Differential phase measurements through scattering test samples quantified the influence of scattering on the phase measurement. First images of cell structures are presented.

  15. Impact of atmospheric state uncertainties on retrieved XCO2 columns from laser differential absorption spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Zaccheo, T. Scott; Pernini, Timothy; Snell, Hilary E.; Browell, Edward V.

    2014-01-01

    This work assesses the impact of uncertainties in atmospheric state knowledge on retrievals of carbon dioxide column amounts (XCO2) from laser differential absorption spectroscopy (LAS) measurements. LAS estimates of XCO2 columns are normally derived not only from differential absorption observations but also from measured or prior knowledge of atmospheric state that includes temperature, moisture, and pressure along the viewing path. In the case of global space-based monitoring systems, it is often difficult if not impossible to provide collocated in situ measurements of atmospheric state for all observations, so retrievals often rely on collocated remote-sensed data or values derived from numerical weather prediction (NWP) models to describe the atmospheric state. A radiative transfer-based simulation framework, combined with representative global upper-air observations and matched NWP profiles, was used to assess the impact of model differences on estimates of column CO2 and O2 concentrations. These analyses focus on characterizing these errors for LAS measurements of CO2 in the 1.57-μm region and of O2 in the 1.27-μm region. The results provide a set of signal-to-noise metrics that characterize the errors in retrieved values associated with uncertainties in atmospheric state and provide a method for selecting optimal differential absorption line pairs to minimize the impact of these noise terms.

  16. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    PubMed

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants.

  17. Adaptive array technique for differential-phase reflectometry in QUEST

    SciTech Connect

    Idei, H. Hanada, K.; Zushi, H.; Nagata, K.; Mishra, K.; Itado, T.; Akimoto, R.; Yamamoto, M. K.

    2014-11-15

    A Phased Array Antenna (PAA) was considered as launching and receiving antennae in reflectometry to attain good directivity in its applied microwave range. A well-focused beam was obtained in a launching antenna application, and differential-phase evolution was properly measured by using a metal reflector plate in the proof-of-principle experiment at low power test facilities. Differential-phase evolution was also evaluated by using the PAA in the Q-shu University Experiment with Steady State Spherical Tokamak (QUEST). A beam-forming technique was applied in receiving phased-array antenna measurements. In the QUEST device that should be considered as a large oversized cavity, standing wave effect was significantly observed with perturbed phase evolution. A new approach using derivative of measured field on propagating wavenumber was proposed to eliminate the standing wave effect.

  18. Absorption and impedance boundary conditions for phased geometrical-acoustics methods.

    PubMed

    Jeong, Cheol-Ho

    2012-10-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been developed on which boundary condition produces accurate results. In this study, various boundary conditions in terms of normal, random, and field incidence absorption coefficients and normal incidence surface impedance are used in a phased beam tracing model, and the simulated results are validated with boundary element solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. Effects of the neglect of reflection phase shift are also investigated. It is concluded that the impedance, random incidence, and field incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials.

  19. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  20. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  1. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region.

    PubMed

    Ambrico, P F; Amodeo, A; Di Girolamo, P; Spinelli, N

    2000-12-20

    The availability of new laser sources that are tunable in the IR spectral region opens new perspectives for differential absorption lidar (DIAL) measurements. A region of particular interest is located in the near IR, where some of the atmospheric pollutants have absorption lines that permit monitoring of emissions from industrial plants and in urban areas. In DIAL measurements, the absorption lines for the species to be measured must be carefully chosen to prevent interference from other molecules, to minimize the dependence of the absorption cross section on temperature, and to optimize the measurements with respect to the optical depth. We analyze the influence of these factors and discuss a set of criteria for selecting the best pairs of wavelengths (lambda(on) and lambda(off)) to be used in DIAL measurements of several molecular species (HCl, CO, CO(2), NO(2), CH(4), H(2)O, and O(2)). Moreover, a sensitivity study has been carried out for selected lines in three different regimes: clean air, urban polluted air, and emission from an incinerator stack.

  2. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  3. On-Line Wavelength Calibration of Pulsed Laser for CO2 Differential Absorption LIDAR

    NASA Astrophysics Data System (ADS)

    Xiang, Chengzhi; Ma, Xin; Han, Ge; Liang, Ailin; Gong, Wei

    2016-06-01

    Differential absorption lidar (DIAL) remote sensing is a promising technology for atmospheric CO2 detection. However, stringent wavelength accuracy and stability are required in DIAL system. Accurate on-line wavelength calibration is a crucial procedure for retrieving atmospheric CO2 concentration using the DIAL, particularly when pulsed lasers are adopted in the system. Large fluctuations in the intensities of a pulsed laser pose a great challenge for accurate on-line wavelength calibration. In this paper, a wavelength calibration strategy based on multi-wavelength scanning (MWS) was proposed for accurate on-line wavelength calibration of a pulsed laser for CO2 detection. The MWS conducted segmented sampling across the CO2 absorption line with appropriate number of points and range of widths by using a tunable laser. Complete absorption line of CO2 can be obtained through a curve fitting. Then, the on-line wavelength can be easily found at the peak of the absorption line. Furthermore, another algorithm called the energy matching was introduced in the MWS to eliminate the backlash error of tunable lasers during the process of on-line wavelength calibration. Finally, a series of tests was conducted to elevate the calibration precision of MWS. Analysis of tests demonstrated that the MWS proposed in this paper could calibrate the on-line wavelength of pulsed laser accurately and steadily.

  4. Non-linear regularized phase retrieval for unidirectional X-ray differential phase contrast radiography.

    PubMed

    Thüring, Thomas; Modregger, Peter; Pinzer, Bernd R; Wang, Zhentian; Stampanoni, Marco

    2011-12-05

    Phase retrieval from unidirectional radiographic differential phase contrast images requires integration of noisy data. A method is presented, which aims to suppress stripe artifacts arising from direct image integration. It is purely algorithmic and therefore, compared to alternative approaches, neither additional alignment nor an increased scan time is required. We report on the theory of this method and present results using numerical as well as experimental data. The method shows significant improvements on the phase retrieval accuracy and enhances contrast in the phase image. Due to its general applicability, the proposed method provides a valuable tool for various 2D imaging applications using differential data.

  5. Atmospheric effects on CO{sub 2} differential absorption lidar sensitivity

    SciTech Connect

    Petrin, R.R.; Nelson, D.H.; Schmitt, M.J.

    1996-03-01

    The ambient atmosphere between the laser transmitter and the target can affect CO{sub 2} differential absorption lidar (DIAL) measurement sensitivity through a number of different processes. In this work, we will address two of the sources of atmospheric interference with CO{sub 2} DIAL measurements: effects due to beam propagation through atmospheric turbulence and extinction due to absorption by atmospheric gases. Measurements of atmospheric extinction under different atmospheric conditions are presented and compared to a standard atmospheric transmission model (FASCODE). We have also investigated the effects of atmospheric turbulence on system performance. Measurements of the effective beam size after propagation are compared to model predictions using simultaneous measurements of atmospheric turbulence as input to the model. These results are also discussed in the context of the overall effect of beam propagation through atmospheric turbulence on the sensitivity of DIAL measurements.

  6. Differential Optical Absorption Spectroscopy (DOAS) using Targets: SO2 and NO2 Measurements in Montevideo City

    NASA Astrophysics Data System (ADS)

    Louban, Ilia; Píriz, Gustavo; Platt, Ulrich; Frins, Erna

    2008-04-01

    SO2 and NO2 were remotely measured in a main street of Montevideo city using Multiaxis-Differential Optical Absorption Spectroscopy (MAX-DOAS) combined with on-field selected targets. Target-based measurements are the basis of a new experimental procedure called Topographic Target Light scattering-DOAS (TOTAL-DOAS) that provides a well define absorption path to measure the near surface distribution of trace gases in the boundary layer. It combines the measurement principles of the long-path DOAS and zenith-scattered sunlight DOAS, within the near UV and VIS spectral range. We give a general description of the procedure and present first results of the 2006 campaign at Montevideo.

  7. Atmospheric effects on CO{sub 2} differential absorption lidar performance

    SciTech Connect

    Petrin, R.R.; Quagliano, J.R.; Nelson, D.H.; Schmitt, M.J.; Quick, C.R.; Sander, R.K.; Tiee, J.J.; Whitehead, M.

    1996-05-01

    CO{sub 2} differential absorption lidar (DIAL) performance can be adversely affected by the ambient atmosphere between the laser transmitter and the target through a number of different processes. This work addresses two sources of atmospheric interference with multispectral CO{sub 2} DIAL measurements: effects due to beam propagation through atmospheric turbulence and extinction due to absorption by atmospheric gases. The authors compare measurements of the effective beam size after propagation to predictions from a beam propagation model that includes turbulence effects such as beam steering and beam spreading. They also compare the experimental measurements of atmospheric extinction to those predicted by both a standard atmospheric transmission model (FASCODE) and a chemometric analysis.

  8. Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone

    SciTech Connect

    Steinbrecht, W.; Carswell, A.I.

    1995-01-01

    Substantially increased aerosol backscattering and extinction after a major volcanic eruption can lead to errors in differential absorption lidar (DIAL) measurements of stratospheric ozone. Mie calculations, performed for the wavelengths 308 and 353 nm and based on size distributions measured over Laramie, Wyoming (41 deg), were used to assess size and temporal evolution of these errors. In many situations, neglecting the different aerosol backscattering at the absorption and reference wavelengths can lead to relative errors in the ozone concentration larger than 100% for the 308-, 353-nm pair. The error due to neglecting the differential aerosol extinction, however, will rarely exceed 2%. A correction for this differential extinction should only be attempted when high concentrations (greater than 100/cu cm) of small aerosol particles with radii below 0.1 micrometers are present, e.g., shortly after an eruption. A correction for the differential backscatter can be made by using additional lidar measurements at a second reference wavelength or by having general size distribution information on the aerosol. Possible corrections were tested and will usually reduce the error in the ozone concentration considerably. For the 308-, 353-nm pair, both Mie calculations and a comparison with ozone profiles from electrochemical cell sondes show, however, that even after the correction the uncertainty in the ozone concentration within some regions of the strongly enhanced Mt. Pinatubo aerosol layer can still be substantial, of the order of 10-50%. Wavelength separation smaller than 40 nm or use of wavelengths shorter than 300 nm will reduce the error. The best solution seems to be the addition of Raman channels. It avoids the large error due to the differential backscatter term.

  9. Cavity ring-down spectroscopy (CRDS) system for measuring atmospheric mercury using differential absorption

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Obrist, D.; Moosmuller, H.; Moore, C.

    2012-04-01

    Atmospheric elemental mercury (Hg0) is a globally pervasive element that can be transported and deposited to remote ecosystems where it poses — particularly in its methylated form — harm to many organisms including humans. Current techniques for measurement of atmospheric Hg0 require several liters of sample air and several minutes for each analysis. Fast-response (i.e., 1 second or faster) measurements would improve our ability to understand and track chemical cycling of mercury in the atmosphere, including high frequency Hg0 fluctuations, sources and sinks, and chemical transformation processes. We present theory, design, challenges, and current results of our new prototype sensor based on cavity ring-down spectroscopy (CRDS) for fast-response measurement of Hg0 mass concentrations. CRDS is a direct absorption technique that implements path-lengths of multiple kilometers in a compact absorption cell using high-reflectivity mirrors, thereby improving sensitivity and reducing sample volume compared to conventional absorption spectroscopy. Our sensor includes a frequency-doubled, dye-laser emitting laser pulses tunable from 215 to 280 nm, pumped by a Q-switched, frequency tripled Nd:YAG laser with a pulse repetition rate of 50 Hz. We present how we successfully perform automated wavelength locking and stabilization of the laser to the peak Hg0 absorption line at 253.65 nm using an external isotopically-enriched mercury (202Hg0) cell. An emphasis of this presentation will be on the implementation of differential absorption measurement whereby measurements are alternated between the peak Hg0 absorption wavelength and a nearby wavelength "off" the absorption line. This can be achieved using a piezo electric tuning element that allows for pulse-by-pulse tuning and detuning of the laser "online" and "offline" of the Hg absorption line, and thereby allows for continuous correction of baseline extinction losses. Unexpected challenges with this approach included

  10. A robust optical parametric oscillator and receiver telescope for differential absorption lidar of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Robinson, Iain; Jack, James W.; Rae, Cameron F.; Moncrieff, John B.

    2015-10-01

    We report the development of a differential absorption lidar instrument (DIAL) designed and built specifically for the measurement of anthropogenic greenhouse gases in the atmosphere. The DIAL is integrated into a commercial astronomical telescope to provide high-quality receiver optics and enable automated scanning for three-dimensional lidar acquisition. The instrument is portable and can be set up within a few hours in the field. The laser source is a pulsed optical parametric oscillator (OPO) which outputs light at a wavelength tunable near 1.6 μm. This wavelength region, which is also used in telecommunications devices, provides access to absorption lines in both carbon dioxide at 1573 nm and methane at 1646 nm. To achieve the critical temperature stability required for a laserbased field instrument the four-mirror OPO cavity is machined from a single aluminium block. A piezoactuator adjusts the cavity length to achieve resonance and this is maintained over temperature changes through the use of a feedback loop. The laser output is continuously monitored with pyroelectric detectors and a custom-built wavemeter. The OPO is injection seeded by a temperature-stabilized distributed feedback laser diode (DFB-LD) with a wavelength locked to the absorption line centre (on-line) using a gas cell containing pure carbon dioxide. A second DFB-LD is tuned to a nearby wavelength (off-line) to provide the reference required for differential absorption measurements. A similar system has been designed and built to provide the injection seeding wavelengths for methane. The system integrates the DFB-LDs, drivers, locking electronics, gas cell and balanced photodetectors. The results of test measurements of carbon dioxide are presented and the development of the system is discussed, including the adaptation required for the measurement of methane.

  11. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  12. Differential phase contrast X-ray imaging system and components

    DOEpatents

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  13. Differential encoding for multiple amplitude and phase shift keying systems

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1978-01-01

    Because of the symmetry in most two-dimensional signal constellations, ambiguities exist at the receiver as to the exact phase orientation of the received signal set. In PSK systems, this ambiguity is resolved by the use of differential encoding. This paper presents differential encoding techniques which can be used with a variety of symmetric signal sets to remove their phase ambiguity. While not proven to be optimum, the techniques do have low performance penalties relative to the uncoded performance. The key to reducing the performance penalty is to use the minimum amount of differential encoding necessary to resolve the ambiguity. Examples of encoding techniques for several common signal constellations are given, including their performance penalties.

  14. Capturing CO2 into the precipitate of a phase-changing solvent after absorption.

    PubMed

    Zheng, Shudong; Tao, Mengna; Liu, Qing; Ning, Liqi; He, Yi; Shi, Yao

    2014-01-01

    The major drawback of aqueous alkanolamine-based CO2 capture processes is the high energy penalty for regeneration. To overcome this weakness, we studied the absorption of CO2 with amines dissolved in nonaqueous solvents. It was observed that triethylenetetramine (TETA) dissolved in ethanol produces a solid precipitate after absorption, which can then be easily separated and regenerated. As a comparison, a TETA/water solution does not form any precipitate after absorbing CO2. The TETA/ethanol solution offers several advantages for CO2 capture in absorption rate, absorption capacity, and absorbent regenerability. Both the rate and capacity of CO2 absorption with the TETA/ethanol solution were significantly higher than with a TETA/water solution, because ethanol not only promotes the solubility of CO2 in the liquid phase but also facilitates the chemical reaction between TETA and CO2. This approach was able to capture 81.8% of the absorbed CO2 in the solid phase as TETA-carbamate. In addition, results show that the decomposition of TETA-carbamate can be completed at 90 °C. Moreover, the cycling absorption/regeneration runs of the TETA/ethanol solution display a relatively stable absorption performance.

  15. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  16. Differential absorption and Raman lidar for water vapor profile measurements - A review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  17. Investigation of potential of differential absorption Lidar techniques for remote sensing of atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Butler, C. F.; Shipley, S. T.; Allen, R. J.

    1981-01-01

    The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.

  18. Operating range of a differential-absorption lidar based on a CO{sub 2} laser

    SciTech Connect

    Ivashchenko, M V; Sherstov, I V

    2000-08-31

    The echolocation range and the remote sensing of ethylene in the atmosphere are simulated for a differential-absorption lidar based on TEA CO{sub 2} lasers. The dependence of the lidar echolocation range on the energy and the peak power of probe pulses is shown to be close to logarithmic. It is demonstrated that the use of narrow-band spectral filters is justified only for low-noise detectors and viewing angles of the receiver exceeding 5 mrad. The relative measurement error of the ethylene concentration in the atmosphere is estimated for various detection modes. (laser applications and other topics in quantum electronics)

  19. Pressure Measurement in Supersonic Air Flow by Differential Absorptive Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Herring, Gregory C.; Balla, Robert J.

    2007-01-01

    Nonintrusive, off-body flow barometry in Mach-2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, stream-wise velocity and static gas temperature of the same spatially-resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  20. Pressure measurement in supersonic air flow by differential absorptive laser-induced thermal acoustics.

    PubMed

    Hart, Roger C; Herring, G C; Balla, R Jeffrey

    2007-06-15

    Nonintrusive, off-body flow barometry in Mach 2 airflow has been demonstrated in a large-scale supersonic wind tunnel using seedless laser-induced thermal acoustics (LITA). The static pressure of the gas flow is determined with a novel differential absorption measurement of the ultrasonic sound produced by the LITA pump process. Simultaneously, the streamwise velocity and static gas temperature of the same spatially resolved sample volume were measured with this nonresonant time-averaged LITA technique. Mach number, temperature, and pressure have 0.2%, 0.4%, and 4% rms agreement, respectively, in comparison with known free-stream conditions.

  1. Advances in Diode-Laser-Based Water Vapor Differential Absorption Lidar

    NASA Astrophysics Data System (ADS)

    Spuler, Scott; Repasky, Kevin; Morley, Bruce; Moen, Drew; Weckwerth, Tammy; Hayman, Matt; Nehrir, Amin

    2016-06-01

    An advanced diode-laser-based water vapor differential absorption lidar (WV-DIAL) has been developed. The next generation design was built on the success of previous diode-laser-based prototypes and enables accurate measurement of water vapor closer to the ground surface, in rapidly changing atmospheric conditions, and in daytime cloudy conditions up to cloud base. The lidar provides up to 1 min resolution, 150 m range resolved measurements of water vapor in a broad range of atmospheric conditions. A description of the instrument and results from its initial field test in 2014 are discussed.

  2. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC)

    PubMed Central

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification—an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel. PMID:28152023

  3. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC).

    PubMed

    Phillips, Zachary F; Chen, Michael; Waller, Laura

    2017-01-01

    We present a new technique for quantitative phase and amplitude microscopy from a single color image with coded illumination. Our system consists of a commercial brightfield microscope with one hardware modification-an inexpensive 3D printed condenser insert. The method, color-multiplexed Differential Phase Contrast (cDPC), is a single-shot variant of Differential Phase Contrast (DPC), which recovers the phase of a sample from images with asymmetric illumination. We employ partially coherent illumination to achieve resolution corresponding to 2× the objective NA. Quantitative phase can then be used to synthesize DIC and phase contrast images or extract shape and density. We demonstrate amplitude and phase recovery at camera-limited frame rates (50 fps) for various in vitro cell samples and c. elegans in a micro-fluidic channel.

  4. Phase Effects on Mesoscale Object X-ray Absorption Images

    SciTech Connect

    Martz, Jr., H E; Aufderheide, M B; Barty, A; Lehman, S K; Kozioziemski, B J; Schneberk, D J

    2004-09-24

    At Lawrence Livermore National Laboratory particular emphasis is being placed on the nondestructive characterization (NDC) of 'mesoscale' objects.[Martz and Albrecht 2003] We define mesoscale objects as objects that have mm extent with {micro}m features. Here we confine our discussions to x-ray imaging methods applicable to mesoscale object characterization. The goal is object recovery algorithms including phase to enable emerging high-spatial resolution x-ray imaging methods to ''see'' inside or image mesoscale-size materials and objects. To be successful our imaging characterization effort must be able to recover the object function to one micrometer or better spatial resolution over a few millimeters field-of-view with very high contrast.

  5. Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania

    2011-01-01

    A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.

  6. Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie

    2009-01-01

    A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration

  7. Phase-sensitive optical coherence reflectometer with differential phase-shift keying of probe pulses

    SciTech Connect

    Alekseev, A E; Vdovenko, V S; Sergachev, I A; Simikin, D E; Gorshkov, B G; Potapov, V T

    2014-10-31

    We report a new method for reconstructing the signal shape of the external dynamic perturbations along the entire length of the fibre of an optical coherence reflectometer. The method proposed is based on differential phase-shift keying of a probe pulse and demodulation of scattered light by the phase diversity technique. Possibilities of the method are demonstrated experimentally. (fibre-optic sensors)

  8. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  9. Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing.

    PubMed

    Ridley, K D; Pearson, G N; Harris, M

    2001-04-20

    Remote detection of gaseous pollutants and other atmospheric constituents can be achieved with differential absorption lidar (DIAL) methods. The technique relies on the transmission of two or more laser wavelengths and exploits absorption features in the target gas by measuring the ratio of their detected powers to determine gas concentration. A common mode of operation is when the transmitter and receiver are collocated, and the absorption is measured over a return trip by a randomly scattering topographic target. Hence, in coherent DIAL, speckle fluctuation leads to a large uncertainty in the detected powers unless the signal is averaged over multiple correlation times, i.e., over many independent speckles. We examine a continuous-wave coherent DIAL system in which the laser wavelengths are transmitted and received by the same single-mode optical fibers. This ensures that the two wavelengths share a common spatial mode, which, for certain transmitter and target parameters, enables highly correlated speckle fluctuations to be readily achieved in practice. For a DIAL system, this gives the potential for improved accuracy in a given observation time. A theoretical analysis quantifies this benefit as a function of the degree of correlation between the two time series (which depends on wavelength separation and target depth). The results are compared with both a numerical simulation and a laboratory-based experiment.

  10. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Borel, Christoph C.; Schlaepfer, Daniel

    1996-01-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels; (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels. (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an "Atmospheric Pre-corrected Differential Absorption" (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than +5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  11. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  12. Multi-phase functionalization of titanium for enhanced photon absorption in the vis-NIR region

    PubMed Central

    Thakur, Pooja; Tan, Bo; Venkatakrishnan, Krishnan

    2015-01-01

    Inadequate absorption of Near Infrared (NIR) photons by conventional silicon solar cells has been a major stumbling block towards the attainment of a high efficiency “full spectrum” solar cell. An effective enhancement in the absorption of such photons is desired as they account for a considerable portion of the tappable solar energy. In this work, we report a remarkable gain observed in the absorption of photons in the near infrared and visible region (400 nm–1000 nm) by a novel multi-phased oxide of titanium. Synthesised via a single step ultra-fast laser pulse interaction with pure titanium, characterisation studies have identified this oxide of titanium to be multi-phased and composed of Ti3O, (TiO.716)3.76 and TiO2 (rutile). Computed to have an average band gap value of 2.39 eV, this ultrafast laser induced multi-phased titanium oxide has especially exhibited steady absorption capability in the NIR range of 750–1000 nm, which to the best of our knowledge, was never reported before. The unique NIR absorption properties of the laser functionalised titanium coupled with the simplicity and versatility of the ultrafast laser interaction process involved thereby provides tremendous potential towards the photon sensitization of titanium and thereafter for the inception of a “full spectrum” solar device. PMID:26477578

  13. High energy X-ray phase and dark-field imaging using a random absorption mask.

    PubMed

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  14. Absorption intensity tunability in the near infrared region using phase-change nanostructure (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ozdemir, Abdurrahman; Saraydemir, Safak; Barut, Bilal; Kocer, Hasan

    2015-08-01

    Nanostructured thin film absorbers embedded with phase-change material (PCM) can provide large level of absorption intensity tunability in the near-infrared region. Germanium Antimonide Tellurite (Ge2Sb1Te4-GST) was employed as the phase-change material in the designed structures. The structure is composed of a periodic grating-type array of 200 nm thick Au buried with 100 nm-thick GST layer from the top of the Au layer. The period of the gratings is 2 μm and in each period, GST width is 0.5 μm. GST was selected as the active PCM because its optical properties undergo a substantial change during a structural transition from the amorphous to the crystalline phase. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. It was shown that absorption intensity in the near-infrared region was tuned from the near-perfect to the near-zero level by switching the PCM from its amorphous to crystalline states. The distributions of the electric field and absorbed power at the resonant wavelengths with respect to different phases of the GST were investigated to further explain the physical origin of the absorption tuning. This study provides a path toward the realization of tunable infrared absorbers for the applications, such as selective infrared emitters, infrared camouflage, sensors, and photovoltaic devices.

  15. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    PubMed

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  16. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    NASA Astrophysics Data System (ADS)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  17. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.

    PubMed

    Steinlechner, Jessica; Jensen, Lars; Krüger, Christoph; Lastzka, Nico; Steinlechner, Sebastian; Schnabel, Roman

    2012-03-10

    We propose and demonstrate a new measurement technique for the optical absorption of high-reflection coatings. Our technique is based on photothermal self-phase modulation and exploits the deformation of cavity Airy peaks that occurs due to coating absorption of intracavity light. The mirror whose coating is under investigation needs to be the input mirror of a high-finesse cavity. Our example measurements were performed on a high-reflection SiO2-Ta2O5 coating in a three-mirror ring-cavity setup at a wavelength of 1064 nm. The optical absorption of the coating was determined to be α=(23.9±2.0)·10(-6) per coating. Our result is in excellent agreement with an independently performed laser calorimetry measurement that gave a value of α=(24.4±3.2)·10(-6) per coating. Since the self-phase modulation in our coating-absorption measurement affects mainly the propagation through the cavity input mirror, our measurement result is practically uninfluenced by the optical absorption of the other cavity mirrors.

  18. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO{sub 2} differential absorption LIDAR (DIAL)

    SciTech Connect

    Nelson, D.H.; Petrin, R.R.; MacKerrow, E.P.; Schmitt, M.J.; Quick, C.R.; Zardecki, A.; Porch, W.M.; Whitehead, M.; Walters, D.L.

    1998-09-01

    The measurement sensitivity of CO{sub 2} differential absorption LIDAR (DIAL) can be affected by a number of different processes. The authors address the interaction of two of these processes: effects due to beam propagation through atmospheric turbulence and effects due to reflective speckle. Atmospheric turbulence affects the beam distribution of energy and phase on target. These effects include beam spreading, beam wander and scintillation which can result in increased shot-to-shot signal noise. In addition, reflective speckle alone has a major impact on the sensitivity of CO{sub 2} DIAL. The interaction of atmospheric turbulence and reflective speckle is of great importance in the performance of a DIAL system. A Huygens-Fresnel wave optics propagation code has previously been developed at the Naval Postgraduate School that models the effects of atmospheric turbulence as propagation through a series of phase screens with appropriate atmospheric statistical characteristics. This code has been modified to include the effects of reflective speckle. The performance of this modified code with respect to the combined effects of atmospheric turbulence and reflective speckle is examined. Results are compared with a combination of experimental data and analytical models.

  19. Data Analysis of a Pulsed 2-micron Coherent Differential Absorption Lidar For Atmospheric CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Lu, J.; Yu, J.

    2013-12-01

    The study of climate change requires precise measurement of the production, migration, and sinking of greenhouse gases. Carbon Dioxide (CO2) is one of the principal greenhouse gases. NASA Langley Research Center (LARC) has developed a pulsed 2-micron coherent differential absorption lidar (DiAL) for CO2 measurement, operating on the R30 absorption line. On April 5, 2010, the lidar instrument transmitted alternating On-line and Off-line pulses from LARC into a residential area in Poquoson, Virginia; while a passive in-situ sensor measured the local CO2 concentration. This paper outlines a procedure to estimate CO2 concentration from atmospheric lidar return signal using the DiAL method; our calculation produced results in line with the in-situ measurement and matched the current state of DiAL instrument accuracy. Data from April 5 is part of a series of experiments validating the measurement accuracy and precision of this lidar. After a summative verification, a packaged lidar may be installed on research aircraft to perform CO2 studies at a great range of latitudes throughout the year, and to discover sources, sinks, and migration trends for this key greenhouse gas. The following procedure is used to estimate CO2 concentration from atmospheric lidar return using the DiAL method. First, MATLAB software developed at LARC sorts the lidar return into On-only and Off-only files containing pulses of only that type. The sorted pulses are reexamined for quality based on the center frequency, energy, and power - unsatisfactory pulses are removed. A 512-point Fast Fourier Transform (FFT) with 256-point shift is performed on each pulse to discretize the atmospheric return signal according to 63 distance 'bins'. Next, comparing decay rates of the On-line and Off-line atmospheric return intensity with distance yields the Differential Absorption Optical Slope (DAOD), which is proportional to the concentration of the desired gas. Then, in-situ meteorological data - pressure

  20. Phase-dependent multiple optomechanically induced absorption in multimode optomechanical systems with mechanical driving

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Cui, Yuanshun; Bian, Xintian; Zuo, Fen; Yu, Hualing; Chen, Guibin

    2016-08-01

    We investigate theoretically the response of the output field from an optomechanical system consisting of N nearly degenerate mechanical resonators each coupled to a common cavity mode. When the cavity is driven simultaneously by a strong control field and a weak probe field and each mechanical resonator is driven by a coherent mechanical pump, we obtain the analytical expression for the probe transmission. We show that the probe transmission spectrum can exhibit multiple optomechanically induced absorption (OMIA) with at most N narrow absorption dips, which can be tuned by the phase and amplitude of the mechanical driving field as well as the control field. Moreover, it is shown that the peak probe transmission can be enhanced or suppressed by increasing the amplitude of the mechanical pump, which depends on the phase difference. This phase-dependent effect plays an important role in controlling the propagation of the probe field between OMIA and parametric amplification.

  1. Development of a Pulsed 2-Micron Integrated Path Differential Absorption Lidar for CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Refaat, Tamer

    2013-01-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center

  2. Predictions of silicon avalanche photodiode detector performance in water vapor differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Kenimer, R. L.

    1988-01-01

    Performance analyses are presented which establish that over most of the range of signals expected for a down-looking differential absorption lidar (DIAL) operated at 16 km the silicon avalanche photodiode (APD) is the preferred detector for DIAL measurements of atmospheric water vapor in the 730 nm spectral region. The higher quantum efficiency of the APD's, (0.8-0.9) compared to a photomultiplier's (0.04-0.18) more than offsets the higher noise of an APD receiver. In addition to offering lower noise and hence lower random error the APD's excellent linearity and impulse recovery minimize DIAL systematic errors attributable to the detector. Estimates of the effect of detector system parameters on overall random and systematic DIAL errors are presented, and performance predictions are supported by laboratory characterization data for an APD receiver system.

  3. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    PubMed

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period.

  4. Development of a pulsed 2-micron integrated path differential absorption lidar for CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl

    2013-09-01

    Atmospheric carbon dioxide (CO2) is an important greenhouse gas that significantly contributes to the carbon cycle and global radiation budget on Earth. Active remote sensing of CO2 is important to address several limitations that contend with passive sensors. A 2-micron double-pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This active remote sensing instrument will provide an alternate approach of measuring atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise ratio level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. Commercial, on the shelf, components are implemented for the detection system. Instrument integration will be presented in this paper as well as a background for CO2 measurement at NASA Langley research Center.

  5. Development and Testing of a Differential Absorption LIDAR system for Greenhouse Gas Measurements

    NASA Astrophysics Data System (ADS)

    Maxwell, S. E.; Douglass, K.; Plusquellic, D.; Whetstone, J. R.

    2013-12-01

    Our objective is to develop accurate and reliable methods for quantifying distributed carbon sources and sinks to support both mitigation efforts and climate change research. We will describe progress toward a field-deployable, eye-safe differential absorption LIDAR system. The current version of our system utilizes a high repetition rate (>200 kHz), 200 ns pulsed fiber amplifier driven by tunable DFB lasers around 1602 nm. Collection is performed using a small (3' diameter) telescope and an avalanche photodiode. We demonstrate a rapid hard target measurement of ambient levels of CO2 in our 100m test facility using low powers from the fiber laser and a highly-retro-reflecting target. We also discuss progress toward a range resolved measurement in the test facility, planned upgrades to the facility, and the development of a low-backscatter beam dump for range-limited applications.

  6. Determining crystal phase purity in c-BP through X-ray absorption spectroscopy.

    PubMed

    Huber, S P; Medvedev, V V; Gullikson, E; Padavala, B; Edgar, J H; van de Kruijs, R W E; Bijkerk, F; Prendergast, D

    2017-02-02

    We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.

  7. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Theory and simulations

    SciTech Connect

    Borel, C.C.; Schlaepfer, D.

    1996-03-01

    Two different approaches exist to retrieve columnar water vapor from imaging spectrometer data: (1) Differential absorption techniques based on: (a) Narrow-Wide (N/W) ratio between overlapping spectrally wide and narrow channels (b) Continuum Interpolated Band Ratio (CIBR) between a measurement channel and the weighted sum of two reference channels; and (2) Non-linear fitting techniques which are based on spectral radiative transfer calculations. The advantage of the first approach is computational speed and of the second, improved retrieval accuracy. Our goal was to improve the accuracy of the first technique using physics based on radiative transfer. Using a modified version of the Duntley equation, we derived an {open_quote}Atmospheric Pre-corrected Differential Absorption{close_quote} (APDA) technique and described an iterative scheme to retrieve water vapor on a pixel-by-pixel basis. Next we compared both, the CIBR and the APDA using the Duntley equation for MODTRAN3 computed irradiances, transmissions and path radiance (using the DISORT option). This simulation showed that the CIBR is very sensitive to reflectance effects and that the APDA performs much better. An extensive data set was created with the radiative transfer code 6S over 379 different ground reflectance spectra. The calculated relative water vapor error was reduced significantly for the APDA. The APDA technique had about 8% (vs. over 35% for the CIBR) of the 379 spectra with a relative water vapor error of greater than {+-}5%. The APDA has been applied to 1991 and 1995 AVIRIS scenes which visually demonstrate the improvement over the CIBR technique.

  8. Development of a differential absorption lidar for identification of carbon sequestration site leakage

    NASA Astrophysics Data System (ADS)

    Johnson, William Eric

    This thesis describes the development and deployment of a near-infrared scanning micropulse differential absorption lidar (DIAL) system for monitoring carbon dioxide sequestration site integrity. The DIAL utilizes a custom-built lidar (light detection and ranging) transmitter system based on two commercial tunable diode lasers operating at 1.571 microm, an acousto-optic modulator, fiber optic switches, and an Erbium-doped fiber amplifier to generate 65 microJ 200 ns pulses at a 15 kHz repetition rate. Backscattered laser transmitter light is collected with an 11 inch Schmidt-Cassegrain telescope where it is optically filtered to reduce background noise. A fiber-coupled photomultiplier tube operating in the photon counting mode is then used to monitor the collected return signal. Averaging over periods typically of one hour permit range-resolved measurements of carbon dioxide from 1 to 2.5 km with a typical error of 40 ppm. For monitoring a field site, the system scans over a field area by pointing the transmitter and receiver with a computer controlled motorized commercial telescope base. The system has made autonomous field measurements in an agricultural field adjacent to Montana State University and at the Kevin Dome carbon sequestration site in rural northern Montana. Comparisons have been made with an in situ sensor showing agreement between the two measurements to within the 40 error of the DIAL. In addition to the work on the 1.57 micron DIAL, this thesis also presents work done at NASA Langley Research Center on the development and deployment of a 2 micron integrated path differential absorption (IPDA) lidar. The 2 micron system utilizes a low repetition rate 140 mJ double pulsed Ho:Tm:YLF laser developed at NASA Langley.

  9. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis.

    PubMed

    Dufour, Emmanuel; Bréon, François-Marie

    2003-06-20

    For better knowledge of the carbon cycle, there is a need for spaceborne measurements of atmospheric CO2 concentration. Because the gradients are relatively small, the accuracy requirements are better than 1%. We analyze the feasibility of a CO2-weighted-column estimate, using the differential absorption technique, from high-resolution spectroscopic measurements in the 1.6- and 2-microm CO2 absorption bands. Several sources of uncertainty that can be neglected for other gases with less stringent accuracy requirements need to be assessed. We attempt a quantification of errors due to the radiometric noise, uncertainties in the temperature, humidity and surface pressure uncertainty, spectroscopic coefficients, and atmospheric scattering. Atmospheric scattering is the major source of error [5 parts per 10 (ppm) for a subvisual cirrus cloud with an assumed optical thickness of 0.03], and additional research is needed to properly assess the accuracy of correction methods. Spectroscopic data are currently a major source of uncertainty but can be improved with specific ground-based sunphotometry measurements. The other sources of error amount to several ppm, which is less than, but close to, the accuracy requirements. Fortunately, these errors are mostly random and will therefore be reduced by proper averaging.

  10. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  11. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  12. High-resolution atmospheric water vapor measurements with a scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, F.; Behrendt, A.; Muppa, S. K.; Metzendorf, S.; Riede, A.; Wulfmeyer, V.

    2014-11-01

    The scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) is presented. The UHOH DIAL is equipped with an injection-seeded frequency-stabilized high-power Ti:sapphire laser operated at 818 nm with a repetition rate of 250 Hz. A scanning transceiver unit with a 80 cm primary mirror receives the atmospheric backscatter signals. The system is capable of water vapor measurements with temporal resolutions of a few seconds and a range resolution between 30 and 300 m at daytime. It allows to investigate surface-vegetation-atmosphere exchange processes with high resolution. In this paper, we present the design of the instrument and illustrate its performance with recent water vapor measurements taken in Stuttgart-Hohenheim and in the frame of the HD(CP)2 Observational Prototype Experiment (HOPE). HOPE was located near research center Jülich, in western Germany, in spring 2013 as part of the project "High Definition of Clouds and Precipitation for advancing Climate Prediction" (HD(CP)2). Scanning measurements reveal the 3-dimensional structures of the water vapor field. The influence of uncertainties within the calculation of the absorption cross-section at wavelengths around 818 nm for the WV retrieval is discussed. Radiosonde intercomparisons show a very small bias between the instruments of only (-0.04 ± 0.11) g m-3 or (-1.0 ± 2.3) % in the height range of 0.5 to 3 km.

  13. Development of a Ground-Based Differential Absorption Lidar for High Accurate Measurements of Vertical CO2 Concentration Profiles

    NASA Astrophysics Data System (ADS)

    Nagasawa, Chikao; Abo, Makoto; Shibata, Yasukuni; Nagai, Tomohiro; Nakazato, Masahisa; Sakai, Tetsu; Tsukamoto, Makoto; Sakaizawa, Daisuku

    2010-05-01

    High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve high accurate measurements of vertical CO2 profiles in the atmosphere. The DIAL system is constructed from the optical parametric oscillation(OPO) transmitter and the direct detection receiving system that included a near-infrared photomultiplier tube operating at photon counting mode. The primitive DIAL measurement was achieved successfully the vertical CO2 profile up to 7 km altitude with an error less than 1.0 % by integration time of 50 minutes and vertical resolution of 150m. We are developing the next generation 1.6 μm DIAL that can measure simultaneously the vertical CO2 concentration, temperature and pressure profiles in the atmosphere. The output laser of the OPO is 20mJ at a 500 Hz repetition rate and a 600mm diameter telescope is employed for this measurement. A very narrow interference filter (0.5nm FWHM) is used for daytime measurement. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement may be realized. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration, temperature and pressure, which measured by DIAL techniques. This work was financially supported by the Japan EOS Promotion Program by the MEXT Japan and System Development Program for Advanced Measurement and Analysis by the JST. Reference D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, H. Nagai, M. Nakazato, and T. Sakai, Development of a 1.6μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and

  14. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2016-10-19

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method.

  15. Coherent differential absorption lidar for combined measurement of wind and trace atmospheric gases

    NASA Astrophysics Data System (ADS)

    Koch, Grady James

    A lidar system was developed for making combined range-resolved measurements of wind speed and direction, water vapor concentration, and carbon dioxide concentration in the atmosphere. This lidar combines the coherent Doppler technique for wind detection and the differential absorption lidar (DIAL) technique to provide a multifunctional capability. DIAL and coherent lidars have traditionally been thought of and implemented as separate instruments, but the research reported here has shown a demonstration of combining the coherent and DIAL techniques into a single instrument using solid-state lasers. The lasers used are of Ho:Tm:YLF, which operates at a wavelength of 2 mum. This wavelength is a further advantage to the lidar, as this wavelength offers a much higher level of eyesafety than shorter wavelengths conventionally used for DIAL. Two generations are lidars are described, with the first design making combined measurement of wind and water vapor. Wind speed measurements are shown of a precision better than 1 m/s, making it useful for many meteorological applications. Water vapor concentration measurements were of 86% accuracy, requiring improvement for scientific applications. This preliminary experiment revealed the largest source of error in concentration measurement to be a lack of stability in the wavelength of the laser. This problem was solved by implementing a means to precisely control the continuous-wave laser that injection seeds a pulsed laser. The finely tunable Ho:Tm:YLF laser was stabilized to absorption lines of both carbon dioxide and water vapor using a wavelength modulation technique. Long-term stabilization to within 13.5 MHz of absorption line center is shown, representing the first frequency-stabilized laser at or within 500 run of 2mum wavelength. Results are presented on injection seeding a pulsed Ho:Tm:YLF laser to impart the tunability and stabilization to the pulsed laser output. The stabilized laser system was incorporated into a

  16. Error analysis of Raman differential absorption lidar ozone measurements in ice clouds.

    PubMed

    Reichardt, J

    2000-11-20

    A formalism for the error treatment of lidar ozone measurements with the Raman differential absorption lidar technique is presented. In the presence of clouds wavelength-dependent multiple scattering and cloud-particle extinction are the main sources of systematic errors in ozone measurements and necessitate a correction of the measured ozone profiles. Model calculations are performed to describe the influence of cirrus and polar stratospheric clouds on the ozone. It is found that it is sufficient to account for cloud-particle scattering and Rayleigh scattering in and above the cloud; boundary-layer aerosols and the atmospheric column below the cloud can be neglected for the ozone correction. Furthermore, if the extinction coefficient of the cloud is ?0.1 km(-1), the effect in the cloud is proportional to the effective particle extinction and to a particle correction function determined in the limit of negligible molecular scattering. The particle correction function depends on the scattering behavior of the cloud particles, the cloud geometric structure, and the lidar system parameters. Because of the differential extinction of light that has undergone one or more small-angle scattering processes within the cloud, the cloud effect on ozone extends to altitudes above the cloud. The various influencing parameters imply that the particle-related ozone correction has to be calculated for each individual measurement. Examples of ozone measurements in cirrus clouds are discussed.

  17. Deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy. Revision 1

    SciTech Connect

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1994-01-01

    This document reports deuterium absorption and material phase characteristics of SAES St 198 Zr-Fe Alloy (76.5% Zr). Scanning electron microscope images of polished surfaces, electron probe microanalysis, and x-ray powder diffractometry indicated the presence of a primary Zr{sub 2}Fe phase with secondary phases of ZrFe{sub 2}, Zr{sub 5}FeSn, {alpha}-Zr, and Zr{sub 6}Fe{sub 3}O. A statistically designed experiment to determine the effects of temperature, time, and vacuum quality on activation of St 198 revealed that, when activated at low temperature (350C), deuterium absorption rate was slower when the vacuum quality was poor (2.5 Pa vs. 3 {times} 10{sup {minus}4} Pa). However, at higher activation temperature (500C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200 to 500C. The P-C-T data over the full range of deuterium loading and at temperatures of 350C and below is described an expression. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D{sub 2} from the gas phase. X-ray diffraction and other data suggest these reactions to be: 2 Zr{sub 2}FeD{sub x} {yields} xZrD{sub 2} + x/3 ZrFe{sub 2} + (2 {minus} 2/3x) Zr{sub 2}Fe and Zr{sub 2}FeD{sub x} + (2 {minus} 1/2x) D{sub 2} {yields} 2 ZrD{sub 2} + Fe, where 0 < x < 3. Reaction between gas-phase deuterium and Zr{sub 2}Fe formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction.

  18. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach

    SciTech Connect

    Fredenberg, Erik; Danielsson, Mats; Stayman, J. Webster; Siewerdsen, Jeffrey H.; Aslund, Magnus

    2012-09-15

    Purpose: To provide a cascaded-systems framework based on the noise-power spectrum (NPS), modulation transfer function (MTF), and noise-equivalent number of quanta (NEQ) for quantitative evaluation of differential phase-contrast imaging (Talbot interferometry) in relation to conventional absorption contrast under equal-dose, equal-geometry, and, to some extent, equal-photon-economy constraints. The focus is a geometry for photon-counting mammography. Methods: Phase-contrast imaging is a promising technology that may emerge as an alternative or adjunct to conventional absorption contrast. In particular, phase contrast may increase the signal-difference-to-noise ratio compared to absorption contrast because the difference in phase shift between soft-tissue structures is often substantially larger than the absorption difference. We have developed a comprehensive cascaded-systems framework to investigate Talbot interferometry, which is a technique for differential phase-contrast imaging. Analytical expressions for the MTF and NPS were derived to calculate the NEQ and a task-specific ideal-observer detectability index under assumptions of linearity and shift invariance. Talbot interferometry was compared to absorption contrast at equal dose, and using either a plane wave or a spherical wave in a conceivable mammography geometry. The impact of source size and spectrum bandwidth was included in the framework, and the trade-off with photon economy was investigated in some detail. Wave-propagation simulations were used to verify the analytical expressions and to generate example images. Results: Talbot interferometry inherently detects the differential of the phase, which led to a maximum in NEQ at high spatial frequencies, whereas the absorption-contrast NEQ decreased monotonically with frequency. Further, phase contrast detects differences in density rather than atomic number, and the optimal imaging energy was found to be a factor of 1.7 higher than for absorption

  19. Influence of the intermediate digestion phases of common formulation lipids on the absorption of a poorly water-soluble drug.

    PubMed

    Kossena, Greg A; Charman, William N; Boyd, Ben J; Porter, Christopher J H

    2005-03-01

    The influence of different model intestinal phases (modelled on those likely to be produced in vivo after the digestion of commonly used formulation lipids) on the absorption profile of cinnarizine has been studied. Combinations of C8, C12, or C18:1 fatty acid and monoglyceride and simulated endogenous intestinal fluid were formulated to provide examples of liquid (L1), lamellar (L(alpha)), and cubic (C) liquid crystalline phases. Phases containing cinnarizine were dosed intraduodenally and absorption was assessed in an anesthetized rat model. Bile duct ligation was performed to inhibit the effects of digestion/dilution on the phase structure. Absorption from the L(alpha) phases (C8 and C12 lipids) was statistically higher (p < 0.05) than a cinnarizine suspension: however, a statistically significant difference was not observed from the L1 and C phases. The rigid C18:1 C phase showed evidence of providing for sustained drug absorption. Experiments in bile intact rats with the C8 L(alpha) and C18:1 C phase highlighted that the absorption-modifying properties of these phases were influenced by dilution in the endogenous bile milieu, with absorption from L(alpha) phase reducing (possibly through precipitation of solubilized drug) and increasing in the case of the C18:1 C phase, possibly through the coexistence of L1 and C upon dilution permitting more efficient transfer of solubilized drug.

  20. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, M. H.; Houmøller, J.; Brøndsted Nielsen, S.

    2016-09-01

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm-1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  1. The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions.

    PubMed

    Mansour, Heidi M; Zografi, George

    2007-02-01

    Water vapor absorption and desorption at 25 degrees C and phase transition temperatures of phospholipid bilayers were measured as a function of relative humidity (RH) to better understand how the patterns of water vapor absorption and desorption are linked to corresponding phase changes induced by the level of hydration. Comparisons were made of the dipalmitoyl and palmitoyloleyol esters of glycerol derivatized with phosphatidyl-choline, -glycerol, -ethanolamine and with phosphatidic acid. The results suggest that the extent of water vapor absorption and desorption at a given RH reflects the combined effects of water-polar group interaction and access of water to the polar region as controlled by intra- and interbilayer molecular packing and intermolecular attractive and repulsive interactions. The results further suggest that the extent of water vapor absorption and desorption over a range of relative humidities reflects the combined effects of the polar group's ability to interact with water, the access that water has to the polar groups as determined by molecular size and various intermolecular and intrabilayer forces of attraction and repulsion, and interbilayer interactions which influence the degree of order/disorder present in the overall solid-state structure. This behavior is also reflected in the changes observed in the various bilayer phase transition temperatures as a function of RH. Analyses of absorption isotherms suggests that after exceeding a critical RH, water initially interacting with these phospholipids most likely forms either stoichiometric or nonstoichiometric crystal hydrates, as with the disaturated derivatives, or hydrated mesophases, as with the gel states of the monounsaturated derivatives.

  2. Extending differential optical absorption spectroscopy for limb measurements in the UV

    NASA Astrophysics Data System (ADS)

    Puä·Ä«Te, J.; Kühl, S.; Deutschmann, T.; Platt, U.; Wagner, T.

    2010-05-01

    Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS). While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations. For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry) the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength. However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended) DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs), but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling. We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis

  3. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2008-10-21

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  4. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-03

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  5. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-10-02

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  6. Method of differential-phase/absolute-amplitude QAM

    SciTech Connect

    Dimsdle, Jeffrey William

    2009-09-01

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Method of differential-phase/absolute-amplitude QAM

    DOEpatents

    Dimsdle, Jeffrey William

    2007-07-17

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. PHASE ANGLE EFFECTS ON 3 μm ABSORPTION BAND ON CERES: IMPLICATIONS FOR DAWN MISSION

    SciTech Connect

    Takir, D.; Reddy, V.; Sanchez, J. A.; Corre, L. Le; Hardersen, P. S.; Nathues, A.

    2015-05-01

    Phase angle-induced spectral effects are important to characterize since they affect spectral band parameters such as band depth and band center, and therefore skew mineralogical interpretations of planetary bodies via reflectance spectroscopy. Dwarf planet (1) Ceres is the next target of NASA’s Dawn mission, which is expected to arrive in 2015 March. The visible and near-infrared mapping spectrometer (VIR) on board Dawn has the spatial and spectral range to characterize the surface between 0.25–5.0 μm. Ceres has an absorption feature at 3.0 μm due to hydroxyl- and/or water-bearing minerals. We analyzed phase angle-induced spectral effects on the 3 μm absorption band on Ceres using spectra measured with the long-wavelength cross-dispersed (LXD: 1.9–4.2 μm) mode of the SpeX spectrograph/imager at the NASA Infrared Telescope Facility. Ceres LXD spectra were measured at different phase angles ranging from 0.°7 to 22°. We found that the band center slightly increases from 3.06 μm at lower phase angles (0.°7 and 6°) to 3.07 μm at higher phase angles (11° and 22°), the band depth decreases by ∼20% from lower phase angles to higher phase angles, and the band area decreases by ∼25% from lower phase angles to higher phase angles. Our results will have implications for constraining the abundance of OH on the surface of Ceres from VIR spectral data, which will be acquired by Dawn starting spring 2015.

  9. Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide.

    PubMed

    Nakazato, Masahisa; Nagai, Tomohiro; Sakai, Tetsu; Hirose, Yasuo

    2007-04-20

    A UV ozone differential-absorption lidar (DIAL) utilizing a Nd:YAG laser and a single Raman cell filled with carbon dioxide (CO(2)) is designed, developed, and evaluated. The generated wavelengths are 276, 287, and 299 nm, comprising the first to third Stokes lines of the stimulated Raman scattering technique. The correction terms originated from the aerosol extinction, the backscatter, and the absorption by other gases are estimated using a model atmosphere. The experimental results demonstrate that the emitted output energies were 13 mJ/pulse at 276 nm and 287 nm and 5 mJ/pulse at 299 nm, with pump energy of 91 mJ/pulse and a CO(2) pressure of 0.7 MPa. The three Stokes lines account for 44.0% of the available energy. The use of argon or helium as a buffer gas in the Raman cell was also investigated, but this leads to a dramatic decrease in the third Stokes line, which makes this wavelength practically unusable. Our observations confirmed that 30 min of integration were sufficient to observe ozone concentration profiles up to 10 km. Aerosol extinction and backscatter correction are estimated and applied. The aerosol backscatter correction profile using 287 and 299 nm as reference wavelengths is compared with that using 355 nm. The estimated statistical error is less than 5% at 1.5 km and 10% at 2.6 km. Comparisons with the operational carbon-iodine type chemical ozonesondes demonstrate 20% overestimation of the ozone profiles by the DIAL technique.

  10. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  11. Monitoring Changes of Tropical Extreme Rainfall Events Using Differential Absorption Barometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, R. Wes; Hu, Yongxiang; Min, Qilong

    2015-01-01

    This work studies the potential of monitoring changes in tropical extreme rainfall events such as tropical storms from space using a Differential-absorption BArometric Radar (DiBAR) operating at 50-55 gigahertz O2 absorption band to remotely measure sea surface air pressure. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 5 millibars (approximately 1 millibar) under all weather conditions. With these sea level pressure measurements, the forecasts, analyses and understanding of these extreme events in both short and long time scales can be improved. Severe weathers, especially hurricanes, are listed as one of core areas that need improved observations and predictions in WCRP (World Climate Research Program) and NASA Decadal Survey (DS) and have major impacts on public safety and national security through disaster mitigation. Since the development of the DiBAR concept about a decade ago, our team has made substantial progress in advancing the concept. Our feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. We have developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with our instrumentation goals. Observational system simulation experiments for space DiBAR performance show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on tropical extreme rainfall weather and climate conditions.

  12. Development and testing of a frequency-agile optical parametric oscillator system for differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Weibring, P.; Smith, J. N.; Edner, H.; Svanberg, S.

    2003-10-01

    An all-solid-state fast-tuning lidar transmitter for range- and temporally resolved atmospheric gas concentration measurements has been developed and thoroughly tested. The instrument is based on a commercial optical parametric oscillator (OPO) laser system, which has been redesigned with piezoelectric transducers mounted on the wavelength-tuning mirror and on the crystal angle tuning element in the OPO. Piezoelectric transducers similarly control a frequency-mixing stage and doubling stage, which have been incorporated to extend system capabilities to the mid-IR and UV regions. The construction allows the system to be tuned to any wavelength, in any order, in the range of the piezoelectric transducers on a shot-to-shot basis. This extends the measurement capabilities far beyond the two-wavelength differential absorption lidar method and enables simultaneous measurements of several gases. The system performance in terms of wavelength, linewidth, and power stability is monitored in real time by an étalon-based wave meter and gas cells. The tests showed that the system was able to produce radiation in the 220-4300-nm-wavelength region, with an average linewidth better than 0.2 cm-1 and a shot-to-shot tunability up to 160 cm-1 within 20 ms. The utility of real-time linewidth and wavelength measurements is demonstrated by the ability to identify occasional poor quality laser shots and disregard these measurements. Also, absorption cell measurements of methane and mercury demonstrate the performance in obtaining stable wavelength and linewidth during rapid scans in the mid-IR and UV regions.

  13. NONLINEAR-APPROXIMATION TECHNIQUE FOR DETERMINING VERTICAL OZONE-CONCENTRATION PROFILES WITH A DIFFERENTIAL-ABSORPTION LIDAR

    EPA Science Inventory

    A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...

  14. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

    SciTech Connect

    Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian; Kacprzak, Glenn G.; Charlton, Jane; Muzahid, Sowgat

    2014-09-10

    We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

  15. Ground-based integrated path coherent differential absorption lidar measurement of CO2: foothill target return

    NASA Astrophysics Data System (ADS)

    Ishii, S.; Koyama, M.; Baron, P.; Iwai, H.; Mizutani, K.; Itabe, T.; Sato, A.; Asai, K.

    2013-05-01

    The National Institute of Information and Communications Technology (NICT) has made a great deal of effort to develop a coherent 2 μm differential absorption and wind lidar (Co2DiaWiL) for measuring CO2 and wind speed. First, coherent Integrated Path Differential Absorption (IPDA) lidar experiments were conducted using the Co2DiaWiL and a foothill target (tree and ground surface) located about 7.12 km south of NICT on 11, 27, and 28 December 2010. The detection sensitivity of a 2 μm IPDA lidar was examined in detail using the CO2 concentration measured by the foothill reflection. The precisions of CO2 measurements for the foothill target and 900, 4500 and 27 000 shot pairs were 6.5, 2.8, and 1.2%, respectively. The results indicated that a coherent IPDA lidar with a laser operating at a high pulse repetition frequency of a few tens of KHz is necessary for XCO2 (column-averaged dry air mixing ratio of CO2) measurement with a precision of 1-2 ppm in order to observe temporal and spatial variations in the CO2. Statistical comparisons indicated that, although a small amount of in situ data and the fact that they were not co-located with the foothill target made comparison difficult, the CO2 volume mixing ratio obtained by the Co2DiaWiL measurements for the foothill target and atmospheric returns was about -5 ppm lower than the 5 min running averages of the in situ sensor. Not only actual difference of sensing volume or the natural variability of CO2 but also the fluctuations of temperature could cause this difference. The statistical results indicated that there were no biases between the foothill target and atmospheric return measurements. The 2 μm coherent IPDA lidar can detect the CO2 volume mixing ratio change of 3% in the 5 min signal integration. In order to detect the position of the foothill target, to measure a range with a high SNR (signal-to-noise ratio), and to reduce uncertainty due to the presence of aerosols and clouds, it is important to make a

  16. Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Zeng, Nan; Ji, Yanhong; Li, Yao; Dai, Xiangsong; Li, Peng; Duan, Lian; Ma, Hui; He, Yonghong

    2011-01-01

    We present a method of glucose concentration detection in the anterior chamber with a differential absorption optical low-coherent interferometry (LCI) technique. Back-reflected light from the iris, passing through the anterior chamber twice, was selectively obtained with the LCI technique. Two light sources, one centered within (1625 nm) and the other centered outside (1310 nm) of a glucose absorption band were used for differential absorption measurement. In the eye model and pig eye experiments, we obtained a resolution glucose level of 26.8 mg/dL and 69.6 mg/dL, respectively. This method has a potential application for noninvasive detection of glucose concentration in aqueous humor, which is related to the glucose concentration in blood.

  17. Absorption mechanism of DHP107, an oral paclitaxel formulation that forms a hydrated lipidic sponge phase

    PubMed Central

    Jang, Yura; Chung, Hye Jin; Hong, Jung Wan; Yun, Cheol-Won; Chung, Hesson

    2017-01-01

    Paclitaxel is a most widely used anticancer drug with low oral bioavailability, thus it is currently administered via intravenous infusion. DHP107 is a lipid-based paclitaxel formulation that can be administered as an oral solution. In this study, we investigated the mechanism of paclitaxel absorption after oral administration of DHP107 in mice and rats by changing the dosing interval, and evaluated the influence of bile excretion. DHP107 was orally administered to mice at various dosing intervals (2, 4, 8, 12, 24 h) to examine how residual DHP107 affected paclitaxel absorption during subsequent administration. Studies with small-angle X-ray diffraction (SAXS) and cryo-transmission electron microscopy (cryo-TEM) showed that DHP107 formed a lipidic sponge phase after hydration. The AUC values after the second dose were smaller than those after the first dose, which was correlated to the induction of expression of P-gp and CYP in the livers and small intestines from 2 h to 7 d after the first dose. The smaller AUC value observed after the second dose was also attributed to the intestinal adhesion of residual formulation. The adhered DHP107 may have been removed by ingested food, thus resulting in a higher AUC. In ex vivo and in vivo mucoadhesion studies, the formulation adhered to the villi for up to 24 h, and the amount of DHP107 that adhered was approximately half that of monoolein. The paclitaxel absorption after administration of DHP107 was not affected by bile in the cholecystectomy mice. The dosing interval and food intake affect the oral absorption of paclitaxel from DHP107, which forms a mucoadhesive sponge phase after hydration. Bile excretion does not affect the absorption of paclitaxel from DHP107 in vivo. PMID:27867185

  18. Observation of phycoerythrin-containing cyanobacteria and other phytoplankton groups from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Bracher, Astrid; Dinter, Tilman; Burrows, John P.; Vountas, Marco; Röttgers, Rüdiger; Peeken, Ilka

    In order to understand the marine phytoplankton's role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absorption with the satellite sensor Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). SCIAMACHY measures back scattered solar radiation in the UV-Vis-NIR spectral region with a high spectral resolution (0.2 to 1.5 nm). We used in-situ measured phytoplankton absorption spectra from two different RV Polarstern expeditions where different phytoplankton groups were representing or dominating the phytoplankton composition in order to identify these characteristic absorption spectra in SCIAMACHY data in the range of 430 to 500 nm and also to identify absorption from cyanobacterial photosynthetic pigment phycoerythrin. Our results show clearly these absorptions in the SCIAMACHY data. The conversion of these differential absorptions by including the information of the light penetration depth (according to Vountas et al., Ocean Science, 2007) globally distributed pigment concentrations for these characteristic phytoplankton groups for two monthly periods (Feb-March 2004, Oct-Nov 2005 and Oct-Nov 2007) are derived. The satellite retrieved information on cyanobacteria (Synechococcus sp. and Prochlorococcus sp.) and diatoms distribution matches well with the concentration measured from collocated water samples with HPLC technique and also to global model analysis with the NASA Ocean Biogeochemical Model (NOBM from http://reason.gsfc.nasa.gov/OPS/Giovanni/) according to Gregg and Casey 2006 and Gregg 2006. Results are of great importance for global modelling of

  19. Airborne 2-Micron Double-Pulsed Integrated Path Differential Absorption Lidar for Column CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-01-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 millijouls and up to 10 Hz repetition rate. The two laser pulses are separated by 200 microseconds and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-micron direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-micron IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  20. Effect of temperature on passive remote sensing of chemicals by differential absorption radiometry

    NASA Astrophysics Data System (ADS)

    Holland, Stephen K.; Krauss, Roland H.; Laufer, Gabriel

    2005-10-01

    Differential absorption radiometry (DAR), using uncooled detectors, is a simple, low-cost method for passive remote sensing of hazardous chemicals for domestic security applications. However, radiometric temperature differences (ΔTeffective) between a target gas species and its background affect detection sensitivity. Two DARs with sensitivities to methanol, diisopropyl methylphosphonate (DIMP), and dimethyl methylphosphonate (DMMP), all spectral or physical simulants of hazardous chemicals, were developed and used to experimentally determine the effect of |ΔTeffective| on detection sensitivity. An analytical model was also developed and compared with the experimental results. With a signal-to-noise ratio (SNR)>5, a |ΔTeffective|≥2 K is sufficient for rapid (≤1 s) detection of methanol at <0.03 atm cm and DMMP and DIMP at <0.001 atm cm. These measured sensitivities suggest that rapid detection of hazardous chemical vapor clouds below lethal dose concentrations can be achieved using room-temperature pyroelectric detectors. Measurements were within 3% of the analytical predictions.

  1. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  2. Performance characterization and ground testing of an airborne CO2 differential absorption LIDAR system

    NASA Astrophysics Data System (ADS)

    Senft, Daniel C.; Fox, Marsha J.; Bousek, Ronald R.; Dowling, James A.; Richter, Dale A.; Kelly, Brian T.

    1998-01-01

    The Phillips Laboratory Remote Optical Sensors (ROS) program is developing the Laser Airborne Remote Sensing (LARS) system for chemical detection using the differential absorption lidar (DIAL) technique. The system is based upon a high-power CO(subscript 2) laser which can use either the standard (superscript 12)C(superscript 16)O(subscript 2) or the (superscript 13)C(superscript 16)O(subscript 2) carbon dioxide isotopes as the lasing medium, and has output energies in excess of 4 J on the stronger laser transitions. The laser, transmitter optics, receiver telescope and optics, and monitoring equipment are mounted on a flight-qualified optical breadboard designed to mount in the Argus C-135E optical testbed aircraft operated by Phillips Laboratory. The LARS system is being prepared for initial flight experiments at Kirtland AFB, NM, in August 1997, and for chemical detection flight experiments at the Idaho National Engineering Laboratory (INEL) in September 1997. This paper briefly describes the system characterization, and presents some results from the pre- flight ground testing.

  3. A Water Vapor Differential Absorption LIDAR Design for Unpiloted Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Mead, Patricia F.

    2004-01-01

    This system study proposes the deployment of a water vapor Differential Absorption LIDAR (DIAL) system on an Altair unmanned aerial vehicle (UAV) platform. The Altair offers improved payload weight and volume performance, and longer total flight time as compared to other commercial UAV's. This study has generated a preliminary design for an Altair based water vapor DIAL system. The design includes a proposed DIAL schematic, a review of mechanical challenges such as temperature and humidity stresses on UAV deployed DIAL systems, an assessment of the available capacity for additional instrumentation (based on the proposed design), and an overview of possible weight and volume improvements associated with the use of customized electronic and computer hardware, and through the integration of advanced fiber-optic and laser products. The results of the study show that less than 17% of the available weight, less than 19% of the volume capacity, and approximately 11% of the electrical capacity is utilized by the proposed water vapor DIAL system on the Altair UAV.

  4. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    SciTech Connect

    Rye, B.J. |; Machol, J.L.; Grund, C.J.; Hardesty, R.M.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  5. Airborne 2-micron double-pulsed integrated path differential absorption lidar for column CO2 measurement

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Remus, Ruben G.; Fay, James J.; Reithmaier, Karl

    2014-10-01

    Double-pulse 2-micron lasers have been demonstrated with energy as high as 600 mJ and up to 10 Hz repetition rate. The two laser pulses are separated by 200 µs and can be tuned and locked separately. Applying double-pulse laser in DIAL system enhances the CO2 measurement capability by increasing the overlap of the sampled volume between the on-line and off-line. To avoid detection complicity, integrated path differential absorption (IPDA) lidar provides higher signal-to-noise ratio measurement compared to conventional range-resolved DIAL. Rather than weak atmospheric scattering returns, IPDA rely on the much stronger hard target returns that is best suited for airborne platforms. In addition, the IPDA technique measures the total integrated column content from the instrument to the hard target but with weighting that can be tuned by the transmitter. Therefore, the transmitter could be tuned to weight the column measurement to the surface for optimum CO2 interaction studies or up to the free troposphere for optimum transport studies. Currently, NASA LaRC is developing and integrating a double-Pulsed 2-µm direct detection IPDA lidar for CO2 column measurement from an airborne platform. The presentation will describe the development of the 2-μm IPDA lidar system and present the airborne measurement of column CO2 and will compare to in-situ measurement for various ground target of different reflectivity.

  6. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    NASA Technical Reports Server (NTRS)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  7. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  8. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    PubMed

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

  9. Comparison of atmospheric nitrous acid measurements by annular denuder and differential optical absorption systems

    NASA Astrophysics Data System (ADS)

    Appel, B. R.; Winer, A. M.; Tokiwa, Y.; Biermann, H. W.

    As part of the Southern California Air Quality Study (SCAQS), nitrous acid (HONO) measurements were made at Long Beach, CA during the period 11 November-12 December 1987, using two distinctly different techniqes. One of these, the annular denuder method (ADM), used two denuders in tandem, coated with an alkaline medium to obtain 4- or 6-h integrated measurements. A small FEP Tefloncoated glass cyclone preceded the denuders to exclude coarse particles while minimizing loss or artifactual formation of HONO. Nitrite recoveries from the rear denuder were used to correct for sampling artifacts. In the second method, 15 min average HONO concentrations were measured with a differential optical absorption spectrometer (DOAS) coupled to a 25 m basepath, open multiple reflection system operated at a total optical path of 800 m. Period-averaged HONO concentrations from the two techniques were highly correlated ( r = 0.94), with DOAS results averaging about 10% higher. However, ADM results were biased high at low HONO concentrations. HONO and NO concentrations showed a significant, positive correlation ( r = 0.8), consistent with a common emission source (e.g. auto exhaust) for the two pollutants.

  10. Measurement of acoustic absorption coefficient with phase-conjugate ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Smagin, N. V.; Krutyansky, L. M.; Brysev, A. P.; Bunkin, F. V.

    2011-07-01

    Experimental results on measurements of the acoustic absorption coefficient in test objects that were obtained with two methods, i.e., a standard insert-substitution method and a modification thereof using phase-conjugate waves, are given. Samples of gelatin and biological tissue in vitro (porcine muscle fibers) were used as test objects. Gelatin objects were manufactured that were both homogeneous and with inhomogeneities in the form of a rough surface or inclusions (air bubbles) distributed over the volume. A rough surface leads mainly to phase distortions of a probe beam, while bubble inclusions cause additional field scattering. For all homogeneous samples, both compared methods produce identical results. In the case of inhomogeneous samples including biological tissues, absorption measurement by a standard method may lead to significant errors. It is demonstrated that the use of properties of phase-conjugate waves provides an opportunity to eliminate almost completely the measurement error connected with phase distortions and reduce the error in the case of a medium with scatterers.

  11. High energy X-ray phase and dark-field imaging using a random absorption mask

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-01-01

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science. PMID:27466217

  12. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    PubMed

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  13. PHASES High-Precision Differential Astrometry of δ Equulei

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Lane, Benjamin F.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Kulkarni, S. R.; Shao, M.

    2005-12-01

    Delta Equulei is among the most well-studied nearby binary star systems. Results of its observation have been applied to a wide range of fundamental studies of binary systems and stellar astrophysics. It is widely used to calibrate and constrain theoretical models of the physics of stars. We report 27 high-precision differential astrometry measurements of δ Equ from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). The median size of the minor axes of the uncertainty ellipses for these measurements is 26 μas. These data are combined with previously published radial velocity data and other previously published differential astrometry measurements using other techniques to produce a combined model for the system orbit. The distance to the system is determined to within one twentieth of a parsec, and the component masses are determined at the level of a percent. The constraints on masses and distance are limited by the precisions of the radial velocity data; we outline plans to improve this deficiency and discuss the outlook for further study of this binary.

  14. Laser Based Instruments Using Differential Absorption Detection for Above and Below Ground Monitoring of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Barr, J. L.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2008-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. A field experiment was conducted at the ZERT field site beginning July 9th, 2008 and ending August 7th, 2008 to test the performance of several CO2 detection instruments. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. A flow rate of 0.3 tons CO2/day was used for the entirety of this experiment. This paper describes the results from two laser based instruments that use differential absorption techniques to determine CO2 concentrations in real time both above and below the ground surface. Both instruments use a continuous wave (cw) temperature tunable distributed feedback (DFB) laser capable of tuning across several CO2 and water vapor absorption features between at 2003 nm and 2006 nm. The first instrument uses the DFB laser to measure path integrated atmospheric concentrations of CO2. The second instrument uses the temperature tunable DFB laser to monitor underground CO2 concentrations using a buried photonic bandgap optical fiber. The above ground instrument operated nearly continuously during the CO2 release experiment and an increase in atmospheric CO2 concentration above the release pipe of approximately 2.5 times higher than the background was observed. The underground instrument also operated continuously during the experiment and saw an increase in underground CO2 concentration of approximately 15 times higher than the background. These results from the 2008 ZERT field experiment demonstrate

  15. Scattered light and accuracy of the cross-section measurements of weak absorptions: Gas and liquid phase UV absorption cross sections of CH3CFCl2

    NASA Technical Reports Server (NTRS)

    Fahr, A.; Braun, W.; Kurylo, M. J.

    1993-01-01

    Ultraviolet absorption cross sections of CH3CFCl2(HCFC-141b) were determined in the gas phase (190-260 nm) and liquid phase (230-260 mm) at 298 K. The liquid phase absorption cross sections were then converted into accurate gas phase values using a previously described procedure. It has been demonstrated that scattered light from the shorter-wavelength region (as little as several parts per thousand) can seriously compromise the absorption cross-section measurement, particularly at longer wavelengths where cross sections are low, and can be a source of discrepancies in the cross sections of weakly absorbing halocarbons reported in the literature. A modeling procedure was developed to assess the effect of scattered light on the measured absorption cross section in our experiments, thereby permitting appropriate corrections to be made on the experimental values. Modeled and experimental results were found to be in good agreement. Experimental results from this study were compared with other available determinations and provide accurate input for calculating the atmospheric lifetime of HCFC-141b.

  16. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1995-04-03

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution, acquired over long periods at low operational and maintenance cost, are fundamental to the success of the ARM CART program. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. Application of profiles acquired with current techniques, have, to date, been limited by vertical resolution and uniqueness of solution [e.g. high resolution infrared (IR) Fourier transform radiometry], poor spatial and temporal coverage and high operating cost (e.g. radiosondes), or diminished daytime performance, lack of eye-safety, and high maintenance cost (e.g. Raman lidar). Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the study reported here, we develop DIAL system performance models and examine the potential of to solve some of the shortcomings of previous methods using parameterizations representative of current technologies. These models are also applied to diagnose and evaluate other strengths and weaknesses unique to the DIAL method for this application. This work is to continue in the direction of evaluating yet smaller and lower-cost laser diode-based systems for routine monitoring of the lower altitudes using photon counting detection methods. We regard the present report as interim in nature and will update and extend it as a final report at the end of the term of the contract.

  17. Iron L-Edge Absorption Spectroscopy of Iron Pentacarbonyl and Ferrocene in the Gas Phase.

    PubMed

    Godehusen, Kai; Richter, Tobias; Zimmermann, Peter; Wernet, Philippe

    2017-01-12

    Fe L-edge X-ray absorption spectra of gas-phase iron pentacarbonyl and ferrocene measured in total-ion yield mode are reported. Comparison to previously published spectra of free iron atoms and gaseous iron chloride demonstrates how the interplay of local atomic multiplet effects and orbital interactions in the metal-ligand bonds varies for the different systems. We find changes in the degree of metal-ligand covalency to be reflected in the measured 2p absorption onset. Orbital- or state-specific fragmentation is furthermore investigated in iron pentacarbonyl and ferrocene by analyzing the partial-ion-yield spectra at the Fe L-edge. Strong dependence of the yields of different fragments is observed in ferrocene in contrast to iron pentacarbonyl. This difference is attributed to the different degrees to which the 2p core hole is screened in the two systems and to which charge is rearranged in the Auger final states. We provide experimental benchmark spectra for new ab initio approaches for calculating metal L-edge absorption spectra of metal complexes.

  18. Differential Absorption Measurements of Carbon Dioxide for Carbon Sequestration Site Monitoring Using a Temperature Tunable Diode Laser

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Nehrir, A. R.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.; Shaw, J. A.

    2007-12-01

    Carbon capture and sequestration in geologic formations provides a method to remove carbon dioxide (CO2) from entering the Earth's atmosphere. An important issue for the successful storage of CO2 is the ability to monitor geologic sequestration sites for leakage to verify site integrity. A differential absorption measurement instrument based on a continuous wave (cw) temperature tunable distributed feedback (DFB) laser has been developed for measuring atmospheric concentrations of CO2. The tunable DFB laser is capable of tuning across two CO2 absorption features at 2003.50 nm and 2004.02 nm. The measured normalized transmission through the atmosphere is then related to the atmospheric concentration of CO2 through the line strength and normalized line width associated with each absorption feature. A description of this instrument will be presented including the instrument design, operation, and performance characteristics. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. Two release experiments were performed this past summer with flow rates of 0.1 and 0.3 tons CO2/day. The first release experiment lasted ten days while the second release lasted seven days. Measurements taken with the differential absorption instrument over the horizontal well during these release experiments showed an increase of greater than 300 parts per million (ppm) over the background CO2 concentration. These results indicate the capabilities of the above ground differential absorption instrument for carbon sequestration site monitoring.

  19. Measurement of nitrogen dioxide in cigarette smoke using quantum cascade tunable infrared laser differential absorption spectroscopy (TILDAS)

    NASA Astrophysics Data System (ADS)

    Shorter, Joanne H.; Nelson, David D.; Zahniser, Mark S.; Parrish, Milton E.; Crawford, Danielle R.; Gee, Diane L.

    2006-04-01

    Although nitrogen dioxide (NO 2) has been previously reported to be present in cigarette smoke, the concentration estimates were derived from kinetic calculations or from measurements of aged smoke, where NO 2 was formed some time after the puff was taken. The objective of this work was to use tunable infrared laser differential absorption spectroscopy (TILDAS) equipped with a quantum cascade (QC) laser to determine if NO 2 could be detected and quantified in a fresh puff of cigarette smoke. A temporal resolution of ˜0.16 s allowed measurements to be taken directly as the NO 2 was formed during the puff. Sidestream cigarette smoke was sampled to determine if NO 2 could be detected using TILDAS. Experiments were conducted using 2R4F Kentucky Reference cigarettes with and without a Cambridge filter pad. NO 2 was detected only in the lighting puff of whole mainstream smoke (without a Cambridge filter pad), with no NO 2 detected in the subsequent puffs. The measurement precision was ˜1.0 ppbV Hz -1/2, which allows a detection limit of ˜0.2 ng in a 35 ml puff volume. More NO 2 was generated in the lighting puff using a match or blue flame lighter (29 ± 21 ng) than when using an electric lighter (9 ± 3 ng). In the presence of a Cambridge filter pad, NO 2 was observed in the gas phase mainstream smoke for every puff (total of 200 ± 30 ng/cigarette) and is most likely due to smoke chemistry taking place on the Cambridge filter pad during the smoke collection process. Nitrogen dioxide was observed continuously in the sidestream smoke starting with the lighting puff.

  20. Challenges and Solutions for Frequency and Energy References for Spaceborne and Airborne Integrated Path Differential Absorption Lidars

    NASA Astrophysics Data System (ADS)

    Fix, Andreas; Quatrevalet, Mathieu; Witschas, Benjamin; Wirth, Martin; Büdenbender, Christian; Amediek, Axel; Ehret, Gerhard

    2016-06-01

    The stringent requirements for both the frequency stability and power reference represent a challenging task for Integrated Path Differential Absorption Lidars (IPDA) to measure greenhouse gas columns from satellite or aircraft. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. The concepts and realization of these important sub-systems are discussed.

  1. Ground-based differential absorption lidar system for day or night measurements of ozone throughout the free troposphere.

    PubMed

    Proffitt, M H; Langford, A O

    1997-04-20

    The National Oceanic and Atmospheric Administration Aeronomy Laboratory's rapid tunable daylight differential absorption lidar system for monitoring ozone throughout the free troposphere is described. The system components are optimized to provide continuously and rapidly profiles of ozone, day or night, with a vertical resolution of 1 km and an absolute accuracy of +/-10% to the tropopause under clear sky conditions. Routine observations of ozone with frequent error assessments are made by scanning wavelengths between 286 and 292 nm.

  2. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  3. Deuterium absorption and material phase characteristics of Zr[sub 2]Fe

    SciTech Connect

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-12-30

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr[sub 2]Fe phase with secondary phases of ZrFe[sub 2], Zr[sub 5]FeSn, [alpha]-Zr, and Zr[sub 6]Fe[sub 3]O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350[degrees]C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3[times]10[sup [minus]4] Pa). However, at higher activation temperature (500[degrees]C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500[degrees]C. The P-C-T data over the full range of deuterium loading and at temperatures of 350[degrees]C and below is described by: K[sub 0e]-([Delta]H[sub [alpha

  4. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    PubMed

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  5. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    SciTech Connect

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  6. Extracting the differential phase in dual atom interferometers by modulating magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ping; Zhong, Jia-Qi; Chen, Xi; Li, Run-Bing; Li, Da-Wei; Zhu, Lei; Song, Hong-Wei; Wang, Jin; Zhan, Ming-Sheng

    2016-09-01

    We present a new scheme for measuring the differential phase in dual atom interferometers. The magnetic field is modulated in one interferometer, and the differential phase can be extracted without measuring the amplitude of the magnetic field by combining the ellipse and linear fitting methods. The gravity gradient measurements are discussed based on dual atom interferometers. Numerical simulation shows that the systematic error of the differential phase measurement is largely decreased when the duration of the magnetic field is symmetrically modulated. This combined fitting scheme has a high accuracy for measuring an arbitrary differential phase in dual atom interferometers.

  7. Optical feedback cavity enhanced absorption spectroscopy: effective adjustment of the feedback-phase

    NASA Astrophysics Data System (ADS)

    Habig, J. C.; Nadolny, J.; Meinen, J.; Saathoff, H.; Leisner, T.

    2012-02-01

    Optical-feedback cavity enhanced absorption spectroscopy (OF-CEAS) is a very sensitive technique for the detection of trace amounts of gaseous absorbers. The most crucial parameter in an OF-CEAS setup is the optical phase of the light fed back into the laser source, which is usually controlled by the position of a piezo driven mirror. Various approaches for the analysis of the cavity transmitted light with respect to feedback-phase are presented, and tested on simulated phase and frequency dependent cavity transmission. Finally, we present the performance of a digital signal processor based regulator—employing one of these approaches—in a real OF-CEAS experiment. The results of the simulation show that several algorithms are well suited for the task of control signal generation. They confirm also that with the presented approach, a mode by mode correction of the feedback-phase is possible. Consequently, a regulatory bandwidth of 37 Hz was achieved. This maximum control frequency was limited by the piezo system.

  8. Single-slice reconstruction method for helical cone-beam differential phase-contrast CT.

    PubMed

    Fu, Jian; Chen, Liyuan

    2014-01-01

    X-ray phase-contrast computed tomography (PC-CT) can provide the internal structure information of biomedical specimens with high-quality cross-section images and has become an invaluable analysis tool. Here a simple and fast reconstruction algorithm is reported for helical cone-beam differential PC-CT (DPC-CT), which is called the DPC-CB-SSRB algorithm. It combines the existing CB-SSRB method of helical cone-beam absorption-contrast CT with the differential nature of DPC imaging. The reconstruction can be performed using 2D fan-beam filtered back projection algorithm with the Hilbert imaginary filter. The quality of the results for large helical pitches is surprisingly good. In particular, with this algorithm comparable quality is obtained using helical cone-beam DPC-CT data with a normalized pitch of 10 to that obtained using the traditional inter-row interpolation reconstruction with a normalized pitch of 2. This method will push the future medical helical cone-beam DPC-CT imaging applications.

  9. Flavonoids have differential effects on glucose absorption in rats (Rattus norvegicus) and American robins (Turdis migratorius).

    PubMed

    Skopec, Michele M; Green, Adam K; Karasov, William H

    2010-02-01

    Mounting evidence suggests that small birds rely largely on non-mediated intestinal absorption of glucose through the paracellular pathway, while non-flying mammals rely on mediated absorption across the enterocyte membranes by using glucose transporters SGLT-1 and GLUT-2. Relying on non-mediated transport of glucose may decrease its absorption rate at low glucose concentrations but may release small birds from the effects of glucose transport inhibitors. We evaluated transport by using flavonoids known to inhibit glucose transport in vitro. Quercetin, isoquercetrin, and phloridzin were tested in rats (Rattus norvegicus) and robins (Turdis migratirius), and naringenin, naringenin-7-glucoside, genistein, epigallocatechin gallate (EGCG), and phloretin were used only in rats. By using a pharmacokinetic approach that involves serial blood collection and area under the curve calculations, we determined the bioavailability of 3-0-methyl D-glucose, the non-metabolized analogue of D-glucose. Six of the eight flavonoids tested in rats significantly decreased the absorption of 3-0-methyl D-glucose, while none of the flavonoids tested in robins significantly decreased the bioavailability of 3-0-methyl D-glucose. We conclude that flavonoids effectively decrease glucose absorption in rats, which rely on mediated absorption of glucose, but that flavonoids do not have an effect in robins, which rely on non-mediated absorption of glucose.

  10. Diode-Laser-Based Differential Absorption Lidar (DIAL) for Long Term Autonomous Field Deployment

    NASA Astrophysics Data System (ADS)

    Moen, D.; Repasky, K. S.; Spuler, S.; Nehrir, A. R.

    2015-12-01

    The rapidly changing spatial and temporal distribution of water vapor in the planetary boundary layer influences dynamical and physical processes that drive weather phenomena, general circulation patterns, radiative transfer, and the global water cycle. The ability to measure the water vapor distribution continuously within the lower troposphere has been identified as a high priority measurement capability needed by both the weather forecasting and climate science communities. This presentation provides an update on an economical and compact diode-laser-based differential absorption lidar (DIAL) which has demonstrated the capability of meeting these high priority measurement needs. The DIAL instrument utilizes two continuous wave distributed feedback diode lasers to injection seed a current modulated tapered semiconductor optical amplifier. An improved switching time between the on-line and off-line wavelength, on the order of 16.7 ms, allows the instrument to retrieve water vapor profiles in rapidly changing atmospheric conditions. A shared telescope design based on a 40.64 cm diameter Dobsonian telescope allows the outgoing beam to be eye-safe at the exit of the telescope. The DIAL receiver utilizes the Dobsonian telescope to collect the scattered light and direct it through an optical narrow bandpass filter (NBF) and a Fabry-Perot etalon with a free spectral range of 0.1 nm which is equal to the wavelength difference between the on-line and off-line DIAL wavelengths. A beam splitter directs 90% of the scattered light through a second NBF, and couples it onto a fiber coupled avalanche photodiode (APD), providing a far field measurement. The remaining 10% of the light passing through the beam splitter is incident on a free space coupled APD, providing a wider field of view for water vapor measurements at lower altitudes. The two channel receiver allows water vapor measurement between 500 m and 4 km/6km during daytime/nighttime operation, respectively. The DIAL

  11. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  12. Deuterium absorption and material phase characteristics of Zr{sub 2}Fe

    SciTech Connect

    Nobile, A.; Mosley, W.C.; Holder, J.S.; Brooks, K.N.

    1992-12-30

    Scanning electron microscope (SEM) images of polished surfaces, electron probe microanalysis, and X-ray powder diffractometry indicated the presence of a continuous Zr{sub 2}Fe phase with secondary phases of ZrFe{sub 2}, Zr{sub 5}FeSn, {alpha}-Zr, and Zr{sub 6}Fe{sub 3}O. A statistically-designed experiment to determine the effects of temperature, time, and vacuum quality On activation of St 198 revealed that when activated at low temperature (350{degrees}C) deuterium absorption rate was slower when the vacuum quality was pwr (2.5 Pa vs. 3{times}10{sup {minus}4} Pa). However, at higher activation temperature (500{degrees}C), deuterium absorption rate was fast and was independent of vacuum quality. Deuterium pressure-composition-temperature (P-C-T) data are reported for St 198 in the temperature range 200--500{degrees}C. The P-C-T data over the full range of deuterium loading and at temperatures of 350{degrees}C and below is described by: K{sub 0e}-({Delta}H{sub {alpha}}/RT)=PD{sub 2}q{sup 2}/(q*{minus}q){sup 2} where {Delta}H{alpha} and K{sub 0} have values of 101.8 kJ{center_dot}mole{sup {minus}1} and 3.24{times}10{sup {minus}8}Pa{sup {minus}1}, and q* is 15.998 kPa{center_dot}L{sup {minus}1}{center_dot}g{sup {minus}1}. At higher temperatures, one or more secondary reactions in the solid phase occur that slowly consume D{sub 2} from the gas phase. XRD suggests these reactions to be: 2 Zr{sub 2}FeD{sub x} {yields} x ZrD{sub 2} + x/3 ZrFe{sub 2} + (2 {minus} 2/3x) Zr{sub 2}Fe and Zr{sub 2}FeD{sub x} + (2 {minus}1/2x) D{sub 2} {yields} ZrD{sub 2} + Fe, where 0 < x < 3. Reaction between gas phase deuterium and Zr2FC formed in the first reaction accounts for the observed consumption of deuterium from the gas phase by this reaction.

  13. Spin relaxation measurements using first-harmonic out-of-phase absorption EPR signals.

    PubMed

    Livshits, V A; Páli, T; Marsh, D

    1998-09-01

    The dependence on spin-lattice (T1) relaxation of the first-harmonic absorption EPR signal (V'1) detected in phase quadrature with the Zeeman modulation has been investigated both theoretically and experimentally for nitroxide spin labels. Spectral simulations were performed by iterative solution of the Bloch equations that contained explicitly both the modulation and microwave magnetic fields (T. Páli, V. A. Livshits, and D. Marsh, 1996, J. Magn. Reson. B 113, 151-159). It was found that, of the various non-linear EPR displays, the first-harmonic out-of-phase V'1-signal, recorded under conditions of partial saturation of the microwave absorption, is particularly favorable for determining spin-lattice relaxation enhancements because of its superior signal intensity and relative insensitivity to spin-spin (T2) relaxation. By varying the Zeeman modulation frequency it is also possible to tune the optimum sensitivity of the V'1-signal to different ranges of the T1-relaxation time. A Zeeman modulation frequency of 25 kHz appears to be particularly suited to spin label applications. Calibrations are given for the dependence on T1-relaxation time of both the amplitude and the second integral of the V'1-signal recorded under standard conditions. Experiments on different spin labels in solution and in membranes demonstrate the practical usable sensitivity of the V'1-signal, even at modulation frequencies of 25 kHz, and these are used to investigate the dependence on microwave field intensity, in comparison with theoretical predictions. The practicable sensitivity to spin-lattice relaxation enhancements is demonstrated experimentally for a spin-labeled membrane system in the presence of paramagnetic ions. The first-harmonic out-of-phase V'1-signal appears to be the non-linear CW EPR method of choice for determining T1-relaxation enhancements in spin-labeled systems.

  14. Revealing electronic structure changes in Chevrel phase cathodes upon Mg insertion using X-ray absorption spectroscopy

    SciTech Connect

    Wan, Liwen F.; Wright, Joshua; Perdue, Brian R.; Fister, Timothy T.; Kim, Soojeong; Apblett, Christopher A.; Prendergast, David

    2016-06-10

    Following previous work predicting the electronic response of the Chevrel phase Mo6S8 upon Mg insertion (Thole et al., Phys. Chem. Chem. Phys., 2015, 17, 22548), we provide the experimental proof, evident in X-ray absorption spectroscopy, to illustrate the charge compensation mechanism of the Chevrel phase compound during Mg insertion and de-insertion processes.

  15. Differential phase microscope and micro-tomography with a Foucault knife-edge scanning filter

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Hashizume, J.; Goto, M.; Yamaguchi, M.; Tsujimura, T.; Aoki, S.

    2013-10-01

    An x-ray differential phase microscope with a Foucault knife-edge scanning filter was set up at the bending magnet source BL3C, Photon Factory. A reconstructed phase profile from the differential phase image of an aluminium wire at 5.36 keV was fairly good agreement with the numerical simulation. Phase tomography of a biological specimen, such as an Artemia cyst, could be successfully demonstrated.

  16. Noise suppression properties of an interferometer-based regenerator for differential phase-shift keying data.

    PubMed

    Elschner, Robert; de Melo, Alessandro Marques; Bunge, Christian-Alexander; Petermann, Klaus

    2007-01-15

    We studied the amplitude and phase noise suppression properties of an all-optical regenerator for differential phase-shift keying data. A detailed analytical investigation is performed and compared with numerical simulations for different working points. The results show that both amplitude and phase can be regenerated. However, simultaneous amplitude and phase noise suppression is possible only if the phase degradation is stronger than the amplitude degradation, for instance, due to nonlinear phase noise.

  17. Underground Fiber-Optic Differential Absorption Instrument for Monitoring Carbon Dioxide Soil Gas Concentrations for Carbon Sequestration Site Monitoring

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Humphries, S. D.; Repasky, K. S.; Carlsten, J. L.; Spangler, L. H.; Dobeck, L. M.

    2007-12-01

    The burning of fossil fuels has resulted in higher carbon dioxide (CO2) concentrations in the atmosphere with potential impacts on the Earth's climate. The use of fossil fuels is predicted to grow over the next several decades with the potential for further increasing the atmospheric concentration of CO2. A proposed method of diminishing the impacts of increased CO2 on the Earth's climate is to capture and store the CO2 in geologic storage sites. One issue with underground sequestration of CO2 is the ability to monitor sequestration sites to verify the integrity of the storage of the CO2. An underground fiber optic differential absorption instrument based on a tunable distributed feedback (DFB) diode laser is being developed at Montana State University to detect small changes in CO2 soil gas concentration in an effort to monitor the overall integrity of the sequestration storage site. The fiber optic instrument exploits the 2003-2006 nm region of the spectrum which contains four CO2 absorption lines. Light from the DFB laser is delivered to an underground absorption cell one meter in length via a single mode optical fiber. The normalized transmission is measured by tuning the DFB diode laser across these four absorption lines and the results are used to determine the CO2 soil gas concentration. A description of this instrument will be presented including the instrument design, operation, and performance characteristics. A field site for testing the performance of CO2 detection instruments and techniques has been developed by the Zero Emissions Research Technology (ZERT) group at Montana State University. The field site allows a controlled flow rate of CO2 to be released underground through a 100 m long horizontal pipe placed below the water table. Two release experiments were performed this past summer with flow rates of 0.1 and 0.3 tons CO2/day. The first release experiment lasted ten days while the second release lasted seven days. Measurements taken with the

  18. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties.

    PubMed

    Thueler, Philippe; Charvet, Igor; Bevilacqua, Frederic; St Ghislain, M; Ory, G; Marquet, Pierre; Meda, Paolo; Vermeulen, Ben; Depeursinge, Christian

    2003-07-01

    A fast spectroscopic system for superficial and local determination of the absorption and scattering properties of tissue (480 to 950 nm) is described. The probe can be used in the working channel of an endoscope. The scattering properties include the reduced scattering coefficient and a parameter of the phase function called gamma, which depends on its first two moments. The inverse problem algorithm is based on the fit of absolute reflectance measurements to cubic B-spline functions derived from the interpolation of a set of Monte Carlo simulations. The algorithm's robustness was tested with simulations altered with various amounts of noise. The method was also assessed on tissue phantoms of known optical properties. Finally, clinical measurements performed endoscopically in vivo in the stomach of human subjects are presented. The absorption and scattering properties were found to be significantly different in the antrum and in the fundus and are correlated with histopathologic observations. The method and the instrument show promise for noninvasive tissue diagnostics of various epithelia.

  19. Two-phase Flow Patterns in High Temperature Generator of Absorption Chiller / Heater

    NASA Astrophysics Data System (ADS)

    Furukawa, Masahiro; Kanuma, Hitoshi; Sekoguchi, Kotohiko; Takeishi, Masayuki

    There is a lack of information about vapor-liquid two-phase flow patterns determined using void signals in high temperature generator of absorption chiller/heater. Sensing void fraction has been hampered because lithium bromide aqueous solution of strong alkalinity is employed as working fluid at high temperature and high level of vacuum. New void sensor applicable to such difficult conditions was developed. The void Fractions at 48 locations in a high temperature generator were measured simultaneously in both cooling and heating operations. Analysis of void signals detected reveals that the most violent boiling occurs at the upper part of rear plate of combustion chamber and the first line of vertical tubes located in the flue. The flow patterns are strongly affected by the system pressure difference between the cooling and heating operations: there appear bubbly, slug and froth flows in the cooling operation, but only bubbly flow in the heating operation.

  20. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    PubMed

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.

  1. Enhancing two-color absorption, self-phase modulation, and Raman microscopy signatures in tissue with femtosecond laser pulse shaping

    NASA Astrophysics Data System (ADS)

    Fischer, Martin C.; Piletic, Ivan; Fu, Dan; Matthews, Thomas E.; Liu, Henry; Samineni, Prathyush; Li, Baolei; Warren, Warren S.

    2009-02-01

    Nonlinear microscopies (most commonly, two-photon fluorescence, second harmonic generation, and coherent anti-Stokes Raman scattering (CARS)) have had notable successes in imaging a variety of endogenous and exogenous targets in recent years. These methods generate light at a color different from any of the exciting laser pulses, which makes the signal relatively easy to detect. Our work has focused on developing microscopy techniques using a wider range of nonlinear signatures (two-photon absorption of nonfluorescent species, self phase modulation) which have some specific advantages - for example, in recent papers we have shown that we can differentiate between different types of melanin in pigmented lesions, image hemoglobin and its oxygenation, and measure neuronal activity. In general, these signatures do not generate light at a different color and we rely on the advantages of femtosecond laser pulse shaping methods to amplify the signals and make them visible (for example, using heterodyne detection of the induced signal with one of the co-propagating laser pulses). Here we extend this work to stimulated Raman and CARS geometries. In the simplest experiments, both colors arise from filtering a single fs laser pulse, then modulating afterwards; in other cases, we demonstrate that spectral reshaping can retain high frequency resolution in Raman and CARS geometries with femtosecond laser pulses.

  2. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  3. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS) in the red spectral range

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Grzegorski, M.; Platt, U.

    2007-01-01

    A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm) reflectance structures (i.e. "fingerprint" structures) of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS), which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms). The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  4. Atmospheric Pre-Corrected Differential Absorption Techniques to Retrieve Columnar Water Vapor: Application to AVIRIS 91/95 Data

    NASA Technical Reports Server (NTRS)

    Schlaepfer, Daniel; Borel, Christoph C.; Keller, Johannes; Itten, Klaus I.

    1996-01-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 nm resolution. This data includes the information on constituents of the earth's surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various ratioing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, the spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. The objective of this work is to test the best performing differential absorption techniques for imaging spectrometry of

  5. Deciphering complex, functional structures with synchrotron-based absorption and phase contrast tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Reichold, J.; Weber, B.; Haberthür, D.; Schittny, J.; Eller, J.; Büchi, F. N.; Marone, F.

    2010-09-01

    Nowadays, thanks to the high brilliance available at modern, third generation synchrotron facilities and recent developments in detector technology, it is possible to record volumetric information at the micrometer scale within few minutes. High signal-to-noise ratio, quantitative information on very complex structures like the brain micro vessel architecture, lung airways or fuel cells can be obtained thanks to the combination of dedicated sample preparation protocols, in-situ acquisition schemes and cutting-edge imaging analysis instruments. In this work we report on recent experiments carried out at the TOMCAT beamline of the Swiss Light Source [1] where synchrotron-based tomographic microscopy has been successfully used to obtain fundamental information on preliminary models for cerebral fluid flow [2], to provide an accurate mesh for 3D finite-element simulation of the alveolar structure of the pulmonary acinus [3] and to investigate the complex functional mechanism of fuel cells [4]. Further, we introduce preliminary results on the combination of absorption and phase contrast microscopy for the visualization of high-Z nanoparticles in soft tissues, a fundamental information when designing modern drug delivery systems [5]. As an outlook we briefly discuss the new possibilities offered by high sensitivity, high resolution grating interferomtery as well as Zernike Phase contrast nanotomography [6].

  6. Phase-dependent high refractive index without absorption in a four-level inverted-Y atomic system

    SciTech Connect

    Zhi-Qiang Zeng; Fu-Ti Liu; Yu-Ping Wang; Zeng-Hui Gao

    2015-01-31

    We consider a closed four-level inverted-Y system in the presence and the absence of a microwave field. It is found that due to the quantum coherence between the two lower levels, either induced by the spontaneous decay or by the microwave field, the refraction – absorption properties of the system can be modulated by controlling the relative phase of the applied fields in both driven ways. In particular, by properly setting the values of the relative phase, the desirable high index of refraction without absorption can be achieved. (nonlinear optical phenomena)

  7. Global observations of atmospheric CH4 by Integrated Path Differential-Absorption Lidar: the French-German Climate Monitoring Initiative

    NASA Astrophysics Data System (ADS)

    Ehret, Gerhard; Flamant, Pierre; Ciais, Philippe; Fabien, Gibert; Amediek, Axel; Kiemle, Christoph; Fix, Andreas; Quatrevalet, Mathieu; Wirth, Martin

    Atmospheric methane (CH4) is a powerful greenhouse gas, which has a Greenhouse Warming Potential (GWP) of 25 relative to CO2 on a time scale of 100 years. Despite the fact that the imbalance between the sources and sinks has decreased in the early 1990's to an insignificant value, a significant renewal of the CH4 growth is reported in recent years. Questions arise whether an increase of atmospheric CH4 might be fostered through melting of permafrost soil in the Arctic region or arise from changes of the tropical wetlands which comprise the biggest natural methane source. Another reason could be the change in the agro-industrial era of predominant human influence or the very large deposits of CH4 as gas hydrates on ocean shelves that are vulnerable to ocean warming. The French-German Climate Monitoring Initiative, which has recently been selected to undergo Phase0/A studies in a joint project by the space agencies CNES (France)and DLR (Germany), targets on satellite observations of atmospheric CH4 for the improvement of our knowledge on regional to synoptic scale CH4 sources on a global basis. As a novel feature, the observational instrument of this mission will be an Integrated Path Differential-Absorption (IPDA) Lidar system embarked on board of the French Myriade platform for the measurement of the column-weighted dry-air mixing ratio of CH4 in a nadir viewing configuration. This data will be provided by the lidar technique with no bias due to particles scattering in the light path and can directly be used as input for flux inversion models. In our presentation we will discuss the observational principle and the sampling strategy of the envisaged mission in connection to the needs for CH4 flux inversion experiments. In addition, we report on supporting campaign activities on airborne measurements of Lidar reflectivity data in the respective spectral region. The airborne data is of prime interest for the generation of pseudo CH4 data examples using the satellite

  8. Development and operation of a real-time data acquisition system for the NASA-LaRC differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1985-01-01

    Computer hardware and software of the NASA multipurpose differential absorption lidar (DIAL) sysatem were improved. The NASA DIAL system is undergoing development and experimental deployment for remote measurement of atmospheric trace gas concentration from ground and aircraft platforms. A viable DIAL system was developed with the capability of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights were successfully performed on board the NASA/Goddard Flight Center Electra aircraft from 1980 to 1984. Improvements on the DIAL data acquisition system (DAS) are described.

  9. [Application of the differential absorption UV-VIS spectrum to assay some of humic compounds in therapeutic peats].

    PubMed

    Drobnik, Michał; Latour, Teresa

    2009-01-01

    Delineated were differential 4th degree absorption spectrum UV-VIS range for standardized humid acids produced by "Fluka". These acids were separated through selective extraction (acid, alcoholic, alkaline). Determined was wavelength for which distinct, well separated, symmetrical peaks characteristic for particular compounds were found. The similar procedure were applied to separate the same sort of acids extracted from 4 Polish peat deposits. Certified are the presence of hymatomelanoic acid, fulvic acid, humic acid in examined peat of low type. These acids occurred in different quantity and proportions.

  10. Acousto-optically tuned isotopic CO{sub 2} lasers for long-range differential absorption LIDAR

    SciTech Connect

    Thompson, D.C.; Busch, G.E.; Hewitt, C.J.; Remelius, D.K.; Shimada, Tsutomu; Strauss, C.E.M.; Wilson, C.W.

    1998-12-01

    The authors are developing 2--100 kHz repetition rate CO{sub 2} lasers with milliJoule pulse energies, rapid acousto-optic tuning and isotopic gas mixes, for Differential Absorption LIDAR (DIAL) applications. The authors explain the tuning method, which uses a pair of acousto-optic modulators and is capable of random access to CO{sub 2} laser lines at rates of 100 kHz or more. The laser system is also described, and they report on performance with both normal and isotopic gas mixes.

  11. Differential carrier phase recovery for QPSK optical coherent systems with integrated tunable lasers.

    PubMed

    Fatadin, Irshaad; Ives, David; Savory, Seb J

    2013-04-22

    The performance of a differential carrier phase recovery algorithm is investigated for the quadrature phase shift keying (QPSK) modulation format with an integrated tunable laser. The phase noise of the widely-tunable laser measured using a digital coherent receiver is shown to exhibit significant drift compared to a standard distributed feedback (DFB) laser due to enhanced low frequency noise component. The simulated performance of the differential algorithm is compared to the Viterbi-Viterbi phase estimation at different baud rates using the measured phase noise for the integrated tunable laser.

  12. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-07

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment.

  13. Differentiation and classification of beers with flame atomic spectrometry and molecular absorption spectrometry and sample preparation assisted by microwaves

    NASA Astrophysics Data System (ADS)

    Bellido-Milla, Dolores; Moreno-Perez, Juana M.; Hernández-Artiga, María. P.

    2000-07-01

    The characterization of beer samples has a lot of interest because their composition can affect the taste and stability of beer and consumer health. Flame atomic absorption spectrometry was used to determine Fe, Mn, Zn, Cu, Mg, Ca and Al. Sodium and K were determined by flame atomic emission spectrometry. A sample preparation method was developed, based on treatment with HNO 3 and H 2O 2 in a microwave oven. This has many advantages over the methods found in the literature. The combination of the results of atomic spectrometry and the spectrum obtained by molecular absorption spectrometry provides information on the inorganic and organic components of the samples. The application of chemometric techniques to chemical composition data could be extremely useful for food quality control. The metal concentrations, the molecular absorption spectrum, the pH and conductivity of each sample were subject to analysis of variance and linear discriminant analysis. Twenty-five different beer samples were used to differentiate and classify different types of beers.

  14. Absorption-mode Fourier transform mass spectrometry: the effects of apodization and phasing on modified protein spectra.

    PubMed

    Qi, Yulin; Li, Huilin; Wills, Rebecca H; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P A; Barrow, Mark P; Lin, Cheng; O'Connor, Peter B

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  15. Development and proof-testing of advanced absorption refrigeration cycle concepts. Report on Phases 1 and 1A

    SciTech Connect

    Modahl, R.J.; Hayes, F.C.

    1992-03-01

    The overall objectives of this project are to evaluate, develop, and proof-test advanced absorption refrigeration cycles that are applicable to residential and commercial heat pumps for space conditioning. The heat pump system is to be direct-fired with natural gas and is to use absorption working fluids whose properties are known. Target coefficients of performance (COPs) are 1.6 at 47{degrees}F and 1.2 at 17{degrees} in the heating mode, and 0.7 at 95{degree}F in the cooling mode, including the effect of flue losses. The project is divided into three phases. Phase I entailed the analytical evaluation of advanced cycles and included the selection of preferred concepts for further development. Phase II involves the development and testing of critical components and of a complete laboratory breadboard version of the selected system. Phase III calls for the development of a prototype unit and is contingent on the successful completion of Phase II. This report covers Phase I work on the project. In Phase 1, 24 advanced absorption cycle/fluid combinations were evaluated, and computer models were developed to predict system performance. COP, theoretical pump power, and internal heat exchange were calculated for each system, and these calculations were used as indicators of operating and installed costs in order to rank the relative promise of each system. The highest ranking systems involve the cycle concept of absorber/generator heat exchange, generator heat exchanger/absorber heat exchange, regeneration, and resorption/desorption, in combination with the NH{sub 3}/H{sub 2}O/LiBr ternary absorption fluid mixture or with the NH{sub 3}/H{sub 2}O binary solution. Based upon these conclusions, the recommendation was made to proceed to Phase II, the laboratory breadboard proof-of- concept.

  16. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  17. Liquid phase microextraction and ultratrace determination of cadmium by modified graphite furnace atomic absorption spectrometry.

    PubMed

    Nazari, Saeid

    2009-06-15

    A powerful microextraction technique was used for determination of cadmium in water samples using liquid phase microextraction (LPME) followed by graphite furnace atomic absorption spectrometry (GF-AAS). In a preconcentration step, cadmium was extracted from a 2 ml of its aqueous sample in the pH 7 as 5,7-dibromoquinoline-8-ol (DBQ) complex into a 4 microl drop of benzyl alcohol. After extraction, the micro drop was retracted and directly transferred into a graphite tube modified by [W.Rh.Pd](c). Some effective parameters on extraction and complex formation, such as type and volume of organic solvent, pH, concentration of chelating agent, extraction time and stirring rate were optimized. Under the optimum conditions, the enrichment factor and recovery were 450% and 90%, respectively. The calibration graph was linear in the range of 0.008-1 microg L(-1) with correlation coefficient of 0.9961 under the optimum conditions of the recommended procedure. The detection limit based on the 3Sb criterion was 0.0035 microg L(-1) and relative standard deviation (RSD) for eight replicate measurement of 0.1 microg L(-1) and 0.4 microg L(-1) cadmium was 5.2% and 4.5%, respectively. The characteristic concentration was 0.0032 microg L(-1) equivalent to a characteristic mass of 12.8 fg. In order to evaluate the accuracy and recovery of the presented method the procedure was applied to the analysis of reference materials and seawater.

  18. Phase behavior of TXs/toluene/water microemulsion systems for solubilization absorption of toluene.

    PubMed

    Liu, Lian; Tian, Senlin; Ning, Ping

    2010-01-01

    Triton Xs (TXs) surfactants/cosurfactant/water/oil (toluene) microemulsion systems for enhancing toluene solubilization were proposed and its potential was investigated for toluene removal from gas stream. The results indicated that TX-100 was superior to other TXs surfactants in removing toluene without cosurfactant. The efficiency of cosurfactants for improving toluene solubilization capacity follows the order: amine > alcohol > acid. According to the factor analysis, the linear cosurfactants are better than the branched ones. The effects of hydrophile-lipophile balance (HLB), salt (NaCl) concentration and temperature on the formation of microemulsion system were also discussed. The results suggested that the optimum value of HLB was 15, the effect of NaCl concentration on the system was inconspicuous and the lower temperature enhanced the solubilization capacity. Nonionic surfactant-based microemulsions had a significant absorption enhancement for toluene, indicated by as much as 82.72% of toluene in phase composition diagram, which will have a great prospect in air pollution treatment.

  19. RADON PRESSURE DIFFERENTIAL PROJECT - PHASE I - FLORIDA RESEARCH PROGRAM

    EPA Science Inventory

    The report gives results of tests on 70 central Florida houses to assess and characterize pressure differentials in new (age 5 years or less) Florida houses. Blower door tests determined house airtightness and air distribution system leakage. The 70 houses had an average airtight...

  20. Testing of Cerex Open Path Ultraviolet Differential Optical Absorption Spectroscopy Systems for Fenceline Monitoring Applications

    EPA Science Inventory

    Industrial facilities, energy production, and refining operations can be significant sources of gas-phase air pollutants. Some industrial emissions originate from fugitive sources (leaks) or process malfunctions and can be mitigated if identified. In recent amendments to the Nati...

  1. Tropospheric O3 measurement by simultaneous differential absorption lidar and null profiling and comparison with sonde measurement

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo; Fujii, Takashi; Cao, Nianwen; Nemoto, Koshichi; Takeuchi, Nobuo

    2001-09-01

    A differential absorption lidar (DIAL) system consisting of two identical tunable laser systems and a single optical receiver is applied to measurement of O3 concentration profiles in the lower troposphere. Each laser is capable of emitting two wavelengths on alternate pulses, so the system is capable of simultaneous measurement of two species in the same wavelength region. We set the two lasers to emit at identical wavelength pairs consisting of on wavelength 285.0 nm and off wavelength 290.1 nm for simultaneous measurement of two null profiles, one at each wavelength, and two DIAL profiles, or O3 concentration profiles. Null profiles are useful in estimating instrumental error and checking the vertical range interval in which the DIAL profiles are accurate. Null and DIAL profiles are obtained for vertical range 1000 to 4000 m using neutral density filters of different transmissions to prevent the strong return signals from close range from saturating the photodetector. The obtained O3 concentration profiles agree with simultaneous O3 sonde measurements. An evaluation of the measurement error shows that the average O3 measurement error for vertical range 1000 to 4000 m was 3.4 ppb, or 8% relative to the average O3 concentration of 42.3 ppb, most of which is due to statistical error. The error due to differential Mie attenuation and differential backscatter gradient was found to be 0.5 ppb.

  2. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    SciTech Connect

    Grund, C.J.; Hardesty, R.M.; Rye, B.J.

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  3. Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption.

    PubMed

    Reboul, Emmanuelle; Thap, Sinay; Tourniaire, Franck; André, Marc; Juhel, Christine; Morange, Sophie; Amiot, Marie-Josèphe; Lairon, Denis; Borel, Patrick

    2007-03-01

    Lutein is assumed to protect the human retina from blue light and oxidative stress and diminish the incidence of age-related macular degeneration. This antioxidant is commonly ingested with other dietary antioxidants. The aim of the present study was to assess whether the main dietary antioxidants, i.e. carotenoids, polyphenols and vitamins C and E, affect lutein absorption. We measured the effect of adding a mixture of antioxidants (500 mg vitamin C, 67 mg (100 IU) vitamin E and 1 g polyphenols) to a lutein-containing meal (18 mg) on the postprandial lutein response in the chylomicron-rich fraction in eight healthy men. Lutein response was weakest (-23 %; P=0 x 07) after ingestion of the meal containing antioxidants (21 x 9 (sem 4 x 6) v. 28 x 4 (sem 7 x 2) nmol x h/l). To assess the effect of each class of antioxidants and potential interactions, we subsequently evaluated the effect of various combinations of antioxidants on lutein uptake by human intestinal Caco-2 TC-7 cells. A full factorial design showed that both a mixture of polyphenols (gallic acid, caffeic acid, (+)-catechin and naringenin) and a mixture of carotenoids (lycopene plus beta-carotene) significantly (P<0 x 05) impaired lutein uptake by (-10 to-30 %), while vitamins C and E had no significant effect. Subsequent experiments showed that the aglycone flavanone naringenin was the only polyphenol responsible for the effect of the polyphenol mixture, and that the carotenoid effect was not carotenoid species-dependent. Taken together, the present results suggest that lutein absorption is not markedly affected by physiological concentrations of vitamins C and E but can be impaired by carotenoids and naringenin

  4. Phase Polymorphism of [Co(DMSO)6](BF4)2 Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Migdał-Mikuli, Anna; Skoczylas, Łukasz; Szostak, Elżbieta

    2006-04-01

    Five solid phases of [Co(DMSO)6](BF4)2 have been detected by differential scanning calorimetry (DSC). Phase transitions were detected between the following solid phases: stable KIb↔ stable KIa at T̅C4 = (328±2) K, metastable KIII ↔ undercooled phase K0 at T̅C3 = (383±4) K, metastable KII ↔ undercooled K0 at T̅C2 = (399±2) K and stable KIa ↔ stable K0 at T̅C1 = (404±1) K. The title compound melts at Tm = 440 K. From the entropy changes at the melting point and at phase transitions it can be concluded that the phases K0 and undercooled K0 are orientationally dynamically disordered crystals. The stable phases KIa, KIb are ordered solid phases. The metastable phases KII and KIII are probably solid phases with a high degree of orientational dynamical disorder

  5. Investigation of source grating stepping for differential phase-contrast cone-beam CT (DPC-CBCT) system

    NASA Astrophysics Data System (ADS)

    Cai, Weixing; Yu, Yang; Ning, Ruola; Liu, Jiangkun; Conover, David

    2012-03-01

    Differential phase contrast (DPC) imaging, which utilizes phase shift information of X-ray, has the potential of dramatically increasing the contrast in biological sample imaging compared to attenuation-based method that relies on X-ray absorption information, since the X-ray phase is much more sensitive than the attenuation during transmission. In a DPC imaging system, the phase stepping method is widely used to obtain DPC images: at each angle the phase grating is shifted incrementally to produce a set of images and then the so obtained images are used to retrieve DPC image. However, DPC imaging requires a high mechanical precision to perform phase stepping, which is generally one order higher than the period of phase grating. Given that phase grating period is generally 2-4 um, the requirement of mechanical accuracy and stability are very demanding (<0.5um) and difficult to meet in a system with rotating gantry. In this paper, we present a method that is able to greatly relax the requirement of mechanical accuracy and stability by stepping the source grating rather than the analyzer grating. This method is able to increase the system's mechanical tolerance without compromising image quality and make it feasible to install the system on a rotating gantry to perform differential phase-contrast cone beam CT (DPC-CBCT). It is also able to increase the grating shifting precision and as a result improve the reconstructed image quality. Mechanical tolerance investigation and image quality investigation at different phase stepping schemes and different dose levels will be carried out on both the original modality and the new modality, the results will be evaluated and compared. We will deliberately create random mechanical errors in phase stepping and evaluate the resulting DPC images and DPC-CBCT reconstructions. The contrast, noise level and sharpness will be evaluated to assess the influence of mechanical errors. By stepping the source grating, the system is expected

  6. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  7. Computer simulation of an aircraft-based differential absorption and scattering system for retrieval of SO2 vertical profiles

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.

    1975-01-01

    The feasibility of using the differential absorption and scattering technique from aircraft altitudes for remotely measuring the vertical distribution of SO2 was studied via a computer simulation. Particular care was taken in this simulation to use system parameters (i.e., laser energy, telescope size, etc.) which can be accommodated on an aircraft and can be realized with commercially available technology. The vertical molecular and aerosol profiles were chosen to simulate the types of profiles which might be experienced over a large city. Results are presented on the retrieval of the assumed SO2 profile which show the effects of systematic errors due to interfering gases and aerosols, as well as random errors due to shot noise in the return signal, detector and background noise, and instrument-generated noise.

  8. Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Leigh, R. J.; Corlett, G. K.; Frieß, U.; Monks, P. S.

    2006-12-01

    A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through, the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. The remote sensing and in-situ techniques show good agreement. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.

  9. Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths.

    PubMed

    Pundt, Irene; Mettendorf, Kai Uwe

    2005-08-10

    A novel long-path differential optical absorption spectroscopy (DOAS) apparatus for measuring tropospheric trace gases and the first results from its use are presented: We call it the multibeam instrument. It is the first active DOAS device that emits several light beams simultaneously through only one telescope and with only one lamp as a light source, allowing simultaneous measurement along multiple light paths. In contrast to conventional DOAS instruments, several small mirrors are positioned near the lamp, creating multiple virtual light sources that emit one light beam each in one specific direction. The possibility of error due to scattering between the light beams is negligible. The trace-gas detection limits of NO2, SO2, O3, and H2CO are similar to those of the traditional long-path DOAS instrument.

  10. Identification and correction of analog-to-digital-converter nonlinearities and their implications for differential absorption lidar measurements.

    PubMed

    Langford, A O

    1995-12-20

    Differential absorption lidar (DIAL) is a powerful remote-sensing technique widely used to probe the spatial and temporal distribution of ozone and other gaseous atmospheric trace constituents. Although conceptually simple, the DIAL technique presents many challenging and often subtle technical difficulties that can limit its useful range and accuracy. One potentially serious source of error for many DIAL experiments is nonlinearity in the analog-to-digital converters used to capture lidar return signals. The impact of digitizer nonlinearity on DIAL measurements is examined, and a simple and inexpensive low-frequency dithering technique that significantly reduces the effects of ADC nonlinearity in DIAL and other applications in which the signal is repetitively averaged is described.

  11. Progress toward a water-vapor differential absorption lidar (DIAL) using a widely tunable amplified diode laser source

    NASA Astrophysics Data System (ADS)

    Obland, Michael D.; Meng, Lei S.; Repasky, Kevin S.; Shaw, Joseph A.; Carlsten, John L.

    2005-08-01

    Water vapor is one of the most significant constituents of the atmosphere because of its role in cloud formation, precipitation, and interactions with electromagnetic radiation, especially its absorption of longwave infrared radiation. Some details of the role of water vapor and related feedback mechanisms in the Earth system need to be characterized better if local weather, global climate, and the water cycle are to be understood. A Differential Absorption LIDAR (DIAL) with a compact laser diode source may be able to provide boundary-layer water vapor profiles with improved vertical resolution relative to passive remote sensors. While the tradeoff with small DIAL systems is lower vertical resolution relative to large LIDARs, the advantage is that DIAL systems can be built much smaller and more robust at less cost, and consequently are the more ideal choice for creating a multi-point array or satellite-borne system. This paper highlights the progress made at Montana State University towards a water vapor DIAL using a widely tunable amplified external cavity diode laser (ECDL) transmitter. The ECDL is configured in a Littman-Metcalf configuration and was built at Montana State University. It has a continuous wave (cw) output power of 20 mW, a center wavelength of 832 nm, a coarse tuning range of 17 nm, and a continuous tuning range greater than 20 GHz. The ECDL is used to injection seed a tapered amplifier with a cw output power of 500 mW. The spectral characteristics of the ECDL are transferred to the output of the tapered amplifier. The rest of the LIDAR uses commercially available telescopes, filter optics, and detectors. Initial cw and pulsed absorption measurements are presented.

  12. Long term NO2 measurements in Hong Kong using LED based Long Path Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2011-11-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 concentrations in the Kowloon Tong and Mong Kok district of Hong Kong and we compare the measurement results to concentrations reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time.

  13. Differential effects of some natural compounds on the transdermal absorption and penetration of caffeine and salicylic acid.

    PubMed

    Muhammad, Faqir; Riviere, Jim E

    2015-04-10

    Many natural products have the potential to modulate the dermal penetration of topically applied drugs and chemicals. We studied the effect of five natural compounds (hydroxycitronellal, limonene 1,2-epoxide, terpinyl acetate, p-coumaric acid, transferrulic acid) and ethanol on the transdermal penetration of two marker drugs ((14)C-caffeine and (14)C-salicylic acid) in a flow through in vitro porcine skin diffusion system. The parameters of flux, permeability, diffusivity, and percent dose absorbed/retained were calculated and compared. The dermal absorption of (14)C-caffeine was significantly higher with terpinyl acetate and limonene 1,2-epoxide as compared to ethanol; while dermal absorption of (14)C-salicylic acid was significantly greater with hydroxycitronellal and limonene 1,2-epoxide as compared to ethanol. A 10-fold increase in flux and permeability of caffeine with terpinyl acetate was observed while limonene increased flux of caffeine by 4-fold and permeability by 3-fold. Hydroxycitronellal and limonene increased salicylic acid's flux and permeability over 2-fold. The other natural compounds tested did not produce statistically significant effects on dermal penetration parameters for both caffeine and salicylic acid (p≥0.05). These results emphasize the differential effects of natural substances on the transdermal penetration of hydrophilic (caffeine) and hydrophobic (salicylic acid) drugs.

  14. Determination of Spatial Distribution of Air Pollution by Dye Laser Measurement of Differential Absorption of Elastic Backscatter

    NASA Technical Reports Server (NTRS)

    Ahmed, S. A.; Gergely, J. S.

    1973-01-01

    This paper presents the results of an analytical study of a lidar system which uses tunable organic dye lasers to accurately determine spatial distribution of molecular air pollutants. Also described will be experimental work to date on simultaneous multiwavelength output dye laser sources for this system. Basically the scheme determines the concentration of air pollutants by measuring the differential absorption of an (at least) two wavelength lidar signal elastically backscattered by the atmosphere. Only relative measurements of the backscattered intensity at each of the two wavelengths, one on and one off the resonance absorption of the pollutant in question, are required. The various parameters of the scheme are examined and the component elements required for a system of this type discussed, with emphasis on the dye laser source. Potential advantages of simultaneous multiwavelength outputs are described. The use of correlation spectroscopy in this context is examined. Comparisons are also made for the use of infrared probing wavelengths and sources instead of dye lasers. Estimates of the sensitivity and accuracy of a practical dye laser system of this type, made for specific pollutants, snow it to have inherent advantages over other schemes for determining pollutant spatial distribution.

  15. Integrated Path Differential Absorption Lidar Optimizations Based on Pre-Analyzed Atmospheric Data for ASCENDS Mission Applications

    NASA Technical Reports Server (NTRS)

    Pliutau, Denis; Prasad, Narasimha S.

    2012-01-01

    In this paper a modeling method based on data reductions is investigated which includes pre analyzed MERRA atmospheric fields for quantitative estimates of uncertainties introduced in the integrated path differential absorption methods for the sensing of various molecules including CO2. This approach represents the extension of our existing lidar modeling framework previously developed and allows effective on- and offline wavelength optimizations and weighting function analysis to minimize the interference effects such as those due to temperature sensitivity and water vapor absorption. The new simulation methodology is different from the previous implementation in that it allows analysis of atmospheric effects over annual spans and the entire Earth coverage which was achieved due to the data reduction methods employed. The effectiveness of the proposed simulation approach is demonstrated with application to the mixing ratio retrievals for the future ASCENDS mission. Independent analysis of multiple accuracy limiting factors including the temperature, water vapor interferences, and selected system parameters is further used to identify favorable spectral regions as well as wavelength combinations facilitating the reduction in total errors in the retrieved XCO2 values.

  16. Measurements of atmospheric NO3 radicals in Hefei using LED-based long path differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xue, Lu; Min, Qin; Pin-Hua, Xie; Jun, Duan; Wu, Fang; Liu-Yi, Ling; Lan-Lan, Shen; Jian-Guo, Liu; Wen-Qing, Liu

    2016-02-01

    NO3 radicals accumulate during the night, thereby being the most critical night oxidant. Owing to the low concentration and dramatic variation, the detection of atmospheric NO3 radicals is still challenging. In this paper, an LED-based Long Path Differential Optical Absorption Spectroscopy (LPDOAS) instrument is developed for measuring the atmospheric NO3 radicals. This instrument is composed of a Schmidt-Cassegrain telescope, a combined emitting and receiving fiber, and a red LED equipped with a thermostat, and has a center wavelength of 660 nm, covering the NO3 strongest absorption peak (662 nm). The influence of LED temperature fluctuations is discussed. The temperature of the LED lamp with a home-made thermostat is tested, showing a stability of ±0.1 °C. The principle and fitting analyses of LED-LPDOAS are presented. A retrieval example and a time series of NO3 radical concentrations with good continuity for one night are shown. The detection limit of NO3 for 2.6-km optical path is about 10 ppt. Project supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant Nos. XDB05040200 and XDB05010500).

  17. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.

    PubMed

    Nawahda, Amin

    2015-08-01

    Ground level ozone (O3) concentrations were measured across Sohar highway in Oman during a four-month period from September to December 2014 by using an open-path deferential optical absorption spectroscopy (DOAS) instrument. The monthly average concentrations of O3 varied from 19.6 to 29.4 ppb. The measurements of O3 are compared with the measurements of a non-open-path UV photometry analyzer (UVP). The percent difference (PD) concept and linear regression methods were used to compare the readings of the two instruments. The findings show high correlation coefficients between the measurements of the DOAS and UVP instruments. The DOAS measurements of O3 are found to be less than those measured by the UVP instrument; the correlation coefficients between absolute PD values and meteorological parameters and PM2.5 were very low indicating a minor effect; therefore, titrations of O3 by traffic emissions and difference in elevation could be the reason for the difference in the measurements of the two instruments.

  18. Binary phase shift keying on orthogonal carriers for multi-channel CO2 absorption measurements in the presence of thin clouds.

    PubMed

    Campbell, Joel F; Lin, Bing; Nehrir, Amin R; Harrison, F Wallace; Obland, Michael D

    2014-10-20

    A new modulation technique for Continuous Wave (CW) Lidar is presented based on Binary Phase Shift Keying (BPSK) using orthogonal carriers closely spaced in frequency, modulated by Maximum Length (ML) sequences, which have a theoretical autocorrelation function with no sidelobes. This makes it possible to conduct multi-channel atmospheric differential absorption measurements in the presence of thin clouds without the need for further processing to remove errors caused by sidelobe interference while sharing the same modulation bandwidth. Flight tests were performed and data were collected using both BPSK and linear swept frequency modulation. This research shows there is minimal or no sidelobe interference in the presence of thin clouds for BPSK compared to linear swept frequency with significant sidelobe levels. Comparisons between of CO(2) optical depth Signal to Noise (SNR) between the BPSK and linear swept frequency cases indicate a 21% drop in SNR for BPSK experimentally using the instrument under consideration.

  19. Gas Phase Absorption Spectroscopy of C+60 and C+70 in a Cryogenic Ion Trap: Comparison with Astronomical Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.; Gerlich, D.; Walker, G. A. H.; Bohlender, D.

    2016-05-01

    Recent low-temperature laboratory measurements and astronomical observations have proved that the fullerene cation {{{C}}}60+ is responsible for four diffuse interstellar bands (DIBs). These absorptions correspond to the strongest bands of the lowest electronic transition. The gas phase spectrum below 10 {{K}} is reported here for the full wavelength range encompassed by the electronic transition. The absorption spectrum of {{{C}}}70+, with its origin band at 7959.2 {{\\mathringA }}, has been obtained under similar laboratory conditions. Observations made toward the reddened star {HD} 183143 were used in a specific search for the absorption of these fullerene cations in diffuse clouds. In the case of {{{C}}}60+, one further band in the astronomical spectrum at 9348.5 \\mathringA is identified, increasing the total number of assigned DIBs to five. Numerous other {{{C}}}60+ absorptions in the laboratory spectrum are found to lie below the astronomical detection limit. Special emphasis is placed on the laboratory determination of absolute absorption cross-sections. For {{{C}}}60+ this directly yields a column density, N({{{C}}}60+), of 2× {10}13 {{{cm}}}-2 in diffuse clouds, without the need to rely on theoretical oscillator strengths. The intensity of the {{{C}}}70+ electronic transition in the range 7000-8000 Å is spread over many features of similar strength. Absorption cross-section measurements indicate that even for a similar column density, the individual absorption bands of {{{C}}}70+ will be too weak to be detected in the astronomical spectra, which is confirmed giving an upper limit of 2 {{m\\mathringA }} to the equivalent width. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  20. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    PubMed

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  1. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suzuki, K.; Millan, L. F.; Kalmus, P. M.

    2015-06-01

    The feasibility of Differential Absorption Radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to Large Eddy Simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m Full Width at Half Maximum (FWHM) horizontal, measurement precision better that 1 g m-3 is achievable for stratocumulus scenes and 3 g m-3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the Column Water Vapor (CWV) is achievable between 0.5 and 2 kg m-2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m-2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a -35 dBZ minimum detectable signal, 40 % (21.9 %) of

  2. The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suzuki, K.; Millán, L. F.; Kalmus, P. M.

    2015-09-01

    The feasibility of differential absorption radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to large eddy simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m full width at half maximum (FWHM) horizontal, measurement precision better that 1 g m-3 is achievable for stratocumulus scenes and 3 g m-3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the column water vapor (CWV) is achievable between 0.5 and 2 kg m-2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m-2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a -35 dBZ minimum detectable signal, 40 %(21.9 %) of

  3. The Differential Phase Experiment: experimental concept, design analysis, and data reduction analysis

    NASA Astrophysics Data System (ADS)

    Tyler, Glenn A.; Brennan, Terry J.; Browne, Stephen L.; Dueck, Robert H.; Lodin, Michael S.; Roberts, Phillip H.; Vaughn, Jeffrey L.

    1997-08-01

    This paper describes the differential phase experiment (DPE) which formed a major part of the ABLE ACE suite of experiments conducted by the Air Force. The work described covers the rationale for the experiment, the basic experimental concept, the analysis of the differential phase, the optical and software design analysis, a discussion of the polarization scrambling characteristics of the optics, calibration of the equipment and a presentation of some of the major results of the data reduction effort to date. The DPE was a propagation experiment conducted between two aircraft flying at an altitude of 40,000 feet whose purpose was to measure the phase difference between two beams propagating at slightly different angels through the atmosphere. A four bin polarization interferometer was used to measure the differential phase. Due to the high level of scintillation that was presented branch points were present in the phase function. Rytov theory, wave optics simulation and the experimental measurements are in general agreement. Self consistency checks that were performed on the data indicate a high level of confidence in the results. Values of Cn2 that are consistent with the measurements of the differential phase agree with simultaneous scintillometer measurement taken long the same path in levels of turbulence where the scintillometer is not saturated. These differential phase based Cn2 estimates do not appear to saturate as is typical of scintillometer measurements and appear to extend the range over which high levels of Cn2 can be estimated. In addition the differential phase and anisoplanatic Strehl computed from the data is consistent with Rytov theory and wave optics simulations.

  4. Differentiating the growth phases of single bacteria using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Strola, S. A.; Marcoux, P. R.; Schultz, E.; Perenon, R.; Simon, A.-C.; Espagnon, I.; Allier, C. P.; Dinten, J.-M.

    2014-03-01

    In this paper we present a longitudinal study of bacteria metabolism performed with a novel Raman spectrometer system. Longitudinal study is possible with our Raman setup since the overall procedure to localize a single bacterium and collect a Raman spectrum lasts only 1 minute. Localization and detection of single bacteria are performed by means of lensfree imaging, whereas Raman signal (from 600 to 3200 cm-1) is collected into a prototype spectrometer that allows high light throughput (HTVS technology, Tornado Spectral System). Accomplishing time-lapse Raman spectrometry during growth of bacteria, we observed variation in the net intensities for some band groups, e.g. amides and proteins. The obtained results on two different bacteria species, i.e. Escherichia coli and Bacillus subtilis clearly indicate that growth affects the Raman chemical signature. We performed a first analysis to check spectral differences and similarities. It allows distinguishing between lag, exponential and stationary growth phases. And the assignment of interest bands to vibration modes of covalent bonds enables the monitoring of metabolic changes in bacteria caused by growth and aging. Following the spectra analysis, a SVM (support vector machine) classification of the different growth phases is presented. In sum this longitudinal study by means of a compact and low-cost Raman setup is a proof of principle for routine analysis of bacteria, in a real-time and non-destructive way. Real-time Raman studies on metabolism and viability of bacteria pave the way for future antibiotic susceptibility testing.

  5. Double-pulse 2-μm integrated path differential absorption lidar airborne validation for atmospheric carbon dioxide measurement.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed

    2016-05-20

    Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15  ppm with 1.02% uncertainty and

  6. Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants; Morgan, Kaye S.; Marathe, Shashidhara; Xiao, Xianghui; Assoufid, Lahsen; Anderson, Rebecca A.; Topczewski, Jacek; Bryson-Richardson, Robert J.

    2015-04-01

    X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve the same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.

  7. 3-D-Observation of Matrix of MIL 090657 Meteorite by Absorption-Phase Tomography

    NASA Technical Reports Server (NTRS)

    Miyama, Sugimoto; Tsuchiyama, Akira; Matsuno, Junya; Miyake, Akira; Nakano, Tsukasa; Uesugi, Kentaro; Takeuchi, Akihisa; Takigawa, Aki; Takayama, Akiko; Nakamura-Messenger, Keiko; Burton, Aaron S.; Messenger, Scott

    2017-01-01

    MIL 090657 meteorite (CR2.7) is one of the least altered primitive carbonaceous c hondrites [1]. This meteorite has amorphous silicates like GEMS (glass with embedded metal and sulfide), which are characteristically contained in cometary dust, in matrix [2,3] as with the Paris meteorite [4]. Three lithologies have been recognized; lithology-1 (L 1) dominated by submicron anhydrous silicates, lithology-2 (L2) by GEMS-like amorphous silicates and lithology-3 (L3) by phyllosilicates [2]. Organic materials are abundant in L 1 and L2 [2,3]. L 1 and L2 were further divided into sub-lithology respectively based on their textures and compositions [5]. These studies were performed by 2D SEM and TEM observations of sample surfaces and thin sections that are unable to reveal what constitute each lithology and how these lithologies are distributed and related to each other. This information will provide important insights into alteration and aggregation processes on asteroids and in the early solar nebula. In this study, MIL 090657 matrix was examined in 3D using two types of X-ray tomography; DET (dual-energy tomography) [6] and SIXM (scanning-imaging X-ray microscopy) [7]. Mineral phases can be discriminated based on absorption contrasts at two different X-ray energies in DET. In SIXM, materials composed of light elements such as water or organic materials can be identified based on phase and absorption contrasts. By combining these methods, we can discriminate not only organic materials from voids but also hydrous alteration products, such as hydrated silicates and carbonates, from anhydrous minerals [8]. In this study, we first observed cross sections of MIL 090657 matrix fragments C1 00 mm) in detail using FE-SEM/ EDS. Based on the results, three house-shaped samples (3 0 -50 mm) were extracted from L 1, L2 and their boundary (H1, H3 and H5, respectively) using FIB. 3D imaging of these samples were conducted at BL47XU of SPring-8, a synchrotron radiation facility, with

  8. Differential Brillouin fiber sensor based on phase difference on double-sideband pump wave

    NASA Astrophysics Data System (ADS)

    Lin, Wenqiao; Hong, Xiaobin; Yang, Zhisheng; Wu, Jian; Lin, Jintong

    2015-06-01

    A configuration based on phase difference on a double-sideband pump wave is proposed to detect the differential variation of temperature or strain in single-mode optical fibers. In our configuration, a probe wave only experiences a differential Brillouin gain contributed by the perturbation of temperature or strain in the sensing fiber. As a result, the power limitation of the probe wave can be alleviated and the photodetector in our configuration does not easily become saturated in the case of a longer sensing range. The spatial resolution is determined by the duration of the phase difference on the two sidebands and the signal-to-noise of our system is nearly twice as high as that of a differential pulse-width pair Brillouin optical time domain analysis sensor since a π-phase shift on the pump wave is employed. The properties and performances of our method are also theoretically derived and experimentally validated.

  9. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu

    2016-04-01

    On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  10. Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay

    NASA Astrophysics Data System (ADS)

    Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.

    2015-07-01

    On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.

  11. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements.

    PubMed

    Koch, Grady J; Beyon, Jeffrey Y; Gibert, Fabien; Barnes, Bruce W; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J; Yu, Jirong; Modlin, Edward A; Davis, Kenneth J; Singh, Upendra N

    2008-03-01

    A 2 microm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO(2) absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO(2) concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO(2) concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO(2) measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min? (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO(2) concentration to <0.7% standard deviation using a 30 min? (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO(2) perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min? rolling average on the DIAL measurement.

  12. Differential absorption lidar measurements of H2O and O2 using a coherent white light continuum

    NASA Astrophysics Data System (ADS)

    Somekawa, T.; Manago, N.; Kuze, H.; Fujita, M.

    2016-10-01

    We applied a broadband and coherent white light continuum to differential absorption lidar (DIAL) detection of H2O and O2 profiles in the troposphere. The white light continuum can be generated by focusing high intensity femtosecond laser pulses at 800 nm into a Kr gas cell covering a broad spectral range from UV to mid-IR. Thus, the use of white light continuum potentially enables the DIAL measurement of several greenhouse and/or pollutant gases simultaneously while minimizing the lead time for developing a tunable light source. In order to demonstrate such capability, here we report the lidar measurements of H2O and O2. These molecular species exhibit absorption lines in the near IR region where relatively high intensity of the white light continuum is available. The white light continuum was transmitted through the atmosphere collinearly to the axis of a receiver telescope. Backscattered light was passed through bandpass filters (H2O On: 725 and 730 nm, H2O Off: 750 nm, O2 On: 760 nm, O2 Off: 780 nm), and was detected by a photomultiplier tube. The detection wavelengths were selected consecutively by rotating the filter wheels that contain five bandpass filters with an interval of 1 minute. In addition, we propose a method for retrieving vertical profiles of H2O by considering wavelength dependence of the aerosol extinction coefficient α and backscatter coefficient β. These results show that for achieving precise retrieval of H2O distribution, one needs to reduce the effect of aerosol temporal variations by means of long-time accumulation or simultaneous detection of the On- and Off-wavelength signals.

  13. Multiple bit differential detection of offset quadrature phase-shift-keying

    NASA Technical Reports Server (NTRS)

    Simon, M.

    2003-01-01

    Analogous to multiple symbol differential detectionof quadrature phase-shift-keying (QPSK), a multiple bit differential detection scheme is described for offset QPSK that also exhibits continuous improvement in performance with increasing observation interval. Being derived from maximum-likelihood (ML) considerations, the proposed scheme is purported to be the most power efficient scheme for such a modulation and detection method. Extension of the results to shaped offset QPSK is also possible.

  14. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-06-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  15. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    NASA Astrophysics Data System (ADS)

    Rozanov, V. V.; Rozanov, A. V.

    2010-02-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering. Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS), the modified (MDOAS), and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption. The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as well as of the relationship between

  16. High-power Ti:sapphire laser at 820 nm for scanning ground-based water-vapor differential absorption lidar.

    PubMed

    Wagner, Gerd; Behrendt, Andreas; Wulfmeyer, Volker; Späth, Florian; Schiller, Max

    2013-04-10

    The Ti:sapphire (TISA) laser transmitter of the mobile, three-dimensional-scanning water-vapor differential absorption lidar (DIAL) of the University of Hohenheim is described in detail. The dynamically-stable, unidirectional ring resonator contains a single Brewster-cut TISA crystal, which is pumped from both sides with 250 Hz using a diode-pumped frequency-doubled Nd:YAG laser. The resonator is injection seeded and actively frequency-stabilized using a phase-sensitive technique. The TISA laser is operating near 820 nm, which is optimum for ground-based water-vapor DIAL measurements. An average output power of up to 6.75 W with a beam quality factor of M2<2 is reached. The pointing stability is <13 μrad (rms), the depolarization <1%. The overall optical-optical conversion efficiency is up to 19%. The pulse length is 40 ns with a pulse linewidth of <157 MHz. The short- and long-term frequency stabilities are 10 MHz (rms). A spectral purity of 99.9% was determined by pointing to a stratus cloud in low-elevation scanning mode with a cloud bottom height of ≈2.4 km.

  17. Real-time monitoring of benzene, toluene, and p-xylene in a photoreaction chamber with a tunable mid-infrared laser and ultraviolet differential optical absorption spectroscopy.

    PubMed

    Parsons, Matthew T; Sydoryk, Ihor; Lim, Alan; McIntyre, Thomas J; Tulip, John; Jäger, Wolfgang; McDonald, Karen

    2011-02-01

    We describe the implementation of a mid-infrared laser-based trace gas sensor with a photoreaction chamber, used for reproducing chemical transformations of benzene, toluene, and p-xylene (BTX) gases that may occur in the atmosphere. The system performance was assessed in the presence of photoreaction products including aerosol particles. A mid-infrared external cavity quantum cascade laser (EC-QCL)-tunable from 9.41-9.88 μm (1012-1063 cm(-1))-was used to monitor gas phase concentrations of BTX simultaneously and in real time during chemical processing of these compounds with hydroxyl radicals in a photoreaction chamber. Results are compared to concurrent measurements using ultraviolet differential optical absorption spectroscopy (UV DOAS). The EC-QCL based system provides quantitation limits of approximately 200, 200, and 600 parts in 10(9) (ppb) for benzene, toluene, and p-xylene, respectively, which represents a significant improvement over our previous work with this laser system. Correspondingly, we observe the best agreement between the EC-QCL measurements and the UV DOAS measurements with benzene, followed by toluene, then p-xylene. Although BTX gas-detection limits are not as low for the EC-QCL system as for UV DOAS, an unidentified by-product of the photoreactions was observed with the EC-QCL, but not with the UV DOAS system.

  18. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  19. A note on the generation of phase plane plots on a digital computer. [for solution of nonlinear differential equations

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1980-01-01

    A technique is presented for generating phase plane plots on a digital computer which circumvents the difficulties associated with more traditional methods of numerical solving nonlinear differential equations. In particular, the nonlinear differential equation of operation is formulated.

  20. Phase Transfer-Catalyzed Fast CO2 Absorption by MgO-Based Absorbents with High Cycling Capacity

    SciTech Connect

    Zhang, Keling; Li, Xiaohong S.; Li, Weizhen; Rohatgi, Aashish; Duan, Yuhua; Singh, Prabhakar; Li, Liyu; King, David L.

    2014-06-01

    CO2 capture from pre-combustion syngas in the temperature range of 250-400°C is highly desirable from an energy efficiency perspective. Thermodynamically, MgO is a promising material for CO2 capture, but the gas-solid reaction to produce MgCO3 is kinetically slow due to high lattice energy. We report here fast CO2 absorption over a solid MgO-molten nitrate/nitrite aggregate through phase transfer catalysis, in which the molten phase serves as both a catalyst and reaction medium. Reaction with CO2 at the gas-solid-liquid triple phase boundary results in formation of MgCO3 with significant reaction rate and a high conversion of MgO. This methodology is also applicable to other alkaline earth oxides, inspiring the design of absorbents which require activation of the bulk material.

  1. First measurements of a carbon dioxide plume from an industrial source using a ground based mobile differential absorption lidar.

    PubMed

    Robinson, R A; Gardiner, T D; Innocenti, F; Finlayson, A; Woods, P T; Few, J F M

    2014-08-01

    The emission of carbon dioxide (CO2) from industrial sources is one of the main anthropogenic contributors to the greenhouse effect. Direct remote sensing of CO2 emissions using optical methods offers the potential for the identification and quantification of CO2 emissions. We report the development and demonstration of a ground based mobile differential absorption lidar (DIAL) able to measure the mass emission rate of CO2 in the plume from a power station. To our knowledge DIAL has not previously been successfully applied to the measurement of emission plumes of CO2 from industrial sources. A significant challenge in observing industrial CO2 emission plumes is the ability to discriminate and observe localised concentrations of CO2 above the locally observed background level. The objectives of the study were to modify our existing mobile infrared DIAL system to enable CO2 measurements and to demonstrate the system at a power plant to assess the feasibility of the technique for the identification and quantification of CO2 emissions. The results of this preliminary study showed very good agreement with the expected emissions calculated by the site. The detection limit obtained from the measurements, however, requires further improvement to provide quantification of smaller emitters of CO2, for example for the detection of fugitive emissions. This study has shown that in principle, remote optical sensing technology will have the potential to provide useful direct data on CO2 mass emission rates.

  2. Monitoring of atmospheric nitrogen dioxide by long-path pulsed differential optical absorption spectroscopy using two different light paths.

    PubMed

    Kambe, Yasuaki; Yoshii, Yotsumi; Takahashi, Kenshi; Tonokura, Kenichi

    2012-03-01

    Measurements of the local distribution of atmospheric nitrogen dioxide (NO(2)) by long-path pulsed differential optical absorption spectroscopy (LP-PDOAS) in Tokyo during August 2008 are presented. Two LP-PDOAS systems simultaneously measured average NO(2) temporal mixing ratios along two different paths from a single observation point. Two flashing aviation obstruction lights, located 7.0 km north and 6.3 km east from the observation point, were used as light sources, allowing spatiotemporal variations of NO(2) in Tokyo to be inferred. The LP-PDOAS data were compared with ground-based data measured using chemiluminescence. Surface wind data indicated that large inhomogeneities were present in the spatial NO(2) distributions under southerly wind conditions, while northerly wind conditions displayed greater homogeneity between the two systems. The higher correlation in the NO(2) mixing ratio between the two LP-PDOAS systems was observed under northerly wind conditions with a correlation factor R(2) = 0.88. We demonstrated that the combined deployment of two LP-PDOAS systems oriented in different directions provides detailed information on the spatial distribution of NO(2).

  3. Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy

    PubMed Central

    Pöhler, Denis; Vogel, Leif; Frieß, Udo; Platt, Ulrich

    2010-01-01

    In the polar tropospheric boundary layer, reactive halogen species (RHS) are responsible for ozone depletion as well as the oxidation of elemental mercury and dimethyl sulphide. After polar sunrise, air masses enriched in reactive bromine cover areas of several million square kilometers. Still, the source and release mechanisms of halogens are not completely understood. We report measurements of halogen oxides performed in the Amundsen Gulf, Arctic, during spring 2008. Active long-path differential optical absorption spectroscopy (LP-DOAS) measurements were set up offshore, several kilometers from the coast, directly on the sea ice, which was never done before. High bromine oxide concentrations were detected frequently during sunlight hours with a characteristic daily cycle showing morning and evening maxima and a minimum at noon. The, so far, highest observed average mixing ratio in the polar boundary layer of 41 pmol/mol (equal to pptv) was detected. Only short sea ice contact is required to release high amounts of bromine. An observed linear decrease of maximum bromine oxide levels with ambient temperature during sunlight, between -24 °C and -15 °C, provides indications on the conditions required for the emission of RHS. In addition, the data indicate the presence of reactive chlorine in the Arctic boundary layer. In contrast to Antarctica, iodine oxide was not detected above a detection limit of 0.3 pmol/mol. PMID:20160121

  4. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements

    NASA Astrophysics Data System (ADS)

    Milovac, Josipa; Warrach-Sagi, Kirsten; Behrendt, Andreas; Späth, Florian; Ingwersen, Joachim; Wulfmeyer, Volker

    2016-01-01

    Six simulations with the Weather Research and Forecasting (WRF) model differing in planetary boundary layer (PBL) schemes and land surface models (LSMs) are investigated in a case study in western Germany during clear-sky weather conditions. The simulations were performed at 2 km resolution with two local and two nonlocal PBL schemes, combined with two LSMs (NOAH and NOAH-MP). Resulting convective boundary layer (CBL) features are investigated in combination with high-resolution water vapor differential absorption lidar measurements at an experimental area. Further, the simulated soil-vegetation-atmosphere feedback processes are quantified applying a mixing diagram approach. The investigation shows that the nonlocal PBL schemes simulate a deeper and drier CBL than the local schemes. Furthermore, the application of different LSMs reveals that the entrainment of dry air depends on the energy partitioning at the land surface. The study demonstrates that the impact of processes occurring at the land surface is not constrained to the lower CBL but extends up to the interfacial layer and the lower troposphere. With respect to the choice of the LSM, the discrepancies in simulating a diurnal change of the humidity profiles are even more significant at the interfacial layer than close to the land surface. This indicates that the representation of land surface processes has a significant impact on the simulation of mixing properties within the CBL.

  5. Process for rapid detection of fratricidal defects on optics using Linescan Phase Differential Imaging

    SciTech Connect

    Ravizza, F L; Nostrand, M C; Kegelmeyer, L M; Hawley, R A; Johnson, M A

    2009-11-05

    Phase-defects on optics used in high-power lasers can cause light intensification leading to laser-induced damage of downstream optics. We introduce Linescan Phase Differential Imaging (LPDI), a large-area dark-field imaging technique able to identify phase-defects in the bulk or surface of large-aperture optics with a 67 second scan-time. Potential phase-defects in the LPDI images are indentified by an image analysis code and measured with a Phase Shifting Diffraction Interferometer (PSDI). The PSDI data is used to calculate the defects potential for downstream damage using an empirical laser-damage model that incorporates a laser propagation code. A ray tracing model of LPDI was developed to enhance our understanding of its phase-defect detection mechanism and reveal limitations.

  6. Differential surface deposition of complement proteins on logarithmic and stationary phase Leishmania chagasi promastigotes.

    PubMed

    Ramer-Tait, Amanda E; Lei, Soi Meng; Bellaire, Bryan H; Beetham, Jeffrey K

    2012-12-01

    Previous works demonstrated that various species of Leishmania promastigotes exhibit differential sensitivity to complement-mediated lysis (CML) during development. Upon exposure to normal human serum (NHS), cultures of Leishmania chagasi promastigotes recently isolated from infected hamsters (fewer than 5 in vitro passages) are CML-sensitive when in the logarithmic growth phase but become CML-resistant upon transition to the stationary culture phase. Visualization by light and electron microscopy revealed dramatic morphological differences between promastigotes from the 2 culture phases following exposure to NHS. Flow cytometric analysis demonstrated that surface deposition of the complement components C3, C5, and C9 correlated inversely with promastigote CML-resistance. The highest levels of complement protein surface accumulation were observed for logarithmic phase promastigotes, while stationary phase promastigotes adsorbed the least amount of complement proteins. Additionally, fluorescence microscopy revealed that C3 and C5 localized in a fairly uniform pattern to the plasma membrane of promastigotes from logarithmic phase cultures, while the staining of promastigotes from stationary phase cultures was indistinguishable from background. By Western blot analysis, high levels of the complement proteins C3, C5, and C9 were detected in the total lysates of NHS-exposed logarithmic phase L. chagasi promastigotes, relative to NHS-exposed stationary phase promastigotes; this finding indicates that the low levels of C3 and C5 seen on the surface of stationary phase promastigotes were not due to protein uptake/internalization. Together, these data demonstrate the differential deposition of complement proteins on the surfaces of logarithmic and stationary phase L. chagasi promastigotes. The data support a model wherein stationary phase L. chagasi promastigotes resist CML by limiting the deposition of C3 and its derivatives, which, in turn, limit surface levels of

  7. Non-interferometer Phase-differential Imaging Method with a Single Telescope Installation

    NASA Astrophysics Data System (ADS)

    Choi, Jaeho

    2016-01-01

    Non-interferometer phase-differential imaging method for direct imaging of the astronomical objects will be presented. The feasibility of non-interferometry method to retrieve the phase differential images of the astronomical objects is demonstrated in the laboratory experiments exploiting the two-dimensional Foucault knife-edge filtering method which is installed on a single telescope. The experiment setup is essentially analogous to the Schlieren imaging apparatus that can be taken images using an incoherent light source. The fractional derivation filtering by the two-dimensional knife-edge filter is developed in order to acquire the phase information of the object. The intensities of filtering images by the 2D knife-edge at several points along the optical axis of the telescope are substituted in the transport-intensity equation to obtain phase-differential images of the astronomical objects. Then the phase-differential images are obtained by two image intensities taken along the optical axis. In our experiment, a mono-directional scanning scheme of the 2DFK was exploited to reduce number of scan as well as increase the spatial resolution of images. An illuminated light out of a bundle of optical fibers as an artificial astronomical object is used our laboratory based experiment. The light from the each optical fibers in the fiber bundle that intensities have exiguously different or barely visible are represented the brightness of the astronomical objects. The experiment result, the phase contrast images, shows that barely identified object from an intensity based image has rendered almost equivalent contrast as the bright object. It represents that our proposed method can be recovered from phase difference of the object light that could not be identified from the intensity of objects brightness. The proposed method has a feature of render phase-differential images as well as compensates atmospheric turbulence with the setup mounting on a single-telescope. The

  8. Exact analysis of a balanced receiver for differential phase-shift keying signals.

    PubMed

    Ho, Keang-Po

    2007-03-01

    The performance of differential phase-shift keying signals with a balanced receiver is exactly analyzed by using a closed-form expression without approximation. The numerical results are well matched with previous results based on the saddle-point approximation. The error probability is calculated exactly using the well-known Marcum Q function.

  9. Noise reduction in differential phase extraction of dual atom interferometers using an active servo loop

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan

    2016-01-01

    Differential measurements using simultaneous atom interferometers provide unprecedented precision and stability for explorations on the scientific frontiers. Phase extraction between two atom interferometers, however, imposes additional limitations on the overall instrument performance due to nonlinear multiparameter fit and associated reduced data rate and sensitivity. We propose an active differential phase extraction method, which is self-calibratable and yields the theoretical performance of differential measurement for uncorrelated errors, and demonstrate the scheme on a transportable gravity gradiometer. The gravity gradient sensitivity of the instrument is improved by a factor of 3 with the implementation of the technique, which is in consistent with independently measured detection noise. We also demonstrate the accuracy and applicability of the scheme with 33-kg test masses, and achieve 1 E uncertainty after 4000 s.

  10. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    PubMed

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  11. All-optical phase and amplitude regeneration of return-to-zero differential phase shift keying data.

    PubMed

    Awad, Ehab S; Cho, Pak S; Goldhar, Julius

    2007-02-15

    We report a novel implementation of an all-optical rephasing, reshaping, and reamplification differential phase shift keying (DPSK) regenerator. The rephasing is based on converting phase noise into amplitude noise by using an interferometric configuration and then eliminating the amplitude noise by using a semiconductor optical amplifier (SOA). The reshaping is performed using gain competition and gain compression in a saturated SOA. The scheme was tested using 10Gbit/s, 2(23)-1 pseudorandom bit sequence return-to-zero DPSK data. The measurement shows removal of the degraded data error floor with a 6 order-of-magnitude improvement in bit-error rate. The measured negative power penalty is about 4dB. Mathematical analysis shows a reduction in DPSK phase-noise power by half.

  12. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  13. Correlation between human observer performance and model observer performance in differential phase contrast CT

    SciTech Connect

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objects (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of their CD

  14. Cu2ZnSnS4 absorption layers with controlled phase purity.

    PubMed

    Su, Chia-Ying; Chiu, Chiu-Yen; Ting, Jyh-Ming

    2015-03-24

    We report the synthesis and characterization of Cu2ZnSnS4 (CZTS) with controlled phase purity. The precursor was first prepared using sequential electrodeposition of Cu, Zn, and Sn in different orders. The Cu/(Sn+Zn) ratio in each stacking order was also varied. The precursor was subjected to annealing at 200°C and sulfurization at 500°C in a 5%-H2S/Ar atmosphere for the formation of CZTS. The phase evolutions during the electrodeposition and annealing stages, and the final phase formation at the sulfurization stage were examined using both x-ray diffractometry and Raman spectroscopy, both of which are shown to be complimentary tools for phase identification. Detailed growth path is therefore reported. We also demonstrate by controlling the stacking order and the Cu/(Sn+Zn) ratio, CZTS with a phase purity as high as 93% is obtained.

  15. Cu2ZnSnS4 absorption layers with controlled phase purity

    PubMed Central

    Su, Chia-Ying; -Yen Chiu, Chiu; Ting, Jyh-Ming

    2015-01-01

    We report the synthesis and characterization of Cu2ZnSnS4 (CZTS) with controlled phase purity. The precursor was first prepared using sequential electrodeposition of Cu, Zn, and Sn in different orders. The Cu/(Sn+Zn) ratio in each stacking order was also varied. The precursor was subjected to annealing at 200°C and sulfurization at 500°C in a 5%-H2S/Ar atmosphere for the formation of CZTS. The phase evolutions during the electrodeposition and annealing stages, and the final phase formation at the sulfurization stage were examined using both x-ray diffractometry and Raman spectroscopy, both of which are shown to be complimentary tools for phase identification. Detailed growth path is therefore reported. We also demonstrate by controlling the stacking order and the Cu/(Sn+Zn) ratio, CZTS with a phase purity as high as 93% is obtained. PMID:25801219

  16. A new calibration system for lightweight, compact and mobile Cavity-Enhanced Differential Optical Absorption Spectroscopy instruments

    NASA Astrophysics Data System (ADS)

    Zielcke, Johannes; Horbanski, Martin; Pöhler, Denis; Frieß, Udo; Platt, Ulrich

    2013-04-01

    Absorption Spectroscopy has been employed for several decades now to study the earth's atmosphere. While the focus has been on remote sensing for a long time, lately there has been a renewed interest in in-situ methods, as point measurements allow an easier interpretation for highly inhomogeneous distributions of gases of interest compared to the integration approach of most remote sensing methods. One comparatively new method offering both advantages of in-situ measurements as well as being contactless is open-path Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS). Broadband open-path CE-DOAS instruments have been used for ten years now, and in the meantime allow the measurement of numerous atmospheric trace gases (e.g. NO2, NO3, IO, CHOCHO, HCHO). While those instruments were bulky and not very mobile at first, recent developments resulted in relatively lightweight (< 30 kg) instruments with a relatively low power consumption allowing mobile open-path measurements at remote field locations. An important operational issue has been the path length calibration in the field, necessary for the determination of the concentration of measured gases. Until now, often calibration gases were used with different scattering properties than air or known concentrations. However this methods has several major shortcomings, being rather inconvenient and cumbersome in the field with the need for compressed gas cylinders, as well as time consuming, preventing a quick check of the state of the instrument in the field after changing measurement locations. Here we present a new wavelength-resolved method for broadband CE-DOAS path length calibration. A small, custom made ring-down system is employed with a pulsed LED as light source. The wavelength is then resolved by tilting a narrow band interference filter. The system not only allows quick, automated path length calibrations without physical interaction on the instrument, but also saves weight, space and the

  17. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NASA Astrophysics Data System (ADS)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2012-02-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia for 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day, the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales, the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  18. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NASA Astrophysics Data System (ADS)

    Volten, H.; Bergwerff, J. B.; Haaima, M.; Lolkema, D. E.; Berkhout, A. J. C.; van der Hoff, G. R.; Potma, C. J. M.; Wichink Kruit, R. J.; van Pul, W. A. J.; Swart, D. P. J.

    2011-08-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM, the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m-3, have a fast response, low maintenance demands, and a high up-time. The RIVM DOAS has a high accuracy of typically 0.15 μg m-3 for ammonia over 5-min averages and over a total light path of 100 m. The miniDOAS has been developed for application in measurement networks such as the Dutch National Air Quality Monitoring Network (LML). Compared to the RIVM DOAS it has a similar accuracy, but is significantly reduced in size, costs, and handling complexity. The RIVM DOAS and miniDOAS results showed excellent agreement (R2 = 0.996) during a field measurement campaign in Vredepeel, the Netherlands. This measurement site is located in an agricultural area and is characterized by highly variable, but on average high ammonia concentrations in the air. The RIVM-DOAS and miniDOAS results were compared to the results of the AMOR instrument, a continuous-flow wet denuder system, which is currently used in the LML. Averaged over longer time spans of typically a day the (mini)DOAS and AMOR results agree reasonably well, although an offset of the AMOR values compared to the (mini)DOAS results exists. On short time scales the (mini)DOAS shows a faster response and does not show the memory effects due to inlet tubing and transport of absorption fluids encountered by the AMOR. Due to its high accuracy, high uptime, low maintenance and its open path, the (mini)DOAS shows a good potential for flux measurements by using two (or more) systems in a gradient set-up and applying the aerodynamic gradient technique.

  19. A differential absorption lidar instrument for the measurment of carbon dioxide and methane in the lower troposphere (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Budinov, Daniel; Clements, Robert; Rae, Cameron F.; Moncrieff, John B.; Jack, James W.

    2016-12-01

    Developments in the remote detection of trace gases in the atmosphere using Differential Absorption Lidar have been driven largely by improvements in two key technologies: lasers and detectors. We have designed and built a narrow linewidth pulsed laser source with a well-controlled output wavelength and sufficient pulse energy to measure the concentration profile of CO2 and CH4 to a range in excess of 4km. We describe here the initial measurements of concentration profiles recorded with this instrument. The system is built around a custom-designed Newtonian telescope with a 40cm diameter primary mirror. Laser sources and detectors attach directly to the side of the telescope allowing for flexible customization with a range of additional equipment. The instrument features an all-solid-state laser source based on an optical parametric oscillator (OPO) pumped by an YLF based diode-laser pumped solid-state laser and seeded by a tuned DFB seed. This provides a range of available wavelengths suitable for DIAL within the 1.5-1.6 μm spectral region. The output of the OPO is beam expanded and transmitted coaxially from the receiver telescope. A gas cell within the laser source controls the seed wavelength and allows the wavelength to be tuned to match a specific absorption feature of the selected gas species. The source can be rapidly tuned between the on-line and off-line wavelengths to make a DIAL measurement of either CO2 or CH4 The receiver is based on an InGaAs avalanche photodetector. Whilst photodiode detectors are a low-cost solution their limited sensitivity restricts the maximum range over which a signal can be detected. The receiver signal is digitised for subsequent processing to produce a sightline concentration profile. The instrument is mounted on a robust gimballed mount providing full directional movement within the upper hemisphere. Both static pointing and angular scan modes are available. Accurate angular position is available giving the sightline

  20. [Studies on the determination of the flux of gaseous pollutant from an area by passive differential optical absorption spectroscopy].

    PubMed

    Li, Ang; Xie, Pin-Hua; Liu, Wen-Qing; Liu, Jian-Guo; Dou, Ke

    2009-01-01

    An optical remote sensing method based on passive differential optical absorption spectroscopy (DOAS) for the determination of the flux of SO2 or other gaseous pollutants from an area (such as industrial area, city) which includes many different atmospheric pollution sources was studied in the present paper. Passive DOAS using the zenith scattered sunlight as the light source provides the column density (the integrated concentration of atmospheric absorbers along the light path) and has been successfully applied to the determination of the flux of gaseous pollutants emitted from the volcano or point source. Passive DOAS instrument installed in a car scanned the plume emitted from an area by circling around the area in this paper. Column density of each selected gaseous pollutant was retrieved from zenith scattered sunlight spectra collected by the instrument by spectral analysis method of passive DOAS in their particular absorption spectral range respectively. Combined with the meteorological (wind field) information during the period of measurement, the net flux value of gaseous pollutant from this area during the measurement could be estimated. DOAS method used to obtain the column density of gaseous pollutant in the section plane of the plume emitted from source and the method of net flux calculation of gaseous pollutant from a certain area are described. Also a passive DOAS instrument was developed and installed in a car to scan the gaseous pollutants from the area surrounded by the 5th Ring Road in Beijing city during a field campaign in the summer of 2005. The SO2 net flux 1.13 x 10(4) kg x h(-1) and NO2 net flux 9.3 x 10(3) kg x h(-1) from this area were derived separately after the passive DOAS measured the entire ring road and the wind data were roughly estimated from wind profile radar. The results indicate that this optical remote sensing method based on passive DOAS can be used to rapidly determine the flux of gaseous pollutant (such as SO2, NO2

  1. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    NASA Astrophysics Data System (ADS)

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  2. Gas-phase Absorption of {{\\rm{C}}}_{70}^{2+} below 10 K: Astronomical Implications

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Holz, M.; Maier, J. P.

    2017-02-01

    The electronic spectrum of the fullerene dication {{{C}}}702+ has been measured in the gas phase at low temperature in a cryogenic radiofrequency ion trap. The spectrum consists of a strong origin band at 7030 Å and two weaker features to higher energy. The bands have FWHMs of 35 Å indicating an excited state lifetime on the order of one-tenth of a picosecond. Absorption cross-section measurements yield (2 ± 1) × 10‑15 cm2 at 7030 Å. These results are used to predict the depth of diffuse interstellar bands (DIBs) due to the absorption by {{{C}}}702+. At an assumed column density of 2 × 1012 cm‑2 the attenuation of starlight at 7030 Å is around 0.4% and thus the detection of such a shallow and broad interstellar band would be difficult. The electronic spectrum of {{{C}}}602+ shows no absorptions in the visible. Below 4000 Å the spectra of C60, {{{C}}}60+ and {{{C}}}602+ are similar. The large intrinsic FWHM of the features in this region, ∼200 Å for the band near 3250 Å, make them unsuitable for DIB detection.

  3. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1984-05-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect have been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical path length of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10[sup [minus]5] cm[sup [minus]1] can then be determined in the presence of background absorptions in excess of 10[sup [minus]3] cm[sup [minus]1]. In addition, the smallest absorption measured with the instant apparatus and method is about 5 [times] 10[sup [minus]6] cm[sup [minus]1]. 6 figs.

  4. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, David A.; Keller, Richard A.

    1984-01-01

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10.sup.-5 cm.sup.-1 can then be determined in the presence of background absorptions in excess of 10.sup.-3 cm.sup.-1. In addition, the smallest absorption measured with the instant apparatus and method is about 5.times. 10.sup.-6 cm.sup.-1.

  5. Apparatus and method for quantitative measurement of small differences in optical absorptivity between two samples using differential interferometry and the thermooptic effect

    DOEpatents

    Cremers, D.A.; Keller, R.A.

    1982-06-08

    An apparatus and method for the measurement of small differences in optical absorptivity of weakly absorbing solutions using differential interferometry and the thermooptic effect has been developed. Two sample cells are placed in each arm of an interferometer and are traversed by colinear probe and heating laser beams. The interrogation probe beams are recombined forming a fringe pattern, the intensity of which can be related to changes in optical pathlength of these laser beams through the cells. This in turn can be related to small differences in optical absorptivity which results in different amounts of sample heating when the heating laser beams are turned on, by the fact that the index of refraction of a liquid is temperature dependent. A critical feature of this invention is the stabilization of the optical path of the probe beams against drift. Background (solvent) absorption can then be suppressed by a factor of approximately 400. Solute absorptivities of about 10/sup -5/ cm/sup -1/ can then be determined in the presence of background absorptions in excess of 10/sup -3/ cm/sup -1/. In addition, the smallest absorption measured with the instant apparatus and method is about 5 x 10/sup -6/ cm/sup -1/.

  6. UV absorption and fluorescence properties of gas-phase p-difluorobenzene

    NASA Astrophysics Data System (ADS)

    Benzler, Thorsten; Dreier, Thomas; Schulz, Christof

    2017-01-01

    1,4-Difluorobenzene ( p-DFB) is a promising aromatic tracer for determining concentration, temperature, and O2 partial pressure in mixing gas flows based on laser-induced fluorescence (LIF). Signal quantification requires the knowledge of absorption and fluorescence properties as a function of environmental conditions. We report absorption and fluorescence spectra as well as fluorescence lifetimes of p-DFB in the temperature, pressure, and oxygen partial pressure range that is relevant for many applications including internal combustion engines. The UV absorption cross section, investigated between 296 and 675 K, has a peak value close to 266 nm and decreases with temperature, while still exceeding other single-ring aromatics. Time-resolved fluorescence spectra were recorded after picosecond laser excitation at 266 nm as a function of temperature (296-1180 K), pressure (1-10 bar), and O2 partial pressure (0-210 mbar) using a streak camera (temporal resolution 50 ps) coupled to a spectrometer. The fluorescence spectra red-shift ( 2 nm/100 K) and broaden (increase in full width at half maximum by 58% in the investigated temperature range) with temperature. In N2 as bath gas (1 bar), the fluorescence lifetime τ eff decreases with temperature by a factor of about 20 (from 7 ns at 298 K down to 0.32 ns at 1180 K), while at 8 bar the shortest lifetime at 975 K is 0.4 ns. A noticeable pressure dependence (i.e., reduced τ eff) is only visible at 675 K and above. Quenching of p-DFB LIF by O2 (for partial pressures up to 210 mbar) shortens the fluorescence lifetime significantly at room temperature (by a factor of 8), but much less at higher temperatures (by a factor of 1.8 at 970 K). For fixed O2 partial pressures (52 mbar and above), τ eff shows a plateau region with temperature which shifts toward higher temperatures at the higher O2 partial pressures. O2 quenching is less prominent for p-DFB compared to other aromatic compounds investigated so far. The temperature

  7. Vapor-Phase Absorptivity Coefficient of Ethyl N,N-Dimethylphosphoramidocyanidate

    DTIC Science & Technology

    2010-01-01

    diluted in solvent by gas chromotography -mass spectrometry (GC-MS) indicated 3.4% triethyl phosphate (TEPO), as well ə% each of 0-ethyl-N,N-dimethyl...absorptivity coefficient of the chemical warfare agent ethyl N,N-dimethyl- phosphoramidocyanidate ( GA ) in the mid-infrared (4000-550 cm"’) at a...spectral resolution of 0.125 cm"’. The GA used in the feedstock was purified by fractional distillation and analyzed by nuclear magnetic resonance and

  8. 315mJ, 2-micrometers Double-Pulsed Coherent Differential Absorption Lidar Transmitter for Atmospheric CO2 Sensing

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Trieu, Bo; Bai, Yingxin; Koch, Grady; Chen, Songsheng; Petzar, Paul; Singh, Upendra N.; Kavaya, Michael J.; Beyon, Jeffrey

    2010-01-01

    The design of a double pulsed, injection seeded, 2-micrometer compact coherent Differential absorption Lidar (DIAL) transmitter for CO2 sensing is presented. This system is hardened for ground and airborne applications. The design architecture includes three continuous wave lasers which provide controlled on and off line seeding, injection seeded power oscillator and a single amplifier operating in double pass configuration. As the derivative a coherent Doppler wind lidar, this instrument has the added benefit of providing wind information. The active laser material used for this application is a Ho: Tm:YLF crystal operates at the eye-safe wavelength. The 3-meter long folded ring resonator produces energy of 130-mJ (90/40) with a temporal pulse length around 220 nanoseconds and 530 nanosecond pulses for on and off lines respectively. The separation between the two pulses is on the order of 200 microseconds. The line width is in the order of 2.5MHz and the beam quality has an M(sup 2) of 1.1 times diffraction limited beam. A final output energy for a pair of both on and off pulses as high as 315 mJ (190/125) at a repetition rate of 10 Hz is achieved. The operating temperature is set around 20 C for the pump diode lasers and 10 C for the rod. Since the laser design has to meet high-energy as well as high beam quality requirements, close attention is paid to the laser head design to avoid thermal distortion in the rod. A side-pumped configuration is used and heat is removed uniformly by passing coolant through a tube slightly larger than the rod to reduce thermal gradient. This paper also discusses the advantage of using a long upper laser level life time laser crystal for DIAL application. In addition issues related to injection seeding with two different frequencies to achieve a transform limited line width will be presented.

  9. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    USGS Publications Warehouse

    Vita, Fabio; Kern, Christoph; Inguaggiato, Salvatore

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, portable, low-power LP-DOAS instrument for use at remote locations and specifically for measuring degassing from active volcanic systems. The LP-DOAS was used to measure sulfur dioxide (SO2) emissions from La Fossa crater, Vulcano, Italy, where column densities of up to 1.2 × 1018 molec cm−2 (~ 500 ppmm) were detected along open paths of up to 400 m in total length. The instrument's SO2 detection limit was determined to be 2 × 1016 molec cm−2 (~ 8 ppmm), thereby making quantitative detection of even trace amounts of SO2 possible. The instrument is capable of measuring other volcanic volatile species as well. Though the spectral evaluation of the recorded data showed that chlorine monoxide (ClO) and carbon disulfide (CS2) were both below the instrument's detection limits during the experiment, the upper limits for the X / SO2 ratio (X = ClO, CS2) could be derived, and yielded 2 × 10−3 and 0.1, respectively. The robust design and versatility of the instrument make it a promising tool for monitoring of volcanic degassing and understanding processes in a range of volcanic systems.

  10. An instrument for measurements of BrO with LED-based Cavity-Enhanced Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoch, D. J.; Buxmann, J.; Sihler, H.; Pöhler, D.; Zetzsch, C.; Platt, U.

    2014-01-01

    The chemistry of the troposphere and specifically the global tropospheric ozone budget is affected by reactive halogen species such as bromine monoxide (BrO) or chlorine monoxide (ClO). Especially BrO plays an important role in the processes of ozone destruction, disturbance of NOx and HOx chemistry, oxidation of dimethyl sulfide (DMS), and the deposition of elementary mercury. In the troposphere BrO has been detected in polar regions, at salt lakes, in volcanic plumes, and in the marine boundary layer. For a better understanding of these processes, field measurements as well as reaction chamber studies are performed. In both cases instruments with high spatial resolution and high sensitivity are necessary. A Cavity-Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) instrument with an open path measurement cell was designed and applied. For the first time, a CE-DOAS instrument is presented using an UV LED in the 325-365 nm wavelength range. In laboratory studies, BrO as well as HONO, HCHO, O3, and O4 could be reliably determined at detection limits of 20 ppt for BrO, 9.1 ppb for HCHO, 970 ppt for HONO, and 91 ppb for O3, for five minutes integration time. The best detection limits were achieved for BrO (11 ppt), HCHO (5.1 ppb), HONO (490 ppt), and O3 (59 ppb) for integration times of 81 minutes or less. Comparison with established White system (WS) DOAS and O3 monitor measurements demonstrate the reliability of the instrument.

  11. A new Differential Optical Absorption Spectroscopy instrument to study atmospheric chemistry from a high-altitude unmanned aircraft

    NASA Astrophysics Data System (ADS)

    Stutz, Jochen; Werner, Bodo; Spolaor, Max; Scalone, Lisa; Festa, James; Tsai, Catalina; Cheung, Ross; Colosimo, Santo F.; Tricoli, Ugo; Raecke, Rasmus; Hossaini, Ryan; Chipperfield, Martyn P.; Feng, Wuhu; Gao, Ru-Shan; Hintsa, Eric J.; Elkins, James W.; Moore, Fred L.; Daube, Bruce; Pittman, Jasna; Wofsy, Steven; Pfeilsticker, Klaus

    2017-03-01

    Observations of atmospheric trace gases in the tropical upper troposphere (UT), tropical tropopause layer (TTL), and lower stratosphere (LS) require dedicated measurement platforms and instrumentation. Here we present a new limb-scanning Differential Optical Absorption Spectroscopy (DOAS) instrument developed for NASA's Global Hawk (GH) unmanned aerial system and deployed during the Airborne Tropical TRopopause EXperiment (ATTREX). The mini-DOAS system is designed for automatic operation under unpressurized and unheated conditions at 14-18 km altitude, collecting scattered sunlight in three wavelength windows: UV (301-387 nm), visible (410-525 nm), and near infrared (900-1700 nm). A telescope scanning unit allows selection of a viewing angle around the limb, as well as real-time correction of the aircraft pitch. Due to the high altitude, solar reference spectra are measured using diffusors and direct sunlight. The DOAS approach allows retrieval of slant column densities (SCDs) of O3, O4, NO2, and BrO with relative errors similar to other aircraft DOAS systems. Radiative transfer considerations show that the retrieval of trace gas mixing ratios from the observed SCD based on O4 observations, the most common approach for DOAS measurements, is inadequate for high-altitude observations. This is due to the frequent presence of low-altitude clouds, which shift the sensitivity of the O4 SCD into the lower atmosphere and make it highly dependent on cloud coverage. A newly developed technique that constrains the radiative transfer by comparing in situ and DOAS O3 observations overcomes this issue. Extensive sensitivity calculations show that the novel O3-scaling technique allows the retrieval of BrO and NO2 mixing ratios at high accuracies of 0.5 and 15 ppt, respectively. The BrO and NO2 mixing ratios and vertical profiles observed during ATTREX thus provide new insights into ozone and halogen chemistry in the UT, TTL, and LS.

  12. Turbulent Humidity Fluctuations in the Convective Boundary Layer: Case Studies Using Water Vapour Differential Absorption Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Muppa, Shravan Kumar; Behrendt, Andreas; Späth, Florian; Wulfmeyer, Volker; Metzendorf, Simon; Riede, Andrea

    2016-01-01

    Turbulent humidity fluctuations in the convective boundary layer (CBL) under clear-sky conditions were investigated by deriving moments up to fourth-order. High-resolution humidity measurements were collected with a water vapour differential absorption lidar system during the HD(CP)}2 Observational Prototype Experiment (HOPE). Two cases, both representing a well-developed CBL around local noon, are discussed. While the first case (from the intensive observation period (IOP) 5 on 20 April 2013) compares well with what is considered typical CBL behaviour, the second case (from IOP 6 on 24 April 2013) shows a number of non-typical characteristics. Both cases show similar capping inversions and wind shear across the CBL top. However, a major difference between both cases is the advection of a humid layer above the CBL top during IOP 6. While the variance profile of IOP 5 shows a maximum at the interfacial layer, two variance peaks are observed near the CBL top for IOP 6. A marked difference can also be seen in the third-order moment and skewness profiles: while both are negative (positive) below (above) the CBL top for IOP 5, the structure is more complex for IOP 6. Kurtosis is about three for IOP 5, whereas for IOP 6, the distribution is slightly platykurtic. We believe that the entrainment of an elevated moist layer into the CBL is responsible for the unusual findings for IOP 6, which suggests that it is important to consider the structure of residual humidity layers entrained into the CBL.

  13. cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells.

    PubMed

    Zhang, Linxia; Seitz, Linsey C; Abramczyk, Amy M; Liu, Li; Chan, Christina

    2011-03-01

    The intracellular second messenger cAMP is frequently used in induction media to induce mesenchymal stem cells (MSCs) into neural lineage cells. To date, an understanding of the role cAMP exerts on MSCs and whether cAMP can induce MSCs into functional neurons is still lacking. We found cAMP initiated neuron-like morphology changes early and neural differentiation much later. The early phase changes in morphology were due to cell shrinkage, which subsequently rendered some cells apoptotic. While the morphology changes occurred prior to the expression of neural markers, it is not required for neural marker expression and the two processes are differentially regulated downstream of cAMP-activated protein kinase A. cAMP enabled MSCs to gain neural marker expressions with neuronal function, such as, calcium rise in response to neuronal activators, dopamine, glutamate, and potassium chloride. However, only some of the cells induced by cAMP responded to the three neuronal activators and further lack the neuronal morphology, suggesting that although cAMP is able to direct MSCs towards neural differentiation, they do not achieve terminal differentiation.

  14. cAMP initiates early phase neuron-like morphology changes and late phase neural differentiation in mesenchymal stem cells

    PubMed Central

    Zhang, Linxia; Seitz, Linsey C.; Abramczyk, Amy M.; Liu, Li

    2010-01-01

    The intracellular second messenger cAMP is frequently used in induction media to induce mesenchymal stem cells (MSCs) into neural lineage cells. To date, an understanding of the role cAMP exerts on MSCs and whether cAMP can induce MSCs into functional neurons is still lacking. We found cAMP initiated neuron-like morphology changes early and neural differentiation much later. The early phase changes in morphology were due to cell shrinkage, which subsequently rendered some cells apoptotic. While the morphology changes occurred prior to the expression of neural markers, it is not required for neural marker expression and the two processes are differentially regulated downstream of cAMP-activated protein kinase A. cAMP enabled MSCs to gain neural marker expressions with neuronal function, such as, calcium rise in response to neuronal activators, dopamine, glutamate, and potassium chloride. However, only some of the cells induced by cAMP responded to the three neuronal activators and further lack the neuronal morphology, suggesting that although cAMP is able to direct MSCs towards neural differentiation, they do not achieve terminal differentiation. PMID:20725762

  15. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform.

    PubMed

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-05-18

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions.

  16. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform

    NASA Astrophysics Data System (ADS)

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-05-01

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions.

  17. [Determination of trace silver in water samples by solid phase extraction portable tungsten-coil electrothermal atomic absorption spectrometry].

    PubMed

    Fan, Guang-yu; Jiang, Xiao-ming; Zheng, Cheng-bin; Hou, Xian-deng; Xu, Kai-lai

    2011-07-01

    A simple method has been developed for the determination of silver in environmental water samples using solid phase extraction with tungsten-coil electrothermal atomic absorption spectrometry. Silica gel was used as an adsorbent and packed into a syringe barrel for solid phase extraction of silver prior to its determination by using a portable tungsten-coil electrothermal atomic absorption spectrometer. Optimum conditions for adsorption and desorption of silver ion, as well as interferences from co-existing ions, were investigated. A sample pH value of 6.0, a sample loading flow rate of 4.0 mL x min(-1), and the mixture of 4% (m/v) thiourea and 2% (phi) nitrate acid with the eluent flow rate of 0.5 mL x min(-1) for desorption were selected for further studies. Under optimal conditions, a linear range of 0.20-4.00 ng x mL(-1), a limit of detection (3sigma) of 0.03 ng x mL(-1) and a preconcentration factor of 94 were achieved. The proposed method was validated by testing three environmental water samples with satisfactory results.

  18. Human volunteer study on the inhalational and dermal absorption of N-methyl-2-pyrrolidone (NMP) from the vapour phase.

    PubMed

    Bader, Michael; Wrbitzky, Renate; Blaszkewicz, Meinolf; Schäper, Michael; van Thriel, Christoph

    2008-01-01

    N-Methyl-2-pyrrolidone (NMP) is a versatile organic solvent frequently used for surface cleaning such as paint stripping or graffiti removal. Liquid NMP is rapidly absorbed through the skin but dermal vapour phase absorption might also play an important role for the uptake of the solvent. This particular aspect was investigated in an experimental study with 16 volunteers exposed to 80 mg/m(3) NMP for 8 h under either whole-body, i.e. inhalational plus dermal, or dermal-only conditions. Additionally, the influence of moderate physical workload on the uptake of NMP was studied. The urinary concentrations of NMP and its metabolites 5-hydroxy-N-methyl-2-pyrrolidone (5-HNMP) and 2-hydroxy-N-methylsuccinimide (2-HMSI) were followed for 48 h and analysed by gas chromatography-mass spectrometry (GC-MS). Percutaneous uptake delayed the elimination peak times and the apparent biological half-lives of NMP and 5-HNMP. Under resting conditions, dermal-only exposure resulted in the elimination of 71 +/- 8 mg NMP equivalents as compared to 169 +/- 15 mg for whole-body exposure. Moderate workload yielded 79 +/- 8 mg NMP (dermal-only) and 238 +/- 18 mg (whole-body). Thus, dermal absorption from the vapour phase may contribute significantly to the total uptake of NMP, e.g. from workplace atmospheres. As the concentration of airborne NMP does not reflect the body dose, biomonitoring should be carried out for surveillance purposes.

  19. Tunable Picosecond Laser Pulses via the Contrast of Two Reverse Saturable Absorption Phases in a Waveguide Platform

    PubMed Central

    Tan, Yang; Chen, Lianwei; Wang, Dong; Chen, Yanxue; Akhmadaliev, Shavkat; Zhou, Shengqiang; Hong, Minghui; Chen, Feng

    2016-01-01

    How to enhance the optical nonlinearity of saturable absorption materials is an important question to improve the functionality of various applications ranging from the high power laser to photonic computational devices. We demonstrate the saturable absorption (SA) of VO2 film attributed to the large difference of optical nonlinearities between the two states of the phase-transition materials (VO2). Such VO2 film demonstrated significantly improved performance with saturation intensity higher than other existing ultrathin saturable absorbers by 3 orders due to its unique nonlinear optical mechanisms in the ultrafast phase change process. Owing to this feature, a Q-switched pulsed laser was fabricated in a waveguide platform, which is the first time to achieve picosecond pulse duration and maintain high peak power. Furthermore, the emission of this VO2 waveguide laser can be flexibly switched between the continuous-wave (CW) and pulsed operation regimes by tuning the temperature of the VO2 film, which enables VO2-based miniature laser devices with unique and versatile functions. PMID:27188594

  20. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures

    PubMed Central

    Davidson, George S.; Joe, Ray M.; Roy, Sushmita; Meirelles, Osorio; Allen, Chris P.; Wilson, Melissa R.; Tapia, Phillip H.; Manzanilla, Elaine E.; Dodson, Anne E.; Chakraborty, Swagata; Carter, Mark; Young, Susan; Edwards, Bruce; Sklar, Larry; Werner-Washburne, Margaret

    2011-01-01

    As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell–specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells. PMID:21289090

  1. Identification and characterization of an immunophilin expressed during the clonal expansion phase of adipocyte differentiation.

    PubMed Central

    Yeh, W C; Li, T K; Bierer, B E; McKnight, S L

    1995-01-01

    Mouse 3T3-L1 cells differentiate into fat-laden adipocytes in response to a cocktail of adipogenic hormones. This conversion process occurs in two discrete steps. During an early clonal expansion phase, confluent 3T3-L1 cells proliferate and express the products of the beta and delta members of the CCAAT/enhancer binding protein (C/EBP) family of transcription factors. The cells subsequently arrest mitotic growth, induce the expression of the alpha form of C/EBP, and acquire the morphology of fully differentiated adipocytes. Many of the genes induced during the terminal phase of adipocyte conversion are directly activated by C/EBP alpha, and gratuitous expression of this transcription factor is capable of catalyzing adipose conversion in a number of different cultured cell lines. The genetic program undertaken during the clonal expansion phase of 3T3-L1 differentiation, controlled in part by C/EBP beta and C/EBP delta, is less clearly understood. To study the molecular events occurring during clonal expansion, we have identified mRNAs that selectively accumulate during this phase of adipocyte conversion. One such mRNA encodes an immunophilin hereby designated FKBP51. In this report we provide the initial molecular characterization of FKBP51. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7479941

  2. Round-robin differential quadrature phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhou, Chun; Zhang, Ying-Ying; Bao, Wan-Su; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2017-02-01

    Recently, a round-robin differential phase-shift (RRDPS) protocol was proposed [Nature 509, 475 (2014)], in which the amount of leakage is bounded without monitoring the signal disturbance. Introducing states of the phase-encoded Bennett–Brassard 1984 protocol (PE-BB84) to the RRDPS, this paper presents another quantum key distribution protocol called round-robin differential quadrature phase-shift (RRDQPS) quantum key distribution. Regarding a train of many pulses as a single packet, the sender modulates the phase of each pulse by one of {0, π/2, π, 3π/2}, then the receiver measures each packet with a Mach–Zehnder interferometer having a phase basis of 0 or π/2. The RRDQPS protocol can be implemented with essential similar hardware to the PE-BB84, so it has great compatibility with the current quantum system. Here we analyze the security of the RRDQPS protocol against the intercept-resend attack and the beam-splitting attack. Results show that the proposed protocol inherits the advantages arising from the simplicity of the RRDPS protocol and is more robust against these attacks than the original protocol. Project supported by the National Natural Science Foundation of China (Grant Nos. 61505261 and 11304397) and the National Basic Research Program of China (Grant No. 2013CB338002)

  3. Differential-phase-shift quantum key distribution using heralded narrow-band single photons.

    PubMed

    Liu, Chang; Zhang, Shanchao; Zhao, Luwei; Chen, Peng; Fung, C-H F; Chau, H F; Loy, M M T; Du, Shengwang

    2013-04-22

    We demonstrate the first proof of principle differential phase shift (DPS) quantum key distribution (QKD) using narrow-band heralded single photons with amplitude-phase modulations. In the 3-pulse case, we obtain a quantum bit error rate (QBER) as low as 3.06% which meets the unconditional security requirement. As we increase the pulse number up to 15, the key creation efficiency approaches 93.4%, but with a cost of increasing the QBER. Our result suggests that narrow-band single photons maybe a promising source for the DPS-QKD protocol.

  4. Mitigation of tropospheric InSAR phase artifacts through differential multisquint processing

    NASA Technical Reports Server (NTRS)

    Chen, Curtis W.

    2004-01-01

    We propose a technique for mitigating tropospheric phase errors in repeat-pass interferometric synthetic aperture radar (InSAR). The mitigation technique is based upon the acquisition of multisquint InSAR data. On each satellite pass over a target area, the radar instrument will acquire images from multiple squint (azimuth) angles, from which multiple interferograms can be formed. The diversity of viewing angles associated with the multisquint acquisition can be used to solve for two components of the 3-D surface displacement vector as well as for the differential tropospheric phase. We describe a model for the performance of the multisquint technique, and we present an assessment of the performance expected.

  5. High order surface aberration contributions from phase space analysis of differential rays.

    PubMed

    Chen, Bo; Herkommer, Alois M

    2016-03-21

    Phase space methods are very popular for illumination systems or paraxial system analysis. In this paper it will be shown that it is also a promising tool to visualize and quantify surface aberration contributions, including all orders. The method is based on the calculation and propagation of a differential ray pair. In order to validate the method we compare to Aldis calculus, an exact method to determine high order aberrations in rotational symmetric systems. A triplet lens is used as an example to visualize the results. The analysis indicates that the phase space method is a very good approximation to Aldis calculus and moreover it is not limited to any symmetry assumptions.

  6. A Hybrid Method to Estimate Specific Differential Phase and Rainfall With Linear Programming and Physics Constraints

    DOE PAGES

    Huang, Hao; Zhang, Guifu; Zhao, Kun; ...

    2016-10-20

    A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (KDP) and to improve rain estimation. Moreover, the hybrid KDP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phase (δhv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and KDP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid KDP estimator over existing methods.

  7. Analysis of structure and phase composition of rails subjected to differential hardening at different regimes

    SciTech Connect

    Gromov, V. E. Morozov, K. V. Konovalov, S. V.; Alsaraeva, K. V.; Semina, O. A.; Ivanov, Yu. F.; Volkov, K. V.

    2014-11-14

    Differential hardening of rails by compressed air in different regimes is accompanied by formation of morphologically different structure, being formed according to the diffusion mechanism of γ↔α transformation and consisting of grains of lamellar pearlite, free ferrite and grains of ferrite-carbide mixture. By methods of transmission electron microscopy the layer by layer analysis of differentially hardened rails has been carried out, the quantitative parameters of the structure, phase composition and dislocation substructure have been established and their comparison has been made for different regimes of hardening. It has been found that the structure-phase states being formed have gradient character, defined by the hardening regime, direction of study from the surface of rolling and by depth of location of layer under study.

  8. Interior tomography from differential phase contrast data via Hilbert transform based on spline functions

    NASA Astrophysics Data System (ADS)

    Yang, Qingsong; Cong, Wenxiang; Wang, Ge

    2016-10-01

    X-ray phase contrast imaging is an important mode due to its sensitivity to subtle features of soft biological tissues. Grating-based differential phase contrast (DPC) imaging is one of the most promising phase imaging techniques because it works with a normal x-ray tube of a large focal spot at a high flux rate. However, a main obstacle before this paradigm shift is the fabrication of large-area gratings of a small period and a high aspect ratio. Imaging large objects with a size-limited grating results in data truncation which is a new type of the interior problem. While the interior problem was solved for conventional x-ray CT through analytic extension, compressed sensing and iterative reconstruction, the difficulty for interior reconstruction from DPC data lies in that the implementation of the system matrix requires the differential operation on the detector array, which is often inaccurate and unstable in the case of noisy data. Here, we propose an iterative method based on spline functions. The differential data are first back-projected to the image space. Then, a system matrix is calculated whose components are the Hilbert transforms of the spline bases. The system matrix takes the whole image as an input and outputs the back-projected interior data. Prior information normally assumed for compressed sensing is enforced to iteratively solve this inverse problem. Our results demonstrate that the proposed algorithm can successfully reconstruct an interior region of interest (ROI) from the differential phase data through the ROI.

  9. TV-regularized phase reconstruction in differential-interference-contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Rebegoldi, Simone; Bautista, Lola; Blanc-Féraud, Laure; Prato, Marco; Zanni, Luca; Plata, Arturo

    2016-10-01

    In this paper we address the problem of reconstructing the phase from color images acquired with differential-interference-contrast (DIC) microscopy. In particular, we reformulate the problem as the minimization of a least-squares fidelity function regularized with a total variation term, and we address the solution by exploiting a recently proposed inexact forward-backward approach. The effectiveness of this method is assessed on a realistic synthetic test.

  10. Early Tumor Development Captured Through Nondestructive, High Resolution Differential Phase Contrast X-ray Imaging

    PubMed Central

    Beheshti, A.; Pinzer, B. R.; McDonald, J. T.; Stampanoni, M.; Hlatky, L.

    2014-01-01

    Although a considerable amount is known about molecular dysregulations in later stages of tumor progression, much less is known about the regulated processes supporting initial tumor growth. Insight into such processes can provide a fuller understanding of carcinogenesis, with implications for cancer treatment and risk assessment. Work from our laboratory suggests that organized substructure emerges during tumor formation. The goal here was to examine the feasibility of using state-of-the-art differential phase contrast X-ray imaging to investigate density differentials that evolve during early tumor development. To this end the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source was used to examine the time-dependent assembly of substructure in developing tumors. Differential phase contrast (DPC) imaging based on grating interferometry as implemented with TOMCAT, offers sensitivity to density differentials within soft tissues and a unique combination of high resolution coupled with a large field of view that permits the accommodation of larger tissue sizes (1 cm in diameter), difficult with other imaging modalities. PMID:24125488

  11. Abundant gas-phase H2O in absorption toward massive protostars

    NASA Astrophysics Data System (ADS)

    Boonman, A. M. S.; van Dishoeck, E. F.

    2003-06-01

    We present infrared spectra of gas-phase H2O around 6 mu m toward 12 deeply embedded massive protostars obtained with the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO). The nu2 ro-vibrational band has been detected toward 7 of the sources and the excitation temperatures indicate an origin in the warm gas at Tex>~ 250 K. Typical derived gas-phase H2O abundances are ~ 5*E-6-6*E-5, with the abundances increasing with the temperature of the warm gas. The inferred gas/solid ratios show a similar trend with temperature and suggest that grain-mantle evaporation is important. The increasing gas/solid ratio correlates with other indicators of increased temperatures. If the higher temperatures are due to a larger ratio of source luminosity to envelope mass, this makes gas-phase H2O a good evolutionary tracer. Comparison with chemical models shows that three different chemical processes, ice evaporation, high-T chemistry, and shocks, can reproduce the high inferred gas-phase H2O abundances. In a forthcoming paper each of these processes are investigated in more detail in comparison with data from the Long Wavelength Spectrometer on board ISO and the Submillimeter Wave Astronomy Satellite (SWAS). Comparison with existing SWAS data indicates that a jump in the H2O abundance is present and that the observed nu2 ro-vibrational band traces primarily the warm inner envelope. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA.

  12. Development of a 2-micron Pulsed Differential Absorption Lidar for Atmospheric CO2 Concentration Measurement by Direct Detection Technique

    NASA Astrophysics Data System (ADS)

    Yu, J.; Singh, U. N.; Petros, M.; Bai, Y.

    2011-12-01

    Researchers at NASA Langley Research Center are developing a 2-micron Pulsed Differential Absorption Lidar instrument for ground and airborne measurements via direct detection method. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capbility by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement. A key component of the CO2 DIAL system, transceiver, is an existing, airborne ready, robust hardware which can provide 250mJ at 10Hz with double pulse format specifically designed for DIAL instrument. The exact wavelengths of the transceiver are controlled by well defined CW seed laser source to provide the required injection source for generating on-and-off line wavelength pulses sequentially. The compact, rugged, highly reliable transceiver is based on the unique Ho:Tm:YLF high-energy 2-micron pulsed laser technology. All the optical mounts are custom designed and have space heritage. They are designed to be adjustable and lockable and hardened to withstand vibrations that can occur in airborne operation. For the direct detection lidar application, a large primary mirror size is preferred. A 14 inch diameter telescope will be developed for this program. The CO2 DIAL/IPDA system requires many electronic functions to operate. These include diode, RF, seed laser, and PZT drivers; injection seeding detection and control; detector power supplies; and analog inputs to sample various sensors. Under NASA Laser Risk Reduction Program (LRRP), a control unit Compact Laser Electronics (CLE), is developed for the controlling the coherent wind lidar transceiver. Significant modifications and additions are needed to update it for CO2 lidar controls. The data acquisition system was built for ground CO2 measurement demonstration. The software will be updated for

  13. High-resolution STEM imaging with a quadrant detector--conditions for differential phase contrast microscopy in the weak phase object approximation.

    PubMed

    Majert, S; Kohl, H

    2015-01-01

    Differential phase contrast is a contrast mechanism that can be utilized in the scanning transmission electron microscope (STEM) to determine the distribution of magnetic or electric fields. In practice, several different detector geometries can be used to obtain differential phase contrast. As recent high resolution differential phase contrast experiments with the STEM are focused on ring quadrant detectors, we evaluate the contrast transfer characteristics of different quadrant detector geometries, namely two ring quadrant detectors with different inner detector angles and a conventional quadrant detector, by calculating the corresponding phase gradient transfer functions. For an ideal microscope and a weak phase object, this can be done analytically. The calculated phase gradient transfer functions indicate that the barely illuminated ring quadrant detector setup used for imaging magnetic fields in the specimen reduces the resolution limit to about 2.5Å for an aberration corrected STEM. Our results show that the resolution can be drastically improved by using a conventional quadrant detector instead.

  14. The effects and inhibition of frequency offset on differential phase-shift keying detection

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Zhou, Jing; Su, Shaojing; Pan, Zhongming

    2015-10-01

    Differential phase-shift keying (DPSK) has been widely implemented and developed in high-speed optical communication systems. The low error rate detection at high access rate is one of the considerable issues in practical engineering application. Balanced detection based on fiber Mach-Zehnder delay interferometer (MZDI) is the typical optical DPSK signal detecting method. It requires that the free spectrum range (FSR) of the MZDI equals the reciprocal of symbol period of the DPSK signal. For the reasons of ambient temperature variation and nonlinear phase noise, a dynamic frequency offset always exists between the FSR and the reciprocal of symbol period. That may introduce some optical signal-to-noise ratio (OSNR) costs and fault detections. Therefore, it is significant to inhibit the frequency offset on DPSK detection. In this paper, firstly, we discuss the effects of frequency offset on DPSK detection, and realize the conclusion that frequency offset is virtually equivalent to an additional phase difference between adjacent symbols. Secondly, through simulation, we analyze the feasibility of DPSK detection in the presence of a definite range of frequency offset, and present the quantitative computation of effective coverage, duty cycle, and optimal sampling time of symbol interference. Some issues which should be considered in practical implementation are also discussed. Finally, according to the relationship among phase difference, temperature and voltage, we propose a phase difference compensation scheme which can automatically adjust the voltage for optimal detections, and dynamically track the changing of ambient temperature and nonlinear phase noise. Furthermore, we ascertain the performance of the voltage requested for implementing the scheme. The scheme can be also developed to quadrature phase-shift keying (QPSK) and differential QPSK (DQPSK) modulation situations.

  15. Solid phase extraction for evaluation of occupational exposure to Pb (II) using XAD-4 sorbent prior to atomic absorption spectroscopy.

    PubMed

    Shahtaheri, Seyed Jamaleddin; Khadem, Monireh; Golbabaei, Farideh; Rahimi-Froushan, Abbas; Ganjali, Mohammad Reza; Norouzi, Parviz

    2007-01-01

    Lead is an important constituent widely used in different industrial processes. For evaluation of workers' exposure to trace toxic metal of Pb (II), solid-phase extraction (SPE) was optimized. SPE using mini columns filled with XAD-4 resin was developed with regard to sample pH, ligand concentration, loading flow rate, elution solvent, sample volume, elution volume, the amount of resins, and sample matrix interferences. Lead ions were retained on a solid sorbent and then eluted, followed by a simple determination of analytes with flame atomic absorption spectrometery. The obtained recoveries of metal ions were greater than 92%. This method was validated with 3 different pools of spiked urine samples; it showed a good reproducibility over 6 consecutive days as well as 6 within-day experiments. This optimized method can be considered successful in simplifying sample preparation for a trace residue analysis of lead in different matrices when evaluating occupational and environmental exposures is required.

  16. The moderating role of absorptive capacity and the differential effects of acquisitions and alliances on Big Pharma firms' innovation performance

    PubMed Central

    Fernald, K. D. S.; Pennings, H. P. G.; van den Bosch, J. F.; Commandeur, H. R.; Claassen, E.

    2017-01-01

    In the context of increased pharmaceutical innovation deficits and Big Pharma blockbusters’ patent expirations, this paper examines the moderating role of firms’ absorptive capacity in external innovation activities of Big Pharma firms. The study indicates a rising interest of Big Pharma in acquisitions of and alliances with biotechnology companies. Unfortunately, this increased interest is not reflected in the number of new drugs generated by Big Pharma. We find that acquisitions of biotech companies have negatively affected Big Pharma firms’ innovation performance on average but these acquisitions might have a positive effect at higher levels of acquiring firms’ absorptive capacity. Moreover, also acquisitions of pharma companies and alliances with biotech companies only have a positive effect on innovation performance at sufficiently high levels of absorptive capacity. The moderating role of absorptive capacity implicates that a tight integration of internal R&D efforts and (unrelated) external knowledge is crucial for harnessing complementarity effects. PMID:28231332

  17. The moderating role of absorptive capacity and the differential effects of acquisitions and alliances on Big Pharma firms' innovation performance.

    PubMed

    Fernald, K D S; Pennings, H P G; van den Bosch, J F; Commandeur, H R; Claassen, E

    2017-01-01

    In the context of increased pharmaceutical innovation deficits and Big Pharma blockbusters' patent expirations, this paper examines the moderating role of firms' absorptive capacity in external innovation activities of Big Pharma firms. The study indicates a rising interest of Big Pharma in acquisitions of and alliances with biotechnology companies. Unfortunately, this increased interest is not reflected in the number of new drugs generated by Big Pharma. We find that acquisitions of biotech companies have negatively affected Big Pharma firms' innovation performance on average but these acquisitions might have a positive effect at higher levels of acquiring firms' absorptive capacity. Moreover, also acquisitions of pharma companies and alliances with biotech companies only have a positive effect on innovation performance at sufficiently high levels of absorptive capacity. The moderating role of absorptive capacity implicates that a tight integration of internal R&D efforts and (unrelated) external knowledge is crucial for harnessing complementarity effects.

  18. Identification of Absorption, Distribution, Metabolism, and Excretion (ADME) Genes Relevant to Steatosis Using a Differential Gene Expression Approach

    EPA Science Inventory

    Absorption, distribution, metabolism, and excretion (ADME) parameters represent important connections between exposure to chemicals and the activation of molecular initiating events of Adverse Outcome Pathways (AOPs) in cellular, tissue, and organ level targets. ADME parameters u...

  19. Investigating the radio-loud phase of broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Bruni, G.; González-Serrano, J. I.; Pedani, M.; Benn, C. R.; Mack, K.-H.; Holt, J.; Montenegro-Montes, F. M.; Jiménez-Luján, F.

    2014-09-01

    Context. Broad absorption lines (BALs) are present in the spectra of ~20% of quasars (QSOs); this indicates fast outflows (up to 0.2c) that intercept the observer's line of sight. These QSOs can be distinguished again into radio-loud (RL) BAL QSOs and radio-quiet (RQ) BAL QSOs. The first are very rare, even four times less common than RQ BAL QSOs. The reason for this is still unclear and leaves open questions about the nature of the BAL-producing outflows and their connection with the radio jet. Aims: We explored the spectroscopic characteristics of RL and RQ BAL QSOs with the aim to find a possible explanation for the rarity of RL BAL QSOs. Methods: We identified two samples of genuine BAL QSOs from SDSS optical spectra, one RL and one RQ, in a suitable redshift interval (2.5 < z < 3.5) that allowed us to observe the Mg ii and Hβ emission lines in the adjacent near-infrared (NIR) band. We collected NIR spectra of the two samples using the Telescopio Nazionale Galileo (TNG, Canary Islands). By using relations known in the literature, we estimated the black-hole mass, the broad-line region radius, and the Eddington ratio of our objects and compared the two samples. Results: We found no statistically significant differences from comparing the distributions of the cited physical quantities. This indicates that they have similar geometries, accretion rates, and central black-hole masses, regardless of whether the radio-emitting jet is present or not. Conclusions: These results show that the central engine of BAL QSOs has the same physical properties with and without a radio jet. The reasons for the rarity of RL BAL QSOs must reside in different environmental or evolutionary variables. Figure 3 is available in electronic form at http://www.aanda.org

  20. Requirements for dynamical differential phase contrast x-ray imaging with a laboratory source

    NASA Astrophysics Data System (ADS)

    Macindoe, David; Kitchen, Marcus J.; Irvine, Sarah C.; Fouras, Andreas; Morgan, Kaye S.

    2016-12-01

    X-ray phase contrast enables weakly-attenuating structures to be imaged, with bright synchrotron sources adding the ability to capture time sequences and analyse sample dynamics. Here, we describe the translation of dynamical differential phase contrast imaging from the synchrotron to a compact x-ray source, in order to achieve this kind of time sequence imaging in the laboratory. We formulate broadly-applicable set-up guidelines for the single-grid, single-exposure imaging technique using a divergent source, exploring the experimental factors that restrict set-up size, imaging sensitivity and sample size. Experimental images are presented using the single-grid phase contrast technique with a steel attenuation grid and a liquid-metal-jet x-ray source, enabling exposure times as short as 0.5 s for dynamic imaging. Differential phase contrast images were retrieved from phantoms, incorporating noise filtering to improve the low-count images encountered when imaging dynamics using short exposures.

  1. Security of the differential-quadrature-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Kawakami, Shun; Sasaki, Toshihiko; Koashi, Masato

    2016-08-01

    One of the simplest methods for implementing quantum key distribution over fiber-optic communication is the Bennett-Brassard 1984 protocol with phase encoding (PE-BB84 protocol), in which the sender uses phase modulation over double pulses from a laser and the receiver uses a passive delayed interferometer. Using essentially the same setup and by regarding a train of many pulses as a single block, one can carry out the so-called differential-quadrature-phase-shift (DQPS) protocol, which is a variant of differential-phase-shift (DPS) protocols. Here we prove the security of the DQPS protocol based on an adaptation of proof techniques for the BB84 protocol, which inherits the advantages arising from the simplicity of the protocol, such as accommodating the use of threshold detectors and simple off-line calibration methods for the light source. We show that the secure key rate of the DQPS protocol in the proof is eight-thirds as high as the rate of the PE-BB84 protocol.

  2. Lead is not off center in PbTe: the importance of r-space phase information in extended x-ray absorption fine structure spectroscopy.

    PubMed

    Keiber, T; Bridges, F; Sales, B C

    2013-08-30

    PbTe is a well-known thermoelectric material. Recent x-ray total scattering studies suggest that Pb moves off center along 100 in PbTe, by ∼0.2  Å at 300 K, producing a split Pb-Te pair distribution. We present an extended x-ray absorption fine structure spectroscopy (EXAFS) study of PbTe (and Tl doped PbTe) to determine if Pb or Te is off center. EXAFS provides sensitive r- or k-space phase information which can differentiate between a split peak for the Pb-Te distribution (indicative of off-center Pb) and a thermally broadened peak. We find no evidence for a split peak for Pb-Te or Te-Pb. At 300 K, the vibration amplitude for Pb-Te (or Te-Pb) is large; this thermally induced disorder is indicative of weak bonds, and the large disorder is consistent with the low thermal conductivity at 300 K. We also find evidence of an anharmonic potential for the nearest Pb-Te bonds, consistent with the overall anharmonicity found for the phonon modes. This effect is modeled by a "skew" factor (C3) which significantly improves the fit of the Pb-Te and Te-Pb peaks for the high temperature EXAFS data; C3 becomes significant above approximately 150-200 K. The consequences of these results will be discussed.

  3. A Coordinated RXTE/ASCA Study of Absorption Dips in Circinus X-1 at Phase Zero

    NASA Technical Reports Server (NTRS)

    Bradt, Hale

    2000-01-01

    This proposal was for an Rossi X Ray Timing Explorer (RXTE) study of Circinus X-1 with the ASCA satellite for the purpose of studying the iron emission feature during intensity dips. These dips had been discovered previously with ASCA and they appeared to vary in equivalent width and in the energy of the iron K edge. Proper analyses requires good continuum measurements which Rossi X Ray Timing Explorer/Proportional Counter Array (RXTE/PCA) could provide. Also, the PCA data would show any temporal evolution correlated with spectral evolution. RXTE provided 90 ks of data during March 3-5, 1998 which included phase zero which is where the dips usually take place. The ASCA observations were taken by Dr. Neil Brandt of Penn State University. Unfortunately, the source intensity showed far less dipping activity than is typical near phase zero. The light curve exhibited only very narrow sporadic dips rather than some long deep dips necessary for sufficient statistics in the ASCA and RXTE instruments for spectral studies. This prevented us from carrying out the primary goal of the proposal.

  4. Multiple wall-reflection effect in adaptive-array differential-phase reflectometry on QUEST

    NASA Astrophysics Data System (ADS)

    Idei, H.; Mishra, K.; Yamamoto, M. K.; Fujisawa, A.; Nagashima, Y.; Hamasaki, M.; Hayashi, Y.; Onchi, T.; Hanada, K.; Zushi, H.; QUEST Team

    2016-01-01

    A phased array antenna and Software-Defined Radio (SDR) heterodyne-detection systems have been developed for adaptive array approaches in reflectometry on the QUEST. In the QUEST device considered as a large oversized cavity, standing wave (multiple wall-reflection) effect was significantly observed with distorted amplitude and phase evolution even if the adaptive array analyses were applied. The distorted fields were analyzed by Fast Fourier Transform (FFT) in wavenumber domain to treat separately the components with and without wall reflections. The differential phase evolution was properly obtained from the distorted field evolution by the FFT procedures. A frequency derivative method has been proposed to overcome the multiple-wall reflection effect, and SDR super-heterodyned components with small frequency difference for the derivative method were correctly obtained using the FFT analysis.

  5. Phase Polymorphism of [Mn(DMSO)6](BF4)2 Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Migdał-Mikuli, Anna; Skoczylas, Łukasz

    2008-12-01

    The tetrafluoroborate of hexadimethylsulfoxidemanganese(II) was synthesized and studied by differential scanning calorimetry. Five solid phases of [Mn(DMSO)6](BF4)2 were revealed. Specifically, four phase transitions of the first order were detected between the following solid phases: stable KIb↔stable KIa at TC4 = 215 K; metastable KIII↔overcooled K0 at TC3 = 354 K; metastable KII↔overcooled K0 at TC2 =377 K; stable KIa→stable K0 at TC1 =385 K. [Mn(DMSO)6](BF4)2 starts to decompose at 400 K with a loss of one DMSO molecule per formula unit and forms [Mn(DMSO)5](BF4)2 which next decomposes in one step to MnF2 at the temperature range of 460 - 583 K. From the entropy changes it can be concluded that the phases K0 and metastable KII are orientationally dynamically disordered (ODDIC) crystals. The stable phases KIb and KIa are ordered solid phases.

  6. Lgr5 positive stem cells sorted from small intestines of diabetic mice differentiate into higher proportion of absorptive cells and Paneth cells in vitro.

    PubMed

    Zhong, Xian-Yang; Yu, Tao; Zhong, Wa; Li, Jie-Yao; Xia, Zhong-Sheng; Yuan, Yu-Hong; Yu, Zhong; Chen, Qi-Kui

    2015-08-01

    Intestinal epithelial stem cells (IESCs) can differentiate into all types of intestinal epithelial cells (IECs) and Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) is a marker for IESC. Previous studies reported enhanced proliferation of IECs in diabetic mice. In this study, the in vitro differentiation of Lgr5 positive IESCs sorted from diabetic mice was further investigated. The diabetic mouse model was induced by streptozotocin (STZ), and crypt IECs were isolated from small intestines. Subsequently, Lgr5 positive IESCs were detected by flow cytometry (FCM) and sorted by magnetic activated cell sorting (MACS). Differentiation of the sorted IESCs was investigated by detecting the IEC markers in the diabetic mice using immunostaining, quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), and Western blot analysis, which was compared with normal mice. We found that the proportion of Lgr5 positive cells in the crypt IECs of diabetic mice was higher than that of control mice (P < 0.05). Lgr5 positive IESCs could be significantly enriched in Lgr5 positive cell fraction sorted by MACS. Furthermore, the absorptive cell marker sucrase-isomaltase (SI) and the Paneth cell marker lysozyme 1 (Lyz1) were more highly expressed in the differentiated cells derived from Lgr5 positive IESCs of diabetic mice in vitro (P < 0.05). We demonstrate that the number of Lgr5 positive IESCs is significantly increased in the small intestines of STZ-induced diabetic mice. Lgr5 positive IESCs sorted from the diabetic mice can differentiate into a higher proportion of absorptive cells and Paneth cells in vitro. We characterized the expression of Lgr5 in the small intestine of diabetic mice, and sorted Lgr5 positive intestinal epithelial stem cells (IESCs) for investigating their differentiation in vitro. We proved that the quantity of Lgr5 positive IESCs was significantly increased in the small intestines of diabetic mice. IESCs sorted from the

  7. Beyond the diffraction limit of optical/IR interferometers. II. Stellar parameters of rotating stars from differential phases

    NASA Astrophysics Data System (ADS)

    Hadjara, M.; Domiciano de Souza, A.; Vakili, F.; Jankov, S.; Millour, F.; Meilland, A.; Khorrami, Z.; Chelli, A.; Baffa, C.; Hofmann, K.-H.; Lagarde, S.; Robbe-Dubois, S.

    2014-09-01

    Context. As previously demonstrated on Achernar, one can derive the angular radius, rotational velocity, axis tilt, and orientation of a fast-rotating star from the differential phases obtained by spectrally resolved long baseline interferometry using earth-rotation synthesis. Aims: We applied this method on a small sample of stars for different spectral types and classes, in order to generalize the technique to other rotating stars across the H-R diagram and determine their fundamental parameters. Methods: We used differential phase data from the AMBER/VLTI instrument obtained prior to refurbishing its spectrometer in 2010. With the exception of Fomalhaut, which has been observed in the medium-resolution mode of AMBER (λ/δλ ≈ 1500), our three other targets, Achernar, Altair, and δ Aquilae offered high-resolution (λ/δλ ≈ 12 000) spectro-interferometric data around the Brγ absorption line in K band. These data were used to constrain the input parameters of an analytical, still realistic model to interpret the observations with a systematic approach for the error budget analysis in order to robustly conclude on the physics of our 4 targets. We applied the super resolution provided by differential phases φdiff to measure the size (equatorial radius Req and angular diameter ⌀eq), the equatorial rotation velocity (Veq), the inclination angle (i), and the rotation axis position angle (PArot) of 4 fast-rotating stars: Achernar, Altair, δ Aquilae, and Fomalhaut. The stellar parameters of the targets were constrained using a semi-analytical algorithm dedicated to fast rotators SCIROCCO. Results: The derived parameters for each star were Req = 11.2 ± 0.5 R⊙, Veqsini = 290 ± 17 km s-1, PArot = 35.4° ± 1.4°, for Achernar; Req = 2.0 ± 0.2 R⊙, Veqsini = 226 ± 34 km s-1, PArot = -65.5° ± 5.5°, for Altair; Req = 2.2 ± 0.3 R⊙, Veqsini = 74 ± 35 km s-1, PArot = -101.2° ± 14°, for δ Aquilae; and Req = 1.8 ± 0.2 R⊙, Veqsini = 93 ± 16 km s-1

  8. Optical differential phase-shift keyed signal generation, transmission and detection

    NASA Astrophysics Data System (ADS)

    Lize, Yannick Keith

    When encoding information on an electromagnetic wave such as infrared light, to be transmitted through an optical fibre in telecommunication networks, any of the physical properties of light can be modulated. Light has a frequency, intensity, polarization and a phase. Until recently, optical communication systems strictly employed conventional intensity (IM) modulation signals in either non return-to-zero (NRZ) or return-to-zero (RZ) format. But a number of advanced optical modulation formats have attracted increasing attention in the last few years. One prime example is the phase-shift-keyed (PSK) family of formats which carry the information on the optical phase. Since absolute phase is not easily detected through coherent demodulation, differential encoding in which the phase of the preceding bit is used as a relative phase reference for demodulation has become a method of choice for phase modulated signals. The result in the differential-phase-shift-keyed (DPSK) formats, which carry the information in the difference in optical phase between successive bits. In this thesis by article, composed of six papers, we investigate the generation, transmission and demodulation of DPSK in optical fibre transmission systems. We propose a novel way to encode optical packets using DPSK in our investigation of the generation. We also investigate transmission effects monitoring using a novel partial-bit delay interferometer-assisted clock tone monitoring method for sensitive optical-signal-to-noise ratio (OSNR), chromatic dispersion and polarization mode dispersion monitoring. Then we look at the demodulation of DPSK, first investigating the reduced tolerances and power penalties of DPSK demodulation when more than one bit delay is used in the interferometer. We also propose an optical error correction method combining DPSK optical logic gates with electronic logic gates to improve receiver sensitivity and transmission impairment tolerances. Finally we redefine the previously

  9. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    SciTech Connect

    Brendel, Bernhard; Teuffenbach, Maximilian von; Noël, Peter B.; Pfeiffer, Franz; Koehler, Thomas

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penalty comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.

  10. Measuring melt and velocity of Alaskan mountain glaciers using phase-sensitive radar and differential GPS

    NASA Astrophysics Data System (ADS)

    Neuhaus, S.; Tulaczyk, S. M.

    2015-12-01

    Alaskan glaciers show some of the highest rates of retreat worldwide, contributing to sea level rise. This retreat is due to both increased velocity and increased melt. We seek to understand the role of glacial meltwater on velocity. Matanuska glacier, a land terminating glacier in Alaska, has been well-studied using traditional glaciological techniques, but new technology has emerged that allows us to measure melt and velocity more accurately. We employed high-resolution differential GPS to create surface velocity profiles across flow in the ablation zone during the summer of 2015. We also measured surface ablation using stakes and measured basal melt using phase-sensitive radar designed by the British Antarctic Survey. The positions acquired by differential GPS are obtained to a resolution of less than 0.5m, while feature tracking using time-lapse photography for the same time period yields positions with greater and more variable uncertainty. The phase-sensitive radar provides ice thinning rates. Phase-sensitive radar together with ground penetrating radar provides us with an understanding of the internal structure of the glacier. This suite of data allows us to determine the relative importance of surface melt, basal melt, and internal deformation on ice velocity in warm mountain glaciers.

  11. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    PubMed

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.

  12. Development of 3.0-3.45 μm OPO laser based range resolved and hard-target differential absorption lidar for sensing of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Veerabuthiran, S.; Razdan, A. K.; Jindal, M. K.; Sharma, R. K.; Sagar, Vikas

    2015-10-01

    We have developed a tripod mounted 3.0-3.45 μm OPO laser based differential absorption lidar (DIAL) system for sensing of atmospheric methane. The system operates with Nd: YAG laser pumped OPO laser, a 20 cm aperture telescope and a pan-tilt system to scan the atmosphere. Atmospheric transmission spectra over the entire spectral region are measured and indentified the absorption region of the various molecules in comparison with HITRAN. The backscattered signal for range resolved and hard target configuration up to a range of 400 m are measured with range resolution of 15 m. The stable daytime measurements of methane concentration varied from 1.9 ppm to 2.4 ppm with rms deviation of 0.2 ppm have been achieved. The measured concentration is in good agreement with reported values.

  13. A Low Phase Noise Fully Monolithic 6 GHz Differential Coupled NMOS LC-VCO

    NASA Astrophysics Data System (ADS)

    Moalla, Dorra Mellouli; Cordeau, David; Mnif, Hassene; Paillot, Jean-Marie; Loulou, Mourad

    2016-01-01

    A fully monolithic 6 GHz low-phase noise Voltage-Controlled-Oscillator (VCO) is presented in this paper. It consists in two LC-NMOS differential VCOs coupled through a resistive network and is implemented on a 0.25 µm BiCMOS SiGe process. This proposed integrated VCO can be used also for phased-array applications to steer the beam over the entire spatial range. In this case, the radiation pattern of the phased antenna array is steered in a particular direction by establishing a constant phase progression in the oscillator chain which can be obtained by detuning the free-running frequencies of the two oscillators in the array. At 2.5 V power supply voltage and a power dissipation of 62.5 mW, the coupled VCO array features a measured worst case phase noise of -102.4 dBc/Hz and -125.64 dBc/Hz at 100 kHz and 1 MHz frequency offset respectively from a 6 GHz carrier. The tuning range is about 400 MHz, from 5.85 to 6.25 GHz, for a tuning voltage varying from 0 to 2.5 V.

  14. Vibrational structure of n-π* transition of the UV absorption spectrum of acryloyl fluoride in the gas phase.

    PubMed

    Koroleva, Lidiya A; Tyulin, Vladimir I; Matveev, Vladimir K; Pentin, Yuriy A

    2014-03-25

    UV absorption spectrum of acryloyl fluoride molecule in the gas phase has been obtained in the region at 32600-35500 cm(-1) with the purpose of the investigation of the hindered internal rotation. The resolved vibrational structure of this spectrum consists of 92 absorption bands, each of which corresponds to a certain transition from the ground (S0) to excited (S1) electronic state. The assignment of all bands has been made. The values ν00trans=34831.8 cm(-1) and ν00cis=34679.2 cm(-1) have been determined. Several Deslandres Tables (DTs) have been constructed for torsional vibration of s-trans- and s-cis-isomers of investigated molecule. The origins in these DTs correspond to bands assigned to ν00 and to fundamental frequencies of each isomer in the S0 and S1 states. These DTs have been used to determine the harmonic frequencies ωe, anharmonicity coefficients x11, and frequencies of the torsional vibration transitions (0-υ) up to high values of the vibrational quantum number υ of s-trans- and s-cis-isomers in the both electronic states. The frequencies of torsional vibrations are ν1(″)=116.5cm(-1) for s-trans-isomer and ν1(″)=101.2 cm(-1) for s-cis-isomer in the S0 state. The frequencies of ones are ν1(')=170.4 cm(-1) for s-trans-isomer and ν1(')=139.7 cm(-1) for s-cis-isomer in the S1 state. The fundamental vibrational frequencies set has been found for isomers in the S0 and S1 states.

  15. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    NASA Astrophysics Data System (ADS)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  16. Attitude/attitude-rate estimation from GPS differential phase measurements using integrated-rate parameters

    NASA Technical Reports Server (NTRS)

    Oshman, Yaakov; Markley, Landis

    1998-01-01

    A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.

  17. Trustworthiness of measurement devices in round-robin differential-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Yin, Zhen-Qiang; Han, Zheng-Fu

    2016-02-01

    Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) has been proposed to raise the noise tolerability of the channel. However, in practice, the measurement device in RRDPS QKD may be imperfect. Here, we show that, with these imperfections, the security of RRDPS may be damaged by proposing two attacks for RRDPS systems with uncharacterized measurement devices. One is valid even for a system with unit total efficiency, while the other is valid even when a single-photon state is sent. To prevent these attacks, either security arguments need to be fundamentally revised or further practical assumptions on the measurement device should be put.

  18. Triple-Pulsed Two-Micron Integrated Path Differential Absorption Lidar: A New Active Remote Sensing Capability with Path to Space

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Petros, Mulugeta; Yu, Jirong

    2015-01-01

    The two-micron wavelength is suitable for monitoring atmospheric water vapor and carbon dioxide, the two most dominant greenhouse gases. Recent advances in 2-micron laser technology paved the way for constructing state-of-the-art lidar transmitters for active remote sensing applications. In this paper, a new triple-pulsed 2-micron integrated path differential absorption lidar is presented. This lidar is capable of measuring either two species or single specie with two different weighting functions, simultaneously and independently. Development of this instrument is conducted at NASA Langley Research Center. Instrument scaling for projected future space missions will be discussed.

  19. Screening ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell Adherent Cell Differentiation and Cytotoxicity (ACDC) Assay

    EPA Science Inventory

    An Adherent Cell Differentiation and Cytotoxicity (ACDC) in vitro assay with mouse embryonic stem cells was used to screen the ToxCast Phase I chemical library for effects on cellular differentiation and cell number. The U.S. Environmental Protection Agency (EPA) established the ...

  20. A Hybrid Method to Estimate Specific Differential Phase and Rainfall With Linear Programming and Physics Constraints

    SciTech Connect

    Huang, Hao; Zhang, Guifu; Zhao, Kun; Giangrande, Scott E.

    2016-10-20

    A hybrid method of combining linear programming (LP) and physical constraints is developed to estimate specific differential phase (KDP) and to improve rain estimation. Moreover, the hybrid KDP estimator and the existing estimators of LP, least squares fitting, and a self-consistent relation of polarimetric radar variables are evaluated and compared using simulated data. Our simulation results indicate the new estimator's superiority, particularly in regions where backscattering phasehv) dominates. Further, a quantitative comparison between auto-weather-station rain-gauge observations and KDP-based radar rain estimates for a Meiyu event also demonstrate the superiority of the hybrid KDP estimator over existing methods.

  1. On the short-term temporal variations of GNSS receiver differential phase biases

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Teunissen, Peter J. G.; Yuan, Yunbin

    2016-12-01

    As a first step towards studying the ionosphere with the global navigation satellite system (GNSS), leveling the phase to the code geometry-free observations on an arc-by-arc basis yields the ionospheric observables, interpreted as a combination of slant total electron content along with satellite and receiver differential code biases (DCB). The leveling errors in the ionospheric observables may arise during this procedure, which, according to previous studies by other researchers, are due to the combined effects of the code multipath and the intra-day variability in the receiver DCB. In this paper we further identify the short-term temporal variations of receiver differential phase biases (DPB) as another possible cause of leveling errors. Our investigation starts by the development of a method to epoch-wise estimate between-receiver DPB (BR-DPB) employing (inter-receiver) single-differenced, phase-only GNSS observations collected from a pair of receivers creating a zero or short baseline. The key issue for this method is to get rid of the possible discontinuities in the epoch-wise BR-DPB estimates, occurring when satellite assigned as pivot changes. Our numerical tests, carried out using Global Positioning System (GPS, US GNSS) and BeiDou Navigation Satellite System (BDS, Chinese GNSS) observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, suggest two major findings. First, epoch-wise BR-DPB estimates can exhibit remarkable variability over a rather short period of time (e.g. 6 cm over 3 h), thus significant from a statistical point of view. Second, a dominant factor driving this variability is the changes of ambient temperature, instead of the un-modelled phase multipath.

  2. A staggered differential phase-shift keying modulation format for 100Gbit/s applications.

    PubMed

    Shao, Yufeng; Wen, Shuangchun; Chen, Lin; Li, Ying; Xu, Huiwen

    2008-08-18

    We propose and demonstrate by numerical simulation a new phase modulation format, the staggered differential phase-shift keying (SDPSK), for 100 Gbit/s applications. Non-return-to-zero (NRZ) SDPSK signals was generated by using two phase modulators, and return-to-zero (RZ) SDPSK signals with 50% duty cycle was generated by cascading a dual-arm Mach-Zehnder modulator. The demodulation of 2 bit/symbol can be simply achieved on 1 bit rate through only one Mach-Zehnder delay interferometer and a balanced receiver. By comparing the transmission characteristics of the two staggered phase modulation formats with those of NRZ-DPSK, RZ-DPSK, NRZ-DQPSK, and RZ-DQPSK, respectively, we show that, the SDPSK signal has similar chromatic dispersion and polarization-mode-dispersion tolerance to the DPSK signal with same NRZ or RZ shape, while the SDPSK signal has stronger nonlinear tolerance than the DPSK or DQPSK signal. In addition, the SDPSK signal has the best transmission performance when each signal was transmitted over 106km optical SMF+DCF, and then launched into a third-order Gaussian optical bandpass filter placed with beyond 125GHz bandwidth.

  3. A fully-differential phase-locked loop frequency synthesizer for 60-GHz wireless communication

    NASA Astrophysics Data System (ADS)

    Lixue, Kuang; Baoyong, Chi; Lei, Chen; Wen, Jia; Zhihua, Wang

    2014-12-01

    A 40-GHz phase-locked loop (PLL) frequency synthesizer for 60-GHz wireless communication applications is presented. The electrical characteristics of the passive components in the VCO and LO buffers are accurately extracted with an electromagnetic simulator HFSS. A differential tuning technique is utilized in the voltage controlled oscillator (VCO) to achieve higher common-mode noise rejection and better phase noise performance. The VCO and the divider chain are powered by a 1.0 V supply while the phase-frequency detector (PFD) and the charge pump (CP) are powered by a 2.5 V supply to improve the linearity. The measurement results show that the total frequency locking range of the frequency synthesizer is from 37 to 41 GHz, and the phase noise from a 40 GHz carrier is -97.2 dBc/Hz at 1 MHz offset. Implemented in 65 nm CMOS, the synthesizer consumes a DC power of 62 mW, including all the buffers.

  4. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  5. James Webb Space Telescope segment phasing using differential optical transfer functions.

    PubMed

    Codona, Johanan L; Doble, Nathan

    2015-03-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms.

  6. Polarization-modulation infrared reflection-absorption spectroscopy affording time-resolved simultaneous detection of surface and liquid phase species at catalytic solid-liquid interfaces.

    PubMed

    Meier, Daniel M; Urakawa, Atsushi; Baiker, Alfons

    2009-09-01

    Polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS) combined with concentration modulation allows simultaneous monitoring of dynamic evolutions of surface and liquid phase species during reactions at catalytic interfaces as demonstrated for the Pt-catalysed oxidation of CO by O2 in cyclohexane.

  7. Measurement of optical path length change following pulsed laser irradiation using differential phase optical coherence tomography.

    PubMed

    Kim, Jihoon; Oh, Junghwan; Milner, Thomas E

    2006-01-01

    Differential phase optical coherence tomography (DPOCT) is introduced to measure optical path length changes in response to pulsed laser irradiation (585 nm). An analytical equation that includes thermoelastic surface displacement and thermorefractive index change is derived to predict optical path length change in response to pulsed laser irradiation for both "confined surface" and "free surface" model systems. The derived equation is tested by comparing predicted values with data recorded from experiments using two model systems. Thermorefractive index change and the thermal expansion coefficient are deduced from differential phase change (dDeltaphi) and temperature increase (DeltaT0) measurements. The measured n(T0)beta(T0)+dndT[=1.7410(-4)+/-1.710(-6) (1K)] in the free surface experiment matches with the National Institute of Standards and Technology (NIST) data value [=1.7710(-4) (1K)]. Exclusion of lateral thermal expansion in the analytical model for the confined surface experiment causes difference between the measured dndT[=-2.310(-4)+/-7.310(-6)(1K)] and the NIST value [=-9.4510(-5) (1K)]. In spite of the difference in the confined surface experiment, results of our studies indicate DPOCT can detect dynamic optical path length change in response to pulsed laser irradiation with high sensitivity, and applications to tissue diagnostics may be possible.

  8. Differential-phase reflectometry for edge profile measurements on Tokamak fusion test reactor

    SciTech Connect

    Hanson, G.R.; Wilgen, J.B.; Bigelow, T.S.; Collazo, I.; England, A.C.; Murakami, M.; Rasmussen, D.A.; Wilson, J.R. )

    1995-01-01

    Edge electron density profile measurements, including the scrape-off layer, have been made during ion cyclotron range of frequency (ICRF) heating with the two-frequency differential-phase reflectometer installed on an ICRF antenna on the Tokamak fusion test reactor (TFTR). This system probes the plasma using the extraordinary mode with two signals swept from 90 to 118 GHz, while maintaining a fixed-difference frequency of 125 MHz. The extraordinary mode is used to obtain density profiles in the range of 1[times]10[sup 11]--3[times]10[sup 13] cm[sup [minus]3] in high-field (4.5--4.9 T) full-size ([ital R][sub 0]=2.62 m, [ital a]=0.96 m) TFTR plasmas. The reflectometer launcher is located in an ICRF antenna and views the plasma through a small penetration in the center of the Faraday shield. A 26-m-long overmoded waveguide run connects the launcher to the reflectometer microwave electronics. Profile measurements made with this reflectometer system will be presented along with a discussion of the characteristics of this differential phase reflectometer and data analysis.

  9. A theoretically exact reconstruction algorithm for helical cone-beam differential phase-contrast computed tomography.

    PubMed

    Li, Jing; Sun, Yi; Zhu, Peiping

    2013-08-21

    Differential phase-contrast computed tomography (DPC-CT) reconstruction problems are usually solved by using parallel-, fan- or cone-beam algorithms. For rod-shaped objects, the x-ray beams cannot recover all the slices of the sample at the same time. Thus, if a rod-shaped sample is required to be reconstructed by the above algorithms, one should alternately perform translation and rotation on this sample, which leads to lower efficiency. The helical cone-beam CT may significantly improve scanning efficiency for rod-shaped objects over other algorithms. In this paper, we propose a theoretically exact filter-backprojection algorithm for helical cone-beam DPC-CT, which can be applied to reconstruct the refractive index decrement distribution of the samples directly from two-dimensional differential phase-contrast images. Numerical simulations are conducted to verify the proposed algorithm. Our work provides a potential solution for inspecting the rod-shaped samples using DPC-CT, which may be applicable with the evolution of DPC-CT equipments.

  10. Identification of differentially expressed genes in parasitic phase Miamiensis avidus (Ciliophora: Scuticociliatia) using suppression subtractive hybridization.

    PubMed

    Lee, Eun Hye; Kim, Ki Hong

    2011-04-06

    Miamiensis avidus, a causative agent of scuticociliatosis in cultured marine fish, can live not only in seawater as a free-living organism but also in fish as a parasite. In this study, a cDNA library of representative mRNAs more specific to parasitic phase M. avidus was generated using suppression subtractive hybridization (SSH), and 520 clones selected from the SSH library were single-run sequenced. The differential gene expression patterns were confirmed by semi-quantitative reverse-transcription PCR. Of the 510 SSH clones, 21 clones of 6 putative genes did not match sequences in the public database. The expectation values (E-values) of 117 clones encoding 9 putative genes were greater than 1 x 10(-5). The other 372 clones that met the criterion of E value <1 x 10-5 were matched to 26 known sequences in the database. Genes associated with signal transduction, cell proliferation, membrane transportation, protein translocation, and transcription regulation were preferentially expressed in parasitic phase M. avidus. The differential gene expression may be needed for the ciliates to survive in the host fish, and the corresponding proteins might be used as antigen candidates for development of scuticociliatosis vaccines.

  11. Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature.

    PubMed

    Gupta, Mayuri; da Silva, Eirik F; Hartono, Ardi; Svendsen, Hallvard F

    2013-08-15

    Temperature dependent correlations for enthalpy of deprotonation, carbamate formation, and heat of absorption of the overall reaction between aqueous MEA and MDEA and gaseous CO2 are calculated on the basis of computational chemistry based ln K values input to the Gibbs-Helmholtz equation. Temperature dependency of reaction equilibrium constants for deprotonation and carbamate formation reactions is calculated with the SM8T continuum solvation model coupled with density functional theoretical calculations at the B3LYP/6-311++G(d,p) level of theory. Calculated reaction equilibrium constants and enthalpies of individual reactions and overall heat of absorption are compared against experimental data in the temperature range 273.15-373 K. Temperature dependent correlations for different reaction equilibrium constants and enthalpies of reactions are given. These correlated results can be used in thermodynamic models such as UNIQUAC and NRTL for better understanding of post-combustion CO2 capture solvent chemistry.

  12. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy.

    PubMed

    Stockett, Mark H; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  13. A cylindrical quadrupole ion trap in combination with an electrospray ion source for gas-phase luminescence and absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Stockett, Mark H.; Houmøller, Jørgen; Støchkel, Kristian; Svendsen, Annette; Brøndsted Nielsen, Steen

    2016-05-01

    A relatively simple setup for collection and detection of light emitted from isolated photo-excited molecular ions has been constructed. It benefits from a high collection efficiency of photons, which is accomplished by using a cylindrical ion trap where one end-cap electrode is a mesh grid combined with an aspheric condenser lens. The geometry permits nearly 10% of the emitted light to be collected and, after transmission losses, approximately 5% to be delivered to the entrance of a grating spectrometer equipped with a detector array. The high collection efficiency enables the use of pulsed tunable lasers with low repetition rates (e.g., 20 Hz) instead of continuous wave (cw) lasers or very high repetition rate (e.g., MHz) lasers that are typically used as light sources for gas-phase fluorescence experiments on molecular ions. A hole has been drilled in the cylinder electrode so that a light pulse can interact with the ion cloud in the center of the trap. Simulations indicate that these modifications to the trap do not significantly affect the storage capability and the overall shape of the ion cloud. The overlap between the ion cloud and the laser light is basically 100%, and experimentally >50% of negatively charged chromophore ions are routinely photodepleted. The performance of the setup is illustrated based on fluorescence spectra of several laser dyes, and the quality of these spectra is comparable to those reported by other groups. Finally, by replacing the optical system with a channeltron detector, we demonstrate that the setup can also be used for gas-phase action spectroscopy where either depletion or fragmentation is monitored to provide an indirect measurement on the absorption spectrum of the ion.

  14. Determination of Low Levels of Lead in Beer Using Solid-Phase Extraction and Detection by Flame Atomic Absorption Spectrometry

    PubMed Central

    Alves, Vanessa N.; Borges, Simone S. O.; Neto, Waldomiro B.; Coelho, Nívia M. M.

    2011-01-01

    In this study, a method for the determination of low concentrations of lead in beer samples using solid-phase extraction with a flow injection analysis system and detection by flame atomic absorption spectrometry (FAAS) was developed. Moringa oleifera seeds were used as a biosorbent material. Chemical and flow variables of the online preconcentration system, such as sample pH, preconcentration flow rate, eluent flow rate, eluent concentration, particle size, and sorbent mass, were studied. The optimum extraction conditions were obtained using a sample pH of 6.0, sample flow rate of 6.0 mL min−1, 63.0 mg of sorbent mass, and 2.0 mol L−1 HNO3 at a flow rate of 2.0 mL min−1 as the eluent. With the optimized conditions, the preconcentration factor, precision, detection limit, consumption index, and sample throughput were estimated as 93, 0.3% (10.0 μg L−1, n = 7), 7.5 μg L−1, 0.11 mL, and 23 samples per hour, respectively. The method developed was successfully applied to beer samples and recovery tests, with recovery ranging from 80% to 100%. PMID:22013389

  15. The Phases Differential Astrometry Data Archive. 2. Updated Binary Star Orbits and a Long Period Eclipsing Binary

    DTIC Science & Technology

    2010-12-01

    measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with lower precision single-aperture...the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) program during 2002–2008. PHASES science results included precision binary...ABSTRACT Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems have been combined with

  16. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2012-04-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  17. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass aerosol extinction differential optical absorption spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2011-10-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  18. Differential phase photoacoustic imaging for enhanced lateral and axial resolution imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Iskander-Rizk, Sophinese; Kruizinga, Pieter; van der Steen, Antonius F. W.; van Soest, Gijs

    2016-03-01

    The bandwidth limitation and aperture size of the transducer limits the resolution of a photoacoustic computed tomography system. If the separation between two sources is smaller than the point spread function width of the imaging system, they will appear as a single object at different wavelengths. It was shown previously in ultrasound motion imaging that phase difference between two consecutive frames can be used to detect lateral or axial motion with submicron resolution. We tested this method in the context of static PA imaging of two unresolved PA sources. We set up an experiment where we imaged a green and a yellow wire of 40 μm width with known relative absorption coefficients, separated by 355μm. Imaging was performed at 650nm and 460nm. The PA signal is recorded by a single element flat 1MHz transducer (Panametrics 0.5'' V303) in the plane of the wires, so the targets are axially spaced seen from the transducer. We reconstructed the signals originating from both unresolved sources and measured the separation between them to be 350 µm. Similar performance was obtained using an array transducer, viewing the wires from the top so they were laterally separated in the imaging plane. The signal at two different wavelengths was recorded using a commercial imaging system. The two-wavelength phase difference at every pair of channels provides an estimate of the distance between the two absorbers, determined to be 350 µm by the median of the two-channel estimates.

  19. Light pulse duration differentially regulates mouse locomotor suppression and phase shifts.

    PubMed

    Morin, Lawrence P; Studholme, Keith M

    2014-10-01

    Brief exposure of mice to nocturnal light causes circadian rhythm phase shifts, simultaneously inducing locomotor suppression, a drop in body temperature, and associated sleep. The exact nature of the relationship between these light-induced responses is uncertain, although locomotor suppression and phase shift magnitudes are related to stimulus irradiance. Whether stimulus duration has similar effects is less clear. Here, the relationship between stimulus duration and response magnitude was evaluated further using 100 µW/cm(2) white light-emitting diode pulses administered for 30, 300, 1200, or 3000 sec. The results show that, in general, shorter pulses yielded smaller responses and larger pulses yielded larger responses. However, the 300-sec pulse failed to augment locomotor suppression compared with the effect of a 30-sec pulse (44.7 ± 4.8 vs 40.6 ± 2.0 min) but simultaneously induced much larger phase shifts (1.28 ± 0.20 vs 0.52 ± 0.11 h). The larger phase shifts induced by the 300-sec stimulus did not differ from those induced by either the 1200- or 3000-sec pulses (1.43 ± 0.10 and 1.30 ± 0.17 h, respectively). The results demonstrate differential photic regulation of the two response types. Pulses ranging from 300 to 3000 sec produce equal phase shifts (present data); pulses ranging from 30 to 600 sec produce equal locomotor suppression levels. Greater suppression can occur additively in response to pulses of 1200 sec or more (present data), but this is not true for phase shifts. Nocturnal light appears to trigger a fixed duration event, locomotor suppression, or phase shift, with the latter followed by a light-refractory interval during which locomotor suppression can additively increase. The results also provide further support for the view that temporal integration of photic energy applies, at best, across a limited set of stimulus durations for both light-induced locomotor suppression/sleep and phase shift regulation.

  20. Experimental demonstration of all optical XOR and XNOR gates for differential phase modulated data

    NASA Astrophysics Data System (ADS)

    Kakarla, Ravikiran; Venkitesh, Deepa

    2014-05-01

    All optical logic gates play a key role in implementing an optically transparent network where the node functionalities are performed in the optical domain to reduce latency and power consumption. In this paper we present the experimental demonstration and details of optimization of all optical XOR/ XNOR gate using four-wave mixing (FWM) in Semiconductor Optical Amplifier (SOA) for 10 Gbps Differential Phase Shift Keyed (DPSK) data. Two DPSK modulated signals at carrier frequencies ω1 and ω2, phases ϕ1and ϕ2and a continuous wave pump at frequency ωCW and phase ϕCW are allowed to undergo FWM in a non-linear SOA to generate additional frequency components. The phase of the generated FWM idler corresponding to the frequency ω1+ ω2-ωCW given by ϕ1+ ϕ2- CW corresponds to the XOR operation in DPSK format. Light from a DFB and tunable laser source (TLS) are combined and phase-modulated using a pseudo-random bit sequence. The bit sequences in the two carrier wavelengths are separated in time by propagating through a sufficient length of SMF; the data is combined with a CW pump from a tunable laser and allowed to undergo non-degenerate FWM in a nonlinear SOA. The relative spacing between the pump and the signal wavelengths and their polarization states are optimized to yield maximum conversion efficiency in the desired idler. The XOR output is further propagated through a delay-line interferometer (DLI) to obtain XOR and XNOR outputs in the two ports of the DLI, in the OOK format. Extinction ratio and Contrast ratio of better than 7.2 dB and 10.6 dB respectively for the XNOR gate and 6.8 dB and 7.5 dB for the XOR gaterespectively.

  1. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. IV. THE TRIPLE STAR SYSTEMS 63 Gem A AND HR 2896

    SciTech Connect

    Muterspaugh, Matthew W.; Fekel, Francis C.; Williamson, M.; Lane, Benjamin F.; Hartkopf, William I.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M. E-mail: blane@draper.co E-mail: maciej@ncac.torun.p

    2010-12-15

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric orbit of the previously known {approx}<2 day subsystem in the triple system 63 Gem A and have detected a previously unknown two-year Keplerian wobble superimposed on the visual orbit of the much longer period (213 years) binary system HR 2896. 63 Gem A was already known to be triple from spectroscopic work, and absorption lines from all three stars can be identified and their individual Doppler shifts measured; new velocities for all three components are presented to aid in constraining the orbit and measuring the stellar masses. In fact, 63 Gem itself is a sextuple system: the hierarchical triple (Aa1-Aa2)-Ab (in which Aa1 and Aa2 orbit each other with a rapid period just under 2 days, and Ab orbits these every two years), plus three distant common proper motion companions. The very small astrometric perturbation caused by the inner pair in 63 Gem A stretches the limits of current astrometric capabilities, but PHASES observations are able to constrain the orientation of the orbit. The two bright stars comprising the HR 2896 long-period (213 year) system have a combined spectral type of K0III and the newly detected object's mass estimate places it in the regime of being an M dwarf. The motion of the stars are slow enough that their spectral features are always blended, preventing Doppler studies. The PHASES measurements and radial velocities (when available) have been combined with lower precision single-aperture measurements covering a much longer time frame (from eyepiece measurements, speckle interferometry, and adaptive optics) to improve the characterization of the long-period orbits in both binaries. The visual orbits of the short- and long-period systems are presented for both systems and used to calculate two possible values of the mutual inclinations between inner and outer orbits of 152{sup 0} {+-} 12

  2. A new differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington DC region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-04-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.

  3. A New Differential Absorption Lidar to Measure Sub-Hourly Fluctuation of Tropospheric Ozone Profiles in the Baltimore - Washington D.C. Region

    NASA Technical Reports Server (NTRS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-01-01

    Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore

  4. The Phases Differential Astrometry Data Archive. 4. The Triple Star Systems 63 Gem A and HR 2896

    DTIC Science & Technology

    2010-12-01

    Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric...final re- sults of the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) project after its completion in late 2008. The first...the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are used to constrain the astrometric orbit of the previously known 2

  5. The Split-Spectrum Method for Differential InSAR Ionospheric Phase Screen Correction

    NASA Astrophysics Data System (ADS)

    Gomba, G.; Eineder, M.

    2015-12-01

    The differential ionospheric path delay is a major error source in L-band interferograms. It is superimposed to topography and ground deformation signals hindering the measurement of geophysical processes like earthquakes. Exploiting the ionosphere dispersive nature of the ionosphere, the method separates the ionospheric component of the interferometric phase from the non-dispersive component, related to topography, ground motion and tropospheric path delay. An implementation of the split-spectrum method is in this work exposed in detail and its performance is analyzed. We test the method using various ALOS PALSAR interferometric pairs with different characteristics: high to low coherence, moving and non-moving terrain, with and without topography and different ionosphere states. Ionospheric errors of almost one meter have been corrected to a centimeter or millimeter level. The results show how the method is able to systematically compensate the ionospheric phase in interferograms. In this work we also present ALOS PALSAR ionospheric-free interferograms and the related ionospheric phase screens for the 2015 Nepal earthquake, the 2008 Wenchuan earthquake, the 2008 Kyrgyzstan earthquake, and the 2011 Myanmar earthquke.

  6. On families of differential equations on two-torus with all phase-lock areas

    NASA Astrophysics Data System (ADS)

    Glutsyuk, Alexey; Rybnikov, Leonid

    2017-01-01

    We consider two-parametric families of non-autonomous ordinary differential equations on the two-torus with coordinates (x, t) of the type \\overset{\\centerdot}{{x}} =v(x)+A+Bf(t) . We study its rotation number as a function of the parameters (A, B). The phase-lock areas are those level sets of the rotation number function ρ =ρ (A,B) that have non-empty interiors. Buchstaber, Karpov and Tertychnyi studied the case when v(x)=\\sin x in their joint paper. They observed the quantization effect: for every smooth periodic function f(t) the family of equations may have phase-lock areas only for integer rotation numbers. Another proof of this quantization statement was later obtained in a joint paper by Ilyashenko, Filimonov and Ryzhov. This implies a similar quantization effect for every v(x)=a\\sin (mx)+b\\cos (mx)+c and rotation numbers that are multiples of \\frac{1}{m} . We show that for every other analytic vector field v(x) (i.e. having at least two Fourier harmonics with non-zero non-opposite degrees and nonzero coefficients) there exists an analytic periodic function f(t) such that the corresponding family of equations has phase-lock areas for all the rational values of the rotation number.

  7. Nanosecond pulsed electric fields have differential effects on cells in the S-phase.

    PubMed

    Hall, Emily H; Schoenbach, Karl H; Beebe, Stephen J

    2007-03-01

    Nanosecond pulsed electric fields (nsPEFs) are a type of nonthermal, nonionizing radiation that exhibit intense electric fields with high power, but low energy. NsPEFs extend conventional electroporation (EP) to affect intracellular structures and functions and depending on the intensity, can induce lethal and nonlethal cell signaling. In this study, HCT116 human colon carcinoma cells were synchronized to the S-phase or remained unsynchronized, exposed to electric fields of 60 kV/cm with either 60-ns or 300-ns durations, and analyzed for apoptosis and proliferative markers. Several nsPEF structural and functional targets were identified. Unlike unsynchronized cells, S-phase cells under limiting conditions exhibited greater membrane integrity and caspase activation and maintained cytoskeletal structure. Regardless of synchronization, cells exposed to nsPEFs under these conditions primarily survived, but exhibited some turnover and delayed proliferation in cell populations, as well as reversible increases in phosphatidylserine externalization, membrane integrity, and nuclei size. These results show that nsPEFs can act as a nonligand agonist to modulate plasma membrane (PM) and intracellular structures and functions, as well as differentially affect cells in the S-phase, but without effect on cell survival. Furthermore, nsPEF effects on the nucleus and cytoskeleton may provide synergistic therapeutic actions with other agents, such as ionizing radiation or chemotherapeutics that affect these same structures.

  8. The impact of absorption coefficient on polarimetric determination of Berry phase based depth resolved characterization of biomedical scattering samples: a polarized Monte Carlo investigation

    SciTech Connect

    Baba, Justin S; Koju, Vijay; John, Dwayne O

    2016-01-01

    The modulation of the state of polarization of photons due to scatter generates associated geometric phase that is being investigated as a means for decreasing the degree of uncertainty in back-projecting the paths traversed by photons detected in backscattered geometry. In our previous work, we established that polarimetrically detected Berry phase correlates with the mean photon penetration depth of the backscattered photons collected for image formation. In this work, we report on the impact of state-of-linear-polarization (SOLP) filtering on both the magnitude and population distributions of image forming detected photons as a function of the absorption coefficient of the scattering sample. The results, based on Berry phase tracking implemented Polarized Monte Carlo Code, indicate that sample absorption plays a significant role in the mean depth attained by the image forming backscattered detected photons.

  9. Human small intestinal epithelial cells differentiated from adult intestinal stem cells as a novel system for predicting oral drug absorption in humans.

    PubMed

    Takenaka, Toru; Harada, Naomoto; Kuze, Jiro; Chiba, Masato; Iwao, Takahiro; Matsunaga, Tamihide

    2014-11-01

    Adult intestinal stem cells (ISCs) possess both a long-term proliferation ability and differentiation capability into enterocytes. As a novel in vitro system for the evaluation of drug absorption, we characterized a human small intestinal epithelial cell (HIEC) monolayer that differentiated from adult ISCs. Continuous proliferation/differentiation from ISCs consistently conferred the capability of maturation of enterocytes to HIECs over 25 passages. The morphologically matured HIEC monolayer consisted of polarized columnar epithelia with dense microvilli, tight junctions, and desmosomes 8 days after seeding onto culture inserts. Transepithelial electrical resistance across the monolayer was 9-fold lower in HIECs (98.9 Ω × cm(2)) than in Caco-2 cells (900 Ω × cm(2)), which indicated that the looseness of the tight junctions in the HIEC monolayer was similar to that in the human small intestine (approximately 40 Ω × cm(2)). No significant differences were observed in the overall gene expression patterns of the major drug-metabolizing enzymes and transporters between the HIEC and Caco-2 cell monolayers. Furthermore, the functions of P-glycoprotein and breast cancer resistance protein in the HIEC monolayer were confirmed by the vectorial transport of marker substrates and their disappearance in the presence of specific inhibitors. The apparent drug permeability values of paracellularly transported compounds (fluorescein isothiocyanate-dextran 4000, atenolol, and terbutaline) and nucleoside transporter substrates (didanosine, ribavirin, and doxifluridine) in the HIEC monolayer were markedly higher than those of Caco-2 cells, whereas transcellularly transported drugs (pindolol and midazolam) were equally well permeated. In conclusion, the HIEC monolayer can serve as a novel and superior alternative to the conventional Caco-2 cell monolayer for predicting oral absorption in humans.

  10. Texture analyses show synergetic effects of biomechanical and biochemical stimulation on mesenchymal stem cell differentiation into early phase osteoblasts.

    PubMed

    Park, So Hee; Shin, Ji Won; Kang, Yun Gyeong; Hyun, Jin-Sook; Oh, Min Jae; Shin, Jung-Woog

    2014-02-01

    We investigated the structural complexity and texture of the cytoskeleton and nucleus in human mesenchymal stem cells during early phase differentiation into osteoblasts according to the differentiation-induction method: mechanical and/or chemical stimuli. For this, fractal dimension and a number of parameters utilizing the gray-level co-occurrence matrix (GLCM) were calculated based on single-cell images after confirmation of differentiation by immunofluorescence staining. The F-actin and nuclear fractal dimensions were greater in both stimulus groups compared with the control group. The GLCM values for energy and homogeneity were lower in fibers of the F-actin cytoskeleton, indicating a dispersed F-actin arrangement during differentiation. In the nuclei of both stimulus groups, higher values for energy and homogeneity were calculated, indicating that the chromatin arrangement was chaotic during the early phase of differentiation. It was shown and confirmed that combined stimulation with mechanical and chemical factors accelerated differentiation, even in the early phase. Fractal dimension analysis and GLCM methods have the potential to provide a framework for further investigation of stem cell differentiation.

  11. Thermal desorption solid-phase microextraction inlet for differential mobility spectrometry.

    PubMed

    Rainsberg, Matthew R; de Harrington, Peter B

    2005-06-01

    A splitless thermal desorber unit that interfaces a differential mobility spectrometry (DMS) sensor has been devised. This device was characterized by the detection of benzene, toluene, and xylene (BTX) in water. The detection of BTX in water is important for environmental monitoring, and ion mobility measurements are traditionally difficult for hydrocarbons in water because water competes for charge and quenches the hydrocarbon signals. This paper reports the use of a DMS with a photoionization source that is directly coupled to a solid-phase microextraction (SPME) desorber. The separation and detection capabilities of the DMS were demonstrated using BTX components. Detection limits for benzene, toluene, and m-xylene were 75, 50, and 5 microg mL(-1), respectively.

  12. Discussion on the kinematic orbit determination by the onboard GPS zero-differential phase observations

    NASA Astrophysics Data System (ADS)

    Zheng, Zuo-Ya; Cai, Wu-San; Huang, Cheng; Cheng, Zong-Yi; Fegn, Chu-Gang

    2005-03-01

    Based on the geometric, dynamic and reduced dynamic precise orbit determination (POD), a kinematic POD by the onboard GPS zero-differential phase observations was discussed and programmed. It applies the observations of GPS receive onboard LEO (Low Earth Orbit) and the precise GPS ephemeris of IGS rather than the complicated dynamic models and ground observations. It is simple and convenient in computation, rapid and precise in orbit determination and could provide estimations of some dynamic parameters too. However, it is unable to predict the orbit. The coefficient matrix of the normal equation is very huge and so in its reverse it is divided into sub-matrixes and then is transformed into upper-triangular. As an example of application of this new method the CHAMP data are analyzed in order to estimate the precision of POD.

  13. New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess.

    PubMed

    Patterson, David; Schnell, Melanie

    2014-06-21

    Chirality plays a fundamental role in the activity of biological molecules and broad classes of chemical reactions. The chemistry of life is built almost exclusively on left-handed amino acids and right-handed sugars, a phenomenon known as "homochirality of life". Furthermore, most drugs developed in the last decade are of specified chirality. Thus, fast and reliable methods that can differentiate molecules of different handedness, determine the enantiomeric excess of even molecular mixtures, and allow for an unambiguous determination of molecular handedness are of great interest, in particular with respect to complex mixtures. In this perspective article, we discuss the recent developments, with an emphasis on modern spectroscopic methods using gas-phase samples, such as photoelectron circular dichroism, Coulomb explosion imaging, and microwave three-wave mixing.

  14. PHASES differential astrometry and the mutual inclination of the V819 Herculis triple star system

    NASA Astrophysics Data System (ADS)

    Muterspaugh, M. W.; Lane, B. F.; Konacki, M.; Burke, B. F.; Colavita, M. M.; Kulkarni, S. R.; Shao, M.

    2006-02-01

    V819 Herculis is a well-studied triple star system consisting of a "wide" pair with 5.5 year period, one component of which is a 2.2-day period eclipsing single-line spectroscopic binary. Differential astrometry measurements from the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) are presented and used to determine a relative inclination between the short- and long-period orbits of 23.6 ± 4.9 degrees. This represents only the sixth unambiguous determination of the mutual inclination of orbits in a hierarchical triple system. This result is combined with those for the other five systems for analysis of the observed distribution of mutual inclinations in nearby triple systems. It is found that this distribution is different than that which one would expect from random orientations with statistical significance at the 94% level; implications for studying the spatial distribution of angular momentum in star forming regions is discussed.

  15. Experimental passive round-robin differential phase-shift quantum key distribution.

    PubMed

    Guan, Jian-Yu; Cao, Zhu; Liu, Yang; Shen-Tu, Guo-Liang; Pelc, Jason S; Fejer, M M; Peng, Cheng-Zhi; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2015-05-08

    In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification-making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

  16. Practical round-robin differential phase-shift quantum key distribution.

    PubMed

    Zhang, Ying-Ying; Bao, Wan-Su; Zhou, Chun; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2016-09-05

    Recently, a novel protocol named round-robin differential phase-shift (RRDPS) quantum key distribution [Nature 509, 475(2014)] has been proposed. It can estimate information leakage without monitoring bit error rate. In this paper, we study the performance of RRDPS using heralded single photon source (HSPS) without and with decoy-state method, then compare it with the performance of weak coherent pulses (WCPs). From numerical simulation, we can see that HSPS performs better especially for shorter packet and higher bit error rate. Moreover, we propose a general theory of decoy-state method for RRDPS protocol based on only three decoy states and one signal state. Taking WCPs as an example, the three-intensity decoy-state protocol can distribute secret keys over a distance of 128 km when the length of pulses packet is 32, which confirms great practical interest of our method.

  17. Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Cao, Zhu; Liu, Yang; Shen-Tu, Guo-Liang; Pelc, Jason S.; Fejer, M. M.; Peng, Cheng-Zhi; Ma, Xiongfeng; Zhang, Qiang; Pan, Jian-Wei

    2015-05-01

    In quantum key distribution (QKD), the bit error rate is used to estimate the information leakage and hence determines the amount of privacy amplification—making the final key private by shortening the key. In general, there exists a threshold of the error rate for each scheme, above which no secure key can be generated. This threshold puts a restriction on the environment noises. For example, a widely used QKD protocol, the Bennett-Brassard protocol, cannot tolerate error rates beyond 25%. A new protocol, round-robin differential phase-shifted (RRDPS) QKD, essentially removes this restriction and can in principle tolerate more environment disturbance. Here, we propose and experimentally demonstrate a passive RRDPS QKD scheme. In particular, our 500 MHz passive RRDPS QKD system is able to generate a secure key over 50 km with a bit error rate as high as 29%. This scheme should find its applications in noisy environment conditions.

  18. Practical round-robin differential phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Bao, Wan-Su; Zhou, Chun; Li, Hong-Wei; Wang, Yang; Jiang, Mu-Sheng

    2016-09-01

    To overcome the signal disturbance from the transmission process, recently, a new type of protocol named round-robin differential-phase-shift(RRDPS) quantum key distribution[Nature 509, 475(2014)] is proposed. It can estimate how much information has leaked to eavesdropper without monitoring bit error rates. In this paper, we compare the performance of RRDPS using different sources without and with decoy-state method, such as weak coherent pulses(WCPs) and heralded single photon source(HSPS). For practical implementations, we propose finite decoy-state method for RRDPS, the performance of which is close to the infinite one. Taking WCPs as an example, the three-intensity decoystate protocol can distribute secret keys over a distance of 128 km when the length of pulses packet is 32, which confirms the great practical interest of our method.

  19. Mueller-matrix differentiation of fibrillar networks of biological tissues with different phase and amplitude anisotropy

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Kushnerick, L. Y.; Olar, O. V.; Pashkovskaya, N. V.; Marchuk, Yu. F.

    2016-09-01

    The work consists of investigation results of diagnostic efficiency of a new azimuthally stable Mueller-matrix method of analysis of laser autofluorescence coordinate distributions of biological tissues histological sections. A new model of generalized optical anisotropy of biological tissues protein networks is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase anisotropy (linear birefringence and optical activity) and linear (circular) dichroism is taken into account. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistic analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the 1st to the 4th order) of differentiation of histological sections of uterus wall tumor - group 1 (dysplasia) and group 2 (adenocarcinoma) are estimated.

  20. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  1. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2013-09-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al. 2013): First, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m). Second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angles, for which the uncertainties are especially small. Using only 1 elevation angle also allows an increased temporal resolution. We apply correction factors (and their uncertainties) as function of the simultaneously modelled O4 absorption. In this way the correction factors can be directly determined according to the measured O4 dAMF. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of the aerosol extinction. Depending on the atmospheric visibility, the typical uncertainty of the results ranges from about 15 to 30%. We apply the rapid method to observations of a newly developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirt near Hefei City in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations. Good agreement is

  2. Radar Differential Phase Signatures of Ice Orientation for the Prediction of Lightning Initiation and Cessation

    NASA Technical Reports Server (NTRS)

    Carey, L.D.; Petersen, W.A.; Deierling, W.

    2009-01-01

    other co-polar back-scattering radar measurements like differential reflectivity (Z(sub dr)) typically measured by operational dual-polarimetric radars are not sensitive to these changes in ice crystal orientation. However, prior research has demonstrated that oriented ice crystals cause significant propagation effects that can be routinely measured by most dual-polarimetric radars from X-band (3 cm) to S-band (10 cm) wavelengths using the differential propagation phase shift (often just called differential phase, phi(sub dp)) or its range derivative, the specific differential phase (K(sub dp)). Advantages of the differential phase include independence from absolute or relative power calibration, attenuation, differential attenuation and relative insensitivity to ground clutter and partial beam occultation effects (as long as the signal remains above noise). In research mode, these sorts of techniques have been used to anticipate initial cloud electrification, lightning initiation, and cessation. In this study, we develop a simplified model of ice crystal size, shape, orientation, dielectric, and associated radar scattering and propagation effects in order to simulate various idealized scenarios of ice crystals responding to a hypothetical electric field and their dual-polarimetric radar signatures leading up to lightning initiation and particularly cessation. The sensitivity of the K(sub dp) ice orientation signature to various ice properties and radar wavelength will be explored. Since K(sub dp) is proportional to frequency in the Rayleigh- Gans scattering regime, the ice orientation signatures should be more obvious at higher (lower) frequencies (wavelengths). As a result, simulations at radar wavelengths from 10 cm down to 1 cm (Ka-band) will be conducted. Resonance effects will be considered using the T-matrix method. Since most K(sub dp) Vbased observations have been shown at S-band, we will present ice orientation signatures from C-band (UAH/NASA ARMOR) and X

  3. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    SciTech Connect

    Kernazhitsky, L.; Shymanovska, V.; Gavrilko, T.; Naumov, V.; Kshnyakin, V.; Khalyavka, T.

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: AR/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  4. Experimental round-robin differential phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Li, Yu-Huai; Cao, Yuan; Dai, Hui; Lin, Jin; Zhang, Zhen; Chen, Wei; Xu, Yu; Guan, Jian-Yu; Liao, Sheng-Kai; Yin, Juan; Zhang, Qiang; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2016-03-01

    In conventional quantum key distribution (QKD) protocols, security is guaranteed by estimating the amount of leaked information. Such estimation tends to overrate, leading to a fundamental threshold of the bit error rate, which becomes a bottleneck of practical QKD development. This bottleneck is broken through by the recent work of round-robin differential phase-shift (RRDPS) protocol, which eliminates the fundamental threshold of the bit error rate. The key challenge for the implementation of the RRDPS scheme lies in the realization of a variable-delay Mach-Zehnder interferometer, which requires active and random choice of many delays. By designing an optical system with multiple switches and employing an active phase stabilization technology, we successfully construct a variable-delay interferometer with 127 actively selectable delays. With this measurement, we experimentally demonstrate the RRDPS protocol and obtain a final key rate of 15.54 bps with a total loss of 18 dB and an error rate of 8.9%.

  5. Lagrangian Descriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of Stochastic Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Balibrea-Iniesta, Francisco; Lopesino, Carlos; Wiggins, Stephen; Mancho, Ana M.

    2016-12-01

    In this paper, we introduce a new technique for depicting the phase portrait of stochastic differential equations. Following previous work for deterministic systems, we represent the phase space by means of a generalization of the method of Lagrangian descriptors to stochastic differential equations. Analogously to the deterministic differential equations setting, the Lagrangian descriptors graphically provide the distinguished trajectories and hyperbolic structures arising within the stochastic dynamics, such as random fixed points and their stable and unstable manifolds. We analyze the sense in which structures form barriers to transport in stochastic systems. We apply the method to several benchmark examples where the deterministic phase space structures are well-understood. In particular, we apply our method to the noisy saddle, the stochastically forced Duffing equation, and the stochastic double gyre model that is a benchmark for analyzing fluid transport.

  6. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry

    SciTech Connect

    Yang Yi; Tang Xiangyang

    2012-12-15

    Purpose: The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative {Phi}{sup Double-Prime }{sub s}(x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. Methods: The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into {delta}={delta}{sub s}+{delta}{sub f}, where {delta}{sub f} corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by {delta}{sub s}, which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Results: Both analytic formulae and computer

  7. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, C.

    1986-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system is undergoing development and experimental deployment at NASA Langley Research Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. Test flights of the DIAL system were successfully performed onboard the NASA Goddard Flight Center Electra aircraft from 1980 to 1985. The DIAL Data Acquisition System has undergone a number of improvements over the past few years. These improvements have now been field tested. The theory behind a real time computer system as it applies to the needs of the DIAL system is discussed. This report is designed to be used as an operational manual for the DIAL DAS.

  8. Theory and operation of the real-time data acquisition system for the NASA-LaRC differential absorption lidar (DIAL)

    NASA Technical Reports Server (NTRS)

    Butler, Carolyn; Spencer, Randall

    1988-01-01

    The improvement of computer hardware and software of the NASA Multipurpose Differential Absorption Lidar (DIAL) system is documented. The NASA DIAL system has undergone development and experimental deployment at NASA/Langley Res. Center for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms. A viable DIAL system was developed capable of remotely measuring O3 and H2O concentrations from an aircraft platform. The DIAL Data Acquisition System (DAS) has undergone a number of improvements also. Due to the participation of the DIAL in the Global Tropospheric Experiment, modifications and improvements of the system were tested and used both in the lab and in air. Therefore, this is an operational manual for the DIAL DAS.

  9. Open-path quantum cascade laser-based system for simultaneous remote sensing of methane, nitrous oxide, and water vapor using chirped-pulse differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Castillo, Paulo; Diaz, Adrian; Thomas, Benjamin; Gross, Barry; Moshary, Fred

    2015-10-01

    Methane and Nitrous Oxide are long-lived greenhouse gases in the atmosphere with significant global warming effects. We report on application of chirped-pulsed quantum cascade lasers (QCLs) to simultaneous measurements of these trace gases in both open-path fence-line and backscatter systems. The intra-pulse thermal frequency chip in a QCL can be time resolved and calibrated to allow for high resolution differential optical absorption spectroscopy over the spectral window of the chip, which for a DFB-QCL can be reach ~2cm-1 for a 500 nsec pulse. The spectral line-shape of the output from these lasers are highly stable from pulse to pulse over long period of time (> 1 day), and the system does not require frequent calibrations.

  10. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations

    SciTech Connect

    Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

    2006-04-10

    The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

  11. 2-micron triple-pulse integrated path differential absorption lidar development for simultaneous airborne column measurements of carbon dioxide and water vapor in the atmosphere

    NASA Astrophysics Data System (ADS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-05-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  12. 2-Micron Triple-Pulse Integrated Path Differential Absorption Lidar Development for Simultaneous Airborne Column Measurements of Carbon Dioxide and Water Vapor in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong

    2016-01-01

    For more than 15 years, NASA Langley Research Center (LaRC) has contributed in developing several 2-micron carbon dioxide active remote sensors using the DIAL technique. Currently, an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar is under development at NASA LaRC. This paper focuses on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of wavelength control, packaging and lidar integration. In addition, receiver development updates will also be presented, including telescope integration, detection systems and data acquisition electronics. Future plan for IPDA lidar system for ground integration, testing and flight validation will be presented.

  13. Pressure Induced Phase Transition in PbTiO3 Studied by X-ray Absorption Spectroscopy at the Ti K edge

    SciTech Connect

    Dhaussy, A. C.; Marinel, S.; Veres, A.; Jaouen, N.; Itie, J. P.; Rogalev, A.

    2007-01-19

    The Ti-K edge X-ray Absorption Near Edge Structure (XANES) for CaTiO3 and PbTiO3 have been measured under high pressure in a diamond anvil cell at room temperature. Despite the huge absorption from the diamond cell and the sample high quality XANES allows us to observe that in CaTiO3 no change occurs when applying pressure, at the opposite of PbTiO3 in which the pre-edge features vary strongly. It allows studying the phase transition from ferroelectric to paraelectric phase in PbTiO3 from the local point of view. Under pressure the change in intensity of the pre-edge indicates qualitatively that the Ti atom is moving toward the centre of the oxygen octahedron along the c-axis.

  14. Multiple Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) Observations of Bromine Monoxide (BrO) at Barrow, Alaska: An Instrumental Inter-Comparison

    NASA Astrophysics Data System (ADS)

    Carlson, D. A.; Donohoue, D.; Simpson, W. R.; Friess, U.; Sihler, H.; Platt, U.

    2009-12-01

    Differential optical absorption spectroscopy (DOAS) measures atmospheric slant column densities of gases by fitting ambient skylight spectra, referenced to a zenith spectrum, to laboratory-measured molecular absorption cross sections. In the Multiple-Axis (MAX)-DOAS method, measurement spectra are recorded with a narrow-field telescope aimed at low elevation angles to enhance sensitivity to boundary-layer trace gases. MAX-DOAS instruments are particularly well suited for low-power measurements at remote sites because the calibration relies on well-established absorption cross sections and the sun is used as the light source (saving power). For example, MAX-DOAS has proven very useful for observing bromine monoxide (BrO) in the Arctic springtime troposphere, when unique chemistry leads to relatively high mixing ratios (tens of pptv) in the boundary layer. Although MAX-DOAS has been successful in many studies, there has seldom been a chance to intercompare multiple MAX-DOAS instruments to discern the overall data quality, in particular not for tropospheric BrO. This data quality can be affected by instrumental differences within the various spectrometers as well as radiative-transfer differences between the skylight in the various view directions of the different instruments. To evaluate the agreement and underlying causes for differences between different MAX-DOAS systems, concurrent observations of BrO slant column densities from multiple instruments were compared. Observations are from the spring of 2009 at Barrow, Alaska. The resulting correlation plots show good general agreement in BrO slant column densities (slopes within error of unity) and attest to the quality of each of the MAX-DOAS systems. The oxygen collisional dimer, O4, and the fit residual RMS were also examined to understand light path differences and spectral fitting issues, respectively.

  15. Single-shot x-ray differential phase-contrast and diffraction imaging using two-dimensional transmission gratings.

    PubMed

    Wen, Harold H; Bennett, Eric E; Kopace, Rael; Stein, Ashley F; Pai, Vinay

    2010-06-15

    We describe an x-ray differential phase-contrast imaging method based on two-dimensional transmission gratings that are directly resolved by an x-ray camera. X-ray refraction and diffraction in the sample lead to variations of the positions and amplitudes of the grating fringes on the camera. These effects can be quantified through spatial harmonic analysis. The use of 2D gratings allows differential phase contrast in several directions to be obtained from a single image. When compared to previous grating-based interferometry methods, this approach obviates the need for multiple exposures and separate measurements for different directions and thereby accelerates imaging speed.

  16. 2-D tomography of volcanic CO2 from scanning hard-target differential absorption lidar: the case of Solfatara, Campi Flegrei (Italy)

    NASA Astrophysics Data System (ADS)

    Queißer, Manuel; Granieri, Domenico; Burton, Mike

    2016-11-01

    Solfatara is part of the active volcanic zone of Campi Flegrei (Italy), a densely populated urban area where ground uplift and increasing ground temperature are observed, connected with rising rates of CO2 emission. A major pathway of CO2 release at Campi Flegrei is diffuse soil degassing, and therefore quantifying diffuse CO2 emission rates is of vital interest. Conventional in situ probing of soil gas emissions with accumulation chambers is accurate over a small footprint but requires significant time and effort to cover large areas. An alternative approach is differential absorption lidar, which allows for a fast and spatially integrated measurement. Here, a portable hard-target differential absorption lidar has been used to acquire horizontal 1-D profiles of column-integrated CO2 concentration at the Solfatara crater. To capture heterogenic features in the CO2 distribution, a 2-D tomographic map of the CO2 distribution has been inverted from the 1-D profiles. The scan was performed one-sided, which is unfavorable for the inverse problem. Nonetheless, the result is in agreement with independent measurements and furthermore confirms an area of anomalous CO2 degassing along the eastern edge as well as the center of the Solfatara crater. The method may have important implications for measurements of degassing features that can only be accessed from limited angles, such as airborne sensing of volcanic plumes. CO2 fluxes retrieved from the 2-D map are comparable, but modestly higher than emission rates from previous studies, perhaps reflecting an increase in CO2 flux or a more integrated measurement or both.

  17. Inter-comparison of 2 microm Heterodyne Differential Absorption Lidar, Laser Diode Spectrometer, LICOR NDIR analyzer and flasks measurements of near-ground atmospheric CO2 mixing ratio.

    PubMed

    Gibert, Fabien; Joly, Lilian; Xuéref-Rémy, Irène; Schmidt, Martina; Royer, Adrien; Flamant, Pierre H; Ramonet, Michel; Parvitte, Bertrand; Durry, Georges; Zéninari, Virginie

    2009-01-01

    Remote sensing and in situ instruments are presented and compared in the same location for accurate CO(2) mixing ratio measurements in the atmosphere: (1) a 2.064 microm Heterodyne DIfferential Absorption Lidar (HDIAL), (2) a field deployable infrared Laser Diode Spectrometer (LDS) using new commercial diode laser technology at 2.68 microm, (3) LICOR NDIR analyzer and (4) flasks. LDS, LICOR and flasks measurements were made in the same location, LICOR and flasks being taken as reference. Horizontal HDIAL measurements of CO(2) absorption using aerosol backscatter signal are reported. Using new spectroscopic data in the 2 microm band and meteorological sensor measurements, a mean CO(2) mixing ratio is inferred by the HDIAL in a 1 km long path above the 15m height location of the CO(2) in situ sensors. We compare HDIAL and LDS measurements with the LICOR data for 30 min of time averaging. The mean standard deviation of the HDIAL and the LDS CO(2) mixing ratio results are 3.3 ppm and 0.89 ppm, respectively. The bias of the HDIAL and the LDS measurements are -0.54 ppm and -0.99 ppm, respectively.

  18. Spatial differentiation of Bloch surface wave beams using an on-chip phase-shifted Bragg grating

    NASA Astrophysics Data System (ADS)

    Doskolovich, L. L.; Bezus, E. A.; Bykov, D. A.; Soifer, V. A.

    2016-11-01

    Bloch surface waves (BSWs) supported by the interfaces between a photonic crystal and a homogeneous medium are considered as a prospective information carrier in integrated photonic circuits. In the present work, we study the application of on-chip phase-shifted Bragg gratings for spatial differentiation of BSW beams. The presented simulation results demonstrate a high accuracy of the performed differentiation. It is shown that upon differentiation of a Gaussian BSW beam, a two-dimensional analogue of the Hermite-Gaussian mode is generated in reflection. The obtained results may find application in the design of new planar devices for analog optical information processing.

  19. Relaxation mechanism in NiFe thin films driven by spin angular momentum absorption throughout the antiferromagnetic phase transition in native surface oxides

    NASA Astrophysics Data System (ADS)

    Frangou, L.; Forestier, G.; Auffret, S.; Gambarelli, S.; Baltz, V.

    2017-02-01

    We report an alternative mechanism for the physical origin of the temperature-dependent ferromagnetic relaxation observed in bare permalloy (NiFe) thin films. Through spin-pumping experiments, we demonstrate that the peak in the temperature dependence of NiFe damping can be understood in terms of enhanced absorption of spin angular momentum at the magnetic phase transition in native antiferromagnetic surface-oxidized layers. These results suggest some avenues for the investigation of an incompletely understood phenomenon in physics.

  20. Phase unwrapping in spectral X-ray differential phase-contrast imaging with an energy-resolving photon-counting pixel detector.

    PubMed

    Epple, Franz M; Ehn, Sebastian; Thibault, Pierre; Koehler, Thomas; Potdevin, Guillaume; Herzen, Julia; Pennicard, David; Graafsma, Heinz; Noël, Peter B; Pfeiffer, Franz

    2015-03-01

    Grating-based differential phase-contrast imaging has proven to be feasible with conventional X-ray sources. The polychromatic spectrum generally limits the performance of the interferometer but benefit can be gained with an energy-sensitive detector. In the presented work, we employ the energy-discrimination capability to correct for phase-wrapping artefacts. We propose to use the phase shifts, which are measured in distinct energy bins, to estimate the optimal phase shift in the sense of maximum likelihood. We demonstrate that our method is able to correct for phase-wrapping artefacts, to improve the contrast-to-noise ratio and to reduce beam hardening due to the modelled energy dependency. The method is evaluated on experimental data which are measured with a laboratory Talbot-Lau interferometer equipped with a conventional polychromatic X-ray source and an energy-sensitive photon-counting pixel detector. Our work shows, that spectral imaging is an important step to move differential phase-contrast imaging closer to pre-clinical and clinical applications, where phase wrapping is particularly problematic.

  1. Frontoparietal EEG alpha-phase synchrony reflects differential attentional demands during word recall and oculomotor dual-tasks.

    PubMed

    Kwon, Gusang; Kim, Min-Young; Lim, Sanghyun; Kwon, Hyukchan; Lee, Yong-Ho; Kim, Kiwoong; Lee, Eun-Ju; Suh, Minah

    2015-12-16

    To study the relationship between the varying degrees of cognitive load and long-range synchronization among neural networks, we utilized a dual-task paradigm combining concurrent word recall working memory tasks and oculomotor tasks that differentially activate the common frontoparietal (FP) network. We hypothesized that each dual-task combination would generate differential neuronal activation patterns among long-range connection during word retention period. Given that the FP alpha-phase synchronization is involved in attentional top-down processes, one would expect that the long-range synchronization pattern is affected by the degrees of dual-task demand. We measured a single-trial phase locking value in the alpha frequency (8-12 Hz) with electroencephalography in healthy participants. Single-trial phase locking value characterized the synchronization between two brain signals. Our results revealed that different amounts of FP alpha-phase synchronization were produced by different dual-task combinations, particularly during the early phase of the word retention period. These differences were dependent on the individual's working memory capacity and memory load. Our study shows that during dual-task, each oculomotor task, which is subserved by distinct neural network, generates different modulation patterns on long-range neuronal activation and FP alpha-phase synchronization seems to reflect these differential cognitive loads.

  2. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  3. Demonstration of differential phase-shift keying demodulation at 10 Gbit/s optimal fiber Bragg grating filters.

    PubMed

    Gatti, Davide; Galzerano, Gianluca; Laporta, Paolo; Longhi, Stefano; Janner, Davide; Guglierame, Andrea; Belmonte, Michele

    2008-07-01

    Optimal demodulation of differential phase-shift keying signals at 10 Gbit/s is experimentally demonstrated using a specially designed structured fiber Bragg grating composed by Fabry-Perot coupled cavities. Bit-error-rate measurements show that, as compared with a conventional Gaussian-shaped filter, our demodulator gives approximately 2.8 dB performance improvement.

  4. Phase integral approximation for coupled ordinary differential equations of the Schroedinger type

    SciTech Connect

    Skorupski, Andrzej A.

    2008-05-15

    Four generalizations of the phase integral approximation (PIA) to sets of ordinary differential equations of Schroedinger type [u{sub j}{sup ''}(x)+{sigma}{sub k=1}{sup N}R{sub jk}(x)u{sub k}(x)=0, j=1,2,...,N] are described. The recurrence relations for higher order corrections are given in a form valid to arbitrary order and for the matrix R(x)[{identical_to}(R{sub jk}(x))] either Hermitian or non-Hermitian. For Hermitian and negative definite R(x) matrices, a Wronskian conserving PIA theory is formulated, which generalizes Fulling's current conserving theory pertinent to positive definite R(x) matrices. The idea of a modification of the PIA, which is well known for one equation [u{sup ''}(x)+R(x)u(x)=0], is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a nondegenerate eigenvalue of the R(x) matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-Hermitian R(x) matrices. The general theory is illustrated by a few examples automatically generated by using the author's program in MATHEMATICA published in e-print arXiv:0710.5406 [math-ph].

  5. Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques.

    PubMed

    Meletta, Romana; Borel, Nicole; Stolzmann, Paul; Astolfo, Alberto; Klohs, Jan; Stampanoni, Marco; Rudin, Markus; Schibli, Roger; Krämer, Stefanie D; Herde, Adrienne Müller

    2015-10-01

    Non-invasive detection of specific atherosclerotic plaque components related to vulnerability is of high clinical relevance to prevent cerebrovascular events. The feasibility of magnetic resonance imaging (MRI) for characterization of plaque components was already demonstrated. We aimed to evaluate the potential of ex vivo differential phase contrast X-ray tomography (DPC) to accurately characterize human carotid plaque components in comparison to high field multicontrast MRI and histopathology. Two human plaque segments, obtained from carotid endarterectomy, classified according to criteria of the American Heart Association as stable and unstable plaque, were examined by ex vivo DPC tomography and multicontrast MRI (T1-, T2-, and proton density-weighted imaging, magnetization transfer contrast, diffusion-weighted imaging). To identify specific plaque components, the plaques were subsequently sectioned and stained for fibrous and cellular components, smooth muscle cells, hemosiderin, and fibrin. Histological data were then matched with DPC and MR images to define signal criteria for atherosclerotic plaque components. Characteristic structures, such as the lipid and necrotic core covered by a fibrous cap, calcification and hemosiderin deposits were delineated by histology and found with excellent sensitivity, resolution and accuracy in both imaging modalities. DPC tomography was superior to MRI regarding resolution and soft tissue contrast. Ex vivo DPC tomography allowed accurate identification of structures and components of atherosclerotic plaques at different lesion stages, in good correlation with histopathological findings.

  6. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    NASA Astrophysics Data System (ADS)

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-02-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.

  7. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.

    PubMed

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-02-13

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.

  8. Round-robin differential-phase-shift quantum key distribution with a passive decoy state method

    PubMed Central

    Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan

    2017-01-01

    Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen. PMID:28198808

  9. Practical round-robin differential-phase-shift quantum key distribution

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Yuan, Xiao; Cao, Zhu; Ma, Xiongfeng

    2017-03-01

    The security of quantum key distribution (QKD) relies on the Heisenberg uncertainty principle, with which legitimate users are able to estimate information leakage by monitoring the disturbance of the transmitted quantum signals. Normally, the disturbance is reflected as bit flip errors in the sifted key; thus, privacy amplification, which removes any leaked information from the key, generally depends on the bit error rate. Recently, a round-robin differential-phase-shift QKD protocol for which privacy amplification does not rely on the bit error rate (Sasaki et al 2014 Nature 509 475) was proposed. The amount of leaked information can be bounded by the sender during the state-preparation stage and hence, is independent of the behavior of the unreliable quantum channel. In our work, we apply the tagging technique to the protocol and present a tight bound on the key rate and employ a decoy-state method. The effects of background noise and misalignment are taken into account under practical conditions. Our simulation results show that the protocol can tolerate channel error rates close to 50% within a typical experiment setting. That is, there is a negligible restriction on the error rate in practice.

  10. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources

    NASA Astrophysics Data System (ADS)

    Wang, Le; Zhao, Shengmei

    2017-04-01

    Round-robin differential-phase-shift (RRDPS) quantum key distribution (QKD) scheme provides an effective way to overcome the signal disturbance from the transmission process. However, most RRDPS-QKD schemes use weak coherent pulses (WCPs) as the replacement of the perfect single-photon source. Considering the heralded pair-coherent source (HPCS) can efficiently remove the shortcomings of WCPs, we propose a RRDPS-QKD scheme with HPCS in this paper. Both infinite-intensity decoy-state method and practical three-intensity decoy-state method are adopted to discuss the tight bound of the key rate of the proposed scheme. The results show that HPCS is a better candidate for the replacement of the perfect single-photon source, and both the key rate and the transmission distance are greatly increased in comparison with those results with WCPs when the length of the pulse trains is small. Simultaneously, the performance of the proposed scheme using three-intensity decoy states is close to that result using infinite-intensity decoy states when the length of pulse trains is small.

  11. Phase Polymorphism of [Mn(DMSO)6](ClO4)2 Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Migdał-Mikuli, Anna; Szostak, Elżbieta

    2005-04-01

    Six solid phases of [Mn(DMSO)6](ClO4)2 have been detected by differential scanning calorimetry. The phase transitions were found between the following solid phases: stable KIc ↔ stable KIb at TC5 = 225 K, metastable KIII ↔ metastable KII at TC4 = 322 K, stable KIb ↔ stable KIa at TC3 = 365 K, metastable KII↔overcooled K0 at TC2 = 376 K and stable KIa→stable K0 at TC1 = 379 K. The title compound melts at Tm = 488 K.

  12. Differential Gene Expression in Rhododendron fortunei Roots Colonized by an Ericoid Mycorrhizal Fungus and Increased Nitrogen Absorption and Plant Growth

    PubMed Central

    Wei, Xiangying; Chen, Jianjun; Zhang, Chunying; Pan, Dongming

    2016-01-01

    Ericoid mycorrhizal (ERM) fungi are specifically symbiotic with plants in the family Ericaceae. Little is known thus far about their symbiotic establishment and subsequent nitrogen (N) uptake at the molecular level. The present study devised a system for establishing a symbiotic relationship between Rhododendron fortunei Lindl. and an ERM fungus (Oidiodendron maius var. maius strain Om19), quantified seedling growth and N uptake, and compared transcriptome profiling between colonized and uncolonized roots using RNA-Seq. The Om19 colonization induced 16,892 genes that were differentially expressed in plant roots, of which 14,364 were upregulated and 2,528 were downregulated. These genes included those homologous to ATP-binding cassette transporters, calcium/calmodulin-dependent kinases, and symbiosis receptor-like kinases. N metabolism was particularly active in Om19-colonized roots, and 51 genes were upregulated, such as nitrate transporters, nitrate reductase, nitrite reductase, ammonium transporters, glutamine synthetase, and glutamate synthase. Transcriptome analysis also identified a series of genes involving endocytosis, Fc-gamma R-mediated phagocytosis, glycerophospholipid metabolism, and Gonadotropin-releasing hormone (GnRH) signal pathway that have not been reported previously. Their roles in the symbiosis require further investigation. The Om19 colonization significantly increased N uptake and seedling growth. Total N content and dry weight of colonized seedlings were 36.6 and 46.6% greater than control seedlings. This is the first transcriptome analysis of a species from the family Ericaceae colonized by an ERM fungus. The findings from this study will shed light on the mechanisms underlying symbiotic relationships of ericaceous species with ERM fungi and the symbiosis-resultant N uptake and plant growth. PMID:27826312

  13. Photoluminescence of charged CdSe/ZnS quantum dots in the gas phase: effects of charge and heating on absorption and emission probabilities.

    PubMed

    Howder, Collin R; Long, Bryan A; Bell, David M; Furakawa, Kevin H; Johnson, Ryan C; Fang, Zhiyuan; Anderson, Scott L

    2014-12-23

    Gas phase spectral measurements for CdSe/ZnS core/shell nanocrystal quantum dots (QDs) before and after heating with both infrared (CO2) and visible lasers are reported. As-trapped QDs are spectrally similar to the same QDs in solution; however their photoluminescence (PL) intensities are very low, at least partly due to low absorption cross sections. After heating, the PL intensities brighten by factors ranging from ∼4 to 1800 depending on the QD size and pump laser wavelength. The emission spectra no longer resemble solution spectra and are similar, regardless of the QD diameter. Emission extends from the pump laser wavelength into the near-IR, with strong emission features above the band gap energy, between 645 and 775 nm, and in the near-infrared. Emission spectra from brightened QD ensembles, single QD aggregates, and single QD monomers are similar, showing that even single QDs support PL from a wide variety of states. The heating and cooling processes for QDs in this environment are analyzed, providing limits on the magnitudes of the absorption cross sections before and after thermal brightening. A model, based on absorption bleaching by extra electrons in the conduction band, appears to account for the changes in absorption and emission behavior induced by charging and heating.

  14. Effects of stachyose on absorption and transportation of tea catechins in mice: possible role of Phase II metabolic enzymes and efflux transporters inhibition by stachyose

    PubMed Central

    Li, Wenfeng; Lu, Yalong; Huang, Di; Han, Xiao; Yang, Xingbin

    2016-01-01

    Background Nutritional and absorption-promoting properties of stachyose combined with tea catechins (TC) have been revealed. However, the mechanism involved in non-digestible oligosaccharides-mediated enhancement of flavonoid absorption has largely remained elusive. Methods This study was designed to investigate the molecular mechanism of stachyose in enhancing absorption and transportation of TC in mice. Mice were orally pre-treated with stachyose (50, 250, and 500 mg/kg·bw) for 0–8 weeks, and 1 h before sacrifice, mice were treated with TC (250 mg/kg·bw). Results Gas chromatography-mass spectrometry analysis showed that serum concentrations of epicatechin, epigallocatechin, epicatechin gallate, and epigallocatechin gallate were dose- and time-dependently elevated with stachyose pre-treatment in mice. Furthermore, pre-treatment with stachyose in mice reduced intestinal sulfotransferase and uridine diphosphate-glucuronosyltransferase levels by 3.3–43.2% and 23.9–30.4%, relative to control mice, respectively. Moreover, intestinal P-glycoprotein and multidrug resistance-associated protein-1 contents were decreased in mice by pre-administration of stachyose in dose- and time-dependent manner. Conclusions This is the first time to demonstrate that suppression of Phase II metabolic enzymes and efflux transporters of TC in the intestine can play a major role in increasing absorption of TC by stachyose feeding. PMID:27782875

  15. Quantitative Phase Composition of TiO2-Coated Nanoporous-Au Monoliths by X-ray Absorption Spectroscopy and Correlations to Catalytic

    DOE PAGES

    Bagge-Hansen, Michael; Wichmann, Andre; Wittstock, Arne; ...

    2014-02-03

    Porous titania/metal composite materials have many potential applications in the fields of green catalysis, energy harvesting, and storage in which both the overall morphology of the nanoporous host material and the crystallographic phase of the titania (TiO 2) guest determine the material’s performance. New insights into the structure–function relationships of these materials were obtained by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy that, for example, provides quantitative crystallographic phase composition from ultrathin, nanostructured titania films, including sensitivity to amorphous components. We demonstrate that crystallographic phase, morphology, and catalytic activity of TiO 2-functionalized nanoporous gold (np-Au) can be controlled by amore » simple annealing procedure (T < 1300 K). The material was prepared by atomic layer deposition of ~2 nm thick TiO2 on millimeter-sized samples of np-Au (40–50 nm mean ligament size) and catalytically investigated with respect to aerobic CO oxidation. Moreover, the annealing-induced changes in catalytic activity are correlated with concurrent morphology and phase changes as provided by cross-sectional scanning electron microscopy, transmission electron microscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy.« less

  16. Quantitative Phase Composition of TiO2-Coated Nanoporous-Au Monoliths by X-ray Absorption Spectroscopy and Correlations to Catalytic

    SciTech Connect

    Bagge-Hansen, Michael; Wichmann, Andre; Wittstock, Arne; Lee, Jonathan R. I.; Ye, Jianchao; Willey, Trevor M.; Kuntz, Joshua D.; van Buuren, Tony; Biener, Juergen; Baumer, Marcus; Biener, Monika M.

    2014-02-03

    Porous titania/metal composite materials have many potential applications in the fields of green catalysis, energy harvesting, and storage in which both the overall morphology of the nanoporous host material and the crystallographic phase of the titania (TiO 2) guest determine the material’s performance. New insights into the structure–function relationships of these materials were obtained by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy that, for example, provides quantitative crystallographic phase composition from ultrathin, nanostructured titania films, including sensitivity to amorphous components. We demonstrate that crystallographic phase, morphology, and catalytic activity of TiO 2-functionalized nanoporous gold (np-Au) can be controlled by a simple annealing procedure (T < 1300 K). The material was prepared by atomic layer deposition of ~2 nm thick TiO2 on millimeter-sized samples of np-Au (40–50 nm mean ligament size) and catalytically investigated with respect to aerobic CO oxidation. Moreover, the annealing-induced changes in catalytic activity are correlated with concurrent morphology and phase changes as provided by cross-sectional scanning electron microscopy, transmission electron microscopy, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy.

  17. Performance evaluation of partial differential equation models in electronic speckle pattern interferometry and the delta-mollification phase map method.

    PubMed

    Tang, Chen; Zhang, Fang; Li, Botao; Yan, Haiqing

    2006-10-01

    The ordinary differential equation (ODE) and partial differential equation (PDE) image- processing methods have been applied to reduce noise and enhance the contrast of electronic speckle pattern interferometry fringe patterns. We evaluate the performance of a few representative PDE denoising models quantitatively with two parameters called image fidelity and speckle index, and then we choose a good denoising model. Combining this denoising model with the ODE enhancement method, we make it possible to perform contrast enhancement and denoising simultaneously. Second, we introduce the delta-mollification method to smooth the unwrapped phase map. Finally, based on PDE image processing, delta mollification and some traditional techniques, an approach of phase extraction from a single fringe pattern is tested for computer-simulated and experimentally obtained fringe patterns. The method works well under a high noise level and limited visibility and can extract accurate phase values.

  18. Phase Polymorphism of [Cd(DMSO)6](ClO4)2 Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Migdał-Mikuli, A.; Mikuli, E.; Szostak, E.; Serwónska, J.

    2003-06-01

    Five phase transitions of [Cd(DMSO)6](ClO4)2 have been detected by differential scanning calorimetry, namely the three reversible transitions: stable KIa ↔ stable KIb at TC4 = 242 K, due to a change of the crystal structure, metastable KII ↔ metastable KIII at TC3 = 318 K, and metastable KII ↔ overcooled K0 at TC2 = 347 K, one irreversible transition: KIa ↔ K0 at TC1 = 376 K, and melting at Tt = 465 K. From the enthalpy changes of these transitions it can be concluded that K0 is a solid rotational phase and KII and KIII are most probably solid phases with a high degree of orientational disorder. The phases K0, KII, and KIII form an enantiotropic system, but they are metastable in relation to the phases KIa and KIb in the whole temperature range, so they form the monotropic system with them.

  19. A mobile differential absorption lidar to measure sub-hourly fluctuation of tropospheric ozone profiles in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.

    2014-10-01

    Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.

  20. Glutathionylation and Reduction of Methacrolein in Tomato Plants Account for Its Absorption from the Vapor Phase1[OPEN

    PubMed Central

    Muramoto, Shoko; Matsubara, Yayoi; Mwenda, Cynthia Mugo; Koeduka, Takao; Sakami, Takuya; Tani, Akira; Matsui, Kenji

    2015-01-01

    A large portion of the volatile organic compounds emitted by plants are oxygenated to yield reactive carbonyl species, which have a big impact on atmospheric chemistry. Deposition to vegetation driven by the absorption of reactive carbonyl species into plants plays a major role in cleansing the atmosphere, but the mechanisms supporting this absorption have been little examined. Here, we performed model experiments using methacrolein (MACR), one of the major reactive carbonyl species formed from isoprene, and tomato (Solanum lycopersicum) plants. Tomato shoots enclosed in a jar with MACR vapor efficiently absorbed MACR. The absorption efficiency was much higher than expected from the gas/liquid partition coefficient of MACR, indicating that MACR was likely metabolized in leaf tissues. Isobutyraldehyde, isobutyl alcohol, and methallyl alcohol (MAA) were detected in the headspace and inside tomato tissues treated with MACR vapor, suggesting that MACR was enzymatically reduced. Glutathione (GSH) conjugates of MACR (MACR-GSH) and MAA (MAA-GSH) were also detected. MACR-GSH was essentially formed through spontaneous conjugation between endogenous GSH and exogenous MACR, and reduction of MACR-GSH to MAA-GSH was likely catalyzed by an NADPH-dependent enzyme in tomato leaves. Glutathionylation was the metabolic pathway most responsible for the absorption of MACR, but when the amount of MACR exceeded the available GSH, MACR that accumulated reduced photosynthetic capacity. In an experiment simulating the natural environment using gas flow, MACR-GSH and MAA-GSH accumulation accounted for 30% to 40% of the MACR supplied. These results suggest that MACR metabolism, especially spontaneous glutathionylation, is an essential factor supporting MACR absorption from the atmosphere by tomato plants. PMID:26169680

  1. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers.

    PubMed

    Attie, Kenneth M; Allison, Mark J; McClure, Ty; Boyd, Ingrid E; Wilson, Dawn M; Pearsall, Amelia E; Sherman, Matthew L

    2014-07-01

    ACE-536, a recombinant protein containing a modified activin receptor type IIB, is being developed for the treatment of anemias caused by ineffective erythropoiesis, such as thalassemias and myelodysplastic syndromes. ACE-536 acts through a mechanism distinct from erythropoiesis-stimulating agents to promote late-stage erythroid differentiation by binding to transforming growth factor-β superfamily ligands and inhibiting signaling through transcription factors Smad 2/3. The goal of this Phase 1 study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamic effects of ascending dose levels of ACE-536 in healthy volunteers. Thirty-two postmenopausal women were randomized in sequential cohorts of eight subjects each to receive up to two doses of either ACE-536 (0.0625-0.25 mg/kg) or placebo (3:1 randomization) given subcutaneously every 2 weeks. Mean baseline age was 59.4 years, and hemoglobin was 13.2 g/dL. ACE-536 was well tolerated at dose levels up to 0.25 mg/kg over the 1-month treatment period. There were no serious or severe adverse events, nor clinically meaningful changes in safety laboratory measures or vital signs. Mean ACE-536 AUC0-14d and Cmax increased proportionally after first dose; mean t½ was 15-16 days. Dose-dependent increases in hemoglobin concentration were observed, beginning 7 days after initiation of treatment and maintained for several weeks following treatment. The proportion of subjects with a hemoglobin increase ≥1.0 g/dL increased in a dose-dependent manner to 83.3% of subjects in the highest dose group, 0.25 mg/kg. ACE-536 was well tolerated and resulted in sustained increases in hemoglobin levels in healthy postmenopausal women.

  2. Understanding gas phase modifier interactions in rapid analysis by Differential Mobility-Tandem Mass Spectrometry

    PubMed Central

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-01-01

    A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298

  3. Understanding Gas Phase Modifier Interactions in Rapid Analysis by Differential Mobility-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-07-01

    A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.

  4. Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application.

    PubMed

    Refaat, Tamer F; Singh, Upendra N; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-08-20

    Double-pulsed 2-μm integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-μm double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photoelectromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-μm IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  5. CCN1 promotes the differentiation of endothelial progenitor cells and reendothelialization in the early phase after vascular injury.

    PubMed

    Yu, Yang; Gao, Yu; Qin, Jun; Kuang, Chun-Yan; Song, Ming-Bao; Yu, Shi-Yong; Cui, Bin; Chen, Jian-Fei; Huang, Lan

    2010-11-01

    Endothelial progenitor cells (EPCs) contribute to the process of reendothelialization and prevent neointimal formation after vascular injury. The present study was designed to investigate whether the cysteine-rich 61 (CYR61, CCN1), an important matricellular component of local vascular microenvironment, has effect on EPCs differentiation and reendothelialization in response to vascular injury in rat. Following balloon injury, CCN1 was rapidly induced and dynamically changed at vascular lesions. Overexpression of CCN1 by adenovirus (Ad-CCN1) accelerated reendothelialization and inhibited neointimal formation in the early phase (day 14) after vascular injury (p < 0.05), while no effect was shown on day 21. Ad-CCN1 treatment increased the adhering EPCs on the surface of injured vessels on day 7, and the ratio of GFP- and vWF-positive area to the total luminal length on day 14 was 2.3-fold higher in the Ad-CCN1-EPC-transplanted group than in controls. Consistent with these findings, CCN1-stimulated EPC differentiation in vitro and 20 genes were found differentially expressed during CCN1-induced EPC differentiation, including Id1, Vegf-b, Vegf-c, Kdr, Igf-1, Ereg, Tgf, Mdk, Ptn, Timp2, etc. Among them, negative transcriptional regulator Id1 was associated with CCN1 effect on EPC differentiation. Our data suggest that CCN1, from the microenvironment of injured vessels, enhances reendothelialization via a direct action on EPC differentiation, revealing a possible new mechanism underlying the process of vascular repair.

  6. Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Xie, Pin-Hua; Si, Fu-Qi; Li, Ang; Wu, Feng-Cheng; Wang, Yang; Liu, Jian-Guo; Liu, Wen-Qing; Andreas, Hartl; Chan, Ka Lok

    2014-09-01

    An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.

  7. Comparing different light-emitting diodes as light sources for long path differential optical absorption spectroscopy NO2 and SO2 measurements

    NASA Astrophysics Data System (ADS)

    Chan, Ka-Lok; Ling, Liu-Yi; Andreas, Hartl; Zheng, Ni-Na; Gerrit, Kuhlmann; Qin, Min; Sun, You-Wen; Xie, Pin-Hua; Liu, Wen-Qing; Mark, Wenig

    2012-11-01

    In this paper, we present a comparison of different light-emitting diodes (LEDs) as the light source for long path differential optical absorption spectroscopy (LP-DOAS) atmospheric trace gas measurements. In our study, we use a fiberoptic design, where high power LEDs used as the light source are coupled into the telescope using a Y shape fiber bundle. Two blue and one ultraviolet (UV) LEDs with different emission wavelength ranges are tested for NO2 and SO2 measurements. The detailed description of the instrumental setup, the NO2 and SO2 retrieval procedure, the error analysis, and the preliminary results from the measurements carried out in Science Island, Hefei, Anhui, China are presented. Our first measurement results show that atmospheric NO2 and SO2 have strong temporal variations in that area and that the measurement accuracy is strongly dependent on the visibility conditions. The measured NO2 and SO2 data are compared to the Ozone Monitoring Instrument (OMI) satellite observations. The results show that the OMI NO2 product underestimates the ground level NO2 by 45%, while the OMI SO2 data are highly influenced by clouds and aerosols, which can lead to large biases in the ground level concentrations. During the experiment, the mixing ratios of the atmospheric NO2 and SO2 vary from 8 ppbv to 36 ppbv and from 3 ppbv to 18 ppbv, respectively.

  8. A Compact Ti:Sapphire Laser With its Third Harmonic Generation (THG) for an Airborne Ozone Differential Absorption Lidar (DIAL) Transmitter

    NASA Technical Reports Server (NTRS)

    Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.

    2000-01-01

    A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.

  9. Analysis of a random modulation single photon counting differential absorption lidar system for space-borne atmospheric CO2 sensing.

    PubMed

    Ai, X; Pérez-Serrano, A; Quatrevalet, M; Nock, R W; Dahnoun, N; Ehret, G; Esquivias, I; Rarity, J G

    2016-09-05

    The ability to observe the Earth's carbon cycles from space provides scientists an important tool to analyze climate change. Current proposed systems are mainly based on pulsed integrated path differential absorption lidar, in which two high energy pulses at different wavelengths interrogate the atmosphere sequentially for its transmission properties and are back-scattered by the ground. In this work an alternative approach based on random modulation single photon counting is proposed and analyzed; this system can take advantage of a less power demanding semiconductor laser in intensity modulated continuous wave operation, benefiting from a better efficiency, reliability and radiation hardness. Our approach is validated via numerical simulations considering current technological readiness, demonstrating its potential to obtain a 1.5 ppm retrieval precision for 50 km averaging with 2.5 W average power in a space-borne scenario. A major limiting factor is the ambient shot noise, if ultra-narrow band filtering technology could be applied, 0.5 ppm retrieval precision would be attainable.

  10. Direct measurements of HONO and NO2 by tunable infrared differential absorption spectroscopy; Results from two field campaigns sampling aircraft exhaust and ambient urban air

    NASA Astrophysics Data System (ADS)

    Lee, B. H.; Santoni, G.; Herndon, S. C.; Wood, E. C.; Miake-Lye, R. C.; Munger, J. W.; Wofsy, S. C.; Zahniser, M. S.; McManus, J. B.; Nelson, D. D.

    2009-12-01

    Nitrous acid (HONO) is an important source of hydroxyl radicals (OH), the main oxidizing agent in the atmosphere. However, gaseous HONO has historically proven difficult to measure accurately and to date there is no standard technique. We describe a new instrument capable of high-frequency measurements of HONO and nitrogen dioxide (NO2) mixing ratios by tunable infrared differential absorption spectrometry. Mid-infrared light from two continuous-wave mode quantum cascade lasers traverse a 210 m path through a multi-pass astigmatic cell at reduced pressures for the direct detection of HONO (1660 cm-1) and NO2 (1604 cm-1). We achieve an absorbance precision less than 3×10-6 Hz-1 in one second, which translates to detection limits (S/N=3) of 300 and 30 ppt for HONO and NO2, respectively, in one second. Both lasers and the detector are thermoelectrically cooled, facilitating long-term unattended measurements. We also report preliminary results from two field campaigns; the Alternative Aviation Fuels Experiment (AAFEX) and the Study of Houston Air Radical Precursors (SHARP). At AAFEX, HONO emission ratios relative to CO2 and NOy observed in commercial aircraft exhaust are larger than in most other combustion sources and likely to play a significant role in regional HOx chemistry. Preliminary analysis from the SHARP campaign shows good agreement in HONO and NO2 levels between various measurement techniques.

  11. New Results from Frequency and Energy Reference Measurements during the first Test Flight with the Airborne Integrated Path Differential Absorption Lidar System CHARM-F

    NASA Astrophysics Data System (ADS)

    Ehret, G.; Fix, A.; Amediek, A.; Quatrevalet, M.

    2015-12-01

    The Integrated Path Differential Absorption Lidar (IPDA) technique is regarded as a suitable means for the measurement of methane and carbon dioxide columns from satellite or aircraft platforms with unprecedented accuracy. Currently, the German-French methane mission MERLIN (Methan Remote Lidar Mission) is prepared. At the same time CHARM-F, an aircraft installed system has been developed at DLR as an airborne demonstrator for a spaceborne greenhouse gas mission. Both use e.g. optical parametric oscillators (OPOs) in a double-pulse mode as the transmitter. Of particular importance for both instruments are the sub-modules required for the frequency stabilization of the transmitter wavelength and, since the IPDA technique, in contrast to DIAL, requires the exact knowledge of the energy ratio of outgoing on-line. The coherence of the lidar transmitter gives rise to speckle effects which have to be considered for the monitoring of the energy ratio of outgoing on- and off-line pulses. For the frequency reference of CHARM-F, a very successful stabilization scheme has been developed which will also serve as the reference for MERLIN. In Spring 2015, CHARM-F was flown aboard the German HALO aircraft for the first time which enables a detailed view on the performance of both the energy calibration and frequency reference subsystems under real flight conditions. As an initial quality check we will compared the airborne results to previous lab measurements which have been performed under stable environmental conditions.

  12. Detection of a new 'nematic-like' phase in liquid crystal-amphiphile mixture by differential scanning calorimetry

    SciTech Connect

    Dan, Kaustabh Roy, Madhusudan Datta, Alokmay

    2014-04-24

    Differential Scanning Calorimetry (DSC) studies on phase transitions of the pure liquid crystalline material N-4-methoxybenzylidene-4-butylaniline (MBBA) and mixtures of MBBA and the amphiphile Stearic Acid (StA) show significant changes in the behavior of mixture from pure MBBA, as regards the nematic-isotropic (N-I) transition temperature (T{sub c}) and other thermodynamic parameters like enthalpy, specific heat and activation energy with concentration of StA. In particular, the convexity of the Arrhenius plot in pure MBBA vanishes with StA concentration pointing to the formation of a new, perhaps 'nematic-like', phase in the mixtures.

  13. X-ray Absorption and Diffraction Studies of the Mixed-phase State of (CrxV1-x)2O3

    SciTech Connect

    D Pease; A Frenkel; V Krayzman; T Huang; P Shanthakumar; J Budnick; P Metcalf; F Chudnovsky; E Stern

    2011-12-31

    X-ray diffraction and vanadium x-ray absorption near-edge structure (XANES) data have been obtained for (V{sub 1-x}Cr{sub x}){sub 2}O{sub 3} samples containing several concentrations of Cr, crossing the metal-insulator transition boundary. For single-phase single-crystal samples our theoretical results are generally in good qualitative agreement with our experimental single-crystal XANES, for both crystal orientations relative to the incident-beam electric vector. However, an anomalous peak occurs for both orientations in the K pre-edge of the single-crystal sample containing 1.2% Cr, a paramagnetic insulator sample that is in the concentration regime corresponding to the room-temperature two-phase (coexistence) region of the phase diagram. Upon increasing the temperature of the 0.4% Cr powdered material to 400 K so that one enters the two-phase region of the phase diagram, a similar peak appears and then diminishes at 600 K. These results, as well as experiments done by others involving room-temperature and low-temperature XANES of a 1.1% Cr sample, suggest that this feature in the V pre-edge structure is associated with the appearance under some circumstances of a small amount of highly distorted VO{sub 6} octahedra in the interface region between coexisting metal and insulating phases. Finally, we find that, for the two-phase regime, the concentration ratio of the metal-to-insulating phase varies between different regions from a sample batch of uniform composition made by the skull melting method.

  14. Denoising by coupled partial differential equations and extracting phase by backpropagation neural networks for electronic speckle pattern interferometry.

    PubMed

    Tang, Chen; Lu, Wenjing; Chen, Song; Zhang, Zhen; Li, Botao; Wang, Wenping; Han, Lin

    2007-10-20

    We extend and refine previous work [Appl. Opt. 46, 2907 (2007)]. Combining the coupled nonlinear partial differential equations (PDEs) denoising model with the ordinary differential equations enhancement method, we propose the new denoising and enhancing model for electronic speckle pattern interferometry (ESPI) fringe patterns. Meanwhile, we propose the backpropagation neural networks (BPNN) method to obtain unwrapped phase values based on a skeleton map instead of traditional interpolations. We test the introduced methods on the computer-simulated speckle ESPI fringe patterns and experimentally obtained fringe pattern, respectively. The experimental results show that the coupled nonlinear PDEs denoising model is capable of effectively removing noise, and the unwrapped phase values obtained by the BPNN method are much more accurate than those obtained by the well-known traditional interpolation. In addition, the accuracy of the BPNN method is adjustable by changing the parameters of networks such as the number of neurons.

  15. Development of a thermal evaporation cell for gas-phase infrared absorption spectroscopy of compounds with low volatility.

    PubMed

    Ingram, John M; Fountain, Augustus W

    2007-11-01

    To facilitate in-depth hazard prediction models, we must understand the spectral properties of expulsion plumes from conventional weapon attacks. Precise data on the spectral absorption of three chemical weapon agent simulants, in the infrared regime, are required to properly determine the mass of simulant in expulsion plumes from field demonstrations and small scale tests. Data for triethyl phosphate (a Soman simulant), triethyl phosphite (a Sarin simulant), and tributyl phosphate (a VX simulant) are presented. A thermal evaporation cell was designed and built that incorporated features that are not commercially available.

  16. Water-Rock Differentiation of Icy Bodies by Darcy law, Stokes law, and Two-Phase Flow

    NASA Astrophysics Data System (ADS)

    Neumann, Wladimir; Breuer, Doris; Spohn, Tilman

    2016-10-01

    The early Solar system produced a variety of bodies with different properties. Among the small bodies, objects that contain notable amounts of water ice are of particular interest. Water-rock separation on such worlds is probable and has been confirmed in some cases. We couple accretion and water-rock separation in a numerical model. The model is applicable to Ceres, icy satellites, and Kuiper belt objects, and is suited to assess the thermal metamorphism of the interior and the present-day internal structures. The relative amount of ice determines the differentiation regime according to porous flow or Stokes flow. Porous flow considers differentiation in a rock matrix with a small degree of ice melting and is typically modelled either with the Darcy law or two-phase flow. We find that for small icy bodies two-phase flow differs from the Darcy law. Velocities derived from two-phase flow are at least one order of magnitude smaller than Darcy velocities. The latter do not account for the matrix resistance against the deformation and overestimate the separation velocity. In the Stokes regime that should be used for large ice fractions, differentiation is at least four orders of magnitude faster than porous flow with the parameters used here.

  17. Phase Polymorphism of [Ni(DMSO)6](ClO4)2 Studied by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Migdał-Mikuli, Anna; Szostak, Elżbieta

    2007-02-01

    Six solid phases of [Ni(DMSO)6](ClO4)2 have been detected by differential scanning calorimetry (DSC). The five phase transitions were detected between the following solid phases: metastable KIII ↔ undercooled K0 at TC5 = 326 K, stable KIb → stable KIa at TC4 = 350 K, metastable KII ↔ undercooled KI at TC3 = 353 K, stable KIa → stable KI at TC2 = 365 K and stable KI → stable K0 at TC1 = 380 K. At Tm2 = 459 K the title compound partially dissolves in DMSO, which arises from the decomposition of [Ni(DMSO)6](ClO4)2 to [Ni(DMSO)5](ClO4)2, and at Tm1 = 526 K created in this way a substance which completely melts. From the entropy changes at the melting point and at phase transitions it can be concluded that the phases K0 and undercooled K0 are orientationally dynamically disordered crystals. The stable phases KI, KIa, KIb and the metastable phases KII and KIII are more or less ordered solids.

  18. The role of clinical pharmacists in educating nurses to reduce drug-food interactions (absorption phase) in hospitalized patients.

    PubMed

    Abbasi Nazari, Mohammad; Salamzadeh, Jamshid; Hajebi, Giti; Gilbert, Benjamin

    2011-01-01

    Drug-food interactions can increase or decrease drug effects, resulting in therapeutic failure or toxicity. Activities that reduce these interactions play an important role for clinical pharmacists. This study was planned and performed in order to determine the role of clinical pharmacist in the prevention of absorption drug-food interactions through educating the nurses in a teaching hospital affiliated to Shahid Beheshti University of Medical Sciences, Tehran, Iran. The rate of interactions was determined using direct observation methods before and after the nurse training courses in four wards including gastrointestinal-liver, endocrine, vascular surgery and nephrology. Training courses consisted of the nurse attendance lecture delivered by a clinical pharmacist which included receiving information pamphlets. Total incorrect drug administration fell down from 44.6% to 31.5%. The analysis showed that the rate of absorption drug-food interactions significantly decreased after the nurse training courses (p < 0.001). Clinical pharmacist can play an important role in nurse training as an effective method to reduce drug-food interactions in hospitals.

  19. Amorphous effect on the advancing of wide-range absorption and structural-phase transition in γ-In2Se3 polycrystalline layers

    PubMed Central

    Ho, Ching-Hwa

    2014-01-01

    The exploitation of potential functions in material is crucial in materials research. In this study, we demonstrate a III-VI chalcogenide, polycrystalline γ-In2Se3, which simultaneously possesses the capabilities of thickness-dependent optical gaps and wide-energy-range absorption existed in the polycrystalline layers of γ-In2Se3. Transmission electron microscopy and Raman measurement show a lot of γ-phase nanocrystals contained in the disordered and polycrystalline state of the chalcogenide with medium-range order (MRO). The MRO effects on the γ-In2Se3 layers show thickness-dependent absorption-edge shift and thickness-dependent resistivities. The amorphous effect of MRO also renders a structural-phase transition of γ → α occurred inside the γ-In2Se3 layer with a heat treatment of about 700°C. Photo-voltage-current (Photo V-I) measurements of different-thickness γ-In2Se3 layers propose a wide-energy-range photoelectric conversion unit ranging from visible to ultraviolet (UV) may be achieved by stacking γ-In2Se3 layers in a staircase form containing dissimilar optical gaps. PMID:24755902

  20. PLZT block data composers operated in differential phase mode. [lanthanum-modified lead zirconate titanate ceramic device for digital holographic memory

    NASA Technical Reports Server (NTRS)

    Drake, M. D.; Klingler, D. E.

    1973-01-01

    The use of PLZT ceramics with the 7/65/35 composition in block data composer (BDC) input devices for holographic memory systems has previously been described for operation in the strain biased, scattering, and edge effect modes. A new and promising mode of BDC operation is the differential phase mode in which each element of a matrix array BDC acts as a phase modulator. The phase modulation results from a phase difference in the optical path length between the electrically poled and depoled states of the PLZT. It is shown that a PLZT BDC can be used as a matrix-type phase modulator to record and process digital data by the differential phase mode in a holographic recording/processing system with readout contrast ratios of between 10:1 and 15:1. The differential phase mode has the advantages that strain bias is not required and that the thickness and strain variations in the PLZT are cancelled out.

  1. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  2. The vertical distribution of BrO and aerosols in the Arctic: Measurements by active and passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Sihler, H.; Sander, R.; PöHler, D.; Yilmaz, S.; Platt, U.

    2011-07-01

    We present results from multiaxis differential optical absorption spectroscopy (MAX-DOAS) and long-path DOAS (LP-DOAS) measurements performed at the North Slope of Alaska from February to April 2009 as part of the Ocean-Atmosphere-Sea Ice-Snowpack Barrow 2009 campaign. For the first time, vertical profiles of aerosol extinction and BrO in the boundary layer were retrieved simultaneously from MAX-DOAS measurements using the method of optimal estimation. Even at very low visibility, retrieved extinction profiles and aerosol optical thickness are in good agreement with colocated ceilometer and Sun photometer measurements, respectively. BrO surface concentrations measured by MAX-DOAS and LP-DOAS are in very good agreement, and it has been found that useful information on the BrO vertical distribution can be retrieved from MAX-DOAS even in cases when blowing snow strongly reduces visibility. The retrieved BrO and extinction vertical profiles allow for a thorough characterization of the vertical structure of the boundary layer during numerous ozone depletion events observed during Barrow 2009. High BrO concentrations are usually present during the onset of ozone depletion events, and BrO disappears as ozone concentrations approach zero. The finding that elevated BrO concentrations occur mainly in the presence of high extinction near the surface strongly suggests that release of reactive bromine from airborne aerosols and/or ice particles at high wind speed plays an important role. Back trajectory calculations indicate that the particles were transported from the frozen ocean to the measurement site and that the release of reactive bromine from sea ice and/or frost flowers occurs when low temperatures (<250 K) prevail in the regions where reactive bromine is emitted.

  3. Application of surface pressure measurements of O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II - A quasi-observational study

    NASA Astrophysics Data System (ADS)

    Min, Qilong; Gong, Wei; Lin, Bing; Hu, Yongxiang

    2015-01-01

    This is the second part on assessing the impacts of assimilating various distributions of sea-level pressure (SLP) on hurricane simulations, using the Weather and Research Forecast (WRF) three dimensional variational data assimilation system (3DVAR). One key purpose of this series of study is to explore the potential of using remotely sensed sea surface barometric data from O2-band differential absorption radar system currently under development for server weather including hurricane forecasts. In this part II we further validate the conclusions of observational system simulation experiments (OSSEs) in the part I using observed SLP for three hurricanes that passed over the Florida peninsula. Three SLP patterns are tested again, including all available data near the Florida peninsula, and a band of observations either through the center or tangent to the hurricane position. Before the assimilation, a vortex SLP reconstruction technique is employed for the use of observed SLP as discussed in the part I. In agreement with the results from OSSEs, the performance of assimilating SLP is enhanced for the two hurricanes with stronger initial minimum SLP, leading to a significant improvement in the track and position relative to the control where no data are assimilated. On the other hand, however, the improvement in the hurricane intensity is generally limited to the first 24-48 h of integration, while a high resolution nested domain simulation, along with assimilation of SLP in the coarse domain, shows more profound improvement in the intensity. A diagnostic analysis of the potential vorticity suggests that the improved track forecasts are attributed to the combined effects of adjusting the steering wind fields in a consistent manner with having a deeper vortex, and the associated changes in the convective activity.

  4. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. III. LIMITS TO TERTIARY COMPANIONS

    SciTech Connect

    Muterspaugh, Matthew W.; Lane, Benjamin F.; Kulkarni, S. R.; Konacki, Maciej; Burke, Bernard F.; Colavita, M. M.; Shao, M. E-mail: blane@draper.co

    2010-12-15

    The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 subarcsecond binary systems to evaluate whether tertiary companions as small as Jovian planets orbited either the primary or secondary stars, perturbing their otherwise smooth Keplerian motions. Twenty-one of those systems were observed 10 or more times and show no evidence of additional companions. A new algorithm is presented for identifying astrometric companions and establishing the (companion mass)-(orbital period) combinations that can be excluded from existence with high confidence based on the PHASES observations, and the regions of mass-period phase space being excluded are presented for 21 PHASES binaries.

  5. Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.

    PubMed

    Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J

    2010-03-15

    Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.

  6. Proliferation and differentiation of neural stem cells irradiated with X-rays in logarithmic growth phase.

    PubMed

    Isono, Mayu; Otsu, Masahiro; Konishi, Teruaki; Matsubara, Kana; Tanabe, Toshiaki; Nakayama, Takashi; Inoue, Nobuo

    2012-07-01

    Exposure of the fetal brain to ionizing radiation causes congenital brain abnormalities. Normal brain formation requires regionally and temporally appropriate proliferation and differentiation of neural stem cells (NSCs) into neurons and glia. Here, we investigated the effects of X-irradiation on proliferating homogenous NSCs prepared from mouse ES cells. Cells irradiated with X-rays at a dose of 1Gy maintained the capabilities for proliferation and differentiation but stopped proliferation temporarily. In contrast, the cells ceased proliferation following irradiation at a dose of >5Gy. These results suggest that irradiation of the fetal brain at relatively low doses may cause congenital brain abnormalities as with relatively high doses.

  7. An efficient reconstruction algorithm for differential phase-contrast tomographic images from a limited number of views

    SciTech Connect

    Sunaguchi, Naoki; Yuasa, Tetsuya; Gupta, Rajiv; Ando, Masami

    2015-12-21

    The main focus of this paper is reconstruction of tomographic phase-contrast image from a set of projections. We propose an efficient reconstruction algorithm for differential phase-contrast computed tomography that can considerably reduce the number of projections required for reconstruction. The key result underlying this research is a projection theorem that states that the second derivative of the projection set is linearly related to the Laplacian of the tomographic image. The proposed algorithm first reconstructs the Laplacian image of the phase-shift distribution from the second-derivative of the projections using total variation regularization. The second step is to obtain the phase-shift distribution by solving a Poisson equation whose source is the Laplacian image previously reconstructed under the Dirichlet condition. We demonstrate the efficacy of this algorithm using both synthetically generated simulation data and projection data acquired experimentally at a synchrotron. The experimental phase data were acquired from a human coronary artery specimen using dark-field-imaging optics pioneered by our group. Our results demonstrate that the proposed algorithm can reduce the number of projections to approximately 33% as compared with the conventional filtered backprojection method, without any detrimental effect on the image quality.

  8. Energy dispersive x-ray diffractometry as a tool alternative to differential scanning calorimetry for investigating polymer phase transitions

    NASA Astrophysics Data System (ADS)

    Rossi-Albertini, V.; Isopo, A.; Caminiti, R.; Tentolini, U.

    2002-02-01

    Recently, a technique based on energy dispersive x-ray diffraction has been proposed to follow the polymer phase transitions. However, the potentialities of this method were not clear, as well as the experimental conditions in which it is more convenient than differential scanning calorimetry, generally used for the same purpose. In the present letter, the answer to this question is provided. It is shown that the two methods are complementary, rather than equivalent, the heating rate being the relevant parameter to establish which is preferable. The demonstration of this statement is given through the observation of the complex thermal properties of a reference sample studied in both ways at progressively lower heating rates. The connection between such unusual application of x-ray diffraction and the differential scanning calorimetry is discussed in terms of the two possible definitions of entropy.

  9. Thermoresponsive Poly(Ionic Liquid)s in Aqueous Salt Solutions: Salting-Out Effect on Their Phase Behavior and Water Absorption/Desorption Properties.

    PubMed

    Okafuji, Akiyoshi; Kohno, Yuki; Ohno, Hiroyuki

    2016-07-01

    Here, a thermoresponsive phase behavior of polymerized ionic liquids (PILs) composed of poly([tri-n-alkyl(vinylbenzyl)phosphonium]chloride) (poly([Pnnn VB ]Cl) is reported, where n (the number of carbon atoms of an alkyl chain) = 4, 5, or 6 after mixing with aqueous sodium chloride solutions. Both monomeric [P555VB ]Cl and the resulting poly([P555VB ]Cl) linear homopolymer show a lower critical solution temperature (LCST)-type phase behavior in aq. NaCl solutions. The phase transition temperature of the PIL shifts to lower value by increasing concentration of NaCl. Also the swelling degree of cross-linked poly([P555VB ]Cl) gel decreases by increasing NaCl concentration, clearly suggesting the "salting-out" effect of NaCl results in a significant dehydration of the poly([P555VB ]Cl) gel. The absorbed water in the PIL gel is desorbed by moderate heating via the LCST behavior, and the absolute absorption/desorption amount is improved by copolymerization of [P555VB ]Cl with more hydrophilic [P444VB ]Cl monomer.

  10. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice.

    PubMed

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-11-20

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures.

  11. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  12. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system.

    PubMed

    Wang, Yuejun; Wang, Yunjun; Liu, Yue; Wu, Zhongbiao; Mo, Jiansong; Cheng, Bin

    2010-11-15

    Gas phase oxidation and catalytic oxidation of element mercury (Hg(0)) to bivalent mercury (Hg(2+)) were proposed to improve the mercury removal efficiency in the wet flue gas desulfurization (WFGD) system. However, the re-emission of Hg(0), generated by the reduction of absorbed Hg(2+), would lead to a damping of the total mercury removal efficiency. In this paper, the absorption and reduction behaviors of bivalent mercury in the Ca-based WFGD slurry were evaluated in our purpose-built device. According to our experimental results, the slurry chemistry (such as CaSO(3) content, SO(4)(2-), Cl(-) and pH value) had a strong influence on the reduction of absorbed bivalent mercury. And the inlet concentrations of SO(2) and O(2) contribute little to the mercury absorption. Within the typical pH value range of 4.5-5.5, about 70% of inlet bivalent mercury was converted to Hg(0). The re-emission of Hg would be greatly retarded with the increase of [SO(4)(2-)] due to the formation of HgSO(4) or Hg(3)O(2)SO(4). Moreover, it was found that Cl(-) would also inhibit the reduction of bivalent mercury through the ligands reactions between Cl(-) and Hg(2+).

  13. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; Burton, A. S.; Messenger, S.; Miyake, A.; Takigawa, A.; Takayama, A.

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  14. Use of fluorescent oligonucleotide probes for differentiation between Paracoccidioides brasiliensis and Paracoccidioides lutzii in yeast and mycelial phase

    PubMed Central

    Arantes, Thales Domingos; Theodoro, Raquel Cordeiro; Teixeira, Marcus de Melo; Bagagli, Eduardo

    2017-01-01

    BACKGROUND Fluorescence in situ hybridisation (FISH) associated with Tyramide Signal Amplification (TSA) using oligonucleotides labeled with non-radioactive fluorophores is a promising technique for detection and differentiation of fungal species in environmental or clinical samples, being suitable for microorganisms which are difficult or even impossible to culture. OBJECTIVE In this study, we aimed to standardise an in situ hybridisation technique for the differentiation between the pathogenic species Paracoccidioides brasiliensis and Paracoccidioides lutzii, by using species-specific DNA probes targeting the internal transcribed spacer-1 (ITS-1) of the rRNA gene. METHODS Yeast and mycelial phase of each Paracoccidioides species, were tested by two different detection/differentiation techniques: TSA-FISH for P. brasiliensis with HRP (Horseradish Peroxidase) linked to the probe 5’ end; and FISH for P. lutzii with the fluorophore TEXAS RED-X® also linked to the probe 5’ end. After testing different protocols, the optimised procedure for both techniques was accomplished without cross-positivity with other pathogenic fungi. FINDINGS The in silico and in vitro tests show no reaction with controls, like Candida and Cryptococcus (in silico) and Histoplasma capsulatum and Aspergillus spp. (in vitro). For both phases (mycelial and yeast) the in situ hybridisation showed dots of hybridisation, with no cross-reaction between them, with a lower signal for Texas Red probe than HRP-TSA probe. The dots of hybridisation was confirmed with genetic material marked with 4’,6-diamidino-2-phenylindole (DAPI), visualised in a different filter (WU) on fluorescent microscopic. MAIN CONCLUSION Our results indicated that TSA-FISH and/or FISH are suitable for in situ detection and differentiation of Paracoccidioides species. This approach has the potential for future application in clinical samples for the improvement of paracoccidioidomycosis patients prognosis. PMID:28177048

  15. Comparison of nonlinear absorption and carrier recombination times in GaAs grown by hydride vapor phase epitaxy and Bridgman processes

    NASA Astrophysics Data System (ADS)

    Gonzalez, Leonel P.; Murray, Joel; Carpenter, Amelia; Upchurch, Derek; Barnes, Jacob O.; Schunemann, Peter G.; Zawilski, Kevin; Guha, Shekhar

    2010-02-01

    μA 760 μm thick GaAs crystal was grown using HVPE. Transmission spectrum of this sample showed minimal absorption for light having photon energy below the bandgap energy, indicating the absence of the EL2 defects commonly found in Bridgman grown samples. Irradiance dependent absorption measured at 1.535 μm using 100 ns duration laser pulses showed increased nonlinear absorption in the HVPE grown GaAs compared to Bridgman grown samples. The dominant nonlinear absorption process in both samples was absorption due to free carriers generated by two-photon absorption. The HVPE grown sample showed higher nonlinear absorption due to longer carrier lifetimes.

  16. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  17. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  18. Thermal and economic assessment of hot side sensible heat and cold side phase change storage combination fo absorption solar cooling system

    NASA Astrophysics Data System (ADS)

    Choi, M. K.; Morehouse, J. H.

    An analysis of a solar assisted absorption cooling system which employs a combination of phase change on the cold side and sensible heat storage on the hot side of the cooling machine for small commercial buildings is given. The year-round thermal performance of this system for space cooling were determined by simulation and compared against conventional cooling systems in three geographic locations: Phoenix, Arizona; Miami, Florida and Washington, D.C. The results indicate that the hot-cold storage combination has a considerable amount of energy and economical savings over hot side sensible heat storage. Using the hot-cold storage combination, the optimum collector areas for Washington, D.C., Phoenix and Miami are 355 m squared, 250 m squared and 495 m squared, respectively. Compared against conventional vapor compression chiller, the net solar fractions are 61, 67 and 69 percent, respectively.

  19. Precision distance measurement using a two-photon absorption process in a silicon avalanche photodiode with saw-tooth phase modulation.

    PubMed

    Tanaka, Yosuke; Tominaka, Seiji; Kurokawa, Takashi

    2015-10-01

    We present a novel configuration of a precision laser distance measurement based on the two-photon absorption (TPA) photocurrent from a silicon avalanche photodiode (Si-APD). The proposed system uses saw-tooth phase modulation, known as serrodyne modulation, in order to shift the frequency of the reference light from that of the probe light. It suppresses the coherent interference noise between the probe and the reference. The serrodyne modulation also enables lock-in detection of the TPA photocurrent. Furthermore, it contributes to the reduction of the system components. The precision measurement is experimentally demonstrated by measuring a fiber length difference of 2.6 m with a standard deviation of 27 μm under constant temperature. The high-precision displacement measurement is also demonstrated by measuring the temperature-induced change in the optical path length difference of a fiber interferometer.

  20. Rapid differentiation of new apple cultivars by headspace solid-phase microextraction in combination with chemometrical data processing.

    PubMed

    Schulz, Ines; Ulrich, Detlef; Fischer, Christa

    2003-04-01

    The aim of this study was to test a combination of automated headspace solid phase-microextraction gas chromatography (GC) with chemometrical data treatment for the rapid differentiation of enzyme-inactivated homogenates of new apple cultivars. The four cultivars Pinova, Piflora, Renora and Florina are characterized by different volatile patterns. Differences in the contents of volatiles were especially found for butyl acetate, ethyl butanoate, 2-methyl butanol, ethyl acetate and 6-methyl-5-hepten-2-ol. The used sample preparation method for GC coupled with pattern recognition of chromatograms is a useful tool for rapid and reliable determination of large numbers of samples.

  1. Robustness of the round-robin differential-phase-shift quantum-key-distribution protocol against source flaws

    NASA Astrophysics Data System (ADS)

    Mizutani, Akihiro; Imoto, Nobuyuki; Tamaki, Kiyoshi

    2015-12-01

    Recently, a new type of quantum key distribution, called the round-robin differential-phase-shift (RRDPS) protocol [T. Sasaki et al., Nature (London) 509, 475 (2014), 10.1038/nature13303], was proposed, where the security can be guaranteed without monitoring any statistics. In this Rapid Communication, we investigate source imperfections and side-channel attacks on the source of this protocol. We show that only three assumptions are needed for the security, and no detailed characterizations of the source or the side-channel attacks are needed. This high robustness is another striking advantage of the RRDPS protocol over other protocols.

  2. Temperature and gas-phase composition measurements in supersonic flows using tunable diode laser absorption spectroscopy: the effect of condensation on the boundary-layer thickness.

    PubMed

    Tanimura, Shinobu; Zvinevich, Yury; Wyslouzil, Barbara E; Zahniser, Mark; Shorter, Joanne; Nelson, David; McManus, Barry

    2005-05-15

    We used a tunable diode laser absorption spectrometer and a static-pressure probe to follow changes in temperature, vapor-phase concentration of D2O, and static pressure during condensation in a supersonic nozzle. Using the measured static-pressure ratio p/p0 and the mass fraction of the condensate g as inputs to the diabatic flow equations, we determined the area ratio (A/A*)wet and the corresponding centerline temperature of the flow during condensation. From (A/A*)wet we determined the boundary-layer displacement thickness during condensation (delta#)wet. We found that (delta#)wet first increases relative to the value of delta# in a dry expansion (delta#)Dry before becoming distinctly smaller than (delta#)Dry downstream of the condensation region. After correcting the temperature gradient across the boundary layers, the temperature determined from p/p0 and g agreed with the temperature determined by the laser-absorption measurements within our experimental error (+/-2 K), except when condensation occurred too close to the throat. The agreement between the two temperature measurements let us draw the following two conclusions. First, the differences in the temperature and mole fraction of D2O determined by the two experimental techniques, first observed in our previous study [P. Paci, Y. Zvinevich, S. Tanimura, B. E. Wyslouzil, M. Zahniser, J. Shorter, D. Nelson, and B. McManus, J. Chem. Phys. 121, 9964 (2004)], can be explained sufficiently by changes in delta# caused by the condensation of D2O, except when the phase transition occurs too close to the throat. Second, the extrapolation of the equation, which expresses the temperature dependence of the heat of vaporization of bulk D2O liquid, is a good estimate of the heat of condensation of supercooled D2O down to 210 K.

  3. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  4. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states.

    PubMed

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-11-16

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height (|λF - λI|), the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field.

  5. Progress Toward an Autonomous Field Deployable Diode Laser Based Differential Absorption Lidar (DIAL) for Profiling Water Vapor in the Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Spuler, S.; Nehrir, A. R.; Moen, D.

    2013-12-01

    Water vapor is the most dominant greenhouse gas in the atmosphere and plays an important role in many key atmospheric processes associated with both weather and climate. Water vapor is highly variable in space and time due to large scale transport and biosphere-atmosphere interactions. Having long-term, high-resolution, vertical profiles of water vapor will help to better understand the water vapor structure and variability and its associated impact on weather and climate. A diode laser based differential absorption lidar (DIAL) for full-time water vapor and aerosol profiling in the lower troposphere has been demonstrated at Montana State University. This prototype instrument has the potential to form the basis of a ground based network of eye-safe autonomous instruments that can provide important information on the spatial and temporal variability of water vapor in the lower troposphere. To achieve this potential, major improvements to the prototype instrument need to be implemented and demonstrated including developing a laser transmitter capable of long term operation and modifying the optical receiver to make measurement below 0.5 km. During the past year, work on incorporating a new laser transmitter based on two distributed Bragg reflector (DBR) diode lasers, one operating at the on-line/side-line wavelength and the second operating at the off-line wavelength to injection seed a tapered semiconductor optical amplifier (TSOA) in a master oscillator power amplifier (MOPA) configuration has been completed. Recent work on the optical receiver is driven by the fact that the majority of the atmospheric water vapor resides below 2 km. The current single channel DIAL receiver has a narrow field of view and does not come in to full overlap until approximately 2 km. A two channel DIAL receiver has been designed that will allow the DIAL to achieve full overlap at ranges of less the 0.5 km providing significant improvement to the instrument performance. A discussion of

  6. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. M.; Cárdenas Gonzáles, L.; Platt, U.

    2011-05-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ± 40 mrad (2.3°) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the detection limit. In

  7. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: a feasible aviation safety measure to prevent potential encounters with volcanic plumes

    NASA Astrophysics Data System (ADS)

    Vogel, L.; Galle, B.; Kern, C.; Delgado Granados, H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lübcke, P.; Alvarez Nieves, J. M.; Cárdenas Gonzáles, L.; Platt, U.

    2011-09-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to volcanic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatépetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3°) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to the plume and SO2 was measured at all times well above the detection limit. In

  8. Early in-flight detection of SO2 via Differential Optical Absorption Spectroscopy: A feasible aviation safety measure to prevent potential encounters with volcanic plumes

    USGS Publications Warehouse

    Vogel, L.; Galle, B.; Kern, C.; Delgado, Granados H.; Conde, V.; Norman, P.; Arellano, S.; Landgren, O.; Lubcke, P.; Alvarez, Nieves J.M.; Cardenas, Gonzales L.; Platt, U.

    2011-01-01

    Volcanic ash constitutes a risk to aviation, mainly due to its ability to cause jet engines to fail. Other risks include the possibility of abrasion of windshields and potentially serious damage to avionic systems. These hazards have been widely recognized 5 since the early 1980s, when volcanic ash provoked several incidents of engine failure in commercial aircraft. In addition to volcanic ash, volcanic gases also pose a threat. Prolonged and/or cumulative exposure to sulphur dioxide (SO2) or sulphuric acid (H2SO4) aerosols potentially affects e.g. windows, air frame and may cause permanent damage to engines. SO2 receives most attention among the gas species commonly found in 10 volcanic plumes because its presence above the lower troposphere is a clear proxy for a volcanic cloud and indicates that fine ash could also be present. Up to now, remote sensing of SO2 via Differential Optical Absorption Spectroscopy (DOAS) in the ultraviolet spectral region has been used to measure volcanic clouds from ground based, airborne and satellite platforms. Attention has been given to vol- 15 canic emission strength, chemistry inside volcanic clouds and measurement procedures were adapted accordingly. Here we present a set of experimental and model results, highlighting the feasibility of DOAS to be used as an airborne early detection system of SO2 in two spatial dimensions. In order to prove our new concept, simultaneous airborne and ground-based measurements of the plume of Popocatepetl volcano, Mexico, were conducted in April 2010. The plume extended at an altitude around 5250 m above sea level and was approached and traversed at the same altitude with several forward looking DOAS systems aboard an airplane. These DOAS systems measured SO2 in the flight direction and at ±40 mrad (2.3◦) angles relative to it in both, horizontal and vertical directions. The approaches started at up to 25 km distance to 25 the plume and SO2 was measured at all times well above the detection

  9. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    SciTech Connect

    Zeghuzi, A. Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-05-25

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of −5 dBm. The QD SOAs emit in the 1.3-μm wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only −11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation.

  10. Differential partition of virulent Aeromonas salmonicida and attenuated derivatives possessing specific cell surface alterations in polymer aqueous-phase systems

    NASA Technical Reports Server (NTRS)

    Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.

    1986-01-01

    Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.

  11. Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans

    PubMed Central

    Hughey, Jacob J.; Butte, Atul J.

    2016-01-01

    The daily timing of mammalian physiology is coordinated by circadian clocks throughout the body. Although measurements of clock gene expression indicate that these clocks in mice are normally in phase with each other, the situation in humans remains unclear. We used publicly available data from five studies, comprising over 1000 samples, to compare the phasing of circadian gene expression in human brain and human blood. Surprisingly, after controlling for age, clock gene expression in brain was phase-delayed by ~8.5 h relative to that of blood. We then examined clock gene expression in two additional human organs and in organs from nine other mammalian species, as well as in the suprachiasmatic nucleus (SCN). In most tissues outside the SCN, the expression of clock gene orthologs showed a phase difference of ~12 h between diurnal and nocturnal species. The exception to this pattern was human brain, whose phasing resembled that of the SCN. Our results highlight the value of a multi-tissue, multi-species meta-analysis, and have implications for our understanding of the human circadian system. PMID:27702781

  12. ME-CAGEBIRDr,X-CPMG-HSQMBC. A phase sensitive, multiplicity edited long range HSQC with absorptive line shapes

    NASA Astrophysics Data System (ADS)

    Koskela, Harri; Kilpeläinen, Ilkka; Heikkinen, Sami

    2016-11-01

    ME-CAGEBIRDr,X-CPMG-HSMBC pulse sequence is a phase sensitive, carbon multiplicity edited 2D-experiment for detecting heteronuclear correlations originating from long-range 1H, 13C-couplings, nJCH. The presented method allows measurement of nJCH-values as well as is capable of separating different carbon types in subspectra (13C/13CH2 and 13CH/13CH3) with minimal amount of cross talk i.e. cross peaks from wrong carbon multiplicity. Pure lineshapes and clean subspectra are achieved by utilizing CPMG in polarization transfer period, CRISIS-approach in multiplicity editing period and zero-quantum filtration. The obtained spectral properties together with simple setup of the experiment make ME-CAGEBIRDr,X-CPMG-HSMBC a useful addition into synthetic organic chemistry oriented NMR-tool collection.

  13. Determining the thermodynamic functions of the absorption process in the recovery of crude benzol by reversed-phase chromatography

    SciTech Connect

    Mariich, L.I.; Ambrozevich, F.N.

    1983-01-01

    The liquid was oil was supported on a column in the quantity of 40 wt % of the solid support, Dynochrome-H. The resulting stationary phase was charged into the column of a Tavet chromatograph equipped with a flame-ionization detector and a standard manometer. The benzene, thiophene, toluene, cyclohexane, n-heptane and octane (components of benzol) were injected into the flow of helium carrier gas in quantities permitting interaction only in the sorbent-sorbate system and excluding interaction between the molecules of the sorbed substance. The measurements of the retention characteristics were conducted at 10/sup 0/C intervals in the 40 to 120/sup 0/C range. The thermodynamic functions were measured in accord with the known relationships between thermodynamic quantities and the parameters of the experiment. 3 tables.

  14. Description of Gas-Phase Ion/Neutral Interactions in Differential Ion Mobility Spectrometry: CV Prediction Using Calibration Runs

    NASA Astrophysics Data System (ADS)

    Auerbach, David; Aspenleiter, Julia; Volmer, Dietrich A.

    2014-09-01

    Differential ion mobility spectrometry (DMS) coupled to mass spectrometry is increasingly used in both quantitative analyses of biological samples and as a means of removing background interferences for enhanced selectivity and improved quality of mass spectra. However, DMS separation efficiency using dry inert gases often lacks the required selectivity to achieve baseline separation. Polar gas-phase modifiers such as alcohols are therefore frequently employed to improve selectivity via clustering/declustering processes. The choice of an optimal modifier currently relies on trial and error experiments, making method development a tedious activity. It was the goal of this study to establish a means of CV prediction for compounds using a homologous series of alcohols as gas-phase modifiers. This prediction was based on linear regression of compensation voltages of two calibration runs for the alcohols with the lowest and the highest molecular weights and readily available descriptors such as proton affinity and gas phase acidity of the modifier molecules. All experiments were performed on a commercial quadrupole linear ion trap mass spectrometer equipped with a DMS device between electrospray ionization source and entrance quadrupole lens. We evaluated our approach using a homologous series of 4-alkylbenzoic acids and a selection of 23 small molecules of high chemical diversity. Predicted CV values typically deviated from the experimentally determined values by less than 0.5 V. Several test compounds changed their ion mobility behavior for the investigated gas phase modifiers (e.g., from type B to type A) and thus could thus not be evaluated.

  15. Theoretical Aspects of Differential Scanning Calorimetry as a Tool for the Studies of Equilibrium Thermodynamics in Pharmaceutical Solid Phase Transitions.

    PubMed

    Faroongsarng, Damrongsak

    2016-06-01

    Although differential scanning calorimetry (DSC) is a non-equilibrium technique, it has been used to gain energetic information that involves phase equilibria. DSC has been widely used to characterize the equilibrium melting parameters of small organic pharmaceutical compounds. An understanding of how DSC measures an equilibrium event could make for a better interpretation of the results. The aim of this mini-review was to provide a theoretical insight into the DSC measurement to obtain the equilibrium thermodynamics of a phase transition especially the melting process. It was demonstrated that the heat quantity obtained from the DSC thermogram (ΔH) was related to the thermodynamic enthalpy of the phase transition (ΔH (P) ) via: ΔH = ΔH (P) /(1 + K (- 1)) where K was the equilibrium constant. In melting, the solid and liquefied phases presumably coexist resulting in a null Gibbs free energy that produces an infinitely larger K. Thus, ΔH could be interpreted as ΔH (P). Issues of DSC investigations on melting behavior of crystalline solids including polymorphism, degradation impurity due to heating in situ, and eutectic melting were discussed. In addition, DSC has been a tool for determination of the impurity based on an ideal solution of the melt that is one of the official methods used to establish the reference standard.

  16. Functional differentiation of the sugar beet root system as indicator of developmental phase change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developmental phase transition in the plant root system has not been well characterized. In this study we compared the dynamics of sucrose accumulation with gene expression changes analyzed with cDNA-AFLP in the tap root system of sugar beet (Beta vulgaris L.) during the first nine weeks after emerg...

  17. Differential control of active and silent phases in relaxation models of neuronal rhythms.

    PubMed

    Tabak, Joël; O'Donovan, Michael J; Rinzel, John

    2006-12-01

    Rhythmic bursting activity, found in many biological systems, serves a variety of important functions. Such activity is composed of episodes, or bursts (the active phase, AP) that are separated by quiescent periods (the silent phase, SP). Here, we use mean field, firing rate models of excitatory neural network activity to study how AP and SP durations depend on two critical network parameters that control network connectivity and cellular excitability. In these models, the AP and SP correspond to the network's underlying bistability on a fast time scale due to rapid recurrent excitatory connectivity. Activity switches between the AP and SP because of two types of slow negative feedback: synaptic depression-which has a divisive effect on the network input/output function, or cellular adaptation-a subtractive effect on the input/output function. We show that if a model incorporates the divisive process (regardless of the presence of the subtractive process), then increasing cellular excitability will speed up the activity, mostly by decreasing the silent phase. Reciprocally, if the subtractive process is present, increasing the excitatory connectivity will slow down the activity, mostly by lengthening the active phase. We also show that the model incorporating both slow processes is less sensitive to parameter variations than the models with only one process. Finally, we note that these network models are formally analogous to a type of cellular pacemaker and thus similar results apply to these cellular pacemakers.

  18. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  19. Iron solid-phase differentiation along a redox gradient in basaltic soils

    NASA Astrophysics Data System (ADS)

    Thompson, Aaron; Rancourt, Denis G.; Chadwick, Oliver A.; Chorover, Jon

    2011-01-01

    Iron compounds in soil are multifunctional, providing physical structure, ion sorption sites, catalytic reaction-centers, and a sink for respiratory electrons. Basaltic soils contain large quantities of iron that reside in different mineral and organic phases depending on their age and redox status. We investigated changes in soil iron concentration and its solid-phase speciation across a single-aged (400 ky) lava flow subjected to a gradient in precipitation (2200-4200 mm yr -1) and hence redox history. With increasing rainfall and decreasing Eh, total Fe decreased from about 25% to <1% of the soil mass. Quantitative speciation of soil solid-phase iron was constrained by combining 57Fe Mössbauer spectroscopy (MBS) at 295 and 4.2 K with powder X-ray diffraction, selective chemical extractions, and magnetic susceptibility measurements. This approach allowed us to partition iron into (1) nanoparticulate and microcrystalline Fe III-(oxy)hydroxides, (2) microcrystalline and bulk Fe III-oxides, (3) organic/silicate bound Fe III, and (4) ferrous iron. The Fe III-(oxy)hydroxide fraction dominated solid-phase Fe, exhibiting a crystallinity continuum based on magnetic ordering temperature. The continuum extended from well-ordered microcrystalline goethite through nanocrystalline Fe III-(oxy)hydroxides to a nano Fe III-(oxy)hydroxide phase of extremely low crystallinity. Magnetic susceptibility was correlated ( R2 = 0.77) with Fe III-oxide concentration, consistent with a contribution of maghemite to the otherwise hematite dominated Fe-oxide fraction. The Fe III-(oxy)hydroxide fraction of total Fe decreased with increasing rainfall and was replaced by corresponding increase in the organic/silicate Fe III fraction. The crystallinity of the Fe III-(oxy)hydroxides also decreased with increasing rainfall and leaching, with the most disordered members of the crystallinity continuum, the nano Fe III-(oxy)hydroxides, gaining proportional abundance in the wetter sites. This finding

  20. Alignment of low-dose X-ray fluorescence tomography images using differential phase contrast

    PubMed Central

    Hong, Young Pyo; Gleber, Sophie-Charlotte; O’Halloran, Thomas V.; Que, Emily L.; Bleher, Reiner; Vogt, Stefan; Woodruff, Teresa K.; Jacobsen, Chris

    2014-01-01

    X-ray fluorescence nanotomography provides unprecedented sensitivity for studies of trace metal distributions in whole biological cells. Dose fractionation, in which one acquires very low dose individual projections and then obtains high statistics reconstructions as signal from a voxel is brought together (Hegerl & Hoppe, 1976 ▶), requires accurate alignment of these individual projections so as to correct for rotation stage runout. It is shown here that differential phase contrast at 10.2 keV beam energy offers the potential for accurate cross-correlation alignment of successive projections, by demonstrating that successive low dose, 3 ms per pixel, images acquired at the same specimen position and rotation angle have a narrower and smoother cross-correlation function (1.5 pixels FWHM at 300 nm pixel size) than that obtained from zinc fluorescence images (25 pixels FWHM). The differential phase contrast alignment resolution is thus well below the 700 nm × 500 nm beam spot size used in this demonstration, so that dose fractionation should be possible for reduced-dose, more rapidly acquired, fluorescence nanotomography experiments. PMID:24365941

  1. A phased strategy to differentiate human CD14+monocytes into classically and alternatively activated macrophages and dendritic cells.

    PubMed

    Zarif, Jelani C; Hernandez, James R; Verdone, James E; Campbell, Scott P; Drake, Charles G; Pienta, Kenneth J

    2016-01-01

    There are currently several in vitro strategies to differentiate human CD14(+) monocytes isolated from peripheral blood mononuclear cells (PBMCs) into the M1 or M2 macrophage cell types. Each cell type is then verified using flow cytometric analysis of cell-surface markers. Human CD14(+) monocytes have the potential to differentiate into M1 and M2 macrophages, both of which demonstrate varying degrees of cell-surface antigen overlap. Using multiple surface markers with current macrophage polarization protocols, our data reveal several limitations of currently used methods, such as highly ambiguous cell types that possess cell-surface marker overlap and functional similarities. Utilizing interleukin-6 (IL-6) and two phases of cytokine exposure, we have developed a protocol to differentiate human monocytes into M1, M2, or dendritic cells (DCs) with greater efficiency and fidelity relative to macrophages and DCs that are produced by commonly used methods. This is achieved via alterations in cytokine composition, dosing, and incubation times, as well as improvements in verification methodology. Our method reliably reproduces human in vitro monocyte-derived DCs and macrophage models that will aid in better defining and understanding innate and adaptive immunity, as well as pathologic states.

  2. PHASES Differential Astrometry and Iodine Cell Radial Velocities of the κ Pegasi Triple Star System

    NASA Astrophysics Data System (ADS)

    Muterspaugh, Matthew W.; Lane, Benjamin F.; Konacki, Maciej; Wiktorowicz, Sloane; Burke, Bernard F.; Colavita, M. M.; Kulkarni, S. R.; Shao, M.

    2006-01-01

    κ Pegasi is a well-known, nearby triple star system. It consists of a ``wide'' pair with semimajor axis=235 mas, one component of which is a single-line spectroscopic binary (semimajor axis= 2.5 mas). Using high-precision differential astrometry and radial velocity observations, the masses for all three components are determined and the relative inclination between the wide and narrow pairs' orbits is found to be 43.8d+/-3.0d, just over the threshold for the three-body Kozai resonance. The system distance is determined to be 34.60+/-0.21 pc and is consistent with trigonometric parallax measurements.

  3. The orbits of the triple-star system 1 geminorum from phases differential astrometry and spectroscopy

    SciTech Connect

    Lane, Benjamin F.; Muterspaugh, Matthew W.; Griffin, R. F.; Scarfe, C. D.; Fekel, Francis C.; Williamson, Michael H.; Eaton, Joel A.; Shao, M.; Colavita, M. M.; Konacki, Maciej

    2014-03-01

    We have used precise differential astrometry from the Palomar High-precision Astrometric Search for Exoplanet Systems project and radial-velocity measurements covering a time span of 40 yr to determine the orbital parameters of the 1 Geminorum triple system. We present the first detection of the spectral lines of the third component of the system, together with precise mass (0.5%) and distance (0.15%) determinations for this system. In addition, our astrometry allows us to make the first determination of the mutual inclination of the orbits.

  4. Solid phase extraction of mercury on sulfur loaded with N-(2-chloro benzoyl)-N'-phenylthiourea as a new adsorbent and determination by cold vapor atomic absorption spectrometry.

    PubMed

    Pourreza, N; Parham, H; Kiasat, A R; Ghanemi, K; Abdollahi, N

    2009-06-15

    This paper reports sulfur powder loaded with N-(2-chloro benzoyl)-N'-phenylthiourea as a new solid phase extractor for determination of ultra trace amounts of mercury. The mercury ions were retained on a mini-column filled with the solid phase at a flow rate of 16 mL min(-1). The retained Hg(II) ions were eluted with 3 mol L(-1) solution of HCl and measured by cold vapor atomic absorption spectrometry (CV-AAS). The mercury vapors were generated by a homemade Reaction Cell-Gas Liquid Separator (RC-GLS). The effect of different variables such as pH, sample flow rate, amounts of ligand loaded on sulfur and SnCl2 concentration was investigated. Calibration curve was linear in the range of 0.02-1.20 microg L(-1) with r=0.9991 (n=8). The limit of detection (LOD) based on three times the standard deviation of the blank was 0.012 and 0.003 microg L(-1) when 250 and 1000 mL sample volumes were used, respectively. The relative standard deviation (R.S.D.) for determination of 0.04 and 1.00 microg L(-1) of Hg(II) was 3.9 and 1.2% (n=8), respectively. The method was successfully applied to determine Hg(II) in water and marine samples.

  5. Studies of nitride- and oxide-based materials as absorptive shifters for embedded attenuated phase-shifting mask in 193 nm

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-ming; Chang, Keh-wen; Lee, Ming-der; Loong, Wen-An

    1999-07-01

    Abstract-Five materials which are PdSixOy, CrAlxOy, SiNx, TiSixNy, and TiSixOyNz as absorptive shifters for attenuated phase-shifting mask in 193 nm wavelength lithography are presented. PdSixOy films were deposited by dual e-gun evaporation. CrAlxOy, TiSixNy and TiSixOyNz films were formed by plasma sputtering and SiNx films were formed with LPCVD. All of these materials are shown to be capable of achieving 4 percent - 15 percent transmittance in 193 nm with thickness that produce a 180 degrees phase shift. Under BCl3:Cl2 equals 14:70 sccm; chamber pressure 5 mtorr and RF power 1900W, the dry etching selectivity of TiSixNy over DQN positive resist and fused silica, were found to be 2:1 and 4,8:1 respectively. An embedded layer TiSixNy with 0.5 micrometers line/space was successfully patterned.

  6. Hollow fiber liquid phase microextraction combined with graphite furnace atomic absorption spectrometry for the determination of methylmercury in human hair and sludge samples

    NASA Astrophysics Data System (ADS)

    Jiang, Hongmei; Hu, Bin; Chen, Beibei; Zu, Wanqing

    2008-07-01

    Two methods, based on hollow fiber liquid-liquid-liquid (three phase) microextraction (HF-LLLME) and hollow fiber liquid phase (two phase) microextraction (HF-LPME), have been developed and critically compared for the determination of methylmercury content in human hair and sludge by graphite furnace atomic absorption spectrometry (GFAAS). In HF-LPME, methylmercury was extracted into the organic phase (toluene) prior to its determination by GFAAS, while inorganic mercury remained as a free species in the sample solution. In HF-LLLME, methylmercury was first extracted into the organic phase (toluene) and then into the acceptor phase (4% thiourea in 1 mol L - 1 HCl) prior to its determination by GFAAS, while inorganic mercury remained in the sample solution. The total mercury was determined by inductively coupled plasma-mass spectrometry (ICP-MS), and the levels of inorganic mercury in both HF-LLLME and HF-LPME were obtained by subtracting methylmercury from total mercury. The factors affecting the microextraction of methylmercury, including organic solvent, extraction time, stirring rate and ionic strength, were investigated and the optimal extraction conditions were established for both HF-LLLPME and HF-LPME. With a consumption of 3.0 mL of the sample solution, the enrichment factors were 204 and 55 for HF-LLLPME and HF-LPME, respectively. The limits of detection (LODs) for methylmercury were 0.1 μg L - 1 and 0.4 μg L - 1 (as Hg) with precisions (RSDs (%), c = 5 μg L - 1 (as Hg), n = 5) of 13% and 11% for HF-LLLPME-GFAAS and HF-LPME-GFAAS, respectively. For ICP-MS determination of total mercury, a limit of detection of 39 ng L - 1 was obtained. Finally, HF-LLLME-GFAAS was applied to the determination of methylmercury content in human hair and sludge, and the recoveries for the spiked samples were in the range of 99-113%. In order to validate the method, HF-LLLME-GFAAS was also applied to the analysis of a certified reference material of NRCC DORM-2 dogfish

  7. Differential phase analysis of laser images of a polycrystalline component of blood plasma in diagnostics of pathological changes in mammary gland

    NASA Astrophysics Data System (ADS)

    Mintser, O. P.; Zabolotna, N. I.; Oliinychenko, B. P.; Komada, P.

    2013-01-01

    The present work is devoted to investigation of diagnostic potentiality of differential phase tomography of blood plasma. The data of further statistical, correlation and fractal analysis of phase tomograms for determining objective criteria of diagnostics of physiological state of a patient is provided.

  8. Fourier domain image fusion for differential X-ray phase-contrast breast imaging.

    PubMed

    Coello, Eduardo; Sperl, Jonathan I; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-04-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  9. Clock error, jitter, phase error, and differential time of arrival in satellite communications

    NASA Astrophysics Data System (ADS)

    Sorace, Ron

    The maintenance of synchronization in satellite communication systems is critical in contemporary systems, since many signal processing and detection algorithms depend on ascertaining time references. Unfortunately, proper synchronism becomes more difficult to maintain at higher frequencies. Factors such as clock error or jitter, noise, and phase error at a coherent receiver may corrupt a transmitted signal and degrade synchronism at the terminations of a communication link. Further, in some systems an estimate of propagation delay is necessary, but this delay may vary stochastically with the range of the link. This paper presents a model of the components of synchronization error including a simple description of clock error and examination of recursive estimation of the propagation delay time for messages between elements in a satellite communication system. Attention is devoted to jitter, the sources of which are considered to be phase error in coherent reception and jitter in the clock itself.

  10. Phase Differentiation and Characterization of Nanostructured Composites by Synchrotron Radiation Techniques

    DTIC Science & Technology

    2000-01-01

    copper powders synthesized by the polyol process, Journal of Materials Research, 10, 1546. 4. Stragier, H., Cross, J.O., Rehr, J.J., Sorensen, L.B...some degree of overlap with that of the other phase. Because of the effects of size broadening and the contribution to diffraction amplitude by ...time. The compositions of powders were controlled by using different evaporation source contents. As-synthesized powders were examined by

  11. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    PubMed Central

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes,