Science.gov

Sample records for absorption edge due

  1. Search for absorption edges in superexpansion bursts

    NASA Astrophysics Data System (ADS)

    in't Zand, Jean

    2013-09-01

    Our goal is to measure with the LETGS a series of bright type-I X-ray bursts with strong photospheric radius expansion ('superexpansion') to search for absorption edges due to the ashes of nuclear burning. We request a quick TOO, to be triggered by ISS-MAXI and Swift-BAT, with a total exposure time of 100 ks to obtain the detection of about 10 bursts.

  2. Edge absorption and circular photogalvanic effect in 2D topological insulator edges

    NASA Astrophysics Data System (ADS)

    Entin, M. V.; Magarill, L. I.

    2016-06-01

    The electron absorption on the edge states and the edge photocurrent of a 2D topological insulator (TI) are studied. We consider the optical transitions within linear edge branches of the energy spectrum. The interaction with impurities is taken into account. The circular polarization is found to produce the edge photocurrent, the direction of which is determined by light polarization and edge orientation.

  3. Nonlinear fitting of absorption edges in K-edge densitometry spectra

    SciTech Connect

    Collins, M.; Hsue, Sin-Tao

    1997-11-01

    A new method for analyzing absorption edges in K-Edge Densitometry (KED) spectra is introduced. This technique features a nonlinear function that specifies the empirical form of a broadened K-absorption edge. Nonlinear fitting of the absorption edge can be used to remove broadening effects from the KED spectrum. This allows more data near the edge to be included in the conventional KED fitting procedure. One possible benefit is enhanced precision of measured uranium and plutonium concentrations. Because no additional hardware is required, several facilities that use KED may eventually benefit from this approach. Applications of nonlinear KED fitting in the development of the Los Alamos National Laboratory (LANL) hybrid K-edge/x-ray fluorescence (XRF) densitometer system are described.

  4. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  5. Collisionless absorption in sharp-edged plasmas

    SciTech Connect

    Gibbon, P. ); Bell, A.R. )

    1992-03-09

    The absorption of subpicosecond, obliquely incident laser light is studied using a 11/2D particle-in-cell code. Density scale lengths from {ital L}/{lambda}=0.01 to 2 and laser irradiances between {ital I}{lambda}{sup 2}=10{sup 14} and 10{sup 18} W cm{sup {minus}2} {mu}m{sup 2} are considered. Vacuum heating'' (F. Brunel, Phys. Rev. Lett. 59, 52 (1987)) dominates over resonance absorption for scale lengths {ital L}/{lambda}{lt}0.1, and is most efficient when {ital v}{sub osc}/{ital c}{congruent}3.1({ital L}/{lambda}){sup 2}. Absorbed energy is carried mainly by a superhot'' electron population with {ital U}{sub hot}{similar to}({ital I}{lambda}{sup 2}){sup 1/3--1/2}.

  6. Urbach absorption edge in epitaxial erbium-doped silicon

    SciTech Connect

    Shmagin, V. B. Kudryavtsev, K. E.; Shengurov, D. V.; Krasilnik, Z. F.

    2015-02-07

    We investigate the dependencies of the photocurrent in Si:Er p-n junctions on the energy of the incident photons. The exponential absorption edge (Urbach edge) just below fundamental edge of silicon was observed in the absorption spectra of epitaxial Si:Er layers grown at 400–600 C. It is shown that the introduction of erbium significantly enhances the structural disorder in the silicon crystal which was estimated from the slope of the Urbach edge. We discuss the possible nature of the structural disorder in Si:Er and a new mechanism of erbium excitation, which does not require the presence of deep levels in the band gap of silicon.

  7. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  8. Weibel instability due to inverse bremsstrahlung absorption

    SciTech Connect

    Bendib, A.; Bendib, K.,; Bendib, A.; Bendib, K.; Sid, A.,; Bendib, K.,

    1997-06-01

    A new Weibel source due to the inverse bremsstrahlung absorption is presented. It has been shown that in homogeneous plasmas, this mechanism may drive strong collisionless Weibel modes with growth rates of order of {gamma}{approximately}10{sup 11}s{sup {minus}1} and negligible group velocities. In the laser-produced plasmas, for short laser wavelengths ({lambda}{sub L}{lt}1{mu}m) and high laser fluxes (I{gt}10{sup 14}W/cm{sup 2}), this Weibel source is most efficient as the ones due to the heat flux and the plasma expansion. The useful scaling law of the convective e-foldings, with respect to the laser and the plasma parameters, is also derived. {copyright} {ital 1997} {ital The American Physical Society}

  9. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  10. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Streeck, C.; Löchel, H.; Rudolph, I.; Erko, A.; Stiel, H.; Kanngießer, B.

    2016-05-01

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ˜ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  11. Composition dependence of the ultraviolet absorption edge in lithium tantalate

    NASA Astrophysics Data System (ADS)

    Bäumer, Ch.; David, C.; Tunyagi, A.; Betzler, K.; Hesse, H.; Krätzig, E.; Wöhlecke, M.

    2003-03-01

    Comprehensive preparations of lithium tantalate crystals with compositions ranging from the congruent to stoichiometric ones have been carried out. Vapor transport equilibration treatments were used to determine the composition of the samples with an absolute accuracy of 0.05 mol %. This absolute determination of the composition can serve as the basis for convenient relative methods where an easily measurable physical property allows a simple determination of the composition. As an example, we present a study of the fundamental absorption edge in the near-ultraviolet region.

  12. Near Edge X-ray Absorption Spectroscopy of Polymers

    NASA Astrophysics Data System (ADS)

    Dhez, Olivier; Ade, Harald; Urquhart, Stephen

    2001-03-01

    Synthetic and natural polymers exhibit a rich carbon, nitrogen and oxygen K-edge Near Edge X-ray Absorption Fine Structure (NEXAFS). The spectroscopic variations with chemical structure and composition are interesting in their own right. In addition, the large spectroscopic variability can be utilized for the compositional analysis of materials. This is particularly useful for high spatial resolution NEXAFS microanalysis at lateral spatial resolutions exceeding that achievable with more traditional compositional analysis tools such as Infrared and NMR spectroscopy. To increase our understanding of NEXAFS spectra and to start a database for microanalysis, we acquired carbon NEXAFS spectra of the following polymers: polycarbonate, poly(oxybenzoate-co-2,6oxynaphthoate), poly (p-phenylene terephtalamide), toluene diisocyanate polyurethane, toluene diisocyanate polyurea, 4,4'-methylene di-p-phenylene isocyanate polyurethane, 4,4'-methylene di-p-phenylene isocyanate polyurea, poly(ether ether ketone), poly(alpha-methylstyrene), poly-styrene, poly bromostyrene, poly(2-vinyl styrene), polyethylene, poly(ethylene oxide), polypropylene, poly(propylene oxide), polyisobutylene, ethylene propylene rubber, poly(methyl -metacrylate). These spectra were obtained in transmission with an energy resolution of 150 meV. The energy scale was carefully calibrated in-situ utilizing C02 gas as a reference. Spectral assignments are made based on model compounds and theoretical calculations.

  13. Electron heating due to resonant absorption

    SciTech Connect

    Mizuno, K.; Spielman, R.B.; DeGroot, J.S.; Bollen, W.M.

    1980-01-01

    Intense, p-polarized microwaves (v/sub os//v/sub eo-/<1) are incident on an imhomogeneous plasma (10/sup 2/absorption near the critical surface (where the plasma frequency equals microwave frequency). Suprathermal electrons are heated by resonantly driven electrostatic field to produce a hot Maxwellian distribution. Most of the heated electrons flow towards the overdense region and are absorbed by the anode at the far end of the overdense region. At high power (v/sub os//v/sub eo-/>0.2), strong heating of thermal electrons, large amplitude ion acoustic turbulence, and a self-consistent dc electric field are observed near the critical surface. This dc electric field is enhanced by applying a weak magnetic field (..omega../sub ce//..omega../sub o/ approx. = 10/sup -2/).

  14. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  15. X-ray absorption of cadmium in the L-edge region

    SciTech Connect

    Padeznik Gomilsek, J.; Kodre, A.; Arcon, I.; Bratina, G.

    2011-11-15

    Atomic x-ray absorption of cadmium in the energy region of L edges was measured on the vapor of the element, in parallel with the absorption of Cd metal foil. Ionization thresholds of the three subshells are determined from the edge profiles, through the energies of pre-edge resonances and indium optical levels in the Z + 1 approximation. A purely experimental result, without extraneous data and with an accuracy of 0.2 eV, is the energy difference between the pre-edge resonance and the threshold energy of the metallic state. Some multielectron-excitation resonances are identified within 30 eV above the edges. The metal foil absorption is used for absolute determination of Cd absorption coefficient.

  16. Tailoring of absorption edge by thermal annealing in tin oxide thin films

    SciTech Connect

    Thakur, Anup; Gautam, Sanjeev; Kumar, Virender; Chae, K. H.; Lee, Ik-Jae; Shin, Hyun Joon

    2015-05-15

    Tin oxide (SnO{sub 2}) thin films were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates in different oxygen-to-argon gas-flow ratio (O{sub 2}-to-Ar = 0%, 10%, 50%). All films were deposited at room temperature and fixed working pressures, 10 mTorr. The X-ray diffraction (XRD) measurement suggests that all films were crystalline in nature except film deposited in argon environment. Thin films were annealed in air at 200 °C, 400 °C and 600 °C for two hours. All films were highly transparent except the film deposited only in the argon environment. It was also observed that transparency was improved with annealing due to decrease in oxygen vacancies. Atomic force microscopy (AFM), results showed that the surface of all the films were highly flat and smooth. Blue shift was observed in the absorption edge with annealing temperature. It was also observed that there was not big change in the absorption edge with annealing for films deposited in 10% and 50% oxygen-to-argon gas-flow ratio.

  17. Optical band-edge absorption of oxide compound SnO 2

    NASA Astrophysics Data System (ADS)

    Roman, L. S.; Valaski, R.; Canestraro, C. D.; Magalhães, E. C. S.; Persson, C.; Ahuja, R.; da Silva, E. F.; Pepe, I.; da Silva, A. Ferreira

    2006-05-01

    Tin oxide (SnO 2) is an important oxide for efficient dielectrics, catalysis, sensor devices, electrodes and transparent conducting coating oxide technologies. SnO 2 thin film is widely used in glass applications due to its low infra-red heat emissivity. In this work, the SnO 2 electronic band-edge structure and optical properties are studied employing a first-principle and fully relativistic full-potential linearized augmented plane wave (FPLAPW) method within the local density approximation (LDA). The optical band-edge absorption α( ω) of intrinsic SnO 2 is investigated experimentally by transmission spectroscopy measurements and their roughness in the light of the atomic force microscopy (AFM) measurements. The sample films were prepared by spray pyrolysis deposition method onto glass substrate considering different thickness layers. We found for SnO 2 qualitatively good agreement of the calculated optical band-gap energy as well as the optical absorption with the experimental results.

  18. F K-edge X-ray absorption near-edge structure (XANES) of AlF3 polymorphs: combining ab initio calculations with Walsh correlation diagrams.

    PubMed

    Schroeder, Sven L M; Weiher, Norbert

    2006-04-21

    The X-ray absorption near-edge structures (XANES) at the F K-edge of alpha-AlF(3), beta-AlF(3) and a tetragonal AlF(3) phase are analysed by a combination of ab initio calculations with the FEFF8 code and a phenomenological discussion of local molecular orbital (MO) symmetries at the absorbing fluorine atoms. By means of a Walsh correlation diagram it is shown that the two intense absorption bands observed at the F K-edges of the AlF(3) polymorphs can be interpreted as transitions to anti-bonding MOs in [Al-F-Al]-units that have C(2v) and D(infinity h) point group symmetries. The energies of both anti-bonding orbitals are very insensitive to the angle between the Al-F bonds, which explains the close similarity of the XANES signatures from the three polymorphs. The FEFF8 analysis shows that the increased broadening of the XANES structure for beta-AlF(3) and the tetragonal AlF(3) phase is due to the superposition of the individual absorption spectra from the crystallographically distinct F species. The interpretation in terms of local MOs provides for the first time a "chemically intuitive" approach to investigations of solid fluorides by XANES spectroscopy and provides a simple conceptual framework for the discussion of the electronic structure in AlF(3) materials.

  19. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  20. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  1. Near edge X-ray absorption mass spectrometry on coronene

    SciTech Connect

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T.; Boschman, L.; Hoekstra, S.

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  2. Characterization of Oxygen Containing Functional Groups on Carbon Materials with Oxygen K-edge X-ray Absorption Near Edge Structure Spectroscopy

    SciTech Connect

    K Kim; P Zhu; L Na; X Ma; Y Chen

    2011-12-31

    Surface functional groups on carbon materials are critical to their surface properties and related applications. Many characterization techniques have been used to identify and quantify the surface functional groups, but none is completely satisfactory especially for quantification. In this work, we used oxygen K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify and quantify the oxygen containing surface functional groups on carbon materials. XANES spectra were collected in fluorescence yield mode to minimize charging effect due to poor sample conductivity which can potentially distort XANES spectra. The surface functional groups are grouped into three types, namely carboxyl-type, carbonyl-type, and hydroxyl-type. XANES spectra of the same type are very similar while spectra of different types are significantly different. Two activated carbon samples were analyzed by XANES. The total oxygen contents of the samples were estimated from the edge step of their XANES spectra, and the identity and abundance of different functional groups were determined by fitting of the sample XANES spectrum to a linear combination of spectra of the reference compounds. It is concluded that oxygen K-edge XANES spectroscopy is a reliable characterization technique for the identification and quantification of surface functional groups on carbon materials.

  3. Chemical Sensitivity of the Sulfur K-Edge X-ray Absorption Spectra of Organic Disulfides.

    PubMed

    Pickering, Ingrid J; Barney, Monica; Cotelesage, Julien J H; Vogt, Linda; Pushie, M Jake; Nissan, Andrew; Prince, Roger C; George, Graham N

    2016-09-22

    Sulfur K-edge X-ray absorption spectroscopy increasingly is used as a tool to provide speciation information about the sulfur chemical form in complex samples, with applications ranging from fossil fuels to soil science to health research. As part of an ongoing program of systematic investigations of the factors that affect the variability of sulfur K near-edge spectra, we have examined the X-ray absorption spectra of a series of organic symmetric disulfide compounds. We have used polarized sulfur K-edge spectra of single crystals of dibenzyl disulfide to confirm the assignments of the major transitions in the spectrum as 1s → (S-S)σ* and 1s → (S-C)σ*. We also have examined the solution spectra of an extended series of disulfides and show that the spectra change in a systematic and predictable manner with the nature of the external group. PMID:27571342

  4. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy.

    PubMed

    Benuzzi-Mounaix, A; Dorchies, F; Recoules, V; Festa, F; Peyrusse, O; Levy, A; Ravasio, A; Hall, T; Koenig, M; Amadou, N; Brambrink, E; Mazevet, S

    2011-10-14

    The electronic structure evolution of highly compressed aluminum has been investigated using time resolved K edge x-ray absorption spectroscopy. A long laser pulse (500 ps, I(L)≈8×10(13) W/cm(2)) was used to create a uniform shock. A second ps pulse (I(L)≈10(17)  W/cm(2)) generated an ultrashort broadband x-ray source near the Al K edge. The main target was designed to probe aluminum at reshocked conditions up to now unexplored (3 times the solid density and temperatures around 8 eV). The hydrodynamical conditions were obtained using rear side visible diagnostics. Data were compared to ab initio and dense plasma calculations, indicating potential improvements in either description. This comparison shows that x-ray-absorption near-edge structure measurements provide a unique capability to probe matter at these extreme conditions and severally constrains theoretical approaches currently used. PMID:22107398

  5. Structural Characterization of Bimetallic Nanomaterials with Overlapping X-ray Absorption Edges

    SciTech Connect

    Menard, L.; Wang, Q; Kang, J; Sealey, A; Girolami, G; Teng, X; Frenkel, A; Nuzzo, R

    2009-01-01

    We describe a data analysis method for extended x-ray absorption fine structure spectroscopy suitable for use with compounds of diverse form that contain overlapping absorption edges. This method employs direct concurrent analysis of the data-demonstrated here for cases involving two interfering metal edges-and does not utilize subtractive or data filtering strategies that have been previously used to address this challenge. Its generality and precision are demonstrated in analyses made on two model nanoscale samples: (1) a Ir-Pt nanoparticle system supported on ?-Al2O3 and (2) a hybrid system of Pt nanowires on which Au nanoparticles have been nucleated and grown at the nanowire tips, stacking faults, and twinning boundaries. The results obtained demonstrate the unique compositional and structural qualities of these two systems as well as the broader utility of the new x-ray absorption spectroscopy based protocol used to characterize them.

  6. Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes

    NASA Astrophysics Data System (ADS)

    Trushin, Maxim; Kelleher, Edmund J. R.; Hasan, Tawfique

    2016-10-01

    We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconducting transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based on s-TMDs.

  7. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    SciTech Connect

    Arber, J.M.; de Boer, E.; Garner, C.D.; Hasnain, S.S.; Wever, R. )

    1989-09-19

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure data confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.

  8. Defects forming the optical absorption edge in TlGaSe2 layered crystal

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Suleymanov, Rauf A.; Şale, Yasin

    2016-09-01

    In this work, we present the results of optical experiments designed to investigate the changes in optical absorption spectra of TlGaSe2 ferroelectric-semiconductor with incommensurate (INC) phase in experimental conditions where crystal is kept several hours within the INC-phase (the regime of so called "memory" effect). The fundamental absorption of TlGaSe2, experimentally investigated by optical transmission measurements performed in the temperature range 15-300 K. An extraordinary modification of the optical absorption edge in the range of Urbach's tail is discovered as a result of the annealing within the INC-phase. The role of native defects forming the band edge in the observed phenomena in TlGaSe2 is discussed.

  9. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  10. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    SciTech Connect

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-04-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples.

  11. Optical absorption edge of ZnO thin films: The effect of substrate

    SciTech Connect

    Srikant, V.; Clarke, D.R.

    1997-05-01

    The optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated. The band edge of films on C [(0001)] and R-plane [(1102)] sapphire, 3.29 and 3.32 eV, respectively, are found to be very close to the single crystal value of ZnO (3.3 eV) with the differences being accounted for in terms of the thermal mismatch strain using the known deformation potentials of ZnO. In contrast, films grown on fused silica consistently exhibit a band edge {approximately}0.1eV lower than that predicted using the known deformation potential and the thermal mismatch strains. This behavior is attributed to the small grain size (50 nm) realized in these films and the effect of electrostatic potentials that exist at the grain boundaries. Additionally, the spread in the tail (E{sub 0}) of the band edge for the different films is found to be very sensitive to the defect structure in the films. For films grown on sapphire substrates, values of E{sub 0} as low as 30 meV can be achieved on annealing in air, whereas films on fused silica always show a value {gt}100meV. We attribute this difference to the substantially higher density of high-angle grain boundaries in the films on fused silica. {copyright} {ital 1997 American Institute of Physics.}

  12. Direct Correlation Between Aromatization of Kerogen in Organic Shales during Maturation and Its Visible Absorption Edge

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Liu, Y.; Pomerantz, A.; Grossman, J.

    2014-12-01

    The evolution of the electronic visible-range optical absorption edge of isolated kerogens type 1, 2 (from organic shales) and 3 is characterized by diffuse reflectance UV-Visible absorption spectroscopy. The functional form of the electronic absorption edge for all kerogens measured is in excellent agreement with the "Urbach tail" phenomenology. The Urbach decay width extracted from the exponential fit within the visible range is strongly correlated with the aliphatic/aromatic ratio in isolated kerogen, regardless of the kerogen type. The direct correlation is confirmed by density functional theory calculations on proxy ensemble models of kerogen. The correlation of the decay width with conventional maturity indicators such as vitrinite reflectance is found to be good within a particular kerogen type, but not consistent across different kerogen types. This is explained in terms of the evolution of the population of aromatic constituents in kerogen, which is instead directly measured through the Urbach decay. The optical absorption edge and the Urbach decay width are therefore presented as excellent candidates for the evaluation of thermal maturity in kerogen.

  13. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    PubMed

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns. PMID:26517229

  14. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    PubMed

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns.

  15. Oscillator strength of the peptide bond {pi}* resonances at all relevant x-ray absorption edges

    SciTech Connect

    Kummer, K.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Nekipelov, S. V.; Maslyuk, V. V.; Mertig, I.; Blueher, A.; Mertig, M.; Bredow, T.

    2009-10-15

    Absolute x-ray absorption cross sections of a regular bacterial surface-layer protein deposited on a naturally oxidized silicon substrate were determined experimentally. Upon separation of the partial cross sections of the three relevant 1s absorption edges, the oscillator strengths of the 1s{yields}{pi}* excitations within the peptide-backbone unit were extracted. Comparison with results of first-principles calculations revealed their close correlation to the topology of {pi}{sub peptide}* orbitals of the peptide backbone.

  16. Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    SciTech Connect

    Vittoria, Fabio A. Diemoz, Paul C.; Endrizzi, Marco; Olivo, Alessandro; Wagner, Ulrich H.; Rau, Christoph; Robinson, Ian K.

    2014-03-31

    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.

  17. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography

    PubMed Central

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L.

    2016-01-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm3 sensitivity, sufficient for detecting the density corresponding to a single nanoparticle. PMID:26960695

  18. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure. PMID:27510989

  19. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure.

  20. Interlaminar failure due to mechanical and thermal stresses at the free edges of laminated plates

    NASA Astrophysics Data System (ADS)

    Morton, S. K.; Webber, J. P. H.

    Analytical methods for the calculation of free edge stresses due to mechanical and thermal loads, together with a quadratic interlaminar stress criterion, are used to predict interlaminar failure in laminated composite plates. The predicted applied stresses are compared with experimental results from the literature and found to give reasonable agreement. The effect on stress distributions, and on predicted interlaminar failure, of including thermal stresses in the free edge analysis is illustrated for various stacking sequences.

  1. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  2. X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge

    PubMed Central

    2015-01-01

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W0(PMe3)6], [WIICl2(PMePh2)4], [WIIICl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [WIVCl4(PMePh2)2], [WV(NPh)Cl3(PMe3)2], and [WVICl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [WIV(mdt)2(CO)2] and [WIV(mdt)2(CN)2]2– (mdt2– = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively WIV species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal–ligand distances, exaggerate the difference

  3. X-ray absorption spectroscopy systematics at the tungsten L-edge.

    PubMed

    Jayarathne, Upul; Chandrasekaran, Perumalreddy; Greene, Angelique F; Mague, Joel T; DeBeer, Serena; Lancaster, Kyle M; Sproules, Stephen; Donahue, James P

    2014-08-18

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W(0)(PMe3)6], [W(II)Cl2(PMePh2)4], [W(III)Cl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [W(IV)Cl4(PMePh2)2], [W(V)(NPh)Cl3(PMe3)2], and [W(VI)Cl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W(IV)(mdt)2(CO)2] and [W(IV)(mdt)2(CN)2](2-) (mdt(2-) = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W(IV) species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate

  4. Spin-Sensitive and Angular Dependent Detection of Resonant Excitations at the K Absorption Pre-Edge of {alpha}-Fe2O3

    SciTech Connect

    Glatzel, Pieter; Mirone, Alessandro; Eeckhout, Sigrid G.; Sikora, Marcin; Giuli, Gabriele

    2007-02-02

    An experimental and theoretical study of the K absorption pre-edge in hematite ({alpha}-Fe2O3) is presented. Resonant inelastic X-ray scattering with a 3p hole in the final states was used to obtain spin-selective absorption spectra. Spectral variations with changing the orientation of the incident X-ray polarization vector with respect to the crystal c-axis in single crystalline hematite are discussed. The experimental results can be successfully modeled using a band-structure approach (WIEN2k with LDA+U). A pre-edge absorption feature is assigned to unoccupied p electronic states due to Fe-Fe interactions, i.e. they are due to non-local transitions.

  5. Atomic form factors and photoelectric absorption cross-sections near absorption edges in the soft X-ray region

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2003-01-01

    Reliable knowledge of the complex X-ray form factor [Re(f) and Im(f)] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety and XAFS studies. Key discrepancies in earlier theoretical work are due to the smoothing of edge structure, the use of non-relativistic wave functions, and the lack of appropriate convergence of wave functions. These discrepancies lead to significant corrections for most comprehensive (i.e. all-Z) tabulations. This work has led to a major comprehensive database tabulation [Chantler, C. T. (2000). J. Phys. Chem. Ref. Data, 29, 597-1048] which serves as a sequel and companion to earlier relativistic Dirac-Fock computations [Chantler, C. T. (1995). J. Phys. Chem. Ref. Data, 24, 71-643]. The paper finds that earlier work needs improvement in the near-edge region for soft X-ray energies, and derives new theoretical results of substantially higher accuracy in near-edge soft X-ray regions. Fine grids near edges are tabulated demonstrating the current comparison with alternate theory and with available experimental data. The best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future. This work forms the latest component of the FFAST NIST database [http://physics.nist.gov/PhysRefData/FFast02/Text/cover.html].

  6. X-ray atomic absorption of cesium and xenon in the L-edge region

    SciTech Connect

    Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Aquilanti, G.

    2010-08-15

    X-ray absorption of atomic cesium is measured in the L-edge region, using a beryllium-window cell for cesium vapor. For comparison, absorption in Xe gas in the same energy region is remeasured with improved signal-to-noise ratio. By combining deconvolution and modeling, the edge profiles are studied to determine the threshold energies and the shape of the edge apex with exponential slope of the high-energy flank. In both elements, multielectron excitations show the same basic ordering in compact groups, largely independent of the core-hole subshell, following the energy sequence of coexcited valence and subvalence orbitals. The main effect of 6s electron in Cs, apart from 2(s,p)6s excitation, is the enhancement of single- as well as some multielectron resonant channels. The spectra of both elements show the ''polarization effect'': a convex basic curvature of the L{sub 2} and L{sub 3} segments, a concave L{sub 1} segment. Previously, Kutzner demonstrated a convincing theoretical explanation of the effect on Xe in a relativistic random-phase approximation with relaxation involving overlap integrals with continuum [Rad. Phys. Chem. 70, 95 (2004)].

  7. Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Molina, Rafael A.; Platero, Gloria; Lunde, Anders Mathias

    2016-05-01

    We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.

  8. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  9. Absorption-edge transmission technique using Ce- 139 for measurement of stable iodine concentration.

    PubMed

    Sorenson, J A

    1979-12-01

    We have investigated a technique for measuring stable iodine concentrations by absorption-edge transmission measurements using a Ce 139 radiation source. The lanthanum daughter emits characteristic x-rays whose energies just bracket the absorption edge of iodine at 33.2 keV. Relative transmission of these x-rays is sensitive to iodine concentration in the sample, but is relatively insensitive to other elements. By applying energy-selective beam filtration, it is possible to determine the relative transmission of these closely spaced x-ray energies with NaI(Tl) detectors. Optimizations of sample thickness, detector thickness, and Ce-139 source activity are discussed. Using sample volumes of about 10 ml, one can determine iodine concentration to an uncertainty (standard deviation) of +/- 5 microgram/ml with a 5-mCi source in a measurement time of 400 sec. Potential clinical applications of the in vitro technique are discussed, along with comparative aspects of the Ce-139 technique and other absorption and fluorescence techniques for measuring stable iodine. PMID:536797

  10. Absorption-edge transmission technique using Ce- 139 for measurement of stable iodine concentration.

    PubMed

    Sorenson, J A

    1979-12-01

    We have investigated a technique for measuring stable iodine concentrations by absorption-edge transmission measurements using a Ce 139 radiation source. The lanthanum daughter emits characteristic x-rays whose energies just bracket the absorption edge of iodine at 33.2 keV. Relative transmission of these x-rays is sensitive to iodine concentration in the sample, but is relatively insensitive to other elements. By applying energy-selective beam filtration, it is possible to determine the relative transmission of these closely spaced x-ray energies with NaI(Tl) detectors. Optimizations of sample thickness, detector thickness, and Ce-139 source activity are discussed. Using sample volumes of about 10 ml, one can determine iodine concentration to an uncertainty (standard deviation) of +/- 5 microgram/ml with a 5-mCi source in a measurement time of 400 sec. Potential clinical applications of the in vitro technique are discussed, along with comparative aspects of the Ce-139 technique and other absorption and fluorescence techniques for measuring stable iodine.

  11. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Garcia, Javier; Wilms, Joern; Baganoff, Frederick K.

    2016-04-01

    In high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. We focus in particular on the Fe L-edge at 0.7 keV, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of imaging resolution. We discuss the various astrophysical cases in which scattering effects need to be taken into account.

  12. The irradiation of ammonia ice studied by near edge x-ray absorption spectroscopy

    SciTech Connect

    Parent, Ph.; Bournel, F.; Lasne, J.; Laffon, C.; Carniato, S.; Lacombe, S.; Strazzulla, G.; Gardonio, S.; Lizzit, S.; Kappler, J.-P.; Joly, L.

    2009-10-21

    A vapor-deposited NH{sub 3} ice film irradiated at 20 K with 150 eV photons has been studied with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K-edge. Irradiation leads to the formation of high amounts (12%) of molecular nitrogen N{sub 2}, whose concentration as a function of the absorbed energy has been quantified to 0.13 molecule/eV. The stability of N{sub 2} in solid NH{sub 3} has been also studied, showing that N{sub 2} continuously desorbs between 20 and 95 K from the irradiated ammonia ice film. Weak concentrations (<1%) of other photoproducts are also detected. Our NEXAFS simulations show that these features own to NH{sub 2}, N{sub 2}H{sub 2}, and N{sub 3}{sup -}.

  13. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  14. Silicon 1s near edge X-ray absorption fine structure spectroscopy of functionalized silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Ritchie, A.; Cao, W.; Dasog, M.; Purkait, T. K.; Senger, C.; Hu, Y. F.; Xiao, Q. F.; Veinot, J. G. C.; Urquhart, S. G.

    2016-10-01

    Silicon 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of silicon nanocrystals have been examined as a function of nanocrystal size (3-100 nm), varying surface functionalization (hydrogen or 1-pentyl termination), or embedded in oxide. The NEXAFS spectra are characterized as a function of nanocrystal size and surface functionalization. Clear spectroscopic evidence for long range order is observed silicon nanocrystals that are 5-8 nm in diameter or larger. Energy shifts in the silicon 1s NEXAFS spectra of covalently functionalized silicon nanocrystals with changing size are attributed to surface chemical shifts and not to quantum confinement effects.

  15. Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

    SciTech Connect

    Levy, A.; Dorchies, F.; Fourment, C.; Harmand, M.; Hulin, S.; Santos, J. J.; Descamps, D.; Petit, S.; Bouillaud, R.

    2010-06-15

    An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.

  16. Local disorder investigation in NiS(2-x)Se(x) using Raman and Ni K-edge x-ray absorption spectroscopies.

    PubMed

    Marini, C; Joseph, B; Caramazza, S; Capitani, F; Bendele, M; Mitrano, M; Chermisi, D; Mangialardo, S; Pal, B; Goyal, M; Iadecola, A; Mathon, O; Pascarelli, S; Sarma, D D; Postorino, P

    2014-11-12

    We report on Raman and Ni K-edge x-ray absorption investigations of a NiS(2-x)Se(x) (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS(2-x)Se(x) Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS(2-x)Se(x) pyrites. PMID:25320052

  17. Local disorder investigation in NiS(2-x)Se(x) using Raman and Ni K-edge x-ray absorption spectroscopies.

    PubMed

    Marini, C; Joseph, B; Caramazza, S; Capitani, F; Bendele, M; Mitrano, M; Chermisi, D; Mangialardo, S; Pal, B; Goyal, M; Iadecola, A; Mathon, O; Pascarelli, S; Sarma, D D; Postorino, P

    2014-11-12

    We report on Raman and Ni K-edge x-ray absorption investigations of a NiS(2-x)Se(x) (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS(2-x)Se(x) Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS(2-x)Se(x) pyrites.

  18. Characterization of protein immobilization at silver surfaces bynear edge x-ray absorption fine structure spectroscopy

    SciTech Connect

    Liu, X.; Jang, C.-H.; Zheng, F.; J rgensen, A.; Denlinger, J.D.; Dickson, K.A.; Raines, R.T.; Abbott, N.L.; Himpsel, F.J.

    2006-06-21

    Ribonuclease A (RNase A) is immobilized on silver surfacesin oriented and random form via self-assembled monolayers (SAMs) ofalkanethiols. The immobilization process is characterized step-by-stepusing chemically selective near-edge X-ray absorption fine structurespectroscopy (NEXAFS) at the C, N, and S K-edges. Causes of imperfectimmobilization are pinpointed, such as oxidation and partial desorptionof the alkanethiol SAMs and incomplete coverage. The orientation of theprotein layer manifests itself in an 18 percent polarization dependenceof the NEXAFS signal from the N 1s to pi* transition of the peptide bond,which is not seen for a random orientation. The S 1s to C-S sigma*transition exhibits an even larger polarization dependence of 41 percent,which is reduced to 5 percent for a random orientation. A quantitativemodel is developed that explains the sign and magnitude of thepolarization dependence at both edges. The results demonstrate thatNEXAFS is able to characterize surface reactions during theimmobilization of proteins and to provide insight into their orientationson surfaces.

  19. Resolution limitation in superconducting transition edge photon detectors due to downconversion phonon noise

    SciTech Connect

    Kozorezov, A. G.; Wigmore, J. K.; Martin, D.; Verhoeve, P.; Peacock, A.

    2006-11-27

    The authors have identified an important source of line broadening in transition edge sensors used as optical photon detectors. It arises through the loss of high energy phonons into the substrate during the initial photon energy downconversion stage. Because of the relatively small number of phonons involved, the loss rate is subjected to large fluctuations due to the statistical nature of the energy exchange processes. They show that the resulting noise may represent a significant limitation to the resolving power of current detectors.

  20. K-edge x-ray-absorption spectroscopy of laser-generated Kr{sup +} and Kr{sup 2+}

    SciTech Connect

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Kraessig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-10-15

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr{sup +} and Kr{sup 2+} produced by laser ionization of Kr. Prominent 1s{yields}4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr{sup +} 1s{yields}4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr{sup +} 4p{sub 3/2} and 4p{sub 1/2} quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling.

  1. K-edge x-ray absorption spectroscopy of laser-generated Kr{sup +} and Kr{sup 2+}.

    SciTech Connect

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Krassig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-10-01

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr{sup +} and Kr{sup 2+} produced by laser ionization of Kr. Prominent 1s {yields} 4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr{sup +} 1s {yields} 4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr{sup +} 4p{sub 3/2} and 4p{sub 1/2} quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling.

  2. Room-Temperature Absorption Edge of InGaN/GaN Quantum Wells Characterized by Photoacoustic Measurement

    NASA Astrophysics Data System (ADS)

    Takeda, Yosuke; Takagi, Daigo; Sano, Tatsuji; Tabata, Shin; Kobayashi, Naoki; Shen, Qing; Toyoda, Taro; Yamamoto, Jun; Ban, Yuzaburo; Matsumoto, Kou

    2008-12-01

    The absorption edges of five periods of InxGa1-xN (3 nm)/GaN (15 nm) (x=0.07-0.23) quantum wells (QWs) are characterized by photoacoustic (PA) measurement at room temperature. The absorption edge is determined by differentiating the PA signal curve to obtain the inflection point on the assumption that the signal curve consists of Urbach tail in the low-energy region and Elliott's equation in the high-energy region. The constant absorption edge of GaN is observed at 3.4 eV and an absorption edge redshift with increasing In composition is observed for InGaN QWs. As a result, the Stokes shift increases with In composition and the highest shift of 435 meV is observed at x=0.23. From the energy calculation of optical transition in the InGaN/GaN QWs under an internal polarization field, the transition between the ground states confined in the well with a triangular potential causes a low-energy shift in the photoluminescence peak from the bulk band-gap energy, and the excited bound states whose wave functions are confined by the step-linear potential extending over the GaN barrier lead to the high-energy shift in the absorption edge.

  3. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Kositanont, Charnwit; Schwarzer, Klaus; Prietzel, Jörg; Hirunyatrakul, Phoosak; Kittikoon, Itthipon

    2012-01-01

    This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD) and Germanium detector (GeD), were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN) at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP) and particulate matter of less than 10 millionths of a meter (PM10) collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA) and principal component analysis (PCA) has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD) from typical marine sediments (TMS). PMID:23193498

  4. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  5. Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy.

    PubMed

    Pattanasiriwisawa, Wanwisa; Siritapetawee, Jaruwan; Patarapaiboolchai, Orasa; Klysubun, Wantana

    2008-09-01

    X-ray absorption near-edge spectroscopy (XANES) has been applied to natural rubber in order to study the local environment of sulfur atoms in sulfur crosslinking structures introduced in the vulcanization process. Different types of chemical accelerators in conventional, semi-efficient and efficient vulcanization systems were investigated. The experimental results show the good sensitivity and reproducibility of XANES to characterize the local geometry and electronic environment of the sulfur K-shell under various conditions of vulcanization and non-vulcanization of natural rubber. Several applications of XANES in this study demonstrate an alternative way of identifying sulfur crosslinks in treated natural rubber based on differences in their spectra and oxidation states. PMID:18728323

  6. X-ray absorption near-edge structure (XANES) studies on Sb-doped Bi2UO6 at Bi and U edges

    NASA Astrophysics Data System (ADS)

    Yadav, A. K.; Misra, N. L.; Dhara, Sangita; Phatak, Rohan; Poswal, A. K.; Jha, S. N.; Bhattacharyya, D.

    2013-02-01

    X-ray absorption spectroscopy (XAS) measurements at Bi and U LIII edges with synchrotron radiation have been carried out on Bi2-xSbxUO6 samples for x= 0.04, 0.08, 0.12, 0.16 and 0.40 which are possible by-products of Bi based coolant and Uranium based fuels in advanced high temperature nuclear reactors. The chemical shift of the Bi absorption edges in the samples have been determined accurately from the XANES region of the X-ray absorption spectra and have been explained in terms of the difference in electronegativity values of Sb and Bi. The chemical shift of absorption edges show systematic variation only upto x = 0.08 (i.e., 4% Sb doping), which shows that the Sb enter in the matrix properly up to 4% doping concentration. The local structure of U is found to remain unchanged on Sb doping indicating clearly that Sb dopants preferably replace Bi atoms.

  7. Role of exciton-phonon interactions and disordering processes in the formation of the absorption edge in Cu6P(S1- x Sex)5Br crystals

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kranjcec, M.; Suslikov, L. M.; Kovacs, D. Sh.; Pan'ko, V. V.

    2002-04-01

    The absorption edge in Cu6P(S1- x Sex)5Br crystals has been studied for strong absorption in the temperature range of 77 330 K. The parameters of the Urbach absorption edge and exciton-phonon interactions in Cu6P(S1- x Sex)5Br crystals are determined and their effect on the composition disorder is studied.

  8. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    SciTech Connect

    Gann, Eliot; McNeill, Christopher R.; Szumilo, Monika; Sirringhaus, Henning; Sommer, Michael; Maniam, Subashani; Langford, Steven J.; Thomsen, Lars

    2014-04-28

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  9. Sulfur speciation in heavy petroleums: Information from X-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Waldo, Geoffrey S.; Carlson, Robert M. K.; Moldowan, J. Michael; Peters, Kenneth E.; Penner-hahn, James E.

    1991-03-01

    The chemical speciation of sulfur in heavy petroleums, petroleum source rock extracts, and source rock pyrolysis products was studied using X-ray absorption near-edge structure (XANES) spectroscopy. The good energy resolution (ca. 0.5 eV) at the sulfur K edge and the strong dependence of XANES on the sulfur environment combine to give excellent sensitivity to changes in the electronic and structural environment of the sulfur. This has permitted identification and approximate quantitation of different classes of sulfur-containing compounds (e.g., sulfur, sulfides (including disulfides and polysulfides as a group), thiophenes, sulfoxides, sulfones, sulfinic acids, sulfonic acids, and sulfate) in a series of petroleums and petroleum source rocks. Our results indicate that the sulfur speciation of geological samples can be correlated with differences in source depositional environment, thermal maturity, and aromaticity. We report organosulfur compositions for the asphaltene, maltene, and liquid Chromatographie fractions of two sulfur-rich oils. In addition, we find that the organosulfur species in some, but not all, oils are subject to oxidation upon storage and thus may also be susceptible to oxidation in shallow reservoirs exposed to oxic waters. This work illustrates the utility of XANES as a direct spectroscopic probe for the quantitative determination of sulfur species in geological samples.

  10. Degenerate four-wave mixing in semiconductor-doped glasses below the absorption edge

    NASA Astrophysics Data System (ADS)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1999-01-01

    We report measurements of degenerate four-wave-mixing reflectivity at a frequency below the band gap of semiconductor-doped glasses in the intensity range 0.5-10 GW/cm2. Up to intensities ~2.5 GW/cm2, the conjugate reflectivity varies like the fourth power of intensity signifying a fifth-order nonlinearity due to band filling by two-photon absorption. Surprisingly, at a higher intensity range the conjugate signal showed a cubic dependence on the pump intensity, which is typical of the χ(3) process. We show that this cubic dependence does not necessarily indicate a third-order process as usually assumed. Instead, it is shown to arise due to a reduction of the effective intensity by nonlinear absorption of the interacting beams.

  11. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  12. Double photoexcitation involving 2p and 4f electrons in L3 -edge x-ray absorption spectra of protactinium

    NASA Astrophysics Data System (ADS)

    Hennig, Christoph; Le Naour, Claire; Auwer, Christophe Den

    2008-06-01

    The L3 -edge x-ray absorption spectrum of Pa(V) fluoride in aqueous solution show clear evidence for the double photoexcitation involving 2p and 4f electrons. A comparison with the [2p4f] double-electron excitations observed in the L3 -edge x-ray absorption spectra of other actinides (thorium, uranium, neptunium, plutonium, and americium) indicates a monotonic increase in the excitation energy. The sharp edgelike structure of the multielectron excitation reveals the origin of a shake-up channel.

  13. Isoabsorption and spectrometric studies of optical absorption edge in Cu6AsS5I superionic crystal

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kayla, M. I.; Kranjčec, M.; Kokhan, O. P.; Minets, Yu. V.

    2011-12-01

    Cu6AsS5I single crystals were grown using chemical vapour transport method. Two low-temperature phase transitions (PT) are observed from isoabsorption studies: a first-order PT at ТІ=153±1 K and a second-order PT in the temperature interval TІI=260-280 K. At low temperatures and high absorption levels an excitonic absorption band was revealed in the range of direct optical transitions. At Т>ТІ, the absorption edge has an exponential shape and a characteristic Urbach bundle is observed. The influence of the cationic P→As substitution on the parameters of the Urbach absorption edge, parameters of exciton-phonon interaction, and phase transitions temperatures are studied.

  14. Absolute determination of charge-coupled device quantum detection efficiency using Si K-edge x-ray absorption fine structure

    SciTech Connect

    Dunn, J; Steel, A B

    2012-05-06

    We report a method to determine the quantum detection efficiency and the absorbing layers on a front-illuminated charge-coupled device (CCD). The CCD under study, as part of a crystal spectrometer, measures intense continuum x-ray emission from a picosecond laser-produced plasma and spectrally resolves the Si K-edge x-ray absorption fine structure features due to the electrode gate structure of the device. The CCD response across the Si K-edge shows a large discontinuity as well as a number of oscillations that are identified individually and uniquely from Si, SiO{sub 2}, and Si{sub 3}N{sub 4} layers. From the spectral analysis of the structure and K-edge discontinuity, the active layer thickness and the different absorbing layers thickness can be determined precisely. A precise CCD detection model from 0.2-10 keV can be deduced from this highly sensitive technique.

  15. Simulating Cl K-edge X-ray absorption spectroscopy in MCl62- (M= U, Np, Pu) complexes and UOCl5- using time-dependent density functional theory

    SciTech Connect

    Govind, Niranjan; De Jong, Wibe A.

    2014-02-21

    We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

  16. Theoretical characterization of X-ray absorption, emission, and photoelectron spectra of nitrogen doped along graphene edges.

    PubMed

    Wang, Xianlong; Hou, Zhufeng; Ikeda, Takashi; Oshima, Masaharu; Kakimoto, Masa-aki; Terakura, Kiyoyuki

    2013-01-24

    K-edge X-ray absorption (XAS), emission (XES), and photoelectron (XPS) spectra of nitrogen doped along graphene edges are systematically investigated by using first-principles methods. In this study we considered pyridinium-like, pyridine-like, cyanide-like, and amine-like nitrogens at armchair and zigzag edges and pyrrole-like nitrogen at armchair edge as well as graphite-like nitrogen at graphene interior site. Our results indicate that nitrogen configuration and its location (armchair or zigzag edge) in nitrogen-doped graphene can be identified via the spectral analysis. Furthermore, some controversial spectral features observed in experiment for N-doped graphene-like materials are unambiguously assigned. The present analysis gives an explanation to the reason why the peak assignment is usually made differently between XPS and XAS.

  17. Interaction of Nanostructured Calcium Silicate Hydrate with Ibuprofen Drug Molecules: X-ray Absorption Near Edge Structure (XANES) Study at the Ca, Si and O K-edge

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.

    2013-04-01

    Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.

  18. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  19. Radiation effects in water ice: A near-edge x-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Laffon, C.; Lacombe, S.; Bournel, F.; Parent, Ph.

    2006-11-01

    The changes in the structure and composition of vapor-deposited ice films irradiated at 20K with soft x-ray photons (3-900eV) and their subsequent evolution with temperatures between 20 and 150K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO2 radicals, as well as the oxygen O2 and hydrogen peroxide H2O2 molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (Icryst) ice films. The evolution of their concentrations with the temperature indicates that HO2, O2, and H2O2 result from a simple step reaction fuelled by OH, where O2 is a product of HO2 and HO2 a product of H2O2. The local order of ice is also modified, whatever the initial structure is. The crystalline ice Icryst becomes amorphous. The high-density amorphous phase (Iah ) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (Ial). The phase Iah is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase—we call Iavh—is obtained after warming at 50K the irradiated p-ASW ice. This phase is stable up to 90K and partially transforms into crystalline ice at 150K.

  20. Probing Warm Dense Matter electronic structure using X-ray absorption Near Edge Spectroscopy (XANES)

    NASA Astrophysics Data System (ADS)

    Benuzzi Mounaix, Alessandra

    2011-06-01

    The behavior and physical properties of warm dense matter, fundamental for various branches of physics including planetology and Inertial Confinement Fusion, are non trivial to simulate either theoretically, numerically or experimentally. Despite important progress obtained in the last decade on macroscopic characterization (e.g. equations of state), microscopic studies are today necessary to investigate finely the WDM structure changes, the phase transitions and to test physical hypothesis and approximations commonly used in calculations. In this work, highly compressed aluminum has been investigated with the aim of bringing information on the evolution of its electronic structure by using K-edge shift and XANES. The experiment was performed at LULI laboratory where we used one long pulse (500 ps, IL ~ 8 1013 W/cm2) to create a uniform shock and a second ps beam (IL ~ 1017 W/cm2) to generate an ultra-short broadband X-ray source near the Al K-edge. The spectra were registered by using two conical KAP Bragg crystals. The main target was designed to probe the Aluminum in reshocked conditions allowing us to probe and to test theories in an extreme regime up to now unexplored (ρ ~ 3 ρ0 and T ~ 8 eV). The hydrodynamical Al conditions were measured by using VISARs interferometers and self-emission diagnostics. By increasing the delay between the two beams, we have been able to observe the modification of absorption spectra for unloading Al conditions (ρ >= 0.5 g/cc), and to put in evidence the relocalization of the 3p valence electrons occurring in the metal-non metal transition. All data have been compared to ab initio and dense plasma calculations.

  1. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  2. Geometric Structure Determination of N694C Lipoxygenase: a Comparative Near-Edge X-Ray Absorption Spectroscopy And Extended X-Ray Absorption Fine Structure Study

    SciTech Connect

    Sarangi, R.; Hocking, R.K.; Neidig, M.L.; Benfatto, M.; Holman, T.R.; Solomon, E.I.; Hodgson, K.O.; Hedman, B.

    2009-05-27

    The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparigine to cystiene, the short Fe-O interaction with asparigine is replaced by a weak Fe-(H{sub 2}O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that, relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species.

  3. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  4. Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an improved first-principles method

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Zhao, Shijun; Kang, Wei; Zhang, Ping; He, Xian-Tu

    2016-03-01

    A precise calculation that translates shifts of x-ray K absorption edges to variations of thermodynamic properties allows quantitative characterization of interior thermodynamic properties of warm dense plasmas by x-ray absorption techniques, which provides essential information for inertial confinement fusion and other astrophysical applications. We show that this interpretation can be achieved through an improved first-principles method. Our calculation shows that the shift of K edges exhibits selective sensitivity to thermal parameters and thus would be a suitable temperature index to warm dense plasmas. We also show with a simple model that the shift of K edges can be used to detect inhomogeneity inside warm dense plasmas when combined with other experimental tools.

  5. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments. PMID:24811926

  6. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  7. Iron near absorption edge X-ray spectroscopy at aqueous-membrane interfaces

    SciTech Connect

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-01-01

    Employing synchrotron X-ray scattering, we systematically determine the absorption near-edge spectra (XANES) of iron in its ferrous (Fe2+) and ferric (Fe3+) states both as ions in aqueous solutions and as they bind to form a single layer to anionic templates that consist of carboxyl or phosphate groups at aqueous/vapor interfaces. While the XANES of bulk iron ions show that the electronic state and coordination of iron complexes in the bulk are isotropic, the interfacial bound ions show a signature of a broken inversion-symmetry environment. The XANES of Fe2+ and Fe3+ in the bulk possess distinct profiles however, upon binding they practically exhibit similar patterns. This indicates that both bound ions settle into a stable electronic and coordination configuration with an effective fractional valence (for example, Fe[2+nu]+, 0 < nu < 1) at charged organic templates. Such two dimensional properties may render interfacial iron, abundant in living organisms, a more efficient and versatile catalytic behavior.

  8. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  9. Temperature and high-pressure dependent x-ray absorption of SmNiO3 at the Ni K and Sm L3 edges

    NASA Astrophysics Data System (ADS)

    Massa, Néstor E.; Ramos, Aline Y.; Tolentino, Helio C. N.; Sousa-Neto, Narcizo M.; Fonseca, Jairo, Jr.; Alonso, José Antonio

    2015-12-01

    We report on x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements of SmNiO3 from 20 K to 600 K and up to 38 GPa at the Ni K and Sm L3 edges. A multiple component pre-Ni K edge tail is understood, originating from 1 s transitions to 3d-4p states while a post-edge shoulder increases distinctively smoothly, at about the insulator to metal phase transition (TIM), due to the reduction of electron-phonon interactions as the Ni 3d and O 2p band overlap triggers the metallic phase. This effect is concomitant with pressure-induced Ni-O-Ni angle increments toward more symmetric Ni3+ octahedra of the rhombohedral R¯3c space group. Room temperature pressure-dependent Ni white line peak energies have an abrupt ˜3.10 ± 0.04 GPa valence discontinuity from non-equivalent Ni3+δ + Ni3-δ charge disproportionate net unresolved absorber turning at ˜TIM into Ni3+ of the orthorhombic Pbnm metal oxide phase. At 20 K the overall white line response, still distinctive at TIM ˜8.1 ± 0.6 GPa is much smoother due to localization. Octahedral bond contraction up to 38 GPa and at 300 K and 20 K show breaks in its monotonic increase at the different structural changes. The Sm L3 edge does not show distinctive behaviors either at 300 K or 20 K up to about 35 GPa but the perovskite Sm cage, coordinated to eight oxygen atoms, undergoes strong uneven bond contractions at intermediate pressures where we found the coexistence of octahedral and rhombohedral superexchange angle distortions. We found that the white line pressure-dependent anomaly may be used as an accurate alternative for delineating pressure-temperature phase diagrams.

  10. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    NASA Astrophysics Data System (ADS)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  11. First principles calculation of oxygen K edge absorption spectrum of acetic acid: Relationship between the spectrum and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Matsui, Yoshiki; Mizoguchi, Teruyasu

    2016-04-01

    First principles calculation of the oxygen K-edge absorption near-edge structure of liquid acetic acid was performed to investigate the relationship between the spectrum and the molecular dynamics in a liquid. The single and double bonded oxygens gave strong peaks at different energies. A liquid model constructed using a molecular dynamics simulation reproduced the experimental spectrum. We revealed that the effect of the dynamic behavior of molecules in a liquid clearly appears in the particular peak from a single-bond oxygen. The relationship between the bonding nature and the dynamic information of a molecule in a spectrum was determined and presented.

  12. Structural changes of nucleic acid base in aqueous solution as observed in X-ray absorption near edge structure (XANES)

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-01-01

    X-ray absorption near edge structure (XANES) spectra for adenine-containing nucleotides, adenosine 5‧-monophosphate (AMP) and adenosine 5‧-triphosphate (ATP) in aqueous solutions at the nitrogen K-edge region were measured. The two intense peaks in XANES spectra are assigned to transitions of 1s electrons to the π∗ orbitals of different types of N atoms with particular bonding characteristics. The difference between their spectra is ascribed to protonation of a particular N atom. Similarity observed in XANES spectra of guanosine 5‧-monophosphate (GMP) and ATP is also interpreted as similar bonding characters of the N atoms in the nucleobase moiety.

  13. Pristine and reacted surfaces of pyrrhotite and arsenopyrite as studied by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu.; Tomashevich, Ye.

    2005-05-01

    Fe L-, S L-, and O K-edge X-ray absorption spectra of natural monoclinic and hexagonal pyrrhotites, Fe1-xS, and arsenopyrite, FeAsS, have been measured and compared with the spectra of minerals oxidized in air and treated in aqueous acidic solutions, as well as with the previous XPS studies. The Fe L-edge X-ray absorption near-edge structure (XANES) of vacuum-cleaved pyrrhotites showed the presence of, aside from high-spin Fe2+, small quantity of Fe3+, which was higher for a monoclinic mineral. The spectra of the essentially metal-depleted surfaces produced by the non-oxidative and oxidative acidic leaching of pyrrhotites exhibit substantially enhanced contributions of Fe3+ and a form of high-spin Fe2+ with the energy of the 3d orbitals increased by 0.3 0.8 eV; low-spin Fe2+ was not confidently distinguished, owing probably to its rapid oxidation. The changes in the S L-edge spectra reflect the emergence of Fe3+ and reduced density of S s Fe 4s antibonding states. The Fe L-edge XANES of arsenopyrite shows almost unsplit eg band of singlet Fe2+ along with minor contributions attributable to high-spin Fe2+ and Fe3+. Iron retains the low-spin state in the sulphur-excessive layer formed by the oxidative leaching in 0.4 M ferric chloride and ferric sulphate acidic solutions. The S L-edge XANES of arsenopyrite leached in the ferric chloride, but not ferric sulphate, solution has considerably decreased pre-edge maxima, indicating the lesser admixture of S s states to Fe 3d orbitals in the reacted surface layer. The ferric nitrate treatment produces Fe3+ species and sulphur in oxidation state between +2 and +4.

  14. Comparison of x-ray absorption spectra between water and ice: new ice data with low pre-edge absorption cross-section.

    PubMed

    Sellberg, Jonas A; Kaya, Sarp; Segtnan, Vegard H; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G M; Nilsson, Anders

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  15. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    SciTech Connect

    Sellberg, Jonas A.; Nilsson, Anders; Kaya, Sarp; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  16. State of manganese in the photosynthetic apparatus. 2. X-ray absorption edge studies on manganese in photosynthetic membrane

    SciTech Connect

    Kirby, J. A.; Goodin, D. B.; Wydrzynski, T.; Robertson, A. S.; Klein, M. P.

    1981-09-01

    X-ray absorption spectra at the Manganese K-edge are presented for spinach chloroplasts, and chloroplasts which have been Tris treated and hence unable to evolve oxygen. A significant change in the electronic environment of manganese is observed and is attributed to the release of manganese from the thylakoid membranes with a concomitant change in oxidation state. A correlation of the K-edge energy, defined as the energy at the first inflection point, with coordination charge has been established for a number of manganese compounds of known structure and oxidation state. In this study, comparison of the manganese K-edge energies of the chloroplast samples with the reference compounds places the average oxidation state of the chloroplasts between 2+ and 3+. Using the edge spectra for Tris treated membranes which were osmotically shocked to remove the released manganese, difference edge spectra were synthesized to approximate the active pool of manganese. Coordination charge predictions for this fraction are consistent with an average resting oxidation state higher than 2+. The shape at the edge is also indicative of heterogeneity of the manganese site, of low symmetry, or both.

  17. Sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) of thiol and thioether compounds

    SciTech Connect

    Beyhan, Shirin; Urquhart, Stephen G.; Hu Yongfeng

    2011-06-28

    The speciation and quantification of sulfur species based on sulfur K-edge x-ray absorption spectroscopy is of wide interest, particularly for biological and petroleum science. These tasks require a firm understanding of the sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of relevant species. To this end, we have examined the gas phase sulfur 1s NEXAFS spectra of a group of simple thiol and thioether compounds. These high-resolution gas phase spectra are free of solid-state broadening, charging, and saturation effects common in the NEXAFS spectra of solids. These experimental data have been further analyzed with the aid of improved virtual orbital Hartree-Fock ab initio calculations. The experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve assignment of spectroscopic features relevant for the speciation and quantification of the sulfur compounds.

  18. Interaction between Pt nanoparticles and carbon nanotubes An X-ray absorption near edge structures (XANES) study

    NASA Astrophysics Data System (ADS)

    Zhou, Jigang; Zhou, Xingtai; Sun, Xuhui; Li, Ruying; Murphy, Michael; Ding, Zhifeng; Sun, Xueliang; Sham, Tsun-Kong

    2007-04-01

    The interaction between Pt and carbon in Pt nanoparticles (NPs)-carbon nanotubes (CNTs) composite has been investigated with Pt M 3-edge and C K-edge X-ray absorption near edge structures (XANES) recorded in surface-sensitive total electron yield (TEY) and bulk-sensitive fluorescence yield (FLY). XANES in TEY shows that Pt NPs on CNTs have a fcc structure and the white-line features of the XANES strongly support that the crystalline Pt NPs interact with CNTs through synergic bonding involving charge redistribution between C 2p-derived states and Pt 5d bands. Such interaction facilitates the immobilization of Pt NPs on CNT surface without generating oxygenated functional groups.

  19. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  20. Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures

    SciTech Connect

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-15

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  1. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  2. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  3. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids. PMID:27538989

  4. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  5. Radiative ablation with two ionizing fronts when opacity displays a sharp absorption edge

    NASA Astrophysics Data System (ADS)

    Poujade, Olivier; Bonnefille, Max; Vandenboomgaerde, Marc

    2015-11-01

    The interaction of a strong flux of photons with matter through an ionizing front (I-front) is an ubiquitous phenomenon in the context of astrophysics and inertial confinement fusion (ICF) where intense sources of radiation put matter into motion. When the opacity of the irradiated material varies continuously in the radiation spectral domain, only one single I-front is formed. In contrast, as numerical simulations tend to show, when the opacity of the irradiated material presents a sharp edge in the radiation spectral domain, a second I-front (an edge front) can form. A full description of the mechanism behind the formation of this edge front is presented in this article. It allows us to understand extra shocks (edge-shocks), displayed by ICF simulations, that might affect the robustness of the design of fusion capsules in actual experiments. Moreover, it may have consequences in various domains of astrophysics where ablative flows occur.

  6. Absorptive potentials due to ionization and thermal diffuse scattering by fast electrons in crystals

    SciTech Connect

    Allen, L.J. ); Rossouw, C.J. )

    1990-12-15

    An expression for the Fourier coefficients of the absorptive potential due to electron-impact ionization in crystals is derived and the cross section is given in terms of these Fourier components. Absorptive potentials due to {ital K}-shell ionization and thermal diffuse scattering (TDS) are calculated with use of a hydrogenic model and an Einstein model, respectively. Inelastic potentials require integration over all states of the scattered electron and, for {ital K}-shell ionization, integration over all states of the ejected electron. These potentials are thus dependent on incident-beam energy, in contrast with the elastic potential. The projected spatial distribution of these potentials are plotted and compared with the elastic potential for CdTe, GaAs, Si, and diamond. The delocalization of the ionization absorptive potential is similar to that expected from classical impact-parameter arguments. The form of the TDS potential is substantially different from that due to elastic scattering, being extremely peaked on atomic positions with no absorption in the channels between atomic planes.

  7. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water. PMID:27634266

  8. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Wernet, Philippe

    2016-09-01

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  9. Multiple-scattering calculations of the uranium {ital L}{sub 3}-edge x-ray-absorption near-edge structure

    SciTech Connect

    Hudson, E.A.; Rehr, J.J.; Bucher, J.J.

    1995-11-15

    A theoretical study of the uranium {ital L}{sub 3}-edge x-ray absorption near-edge structure (XANES) is presented for several uranium compounds, including oxides, intermetallics, uranyl fluoride, and {alpha}-uranium. Calculations were performed using FEFF6, an {ital ab} {ital initio} multiple-scattering (MS) code that includes the most important features of current theories. The results, which account for both the fine structure {chi} and the atomiclike background {mu}{sub 0} of the absorption coefficient {mu}, are compared to new and previously measured experimental spectra, reavealing very good agreement for most systems. For several compounds, a more detailed theoretical analysis determined the influence of cluster size and scattering order upon the calculated spectra. Results indicate that MS paths and scattering paths that include rather distant atoms make significant contributions for UO{sub 2}, whereas XANES for crystals with lower symmetry and density can be modeled using only shorter single-scattering paths. In most cases, assumption of a screened final state in the calculation gives better agreement with experiment than use of an unscreened final state. The successful modeling of spectra for a variety of different uranium compounds, with differing spectral features, indicates that the semirelativistic treatment of XANES used here is adequate even for heavy elements. The well-known resonance, observed experimentally for uranyl (UO{sub 2}{sup 2+}) compounds {approx}15 eV above the white line, is successfully modeled here for the first time, using multiple-scattering paths within the O-U-O axial bonds. Overlapping muffin-tin spheres were required in the calculation, probably as a result of the short uranyl axial bonds.

  10. Analysis and Verification of HET 1 m Mirror Deflections Due to Edge Sensor Loading

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The ninety-one 1 m mirror segments which comprise the McDonald Observatory Hobby Eberly Telescope (HET) primary mirror have been observed to drift out of alignment in an unpredictable manner in response to time variant temperature deviations. A Segment Alignment Maintenance System (SAMS) is being developed to detect and correct this segment-to-segment drift using sensors mounted at the edges of the mirror segments. However, the segments were not originally designed to carry the weight of edge sensors. Thus, analyses and tests were conducted as part of the SAMS design to estimate the magnitude and shape of the edge sensor induced deformations as well as the resultant optical performance. Interferometric testing of a 26 m radius of curvature HET mirror segment was performed at the Marshall Space Flight Center using several load conditions to verify the finite element analyses.

  11. Techniques for estimating the percutaneous absorption of chemicals due to occupational and environmental exposure

    SciTech Connect

    Leung, Hon-Wing; Paustenbach, D.J.

    1994-03-01

    This article reviews the scientific principles involved in determining the percutaneous absorption of chemicals. To assist industrial hygienists in assessing the risks of dermal uptake of chemicals in workplaces, lists of absorption rates and example calculations including the use of wipe sampling to estimate skin exposure are presented. Recent advances in the use of mathematical models to examine the various factors influencing the percutaneous absorption of chemicals from matrices are discussed. Results from various models suggest that the skin uptake of nonvolatile, highly lipophilic chemicals in soil will range from about 30 percent to 50 percent, while the uptake of volatile chemicals will usually be less than 5 percent. The available published information suggests the following rules of thumb: (1) the bioavailability of chemicals in media vary widely; consequently, it is important to account for matrix effects; (2) proper wipe sampling should be conducted to estimate the degree of skin contact with contaminated surfaces; (3) the hazards posed by dermal contact with certain chemicals in the workplace, particularly those with a high n-octanol:water partition coefficient, can produce an appreciable degree of the daily absorbed dose, and the dose from percutaneous absorption can often be as much as one-half that due to inhalation; and (4) the contribution to overall uptake from percutaneous absorption of chemical vapors can be significant if the atmospheric concentration of the chemicals is tenfold to one thousandfold higher than the threshold limit value, even when the worker wears protective clothing and adequate respiratory protection. 92 refs., 5 tabs.

  12. Lack of mirror symmetry between x-ray absorption and emission edges of simple metals

    NASA Astrophysics Data System (ADS)

    Bruhwiler, P. A.; Livins, Peteris; Schnatterly, S. E.

    1989-03-01

    We have calculated core emission and absorption spectra for a free-electron metal, using a determinantal method. The results indicate that the Mahan-Nozières-De Dominicis model is accurate near threshold to the extent testable with experimental data. Experimental data however, analyzed using the energy range justified above, indicate that the expected mirror symmetry rarely exists. Furthermore, Na core photoemission line shapes are incompatible with absorption and emission. We suggest a possible explanation for these discrepancies.

  13. Bonding modifications in carbon nitride films induced by thermal annealing: An x-ray absorption near edge study

    SciTech Connect

    Jimenez, I.; Tong, W.M.; Shuh, D.K.; Holloway, B.C.; Kelly, M.A.; Pianetta, P.; Terminello, L.J.; Himpsel, F.J.

    1999-05-01

    The thermal stability of nonstoichiometric carbon nitride films has been studied by x-ray absorption near edge spectroscopy. Amorphous carbon nitride thin films were annealed in vacuum up to 1150 {degree}C revealing the presence of nitrogen in different bonding configurations. Annealing to 450 {degree}C results in the loss of {approximately}50{percent} of the nitrogen. The remaining nitrogen is bonded to carbon within a graphitic framework and it evolves into a more stable configuration with increasing temperature without significant N loss up to 820 {degree}C. Beyond this temperature, nitrogen loss occurs without important structural changes. {copyright} {ital 1999 American Institute of Physics.}

  14. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu Yijin; Pianetta, Piero

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  15. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    NASA Astrophysics Data System (ADS)

    Nelson, George J.; Harris, William M.; Izzo, John R.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero

    2011-04-01

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  16. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure

    DOE PAGES

    Timoshenko, J.; Shivhare, A.; Scott, R. W.; Lu, D.; Frenkel, A. I.

    2016-06-30

    We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  17. Oxygen on Ni(111): A multiple-scattering analysis of the near-edge x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    Pedio, M.; Becker, L.; Hillert, B.; D'addato, S.; Haase, J.

    1990-04-01

    Oxygen chemisorption and oxide formation on a Ni(111) surface have been monitored by using the near-edge x-ray-absorption fine-structure technique. The adsorption site of oxygen in the p(2×2) and (√3 × √3 )R30° superstructures has been determined by a multiple-scattering analysis. In both structures the oxygen occupies a threefold-coordinated fcc site with a nearest-neighbor O-Ni bond length of 1.85+/-0.05 Å on a Ni(111) surface relaxed outwards by ~0.15 Å.

  18. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  19. Final State Projection Method in Charge-Transfer Multiplet Calculations: An analysis of Ti L-edge Absorption Spectra

    PubMed Central

    Kroll, Thomas; Solomon, Edward I.; de Groot, Frank M. F.

    2016-01-01

    A projection method to determine the final state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d0 system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a non-trivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  20. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  1. Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1991-01-01

    The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.

  2. Surface nanopattern formation due to current-induced homoepitaxial nanowire edge instability

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2016-09-01

    Physical nanopatterning based on a precise control of macroscopic forcing is an essential tool of nanoscale science and technology. Using an externally applied electric field as the macroscopic force, we report here a computational study on the formation of surface nanopatterns consisting of single-layer homoepitaxial islands as a result of a morphological instability that can occur under edge electromigration conditions on the straight edge of a single-layer nanowire grown epitaxially on a crystalline substrate. Direct dynamical simulations based on a model that has been validated experimentally for the Ag/Ag system show that the current-induced nanowire edge instability causes the breakup of the nanowire and leads to the formation of uniformly distributed islands, arranged in linear or V-shaped arrays, which are uniformly sized with nanoscale dimensions. The simulation results are supported by linear stability theory and demonstrate that the geometrical features of the island patterns and the island sizes can be controlled precisely by controlling the electric field direction with respect to the nanowire axis and the electric field strength. Our findings have important implications for developing physical nanopatterning approaches toward enabling future nanofabrication technologies.

  3. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    SciTech Connect

    Grush, M.M.; Chen, J.; George, S.J.

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compound spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.

  4. Log spiral of revolution highly oriented pyrolytic graphite monochromator for fluorescence x-ray absorption edge fine structure

    SciTech Connect

    Pease, D. M.; Daniel, M.; Budnick, J. I.; Rhodes, T.; Hammes, M.; Potrepka, D. M.; Sills, K.; Nelson, C.; Heald, S. M.; Brewe, D. I.

    2000-09-01

    We have constructed an x-ray monochromator based on a log spiral of revolution covered with highly oriented pyrolytic graphite. Such a monochromator is used for obtaining x-ray absorption edge fine structure by the fluorescence method, and is particularly useful for measuring the fine structure of dilute element A in a concentrated matrix of element B, where B is to the left of A in the Periodic Table. Using the log spiral monochromator, we measure good Cr x-ray fine structure in an alloy of 1% Cr in a V matrix, whereas the corresponding spectrum is severely distorted by the V background if nonmonochromatized fluorescence is used. We also obtain excellent rejection of Mn fluorescence relative to Cr fluorescence in a Cr{sub 80}Mn{sub 20} alloy, and can tune the monochromator such that the entire Mn step height is significantly smaller than the Cr x-ray absorption edge fine structure oscillations for this system. (c) 2000 American Institute of Physics.

  5. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  6. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  7. Shift of optical absorption edge in SnO2 films with high concentrations of nitrogen grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Lu, Yinmei; Meyer, Bruno K.; Hofmann, Detlev M.; Eickhoff, Martin

    2016-06-01

    The optical and electrical properties of n-type SnO2 films with high concentrations of nitrogen (SnO2:N) grown by chemical vapor deposition are studied. The carrier concentration increases from 4.1 × 1018 to 3.9 × 1019 cm-3 and the absorption edge shifts from 4.26 to 4.08 eV with increasing NH3 flow rate. Typical Urbach tails were observed from the absorption spectra and the Urbach energy increases from 0.321 to 0.526 eV with increasing NH3 flow rate. An "effective" absorption edge of about 4.61 eV was obtained for all investigated samples from fitting the extrapolations of the Urbach tails. Burstein-Moss effect, electron-impurity, and electron-electron interactions are shown to play a minor role for the shift of the absorption edges in SnO2:N thin films.

  8. Life on a Changing Edge: Arctic-Alpine Plants at the Edges of Permanent Snowfields that are Receding Due to Climate Change at Glacier National Park

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Martin, A. C.; Moritz, D. J.

    2013-12-01

    Glaciers and snowfields are intrinsic parts of many alpine landscapes but they are retreating rapidly at Glacier National Park in Montana, USA. Plants that inhabit the edges of glaciers and snowfields are vulnerable to habitat changes wrought by the recession of these frozen bodies. Snowfields provide plants with frost protection in the winter and water in the form of melting snow during the summer. However, changes in snowfield and glacial edges may leave plants exposed to frost in the winter and subjected to water stress in the summer, which would likely have an impact on important processes, including emergence from the soil, leaf expansion, root growth, flowering, seed germination, seedling establishment, photosynthesis, and transpiration. Because these processes influence the survival of plants, responses of snowfield plants to changing edges will likely result in changes in species abundance, distribution and diversity, which will in turn influence community composition. In summer 2012, we initiated a study of Glacier National Park's snowfield plants by establishing 2m2 plots at geospatially referenced 50m transects extending outwards from the toe and perpendicularly outward from the lateral edges of currently permanent snowfields at Siyeh Pass, Piegan Pass, and Preston Park, with an additional 100m transect extending from an impermanent snowfield to treeline at Mt. Clements near Logan Pass. We constructed species lists and determined percent cover for each species in each 2m2 plot, and used high resolution photographs of each plot as records and for fine scale determinations of species presence and location. In addition, we searched for rare arctic-alpine plants which, due to their rarity, may be especially vulnerable to changes in snowfields and glaciers. Two species of rare arctic-alpine plants, Tofieldia pusilla and Pinguicula vulgaris, were found near snowmelt-fed springs, rivulets, and tarns but were not found adjacent to the snowfields. Thus, they may

  9. Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.

    1991-01-01

    A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.

  10. Absorption-edge singularities for a nonequilibrium Fermi sea. III. Determinantal nonperturbative theory

    SciTech Connect

    Tanguy, C.; Combescot, M.

    1995-10-15

    The nonperturbative solution to the problem of threshold singularities for a ({mu}{sub 1},{mu}{sub 2}) nonequilibrium Fermi sea is obtained using the determinantal method of Ohtaka and Tanabe. The critical exponents of the absorption power-law behavior we find agree with those estimated from the perturbative treatment of the problem given in papers I and II. A family of possibly diverging singularities is found at energies {mu}{sub 2}+{ital n}({mu}{sub 1}{minus}{mu}{sub 2}), for {ital n}{ge}1.

  11. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    SciTech Connect

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P/sub 0/ less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k/sub 0/L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P/sub 0/ greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P/sub 0/ less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9).

  12. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    SciTech Connect

    Dorchies, F. Fedorov, N.; Lecherbourg, L.

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  13. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  14. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    SciTech Connect

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    2012-04-14

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  15. Anisotropy of chemical bonds in collagen molecules studied by X-ray absorption near-edge structure (XANES) spectroscopy.

    PubMed

    Lam, Raymond S K; Metzler, Rebecca A; Gilbert, Pupa U P A; Beniash, Elia

    2012-03-16

    Collagen type I fibrils are the major building blocks of connective tissues. Collagen fibrils are anisotropic supramolecular structures, and their orientation can be revealed by polarized light microscopy and vibrational microspectroscopy. We hypothesized that the anisotropy of chemical bonds in the collagen molecules, and hence their orientation, might also be detected by X-ray photoemission electron spectromicroscopy (X-PEEM) and X-ray absorption near-edge structure (XANES) spectroscopy, which use linearly polarized synchrotron light. To test this hypothesis, we analyzed sections of rat-tail tendon, composed of parallel arrays of collagen fibrils. The results clearly indicate that XANES-PEEM is sensitive to collagen fibril orientation and, more specifically, to the orientations of carbonyl and amide bonds in collagen molecules. These data suggest that XANES-PEEM is a promising technique for characterizing the chemical composition and structural organization at the nanoscale of collagen-based connective tissues, including tendons, cartilage, and bone.

  16. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    PubMed

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  17. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    SciTech Connect

    Andreeva, M. A.; Repchenko, Yu. L.; Smekhova, A. G.; Dumesnil, K.; Wilhelm, F.; Rogalev, A.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  18. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    NASA Astrophysics Data System (ADS)

    Andreeva, M. A.; Repchenko, Yu. L.; Smekhova, A. G.; Dumesnil, K.; Wilhelm, F.; Rogalev, A.

    2015-06-01

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L 3 absorption edge of yttrium in a single-crystal YFe2 film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe2(40 nm<110>)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  19. Peculiarities of the photoconductivity of GaSe single crystals in the fundamental absorption edge region

    SciTech Connect

    Katerinchuk, V.N.; Kovalyuk, Z.D.

    1984-05-01

    The photocurrent spectra of layered GaSe single crystals are investigated at room temperature in the fundamental absorption edge region. Their peculiarities associated with the thickness of the specimens are examined for two configurations. In the first, light is incident in the direction of the crystallographic C axis on the surface containing the current contacts, while in the second, the light falls on the opposite surface, with no contacts on. Large photoconductivity anisotropy is only observed for photocarriers excited for h..nu.. < E /SUB g/ . It is explained by the formation of excitons in this section of the spectrum. The thickness dependence of photocurrent maximum is determined in the second configuration.

  20. Electrospun nanofibers of Er{sup 3+}-doped TiO{sub 2} with photocatalytic activity beyond the absorption edge

    SciTech Connect

    Zheng, Yali; Wang, Wenzhong

    2014-02-15

    Er{sup 3+}-doped TiO{sub 2} nanofibers with different Er{sup 3+} contents were prepared via electrospinning and characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy and photocurrent measurement. Photocatalytic activities of the as-prepared samples were evaluated by the decolorization of methyl orange aqueous solution under simulated solar light irradiation. The results indicated that the photocatalytic activity of Er{sup 3+}-doped TiO{sub 2} nanofibers was much higher than that of the undoped one, and the optimal dosage of Er{sup 3+} at 1 mol% achieved the highest degradation rate. Moreover, the photocatalytic activity of Er{sup 3+}-doped TiO{sub 2} nanofibers under the irradiation of light with the wavelength beyond the absorption edge of TiO{sub 2} was explored by the decolorization of a dye, rhodamine B and the photodegradation of a typical colorless pollutant, phenol. The results further revealed the mechanism of the enhanced photocatalytic activity through Er{sup 3+} doping in TiO{sub 2} nanofibers. - Graphical abstract: Display Omitted - Highlights: ●Er{sup 3+}:TiO{sub 2} nanofibers with different Er{sup 3+} contents were prepared via electrospinning. ●The photocatalytic activity of Er{sup 3+}:TiO{sub 2} was much higher than that of undoped one. ●Er{sup 3+}:TiO{sub 2} could be activated by the light with wavelength beyond the absorption edge.

  1. Electron scattering due to threading edge dislocations in n-type wurtzite GaN

    NASA Astrophysics Data System (ADS)

    You, Jeong Ho; Lu, Jun-Qiang; Johnson, H. T.

    2006-02-01

    The effect of electrically active VGa-ON threading edge dislocations on drift and Hall mobilities in n-type epitaxial wurtzite (WZ) GaN is investigated theoretically. The charge distribution along the dislocation core is first obtained by means of a density-functional theory atomistic calculation; the two N atoms near the missing Ga atom at the dislocation core are found to be electron acceptors. An accurate analytical expression for dislocation electrostatic strength is then derived for the case of up to -2q charge per structural unit of the threading dislocation core. This strength factor is determined by minimizing the total increase of free energy per site of the partially charged dislocation line. Two different models of scattering potentials for charged dislocation lines are then used to determine the dislocation effect on in-plane electron mobility, and closed-form solutions for the dislocation contribution to drift and Hall mobilities are derived for the more accurate potential. By estimating the effects of other scattering mechanisms, the total mobility is then compared with available experimental data. It is found that for free-carrier concentrations higher than 1016 cm-3, reducing dislocation density below ndis=108 cm-2 has little beneficial effect on total mobility for typical WZ GaN samples.

  2. Optical absorption edge in α-Fe2O3: The exciton-magnon structure

    NASA Astrophysics Data System (ADS)

    Galuza, A. I.; Beznosov, A. B.; Eremenko, V. V.

    1998-10-01

    Transmission spectra of synthetic and natural hematite (α-Fe2O3) crystals are measured at temperatures 10, 25, and 300 K in the wavelength range 500-1100 nm, and the absorption spectra are computed. Pure exciton and exciton-magnon d-d transition bands are revealed, the corresponding wavelengths at 10 K being λ0=1020 nm and λ1=965 nm respectively. The half-widths and oscillator forces are g0=84 cm-1, f0=4×10-9, g1=60 cm-1, f1=1.4×10-7 for 10 K, g0=85 cm-1, f0=5×10-9, g1=110 cm-1, f1=2.1×10-7 for 25 K. The mechanisms of band formation for weakly allowed d-d transitions in hematite are analyzed.

  3. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium.

    PubMed

    Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna

    2015-09-01

    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.

  4. Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle

    SciTech Connect

    Klein,R.; Fischer, D.; Lenhart, J.

    2008-01-01

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double OC bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 {+-} 2, due primarily to chemical heterogeneity. Annealing above Tg allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  5. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  6. Electromagnetic power absorption and temperature changes due to brain machine interface operation.

    PubMed

    Ibrahim, Tamer S; Abraham, Doney; Rennaker, Robert L

    2007-05-01

    To fully understand neural function, chronic neural recordings must be made simultaneously from 10s or 100s of neurons. To accomplish this goal, several groups are developing brain machine interfaces. For these devices to be viable for chronic human use, it is likely that they will need to be operated and powered externally via a radiofrequency (RF) source. However, RF exposure can result in tissue heating and is regulated by the FDA/FCC. This paper provides an initial estimate of the amount of tissue heating and specific absorption rate (SAR) associated with the operation of a brain-machine interface (BMI). The operation of a brain machine interface was evaluated in an 18-tissue anatomically detailed human head mesh using simulations of electromagnetics and bio-heat phenomena. The simulations were conducted with a single chip, as well as with eight chips, placed on the surface of the human brain and each powered at four frequencies (13.6 MHz, 1.0 GHz, 2.4 GHz, and 5.8 GHz). The simulated chips consist of a wire antenna on a silicon chip covered by a Teflon dura patch. SAR values were calculated using the finite-difference time-domain method and used to predict peak temperature changes caused by electromagnetic absorption in the head using two-dimensional bio-heat equation. Results due to SAR alone show increased heating at higher frequencies, with a peak temperature change at 5.8 GHz of approximately 0.018 degrees C in the single-chip configuration and 0.06 degrees C in the eight-chip configuration with 10 mW of power absorption (in the human head) per chip. In addition, temperature elevations due to power dissipation in the chip(s) were studied. Results show that for the neural tissue, maximum temperature rises of 3.34 degrees C in the single-chip configuration and 7.72 degrees C in the eight-chip configuration were observed for 10 mW dissipation in each chip. Finally, the maximum power dissipation allowable in each chip before a 1.0 degrees C temperature

  7. Nonuniform radio-frequency plasma potential due to edge asymmetry in large-area radio-frequency reactors

    SciTech Connect

    Howling, A.A.; Sansonnens, L.; Ballutaud, J.; Hollenstein, Ch.; Schmitt, J.P.M.

    2004-11-15

    In small area capacitive reactors, the rf and dc components of the plasma potential can be assumed to be uniform over all the plasma bulk because of the low plasma resistivity. In large area reactors, however, the rf plasma potential can vary over a long range across the reactor due to rf current flow and the nonzero plasma impedance. A perturbation in rf plasma potential, due to electrode edge asymmetry or the boundary of a dielectric substrate, propagates along the resistive plasma between capacitive sheaths. This is analogous to propagation along a lossy conductor in a transmission line and the damping length of the perturbation can be determined by the telegraph equation. Some consequences are the following: (i) The spatial variation in sheath rf amplitudes causes nonuniform rf power dissipation near to the reactor sidewalls. (ii) The surface charge and potential of a dielectric substrate can be negative and not only positive as for a uniform rf plasma potential. The variation of sheath dc potential across a dielectric substrate causes nonuniform ion energy bombardment. (iii) The self-bias voltage depends on the plasma parameters and on the reactor and substrate dimensions - not only on the ratio of electrode areas. (iv) The nonuniform rf plasma potential in presence of the uniform dc plasma potential leads to nonambipolar dc currents circulating along conducting surfaces and returning via the plasma. Electron current peaks can arise locally at the edge of electrodes and dielectric substrates. Perturbations to the plasma potential and currents due to the edge asymmetry of the electrodes are demonstrated by means of an analytical model and numerical simulations.

  8. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    PubMed Central

    2014-01-01

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998

  9. SYNCHROTRON X-RAY ABSORPTION-EDGE COMPUTED MICROTOMOGRAPHY IMAGING OF THALLIUM COMPARTMENTALIZATION IN IBERIS INTERMEDIA

    EPA Science Inventory

    Thallium (TI) is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants. Thallium is efficiently hyperaccumulated in Iberis intermedia as TI(I). Distribution and compartmentalization of TI in I. intermedia is highes...

  10. Effect of the plasma shapes on intrinsic rotation due to collisionless ion orbit loss in the tokamak edge plasmas

    SciTech Connect

    Ou, Jing; Wu, Guojiang; Li, Xinxia

    2014-07-15

    Distribution of the intrinsic rotation due to collisionless ion orbit loss near the tokamak edge region is studied by using an analytical model based on ion guiding center orbit approximation. A peak of the averaged ion orbit loss momentum fraction is found very near inside the separatrix region in a double null divertor configuration but is not found inside the last closed flux surface region in an outer limiter configuration. For the double null divertor configuration, the intrinsic rotation due to ion orbit loss depends on the plasma shape. With the increase in elongation and triangularity, the peak of the averaged ion orbit loss momentum fraction increases and it moves inward for the lower plasma current.

  11. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  12. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  13. Thermal Characteristics of an Aluminum Thin Film due to Temperature Disturbance at Film Edges

    NASA Astrophysics Data System (ADS)

    Ali, Haider; Mansoor, Saad Bin; Yilbas, Bekir Sami

    2015-01-01

    Phonon transport in an aluminum thin film is simulated due to a temperature disturbance across the film. The Boltzmann equation is introduced to formulate the radiative transport in the electron and lattice sub-systems. The transient and frequency dependence of the phonon transport is considered, and dispersion relations are accommodated to account for the group velocities in the analysis. Electron-phonon coupling is employed to couple the energy transport across the electron and lattice sub-systems. An equivalent equilibrium temperature is presented to assess the characteristics of the phonon intensity in the film. Temperature predictions are validated with data presented in a previous study. It is found that the equivalent equilibrium temperature differs significantly from that obtained from the two-equation model. The film thickness influences the transport characteristics of the film, in which case the time to reach an almost quasi-steady temperature is shorter for the thin film (, where is the film thickness) than that corresponding to the thick film (). In the diffusion limit (when the Knudsen number , where is the mean free path), it is demonstrated that the radiative transport equation reduces to the formulation of the two-equation model.

  14. X-ray absorption near edge studies of cytochrome P-450-CAM, chloroperoxidase, and myoglobin. Direct evidence for the electron releasing character of a cysteine thiolate proximal ligand.

    PubMed

    Liu, H I; Sono, M; Kadkhodayan, S; Hager, L P; Hedman, B; Hodgson, K O; Dawson, J H

    1995-05-01

    The low spin ferric and low and high spin ferrous forms of myoglobin, bacterial cytochrome P-450-CAM, and chloroperoxidase have been examined by Fe-K x-ray absorption edge spectroscopy. The positions of the absorption edge and the shapes of preedge and edge regions of imidazole adducts of ferric P-450-CAM and chloroperoxidase are essentially the same when compared with thiolate-ligated ferric myoglobin. As these three protein derivatives all have six-coordinate, low spin, ferric hemes with axial imidazole and thiolate ligands, the superposition of x-ray absorption edge spectral properties demonstrates that the protein environment does not effect the spectra, provided one compares heme iron centers with identical coordination numbers, spin and oxidation states, and ligand sets. In contrast, a 0.96 eV difference is observed in the energy of the absorption edge for imidazole- and thiolate-ligated ferric myoglobin with the latter shifted to lower energy as observed for ferrous myoglobin states. Similarly, in the low spin ferric-imidazole and ferrous-CO states, the energies of the absorption edge for chloroperoxidase and P-450-CAM are shifted in the direction of the ferrous state (to lower energy) when compared with those for analogous myoglobin derivatives. In the deoxyferrous high spin state, comparison of the edge spectra of chloroperoxidase with analogous data for cytochrome P-450-CAM suggests that the electron density at the iron is similar for these two protein states. The shifts observed in the energies of the x-ray absorption edge for the thiolate-ligated states of these proteins relative to derivatives lacking a thiolate ligand provide a direct measure of the electron releasing character of a thiolate axial ligand. These results therefore support the suggested role of the cysteinate proximal ligand of P-450 as a strong internal electron donor to promote O-O bond cleavage in the putative ferric-peroxide intermediate to generate the proposed ferryl-oxo "active

  15. Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms

    NASA Astrophysics Data System (ADS)

    Oger, Phil M.; Daniel, I.; Simionovici, A.; Picard, A.

    2008-04-01

    X-ray spectroscopies are very powerful tools to determine the chemistry of complex dilute solutes in abiotic and biotic systems. We have assayed their suitability to monitor the chemistry of complex solutions in a live biotic system. The impact of the probe on cells was quantified for 4 different cellular organisms differing in their resistance level to environmental stresses. We show that none of the organisms tested can survive the radiation doses needed for the acquisition of meaningful spectroscopic data. Therefore, on one hand, X-ray spectroscopy cannot be applied to the monitoring of single cells, and cellular damages have to be taken into account in the interpretation of the evolution of such systems. On the other hand, due to the limited extension of X-ray induced cellular damages in the culture volume, it is possible to probe a population of live cells provided that the culture to beam probe ratio is large enough to minimize the impact of mortality on the evolution of the biological system. Our results suggest that it could be possible to probe the volume in the close vicinity of a cell without affecting its activity. Using this setup we could monitor the reduction of selenite by the X-ray sensitive bacterium, Agrobacterium tumefaciens strain C58, for 24 h. This method has a great potential to monitor the respiration of various metals, such as iron, manganese and arsenic, in situ under relevant environmental conditions by live microorganisms.

  16. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction.

  17. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction. PMID:25003716

  18. Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy

    SciTech Connect

    Seuthe, T.; Eberstein, M.; Hoefner, M.; Eichler, H. J.; Grehn, M.; Reinhardt, F.; Tsai, W. J.; Bonse, J.

    2012-05-28

    The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium K-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm{sup 2}) leads to a characteristic shift of {approx}1.0 eV in the K-edge revealing a reduced ({approx}3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions.

  19. X-ray absorption and emission spectroscopy of Cr(III) (hydr)oxides: analysis of the K-pre-edge region.

    PubMed

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-11-01

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

  20. In situ micro X-ray absorption near edge structure study of microbiologically reduced selenite (SeO 32-)

    NASA Astrophysics Data System (ADS)

    Oger, Phil M.; Daniel, I.; Cournoyer, B.; Simionovici, A.

    2004-10-01

    The possibility exists that life originated from high-pressure, high-temperature environments fueled by the reduction of metal ions. These environments or their modern equivalent cannot be studied by standard microbiological techniques, but, metal reduction and oxidation kinetics may be accessible to X-ray analyses. We have evaluated the compatibility, the sensitivity and the efficiency of μX-ray absorption near edge structure (μXANES) and μX-ray fluorescence (μXRF) to study the kinetics of selenite reduction by prokaryotes under controlled pressure and temperature using a dedicated diamond anvil cell. These tests were performed in quartz capillaries, but the experimental set up was designed so as to accommodate the diamond anvil cell. Using μXRF coupled with μXANES, we show that we can detect and quantify Se species in solution from as low as 2 ppm. Lower quantification levels could be readily obtained by increasing counting time or incident flux and changing detectors. The chemical composition of mixtures of different selenium species has been directly determined by a combination of individual μXANES spectra made from standard solutions. The sensitivity of this method is sufficiently high to allow the study of the speciation of selenium in solution in situ and in vivo in the diamond anvil cell under controlled pressure and temperature.

  1. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  2. [Chlorine speciation and concentration in cultivated soil in the northeastern China studied by X-ray absorption near edge structure].

    PubMed

    Li, Jing; Lang, Chun-Yan; Ma, Ling-Ling; Xu, Dian-Dou; Zheng, Lei; Lu, Yu-Nanz; Cui Li-Rui; Zhang, Xiao-Meng

    2014-10-01

    A procedure has been proposed to determine chlorine speciation and concentration in soil with X-ray absorption near edge structure (XANES), and this method was applied to study the cultivated soil (bog, dark brown and black cultivated soil) in the Northeastern China. Qualitative analysis was carried out by least-squares fitting of sample spectra with standard spectra of three model compounds (NaCl, 3-chloropropionic acid, chlorophenol red). Linear correlation between the absolute fluorescence intensity of a series of NaCl standards and the Cl concentration was used as quantification standard for measuring the total Cl concentration in samples. The detection limits,relative standard deviation (RSD), recoveries were 2 mg · kg(-1), 0%-5% and 77%-133%, respectively. The average concentration of total Cl was 19 mg · kg(-1). The average relative content was as high as 61% of organochlorine with the concentration of 1-2 times as high as the concentration of inorganic chloride. The distribution trend of the total Cl, inorganic chloride and organic chlorine in different types of soil was: bog arable soil > dark brown soil > black soil. In conclusion, XANES is a reliable method to nondestructively characterize the speciation and concentration of chlorine in soil, which would provide some basic data for the future study of the chlorine's biogeochemical transformations.

  3. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  4. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems.

  5. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  6. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  7. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander

    2009-11-01

    Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.

  8. Sulfur 1s near edge x-ray absorption fine structure spectroscopy of thiophenic and aromatic thioether compounds

    NASA Astrophysics Data System (ADS)

    Behyan, Shirin; Hu, Yongfeng; Urquhart, Stephen G.

    2013-06-01

    Thiophenic compounds are major constituents of fossil fuels and pose problems for fuel refinement. The quantification and speciation of these compounds is of great interest in different areas such as biology, fossil fuels studies, geology, and archaeology. Sulfur 1s Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy has emerged as a qualitative and quantitative method for sulfur speciation. A firm understanding of the sulfur 1s NEXAFS spectra of organosulfur species is required for these analytical studies. To support this development, the sulfur 1s NEXAFS spectra of simple thiols and thioethers were previously examined, and are now extended to studies of thiophenic and aromatic thioether compounds, in the gas and condensed phases. High-resolution spectra have been further analyzed with the aid of Improved Virtual Orbital (IVO) and Δ(self-consistent field) ab initio calculations. Experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve the assignment of spectroscopic features important for the speciation and quantification of sulfur compounds. Systematic differences between gas and condensed phases are also explored; these differences suggest a significant role for conformational effects in the NEXAFS spectra of condensed species.

  9. Mn k-edge x-ray absorption spectroscopy (XAS) studies of La{sub 1-x}Sr{sub x}MnO{sub 3}.

    SciTech Connect

    Mini, S. M.; Mitchell, J.; Hinks, D. G.; Alatas, A.; Rosenmann, D.; Kimball, C. W.; Montano, P. A.

    1998-03-06

    Systematic Mn K-edge x-ray absorption spectroscopy (XAS) measurements on samples of La{sub 1{minus}x}Sr{sub x}MnO{sub 3}, which are precursors to colossal magnetoresistive (CMR) materials, are reported. Detailed results on the edge or chemical shift as a function of Sr concentration (hole doping) and sample preparation (air vs oxygen annealed), are discussed. For comparison, a systematic XANES study of the Mn K-edge energy shift, denoting valence change in Mn, has been made in standard manganese oxide systems. Contrary to expectations, the variation in near-edge energies for Mn in La{sub 0.725}Sr{sub 0.275}MnO{sub 3} were small when compared to the difference between that for manganese oxide standards of nominal valence of +3 and +4 (Mn{sub 2}O{sub 3} and MnO{sub 2}).

  10. Spatial Damping of Propagating Kink Waves Due to Resonant Absorption: Effect of Background Flow

    NASA Astrophysics Data System (ADS)

    Soler, R.; Terradas, J.; Goossens, M.

    2011-06-01

    Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvénic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.

  11. Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S₂C₂(CF₃)₂]₂(n) series (n = -2, -1, 0): direct probe of nickel fractional oxidation state changes.

    PubMed

    Gu, Weiwei; Wang, Hongxin; Wang, Kun

    2014-05-01

    A series of nickel dithiolene complexes Ni[S2C2(CF3)2]2(n) (n = -2, -1, 0) has been investigated using Ni L- and K-edge X-ray absorption spectroscopy (XAS). The L3 centroid shifts about 0.3 eV for a change of one unit in the formal oxidation state (or 0.3 eV per oxi), corresponding to ~33% of the shift for Ni oxides or fluorides (about 0.9 eV per oxi). The K-edge XAS edge position shifts about 0.7 eV per oxi, corresponding to ~38% of that for Ni oxides (1.85 eV per oxi). In addition, Ni L sum rule analysis found the Ni(3d) ionicity in the frontier orbitals being 50.5%, 44.0% and 38.5% respectively (for n = -2, -1, 0), in comparison with their formal oxidation states (of Ni(II), Ni(III), and Ni(IV)). For the first time, direct and quantitative measurement of the Ni fractional oxidation state changes becomes possible for Ni dithiolene complexes, illustrating the power of L-edge XAS and L sum rule analysis in such a study. The Ni L-edge and K-edge XAS can be used in a complementary manner to better assess the oxidation states for Ni.

  12. Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: Near edge x-ray absorption fine structure study

    SciTech Connect

    Roy, S. S.; Papakonstantinou, P.; Okpalugo, T. I. T.; Murphy, H.

    2006-09-01

    Near edge x-ray absorption fine structure (NEXAFS) spectroscopy has been employed to obtain the temperature dependent evolution of the electronic structure of acid treated carbon nanotubes, which were further modified by dielectric barrier discharge plasma processing in an ammonia atmosphere. The NEXAFS studies were performed from room temperature up to 900 deg. C. The presence of oxygen and nitrogen containing functional groups was observed in C K edge, N K edge, and O K edge NEXAFS spectra of the multiwalled carbon nanotubes. The N K edge spectra revealed three types of {pi}* features, the source of which was decisively identified by their temperature dependent evolution. It was established that these features are attributed to pyridinelike, NO, and graphitelike structures, respectively. The O K edge indicated that both carbonyl (C=O), {pi}*(CO), and ether C-O-C, {sigma}*(CO), functionalities were present. Upon heating in a vacuum to 900 deg. C the {pi}*(CO) resonances disappeared while the {sigma}*(CO) resonances were still present confirming their higher thermal stability. Heating did not produce a significant change in the {pi}* feature of the C K edge spectrum indicating that the tabular structure of the nanotubes is essentially preserved following the thermal decomposition of the functional groups on the nanotube surface.

  13. On the importance of nuclear quantum motions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy of molecules

    SciTech Connect

    Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.; Prendergast, David

    2009-02-26

    We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. S-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of NEXAFS to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra.

  14. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    ERIC Educational Resources Information Center

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  15. Removal of OH Absorption Bands Due to Pyrohydrolysis Reactions in Fluoride-Containing Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keiji

    1997-05-01

    The purpose of this study is to decrease and to remove OH ions and H2O in borosilicate glasses. Fluoride-containing borosilicate glasses followed by dry-air-bubbling showed the significant decrease of OH absorption bands around 3500 cm-1. The decrease of OH absorption bands was elucidated by the use of pyrohydrolysis reactions in these glasses where fluoride ions react with OH ions or H2O during melting. The rates of the decrease of OH absorption bands substantially depend on high valence cations of fluorides. Particularly, the decrease rates of OH absorption coefficients were in the order of ZrF4-containing glass>AlF3-containing glass>ZnF2-containing glass. ZrF4-containing glass treated by dry-air-bubbling showed a good capability to remove OH absorption band. Fluoride-containing glasses showed the low flow point in comparison with fluoride-free glasses.

  16. Na-induced bonding and bond-length changes for CO on Pt(111): A near-edge x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Sette, F.; Stöhr, J.; Kollin, E. B.; Dwyer, D. J.; Gland, J. L.; Robbins, J. L.; Johnson, A. L.

    1985-03-01

    Near-edge x-ray absorption fine-structure studies above the C and O K edges for CO on Pt(111) reveal a 4-eV shift of the σ shape resonance when Na(0.2 monolayer) is coabsorbed. This allows determination of a Na-induced (0.12+/-0.03)-Å expansion of the C-O bond. Na does not affect the vertical molecular orientation on the surface. Reduction and broadening of the 1s-->2π* resonance and the CO bond lengthening in the presence of Na signifies substantially increased metal to CO backbonding.

  17. Proton-induced coloring of multicomponent glasses. [absorption saturation due to irradiation in space environment simulation

    NASA Technical Reports Server (NTRS)

    Bartusiak, M. F.; Becher, J.

    1979-01-01

    The paper describes the coloring induced by 85-MeV protons in three Schott glasses representative of glass types used as focusing elements in the International Ultraviolet Explorer Fine Error Sensor. It is shown that the absorption (i.e., coloring) induced in each glass by the radiation can be resolved into three optical absorption bands in the near UV-visible range. It is also discussed how that absorption grows with increasing dosages of protons, thus providing the means to predict degradation in any of the three glasses for a particular fluence of proton radiation.

  18. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  19. Detection of intrinsic stress in cubic boron nitride films by x-ray absorption near-edge structure: Stress relaxation mechanisms by simultaneous ion implantation during growth

    SciTech Connect

    Gago, R.; Abendroth, B.; Moeller, W.; Cerda, J. I.; Jimenez, I.

    2007-11-01

    The bonding structure of cubic boron nitride (cBN) films with different levels of intrinsic stress (1-10 GPa) has been studied from the K-shell x-ray absorption near-edge structure (XANES). The stress level was tuned by the damage induced from simultaneous medium-energy ion implantation (1-10 keV) during growth. The films show a dominant sp{sup 3} arrangement for damage values below a certain threshold, with an appreciable sp{sup 3} to sp{sup 2} transformation taking place above this limit. Interestingly, the degree of stress in sp{sup 3} structures is reflected in the B 1s spectral line shape, which progressively converges to that of stress-free cBN powder for increasing ion damage. These results indicate that stress buildup and release occur at a microscopic level. The changes in the spectral line shape are correlated with modifications in the electronic structure due to the presence of intrinsic stress and bond distortion within the cubic network, as predicted by density functional theory calculations. Our findings reveal the potential of XANES spectroscopy to detect stress in disordered BN systems.

  20. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    NASA Astrophysics Data System (ADS)

    Seidler, G. T.; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ˜5 keV to ˜10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 106-107 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  1. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle.

    PubMed

    Klein, Robert J; Fischer, Daniel A; Lenhart, Joseph L

    2008-08-01

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  2. Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy.

    PubMed

    Chiang, Kai-Ying; Chen, Tsan-Yao; Lee, Chih-Hao; Lin, Tsang-Lang; Wang, Ming-Kuang; Jang, Ling-Yun; Lee, Jyh-Fu

    2013-03-01

    This study investigates biogeochemical reductive release of arsenate from beudantite into solution in a crater area in northern Taiwan, using a combination of X-ray absorption near-edge structure (XANES) and atomic absorption spectrometry. Total arsenic (As) concentrations in the soil were more than 200 mg/kg. Over four months of laboratory experiments, less than 0.8% As was released into solution after reduction experiments. The 71% to 83% As was chemically reduced into arsenite (As(III)) and partially weathering into the soluble phase. The kinetic dissolution and re-precipitation of As, Fe, Pb and sulfate in this area of paddy soils merits further study.

  3. Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy.

    PubMed

    Chiang, Kai-Ying; Chen, Tsan-Yao; Lee, Chih-Hao; Lin, Tsang-Lang; Wang, Ming-Kuang; Jang, Ling-Yun; Lee, Jyh-Fu

    2013-03-01

    This study investigates biogeochemical reductive release of arsenate from beudantite into solution in a crater area in northern Taiwan, using a combination of X-ray absorption near-edge structure (XANES) and atomic absorption spectrometry. Total arsenic (As) concentrations in the soil were more than 200 mg/kg. Over four months of laboratory experiments, less than 0.8% As was released into solution after reduction experiments. The 71% to 83% As was chemically reduced into arsenite (As(III)) and partially weathering into the soluble phase. The kinetic dissolution and re-precipitation of As, Fe, Pb and sulfate in this area of paddy soils merits further study. PMID:23923437

  4. Theoretical X-ray production cross sections at incident photon energies across Li (i=1-3) absorption edges of Br

    NASA Astrophysics Data System (ADS)

    Puri, Sanjiv

    2015-08-01

    The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  5. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

    PubMed Central

    Hitchock, Adam P; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris P; Guttmann, Peter

    2012-01-01

    Summary We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV. PMID:23016137

  6. Electronic structure of octane on Cu(1 1 1) and Ni(1 1 1) studied by near edge X-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Kiguchi, Manabu; Entani, Shiro; Ikeda, Susumu; Yoshikawa, Genki; Nakai, Ikuyo; Kondoh, Hiroshi; Ohta, Toshiaki; Saiki, Koichiro

    2007-09-01

    The electronic structure of an octane film grown on Cu(1 1 1) and Ni(1 1 1) was studied using C K-edge near edge X-ray absorption fine structure (NEXAFS). A pre-peak was observed on the bulk edge onset for the 1 ML thick octane films on the metal substrates. The pre-peak originated from metal induced gap states (MIGS) in the band gap of octane. The intensity of the pre-peak for octane/Ni(1 1 1) was the same as that of octane/Cu(1 1 1), suggesting that there was little difference in the density of unoccupied MIGS between the octane film on Ni(1 1 1) and Cu(1 1 1). We discuss the metal dependence of the density of unoccupied MIGS on the band structure of the metals.

  7. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, N.; Schoenlein, R. W.; Govind, Niranjan; Khalil, Munira

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+, [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.

  8. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  9. High-resolution X-ray absorption near edge structure studies of monophasic Tl 2Ba 2Ca 2Cu 3O 10-δ (Tl-2223) superconductor

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chung, S. C.; Liu, R. S.

    1996-08-01

    High-resolution O K-edge and Cu L 23-edge X-ray-absorption near-edge-structure (XANES) spectra of a monophasic high-T c Tl 2Ba 2Ca 2Cu 3O 10-δ (Tl-2223) superconductor in powder form were measured using the total-electron yield (TEY) and total-X-ray-fluorescence yield (TFY) techniques. Near the O 1s edge, three distinct pre-edge peaks with maxima at 528.3, 529.6, and 530.8 eV are revealed in the TFY spectrum. On the contrary, these pre-edge peaks have almost diminished in the TEY spectrum. The observed differences between the TFY and TEY spectra can be explained by the presence of an oxygen depletion layer. We ascribe these pre-edge peaks to the core-level excitations of O 1s electrons to O 2p holes located in the CuO 2 planes, in the BaO planes, and in the TlO planes, respectively. This assignment is supported by the local-density approximation (LDA) band-structure calculations. Moreover, based on the Cu L 23-edge TFY spectrum, the high-energy structures at ˜ 932.8 and 953.0 eV are attributed to the transitions from the Cu(2p {3}/{2}, {1}/{2})3d 9L ground states to the Cu(2p {3}/{2}, {1}/{2}) -13d 10L excited states, where L denotes the O 2p ligand hole.

  10. Limitations and design considerations for donor–acceptor systems in luminescent solar concentrators: the effect of coupling-induced red-edge absorption

    NASA Astrophysics Data System (ADS)

    MacQueen, Rowan W.; Tayebjee, Murad J. Y.; Webb, James E. A.; Falber, Alexander; Thordarson, Pall; Schmidt, Timothy W.

    2016-06-01

    Luminescent solar concentrators (LSCs) use luminescence and waveguiding to concentrate photons within thin dielectric slabs for use in photovoltaic, lighting, and photobioreactor applications. Donor–acceptor systems of organic chromophores are widely used in LSCs to broaden the sunlight absorption range and attempt to reduce loss-inducing reabsorption by the emitting chromophore. We use raytrace simulations across a large parameter space to model the performance of LSCs containing two novel donor–acceptor trimers based on the perylene moiety. We find that under certain conditions, trimers outperform single-dye LSCs as expected. However, at higher concentrations, a slight increase in red-edge absorption by the trimers increases reabsorption and has a deleterious effect on LSC performance. This underscores the large effect that even small changes in the red edge can have, and may discourage the use of donor–acceptor schemes with high interchromophore coupling that promotes red-edge absorption. Finally, we show that for a LSC-PV pair, selecting a PV cell that is well-matched with the LSC emission spectrum has a large effect on the flux gain of the system, and that the systems studied here are well-matched to emerging PV technologies.

  11. Limitations and design considerations for donor-acceptor systems in luminescent solar concentrators: the effect of coupling-induced red-edge absorption

    NASA Astrophysics Data System (ADS)

    MacQueen, Rowan W.; Tayebjee, Murad J. Y.; Webb, James E. A.; Falber, Alexander; Thordarson, Pall; Schmidt, Timothy W.

    2016-06-01

    Luminescent solar concentrators (LSCs) use luminescence and waveguiding to concentrate photons within thin dielectric slabs for use in photovoltaic, lighting, and photobioreactor applications. Donor-acceptor systems of organic chromophores are widely used in LSCs to broaden the sunlight absorption range and attempt to reduce loss-inducing reabsorption by the emitting chromophore. We use raytrace simulations across a large parameter space to model the performance of LSCs containing two novel donor-acceptor trimers based on the perylene moiety. We find that under certain conditions, trimers outperform single-dye LSCs as expected. However, at higher concentrations, a slight increase in red-edge absorption by the trimers increases reabsorption and has a deleterious effect on LSC performance. This underscores the large effect that even small changes in the red edge can have, and may discourage the use of donor-acceptor schemes with high interchromophore coupling that promotes red-edge absorption. Finally, we show that for a LSC-PV pair, selecting a PV cell that is well-matched with the LSC emission spectrum has a large effect on the flux gain of the system, and that the systems studied here are well-matched to emerging PV technologies.

  12. Absorption lines in the spectrum of Q0248 + 4302 due to a foreground tidal tail

    SciTech Connect

    Sargent, W.L.W.; Steidel, C.C. California Univ., Berkeley )

    1990-08-01

    The strong absorption lines in the spectrum of the quasar Q0248 + 4302 are discussed. The absorption has been shown to be produced in a sinuous tidal tail which emanates from the nearby galaxy pair G0248 + 4302A,B. There is a velocity difference of about 260 km/s between the systemic redshift of the interacting galaxies and the redshift of the tidal tail at a galactocentric distance of about 11/h kpc. The large velocity spread observed in the tail gas is probably responsible for the unusual strength of the interstellar lines. 18 refs.

  13. A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1988-01-01

    High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.

  14. Absorption fever characteristics due to percutaneous renal biopsy-related hematoma.

    PubMed

    Hu, Tingyang; Liu, Qingquan; Xu, Qin; Liu, Hui; Feng, Yan; Qiu, Wenhui; Huang, Fei; Lv, Yongman

    2016-09-01

    This study aims to describe the unique characteristics of absorption fever in patients with a hematoma after percutaneous renal biopsy (PRB) and distinguish it from secondary infection of hematoma.We retrospectively studied 2639 percutaneous renal biopsies of native kidneys. We compared the clinical characteristics between 2 groups: complication group (gross hematuria and/or perirenal hematoma) and no complication group. The axillary temperature of patients with a hematoma who presented with fever was measured at 06:00, 10:00, 14:00, and 18:00. The onset and duration of fever and the highest body temperature were recorded. Thereafter, we described the time distribution of absorption fever and obtained the curve of fever pattern.Of 2639 patients, PRB complications were observed in 154 (5.8%) patients. Perirenal hematoma was the most common complication, which occurred in 118 (4.5%) of biopsies, including 74 small hematoma cases (thickness ≤3 cm) and 44 large hematoma cases (thickness >3 cm). Major complications were observed in only 6 (0.2%) cases resulting from a large hematoma. Of 118 patients with a perirenal hematoma, absorption fever was observed in 48 cases. Furthermore, large hematomas had a 5.23-fold higher risk for absorption fever than the small ones.Blood pressure, renal insufficiency, and prothrombin time could be risk factors for complications. Fever is common in patients with hematoma because of renal biopsy and is usually noninfectious. Evaluation of patients with post-biopsy fever is necessary to identify any obvious infection sources. If no focus is identified, empiric antibiotic therapy should not be initiated nor should prophylactic antibiotics be extended for prolonged durations. Absorption fevers will resolve in time without specific therapeutic interventions.

  15. Absorption fever characteristics due to percutaneous renal biopsy-related hematoma.

    PubMed

    Hu, Tingyang; Liu, Qingquan; Xu, Qin; Liu, Hui; Feng, Yan; Qiu, Wenhui; Huang, Fei; Lv, Yongman

    2016-09-01

    This study aims to describe the unique characteristics of absorption fever in patients with a hematoma after percutaneous renal biopsy (PRB) and distinguish it from secondary infection of hematoma.We retrospectively studied 2639 percutaneous renal biopsies of native kidneys. We compared the clinical characteristics between 2 groups: complication group (gross hematuria and/or perirenal hematoma) and no complication group. The axillary temperature of patients with a hematoma who presented with fever was measured at 06:00, 10:00, 14:00, and 18:00. The onset and duration of fever and the highest body temperature were recorded. Thereafter, we described the time distribution of absorption fever and obtained the curve of fever pattern.Of 2639 patients, PRB complications were observed in 154 (5.8%) patients. Perirenal hematoma was the most common complication, which occurred in 118 (4.5%) of biopsies, including 74 small hematoma cases (thickness ≤3 cm) and 44 large hematoma cases (thickness >3 cm). Major complications were observed in only 6 (0.2%) cases resulting from a large hematoma. Of 118 patients with a perirenal hematoma, absorption fever was observed in 48 cases. Furthermore, large hematomas had a 5.23-fold higher risk for absorption fever than the small ones.Blood pressure, renal insufficiency, and prothrombin time could be risk factors for complications. Fever is common in patients with hematoma because of renal biopsy and is usually noninfectious. Evaluation of patients with post-biopsy fever is necessary to identify any obvious infection sources. If no focus is identified, empiric antibiotic therapy should not be initiated nor should prophylactic antibiotics be extended for prolonged durations. Absorption fevers will resolve in time without specific therapeutic interventions. PMID:27631225

  16. A case of consciousness disturbance resulting from severe hypothyroidism due to chronic thyroiditis and excess iodine absorption.

    PubMed

    Hayashi, Masayuki; Onodera, Kazunari; Suzuki, Kengo; Kataoka, Yuko; Tachikawa, Kazushige; Riku, Shigeo; Tanaka, Hiroshi

    2011-01-01

    An 82-year-old Japanese man had consciousness disturbance due to severe hypothyroidism triggered by percutaneous absorption of iodine from an iodine-containing ointment used in diabetic gangrene treatment. Laboratory data revealed extremely high urinary iodine concentrations, and chronic thyroiditis-induced hypothyroidism. Excess iodine intake can also cause hypothyroidism. It was unlikely that iodine intoxication or Hashimoto's encephalopathy had caused the consciousness disturbance. The patient regained consciousness after discontinuing the use of the ointment and commencing thyroid hormone therapy. We conclude that consciousness disturbance resulted from severe hypothyroidism caused by chronic thyroiditis and excess iodine absorption. PMID:22041370

  17. Phosphorus speciation in sequentially extracted agro-industrial by-products: evidence from X-ray absorption near edge structure spectroscopy.

    PubMed

    Kruse, Jens; Negassa, Wakene; Appathurai, Narayana; Zuin, Lucia; Leinweber, Peter

    2010-01-01

    The phosphorus (P) in agro-industrial by-products--a potential source of freshwater eutrophication but also a valuable fertilizer--needs to be speciated to evaluate its fate in the environment. We investigated to what extent X-ray absorption near edge structure (XANES) spectroscopy at the P K- and L2.3-edges reflected differences in sequentially extracted filter cakes from sugarcane (Saccharum officinarum L.) (FIC) and niger seed (Guizotia abyssinica Cass.; NIC) processing industry in Ethiopia. The P fractionation removed more labile (54%) and H2SO4-P (28%) from FIC than from NIC (18% labile, 12% H2SO4-P). For the FIC residues after each extraction step, linear combination (LC) fitting of P K-edge spectra provided evidence for the enrichment of Ca-P after the NaOH-extraction and its almost complete removal after the H2SO4-treatment. The LC-fitting was unsuccessful for the NIC samples, likely because of the predominance of organic P compounds. The different proportions of Ca-P compounds between FIC (large) and NIC (small) were more distinctive in L2-than in the K-edge XANES spectra. In conclusion, the added value of complementary P K- and L2.3-edge XANES was clearly demonstrated, and the P fractionation and speciation results together justify using FIC and NIC as soil amendments in the tropics.

  18. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  19. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  20. Comparison of the magnetic properties of GeMn thin films through Mn L-edge x-ray absorption

    SciTech Connect

    Ahlers, S.; Stone, P.R.; Sircar, N.; Arenholz, E.; Dubon, O. D.; Bougeard, D.

    2009-08-04

    X-ray absorption spectroscopy of epitaxial GeMn thin films reveals an experimentally indistinguishable electronic configuration of Mn atoms incorporated in Ge{sub 1?x}Mn{sub x} nanoclusters and in precipitates of the intermetallic compound Mn{sub 5}Ge{sub 3}, respectively. However, the average magnetic response of thin films containing Ge{sub 1?x}Mn{sub x} nanoclusters is lower than the response of films containing Mn{sub 5}Ge{sub 3} precipitates. This reduced magnetic response of Ge{sub 1?x}Mn{sub x} nanoclusters is explained in terms of a fraction of Mn atoms being magnetically inactive due to antiferromagnetic coupling or the presence of structural disorder. A determination of the role of magnetically inactive Mn atoms in the self-assembly of the thermodynamically metastable Ge{sub 1?x}Mn{sub x} nanoclusters seems to be an essential ingredient for an enhanced control of this promising high Curie temperature magnetic semiconductor.

  1. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  2. Electronic structure of individual hybrid colloid particles studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the X-ray microscope.

    PubMed

    Henzler, Katja; Guttmann, Peter; Lu, Yan; Polzer, Frank; Schneider, Gerd; Ballauff, Matthias

    2013-02-13

    The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials. PMID:23360082

  3. Experimental and Theoretical Comparison of the O K-Edge Non-Resonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, T.; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-09-14

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g. O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation effects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO41- and provide methodology for obtaining trustworthy and quantitative data on non-conducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by non-resonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO41-, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Time dependent density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t2 molecular orbitals that result from Re 5d and O 2p covalent mixing in Td symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time-dependent density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO4 may serve as a well-defined O K-edge energy and intensity standard for future O K edge XAS studies.

  4. Experimental and Theoretical Comparison of the O K-Edge Nonresonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO[subscript 4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, Tolek; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-12-07

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO{sub 4}{sup 1-} and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO{sub 4}{sup 1-}, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t{sub 2} molecular orbitals that result from Re 5d and O 2p covalent mixing in T{sub d} symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO{sub 4} may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  5. Formation of an SEI on a LiMn(2)O(4) Cathode during Room Temperature Charge-Discharge Cycling Studied by Soft X-Ray Absorption Spectroscopy at the Fluorine K-edge

    SciTech Connect

    Chung, K.Y.; Yang, X.; Yoon, W.-S.; Kim, K.-B.; Cho, B.-W.

    2011-11-01

    The solid electrolyte interface (SEI) formation on the surface of LiMn{sub 2}O{sub 4} electrodes during room temperature charge-discharge cycling was studied using soft X-ray absorption spectroscopy at the Fluorine (F) K-edge. LiMn{sub 2}O{sub 4} electrodes without any binder were prepared by electrostatic spray deposition to eliminate the signal originating from the PVDF binder in the F K-edge X-ray absorption spectra. The F K-edge absorption spectra show that the SEI layer forms at a very early stage of cycling. SEI growth takes place during discharge. In addition, LiF formation is accelerated if the discharge step follows a charge step. The F K-edge absorption spectra suggest that the major component of the SEI is LiF.

  6. Changes of color and water-absorption of Hungarian porous limestone due to biomineralization

    NASA Astrophysics Data System (ADS)

    Juhász, P.; Kopecskó, K.

    2013-12-01

    Bacteria induced calcium carbonate precipitation nowadays is a widely examined process being a possible alternative for traditional stone conservation methods. While research has been mostly limited to laboratory measurements, application connected, further in situ experiments should be performed in order to evaluate the applicability of the method. In our experiment, several bio-based treating compounds were compared, which have already been analyzed in different laboratories. Method for the treatment was based on the treatment of a French research group, and the compounds were applied on Hungarian porous limestone slabs, in situ. For inoculation bacteria strains Bacillus cereus and Myxococcus xanthus were used, and non-inoculated compounds were also analyzed. After the treatment, specimens were analyzed by means of discoloration effect, water absorption and migration characteristics. Almost all the treating compounds gave favorable or acceptable results for the examined properties, comparing to the properties measured in the non-cured state. Measurements on the chromatic- and on the water absorption aspects gave significant results, while further measurements are running for the more exact evaluation of the migration characteristics, i.e. effective migration depth and wetted volume.

  7. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  8. Analysis of the near-edge X-ray-absorption fine-structure of anthracene: A combined theoretical and experimental study

    SciTech Connect

    Klues, Michael; Witte, Gregor; Hermann, Klaus

    2014-01-07

    The near-edge fine structure of the carbon K-edge absorption spectrum of anthracene was measured and theoretically analyzed by density functional theory calculations implemented in the StoBe code. It is demonstrated that the consideration of electronic relaxation of excited states around localized core holes yields a significant improvement of the calculated excitation energies and reproduces the experimentally observed fine structure well. The detailed analysis of excitation spectra calculated for each symmetry inequivalent excitation center allows in particular to examine the influence of chemical shifts and core hole effects on the excitation energies. Moreover, the visualization of final states explains the large variations in the oscillator strength of various transitions as well as the nature of Rydberg-states that exhibit a notable density of states below the ionization potentials.

  9. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching.

    PubMed

    Sivarajah, I; Goodman, D S; Wells, J E; Narducci, F A; Smith, W W

    2013-11-01

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field. PMID:24289382

  10. Near-edge x-ray absorption spectroscopy of RT/sub 2/Si/sub 2/ and RT/sub 2/Ge/sub 2/ compounds

    SciTech Connect

    Ansari, P.H.; Qi, B.; Liang, G.; Perez, I.; Lu, F.; Croft, M.

    1988-04-15

    X-ray absorption near-edge spectroscopy (XANES) measurements on 1:2:2 compounds of the form RT/sub 2/X/sub 2/ with R = Ce and Eu, T = a transition metal, and X = Si or Ge are presented. XANES measurements on each of the three sublattices are used to elucidate elements of the electronic structure of these compounds. In particular, the evidence for the strongly bonded T-X planes, the coupling of the Ce valence-state stability to the T-X planes, and the response of the X-p orbitals to varying transition-metal components are discussed.

  11. Micro-X-ray absorption near edge structure spectroscopy investigations of baroque tin-amalgam mirrors at BESSY using a capillary focusing system

    NASA Astrophysics Data System (ADS)

    Bartoll, J.; Röhrs, S.; Erko, A.; Firsov, A.; Bjeoumikhov, A.; Langhoff, N.

    2004-10-01

    An elliptically shaped glass monocapillary with a spatial resolution of 5 μm has been used for the fine focusing of the pre-focused X-ray beam produced by the graded-crystal monochromator beamline, KMC-2. The flux density gain of 50 was experimentally measured. The microprobe has been used in the energy range of 3.5-15 keV. Micro-X-ray fluorescence analysis (μXFA) and micro-X-ray absorption near edge structure spectroscopy (μXANES) measurements on test samples and investigations of baroque tin-amalgam mirrors were done.

  12. Development of achromatic full-field hard x-ray microscopy and its application to x-ray absorption near edge structure spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Matsuyama, S.; Emi, Y.; Kino, H.; Kohmura, Y.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2014-09-01

    An achromatic and high-resolution hard X-ray microscope was developed, in which advanced Kirkpatrick-Baez mirror optics with four total-reflection mirrors was employed as an objective. A fine test pattern with a 100 nm feature size could successfully be resolved. Full-field imaging, in combination with X-ray absorption near edge structure (XANES) spectroscopy, was used to characterize tungsten particles. XANES spectra were obtained over the entire observation area, showing good agreement with the XANES spectrum of pure tungsten.

  13. C 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) of substituted benzoic acids: a theoretical and experimental study

    SciTech Connect

    Baldea,I.; Schimmelpfennig, B.; Plaschke, M.; Rothe, J.; Schirmer, J.; Trofimov, A.; Fanghaenel, T.

    2007-01-01

    Ab initio calculations are performed to explain the discrete transitions in experimental C 1s-NEXAFS (near edge X-ray absorption fine structure) spectra of various benzoic acid derivates. Transition energies and oscillator strengths of the contributing C 1s-{pi}* excitations are computed using the ADC(2) (second-order algebraic-diagrammatic construction) method. This method is demonstrated to be well suited for the finite electronic systems represented by these simple organic acids. There is good agreement between experiment and theory reproducing all the relevant spectral features. Some transitions can only be assigned based on a theoretical foundation. Remaining discrepancies between experimental and computed spectra are discussed.

  14. Near-edge x-ray absorption fine structure examination of chemical bonding in sputter deposited boron and boron-nitride films

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Suthreland, D.G.J.

    1996-05-01

    Near-edge x-ray absorption fine structure (NEXAFS) is used to examine the chemical bonding in boron and boron-nitride films sputter deposited from a fully-dense, pure boron target. Reactive sputtering is used to prepare the boron-nitride and multilayered films. Although the process of sputter deposition often produces films that lack long range order, NEXAFS reveals the distinguishing features of sp{sup 2} and sp{sup 3} hybridization that are associated with different crystalline structures. The sensitivity of NEXAFS to local order further provides details in bonding modifications that exist in these films.

  15. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    SciTech Connect

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.; Majidi, Hasti; Bunker, Bruce A.; Baxter, Jason B.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example, this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.

  16. 3D knife-edge characterization of two-photon absorption volume in silicon for integrated circuit testing.

    PubMed

    Shao, K; Morisset, A; Pouget, V; Faraud, E; Larue, C; Lewis, D; McMorrow, D

    2011-11-01

    We have performed three-dimensional characterization of the TPA effective laser spot size in silicon using an integrated knife-edge sensor. The TPA-induced response of a CMOS integrated circuit is analyzed based on these results and compared to simulation; we have found that the charge injection capacity in IC's active layer could be influenced by irradiance energy and focus depth.

  17. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    PubMed

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  18. Band edge identification and carrier dynamics of CVD MoS2 monolayer measured by broadband Femtosecond Transient Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleithan, Shrouq; Livshits, Maksim; Rack, Jeffrey; Kordesch, Martin; Stinaff, Eric

    Two-dimensional atomic crystals of transition metal dichalcogenides are considered promising candidates for optoelectronics, valleytronics, and energy harvesting devices. These materials exhibit excitonic features with high binding energy as a result of confinement effect and reduced screening when the material is thinned to monolayer. However, previous theoretical and experimental studies report different binding energy results. This work further examines the electronic structure and binding energy in this material using broadband Femtosecond Transient Absorption Spectroscopy. Samples of MoS2 were grown by chemical vapor deposition, pumped with femtosecond laser, and probed by femtosecond white light resulting in broadband differential absorption spectra with three distinct features related to the three dominant absorption peaks in the material: A, B, and C. The dependence of the transient absorption spectra on excitation wavelength and layer number provides evidence of a band gap located at C (2.9 eV) and therefore an excitonic binding energy of 1 eV. Additional features in the spectra identified as a broadening of the absorption features caused by carrier scattering, surface defects and trap states.

  19. Features in optical absorption and photocurrent spectra of organic solar cells due to organic/organic interface

    NASA Astrophysics Data System (ADS)

    Ismail, Yasser A. M.; Soga, Tetsuo; Jimbo, Takashi

    2011-05-01

    We surprisingly found that, organic/organic interface had a direct and pronounced impact on optical absorption and photocurrent spectra of organic solar cell at a favorable wavelength region of the visible solar spectrum. The organic/organic interface was formed as a result of connection between coumarin 6 (C6): [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films and indium-tin oxide (ITO)/poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) electrode. Optical absorption measurement was carried out for ITO/PEDOT:PSS/C6:PCBM films, while external quantum efficiency measurement was carried out for ITO/PEDOT:PSS/C6:PCBM/Al solar cells, with varying C6:PCBM blend concentration. We found that, the C6:PCBM blend in the ITO/PEDOT:PSS/C6:PCBM films had an additional feature in the absorption spectra at the wavelength range of 520-800 nm, at which the C6 dye, PCBM, PEDOT:PSS, and ITO were transparent. An additional feature, also, appeared in photocurrent spectra of the C6:PCBM films in the ITO/PEDOT:PSS/C6:PCBM/Al solar cells at the same wavelength range. The new features in the optical absorption and photocurrent spectra of the investigated solar cells originated, in all probability, due to optically induced sup-band transitions in the C6:PCBM blend films at the interface with ITO/PEDOT:PSS electrode. Thus, the C6:PCBM blend films produced a charge carrier generation interface due to connection with ITO/PEDOT:PSS electrode. As a result of this charge carrier generation interface, the power conversion efficiency of the corresponding solar cell is improved. Taking into consideration these new findings, the high-band-gap organic materials will take more importance as sensitizers in organic optoelectronic applications.

  20. 2015 WFNDEC eddy current benchmark modeling of impedance variation in coil due to a crack located at the plate edge

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    The 2015 World Federation of NDE Centers (WFNDEC) eddy current benchmark problem involves the inspection of two EDM notches placed at the edge of a conducting plate with a pancake coil that runs parallel to the plate's edge line. Experimental data consists of impedance variation measured with a precision LCR bridge as a XY scanner moves the coil. The authors are pleased to present the numerical results obtained with commercial FEM packages (OPERA 3-D). Values of electrical resistance and inductive reactance variation between base material and the region around the notch are plotted as function of the coil displacement over the plate. The calculations were made for frequencies of 1 kHz and 10 kHz and agreement between experimental and numerical results are excellent for all inspection conditions. Explanations are made about how the impedance is calculated as well as pros and cons of the presented methods.

  1. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  2. Temperature waves arising due to absorption of electromagnetic radiation in laminated media

    NASA Astrophysics Data System (ADS)

    Khabibullin, I. L.; Konovalova, S. I.; Sadykova, L. A.

    2015-05-01

    Propagation of electromagnetic radiation in a moving three-layer medium is studied. It is shown that travelling temperature waves are formed due to interference of the incident wave with the wave reflected from the interface between the layers with radiation energy dissipation. The frequency, length, and velocity of these waves are found to depend on the electromagnetic radiation frequency, electrophysical and thermophysical parameters of the medium, and velocity of medium motion.

  3. X-ray structure analysis of a metalloprotein with enhanced active-site resolution using in situ x-ray absorption near edge structure spectroscopy.

    PubMed

    Arcovito, Alessandro; Benfatto, Maurizio; Cianci, Michele; Hasnain, S Samar; Nienhaus, Karin; Nienhaus, G Ulrich; Savino, Carmelinda; Strange, Richard W; Vallone, Beatrice; Della Longa, Stefano

    2007-04-10

    X-ray absorption spectroscopy is exquisitely sensitive to the coordination geometry of an absorbing atom and therefore allows bond distances and angles of the surrounding atomic cluster to be measured with atomic resolution. By contrast, the accuracy and resolution of metalloprotein active sites obtainable from x-ray crystallography are often insufficient to analyze the electronic properties of the metals that are essential for their biological functions. Here, we demonstrate that the combination of both methods on the same metalloprotein single crystal yields a structural model of the protein with exceptional active-site resolution. To this end, we have collected an x-ray diffraction data set to 1.4-A resolution and Fe K-edge polarized x-ray absorption near edge structure (XANES) spectra on the same cyanomet sperm whale myoglobin crystal. The XANES spectra were quantitatively analyzed by using a method based on the multiple scattering approach, which yielded Fe-heme structural parameters with +/-(0.02-0.07)-A accuracy on the atomic distances and +/-7 degrees on the Fe-CN angle. These XANES-derived parameters were subsequently used as restraints in the crystal structure refinement. By combining XANES and x-ray diffraction, we have obtained an cyanomet sperm whale myoglobin structural model with a higher precision of the bond lengths and angles at the active site than would have been possible with crystallographic analysis alone.

  4. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    SciTech Connect

    Puri, Sanjiv

    2015-08-28

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  5. Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations

    PubMed Central

    Krüger, Peter; Lagos, Maureen J; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris; Umek, Polona; Guttmann, Peter

    2012-01-01

    Summary Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS–TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/ΔE = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS–TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs. PMID:23213642

  6. Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations.

    PubMed

    Bittencourt, Carla; Krüger, Peter; Lagos, Maureen J; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris; Umek, Polona; Guttmann, Peter

    2012-01-01

    Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/ΔE = 10(4) and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs. PMID:23213642

  7. A study of the H2O absorption line shifts in the visible spectrum region due to air pressure

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Browell, E. V.; Bykov, A. D.; Kapitanov, V. A.; Korotchenko, E. A.

    1990-01-01

    Results of measured and calculated shift coefficients are presented for 170 absorption lines of H2O in five vibrational-rotational bands. The measurements have been carried out using highly sensitive laser spectrometers with a resolution of at least 0.01/cm; the calculations are based on the Anderson-Tsao-Curnutte-Frost method. Good agreement is obtained between the theoretical and experimental values of the shift coefficients of H2O lines due to N2, O2, and air pressure.

  8. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reductase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E.; Jr.; Adams, M.W.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2009-06-02

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results

  9. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinel oxides for lithium-ion batteries: the first-principles calculation study.

    PubMed

    Okumura, Toyoki; Yamaguchi, Yoichi; Kobayashi, Hironori

    2016-07-21

    Experimental Mn and Ni K-edge X-ray absorption near-edge structure (XANES) spectra were well reproduced for 5 V-class LixNi0.5Mn1.5O4 spinels as well as 4 V-class LixMn2O4 spinels using density functional theory. Local environmental changes around the Mn or Ni centres due to differences in the locations of Li ions and/or phase transitions in the spinel oxides were found to be very important contributors to the XANES shapes, in addition to the valence states of the metal ions. PMID:27333155

  10. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinel oxides for lithium-ion batteries: the first-principles calculation study.

    PubMed

    Okumura, Toyoki; Yamaguchi, Yoichi; Kobayashi, Hironori

    2016-07-21

    Experimental Mn and Ni K-edge X-ray absorption near-edge structure (XANES) spectra were well reproduced for 5 V-class LixNi0.5Mn1.5O4 spinels as well as 4 V-class LixMn2O4 spinels using density functional theory. Local environmental changes around the Mn or Ni centres due to differences in the locations of Li ions and/or phase transitions in the spinel oxides were found to be very important contributors to the XANES shapes, in addition to the valence states of the metal ions.

  11. The dust-scattering component of X-ray extinction: effects on continuum fitting and high-resolution absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; García, J.; Wilms, J.; Baganoff, F.

    2016-05-01

    Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust-scattering component is not included in the current absorption models: phabs, TBabs, and TBnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25 per cent. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high-resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total extinction template fits well to the high-resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of angular imaging resolution. This approach will be particularly relevant for dust in quasar absorption line systems and might constrain clump sizes in active galactic nuclei.

  12. Temperature dependence and annealing effects of absorption edges for selenium quantum dots formed by ion implantation in silica glass

    SciTech Connect

    Ueda, A.; Wu, M.; Mu, R.

    1998-12-31

    The authors have fabricated Se nanoparticles in silica substrates by ion implantation followed by thermal annealing up to 1000 C, and studied the Se nanoparticle formation by optical absorption spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction, and transmission electron microscopy. The sample with the highest dose (1 {times} 10{sup 17} ions/cm{sup 2}) showed the nanoparticle formation during the ion implantation, while the lower dose samples (1 and 3 {times} 10{sup 16} ions/cm{sup 2}) required thermal treatment to obtain nano-sized particles. The Se nanoparticles in silica were found to be amorphous. After thermal annealing, the particle doses approached the value of bulk after thermal annealing. The temperature dependent absorption spectra were also measured for this system in a temperature range from 15 to 300 K.

  13. X-ray absorption near edge structure and extended X-ray absorption fine structure analysis of standards and biological samples containing mixed oxidation states of chromium(III) and chromium(VI).

    PubMed

    Parsons, J G; Dokken, K; Peralta-Videa, J R; Romero-Gonzalez, J; Gardea-Torresdey, J L

    2007-03-01

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately +/-10% of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 A for the Cr(VI) and Cr(III) in the sample, respectively. PMID:17389076

  14. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    SciTech Connect

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.; Romero-Gonzalez, J.; Gardea-Torresdey, J.L.

    2009-06-02

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10% of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.

  15. Variation of Magnetic Fluctuation due to Gas Puffing in Edge Region of Reversed-Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2016-09-01

    We measured the variation of magnetic and electrostatic fluctuations observed during the gas puffing in the edge region of the toroidal pinch experiment-reversed experiment (TPE-RX) reversed-field pinch plasma. In the short period in which the electron density increased slowly just after the gas puffing, the confinement of fast electrons in the core region was maintained by the decrease in the fast radial magnetic fluctuation with the deepening of the reversal of the toroidal field. During the following period in which the electron density increased rapidly, the radial gradient of electron density decreased, and the loss of fast electrons from the core region increased owing to the increase in the toroidal and radial magnetic fluctuations in the high-frequency band, although the poloidal magnetic fluctuation decreased. Therefore, the confinement of fast electrons would be maintained by keeping the radial gradient of plasma thermal pressure with a moderate neutral particle supply of small quantity in a short time.

  16. Scanning transmission X-ray microscopy and X-ray absorption near-edge structure studies of N-doped carbon nanotubes sealed with N2 gas

    NASA Astrophysics Data System (ADS)

    Xie, Tian; Zhao, Yu; Zhong, Jun; Hu, Zheng; Sun, Xuhui

    2012-06-01

    N-doped carbon nanotubes (NCNTs) were synthesized and their electronic structures have been explored by X-ray absorption near-edge structure (XANES) spectroscopy. With a surface sensitive mode, XANES confirms the N-doping in NCNTs. However, with a more bulk sensitive detection mode of XANES, large amount of gaseous N2 have been found to be sealed in NCNTs, even in a high vacuum environment. The encapsulation of the ferrocene residues in carbon nanotubes had been revealed by scanning transmission X-ray microscopy (STXM), which may help for the N2 sealing. The results suggest that the easily sealed gas should be taken into consideration for CNT-based applications.

  17. The Be K-edge in beryllium oxide and chalcogenides: soft x-ray absorption spectra from first-principles theory and experiment.

    PubMed

    Olovsson, W; Weinhardt, L; Fuchs, O; Tanaka, I; Puschnig, P; Umbach, E; Heske, C; Draxl, C

    2013-08-01

    We have carried out a theoretical and experimental investigation of the beryllium K-edge soft x-ray absorption fine structure of beryllium compounds in the oxygen group, considering BeO, BeS, BeSe, and BeTe. Theoretical spectra are obtained ab initio, through many-body perturbation theory, by solving the Bethe-Salpeter equation (BSE), and by supercell calculations using the core-hole approximation. All calculations are performed with the full-potential linearized augmented plane-wave method. It is found that the two different theoretical approaches produce a similar fine structure, in good agreement with the experimental data. Using the BSE results, we interpret the spectra, distinguishing between bound core-excitons and higher energy excitations.

  18. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    SciTech Connect

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  19. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  20. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation

    NASA Astrophysics Data System (ADS)

    Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J.

    1985-09-01

    The x-ray-absorption near-edge structure (XANES) of transition elements in tetrahedral coordination in crystals and glasses has been studied. We have identified the XANES features in the continuum that can be assigned to multiple scattering within the first coordination shell. The energy positions Er of the XANES peaks in the continuum follow the rule (Er-Eb)d2= const, where Eb is the energy of the prepeak, defined as the first core excitation to the bound antibonding state of T2 symmetry, and d is the interatomic distance. This plot allows us to determine the tetrahedral coordination of a vanadium impurity in a SiO2 glass and to get an estimation of the vanadium-oxygen distance (1.77+/-0.05 Å).

  1. The effect of nanocrystallite size in monoclinic HfO{sub 2} films on lattice expansion and near-edge optical absorption

    SciTech Connect

    Cisneros-Morales, M. C.; Aita, C. R.

    2010-05-10

    Nanocrystalline monoclinic HfO{sub 2} films were sputter deposited on fused silica substrates, air annealed at 573 to 1273 K to affect crystallite growth, and analyzed by x-ray diffraction and spectrophotometry. Lattice expansion occurs with diminishing crystallite size. O 2p->Hf 5d interband absorption dominates the optical edge at energy E>=6.24 eV, with an optical band gap, E{sub o}=5.48+-0.023, which is independent of crystallite size. However, the strength of a localized resonant band, with onset at 5.65 eV and maximum at 5.94 eV, is affected by crystallite size. Its polaronic origin in a perfect HfO{sub 2} lattice is discussed.

  2. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  3. Near-edge X-ray absorption fine structure study of disordering in Gd2(Ti1-yZry)2O7 pyrochlores.

    PubMed

    Nachimuthu, Ponnusamy; Thevuthasan, Suntharampillai; Adams, Evan M; Weber, William J; Begg, Bruce D; Mun, Bongjin S; Shuh, David K; Lindle, Dennis W; Gullikson, Eric M; Perera, Rupert C C

    2005-02-01

    Disorder in Gd2(Ti(1-y)Zry)2O7 pyrochlores, for y = 0.0-1.0, is investigated by Ti 2p and O 1s near-edge X-ray absorption fine structure spectroscopy. Ti(4+) ions are found to occupy octahedral sites in Gd2Ti2O7 with a tetragonal distortion induced by vacant oxygen sites. As Zr substitutes for Ti, the tetragonal distortion decreases, and Zr coordination increases from 6 to 8. The migration of oxygen ions from 48f or 8b sites to vacant 8a sites compensate for the increased Zr coordination, thereby reducing the number of vacant 8a sites, which further reduces the tetragonal distortion and introduces more disorder around Ti. This is evidence for simultaneous cation disorder with anion migration.

  4. Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy

    SciTech Connect

    Anders, S.; Stammler, T.; Bhatia, C.S.; Fong, W.; Chen, C.Y.; Bogy, D.B.

    1998-04-01

    X-ray Photo Emission Electron Microscopy (X-PEEM) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were applied to study the properties of amorphous hard carbon overcoats on disks and sliders, and the properties of the lubricant. The modification of lubricants after performing thermal desorption studies was measured by NEXAFS, and the results are compared to the thermal desorption data. The study of lubricant degradation in wear tracks is described. Sliders were investigated before and after wear test, and the modification of the slider coating as well as the transfer of lubricant to the slider was studied. The studies show that the lubricant is altered chemically during the wear. Fluorine is removed and carboxyl groups are formed.

  5. ATOMIC AND MOLECULAR PHYSICS: X-ray absorption near the edge structure and X-ray photoelectron spectroscopy studies on pyrite prepared by thermally sulfurizing iron films

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Ying-Shu; Wang, Bao-Yi; Wei, Long; Kui, Re-Xi; Qian, Hai-Jie

    2009-07-01

    This paper reports how pyrite films were prepared by thermal sulfurization of magnetron sputtered iron films and characterized by x-ray absorption near edge structure spectra and x-ray photoelectron spectroscopy on a 4B9B beam line at the Beijing Synchrotron Radiation Facility. The band gap of the pyrite agrees well with the optical band gap obtained by a spectrophotometer. The octahedral symmetry of pyrite leads to the splitting of the d orbit into t2g and eg levels. The high spin and low spin states were analysed through the difference of electron exchange interaction and the orbital crystal field. Only when the crystal field splitting is higher than 1.5 eV, the two weak peaks above the white lines can appear, and this was approved by experiments in the present work.

  6. X-ray absorption spectra of nucleotides (AMP, GMP, and CMP) in liquid water solutions near the nitrogen K-edge

    NASA Astrophysics Data System (ADS)

    Ukai, Masatoshi; Yokoya, Akinari; Fujii, Kentaro; Saitoh, Yuji

    2010-07-01

    The X-ray absorption of nucleotides (adenosine-5'-monophosphate, guanosine 5'-monophosphate, and cytidine 5'-monophosphate) are measured in both water solutions and thin solid films at X-ray energies near the nitrogen K-edge in the 'water-window' region. Each spectrum corresponds to the selective excitation of a nucleobase site in a nucleotide, and thus has features similar to the spectrum of the corresponding nucleobase. An additional new peak in the energy region of the nitrogen 1s → π* resonance is observed for each nucleotide. No significant difference between the water solutions and thin solid films is found, which might be attributable to the hydrophobic properties of a nucleobase in a nucleotide.

  7. Near-edge x-ray absorption fine-structure fingerprints of bulk-amorphous and nanostructured Pd-based alloys

    SciTech Connect

    Kapaklis, V.; Poulopoulos, P.; Wilhelm, F.; Jaouen, N.; Rogalev, A.; Politis, C.

    2005-08-15

    Bulk amorphous PdCuNiP alloys have been prepared from the liquid state by means of solidification under an argon atmosphere. The addition of a small amount of Fe ({approx}5 at. %) results in the formation of nanocrystalline inclusions inside the residual amorphous matrix. Element-specific near-edge x-ray absorption fine-structure spectroscopy provides information on the electronic structure and symmetry properties of the samples. In combination with conventional {theta}-2{theta} x-ray diffraction measurements, it allows for the investigation of the modifications in structure after the addition of Fe, as well as for the determination of the most probable crystalline phases. The results are discussed in terms of thermodynamics.

  8. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  9. Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy.

    PubMed

    Altman, Alison B; Pacold, Joseph I; Wang, Jian; Lukens, Wayne W; Minasian, Stefan G

    2016-06-14

    The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds.

  10. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.

    PubMed

    Patel, Manu U M; Arčon, Iztok; Aquilanti, Giuliana; Stievano, Lorenzo; Mali, Gregor; Dominko, Robert

    2014-04-01

    Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long-cycle-life lithium-sulfur (Li-S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K-edge X-ray absorption near-edge structure (XANES) and (6,7) Li magic-angle spinning (MAS) NMR studies on a Li-S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all-sulfur-based components in the Li-S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using (7) Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li-S batteries.

  11. Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy.

    PubMed

    Altman, Alison B; Pacold, Joseph I; Wang, Jian; Lukens, Wayne W; Minasian, Stefan G

    2016-06-14

    The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds. PMID:26979662

  12. Three-dimensional Fe speciation of an inclusion cloud within an ultradeep diamond by confocal μ-X-ray absorption near edge structure: evidence for late stage overprint.

    PubMed

    Silversmit, Geert; Vekemans, Bart; Appel, Karen; Schmitz, Sylvia; Schoonjans, Tom; Brenker, Frank E; Kaminsky, Felix; Vincze, Laszlo

    2011-08-15

    A stream of 1-20 μm sized mineral inclusions having the negative crystal shape of its host within an "ultra-deep" diamond from Rio Soriso (Juina area, Mato Grosso State, Brazil) has been studied with confocal μ-X-ray absorption near edge structure (μXANES) at the Fe K and Mn K edges. This technique allows the three-dimensional nondestructive speciation of the Fe and Mn containing minerals within the inclusion cloud. The observed Fe-rich inclusions were identified to be ferropericlase (Fe,Mg)O, hematite and a mixture of these two minerals. Confocal μ-X-ray fluorescence (μXRF) further showed that Ca-rich inclusions were present as well, which are spatially separated from or in close contact with the Fe-rich inclusions. The inclusions are aligned along a plane, which most likely represents a primary growth zone. In the close vicinity of the inclusions, carbon coated planar features are visible. The three-dimensional distribution indicates a likely fluid overprint along an open crack. Our results imply that an imposed negative diamond shape of an inclusion alone does not exclude epigenetic formation or intense late stage overprint. PMID:21707095

  13. Disentanglement of magnetic contributions in multi-component systems by using X-ray magnetic circular dichroism at a single absorption edge.

    PubMed

    Chaboy, Jesús; Laguna-Marco, María Angeles; Piquer, Cristina; Boada, Roberto; Maruyama, Hiroshi; Kawamura, Naomi

    2008-09-01

    X-ray magnetic circular dichroism (XMCD) has become in recent years an outstanding tool for studying magnetism. Its element specificity, inherent to core-level spectroscopy, combined with the application of magneto-optical sum rules allows quantitative magnetic measurements at the atomic level. These capabilities are now incorporated as a standard tool for studying the localized magnetism in many systems. However, the application of XMCD to the study of the conduction-band magnetism is not so straightforward. Here, it is shown that the atomic selectivity is not lost when XMCD probes the delocalized states. On the contrary, it provides a direct way of disentangling the magnetic contributions to the conduction band coming from the different elements in the material. This is demonstrated by monitoring the temperature dependence of the XMCD spectra recorded at the rare-earth L(2)-edge in the case of RT(2) (R = rare-earth, T = 3d transition metal) materials. These results open the possibility of performing element-specific magnetometry by using a single X-ray absorption edge.

  14. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  15. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice.

    PubMed

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-11-20

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures.

  16. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  17. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  18. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  19. X-ray-absorption near-edge structure of CuGaSe2 and ZnSe: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Šipr, O.; Machek, P.; Šimůnek, A.; Vackář, J.; Horák, J.

    1997-11-01

    X-ray-absorption near-edge structure (XANES) spectra of a ternary semiconductor CuGaSe2 at the Cu, Ga, and Se edges were measured and compared with Zn and Se spectra of ZnSe, taken from the literature. Having all five absorbing atoms in nearly identical coordination environments, we investigate the influence of the electronic structure on the XANES spectra. The spectra of CuGaSe2 and of ZnSe were calculated using a real-space multiple-scattering approach and using a pseudopotential band-structure technique. Both computational methods yield spectra that are in a good agreement with experiment. The effect of the size of the cluster involved in the real-space calculation on the calculated XANES spectra is investigated. Using self-consistent muffin-tin potentials does not lead to significantly different CuGaSe2 spectra than using non-self-consistent potentials. Real-space multiple-scattering spectra calculated without core holes exhibit only minor differences with respect to those obtained for relaxed screened core holes, the largest effect being found for Zn spectrum of ZnSe. Employing unrelaxed or unscreened core hole potentials resulted in spectra that did not agree with experiment. Contrary to earlier reports, no effect of charge transfer on the calculated XANES spectra of ZnSe was found.

  20. Electronic defect states at the LaAlO3/SrTiO3 heterointerface revealed by O K-edge X-ray absorption spectroscopy.

    PubMed

    Palina, Natalia; Annadi, Anil; Asmara, Teguh Citra; Diao, Caozheng; Yu, Xiaojiang; Breese, Mark B H; Venkatesan, T; Ariando; Rusydi, Andrivo

    2016-05-18

    Interfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive. Here, we report evidence for the electronic reconstruction in both insulating and conducting LaAlO3/SrTiO3 heterointerfaces revealed by O K-edge X-ray absorption spectroscopy. For the insulating samples, the O K-edge XAS spectrum exhibits features characteristic of electronically active point defects identified as noninteger valence states of Ti. For conducting samples, a new shape-resonance at ∼540.5 eV, characteristic of molecular-like oxygen (empty O-2p band), is observed. This implies that the concentration of electronic defects has increased in proportion with LaAlO3 thickness. For larger defect concentrations, the electronic defect states are no longer localized at the Ti orbitals and exhibit pronounced O 2p-O 2p character. Our results demonstrate that, above a critical thickness, the delocalization of O 2p electronic states can be linked to the presence of oxygen vacancies and is responsible for the enhancement of conductivity at the oxide heterointerfaces.

  1. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  2. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  3. L2,3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry

    NASA Astrophysics Data System (ADS)

    de Groot, F. M. F.; Fuggle, J. C.; Thole, B. T.; Sawatzky, G. A.

    1990-01-01

    The L2,3 x-ray-absorption edges of 3d0 compounds are calculated with use of an atomic description of the 2p63d0 to 2p53d1 excitation, with the inclusion of the crystal field. For reasons of clarity, we confine ourselves to d0 compounds in octahedral symmetry, but the same approach is applicable to all other dN compounds in any point-group symmetry. The experimental spectra of FeTiO3, Sc2O3, ScF3, CaF2, and the potassium halides are well reproduced by the present calculations, including the previously misinterpreted small leading peaks. The splitting between the two main peaks in both the L3 and L2 edge are related, though not equal, to the crystal-field splitting. Comparison to experiment showed that the broadening of the main multiplet lines is different. This can be related to Coster-Kronig Auger processes for the L2 edge and to a solid-state broadening which is a combination of vibrational (phononic) and dispersional broadenings. With the full treatment of the atomic multiplets, the atomic effects can be separated from solid-state effects, which offers a better description of the latter. This includes vibrational broadenings, the covalent screening of the intra-atomic Coulomb and exchange interactions, via the position of small leading peaks, and surface effects. The same general framework can be used to discuss crystal-field effects in both lower symmetries, with the possibility of polarization-dependent spectra (e.g., TiO2), and partly filled d bands.

  4. Speciation of deeply buried TiOx nanolayers with grazing-incidence x-ray fluorescence combined with a near-edge x-ray absorption fine-structure investigation

    NASA Astrophysics Data System (ADS)

    Pollakowski, Beatrix; Beckhoff, Burkhard; Reinhardt, Falk; Braun, Stefan; Gawlitza, Peter

    2008-06-01

    Nondestructive methods based on electron emission may encounter serious difficulties when probing the chemical state of deeply buried nanolayers due to restricted information depth. The purpose of the present work is to evaluate to which extent photon emission can overcome these restrictions. Grazing-incidence x-ray fluorescence combined with a near-edge x-ray absorption fine-structure investigation (GIXRF-NEXAFS) offers access to depth-resolving analysis of buried nanolayers with respect to both the chemical speciation and the layer composition. By varying the angle of incidence, the penetration depth can be tuned from a few to several hundreds of nanometers. The information depth of the emitted fluorescence radiation is in the same general range as the soft x-ray regime. Initial measurements were performed on nominally 30 nm thick titanium nanolayers oxidized to different extents and buried below 5 nm carbon layers. These layered structures were produced by means of ion beam sputtering deposition. The plane grating monochromator beamline for undulator radiation in the laboratory of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II provides tunable radiation of both well-known flux and high spectral purity for GIXRF-NEXAFS studies. The current results confirm that GIXRF-NEXAFS has the potential to substantially contribute to the speciation of deeply buried nanolayers. The analysis of measurements at a constant incident angle demonstrated that it is not possible to find an angle of incidence for the NEXAFS region to ensure a stable penetration depth. However, appropriate angular corrections can ensure a constant mean penetration depth, in particular, in the vicinity of absorption edges.

  5. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K[Formula: see text] emission spectra.

    PubMed

    Rees, Julian A; Wandzilak, Aleksandra; Maganas, Dimitrios; Wurster, Nicole I C; Hugenbruch, Stefan; Kowalska, Joanna K; Pollock, Christopher J; Lima, Frederico A; Finkelstein, Kenneth D; DeBeer, Serena

    2016-09-01

    A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry. PMID:27251139

  6. Low-temperature adsorption of H2S on Ni(001) studied by near-edge- and surface-extended-x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.

    1989-11-01

    The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  7. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems. PMID:27136720

  8. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  9. Probing Variable Amine/Amide Ligation in NiIIN2S2 Complexes Using Sulfur K-Edge and Nickel L-Edge X-ray Absorption Spectroscopies: Implications for the Active Site of Nickel Superoxide Dismutase

    SciTech Connect

    Shearer,J.; Dehestani, A.; Abanda, F.

    2008-01-01

    Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2* into O2 and H2O2. In its reduced state, the mononuclear NiII ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three NiIIN2S2 complexes (bisamine-ligated (bmmp-dmed)NiII, amine/amide-ligated (NiII(BEAAM)), and bisamide-ligated (NiII(emi))2) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-ray absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)NiII having the weakest ligand field and (NiII(emi)2) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (NiII(BEEAM)) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of NiS covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S()* HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the NiS bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.

  10. Vanadium bisimide bonding investigated by X-ray crystallography, 51V and 13C nuclear magnetic resonance spectroscopy, and V L(3,2)-edge X-ray absorption near-edge structure spectroscopy.

    PubMed

    La Pierre, Henry S; Minasian, Stefan G; Abubekerov, Mark; Kozimor, Stosh A; Shuh, David K; Tyliszczak, Tolek; Arnold, John; Bergman, Robert G; Toste, F Dean

    2013-10-01

    Syntheses of neutral halide and aryl vanadium bisimides are described. Treatment of VCl2(NtBu)[NTMS(N(t)Bu)], 2, with PMe3, PEt3, PMe2Ph, or pyridine gave vanadium bisimides via TMSCl elimination in good yield: VCl(PMe3)2(N(t)Bu)2 3, VCl(PEt3)2(N(t)Bu)2 4, VCl(PMe2Ph)2(N(t)Bu)2 5, and VCl(Py)2(N(t)Bu)2 6. The halide series (Cl-I) was synthesized by use of TMSBr and TMSI to give VBr(PMe3)2(N(t)Bu)2 7 and VI(PMe3)2(N(t)Bu)2 8. The phenyl derivative was obtained by reaction of 3 with MgPh2 to give VPh(PMe3)2(N(t)Bu)2 9. These neutral complexes are compared to the previously reported cationic bisimides [V(PMe3)3(N(t)Bu)2][Al(PFTB)4] 10, [V(PEt3)2(N(t)Bu)2][Al(PFTB)4] 11, and [V(DMAP)(PEt3)2(N(t)Bu)2][Al(PFTB)4] 12 (DMAP = dimethylaminopyridine, PFTB = perfluoro-tert-butoxide). Characterization of the complexes by X-ray diffraction, (13)C NMR, (51)V NMR, and V L(3,2)-edge X-ray absorption near-edge structure (XANES) spectroscopy provides a description of the electronic structure in comparison to group 6 bisimides and the bent metallocene analogues. The electronic structure is dominated by π bonding to the imides, and localization of electron density at the nitrogen atoms of the imides is dictated by the cone angle and donating ability of the axial neutral supporting ligands. This phenomenon is clearly seen in the sensitivity of (51)V NMR shift, (13)C NMR Δδ(αβ), and L3-edge energy to the nature of the supporting phosphine ligand, which defines the parameters for designing cationic group 5 bisimides that would be capable of breaking stronger σ bonds. Conversely, all three methods show little dependence on the variable equatorial halide ligand. Furthermore, this analysis allows for quantification of the electronic differences between vanadium bisimides and the structurally analogous mixed Cp/imide system CpV(N(t)Bu)X2 (Cp = C5H5(1-)). PMID:24024833

  11. Interaction of vanadium and sulfate in blood cells from the tunicate Ascidia ceratodes: Observations using x-ray absorption edge structure and EPR spectroscopies

    SciTech Connect

    Frank, P.; Hedman, B.; Hodgson, K.O.; Carlson, R.M.K.

    1994-08-17

    Sulfur K-edge X-ray absorption spectroscopy (S-K XAS) and EPR spectroscopy have been used to investigate the inorganic solution chemistry of vanadium, sulfate, and methanesulfonate, with application to blood cells from the tunicate Ascidia ceratodes. Three independent whole blood cell preparations (S85, S86, W87) collected over a period of 18 months were examined. Average blood cell vanadium concentrations were determined to be 0.099, 0.079, and 0.062 M, respectively. All three collections gave sulfur XAS spectra consistent with significant intracellular concentrations of low-valent sulfur, an alkanesulfonic acid, and sulfate. In model studies, the line width of the sulfate K-edge XAS spectrum was found to titrate with both pH and [V(III)]. Application of this finding to A. ceratodes blood cell sulfur XAS spectra provided evidence for direct interactions between endogenous dissolved sulfate and V(III) in two of the three collections. All three collections yielded sulfate XAS edge spectra consistent with low pH. Curve-fitting analysis of the S-K edge XAS spectra for the three whole blood cell collections yielded the ratios of intracellular sulfate:alkane sulfonate:low-valent sulfur to be as follows: S85, 1.0:0.9:0.36;S86, 1.0;0.5;1.5;W87,1.0;0.44:0.24. Comparisons with models indicated that the low-valent blood cell sulfur included various disulfide-like compounds unlike cystine. This all implies a surprisingly rich and variable sulfur biochemistry in these marine organisms. EPR spectroscopy of whole blood cells from one animal from the W87 collection revealed an endogenous VO{sup 2+}-sulfate interaction. Thus both V(III) and VO{sup 2+} can sense an intracellular pool of sulfate, implying the biological colocation of these two metal ions. The variations in blood chemistry observed over time as described herein caution against definitive application of single point experiments.

  12. Artifacts in spatiochromatic stimuli due to variations in preretinal absorption and axial chromatic aberration: implications for color physiology

    NASA Astrophysics Data System (ADS)

    Cottaris, Nicolas P.

    2003-09-01

    The spatiochromatic receptive-field structure of neurons in the macaque visual system has been studied almost exclusively with stimuli based on the human foveal cone fundamentals of Smith and Pokorny [Vision Res. 15, 161 (1975)] and generated on cathode ray tube displays. In the current study the artifacts evoked by cone-isolating, spatially structured stimuli due to variations in the eye's preretinal absorption characteristics and axial chromatic aberration are quantified. In addition, the luminance artifacts evoked by nominally isoluminant sinusoidal grating stimuli due to the same factors are quantified. The results indicate that the spatiochromatic stimuli commonly employed to map receptive fields of neurons at eccentricities >10 deg are especially prone to artifacts and that these artifacts are maximal for the high-contrast S-cone-isolating stimuli that are often used. On the basis of these simulations, a method is introduced that improves spatiochromatic receptive-field estimates by compensating for response contributions from the incompletely silenced cone mosaics during cone-isolating stimulation.

  13. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reduc Tase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E., Jr.; Adams, M.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Athens U. /SLAC, SSRL

    2007-10-26

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN{sup -} bound low-spin Fe{sup III} forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin Fe{sup III}-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the Fe{sup III} bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pK{sub a} of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin Fe{sup III}-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C Fe{sup III} product. Additionally, the presence of the dianionic porphyrin {pi} ring in cytochrome P450 allows O-O heterolysis, forming an Fe{sup IV}-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand

  14. Improvement in the photocurrent collection due to enhanced absorption of light by synthesizing staggered layers of silver nanoclusters in silicon

    SciTech Connect

    Dhoubhadel, Mangal S.; Lakshantha, Wickramaarachchige J.; Rout, Bibhudutta; McDaniel, Floyd D.; Lightbourne, Sherard; D’Souza, Francis

    2015-07-23

    The quest for increased efficiency of solar cells has driven the research in synthesizing photovoltaic cells involving Si based materials. The efficiency of solar cells involving crystalline Si is stalled around 25% for the last decade. Recently Shi et al. had shown that light trapping can be enhanced by fabricating double layers of Ag nanoparticles in silicon based materials. The light trapping is critically important in a photo devices such as solar cells in order to increase light absorption and efficiency. In the present work, we report enhancement in the absorption of light in Ag ion implanted Si substrates. Multiple low energies Ag ions, ranging from ∼80 keV to ∼30 keV, with different fluences ranging from ∼1 × 10{sup 16} to ∼1 × 10{sup 17} atoms/cm{sup 2} were sequentially implanted into commercially available Si (100) substrates followed by post-thermal annealing to create different sizes of Ag nanoclusters (NC) at different depths in the top 100 nm of the Si. The absorbance of light is increased in Ag implanted Si with a significant increase in the current collection in I-V (current-voltage) photo switching measurements. The experimental photovoltaic cells fabricated with the Ag-implanted Si samples were optically characterized under AM (air mass) 1.5 solar radiation conditions (∼1.0 kW/m{sup 2}). An enhancement in the charge collection were measured in the annealed samples, where prominent Ag NCs were formed in the Si matrix compared to the as-implanted samples with amorphous layers. We believe the enhancement of the photo-current density from the samples with Ag NC is due to the improvement of efficiency of charge collection of e{sup −}-h{sup +} pairs produced by the incident light.

  15. Iron L-edge X-ray Absorption Spectroscopy of Oxy-Picket Fence Porphyrin: Experimental Insight into Fe-O2 Bonding

    PubMed Central

    Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487

  16. The pattern of parallel edge plasma flows due to pressure gradients, recycling, and resonant magnetic perturbations in DIII-D

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Evans, T.; Feng, Y.; Reiter, D.

    2015-07-01

    High resolution plasma transport simulations with the EMC3-EIRENE code have been performed to address the parallel plasma flow structure in the boundary of a poloidal divertor configuration with non-axisymmetric perturbations at DIII-D. Simulation results show that a checkerboard pattern of flows with alternating direction is generated inside the separatrix. This pattern is aligned with the position of the main resonances (i.e., where the safety factor is equal to rational values q = m / n for a perturbation field with base mode number n): m pairs of alternating forward and backward flow channel exist for each resonance. The poloidal oscillations are aligned with the subharmonic Melnikov function, which indicates that the plasma flow is generated by parallel pressure gradients along perturbed field lines. An additional scrape-off layer-like domain is introduced by the perturbed separatrix which guides field lines from the interior to the divertor targets, resulting in an enhanced outward flow that is consistent with the experimentally observed particle pump-out effect. However, while the lobe structure of the perturbed separatrix is very well reflected in the temperature profile, the same lobes can appear to be smaller in the flow profile due to a competition between high upstream pressure and downstream particle sources driving flows in opposite directions.

  17. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

    2004-01-06

    Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

  18. Impurity-defect emission from undoped Cd1- x Zn x Te single crystals near the fundamental absorption edge

    NASA Astrophysics Data System (ADS)

    Krivobok, V. S.; Denisov, I. A.; Mozhevitina, E. N.; Nikolaev, S. N.; Onishchenko, E. E.; Pruchkina, A. A.; Silina, A. A.; Smirnova, N. A.; Chernopitsskii, M. A.; Shmatov, N. I.

    2016-05-01

    Shallow impurity-defect states in undoped Cd1- x Zn x Te ( x ˜ 3-6%) single crystals have been studied using low-temperature photoluminescence measurements. It has been found that the effect exerted by zinc is mainly reduced to a rigid shift of all the specific features associated with the exciton radiation, which made it possible, with a high (˜0.3 meV) accuracy, to measure the band gap and the zinc concentration in solid solutions. Hydrogen-like donors with the ground-state energy of ˜14 meV and four types of acceptors with average activation energies of 59.3 ± 0.6 meV, 69.6 ± 1.5 meV, 155.8 ± 2.0 meV, and 52.3 ± 0.6 meV have been identified in all the crystals studied. Based on a comparison with the results of the analysis of the impurity background and the data available in the literature on impurity-defect emission in undoped CdTe, the first three acceptors can be assigned to the substitutional impurities NaCd, PTe, and CuCd, respectively. The most shallow acceptor (52.3 ± 0.6 meV) is a complex defect in which there is a nonstandard excited level separated by only 7 meV from the ground level. This level is formed apparently due to the removal of degeneracy, which is characteristic of T D acceptors, by the low-symmetry potential of the complex defect.

  19. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  20. Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D

    NASA Astrophysics Data System (ADS)

    King, J. D.; Strait, E. J.; Nazikian, R.; Paz-Soldan, C.; Eldon, D.; Fenstermacher, M. E.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; La Haye, R. J.; Lanctot, M. J.; Lazerson, S. A.; Logan, N. C.; Liu, Y. Q.; Okabayashi, M.; Park, J.-K.; Shiraki, D.; Turnbull, A. D.

    2015-11-01

    Experiments in the DIII-D tokamak show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidal mode numbers of n = 2 and n = 3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes (ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n = 1 component despite the application of a constant amplitude, slowly toroidally rotating, n = 2 applied field. The n = 1 mode is born locked to the vacuum vessel wall, while the n = 2 mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇Te occurs near the q = 4 and 5 rational surfaces, suggesting five unique islands are possible (m = 8, 9, or 10 for n = 2) and (m = 4 or 5 for n = 1). In all cases, the island width is estimated to be 2-3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%-12%, which is close to the 13%-14% measured between the ELMs and suppressed states. This suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression.

  1. X-ray absorption near-edge structure study on the configuration of Cu 2+ /histidine complexes at different pH values

    NASA Astrophysics Data System (ADS)

    Mei-Juan, Yu; Yu, Wang; Wei, Xu

    2016-04-01

    The local configurations around metal ions in metalloproteins are of great significance for understanding their biological functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxyl, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5. Project supported by the National Natural Science Foundation of China (Grant No. 11205186).

  2. Photoemission and near-edge X-ray absorption fine structure studies of the bacterial surface protein layer of Bacillus sphaericus NCTC 9602.

    PubMed

    Vyalikh, Denis V; Kirchner, Alexander; Danzenbächer, Steffen; Dedkov, Yuriy S; Kade, Andreas; Mertig, Michael; Molodtsov, Serguei L

    2005-10-01

    The electronic structure of the regular, two-dimensional bacterial surface protein layer of Bacillus sphaericus NCTC 9602 has been examined by photoemission (PE) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Both the O 1s and the N 1s core-level PE spectra show a single structure, whereas the C 1s core-level spectrum appears manifold, suggesting similar chemical states for each oxygen atom and also for each nitrogen atom, while carbon atoms exhibit a range of chemical environments in the different functional groups of the amino acids. This result is supported by the element-specific NEXAFS spectra of the unoccupied valence electronic states, which exhibit a series of characteristic NEXAFS peaks that can be assigned to particular molecular orbitals of the amino acids by applying a phenomenological building-block model. The relative contributions of the C-O, C-N, and C-C bond originating signals into the C 1s PE spectrum are in good agreement with the number ratios of the corresponding bonds calculated from the known primary structure of the bacterial surface protein. First interpretation of the PE spectrum of the occupied valence states is achieved on the basis of electronic density-of-states calculations performed for small peptides. It was found that mainly the pi clouds of the aromatic rings contribute to both the lowest unoccupied and the highest occupied molecular orbitals.

  3. Identification of sources of lead in the atmosphere by chemical speciation using X-ray absorption near-edge structure (XANES) spectroscopy.

    PubMed

    Sakata, Kohei; Sakaguchi, Aya; Tanimizu, Masaharu; Takaku, Yuichi; Yokoyama, Yuka; Takahashi, Yoshio

    2014-02-01

    Sources of Pb pollution in the local atmosphere together with Pb species, major ions, and heavy metal concentrations in a size-fractionated aerosol sample from Higashi-Hiroshima (Japan) have been determined by X-ray absorption near-edge structure (XANES) spectroscopy, ion chromatography, and ICP-MS/AES, respectively. About 80% of total Pb was concentrated in fine aerosol particles. Lead species in the coarse aerosol particles were PbC2O4, 2PbCO3 Pb(OH)2, and Pb(NO3)2, whereas Pb species in the fine aerosol particles were PbC2O4, PbSO4, and Pb(NO3)2. Chemical speciation and abundance data suggested that the source of Pb in the fine aerosol particles was different from that of the coarse ones. The dominant sources of Pb in the fine aerosol particles were judged to be fly ash from a municipal solid waste incinerator and heavy oil combustion. For the coarse aerosol particles, road dust was considered to be the main Pb source. In addition to Pb species, elemental concentrations in the aerosols were also determined. The results suggested that Pb species in size-fractionated aerosols can be used to identify the origin of aerosol particles in the atmosphere as an alternative to Pb isotope ratio measurement.

  4. Extended X- ray absorption fine structure study at the K-edge of copper in mixed ligand complexes having benzimidazole as one of the ligands

    NASA Astrophysics Data System (ADS)

    Hinge, V. K.; Joshi, S. K.; Nitin Nair, N.; Singh Verma, Vikram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    Extended X-ray absorption fine structure (EXAFS) spectra have been studied at the K-edge of copper in some of its biologically important complexes, viz., [Cu(BzImH)4X2] and [Cu(BzIm)2], where X= Cl, Br, 1/2SO4, ClO4, NO3, and BzIm = Benzimidazolato anion. The spectra have been recorded using a bent crystal 0.4 m Cauchois-type transmission spectrograph. The positions of EXAFS maxima and minima have been used to determine the bond lengths in the complexes with the help of three different methods, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (L.S.S.) methods. The phase uncorrected bond lengths have also been determined from Fourier transforms of the experimental spectra. The results obtained from these methods have been discussed and it has been found that the results obtained by L.S.S. method are comparable with the results obtained by Fourier transformation method and that these two methods give phase uncorrected bond lengths.

  5. Low-temperature spin-state transition in LaCoO{sub 3} investigated using resonant x-ray absorption at the Co K edge

    SciTech Connect

    Medarde, M.; Pomjakushina, E.; Conder, K.; Dallera, C.; Grioni, M.; Voigt, J.; Podlesnyak, A.; Neisius, Th.; Tjernberg, O.; Barilo, S. N.

    2006-02-01

    LaCoO{sub 3} displays two broad anomalies in the DC magnetic susceptibility {chi}{sup DC}, occurring, respectively, around 50 K and 500 K. We have investigated the first of them within the 10 Kabsorption spectroscopy (XAS) in the partial fluorescence yield mode. In contrast with previous O K-edge XAS reports, our data show the existence of abrupt changes around 50 K which can be nicely correlated with the anomaly in {chi}{sup DC}. To our knowledge, this is the first time that a clear, quantitative relationship between the temperature dependence of the magnetic susceptibility and that of the XAS spectra is reported. The intensity changes in the preedge region, which are consistent with a transition from a lower to a higher spin state, have been analyzed using a minimal model including the Co 3d and O 2p hybridization in the initial state. The temperature dependence of the Co magnetic moment obtained from the estimated e{sub g} and t{sub 2g} occupations could be satisfactorily reproduced. Also, the decrease of the Co 3d and O 2p hybridization by increasing temperature obtained from this simple model compares favorably with the values estimated from thermal evolution of the crystallographic structure.

  6. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    PubMed

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB. PMID:25191695

  7. Local structural studies of the cubic Cd1–xCaxO system through Cd K-edge extended X-ray absorption spectroscopic studies

    PubMed Central

    Srihari, Velaga; Sridharan, V.; Nomura, Masaharu; Sastry, V. Sankara; Sundar, C. S

    2012-01-01

    Cd K-edge extended X-ray absorption fine-structure spectroscopic studies were carried out on Cd1–xCaxO (0 ≤ x ≤0.9) solid solutions and the first and second nearest neighbour (NN) distances and their mean square relative displacement σ2 were estimated. The first NN distance, d Cd–O(x), was found to be smaller than its expected value, a(x)/2, obtained from the X-ray diffraction measurements. It increases monotonically and non-linearly with a negative curvature, comparable with that of the a(x) value variation. The variation σ2 of the 1NN with x is consistent with a disordered solid solution model. The 2NN distances d Cd–Cd(x) and d Cd–Ca(x) are found to follow the average values obtained by X-ray diffraction with d Cd–Ca(x) > d Cd–Cd(x). From detailed analysis it is argued that the solid solution exhibits a bimodal distribution of the 1NN distances, d Cd–O(x) and d Ca–O(x), and that the system belongs to a persistent type. PMID:22713887

  8. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    PubMed

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  9. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    SciTech Connect

    Gautier, C.

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  10. Temperature dependent electronic structure of Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film probed by X-ray absorption near edge structure

    SciTech Connect

    Zhang, Bangmin; Sun, Cheng-Jun E-mail: msecgm@nus.edu.sg; Heald, Steve M.; Chen, Jing-Sheng; Moog Chow, Gan E-mail: msecgm@nus.edu.sg; Venkatesan, T.

    2014-05-07

    The Mn K edge X-ray absorption near edge structures (XANES) of Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film (100 nm) on (001) LaAlO{sub 3} substrate was measured at different temperatures to probe the MnO{sub 6} octahedron distortion and corresponding electronic structure. The absorption of high temperature paramagnetic-insulator phase differed from that of the low temperature ferromagnetic-metal phase. The temperature-dependent absorption intensity of Mn K edge XANES was correlated with the relaxation of distorted MnO{sub 6} octahedron, which changed the crystal field acting on the Mn site and the related electronic structure and properties. At low temperature, the splitting of Mn majority e{sub g} orbitals decreased and the density of states above the Fermi level increased in the relaxed MnO{sub 6} octahedron, as reflected by a wider separation between two sub-peaks in the pre-edge XANES spectra.

  11. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    PubMed

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-01

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  12. Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lin, Rui; Zhao, Tiantian; Shang, Mingfeng; Wang, Jianqiang; Tang, Wenchao; Guterman, Vladimir E.; Ma, Jianxin

    2015-10-01

    For the purpose of reducing the cost and improving the performance of the proton exchange membrane fuel cell (PEMFC), some low-Pt or non-Pt catalysts have been studied in recent years. PtCo/C electrocatalysts are synthesized by a two-step reduction approach followed by the heat treatment. PtCo metal particles are uniformly dispersed on the surface of XC-72 carbon support, with a uniform particle size distribution. The PtCo/C catalyst after 400 °C heat treatment has the best electrochemical performance among the as-prepared catalysts, even superior to the commercial Pt/C catalyst. In the durability test, PtCo/C-400 also shows excellent stability with only 6.9% decline of electrochemical surface area (ECSA) after 1000 cyclic voltammetry (CV) cycles. In-situ X-ray absorption near edge structure (XANES) technique is conducted to explore the nanostructure change of Pt during the PEMFC operation. For PtCo/C catalyst, with the fuel cell operation potential decreasing from open circuit voltage (OCV) to 0.3 V, the Pt L3 white line intensity decreases continuously, indicating the decline of Pt 5d-vacancy due to the adsorption of oxygenated species.

  13. Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D

    DOE PAGES

    King, J. D.; Strait, E. J.; Nazikian, R.; Paz-Soldan, Carlos; Eldon, D.; Fenstermacher, M. E.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; La Haye, R. J.; et al

    2015-11-16

    In this research, we conducted experiments in the DIII-D tokamak that show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidalmode numbers of n=2 and n=3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes(ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n=1 component despite the application of a constant amplitude, slowly toroidally rotating, n=2 applied field. The n=1 mode is born locked to the vacuum vessel wall, while the n=2more » mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇Te occurs near the q=4 and 5 rational surfaces, suggesting five unique islands are possible (m=8, 9, or 10 for n=2) and (m=4 or 5 for n=1). In all cases, the island width is estimated to be 2–3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%–12%, which is close to the 13%–14% measured between the ELMs and suppressed states. In conclusion, this suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression.« less

  14. Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D

    SciTech Connect

    King, J. D.; Strait, E. J.; Nazikian, R.; Paz-Soldan, Carlos; Eldon, D.; Fenstermacher, M. E.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; La Haye, R. J.; Lanctot, Matthew J.; Lazerson, Sam A.; Logan, N. C.; Liu, Y. Q.; Okabayashi, M.; Park, J. -K.; Turnbull, A. D.

    2015-11-16

    In this research, we conducted experiments in the DIII-D tokamak that show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidalmode numbers of n=2 and n=3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes(ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n=1 component despite the application of a constant amplitude, slowly toroidally rotating, n=2 applied field. The n=1 mode is born locked to the vacuum vessel wall, while the n=2 mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇Te occurs near the q=4 and 5 rational surfaces, suggesting five unique islands are possible (m=8, 9, or 10 for n=2) and (m=4 or 5 for n=1). In all cases, the island width is estimated to be 2–3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%–12%, which is close to the 13%–14% measured between the ELMs and suppressed states. In conclusion, this suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression.

  15. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  16. An Extreme, Blueshifted Iron-Line Profile in the Narrow-Line Seyfert 1 PG 1402+261: An Edge-on Accretion Disk or Highly Ionized Absorption?

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Porquet, D.; Turner, T. J.

    2004-11-01

    We report on a short XMM-Newton observation of the radio-quiet narrow-line Seyfert 1 galaxy PG 1402+261. The EPIC X-ray spectrum of PG 1402+261 shows a strong excess of counts between 6 and 9 keV in the rest frame. This feature can be modeled by an unusually strong (equivalent width 2 keV) and very broad (FWHM velocity of 110,000 km s-1) iron K-shell emission line. The line centroid energy at 7.3 keV appears blueshifted with respect to the iron Kα emission band between 6.4 and 6.97 keV, while the blue wing of the line extends to 9 keV in the quasar rest frame. The line profile can be fitted by reflection from the inner accretion disk, but an inclination angle of >60° is required to model the extreme blue wing of the line. Furthermore, the extreme strength of the line requires a geometry whereby the hard X-ray emission from PG 1402+261 above 2 keV is dominated by the pure-reflection component from the disk, while little or none of the direct hard power law is observed. Alternatively, the spectrum above 2 keV may be explained by an ionized absorber, if the column density is sufficiently high (NH>3×1023 cm-2) and if the matter is ionized enough to produce a deep (τ~1) iron K-shell absorption edge at 9 keV. This absorber could originate in a large column density, high-velocity outflow, perhaps similar to those that appear to be observed in several other high accretion rate active galactic nuclei. Further observations, especially at higher spectral resolution, are required to distinguish between the accretion disk reflection and outflow scenarios.

  17. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice

    PubMed Central

    Wang, Peng; Menzies, Neal W.; Lombi, Enzo; McKenna, Brigid A.; James, Simon; Tang, Caixian; Kopittke, Peter M.

    2015-01-01

    Knowledge of the distribution of selenium (Se) species within plant tissues will assist in understanding the mechanisms of Se uptake and translocation, but in situ analysis of fresh and highly hydrated plant tissues is challenging. Using synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide laterally resolved data, the speciation of Se in fresh roots and leaves of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) supplied with 1 μM of either selenate or selenite was investigated. For plant roots exposed to selenate, the majority of the Se was efficiently converted to C-Se-C compounds (i.e. methylselenocysteine or selenomethionine) as selenate was transported radially through the root cylinder. Indeed, even in the rhizodermis which is exposed directly to the bulk solution, only 12–31% of the Se was present as uncomplexed selenate. The C-Se-C compounds were probably sequestered within the roots, whilst much of the remaining uncomplexed Se was translocated to the leaves—selenate accounting for 52–56% of the total Se in the leaves. In a similar manner, for plants exposed to selenite, the Se was efficiently converted to C-Se-C compounds within the roots, with only a small proportion of uncomplexed selenite observed within the outer root tissues. This resulted in a substantial decrease in translocation of Se from the roots to leaves of selenite-exposed plants. This study provides important information for understanding the mechanisms responsible for the uptake and subsequent transformation of Se in plants. PMID:26019258

  18. [Effects of long-term fertilization on organic carbon functional groups in black soil as revealed by synchrotron radiation soft X-ray near-edge absorption spectroscopy].

    PubMed

    Wang, Nan; Wang, Shuai; Wang, Qing-He; Dong, Pei-Bo; Li, Cui-Lan; Zhang, Jin-Jing; Gao, Qiang; Zhao, Yi-Dong

    2012-10-01

    A 20 years (1984-2004) stationary field experiment was conducted to evaluate the effects of long-term application of chemical fertilizers (N or NPK) alone or in combination with low (0.125 kg x hm(-2)) or high dose of corn stalk (0.25 kg x hm(-2)) on organic carbon functional groups in black soil using synchrotron radiation soft X-ray near-edge absorption spectroscopy (C-1s NEXAFS). Compared with the control (CK) treatment, the aromatic C and the carboxyl C of soil increased, whereas the aliphatic C, the carbonyl C and the aliphatic C/aromatic C ratio decreased after the application of chemical fertilizer alone. After the application of chemical fertilizations in combined with corn stalk, the aromatic C decreased while the aliphatic C and the aliphatic C/aromatic C ratio increased as compared to N or NPK fertilizer treatment. And the change tendency was more obvious with the increase in the dose of corn stalk applied. Regardless of corn stalk application, the aromatic C, the aliphatic C, and the aliphatic C/aromatic C ratio were all higher for NPK than for N fertilizer treatment. The above results indicated that, compared with the no-fertilizer control treatment, the application of chemical fertilizers alone resulted in the relative proportion of aromatic compounds increased whereas that of aliphatic hydrocarbon compounds decreased. On the other hand, the relative proportion of the aliphatic hydrocarbon compounds was higher after the application of chemical fertilizers with than without corn stalk, with high than with low dose of corn stalk, and with NPK than with N fertilization. C-1s NEXAFS spectroscopy could characterize in situ the changes of organic carbon functional groups in soil under long-term stationary fertilization.

  19. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio; Williams, R. Stanley

    2015-07-01

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ˜100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  20. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    SciTech Connect

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul Williams, R. Stanley; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio

    2015-07-21

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ∼100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  1. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice.

    PubMed

    Wang, Peng; Menzies, Neal W; Lombi, Enzo; McKenna, Brigid A; James, Simon; Tang, Caixian; Kopittke, Peter M

    2015-08-01

    Knowledge of the distribution of selenium (Se) species within plant tissues will assist in understanding the mechanisms of Se uptake and translocation, but in situ analysis of fresh and highly hydrated plant tissues is challenging. Using synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide laterally resolved data, the speciation of Se in fresh roots and leaves of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) supplied with 1 μM of either selenate or selenite was investigated. For plant roots exposed to selenate, the majority of the Se was efficiently converted to C-Se-C compounds (i.e. methylselenocysteine or selenomethionine) as selenate was transported radially through the root cylinder. Indeed, even in the rhizodermis which is exposed directly to the bulk solution, only 12-31% of the Se was present as uncomplexed selenate. The C-Se-C compounds were probably sequestered within the roots, whilst much of the remaining uncomplexed Se was translocated to the leaves-selenate accounting for 52-56% of the total Se in the leaves. In a similar manner, for plants exposed to selenite, the Se was efficiently converted to C-Se-C compounds within the roots, with only a small proportion of uncomplexed selenite observed within the outer root tissues. This resulted in a substantial decrease in translocation of Se from the roots to leaves of selenite-exposed plants. This study provides important information for understanding the mechanisms responsible for the uptake and subsequent transformation of Se in plants.

  2. Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction

    SciTech Connect

    A Konicek; C Jaye; M Hamilton; W Sawyer; D Fischer; R Carpick

    2011-12-31

    A recently installed synchrotron radiation near-edge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultra-nanocrystalline diamond (UNCD) tribological contact. A silicon flat and Si{sub 3}N{sub 4} sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp{sup 2}-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.

  3. Relationship between light scattering and absorption due to cytochrome c oxidase reduction during loss of tissue viability in brains of rats

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Sato, Shunichi; Ooigawa, Hidetoshi; Nawashiro, Hiroshi; Ishihara, Miya; Kikuchi, Makoto

    2008-02-01

    We performed simultaneous measurement of light scattering and absorption due to reduction of cytochrome c oxidase as intrinsic optical signals that are related to morphological characteristics and energy metabolism, respectively, for rat brains after oxygen/glucose deprivation by saline infusion. To detect change in light scattering, we determined the wavelength that was the most insensitive to change in light absorption due to the reduction of cytochrome c oxidase on the basis of multiwavelength analysis of diffuse reflectance data set for each rat. Then the relationships between scattering signal and absorption signals related to the reductions of heme aa 3 (605 nm) and CuA (830 nm) in cytochrome c oxidase were examined. Measurements showed that after starting saline infusion, the reduction of heme aa 3 started first; thereafter triphasic, large scattering change occurred (200-300 s), during which the reduction of CuA started. Despite such complex behaviors of IOSs, almost linear correlations were seen between the scattering signal and the heme aa 3-related absorption signal, while a relatively large animal-to-animal variation was observed in the correlation between the scattering signal and CuA-related absorption signal. Transmission electron microscopic observation revealed that dendritic swelling and mitochondrial deformation occurred in the cortical surface tissue after the triphasic scattering change. These results suggest that mitochondrial energy failure accompanies morphological alteration in the brain tissue and results in change in light scattering; light scattering will become an important indicator of tissue viability in brain.

  4. Local dynamics and phase transition in quantum paraelectric SrTiO3 studied by Ti K-edge x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Anspoks, Andris; Timoshenko, Janis; Purans, Juris; Rocca, Francesco; Trepakov, Vladimir; Dejneka, Alexander; Itoh, Mitsuru

    2016-05-01

    Strontium titanate is a model quantum paraelectric in which, in the region of dominating quantum statistics, the ferroelectric instability is inhibited due to nearly complete compensation of the harmonic contribution into ferroelectric soft mode frequency by the zero- point motion contribution. The enhancement of atomic masses by the substitution of 16 O with 18O decreases the zero-point atomic motion, and low-T ferroelectricity in SrTi18O3 is realized. In this study we report on the local structure of Ti in SrTi16O3 and SrTi18O3 investigated by Extended X-ray Absorption Fine Structure measurements in the temperature range 6 - 300 K.

  5. Assessment of the Losses Due to Self Absorption by Mass Loading on Radioactive Particulate Air Stack Sample Filters

    SciTech Connect

    Smith, Brian M.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2011-01-18

    This report discusses the effect of mass loading of a membrane filter on the self absorption of radioactive particles. A relationship between mass loading and percent loss of activity is presented. Sample filters were collected from Pacific Northwest National Laboratory (PNNL) facilities in order to analyze the current self absorption correction factor of 0.85 that is being used for both alpha and beta particles. Over an eighteen month period from February 2009 to July 2010, 116 samples were collected and analyzed from eight different building stacks in an effort coordinated by the Effluent Management group. Eleven unused filters were also randomly chosen to be analyzed in order to determine background radiation. All of these samples were collected and analyzed in order to evaluate the current correction factor being used.

  6. Diffraction Anomalous Near-Edge Structure

    NASA Astrophysics Data System (ADS)

    Moltaji, Habib O., Jr.

    1995-11-01

    To determine the atomic structure about atom of an element in a sample of a condensed multicomponent single crystal, contrast radiation is proposed with the use of Diffraction Anomalous Near-Edge Structure (DANES), which combines the long-range order sensitivity of the x-ray diffraction and short-range order of the x-ray absorption near-edge techniques. This is achieved by modulating the photon energy of the x-ray beam incident on the sample over a range of energies near an absorption edge of the selected element. Due to anomalous dispersion, x-ray diffraction, and x-ray absorption, the DANES intensity with respect to the selected element is obtained in a single experiment. I demonstrate that synchrotron DANES measurements for the single crystal of thin film and the powder samples and provide the same local atomic structural information as the x-ray absorption near-edge with diffraction condition and can be used to provide enhanced site selectivity. I demonstrate calculations of DAFS intensity and measurements of polarized DANES and XANES intensity.

  7. Characterization of functionalized self-assembled monolayers and surface-attached interlocking molecules using near-edge X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Willey, Trevor Michael

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a "molecular riveting" step to hold the mechanically attached

  8. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, Trevor M.

    2004-04-01

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  9. Infrared and X-ray Absorption Near Edge Structure Spectroscopy Analyses of the Titan Haze Simulation (THS) Aerosols Produced at Low Temperature (200 K)

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Salama, Farid

    2016-10-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames. In Titan's atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, Titan's chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (200 K). The residence time of the gas in the pulsed plasma discharge is ~3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry, by adding heavier precursors into the initial N2-CH4 gas mixture. Experiments have been performed in different gas mixtures from the simpler N2-CH4 (98:2 and 95:5), to more complex mixtures: N2-CH4-C2H2 (91:5:4 and 94.5:5:0.5), N2-CH4-C6H6 (90:5:5) and N2-CH4-C2H2-C6H6 (86:5:4:5). Both the gas and solid phases have been analyzed using a combination of in situ and ex situ diagnostics.A recent mass spectrometry analysis of the gas phase demonstrated that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry [1]. The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. The solid phase products are in the form of grains produced in volume and not from interaction on the substrate's surface. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, a finding that could have an impact on Titan haze microphysical models. We will present the latest results of the infrared and x-ray absorption near edge structure spectroscopic measurements that have been performed on all four mixtures. These results provide information on the nature of the different functional groups present in our samples as

  10. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    SciTech Connect

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-05-15

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.

  11. Electromagnetic absorption in the head of adults and children due to mobile phone operation close to the head.

    PubMed

    de Salles, Alvaro A; Bulla, Giovani; Rodriguez, Claudio E Fernández

    2006-01-01

    The Specific Absorption Rate (SAR) produced by mobile phones in the head of adults and children is simulated using an algorithm based on the Finite Difference Time Domain (FDTD) method. Realistic models of the child and adult head are used. The electromagnetic parameters are fitted to these models. Comparison also are made with the SAR calculated in the children model when using adult human electromagnetic parameters values. Microstrip (or patch) antennas and quarter wavelength monopole antennas are used in the simulations. The frequencies used to feed the antennas are 1850 MHz and 850 MHz. The SAR results are compared with the available international recommendations. It is shown that under similar conditions, the 1g-SAR calculated for children is higher than that for the adults. When using the 10-year old child model, SAR values higher than 60% than those for adults are obtained.

  12. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Baas, F.; Allamandola, L. J.; Van De Bult, C. E. P.; Persson, S. E.; Mcgregor, P. J.; Lonsdale, C. J.; Geballe, T. R.

    1984-01-01

    Spectra obtained at a resolving power of 840, for seven protostellar sources in the region of the 4.67-micron fundamental vibrational band of CO, indicate that the deep absorption feature in W33A near 4.61 microns consists of three features which are seen in other sources, but with varying relative strength. UV-irradiation laboratory experiments with 'dirty ice' temperature cycling allow the identification of two of the features cited with solid CO and CO complexed to other molecules. Cyano group-containing molecules have a lower vapor pressure than CO, and can therefore survive in much warmer environments. The formation and location of the CO- and CN-bearing grain mantles and sources of UV irradiation in cold molecular clouds are discussed. Plausible UV light sources can produce the observed cyano group features, but only under conditions in which local heat sources do not cause evaporation of the CO molecules prior to their photoprocessing.

  13. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Bahadur, R.; Suski, K. J.; Cahill, J. F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K. A.

    2013-09-01

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies. Using in-situ chemical mixing state measurements can help us to constrain the limitations of such estimates. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) derived from 10 operational AERONET sites in California are combined for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns in California between 2010 and 2011 are combined in order to validate the methodology used for the estimates of aerosol chemistry using spectral optical properties. Results from this study indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear, since their optical properties are similar. On the other hand, knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  14. Cationic vacancies and anomalous spectral-weight transfer in Ti1-xTaxO2 thin films studied via polarization-dependent near-edge x-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Chen; Barman, Arkajit Roy; Debbichi, Lamjed; Dhar, S.; Santoso, Iman; Asmara, Teguh Citra; Omer, Humair; Yang, Kesong; Krüger, Peter; Wee, Andrew T. S.; Venkatesan, T.; Rusydi, Andrivo

    2013-06-01

    We report the electronic structures of Ta-doped anatase TiO2 thin films grown by pulsed laser deposition (PLD) with varying magnetization using a combination of first-principles calculations and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The roles of Ta doping and Ti vacancies are clarified, and the observed room-temperature ferromagnetism is attributed to the localized magnetic moments at Ti vacancy sites ferromagnetically ordered by electron charge carriers. O K-edge spectra exhibit significant polarization dependence which is discussed and supported by first-principles calculations in relation to both the crystal symmetry and the formation of defects. In particular, anomalous spectral-weight transfer across the entire O K edge for the ferromagnetic thin film is associated exclusively with the occurrence of Ti vacancies and strong correlation effects, which result in the enhancement of the direct interaction between oxygen sites and of the anisotropy of the eg-pσ hybridizations in the out-of-plane component. Our results show that O K-edge NEXAFS spectra can provide reliable experimental probes capable of revealing cationic defects that are intimately related to the ferromagnetism in transition metal oxides.

  15. Pressure and temperature dependence of the absorption edge of a thick Ga{sub 0.92}In{sub 0.08}As{sub 0.985}N{sub 0.015} layer

    SciTech Connect

    Perlin, P.; Subramanya, S.G.; Mars, D.E.; Kruger, J.; Shapiro, N.A.; Siegle, H.; Weber, E.R.

    1998-12-01

    We have studied the pressure and temperature dependence of the absorption edge of a 4-{mu}m-thick layer of the alloy Ga{sub 0.92}In{sub 0.08}As{sub 0.985}N{sub 0.015}. We have measured the hydrostatic pressure coefficient of the energy gap of this alloy to be 51 meV/GPa, which is more than a factor two lower than that of GaAs (116 meV/GPa). This surprisingly large lowering of the pressure coefficient is attributed to the addition of only {approximately}1.5{percent} nitrogen. In addition, the temperature-induced shift of the edge is reduced by the presence of nitrogen. We can explain this reduction by the substantial decrease of the dilatation term in the temperature dependence of the energy gap. {copyright} {ital 1998 American Institute of Physics.}

  16. Si K Edge Measurements of the ISM with Chandra

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Corrales, Lia; Canizares, C. R.

    2016-01-01

    The Si K edge structure in X-ray spectra of the diffuse ISM is expected to exhibit substructure related to the fact that most absorption is due to silicates in dust. We surveyed high resolution X-ray spectra of a large number of bright low-mass X-ray binaries with column densities significantly larger than 10^22 cm^2. Using the to date unprecedented spectral resolution of the high energy transmission gratings onboard the Chandra X-ray observatory we find complex substructure in the Si K edge. The highest resolved spectra show two edges, one at the expected value for atomic, one at the value for most silicate compounds with the dominant contribution of the latter. There is specific subtructure from silicate optical depth caused by absorption and scattering. Some is also variable and can be attributed to ionized absorption in the vicinity of the X-ray sources.

  17. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES)

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Na Pattalung, Warangkana; Hirunyatrakul, Phoosak; Kittikoon, Itthipon; Ho, Kin Fai; Cao, Junji

    2012-01-01

    This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs) and pressure-controlled glove boxes (PCGBs), which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI), even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10. PMID:22988545

  18. Rotation dependence of a phase delay between plasma edge electron density and temperature fields due to a fast rotating, resonant magnetic perturbation field

    SciTech Connect

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Unterberg, B.; Abdullaev, S. S.; Clever, M.; Coenen, J. W.; Kruezi, U.; Schega, D.; Samm, U.; Jakubowski, M. W.

    2010-06-15

    Measurements of the plasma edge electron density n{sub e} and temperature T{sub e} fields during application of a fast rotating, resonant magnetic perturbation (RMP) field show a characteristic modulation of both, n{sub e} and T{sub e} coherent to the rotation frequency of the RMP field. A phase delay PHI between the n{sub e}(t) and T{sub e}(t) waveforms is observed and it is demonstrated that this phase delay PHI is a function of the radius with PHI(r) depending on the relative rotation of the RMP field and the toroidal plasma rotation. This provides for the first time direct experimental evidence for a rotation dependent damping of the external RMP field in the edge layer of a resistive high-temperature plasma which breaks down at low rotation and high resonant field amplitudes.

  19. Near-infrared photoluminescence and ligand K-edge x-ray absorption spectroscopies of AnO2Cl42-(An:u, NP, Pu)

    SciTech Connect

    Wilkerson, Marianne P; Berg, John M; Clark, David L; Conradson, Steven D; Hobart, David E; Kozimor, Stosh A; Scott, Brian L

    2008-01-01

    We have used photoluminescence and X-ray absorption spectroscopies to investigate electronic structures and metal-ligand bonding of a series of An02CI/ ' (An = U, Np, Pu) compounds. Specifically, we will discuss time-resolved near-infrared emission spectra of crystalline Cs2U(An)02C14 (An = Np and Pu) both at 23 K and 75 K, as well as chlorine Kedge X-ray absorption spectra ofCs2An02CI4 (An = U, Np).

  20. Moderate-resolution spectroscopy of the lensed quasar 2237 + 0305 - A search for CA II absorption due to the interstellar medium in the foreground lensing galaxy

    NASA Astrophysics Data System (ADS)

    Hintzen, Paul; Maran, Stephen P.; Michalitsianos, Andrew G.; Foltz, Craig B.; Chaffee, Frederic H., Jr.; Kafatos, Minas

    1990-01-01

    The gravitational lens system 2237+0305 consists of a low-redshift barred spiral galaxy (z = 0.0394) centered on a more distant quasar (z = 1.695). Because the lensing galaxy is nearly face on, spectroscopy of the background quasar affords a unique opportunity to study the interstellar medium in the galaxy's center and . We report moderate-resolution spectroscopy of QSO2237+0305 yielding a 3σ upper limit of 72 mÅ for the rest equivalent width of Ca II K absorption due to gas in the intervening galaxy. Since gas in the Milky Way "thick disk" typically produces 220 mÅ Ca II lines along lines of sight at high galactic latitude, while our line of sight to QSO 2237+0305 is effectively the weighted mean of four lines of sight, each of which transects an entire halo diameter in the lensing galaxy rather than just a radius, our Ca II upper limit argues against the presence of such a thick disk near the center of the lensing galaxy. Also, published studies indicate that at 8200 Å, QSO 2237+0305 suffers roughly 0.5 mag of extinction due to the leasing galaxy. Assuming a normal gas-to-dust ratio and allowing for various sources of uncertainty, this absorption estimate combined with our Ca II K upper limit implies that calcium is depleted with respect to hydrogen by at least 2.7-3.7 dex, compared to solar abundances. This depletion is similar to the more extreme cases seen in our own galaxy, and higher-dispersion observations may further decrease the upper limit on Ca II absorption.

  1. Adsorption and stability of malonic acid on rutile TiO2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Syres, Karen L.; Thomas, Andrew G.; Graham, Darren M.; Spencer, Ben F.; Flavell, Wendy R.; Jackman, Mark J.; Dhanak, Vinod R.

    2014-08-01

    The adsorption of malonic acid on rutile TiO2 (110) has been studied using photoelectron spectroscopy and C K-edge, near edge X-ray fine structure spectroscopy (NEXAFS). Analysis of the O 1s and Ti 2p spectra suggest that the molecule adsorbs dissociatively in a doubly-bidentate adsorption geometry as malonate. The data are unable to distinguish between a chelating bonding mode with the backbone of the molecule lying along the [001] azimuth or a bridging geometry along the direction. Work carried out on a wiggler beamline suggests that the molecule is unstable under irradiation by high-flux synchrotron radiation from this type of insertion device.

  2. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; Sun, Cheng -Jun; Heald, Steve M.; Chow, Gan Moog; Yang, Ping; Chi, Xiao; Lin, Weinan

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy Er. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results, it was suggested that themore » strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of Er. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  3. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging.

    PubMed

    De Brier, Niels; Gomand, Sara V; Donner, Erica; Paterson, David; Smolders, Erik; Delcour, Jan A; Lombi, Enzo

    2016-08-01

    Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue-level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe-speciation data obtained directly from different grain tissues using the newly developed synchrotron-based technique of X-ray absorption near-edge spectroscopy imaging, coupling this with high-definition μ-X-ray fluorescence microscopy to map the co-localization of essential elements. In the aleurone, phosphorus (P) is co-localized with Fe and Zn, and X-ray absorption near-edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co-occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co-localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility. PMID:27038325

  4. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging.

    PubMed

    De Brier, Niels; Gomand, Sara V; Donner, Erica; Paterson, David; Smolders, Erik; Delcour, Jan A; Lombi, Enzo

    2016-08-01

    Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue-level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe-speciation data obtained directly from different grain tissues using the newly developed synchrotron-based technique of X-ray absorption near-edge spectroscopy imaging, coupling this with high-definition μ-X-ray fluorescence microscopy to map the co-localization of essential elements. In the aleurone, phosphorus (P) is co-localized with Fe and Zn, and X-ray absorption near-edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co-occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co-localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility.

  5. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  6. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  7. Sulfur K-edge X-ray absorption spectroscopy of 2Fe-2S ferredoxin: covalency of the oxidized and reduced 2Fe forms and comparison to model complexes.

    PubMed

    Anxolabéhère-Mallart, E; Glaser, T; Frank, P; Aliverti, A; Zanetti, G; Hedman, B; Hodgson, K O; Solomon, E I

    2001-06-13

    Ligand K-edge X-ray absorption spectroscopy (XAS) provides a direct experimental probe of ligand-metal bonding. In previous studies, this method has been applied to mononuclear Fe-S and binuclear 2Fe-2S model compounds as well as to rubredoxins and the Rieske protein. These studies are now extended to the oxidized and reduced forms of ferredoxin I from spinach. Because of its high instability, the mixed-valence state was generated electrochemically in the protein matrix, and ligand K-edge absorption spectra were recorded using an XAS spectroelectrochemical cell. The experimental setup is described. The XAS edge data are analyzed to independently determine the covalencies of the iron-sulfide and -thiolate bonds. The results are compared with those obtained previously for the Rieske protein and for 2Fe-2S model compounds. It is found that the sulfide covalency is significantly lower in oxidized FdI compared to that of the oxidized model complex. This decrease is interpreted in terms of H bonding present in the protein, and its contribution to the reduction potential E degrees is estimated. Further, a significant increase in covalency for the Fe(III)-sulfide bond and a decrease of the Fe(II)-sulfide bond are observed in the reduced Fe(III)Fe(II) mixed-valence species compared to those of the Fe(III)Fe(III) homovalent site. This demonstrates that, upon reduction, the sulfide interactions with the ferrous site decrease, allowing greater charge donation to the remaining ferric center. That is the dominant change in electronic structure of the Fe(2)S(2)RS(4) center upon reduction and can contribute to the redox properties of this active site.

  8. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  9. Direct contact vs. solvent-shared ion pairs in nicl2 electrolytesmonitored by multiplet effects at the ni(ii) l-edge x-ray absorptionDOC_XNOTE=Published by BESSY, Germany in collaboration with LawrenceBerkeley National Laboratory staff.

    SciTech Connect

    Aziz, E.F.; Eisebitt, S.; Eberhardt, W.; de Groot, F.; Chiou,J.W.; Dong, C.L.; Guo, J.-H.

    2007-03-29

    We investigate the local electronic structure in aqueous NiCl{sub 2} electrolytes by Ni L edge x-ray absorption spectroscopy. The experimental findings are interpreted in conjunction with multiplet calculations of the electronic structure and the resulting spectral shape. In contrast to the situation in the solid, the electronic structure in the electrolyte reflects the absence of direct contact Ni-Cl ion pairs. We observe a systematic change of the intensity ratio of singlet and triplet-related spectral features as a function of electrolyte concentration. These changes can be described theoretically by a changed weight of transition matrix contributions with different symmetry. We interpret these findings as being due to progressive distortions of the local symmetry induced by solvent-shared ion pairs.

  10. Analysis of the nitrogen K-edge x-ray absorption spectra of Zn-porphyrin/C70-fulleren complex for solar cells

    NASA Astrophysics Data System (ADS)

    Suchkova, S. A.; Castellarin Cudia, C.; Soldatov, A.

    2009-11-01

    The atomic structure models of Zn-porphyrin/C70 multilayer for solar cells were examined. The local atomic structure of the Zn-porphyrin/C70 complex was refined with the use of previously published results [1]. Since near-edge spectral region (XANES) is sensitive to the three-dimensional atomic geometry, the theoretical analysis of the experimental XANES was performed on the basis of finite difference method (FDMnes 2008 program code). Some electronic properties of the complex were obtained from the DFT calculations performed by means of Amsterdam Density Functional program package.

  11. Thermo-Active Behavior of Ethylene-Vinyl Acetate | Multiwall Carbon Nanotube Composites Examined by in Situ near-Edge X-ray Absorption Fine-Structure Spectroscopy

    PubMed Central

    2015-01-01

    NEXAFS spectroscopy was used to investigate the temperature dependence of thermally active ethylene-vinyl acetate | multiwall carbon nanotube (EVA|MWCNT) films. The data shows systematic variations of intensities with increasing temperature. Molecular orbital assignment of interplaying intensities identified the 1s → π*C=C and 1s → π*C=O transitions as the main actors during temperature variation. Furthermore, enhanced near-edge interplay was observed in prestrained composites. Because macroscopic observations confirmed enhanced thermal-mechanical actuation in prestrained composites, our findings suggest that the interplay of C=C and C=O π orbitals may be instrumental to actuation. PMID:24803975

  12. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  13. Hybrid-like 2/1 flux-pumping and magnetic island evolution due to edge localized mode-neoclassical tearing mode coupling in DIII-D

    NASA Astrophysics Data System (ADS)

    King, J. D.; La Haye, R. J.; Petty, C. C.; Osborne, T. H.; Lasnier, C. J.; Groebner, R. J.; Volpe, F. A.; Lanctot, M. J.; Makowski, M. A.; Holcomb, C. T.; Solomon, W. M.; Allen, S. L.; Luce, T. C.; Austin, M. E.; Meyer, W. H.; Morse, E. C.

    2012-02-01

    Direct analysis of internal magnetic field pitch angles measured using the motional Stark effect diagnostic shows m /n=2/1 neoclassical tearing modes exhibit stronger poloidal magnetic flux-pumping than typical hybrids containing m /n=3/2 modes. This flux-pumping causes the avoidance of sawteeth, and is present during partial electron cyclotron current drive suppression of the tearing mode. This finding could lead to hybrid discharges with higher normalized fusion performance at lower q95. The degree of edge localized mode-neoclassical tearing mode (ELM-NTM) coupling and the strength of flux-pumping increase with beta and the proximity of the modes to the ELMing pedestal. Flux-pumping appears independent of magnetic island width. Individual ELM-NTM coupling events show a rapid timescale drop in the island width followed by a resistive recovery that is successfully modeled using the modified Rutherford equation. The fast transient drop in island width increases with ELM size.

  14. High-resolution study of the x-ray resonant Raman scattering process around the 1s absorption edge for aluminium, silicon, and their oxides

    SciTech Connect

    Szlachetko, J.; Dousse, J.-Cl.; Berset, M.; Fennane, K.; Szlachetko, M.; Hoszowska, J.; Barrett, R.; Pajek, M.; Kubala-Kukus, A.

    2007-02-15

    X-ray resonant Raman scattering (RRS) spectra of Al, Al{sub 2}O{sub 3}, Si, and SiO{sub 2} were measured at the European Synchrotron Radiation Facility, using a high-resolution Bragg-type curved crystal spectrometer. The x-ray RRS spectra were collected at several beam energies tuned below the 1s absorption thresholds of Al and Si. Differences in the spectral features between the elemental samples and the oxide ones were clearly observed. The data were interpreted using the second-order perturbation theory within the Kramers-Heisenberg (KH) approach. It is shown that, using the KH formalism, oscillator strengths that are similar to the ones deduced from x-ray absorption measurements can be extracted from emission x-ray RRS spectra. The total cross sections for the x-ray RRS process were derived for the different photon beam energies and compared with theoretical predictions. For elemental silicon, the weak 1s-3p excitation was observed and found to be consistent with results of density of states calculations.

  15. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  16. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  17. Origin of improved scintillation efficiency in (Lu,Gd){sub 3}(Ga,Al){sub 5}O{sub 12}:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study

    SciTech Connect

    Wu, Yuntao Luo, Jialiang; Ren, Guohao; Nikl, Martin

    2014-01-01

    In the recent successful improvement of scintillation efficiency in Lu{sub 3}Al{sub 5}O{sub 12}:Ce driven by Ga{sup 3+} and Gd{sup 3+} admixture, the “band-gap engineering” and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce{sup 3+}/Ce{sup 4+} ratio by Ga{sup 3+} admixture was evidenced, while it was kept nearly stable with the Gd{sup 3+} admixture. Ce valence instability and Ce{sup 3+}/Ce{sup 4+} ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce{sup 3+} and Fermi level.

  18. Temperature-dependent local structure of NdFeAsO(1-x)F(x) system using arsenic K-edge extended x-ray absorption fine structure.

    PubMed

    Joseph, B; Iadecola, A; Malavasi, L; Saini, N L

    2011-07-01

    Local structure of NdFeAsO(1-x)F(x) (x = 0.0, 0.05, 0.15 and 0.18) high temperature iron-pnictide superconductor system is studied using arsenic K-edge extended x-ray absorption fine structure measurements as a function of temperature. Fe-As bond length shows only a weak temperature and F-substitution dependence, consistent with the strong covalent nature of this bond. The temperature dependence of the mean square relative displacements of the Fe-As bond length are well described by the correlated Einstein model for all the samples, but with different Einstein temperatures for the superconducting and non-superconducting samples. The results indicate distinct local Fe-As lattice dynamics in the superconducting and non-superconducting iron-pnictide systems.

  19. Probing cation antisite disorder in Gd2 Ti2 O7 pyrochlore by site-specific near-edge x-ray-absorption fine structure and x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Nachimuthu, P.; Thevuthasan, S.; Engelhard, M. H.; Weber, W. J.; Shuh, D. K.; Hamdan, N. M.; Mun, B. S.; Adams, E. M.; McCready, D. E.; Shutthanandan, V.; Lindle, D. W.; Balakrishnan, G.; Paul, D. M.; Gullikson, E. M.; Perera, R. C. C.; Lian, J.; Wang, L. M.; Ewing, R. C.

    2004-09-01

    Disorder in Gd2Ti2O7 is investigated by near-edge x-ray-absorption fine structure (NEXAFS) and x-ray photoelectron spectroscopy (XPS). NEXAFS shows Ti4+ ions occupy octahedral sites with a tetragonal distortion induced by vacant oxygen sites. O1s XPS spectra obtained with a charge neutralization system from Gd2Ti2O7(100) and the Gd2Ti2O7 pyrochlore used by Chen [Phys. Rev. Lett. 88, 105901 (2002)], both yielded a single peak, unlike the previous result on the latter that found two peaks. The current results give no evidence for an anisotropic distribution of Ti and O. The extra features reported in the aforementioned communication resulted from charging effects and incomplete surface cleaning. Thus, a result confirming the direct observation of simultaneous cation-anion antisite disordering and lending credence to the split vacancy model has been clarified.

  20. Preliminary optical design of a varied line-space spectrograph for the multi-channel detection of near-edge X-ray absorption fine structure (NEXAFS) spectra in the 280-550 eV energy range

    SciTech Connect

    Wheeler, B.S.; McKinney, W.R.; Hussain, Z.; Padmore, H.

    1996-07-01

    The optical design of a varied line-space spectrograph for the multi-channel recording of NEXAFS spectra in a single {open_quotes}snapshot{close_quotes} is proposed. The spectrograph is to be used with a bending magnet source on beamline 7.3.2 at the Advanced Light Source (ALS). Approximately 20 volts of spectra are simultaneously imaged across a small square of material sample at each respective K absorption edge of carbon, nitrogen, and oxygen. Photoelectrons emitted from the material sample will be collected by an electron imaging microscope, the view field of which determines the sampling size. The sample also forms the exit slit of the optical system. This dispersive method of NEXAFS data acquisition is three to four orders of magnitude faster than the conventional method of taking data point-to-point using scanning of the grating. The proposed design is presented along with the design method and supporting SHADOW raytrace analysis.

  1. Theoretical analysis of X-ray magnetic circular dichroism at the Yb L2, 3 absorption edges of YbInCu4 in high magnetic fields around the field-induced valence transition

    NASA Astrophysics Data System (ADS)

    Kotani, A.

    2012-01-01

    High-magnetic-field X-ray absorption spectra (XAS) and its X-ray magnetic circular dichroism (XMCD) at the Yb L2, 3 edges of YbInCu4 are calculated around the field-induced valence transition at about 30 T. The calculations are made by using a new theoretical framework with an extended single impurity Anderson model (SIAM) developed recently by the present author. Two parameters in SIAM, the 4 f level and the hybridization strength, are taken as different values in low- and high-magnetic-field phases of the field-induced valence transition. The calculated results are compared with recent experimental data measured by Matsuda et al. by utilizing a miniature pulsed magnet up to 40 T. The field-dependence of the calculated XMCD spectra is explained in detail on the basis of the field-dependence of the Yb 4 f wavefunctions in the ground state. Some possibilities are discussed on the negative XMCD signal observed experimentally at the L2 edge.

  2. Sound absorption in metallic foams

    NASA Astrophysics Data System (ADS)

    Lu, T. J.; Hess, Audrey; Ashby, M. F.

    1999-06-01

    The sound absorption capacity of one type of aluminum alloy foams—trade name Alporas—is studied experimentally. The foam in its as-received cast form contains closed porosities, and hence does not absorb sound well. To make the foam more transparent to air motion, techniques based on either rolling or hole drilling are used. Under rolling, the faces of some of the cells break to form small sharp-edged cracks as observed from a scanning electronic microscope. These cracks become passage ways for the in-and-out movement of air particles, resulting in sound absorption improvement. The best performance is nevertheless achieved via hole drilling where nearly all of the sound can be absorbed at selected frequencies. Combining rolling with hole drilling does not appear to lend additional benefits for sound absorption. Image analysis is carried out to characterize the changes in cell morphologies due to rolling/compression, and the drop in elastic modulus due to the formation of cracks is recorded. The effects of varying the relative foam density and panel thickness on sound absorption are measured, and optimal relative density and thickness of the panel are identified. Analytical models are used to explain the measured increase in sound absorption due to rolling and/or drilling. Sound absorbed by viscous flow across small cracks appears to dominate over that dissipated via other mechanisms.

  3. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Kotani, Akio; Matsuda, Yasuhiro H.; Nojiri, Hiroyuki

    2009-11-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi2(Si0.18Ge0.82)2 and YbInCu4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  4. Acid-site characterization of water-oxidized alumina films by near-edge x-ray absorption and soft x-ray photoemission

    SciTech Connect

    O`Hagan, P.J.; Merrill, R.P.; Rhodin, T.N.; Woronick, S.W.; Shinn, N.D.; Woolery, G.L.; Chester, A.W.

    1994-12-01

    Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. A maximum in the defect-DOS occurs for oxides heated to 350 to 400C, which is where the materials exhibit maximum Lewis acidity with respect to C{sub 2}H{sub 4}. Adsorbed C{sub 2}H{sub 4} produces thermally active C{sub 2} species which interact covalently with the defect-DOS and nonbonding O(2p) from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni evaporated onto the surface, however, transfers charge directly to Al species and does not interact with O atoms at the defect site. The defect-DOS is regenerated when the C{sub 2} species decomposes or when Ni migrates thermally through the oxide layer.

  5. Analysis of modulated Ho2PdSi3 crystal structure at Pd K and Ho L absorption edges using resonant elastic X-scattering.

    PubMed

    Nentwich, Melanie; Zschornak, Matthias; Richter, Carsten; Novikov, Dmitri; Meyer, Dirk C

    2016-02-17

    Replacing Si atoms with a transition metal in rare earth disilicides results in a family of intermetallic compounds with a variety of complex magnetic phase transitions. In particular, the family R 2PdSi3 shows interesting magnetic behavior arising from the electronic interaction of the R element with the transition metal in the Si network, inducing the specific structure of the related phase. Within this series, the highest degree of superstructural order was reported for the investigated representative Ho2PdSi3, although several competing superstructures have been proposed in literature. The diffraction anomalous fine structure (DAFS) method is highly sensitive to the local structure of chosen atoms at specific positions within the unit cell of a crystalline phase. In combination with x-ray absorption fine structure (XAFS), this sophisticated synchrotron method has been applied in the present work to several selected reflections, i.a. a satellite reflection. Extensive electronic modeling was used to test the most relevant structure proposals. The [Formula: see text] superstructure has been strongly confirmed, although a small amount of disorder in the modulation is very probable. PMID:26788844

  6. Bandgap and optical absorption edge of GaAs{sub 1−x}Bi{sub x} alloys with 0 < x < 17.8%

    SciTech Connect

    Masnadi-Shirazi, M.; Lewis, R. B.; Bahrami-Yekta, V.; Tiedje, T.; Chicoine, M.; Servati, P.

    2014-12-14

    The compositional dependence of the fundamental bandgap of pseudomorphic GaAs{sub 1−x}Bi{sub x} layers on GaAs substrates is studied at room temperature by optical transmission and photoluminescence spectroscopies. All GaAs{sub 1−x}Bi{sub x} films (0 ≤ x ≤ 17.8%) show direct optical bandgaps, which decrease with increasing Bi content, closely following density functional theory predictions. The smallest measured bandgap is 0.52 eV (∼2.4 μm) at 17.8% Bi. Extrapolating a fit to the data, the GaAs{sub 1−x}Bi{sub x} bandgap is predicted to reach 0 eV at 35% Bi. Below the GaAs{sub 1−x}Bi{sub x} bandgap, exponential absorption band tails are observed with Urbach energies 3–6 times larger than that of bulk GaAs. The Urbach parameter increases with Bi content up to 5.5% Bi, and remains constant at higher concentrations. The lattice constant and Bi content of GaAs{sub 1−x}Bi{sub x} layers (0 < x ≤ 19.4%) are studied using high resolution x-ray diffraction and Rutherford backscattering spectroscopy. The relaxed lattice constant of hypothetical zincblende GaBi is estimated to be 6.33 ± 0.05 Å, from extrapolation of the Rutherford backscattering spectrometry and x-ray diffraction data.

  7. Effects of sulfation level on the desulfation behavior of pre-sulfated Pt BaO/Al2O3 lean NOx trap catalysts: a combined H2 Temperature-Programmed Reaction, in-situ sulfur K-edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    SciTech Connect

    Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun; Wang, Xianqin; Hanson, Jonathan C.; Engelhard, Mark H.; Peden, Charles HF

    2009-04-03

    Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rather than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.

  8. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    SciTech Connect

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition

  9. Study on the d state of platinum in Pt/SiO sub 2 and Na/Pt/SiO sub 2 catalysts under C double bond C hydrogenation conditions by X-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Yoshitake, Hideaki; Iwasawa, Yasuhiro )

    1991-09-19

    The change in the d-electron density of platinum during D{sub 2} + CH{sub 2}{double bond}CHX reactions on Pt/SiO{sub 2} and Na/Pt/SiO{sub 2} catalysts and its influence on the catalysis were studied by X-ray absorption near-edge structure (XANES) spectroscopy, kinetics and FT-IR. It was demonstrated from the change of the white lines in XANES spectra at Pt L{sub 2} and L{sub 3} edges that CH{sub 2}{double bond}CHX (X = H, CH{sub 3}, COCH{sub 3}, CF{sub 3}, and CN) is adsorbed on the Pt surface and extracts the electrons of the d state. Hence, the deuterogenation rate is reduced as the value of Hammett's {sigma}{sub P} increases. The linear free energy relationship between the reaction rate and {sigma}{sub P} was observed for the deuterogenation of CH{sub 2}{double bond}CHX. The rate of ethene deuterogenation was promoted by Na{sub 2}O addition. The electron density of unoccupied d states of pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. The electron density of unoccupied d states of Pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. However, most of these additional electrons were observed to move to ethene under reaction conditions. The acceptor of the electrons was suggested by di-{sigma}-ethene by the shift of {upsilon}(C-H). The kinetic parameters are discussed in relation to the change in the d state of Pt as a function of {sigma}{sub P} and Na quantity.

  10. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  11. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system.

    PubMed

    Hirtl, Rene; Schmid, Gernot

    2013-09-21

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues. PMID:24002053

  12. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system

    NASA Astrophysics Data System (ADS)

    Hirtl, Rene; Schmid, Gernot

    2013-09-01

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues.

  13. Properties of impurity-bearing ferrihydrite II: Insights into the surface structure and composition of pure, Al- and Si-bearing ferrihydrite from Zn(II) sorption experiments and Zn K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cismasu, A. Cristina; Levard, Clément; Michel, F. Marc; Brown, Gordon E.

    2013-10-01

    Naturally occurring ferrihydrite often contains impurities such as Al and Si, which can impact its chemical reactivity with respect to metal(loid) adsorption and (in)organic or microbially induced reductive dissolution. However, the surface composition of impure ferrihydrites is not well constrained, and this hinders our understanding of the factors controlling the surface reactivity of these nanophases. In this study, we conducted Zn(II) adsorption experiments combined with Zn K-edge X-ray absorption spectroscopy measurements on pure ferrihydrite (Fh) and Al- or Si-bearing ferrihydrites containing 10 and 20 mol% Al or Si (referred to as 10AlFh, 20AlFh and 10SiFh, 20SiFh) to evaluate Zn(II) uptake in relation to Zn(II) speciation at their surfaces. Overall, Zn(II) uptake at the surface of AlFh is similar to that of pure Fh, and based on Zn K-edge EXAFS data, Zn(II) speciation at the surface of Fh and AlFh also appears similar. Binuclear bidentate IVZn-VIFe complexes (at ∼3.46 Å (2C[1]) and ∼3.25 Å (2C[2])) were identified at low Zn(II) surface coverages from Zn K-edge EXAFS fits. With increasing Zn(II) surface coverage, the number of second-neighbor Fe ions decreased, which was interpreted as indicating the formation of IVZn polymers at the ferrihydrite surface, and a deviation from Langmuir uptake behavior. Zn(II) uptake at the surface of SiFh samples was more significant than at Fh and AlFh surfaces, and was attributed to the formation of outer-sphere complexes (on average 24% of sorbed Zn). Although similar Zn-Fe/Zn distances were obtained for the Zn-sorbed SiFh samples, the number of Fe second neighbors was lower in comparison with Fh. The decrease in second-neighbor Fe is most pronounced for sample 20SiFh, suggesting that the amount of reactive surface Fe sites diminishes with increasing Si content. Although our EXAFS results shown here do not provide evidence for the existence of Zn-Al or Zn-Si complexes, their presence is not excluded for Zn-sorbed Al

  14. The Red Edge Problem in asteroid band parameter analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.

    2016-04-01

    Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

  15. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  16. Edge Bioinformatics

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in amore » genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance« less

  17. Probing the f-state configuration of URu2Si2 with U LIII-edge resonant x-ray absorption spectroscopy

    SciTech Connect

    Medling, S. A.; Booth, C. H.; Tobin, J. G.; Baumbach, R. E.; Bauer, E. D.; Sokaras, D.; Nordlund, D.; Weng, T. C.

    2015-09-05

    It has often been said that the most interesting physics occurs when competing interactions are of nearly the same magnitude. Such a situation is surely occurring at URu2Si2’s so-called “hidden-order transition”, which garners its name from the missing entropy at a 17.5 K phase transition relative to that expected for a conventional antiferromagnetic phase transition, despite the presence of only a very small ordered magnetic moment. Despite this discrepancy being identified in 1985, the identification of the order parameter remains elusive, although progress toward understand- ing this transition has been steady since that time, and URu2Si2 remains an important research subject today. The work described provides measures of the 5f orbital occupancy and itinerancy using resonant x-ray emission spectroscopy (RXES) at the U LIII absorption edge and measuring U Lα1 emission that potentially acts as a dividing line between different classes of “hidden-order” theories.

  18. Interrogation of Surface, Skin, and Core Orientation in Thermotropic Liquid-Crystalline Copolyester Moldings by Near-Edge X-ray Absorption Fine Structure and Wide-Angle X-ray Scattering

    SciTech Connect

    Rendon,S.; Bubeck, R.; Thomas, L.; Burghardt, W.; Hexemer, A.; Fischer, D.

    2007-01-01

    Injection molding thermotropic liquid-crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. 'Skin-core' morphologies are often observed in TLCP moldings. Given that both 'core' and 'skin' orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two-dimensional wide-angle X-ray scattering (WAXS) in transmission and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4'-dihydroxy-{alpha}-methylstilbene (DH{alpha}MS)-based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on- and off- axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature.

  19. Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Matsuyama, Takuya; Deguchi, Minako; Mitsuhara, Kei; Ohta, Toshiaki; Mori, Takuya; Orikasa, Yuki; Uchimoto, Yoshiharu; Kowada, Yoshiyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2016-05-01

    Electronic structure changes of sulfurs in amorphous TiS3 and MoS3 for positive electrodes of all-solid-state lithium batteries are examined by X-ray photoelectron spectroscopy (XPS) and the X-ray absorption near edge structure (XANES). The all-solid-state cell with amorphous TiS3 electrode shows the reversible capacity of about 510 mAh g-1 for 10 cycles with sulfur-redox in amorphous TiS3 during charge-discharge process. On the other hand, the cell with amorphous MoS3 shows the 1st reversible capacity of about 720 mAh g-1. The obtained capacity is based on the redox of both sulfur and molybdenum in amorphous MoS3. The irreversible capacity of about 50 mAh g-1 is observed at the 1st cycle, which is attributed to the irreversible electronic structure change of sulfur during the 1st cycle. The electronic structure of sulfur in amorphous MoS3 after the 10th charge is similar to that after the 1st charge. Therefore, the all-solid-state cell with amorphous MoS3 electrode shows relatively good cyclability after the 1st cycle.

  20. Errors in spectroscopic measurements of SO/sub 2/ due to nonexponential absorption of laser radiation, with application to the remote monitoring of atmospheric pollutants

    SciTech Connect

    Brassington, D.J.; Moncrieff, T.M.; Felton, R.C.; Jolliffe, B.W.; Marx, B.R.; Rowley, W.R.C.; Woods, P.T.

    1984-02-01

    Methods of measuring the concentration of atmospheric pollutants by laser absorption spectroscopy, such as differential absorption lidar (DIAL) and integrated long-path techniques, all rely on the validity of Beer's exponential absorption law. It is shown here that departures from this law occur if the probing laser has a bandwidth larger than the wavelength scale of structure in the absorption spectrum of the pollutant. A comprehensive experimental and theoretical treatment of the errors resulting from these departures is presented for the particular case of SO/sub 2/ monitoring at approx.300 nm. It is shown that the largest error occurs where the initial calibration measurement of absorption cross section is made at low pressure, in which case errors in excess of 5% in the cross section could occur for laser bandwidths >0.01 nm. Atmospheric measurements by DIAL or long-path methods are in most cases affected less, because pressure broadening smears the spectral structure, but when measuring high concentrations errors can exceed 5%.

  1. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    SciTech Connect

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J.; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D.

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  2. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  3. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  4. Edge phonons in black phosphorus.

    PubMed

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  5. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  6. Impaired drug absorption due to high stomach pH: a review of strategies for mitigation of such effect to enable pharmaceutical product development.

    PubMed

    Mitra, Amitava; Kesisoglou, Filippos

    2013-11-01

    Published reports have clearly shown that weakly basic drugs which have low solubility at high pH could have impaired absorption in patients with high gastric pH thus leading to reduced and variable bioavailability. Since such reduction in exposure can lead to significant loss of efficacy, it is imperative to (1) understand the behavior of the compound as a function of stomach pH to inform of any risk of bioavailability loss in clinical studies and (2) develop a robust formulation which can provide adequate exposure in achlorhydric patients. In this review paper, we provide an overview of the factors that can cause high gastric pH in human, discuss clinical and preclinical pharmacokinetic data for weak bases under conditions of normal and high gastric pH, and give examples of formulation strategies to minimize or mitigate the reduced absorption of weakly basic drugs under high gastric pH conditions. It should be noted that the ability to overcome pH sensitivity issues is highly compound dependent and there are no obvious and general solutions to overcome such effect. Further, we discuss, along with several examples, the use of biopharmaceutical tools such as in vitro dissolution, absorption modeling, and gastric pH modified animal models to assess absorption risk of weak bases in high gastric pH and also the use of these tools to enable development of formulations to mitigate such effects.

  7. Electrochemistry of folded graphene edges.

    PubMed

    Ambrosi, Adriano; Bonanni, Alessandra; Pumera, Martin

    2011-05-01

    There is enormous interest in the investigation of electron transfer rates at the edges of graphene due to possible energy storage and sensing applications. While electrochemistry at the edges and the basal plane of graphene has been studied in the past, the new frontier is the electrochemistry of folded graphene edges. Here we describe the electrochemistry of folded graphene edges and compare it to that of open graphene edges. The materials were characterized in detail by high-resolution transmission electron microscopy, Raman spectroscopy, high-resolution X-ray photoelectron spectroscopy, electrochemical impedance spectroscopy and cyclic voltammetry. We found that the heterogeneous electron transfer rate is significantly lower on folded graphene edges compared to open edge sites for ferro/ferricyanide, and that electrochemical properties of open edges offer lower potential detection of biomarkers than the folded ones. It is apparent, therefore, that for sensing and biosensing applications the folded edges are less active than open edges, which should then be preferred for such applications. As folded edges are the product of thermal treatment of multilayer graphene, such thermal procedures should be avoided when fabricating graphene for electrochemical applications.

  8. Near-edge x-ray absorption fine-structure study of ion-beam-induced phase transformation in Gd2(Ti1-yZry)2O7

    NASA Astrophysics Data System (ADS)

    Nachimuthu, P.; Thevuthasan, S.; Shutthanandan, V.; Adams, E. M.; Weber, W. J.; Begg, B. D.; Shuh, D. K.; Lindle, D. W.; Gullikson, E. M.; Perera, R. C. C.

    2005-02-01

    The structural and electronic properties of Gd2(Ti1-yZry)2O7 (y =0-1) pyrochlores following a 2.0-MeV Au2+ ion-beam irradiation (˜5.0×1014Au2+/cm2) have been investigated by Ti2p and O1s near-edge x-ray absorption fine structure (NEXAFS). The irradiation of Gd2(Ti1-yZry)2O7 leads to the phase transformation from the ordered pyrochlore structure (Fd3m) to the defect fluorite structure (Fm3m) regardless of Zr concentration. Irradiated Gd2(Ti1-yZry)2O7 with y ⩽0.5 are amorphous, although significant short-range order is present. Contrasting to this behavior, compositions with y ⩾0.75 retain crystallinity in the defect fluorite structure following irradiation. The local structures of Zr4+ in the irradiated Gd2(Ti1-yZry)2O7 with y ⩾0.75 determined by NEXAFS are the same as in the cubic fluorite-structured yttria-stabilized zirconia (Y -ZrO2), thereby providing conclusive evidence for the phase transformation. The TiO6 octahedra present in Gd2(Ti1-yZry)2O7 are completely modified by ion-beam irradiation to TiOx polyhedra, and the Ti coordination is increased to eight with longer Ti -O bond distances. The similarity between cation sites and the degree of disorder in Gd2Zr2O7 facilitate the rearrangement and relaxation of Gd, Zr, and O ions/defects. This inhibits amorphization during the ion-beam-induced phase transition to the radiation-resistant defect fluorite structure, which is in contrast to the ordered Gd2Ti2O7.

  9. Enhanced photoluminescence due to two-photon enhanced three-photon absorption in Mn{sup 2+}-doped ZnS quantum dots

    SciTech Connect

    Subha, Radhu; Nalla, Venkatram; Ji, Wei; Feng, Xiaobo; Vijayan, C.

    2014-10-15

    In this work, we have investigated the multi-photon absorption induced photoluminescence in Mn{sup 2+}-doped ZnS quantum dots in the wavelength range 860 – 1050 nm (Near-Infrared Window I). The observed three-photon action cross-section has been compared with the theoretical prediction under four band approximation. An enhancement of four to five orders has been observed in the range from 970 to 1050 nm compared to the theoretical value, which is attributed to two-photon enhanced three-photon absorption. Transient lifetime measurements reveal a lifetime of 0.35 ± 0.3 ms, which is four to five orders higher than other conventional fluorescent probes.

  10. Edge detection

    NASA Astrophysics Data System (ADS)

    Hildreth, E. C.

    1985-09-01

    For both biological systems and machines, vision begins with a large and unwieldly array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene such as the location of object boundaries and the structure, color and texture of object surfaces, from the two-dimensional image that is projected onto the eye or camera. This goal is not achieved in a single step: vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clues about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processing has led to extensive research on their detection, description and use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.

  11. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  12. X-ray photoelectron spectroscopy and x-ray absorption near edge structure study of copper sites hosted at the internal surface of ZSM-5 zeolite: A comparison with quantitative and energetic data on the CO and NH3 adsorption

    NASA Astrophysics Data System (ADS)

    Bolis, V.; Maggiorini, S.; Meda, L.; D'Acapito, F.; Palomino, G. Turnes; Bordiga, S.; Lamberti, C.

    2000-11-01

    The oxidation state of Cu species dispersed in a Cu-ZSM-5 zeolite obtained by a nonconventional gas-phase CuCl exchange, and nominally containing only Cu(I) species, was studied by x-ray photoelectron spectroscopy (XPS) and x-ray absorption near edge structure (XANES) analyses. The oxidation of Cu(I) species to Cu(II) by simple exposure to the atmosphere and subsequent reduction by thermal activation in vacuo was monitored. The quantitative and energetic aspects of the formation of carbonyl-like and amino-complexes at the metallic sites was studied by means of adsorption microcalorimetry. CO and NH3 were used as probe molecules in order to assess the coordinative unsaturation of the Cu(I) cations. Adsorption heats comprised in the 130-40 kJ mol-1 interval were obtained for the formation of both type of complexes. The perturbation induced on the Cu centers and/or on the zeolite matrix by the adsorption of the probe molecules was monitored by parallel experiments of XPS, IR, and XANES. A significant fraction of CO and NH3 molecules are irreversibly held on Cu(I) sites even after outgassing at room temperature (RT) at a final dynamic vacuum of 10-5 Torr. On the contrary, no evidence of Cu(I)/CO or of Cu(I)/NH3 complexes was observed by XPS, indicating that such adducts are totally destroyed upon outgassing at 10-9 Torr. This fact implies a reconsideration of what was previously considered as a "stable adduct." XPS allowed to reveal the existence of ammonia adsorbed on defective Al(III) species, and to explain the chemical nature of species formed at the earliest stages of NH3 dosage and characterized by a heat of adsorption as high as 180 kJ mol-1. By comparing the quantitative XPS and volumetric-calorimetric data it was inferred that a significant gradient of defects amount is present in the system. Finally, from the whole set of XPS measurements here reported and from parallel blank experiments on the ZSM-5 zeolite before Cu-exchange, a calibration scale for the N(1

  13. Low scatter edge blackening compounds for refractive optical elements

    SciTech Connect

    Lewis, I.T.; Telkamp, A.R. ); Ledebuhr, A.G. )

    1989-07-25

    Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric refractive lenses to Lawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-matched absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflected or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane. Perkin-Elmer and LLNL undertook a program to develop epoxy-based dye carrier compounds with refractive indices corresponding to the glass types used in the WFOV lens. This program involved the measuring of the refractive index of a number of epoxy compounds and catalysts, the experimental combination of epoxies to match our glass indices, and the identification of a suitable non-scattering absorptive dye. 10 figs., 3 tabs.

  14. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  15. Magneto-thermoelectric effects in the two-dimensional electron gas of a HgTe quantum well due to THz laser heating by cyclotron resonance absorption

    NASA Astrophysics Data System (ADS)

    Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce

    2015-03-01

    HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.

  16. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film.

    PubMed

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-03-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm(-2), AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials. PMID:24477668

  17. Shape-dependent canny edge detector

    NASA Astrophysics Data System (ADS)

    Panetta, Karen A.; Agaian, Sos S.; Nercessian, Shahan C.; Almunstashri, Ali A.

    2011-08-01

    Edges characterize the boundaries of objects in images and are informative structural cues for computer vision and target/object detection and recognition systems. The Canny edge detector is widely regarded as the edge detection standard. It is fairly adaptable to different environments, as its parametric nature attempts to tailor the detection of edges based on image-dependent characteristics or the particular requirements of a given implementation. Though it has been used in a myriad of image processing tasks, the Canny edge detector is still vulnerable to edge losses, localization errors, and noise sensitivity. These issues are largely due to the key tradeoff made in the scale and size of the edge detection filters used by the algorithm. Small-scaled filters are sensitive to edges but also to noise, whereas large-scaled filters are robust to noise but could filter out fine details. In this paper, novel edge detection kernel generalizations and a shape-dependent edge detector are introduced to alleviate these shortcomings. While most standard edge detection algorithms are based on convolving the input image with fixed size square kernels, this paper will illustrate the benefits of different filter sizes, and more importantly, different kernel shapes for edge detection. Moreover, new edge fusion methods are introduced to more effectively combine the individual edge responses. Existing edge detectors, including the Canny edge detector, can be obtained from the generalized edge detector by specifying corresponding parameters and kernel shapes. The proposed representations and edge detector have been qualitatively and quantitatively evaluated on several different types of image data. Computer simulations demonstrate that nonsquare kernel approaches can outperform square kernel approaches such as Canny, Sobel, Prewitt, Roberts, and others, providing better tradeoffs between noise rejection, accurate edge localization, and resolution. Where possible, Pratt's figure of

  18. Unified EDGE

    SciTech Connect

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines, and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in “Basis Manual Set” by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.

  19. Unified EDGE

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines,more » and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in “Basis Manual Set” by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.« less

  20. The Journal of Nutrition, Volume 106, 1976: Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread.

    PubMed

    Reinhold, J G; Faradji, B; Abadi, P; Ismail-Beigi, F

    1991-07-01

    During a 20 day period of high fiber consumption in the form of bread made partly from wheaten wholemeal, two men developed negative balances of calcium, magnesium, zinc and phosphorus due to increased fecal excretion of each element. The fecal losses correlated closely with fecal dry matter and phosphorus. Fecal dry matter, in turn, was directly proportional to fecal fiber excretion. Balances of nitrogen remained positive. Mineral elements were well-utilized by the same subjects during a 20 day period of white bread consumption.

  1. Assessment of soil screening levels due to ingestion and dermal absorption of chrysene and benzo[k]fluoranthene and appropriate remediation method for Dorson Abad.

    PubMed

    Gitipour, Saeid; Firouzbakht, Saeid; Mirzaee, Ehsan; Alimohammadi, Masoumeh

    2014-06-01

    For years, the Dorson Abad region has been extremely polluted by Tehran Oil Refinery due to leaking from its underground pipelines, storage tanks, and evaporation ponds. To assess the concentrations of hazardous polycyclic aromatic hydrocarbon (PAH) compounds, soil samples were collected from the grounds at and adjacent to a polluted stream located in the study area. The samples were then analyzed, and the results revealed that 12 of the 16 USEPA PAHs were noticeably present in the soil, which, among them, benzo[k]fluoranthene and chrysene had the highest concentrations with averages of 357.17 and 173.38 mg/kg, respectively. A comparison of the obtained concentrations with the soil screening levels indicated that both benzo[k]fluoranthene and chrysene concentrations were substantially higher than EPA screening level values, signifying the necessity of soil remediation for these contaminants in the area. Techniques such as soil washing/flushing, high temperature thermal desorption, and solidification/stabilization were investigated for treatment of the contaminated soil; solidification/stabilization is recommended as an applicable and cost-effective remediation method for Dorson Abad due to the size of the region, relatively low cost of the binder (cement), and low volatility of benzo[k]fluoranthene and chrysene.

  2. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  3. Thermally detected optical absorption in sophisticated nitride structures

    NASA Astrophysics Data System (ADS)

    Vasson, A.; Shubina, T. V.; Leymarie, J.

    2005-02-01

    The thermally detected optical absorption (TDOA) is applied to elucidate peculiarities of absorption in nitride structures of unusual morphology like GaN nanocolumns or InN layers with various imperfections. A study of GaN structures permits us to establish position of an absorption edge in TDOA spectra. We demonstrate that the absorption edge is different in GaN regions of opposite polarities. In InN with metallic In inclusions, this technique enable separation of InN interband absorption and extinction related to the Mie resonances, if the latter are below the principal absorption edge.

  4. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  5. Tunable skewed edges in puckered structures

    NASA Astrophysics Data System (ADS)

    Grujić, Marko M.; Ezawa, Motohiko; Tadić, Milan Ž.; Peeters, François M.

    2016-06-01

    We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field Ez. A topological argument is presented, revealing the condition for the emergence of such edge states.

  6. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  7. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  8. Low Scatter Edge Blackening Compounds For Refractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Lewis, Isabella T.; Telkamp, Arthur R.; Ledebuhr, Arno G.

    1990-01-01

    Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric refractive lenses to Lawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-matched absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflected or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane. Perkin-Elmer and LLNL undertook a program to develop epoxy-based dye carrier compounds with refractive indices corresponding to the glass types used in the WFOV lens. This program involved the measuring of the refractive index of a number of epoxy compounds and catalysts, the experimental combination of epoxies to match our glass indices, and the identification of a suitable non-scattering absorptive dye. Measurements on these blacks showed Bidirectional Reflectance Distribution Functions (BRDFs) between 1.4 and 3.1 orders of magnitude lower than Perkin

  9. Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh.

    PubMed

    Van der Snickt, Geert; Janssens, Koen; Dik, Joris; De Nolf, Wout; Vanmeert, Frederik; Jaroszewicz, Jacub; Cotte, Marine; Falkenberg, Gerald; Van der Loeff, Luuk

    2012-12-01

    Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO(4)·H(2)O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting "Flowers in a blue vase" by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO(4) compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd(2+) ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO(4)(2-) anions, for their part, found a suitable reaction partner in Pb(2+) ions stemming from a dissolved lead

  10. Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh.

    PubMed

    Van der Snickt, Geert; Janssens, Koen; Dik, Joris; De Nolf, Wout; Vanmeert, Frederik; Jaroszewicz, Jacub; Cotte, Marine; Falkenberg, Gerald; Van der Loeff, Luuk

    2012-12-01

    Over the past years a number of studies have described the instability of the pigment cadmium yellow (CdS). In a previous paper we have shown how cadmium sulfide on paintings by James Ensor oxidizes to CdSO(4)·H(2)O. The degradation process gives rise to the fading of the bright yellow color and the formation of disfiguring white crystals that are present on the paint surface in approximately 50 μm sized globular agglomerations. Here, we study cadmium yellow in the painting "Flowers in a blue vase" by Vincent van Gogh. This painting differs from the Ensor case in the fact that (a) a varnish was superimposed onto the degraded paint surface and (b) the CdS paint area is entirely covered with an opaque crust. The latter obscures the yellow color completely and thus presents a seemingly more advanced state of degradation. Analysis of a cross-sectioned and a crushed sample by combining scanning microscopic X-ray diffraction (μ-XRD), microscopic X-ray absorption near-edge spectroscopy (μ-XANES), microscopic X-ray fluorescence (μ-XRF) based chemical state mapping and scanning microscopic Fourier transform infrared (μ-FT-IR) spectrometry allowed unravelling the complex alteration pathway. Although no crystalline CdSO(4) compounds were identified on the Van Gogh paint samples, we conclude that the observed degradation was initially caused by oxidation of the original CdS pigment, similar as for the previous Ensor case. However, due to the presence of an overlying varnish containing lead-based driers and oxalate ions, secondary reactions took place. In particular, it appears that upon the photoinduced oxidation of its sulfidic counterion, the Cd(2+) ions reprecipitated at the paint/varnish interface after having formed a complex with oxalate ions that themselves are considered to be degradation products of the resin and/or oil in the varnish. The SO(4)(2-) anions, for their part, found a suitable reaction partner in Pb(2+) ions stemming from a dissolved lead

  11. The edges of graphene.

    PubMed

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-04-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.

  12. Optimal edge filters explain human blur detection.

    PubMed

    McIlhagga, William H; May, Keith A

    2012-01-01

    Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature, or defocus due to relative depth. Edge blur also drives accommodation and may be implicated in the correct development of the eye's optical power. Here we use classification image techniques to reveal the mechanisms underlying blur detection in human vision. Observers were shown a sharp and a blurred edge in white noise and had to identify the blurred edge. The resultant smoothed classification image derived from these experiments was similar to a derivative of a Gaussian filter. We also fitted a number of edge detection models (MIRAGE, N(1), and N(3)(+)) and the ideal observer to observer responses, but none performed as well as the classification image. However, observer responses were well fitted by a recently developed optimal edge detector model, coupled with a Bayesian prior on the expected blurs in the stimulus. This model outperformed the classification image when performance was measured by the Akaike Information Criterion. This result strongly suggests that humans use optimal edge detection filters to detect edges and encode their blur. PMID:22984222

  13. Electro-absorption of silicene and bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Talaat, Mohamed H.; Lukyanchuk, Igor; Portnoi, M. E.; Saroka, V. A.

    2016-07-01

    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  14. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  15. Multiple Scattering Approach to Polarization Dependence of F K-Edge XANES Spectra for Highly Oriented Polytetrafluoroethylene (PTFE) Thin Film

    SciTech Connect

    Nagamatsu, S.; Ono, M.; Kera, S.; Okudaira, K. K.; Fujikawa, T.; Ueno, N.

    2007-02-02

    The polarization dependence of F K-edge X-ray absorption near edge structure (XANES) spectra of highly-oriented thin-film of polytetrafluoroethylene (PTFE) has been analyzed by using multiple scattering theory. The spectra show clear polarization dependence due to the highly-oriented structure. The multiple scattering calculations reflects a local structure around an absorbing atom. The calculated results obtained by considering intermolecular-interactions are in good agreement with the observed polarization-dependence. We have also analyzed structural models of the radiation damaged PTFE films.

  16. Method for encapsulating the edge of a flexible sheet

    SciTech Connect

    Keenihan, James R; Clarey, Todd M

    2013-02-19

    The present invention is premised upon an inventive method of producing an over-molded edge portion on a flexible substrate, wherein the edge portion is void of open areas due to support devices in the mold cavity.

  17. Jet formation at the sea ice edge

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Heorton, H. D.

    2014-12-01

    The sea ice edge presents a region of many feedback processes between the atmosphere, ocean and sea ice, which are inadequately represented in current climate models. Here we focus on on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines. This sharp change in surface roughness is experienced by the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. We have studied a dynamic sea ice edge responding to atmospheric and oceanic jet formation. The shape and strength of atmospheric and oceanic jets during on-ice flows is calculated from existing studies of the sea ice edge and prescribed to idealised models of the sea ice edge. An idealised analytical model of sea ice drift is developed and compared to a sea ice climate model (the CICE model) run on an idealised domain. The response of the CICE model to jet formation is tested at various resolutions. We find that the formation of atmospheric jets during on-ice winds at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice edge jet. The modelled sea ice edge jet is in agreement with an observed jet although more observations are needed for validation. The increase in ice drift speed is dependent upon the angle between the ice edge and wind and can result in a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation during on-ice currents and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

  18. TCT measurements with slim edge strip detectors

    NASA Astrophysics Data System (ADS)

    Mandić, Igor; Cindro, Vladimir; Gorišek, Andrej; Kramberger, Gregor; Mikuž, Marko; Zavrtanik, Marko; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.-W.; Christophersen, Marc; Phlips, Bernard

    2014-07-01

    Transient current technique (TCT) measurements with focused laser light on miniature silicon strip detectors (n+-type strips on p-type bulk) with one inactive edge thinned to about 100 μm using the Scribe-Cleave-Passivate (SCP) method are presented. Pulses of focused IR (λ=1064 nm) laser light were directed to the surface of the detector and charge collection properties near the slim edge were investigated. Measurements before and after irradiation with reactor neutrons up to 1 MeV equivalent fluence of 1.5×1015 neq/cm2 showed that SCP thinning of detector edge does not influence its charge collection properties. TCT measurements were done also with focused red laser beam (λ=640 nm) directed to the SCP processed side of the detector. The absorption length of red light in silicon is about 3 μm so with this measurement information about the electric field at the edge can be obtained. Observations of laser induced signals indicate that the electric field distribution along the depth of the detector at the detector edge is different than in the detector bulk: electric field is higher near the strip side and lower at the back side. This is a consequence of negative surface charge caused by passivation of the cleaved edge with Al2O3. The difference between bulk and edge electric field distributions gets smaller after irradiation.

  19. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-01-01

    The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels

  20. L-edge X-ray Absorption Spectroscopy and DFT Calculations on Cu2O2 Species: Direct Electrophilic Aromatic Attack by Side-on Peroxo Bridged Dicopper(II) Complexes

    PubMed Central

    Qayyum, Munzarin F.; Sarangi, Ritimukta; Fujisawa, Kiyoshi; Stack, T. Daniel P.; Karlin, Kenneth D.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2013-01-01

    The hydroxylation of aromatic substrates catalyzed by coupled binuclear copper enzymes has been observed with side-on-peroxo-dicopper(II) (P) and bis-μ-oxo-dicopper(III) (O) model complexes. The substrate-bound-O intermediate in [Cu(II)2(DBED)2(O)2]2+ (DBED=N,N′-di-tert-butyl-ethylenediamine) was shown to perform aromatic hydroxylation. For the [Cu(II)2(NO2-XYL)(O2)]2+ complex, only a P species was spectroscopically observed. However, it was not clear whether this O-O bond cleaves to proceed through an O-type structure along the reaction coordinate for hydroxylation of the aromatic xylyl linker. Accurate evaluation of these reaction coordinates requires reasonable quantitative descriptions of the electronic structures of the P and O species. We have performed Cu L-edge XAS on two well-characterized P and O species to experimentally quantify the Cu 3d character in their ground state wavefunctions. The lower per-hole Cu character (40±6%) corresponding to higher covalency in the O species compared to the P species (52±4%) reflects a stronger bonding interaction of the bis-μ-oxo core with the Cu(III) centers. DFT calculations show that 10-20% Hartree-Fock (HF) mixing for P and ~38% for O species are required to reproduce the Cu-O bonding; for the P species this HF mixing is also required for an antiferromagnetically coupled description of the two Cu(II) centers. B3LYP (with 20% HF) was, therefore, used to calculate the hydroxylation reaction coordinate of P in [Cu(II)2(NO2-XYL)(O2)]2+. These experimentally calibrated calculations indicate that the electrophilic attack on the aromatic ring does not involve formation of a Cu(III)2(O2−)2 species. Rather, there is direct electron donation from the aromatic ring into the peroxo σ* orbital of the Cu(II)2(O22−) species, leading to concerted C-O bond formation with O-O bond cleavage. Thus, species P is capable of direct hydroxylation of aromatic substrates without the intermediacy of an O-type species. PMID:24102191

  1. Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies

    SciTech Connect

    Ramallo-Lopez, J. M.; Giovanetti, L. J.; Requejo, F. G.; Isaacs, S. R.; Shon, Y. S.; Salmeron, M.

    2006-08-15

    The bonding of hexanethiols to gold nanoparticles of 1.5, 2.0, and 3 nm was studied using x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS). The XANES spectra revealed that a substantial fraction of weakly bound hexanethiol molecules are present in addition to those forming covalent bonds with Au atoms. The weakly bound molecules can be removed by washing in dichloromethane. After removal of the weakly bound molecules the S K-edge XANES reveals peaks due to S-Au and S-C bonds with intensities that change as a function of particle size. Au L{sub 3}-edge EXAFS results indicate that these changes follow the changes in coordination number of Au to the S atoms at the surface of the particles.

  2. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    NASA Astrophysics Data System (ADS)

    Lichtenberg, H.; Prange, A.; Steiner, U.; Oerke, E.-C.; Hormes, J.

    2009-11-01

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  3. Improved method of edge coating flat ribbon wire

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Method to coat the edges of flat ribbon wire is devised by using enamel with modified flow properties due to addition of 2 to 4 percent silicon. Conventional coating procedes several edge coatings to minimize oxidation and additional conventional coats are applied after edge coating to build up thickness.

  4. Magnetism of zigzag edge phosphorene nanoribbons

    SciTech Connect

    Zhu, Zhili E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu E-mail: jiayu@zzu.edu.cn

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  5. The Edge, Fall 1999.

    ERIC Educational Resources Information Center

    Edge, 1999

    1999-01-01

    "The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…

  6. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  7. Substitution behavior of x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}-(1 − x)BaTiO{sub 3} ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    SciTech Connect

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-30

    The doping effect of (Na{sub 0.5}K{sub 0.5})NbO{sub 3} (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO{sub 3} has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO{sub 3}, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb{sup 5+} ion for Ti-sites. Therefore, the simultaneous substitution of Na{sup +}/K{sup +} and Nb{sup 5+} ions into BaTiO{sub 3} can improve dielectric properties, based on the charge-transfer process.

  8. Edge-on thick discs

    NASA Astrophysics Data System (ADS)

    Kasparova, A.; Katkov, I.; Chilingarian, I.; Silchenko, O.; Moiseev, A.; Borisov, S.

    2016-06-01

    Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Russian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on early-type disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4 ‑ 5 Gyr) metal rich ([Fe/H] ~ ‑0.2 ‑ 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its only disc is thick and old (10 Gyr) and its α-element abundance suggests a long formation epoch implying its formation at high redshift. Our results prove the diversity of thick disc formation scenarios.

  9. Edge of chaos and genesis of turbulence.

    PubMed

    Chian, Abraham C-L; Muñoz, Pablo R; Rempel, Erico L

    2013-11-01

    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable traveling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space. PMID:24329334

  10. Structure and Composition of Cu Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Hanif, K M; Willey, T M; Strouse, G F; Terminello, L J

    2004-06-04

    The local structure and composition of Cu ions dispersed in CdSe nanocrystals is examined using soft x-ray absorption near edge spectroscopy (XANES). Using Cu L-edge XANES and X-ray photoelectron measurements (XPS), we find that the Cu ions exist in the Cu(I) oxidation state. We also find that the observed Cu L-edge XANES signal is directly proportional to the molar percent of Cu present in our final material. Se L-edge XANES indicates changes in the Se density of states with Cu doping, due to a chemical bonding effect, and supports a statistical doping mechanism. Photoluminescence (PL) measurements indicate the Cu ions may act as deep electron traps. We show that XANES, XPS, and PL are a powerful combination of methods to study the electronic and chemical structure of dopants in nanostructured materials.

  11. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  12. The digital step edge

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The facet model was used to accomplish step edge detection. The essence of the facet model is that any analysis made on the basis of the pixel values in some neighborhood has its final authoritative interpretation relative to the underlying grey tone intensity surface of which the neighborhood pixel values are observed noisy samples. Pixels which are part of regions have simple grey tone intensity surfaces over their areas. Pixels which have an edge in them have complex grey tone intensity surfaces over their areas. Specially, an edge moves through a pixel only if there is some point in the pixel's area having a zero crossing of the second directional derivative taken in the direction of a non-zero gradient at the pixel's center. To determine whether or not a pixel should be marked as a step edge pixel, its underlying grey tone intensity surface was estimated on the basis of the pixels in its neighborhood.

  13. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  14. Sulfur K-Edge X-ray Absorption Spectroscopy and Density Functional Theory Calculations on Monooxo MoIV and Bisoxo MoVI Bis-dithiolenes: Insights into the Mechanism of Oxo Transfer in Sulfite Oxidase and Its Relation to the Mechanism of DMSO Reductase

    PubMed Central

    2015-01-01

    Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [MoIVO(bdt)2]2– and [MoVIO2(bdt)2]2– (bdt = benzene-1,2-dithiolate(2−)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate. Three possible transition states are found with the one at lowest energy, stabilized by a P–S interaction, in good agreement with experimental kinetics data. Comparison of both oxo transfer reactions shows that in DMSOr, where the oxo is transferred from the substrate to the metal ion, the oxo transfer induces electron transfer, while in SO, where the oxo transfer is from the metal site to the substrate, the electron transfer initiates oxo transfer. This difference in reactivity is related to the difference in frontier molecular orbitals (FMO) of the metal–oxo and substrate–oxo bonds. Finally, these experimentally related calculations are extended to oxo transfer by sulfite oxidase. The presence of only one dithiolene at the enzyme active site selectively activates the equatorial oxo for transfer, and allows facile structural reorganization during turnover. PMID:24884723

  15. Comparison of edges detected at different polarisations in MAESTRO data

    NASA Technical Reports Server (NTRS)

    Caves, Ronald G.; Harley, Peter J.; Quegan, Shaun

    1992-01-01

    Edge detection would appear to be a crucial tool for analyzing multi-polarized, multi-frequency, and multi-temporal Synthetic Aperture Radar (SAR) images. Edge structure provides a simple means for comparing different polarizations and frequencies, and for detecting changes over time. Due to the fact that edges and segments (homogeneous regions) are dual concepts, edge detection has an important role to play in identifying segments within which mean backscatter measurements for use in image classification can be made. As part of a general investigation into edge detection in SAR imagery, an initial investigation was carried out into the detectability and nature of edges in multi-polarized and multi-frequency SAR images. The contrast ratio (CR) operator was used to detect edges. This operator was previously shown to perform well at detecting edges in single-polarized and single-frequency SAR images.

  16. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  17. Edge Plasma Analysis for Liquid-wall MFE Concepts

    SciTech Connect

    Moir, R W; Rensink, M; Rognlien, T D

    2000-09-21

    A thick flowing layer of liquid (e.g., flibe-a molten salt, or Sn{sub 80}Li{sub 20}--a liquid metal) protects the structural walls of the magnetic fusion configuration so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction, The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhanced turbulent convection of hot surface liquid into the cooler interior. This surface temperature is affected by the temperature of liquid from a heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D-transport code for the DT and impurity ions; these impurity ions are either swept out to the divertor, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall may further attenuate evaporating flux of atoms and molecules by ionization near the wall.

  18. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  19. Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    PubMed Central

    Nams, Vilis O.

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965

  20. Extended Klein edges in graphene.

    PubMed

    He, Kuang; Robertson, Alex W; Lee, Sungwoo; Yoon, Euijoon; Lee, Gun-Do; Warner, Jamie H

    2014-12-23

    Graphene has three experimentally confirmed periodic edge terminations, zigzag, reconstructed 5-7, and arm-chair. Theory predicts a fourth periodic edge of graphene called the extended Klein (EK) edge, which consists of a series of single C atoms protruding from a zigzag edge. Here, we confirm the existence of EK edges in both graphene nanoribbons and on the edge of bulk graphene using atomic resolution imaging by aberration-corrected transmission electron microscopy. The formation of the EK edge stems from sputtering and reconstruction of the zigzag edge. Density functional theory reveals minimal energy for EK edge reconstruction and bond distortion both in and out of plane, supporting our TEM observations. The EK edge can now be included as the fourth member of observed periodic edge structures in graphene.

  1. Leading edge protection for composite blades

    NASA Technical Reports Server (NTRS)

    Brantley, J. W.; Irwin, T. P. (Inventor)

    1977-01-01

    A laminated filament composite structure, such as an airfoil for use in an environment in which it is subjected to both foreign object impact and bending is provided with improved leading edge protection. At least one fine wire mesh layer is partially bonded within the composite structure along its neutral bending axis. A portion of the wire mesh layer extends beyond the neutral bending axis and partially around the leading edge where it is bonded to the outer periphery of the primary composite structure. The wire mesh is clad with a metal such as nickel to provide an improved leading edge protective device which is firmly anchored within the composite structure. Also described is a novel method of constructing a composite airfoil so as to further minimize the possibility of losing the leading edge protective device due to delamination caused by impact and bending.

  2. Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Jhon, Mark H.; Gan, Chee Kwan; Srolovitz, David J.

    2011-07-01

    It has been shown that the broken bonds of an unreconstructed graphene edge generate compressive edge stresses leading to edge warping. Here, we investigate edge energies and edge stresses of graphene nanoribbons with arbitrary orientations from armchair to zigzag, considering both flat and warped edge shapes in the presence and absence of hydrogen. We use the second generation reactive empirical bond order potential to calculate the edge energies and stresses for clean and hydrogenated edges. Using these energies, we perform a Wulff construction to determine the equilibrium shapes of flat graphene flakes as a function of hydrogen chemical potential. While edge stresses for clean, flat edges are compressive, they become tensile if allowed to warp. Conversely, we find that edge energies change little (~1%) with edge warping. Hydrogenation of the edges virtually eliminates both the edge energy and edge stresses. For warped edges an approximately linear relationship is found between amplitudes and wavelengths. The equilibrium shape of a graphene flake is determined by the value of the hydrogen chemical potential. For very small (and large) values of it the flakes have a nearly hexagonal (dodecagon) shape with zigzag oriented edges, while for intermediate values graphene flakes are found with complex shapes.

  3. Carbon K-Edge Scanning Transmission X-ray Spectromicroscopy (STXM) of Uranium Binding to Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Gillow, J.; Wirick, S.; Feser, M.; Jacobsen, C.; Francis, A.

    2002-12-01

    The sorption of uranium by bacteria was studied by interrogation of the C K-absorption edge using scanning transmission x-ray spectromicroscopy (STXM). The unique imaging and spectroscopy capability of STXM was used to elucidate the chemical environment of C in the bacterial cell. Washed whole cells and cell wall preparations of bacteria commonly found in soil environments including Pseudomonas fluorescens, Bacillus subtilis, the facultative anaerobe Shewanella putrefaciens and the strict anaerobe Clostridium sp. were exposed to uranyl nitrate at pH 5. After washing to remove potential surface precipitates and non-bonded uranium the cells and walls were dried onto TEM gridx. Standards (uranyl salts and organic complexes), bacterial cells unexposed, and U-exposed cells were analyzed by STXM at 280-310 eV with the C K-edge x-ray absorption near-edge spectroscopy (XANES) examined for evidence of U in the C coordination environment. Principle spectral features of the bacteria included the 285 eV C=C and 288 eV C=O 1s-π * resonances due to the major C function groups that comprise the bacterial cell wall. There was no change in peak position of 1s-π * spectral features for whole cells or cell walls when U was present. This indicates that U does not exert an influence on the electron resonance of C when bonded as carboxylate species at the bacterial cell surface. This finding is supported by the analysis of uranyl citrate and uranyl alanine standards. The extended x-ray absorption fine structure spectroscopy region of the C K-edge of bacterial cells exposed to U shows slight changes in spectral features at >290 eV. Other absorption edges accessible by soft x-ray spectroscopy were examined; U was detected at it's NV (736.2 eV) and NIV (778.3 eV) edges however there was poor resolution of U associated with the bacteria. Analysis at the O K-edge (529 eV) provided evidence for metal-ligand interaction and forms the basis for further study to gain a molecular

  4. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  5. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  6. Computation of leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Newsome, R. W.; Thomas, J. L.

    1986-01-01

    The simulation of the leading edge vortex flow about a series of conical delta wings through solution of the Navier-Stokes and Euler equations is studied. The occurrence, the validity, and the usefulness of separated flow solutions to the Euler equations of particular interest. Central and upwind difference solutions to the governing equations are compared for a series of cross sectional shapes, including both rounded and sharp tip geometries. For the rounded leading edge and the flight condition considered, viscous solutions obtained with either central or upwind difference methods predict the classic structure of vortical flow over a highly swept delta wing. Predicted features include the primary vortex due to leading edge separation and the secondary vortex due to crossflow separation. Central difference solutions to the Euler equations show a marked sensitivity to grid refinement. On a coarse grid, the flow separates due to numerical error and a primary vortex which resembles that of the viscous solution is predicted. In contrast, the upwind difference solutions to the Euler equations predict attached flow even for first-order solutions on coarse grids. On a sufficiently fine grid, both methods agree closely and correctly predict a shock-curvature-induced inviscid separation near the leeward plane of symmetry. Upwind difference solutions to the Navier-Stokes and Euler equations are presented for two sharp leading edge geometries. The viscous solutions are quite similar to the rounded leading edge results with vortices of similar shape and size. The upwind Euler solutions predict attached flow with no separation for both geometries. However, with sufficient grid refinement near the tip or through the use of more accurate spatial differencing, leading edge separation results. Once the leading edge separation is established, the upwind solution agrees with recently published central difference solutions to the Euler equations.

  7. Light absorption measurements: new techniques.

    PubMed

    Hänel, G; Busen, R; Hillenbrand, C; Schloss, R

    1982-02-01

    A new radiometer is described which simplifies measurement of the radiation supply of solar wavelengths. Two methods of measuring the radiant energy absorbed by aerosol particles are described: A photometric technique is used for particles collected on filters, and a calorimetric technique is used for in situ measurements. Data collected with the radiometer and the light absorption techniques yield the heating rate of the atmosphere due to light absorption by the particles. Sample measurements show substantial atmospheric temperature increases due to absorption, especially in industrial regions.

  8. Interference of topologically protected edge states in silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko; Nagaosa, Naoto

    2013-09-01

    Silicene is a graphene-like honeycomb structure made of silicon atoms. It is a two-dimensional quantum spin-Hall insulator due to the spin-orbit interaction. According to the bulk-edge correspondence we expect zero-energy edge channels to appear in silicene nanoribbons. The behaviors of the helical edge channels are completely different between the armchair and the zigzag edges. Zero-energy states disappear in armchair nanoribbons despite the bulk-edge correspondence, while they appear as zigzag nanoribbons even if the width is quite narrow. The difference originates in the penetration depth of the helical edge channel, which is antiproportional to the spin-orbit gap for the armchair edge, while it remains as short as the lattice constant for the zigzag edge. These properties make clear distinctions between silicene and graphene nanoribbons, especially for armchair edges: In silicene edge states emerge as required by its topology, though the zero-energy states disappear from the energy spectrum, whereas in graphene no edge states exist. The emergence of edge states in armchair nanoribbons must be experimentally detectable by scanning tunneling microscopy, and may well serve as an experimental signal that silicene is a topological insulator.

  9. Oscillating edge-flames

    NASA Astrophysics Data System (ADS)

    Buckmaster, J.; Zhang, Yi

    1999-09-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.

  10. Edge states in polariton honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Milićević, M.; Ozawa, T.; Andreakou, P.; Carusotto, I.; Jacqmin, T.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.

    2015-09-01

    The experimental study of edge states in atomically thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and the need to measure local properties. In the case of graphene, localized edge modes have been predicted in zigzag and bearded edges, characterized by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the π and π* bands of graphene. We show the momentum-space dispersion of the edge states associated with the zigzag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of polaritons on the properties of these states.

  11. Aircraft wing trailing-edge noise

    NASA Technical Reports Server (NTRS)

    Underwood, R. L.; Hodgson, T. H.

    1981-01-01

    The mechanism and sound pressure level of the trailing-edge noise for two-dimensional turbulent boundary layer flow was examined. Experiment is compared with current theory. A NACA 0012 airfoil of 0.61 m chord and 0.46 m span was immersed in the laminar flow of a low turbulence open jet. A 2.54 cm width roughness strip was placed at 15 percent chord from the leading edge on both sides of the airfoil as a boundary layer trip so that two separate but statistically equivalent turbulent boundary layers were formed. Tests were performed with several trailing-edge geometries with the upstream velocity U sub infinity ranging from a value of 30.9 m/s up to 73.4 m/s. Properties of the boundary layer for the airfoil and pressure fluctuations in the vicinity of the trailing-edge were examined. A scattered pressure field due to the presence of the trailing-edge was observed and is suggested as a possible sound producing mechanism for the trailing-edge noise.

  12. The red edge of plant leaf reflectance

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.

    1983-01-01

    A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.

  13. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  14. Edge localized mode control with an edge resonant magnetic perturbation

    SciTech Connect

    Moyer, R.A.; Boedo, J.A.; Rudakov, D.L.; Evans, T.E.; Osborne, T.H.; Gohil, P.; Groebner, R.J.; Jackson, G.L.; La Haye, R.J.; Leonard, A.W.; Schaffer, M.J.; Snyder, P.B.; West, W.P.; Thomas, P.R.; Becoulet, M.; Harris, J.; Finken, K.-H.; Doyle, E.J.; Rhodes, T.L.; Wang, G.

    2005-05-15

    A low amplitude ({delta}b{sub r}/B{sub T}=1 part in 5000) edge resonant magnetic field perturbation with toroidal mode number n=3 and poloidal mode numbers between 8 and 15 has been used to suppress most large type I edge localized modes (ELMs) without degrading core plasma confinement. ELMs have been suppressed for periods of up to 8.6 energy confinement times when the edge safety factor q{sub 95} is between 3.5 and 4. The large ELMs are replaced by packets of events (possibly type II ELMs) with small amplitude, narrow radial extent, and a higher level of magnetic field and density fluctuations, creating a duty cycle with long 'active' intervals of high transport and short 'quiet' intervals of low transport. The increased transport associated with these events is less impulsive and slows the recovery of the pedestal profiles to the values reached just before the large ELMs without the n=3 perturbation. Changing the toroidal phase of the perturbation by 60 deg. with respect to the best ELM suppression case reduces the ELM amplitude and frequency by factors of 2-3 in the divertor, produces a more stochastic response in the H-mode pedestal profiles, and displays similar increases in small scale events, although significant numbers of large ELMs survive. In contrast to the best ELM suppression case where the type I ELMs are also suppressed on the outboard midplane, the midplane recycling increases until individual ELMs are no longer discernable. The ELM response depends on the toroidal phase of the applied perturbation because intrinsic error fields make the target plasma nonaxisymmetric, and suggests that at least some of the variation in ELM behavior in a single device or among different devices is due to differences in the intrinsic error fields in these devices. These results indicate that ELMs can be suppressed by small edge resonant magnetic field perturbations. Extrapolation to next-step burning plasma devices will require extending the regime of operation to

  15. Measurements of photon interference X-ray absorption fine structure (piXAFS).

    PubMed

    Tröger, L; Kappen, P; Nishino, Y; Haack, N; Materlik, G

    2001-03-01

    Experimental data are presented which demonstrate the existence of a fine structure in extended X-ray absorption spectra due to interference effects in the initial photon state (piXAFS). Interference occurs between the incident electromagnetic wave and its coherently scattered waves from neighboring atoms. Using fine platinum and tungsten powders as well as polycrystalline platinum foil, piXAFS was measured in high-precision absorption experiments at beamline X1 at HASYLAB/DESY over a wide energy range. piXAFS is observed below and above absorption-edge positions in both transmission and total-electron-yield detection. Based on experimental data it is shown that piXAFS is sensitive to geometric atomic structure. Fourier-transformed piXAFS data carry information, comparable with that of EXAFS, about the short-range-order structure of the sample. Sharp structures occur in piXAFS when a Bragg backscattering condition of the incident X-rays is fulfilled. They allow precise measurement of long-range-order structural information. Measured data are compared with simulations based on piXAFS theory. Although piXAFS structures are similarly observed in two detection techniques, the importance of scattering off the sample for the measurements needs to be investigated further. Disentangling piXAFS, multielectron photoexcitations and atomic XAFS in high-precision measurements close to absorption edges poses a challenge for future studies.

  16. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  17. Edge magnetoplasmons in graphene

    NASA Astrophysics Data System (ADS)

    Petković, Ivana; Williams, F. I. B.; Glattli, D. Christian

    2014-03-01

    We have observed propagation of edge magnetoplasmon (EMP) modes in graphene in the quantum Hall regime by performing picosecond time-of-flight measurements between narrow contacts on the perimeter of micrometric exfoliated graphene. We find the propagation to be chiral with low attenuation and to have a velocity which is quantized on Hall plateaus. The velocity has two contributions, one arising from the Hall conductivity and the other from carrier drift along the edge, which we were able to separate by their different filling factor dependence. The drift component is found to be slightly less than the Fermi velocity as expected for graphene dynamics in an abrupt edge potential. The Hall conduction contribution is slower than expected and indicates a characteristic length in the Coulomb potential from the Hall charge of about 500 nm. The experiment illustrates how EMP can be coupled to the electromagnetic field, opening the perspective of GHz to THz chiral plasmonics applications to devices such as voltage controlled phase shifters, circulators, switches and compact, tunable ring resonators.

  18. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    SciTech Connect

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  19. Edge Mode Coupling within a Plasmonic Nanoparticle

    PubMed Central

    2016-01-01

    The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra. PMID:27427962

  20. Near Field Trailing Edge Tone Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2002-01-01

    Blunt trailing edges in a flow often generate tone noise due to wall-jet shear layer and vortex shedding. In this paper, the space-time conservation element (CE/SE) method is employed to numerically study the near-field noise of blunt trailing edges. Two typical cases, namely, flow past a circular cylinder (aeolian noise problem) and flow past a flat plate of finite thickness are considered. The computed frequencies compare well with experimental data. For the aeolian noise problem, comparisons with the results of other numerical approaches are also presented.

  1. Si K Edge Structure and Variability in Galactic X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-01

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 1022 cm‑2. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s‑1. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  2. Si K Edge Structure and Variability in Galactic X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-01

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 1022 cm-2. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s-1. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  3. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  4. Line Edge Detection and Characterization in SEM Images using Wavelets

    SciTech Connect

    Sun, W; Romagnoli, J A; Tringe, J W; L?tant, S E; Stroeve, P; Palazoglu, A

    2008-10-07

    Edge characterization has become increasingly important in nanotechnology due to the growing demand for precise nanoscale structure fabrication and assembly. Edge detection is often performed by thresholding the spatial information of a top-down image obtained by Scanning Electron Microscopy (SEM) or other surface characterization techniques. Results are highly dependent on an arbitrary threshold value, which makes it difficult to reveal the nature of the real surface and to compare results among images. In this paper, we present an alternative edge boundary detection technique based on the wavelet framework. Our results indicate that the method facilitates nano-scale edge detection and characterization, by providing a systematic threshold determination step.

  5. Sulfur incorporation in high level nuclear waste glass: A S K-edge XAFS investigation

    NASA Astrophysics Data System (ADS)

    Brendebach, B.; Denecke, M. A.; Roth, G.; Weisenburger, S.

    2009-11-01

    We perform X-ray absorption fine structure (XAFS) spectroscopy measurements at the sulfur K-edge to elucidate the electronic and geometric bonding of sulfur atoms in borosilicate glass used for the vitrification of high level radioactive liquid waste. The sulfur is incorporated as sulfate, most probably as sodium sulfate, which can be deduced from the X-ray absorption near edge structure (XANES) by fingerprint comparison with reference compounds. This finding is backed up by Raman spectroscopy investigation. In the extended XAFS data, no second shell beyond the first oxygen layer is visible. We argue that this is due to the sulfate being present as small clusters located into voids of the borosilicate network. Hence, destructive interference of the variable surrounding prohibits the presence of higher shell signals. The knowledge of the sulfur bonding characteristics is essential for further optimization of the glass composition and to balance the requirements of the process and glass quality parameters, viscosity and electrical resistivity on one side, waste loading and sulfur uptake on the other side.

  6. The blue of iron in mineral pigments: a Fe K-edge XANES study of vivianite

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2010-05-01

    Iron is a powerful chromophore element whose pigmenting properties were the first to be recognized among transition metals. The interest in blue iron minerals as pigments for painting was enhanced with the use of vivianite—a natural hydrated ferrous phosphate, Fe3(PO4)2ṡ8H2O—which in medieval Europe became an alternative to the expensive lapis lazuli, (Na, Ca)4(AlSiO4)3(SO4, Cl, S), a member of the ultramarines whose appreciated blue tone is due to the presence of sulfur polyanions. Conversely, vivianite coloring is attributed to the intervalence charge transfer (IVCT) Fe2+-Fe3+ that in later decades was studied by optical techniques and Mössbauer spectroscopy. However, the aging of blue vivianite pigments in old paintings has become a serious concern for conservators, but the aging process still awaits a satisfactory explanation. As an input to this problem, an X-ray absorption near-edge structure (XANES) study at the Fe K-edge of vivianite with different colors and origins was undertaken at the European Synchrotron Radiation Facility using the instrumental facilities of beamline ID-21. The analysis of pre-edge features corroborates previous data on the origin of vivianite color and emphasizes the need for a precautious assessment of iron speciation on the exclusive basis of XANES data. Actual results are discussed and further work is outlined.

  7. Graphene edges and beyond: temperature-driven structures and electromagnetic properties.

    PubMed

    Hyun, Changbae; Yun, Jeonghun; Cho, Woo Jong; Myung, Chang Woo; Park, Jaesung; Lee, Geunsik; Lee, Zonghoon; Kim, Kwanpyo; Kim, Kwang S

    2015-05-26

    The atomic configuration of graphene edges significantly influences the various properties of graphene nanostructures, and realistic device fabrication requires precise engineering of graphene edges. However, the imaging and analysis of the intrinsic nature of graphene edges can be illusive due to contamination problems and measurement-induced structural changes to graphene edges. In this issue of ACS Nano, He et al. report an in situ heating experiment in aberration-corrected transmission electron microscopy to elucidate the temperature dependence of graphene edge termination at the atomic scale. They revealed that graphene edges predominantly have zigzag terminations below 400 °C, while above 600 °C, the edges are dominated by armchair and reconstructed zigzag edges. This report brings us one step closer to the true nature of graphene edges. In this Perspective, we outline the present understanding, issues, and future challenges faced in the field of graphene-edge-based nanodevices.

  8. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  9. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  10. Edge-on!

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Peering at Uranus's Rings as they Swing Edge-on to Earth for the First Time Since their Discovery in 1977 As Uranus coasts through a brief window of time when its rings are edge-on to Earth - a view of the planet we get only once every 42 years - astronomers peering at the rings with ESO's Very Large Telescope and other space or ground-based telescopes are getting an unprecedented view of the fine dust in the system, free from the glare of the bright rocky rings. They may even find a new moon or two. ESO PR Photo 37/07 ESO PR Photo 37/07 The Uranus System "ESO's VLT took data at the precise moment when the rings were edge-on to Earth," said Imke de Pater, of University of California, Berkeley who coordinated the worldwide campaign. She worked with two team members observing in Chile: Daphne Stam of the Technical University Delft in the Netherlands and Markus Hartung of ESO. The observations were done with NACO, one of the adaptive optics instruments installed at the VLT. With adaptive optics, it is possible to obtain images almost free from the blurring effect of the atmosphere. It is as if the 8.2-m telescope were observing from space. Observations were also done with the Keck telescope in Hawaii, the Hubble Space Telescope, and at the Palomar Observatory. "Using different telescopes around the world allows us to observe as much of the changes during the ring-plane crossing as possible: when Uranus sets as seen from the VLT, it can still be observed by the Keck," emphasised Stam. Uranus orbits the Sun in 84 years. Twice during a Uranian year, the rings appear edge-on to Earth for a brief period. The rings were discovered in 1977, so this is the first time for a Uranus ring-crossing to be observed from Earth. The advantage of observations at a ring-plane crossing is that it becomes possible to look at the rings from the shadowed or dark side. From that vantage point, the normally bright outer rings grow fainter because their centimetre- to metre-sized rocks obscure

  11. Ice-crystal absorption: a comparison between theory and implications for remote sensing.

    PubMed

    Baran, A J; Foot, J S; Mitchell, D L

    1998-04-20

    The problem of the disagreement between cirrus crystal sizes determined remotely and by in situ measurements is shown to be due to inappropriate application of Mie theory. We retrieved the absorption optical depth at 8.3 and 11.1 mum from 11 tropical anvil cirrus clouds, using data from the High Resolution Infrared Radiation Sounder (HIRS). We related the absorption optical depth ratio between the two wavelengths to crystal size (the size was defined in terms of the crystal median mass dimension) by assuming Mie theory applied to ice spheres and anomalous diffraction theory (ADT) applied to hexagonal columns, hexagonal plates, bullet rosettes, and aggregates (polycrystals). The application of Mie theory to retrievals yielded crystal sizes approximately one third those obtained with ADT. The retrievals of crystal size by use of HIRS data are compared with measurements of habit and crystal size obtained from in situ measurements of tropical anvil cirrus particles. The results of the comparison show that ADT provides the more realistic retrieval. Moreover, we demonstrate that at infrared wavelengths retrieval of crystal size depends on assumed habit. The reason why Mie theory predicts smaller sizes than ADT is shown to result from particle geometry and enhanced absorption owing to the capture of photons from above the edge of the particle (tunneling). The contribution of particle geometry to absorption is three times greater than from tunneling, but this process enhances absorption by a further 35%. The complex angular momentum and T-matrix methods are used to show that the contribution to absorption by tunneling is diminished as the asphericity of spheroidal particles is increased. At an aspect ratio of 6 the contribution to the absorption that is due to tunneling is substantially reduced for oblate particles, whereas for prolate particles the tunneling contribution is reduced by 50% relative to the sphere.

  12. Saturable Absorption of an X-Ray Free-Electron-Laser Heated Solid-Density Plasma

    NASA Astrophysics Data System (ADS)

    Wark, J. S.; Rackstraw, D. S.; Ciricosta, O.; Vinko, S. M.; Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Barbrel, B.; Engelhorn, K.; Cho, B.-I.; Chung, H.-K.; Dakovski, G.; Krzywinski, J.; Heimann, P.; Holmes, M.; Turner, J.; Lee, R. W.; Toleikis, S.; Zastrau, U.

    2015-11-01

    High-intensity ~1017 Wcm-2, short duration (100 fsec) x-ray pulses from the LCLS x-ray free-electron laser, with photon energies ranging from below to above the K-edge of cold Al (1560 eV), are used to generate and probe a solid-density aluminum plasma. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, with the increased transmission being due to the K-edge energy of the dominant ion species shifting in time as the solid-density target is heated, in good agreement with atomic-kinetics simulations.

  13. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  14. On the Structure of the Iron K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.

  15. Edge conduction in vacuum glazing

    SciTech Connect

    Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  16. Optical nonlinearities in semiconductor-doped glasses near and below the band edge

    NASA Astrophysics Data System (ADS)

    Bindra, K. S.; Oak, S. M.; Rustagi, K. C.

    1998-03-01

    We present a brief review of our recent experimental results on optical nonlinearities in semiconductor-doped glasses. It is shown that even below the absorption edge the nonlinearities are determined by nonlinear absorption. The optical Kerr effect is found to have a susceptibility which is comparable to that for nonlinear refraction. We also find that in degenerate four-wave mixing the observed intensity dependence can be strongly influenced by nonlinear absorption.

  17. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and Making it…

  18. Edge-edge interactions in stacked graphene nanoplatelets

    SciTech Connect

    Cruz Silva, Eduardo; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Jia, Xiaoting; Sumpter, Bobby G; Dresselhaus, M; Meunier, V.

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.

  19. Giant edge state splitting at atomically precise graphene zigzag edges

    PubMed Central

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-01-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron–electron interactions in these localized states. PMID:27181701

  20. Giant edge state splitting at atomically precise graphene zigzag edges.

    PubMed

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-05-16

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.

  1. Strain engineering for mechanical properties in graphene nanoribbons revisited: The warping edge effect

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Wu

    2016-06-01

    We investigate the strain engineering and the edge effect for mechanical properties in graphene nanoribbons. The free edges of the graphene nanoribbons are warped due to compressive edge stresses. There is a structural transformation for the free edges from the three-dimensional warping configuration to the two-dimensional planar structure at the critical strain ɛc = 0.7%, at which the applied mechanical stress is equal to the intrinsic compressive edge stress. This structural transformation leads to step-like changes in several mechanical properties studied in the present work, including the Young's modulus, the Poisson's ratio, the quality factor of nanomechanical resonators, and the phonon edge mode.

  2. XUV Absorption by Solid Density Aluminum

    SciTech Connect

    Iglesias, C A

    2009-09-21

    An inverse bremsstrahlung model for plasmas and simple metals that approximates the cold, solid Al experimental data below the L-edge is applied to matter conditions relevant to XUV laser applications. The model involves an all-order calculation using a semi-analytical effective electron-ion interaction. The predicted increases in XUV absorption with rising temperature occur via two effects: increased availability of final states from reduced electron degeneracy and a stronger electron-ion interaction from reduced screening. Discrepancies in the temperature dependence as well as other details between the present approach and a recently proposed absorption model are discussed.

  3. Edge singularities and structure of the 3-D Williams expansion

    NASA Astrophysics Data System (ADS)

    Apel, Thomas; Leguillon, Dominique; Pester, Cornelia; Yosibash, Zohar

    2008-08-01

    The elastic solution in a vicinity of a re-entrant wedge can be described by a Williams like expansion in terms of powers of the distance to a point on the edge. This expansion has a particular structure due to the invariance of the problem by translation parallel to the edge. We show here that some terms, so-called primary solutions, derive directly from solutions to the 2-D corner problem posed in the orthogonal cross section of the domain. The others, baptized shadow functions, derive of the primary solutions by integration along the axis parallel to the edge. This 3-D Williams expansion is shown to be equivalent to the edge expansion proposed by Costabel et al. [M. Costabel, M. Dauge, Z. Yosibash, A quasidual function method for extracting edge stress intensity functions, SIAM J. Math. Anal. 35 (5) (2004) 1177-1202]. To cite this article: T. Apel et al., C. R. Mecanique 336 (2008).

  4. Rock Segmentation through Edge Regrouping

    NASA Technical Reports Server (NTRS)

    Burl, Michael

    2008-01-01

    Rockster is an algorithm that automatically identifies the locations and boundaries of rocks imaged by the rover hazard cameras (hazcams), navigation cameras (navcams), or panoramic cameras (pancams). The software uses edge detection and edge regrouping to identify closed contours that separate the rocks from the background.

  5. Computer Methods in EDG Education.

    ERIC Educational Resources Information Center

    Mabrey, Robert L.

    1999-01-01

    Presents several computer-related techniques that encourage engineering design graphics (EDG) students to develop knowledge at levels 4 and 5 of Bloom's taxonomy. Contrasts this approach to extend the educational process with the development of training skills at knowledge levels 2 and 3, which are often the sole basis for EDG instruction.…

  6. X-ray Absorption Spectra of Dissolved Polysulfides in Lithium-Sulfur Batteries from First-Principles.

    PubMed

    Pascal, Tod A; Wujcik, Kevin H; Velasco-Velez, Juan; Wu, Chenghao; Teran, Alexander A; Kapilashrami, Mukes; Cabana, Jordi; Guo, Jinghua; Salmeron, Miquel; Balsara, Nitash; Prendergast, David

    2014-05-01

    The X-ray absorption spectra (XAS) of lithium polysulfides (Li2Sx) of various chain lengths (x) dissolved in a model solvent are obtained from first-principles calculations. The spectra exhibit two main absorption features near the sulfur K-edge, which are unambiguously interpreted as a pre-edge near 2471 eV due to the terminal sulfur atoms at either end of the linear polysulfide dianions and a main-edge near 2473 eV due to the (x - 2) internal atoms in the chain, except in the case of Li2S2, which only has a low-energy feature. We find an almost linear dependence between the ratio of the peaks and chain length, although the linear dependence is modified by the delocalized, molecular nature of the core-excited states that can span up to six neighboring sulfur atoms. Thus, our results indicate that the ratio of the peak area, and not the peak intensities, should be used when attempting to differentiate the polysulfides from XAS.

  7. Incomplete intestinal absorption of fructose.

    PubMed

    Kneepkens, C M; Vonk, R J; Fernandes, J

    1984-08-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children with bowel disorders showed incomplete absorption. Seven children were tested again with an equal amount of glucose, and in three of them also of galactose, added to the fructose. The mean maximum breath hydrogen increases were 5 and 10 ppm, respectively, compared with 103 ppm after fructose alone. In one boy several tests were performed with various sugars; fructose was the only sugar incompletely absorbed, and the effect of glucose on fructose absorption was shown to be dependent on the amount added. It is concluded that children have a limited absorptive capacity for fructose. We speculate that the enhancing effect of glucose and galactose on fructose absorption may be due to activation of the fructose carrier. Apple juice in particular contains fructose in excess of glucose and could lead to abdominal symptoms in susceptible children.

  8. Incomplete intestinal absorption of fructose.

    PubMed Central

    Kneepkens, C M; Vonk, R J; Fernandes, J

    1984-01-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children with bowel disorders showed incomplete absorption. Seven children were tested again with an equal amount of glucose, and in three of them also of galactose, added to the fructose. The mean maximum breath hydrogen increases were 5 and 10 ppm, respectively, compared with 103 ppm after fructose alone. In one boy several tests were performed with various sugars; fructose was the only sugar incompletely absorbed, and the effect of glucose on fructose absorption was shown to be dependent on the amount added. It is concluded that children have a limited absorptive capacity for fructose. We speculate that the enhancing effect of glucose and galactose on fructose absorption may be due to activation of the fructose carrier. Apple juice in particular contains fructose in excess of glucose and could lead to abdominal symptoms in susceptible children. PMID:6476870

  9. The Robotic Edge Finishing Laboratory

    SciTech Connect

    Loucks, C.S.; Selleck, C.B.

    1990-08-01

    The Robotic Edge Finishing Laboratory at Sandia National Laboratories is developing four areas of technology required for automated deburring, chamfering, and blending of machined edges: (1) the automatic programming of robot trajectories and deburring processes using information derived from a CAD database, (2) the use of machine vision for locating the workpiece coupled with force control to ensure proper tool contact, (3) robotic deburring, blending, and machining of precision chamfered edges, and (4) in-process automated inspection of the formed edge. The Laboratory, its components, integration, and results from edge finishing experiments to date are described here. Also included is a discussion of the issues regarding implementation of the technology in a production environment. 24 refs., 17 figs.

  10. Landau Damping Of The LH Grill Spectrum By Tokamak Edge Electrons

    SciTech Connect

    Fuchs, V.; Petrzilka, V.; Horacek, J.; Seidl, J.; Gunn, J. P.; Ekedahl, A.; Goniche, M.; Hillairet, J.

    2009-11-26

    Recent experiments during lower hybrid (LH) current drive on Tore Supra have indicated the existence of suprathermal electrons in the scrape-off layer (SOL) all the way from the LH grill mouth to the last closed flux surface (LCFS). This finding contradicts the prediction of a narrow, less than about 5 mm thick, LH power absorption zone adjacent to the grill mouth. The present contribution discusses the edge electron distribution function in a typical tenuous and cold SOL, which supports relatively dense and hot blobs propagating outwards from the LCFS due to the interchange instability. The LH spectrum easily penetrates inward with little damping but on encountering a blob it strongly damps and generates fast electrons at the blob radial position.

  11. Edge-on Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's Hubble Space Telescope has imaged an unusual edge-on galaxy, revealing remarkable details of its warped dusty disc and showing how colliding galaxies trigger the birth of new stars.

    The image, taken by Hubble's Wide Field and Planetary Camera 2 (WFPC2), is online at http://heritage.stsci.edu and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. During observations of the galaxy, the camera passed a milestone, taking its 100,000th image since shuttle astronauts installed it in Hubble in 1993.

    The dust and spiral arms of normal spiral galaxies, like our Milky Way, look flat when seen edge- on. The new image of the galaxy ESO 510-G13 shows an unusual twisted disc structure, first seen in ground-based photographs taken at the European Southern Observatory in Chile. ESO 510-G13 lies in the southern constellation Hydra, some 150 million light-years from Earth. Details of the galaxy's structure are visible because interstellar dust clouds that trace its disc are silhouetted from behind by light from the galaxy's bright, smooth central bulge.

    The strong warping of the disc indicates that ESO 510-G13 has recently collided with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort galaxies as their stars, gas, and dust merge over millions of years. When the disturbances die out, ESO 510-G13 will be a single galaxy.

    The galaxy's outer regions, especially on the right side of the image, show dark dust and bright clouds of blue stars. This indicates that hot, young stars are forming in the twisted disc. Astronomers believe star formation may be triggered when galaxies collide and their interstellar clouds are compressed.

    The Hubble Heritage Team used WFPC2 to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty

  12. Theory of edge detection.

    PubMed

    Marr, D; Hildreth, E

    1980-02-29

    A theory of edge detection is presented. The analysis proceeds in two parts. (1) Intensity changes, which occur in a natural image over a wide range of scales, are detected separately at different scales. An appropriate filter for this purpose at a given scale is found to be the second derivative of a Gaussian, and it is shown that, provided some simple conditions are satisfied, these primary filters need not be orientation-dependent. Thus, intensity changes at a given scale are best detected by finding the zero values of delta 2G(x,y)*I(x,y) for image I, where G(x,y) is a two-dimensional Gaussian distribution and delta 2 is the Laplacian. The intensity changes thus discovered in each of the channels are then represented by oriented primitives called zero-crossing segments, and evidence is given that this representation is complete. (2) Intensity changes in images arise from surface discontinuities or from reflectance or illumination boundaries, and these all have the property that they are spatially. Because of this, the zero-crossing segments from the different channels are not independent, and rules are deduced for combining them into a description of the image. This description is called the raw primal sketch. The theory explains several basic psychophysical findings, and the operation of forming oriented zero-crossing segments from the output of centre-surround delta 2G filters acting on the image forms the basis for a physiological model of simple cells (see Marr & Ullman 1979).

  13. Mapping Forest Edge Using Aerial Lidar

    NASA Astrophysics Data System (ADS)

    MacLean, M. G.

    2014-12-01

    Slightly more than 60% of Massachusetts is covered with forest and this land cover type is invaluable for the protection and maintenance of our natural resources and is a carbon sink for the state. However, Massachusetts is currently experiencing a decline in forested lands, primarily due to the expansion of human development (Thompson et al., 2011). Of particular concern is the loss of "core areas" or the areas within forests that are not influenced by other land cover types. These areas are of significant importance to native flora and fauna, since they generally are not subject to invasion by exotic species and are more resilient to the effects of climate change (Campbell et al., 2009). However, the expansion of development has reduced the amount of this core area, but the exact amount is still unknown. Current methods of estimating core area are not particularly precise, since edge, or the area of the forest that is most influenced by other land cover types, is quite variable and situation dependent. Therefore, the purpose of this study is to devise a new method for identifying areas that could qualify as "edge" within the Harvard Forest, in Petersham MA, using new remote sensing techniques. We sampled along eight transects perpendicular to the edge of an abandoned golf course within the Harvard Forest property. Vegetation inventories as well as Photosynthetically Active Radiation (PAR) at different heights within the canopy were used to determine edge depth. These measurements were then compared with small-footprint waveform aerial LiDAR datasets and imagery to model edge depths within Harvard Forest.

  14. Plasma edge studies using carbon resistance probes

    SciTech Connect

    Wampler, W.R.; Manos, D.M.

    1983-04-01

    A new experimental technique, the resistance probe, was used to study the plasma edge in the PLT and PDX tokamaks. This technique involves measuring the change in resistance of a thin carbon film due to bombardment by energetic particles escaping the plasma. The probes have been calibrated by measuring the resistance change caused by implantation of various ions at different energies. A model has been developed which can be used to determine the flux and energy of the incident particles from the measured resistance changes. For probes exposed in PDX and PLT near the wall, resistance changes were observed due to charge exchange neutrals. Larger changes were observed in the ion scrape-off region closer to the plasma. In PLT the effect of ions at the plasma edge begins to dominate the neutral flux near the radius of the ring limiter. The energy of ions at the plasma edge was estimated to be low (< or approx. =100 eV) in PDX during neutral beam-heated discharges, but higher (> or approx. =300 eV) in PLT during ion cyclotron resonance heating.

  15. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  16. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  17. Evolution of Landau levels into edge states in graphene.

    PubMed

    Li, Guohong; Luican-Mayer, Adina; Abanin, Dmitry; Levitov, Leonid; Andrei, Eva Y

    2013-01-01

    Two-dimensional electron systems in the presence of a magnetic field support topologically ordered states, in which the coexistence of an insulating bulk with conducting one-dimensional chiral edge states gives rise to the quantum Hall effect. For systems confined by sharp boundaries, theory predicts a unique edge-bulk correspondence, which is central to proposals of quantum Hall-based topological qubits. However, in conventional semiconductor-based two-dimensional electron systems, these elegant concepts are difficult to realize, because edge-state reconstruction due to soft boundaries destroys the edge-bulk correspondence. Here we use scanning tunnelling microscopy and spectroscopy to follow the spatial evolution of electronic (Landau) levels towards an edge of graphene supported above a graphite substrate. We observe no edge-state reconstruction, in agreement with calculations based on an atomically sharp boundary. Our results single out graphene as a system where the edge structure can be controlled and the edge-bulk correspondence is preserved.

  18. Tunnelling between the edges of two lateral quantum Hall systems

    PubMed

    Kang; Stormer; Pfeiffer; Baldwin; West

    2000-01-01

    The edge of a two-dimensional electron system in a magnetic field consists of one-dimensional channels that arise from the confining electric field at the edge of the system. The crossed electric and magnetic fields cause electrons to drift parallel to the sample boundary, creating a chiral current that travels along the edge in only one direction. In an ideal two-dimensional electron system in the quantum Hall regime, all the current flows along the edge. Quantization of the Hall resistance arises from occupation of N one-dimensional edge channels, each contributing a conductance of e2/h. Here we report differential conductance measurements, in the integer quantum Hall regime, of tunnelling between the edges of a pair of two-dimensional electron systems that are separated by an atomically precise, high-quality, tunnel barrier. The resultant interaction between the edge states leads to the formation of new energy gaps and an intriguing dispersion relation for electrons travelling along the barrier: for example, we see a persistent conductance peak at zero bias voltage and an absence of tunnelling features due to electron spin. These features are unexpected and are not consistent with a model of weakly interacting edge states. Remnant disorder along the barrier and charge screening may each play a role, although detailed numerical studies will be required to elucidate these effects.

  19. Hydrogen-free graphene edges

    NASA Astrophysics Data System (ADS)

    He, Kuang; Lee, Gun-Do; Robertson, Alex W.; Yoon, Euijoon; Warner, Jamie H.

    2014-01-01

    Graphene edges and their functionalization influence the electronic and magnetic properties of graphene nanoribbons. Theoretical calculations predict saturating graphene edges with hydrogen lower its energy and form a more stable structure. Despite the importance, experimental investigations of whether graphene edges are always hydrogen-terminated are limited. Here we study graphene edges produced by sputtering in vacuum and direct measurements of the C-C bond lengths at the edge show ~86% contraction relative to the bulk. Density functional theory reveals the contraction is attributed to the formation of a triple bond and the absence of hydrogen functionalization. Time-dependent images reveal temporary attachment of a single atom to the arm-chair C-C bond in a triangular configuration, causing expansion of the bond length, which then returns back to the contracted value once the extra atom moves on and the arm-chair edge is returned. Our results provide confirmation that non-functionalized graphene edges can exist in vacuum.

  20. Hydrogen-free graphene edges.

    PubMed

    He, Kuang; Lee, Gun-Do; Robertson, Alex W; Yoon, Euijoon; Warner, Jamie H

    2014-01-01

    Graphene edges and their functionalization influence the electronic and magnetic properties of graphene nanoribbons. Theoretical calculations predict saturating graphene edges with hydrogen lower its energy and form a more stable structure. Despite the importance, experimental investigations of whether graphene edges are always hydrogen-terminated are limited. Here we study graphene edges produced by sputtering in vacuum and direct measurements of the C-C bond lengths at the edge show ~86% contraction relative to the bulk. Density functional theory reveals the contraction is attributed to the formation of a triple bond and the absence of hydrogen functionalization. Time-dependent images reveal temporary attachment of a single atom to the arm-chair C-C bond in a triangular configuration, causing expansion of the bond length, which then returns back to the contracted value once the extra atom moves on and the arm-chair edge is returned. Our results provide confirmation that non-functionalized graphene edges can exist in vacuum.

  1. Mating system shifts on the trailing edge

    PubMed Central

    Levin, Donald A.

    2012-01-01

    Background The trailing edges of species ranges are becoming a subject of increasing interest as the environment changes due to global warming. Trailing edge populations are likely to face extinction because of a decline in numbers and an inability to evolve new adaptations with sufficient speed. Discussions of character change in the trailing edge have focused on physiological, exomorphic and phenological traits. The mating pattern within populations has not been part of the discourse, in spite of the fact that the mating pattern may affect the ability of populations to respond to environmental change and to maintain their sizes. In this paper, the case is made that a substantial increase in self-fertilization rates may occur via plastic responses to stress. Scope and Conclusions Small populations on the trailing edge are especially vulnerable to environmental change because of inadequate levels of cross-fertilization. Evidence is presented that a deficiency of cross-seed production is due to inadequate pollinator services and a paucity of self-incompatibility alleles within populations. Evidence also is presented that if plants are self-compatible, self-fertilization may compensate in part for this deficiency through a stress-induced increase in levels of self-compatibility and stress-induced alterations in floral morphology that elevate self-pollination. Whereas increased self-fertility may afford populations the time to adapt to their changing environments, it can be concluded that increased selfing is not a panacea for the ills of environmental change, because it will lead to substantial reductions in genetic diversity, which may render adaptation unlikely. PMID:21980190

  2. Reduction of airfoil trailing edge noise by trailing edge blowing

    NASA Astrophysics Data System (ADS)

    Gerhard, T.; Erbslöh, S.; Carolus, T.

    2014-06-01

    The paper deals with airfoil trailing edge noise and its reduction by trailing edge blowing. A Somers S834 airfoil section which originally was designed for small wind turbines is investigated. To mimic realistic Reynolds numbers the boundary layer is tripped on pressure and suction side. The chordwise position of the blowing slot is varied. The acoustic sources, i.e. the unsteady flow quantities in the turbulent boundary layer in the vicinity of the trailing edge, are quantified for the airfoil without and with trailing edge blowing by means of a large eddy simulation and complementary measurements. Eventually the far field airfoil noise is measured by a two-microphone filtering and correlation and a 40 microphone array technique. Both, LES-prediction and measurements showed that a suitable blowing jet on the airfoil suction side is able to reduce significantly the turbulence intensity and the induced surface pressure fluctuations in the trailing edge region. As a consequence, trailing edge noise associated with a spectral hump around 500 Hz could be reduced by 3 dB. For that a jet velocity of 50% of the free field velocity was sufficient. The most favourable slot position was at 90% chord length.

  3. Converting Sabine absorption coefficients to random incidence absorption coefficients.

    PubMed

    Jeong, Cheol-Ho

    2013-06-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a sample and non-uniform intensity in the reverberation chambers under test. In this study, conversion methods from Sabine absorption coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations are suggested: An optimization method for the surface impedances for locally reacting absorbers, the flow resistivity for extendedly reacting absorbers, and the flow resistance for fabrics. With four porous type absorbers, the conversion methods are validated. For absorbers backed by a rigid wall, the surface impedance optimization produces the best results, while the flow resistivity optimization also yields reasonable results. The flow resistivity and flow resistance optimization for extendedly reacting absorbers are also found to be successful. However, the theoretical conversion factors based on Miki's model do not guarantee reliable estimations, particularly at frequencies below 250 Hz and beyond 2500 Hz.

  4. Fast tracking using edge histograms

    NASA Astrophysics Data System (ADS)

    Rokita, Przemyslaw

    1997-04-01

    This paper proposes a new algorithm for tracking objects and objects boundaries. This algorithm was developed and applied in a system used for compositing computer generated images and real world video sequences, but can be applied in general in all tracking systems where accuracy and high processing speed are required. The algorithm is based on analysis of histograms obtained by summing along chosen axles pixels of edge segmented images. Edge segmentation is done by spatial convolution using gradient operator. The advantage of such an approach is that it can be performed in real-time using available on the market hardware convolution filters. After edge extraction and histograms computation, respective positions of maximums in edge intensity histograms, in current and previous frame, are compared and matched. Obtained this way information about displacement of histograms maximums, can be directly converted into information about changes of target boundaries positions along chosen axles.

  5. Edge equilibrium code for tokamaks

    SciTech Connect

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  6. Electronic structure and optic absorption of phosphorene under strain

    NASA Astrophysics Data System (ADS)

    Duan, Houjian; Yang, Mou; Wang, Ruiqiang

    2016-07-01

    We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.

  7. Edge instabilities of topological superconductors

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  8. Edge of polar cap patches

    NASA Astrophysics Data System (ADS)

    Hosokawa, K.; Taguchi, S.; Ogawa, Y.

    2016-04-01

    On the night of 4 December 2013, a sequence of polar cap patches was captured by an all-sky airglow imager (ASI) in Longyearbyen, Norway (78.1°N, 15.5°E). The 630.0 nm airglow images from the ASI of 4 second exposure time, oversampled the emission of natural lifetime (with quenching) of at least ˜30 sec, introduce no observational blurring effects. By using such high-quality ASI images, we succeeded in visualizing an asymmetry in the gradients between the leading/trailing edges of the patches in a 2-D fashion. The gradient in the leading edge was found to be 2-3 times steeper than that in the trailing edge. We also identified fingerlike structures, appearing only along the trailing edge of the patches, whose horizontal scale size ranged from 55 to 210 km. These fingers are considered to be manifestations of plasma structuring through the gradient-drift instability (GDI), which is known to occur only along the trailing edge of patches. That is, the current 2-D observations visualized, for the first time, how GDI stirs the patch plasma and such a mixing process makes the trailing edge more gradual. This result strongly implies a close connection between the GDI-driven plasma stirring and the asymmetry in the large-scale shape of patches and then suggests that the fingerlike structures can be used as markers to estimate the fine-scale structure in the plasma flow within patches.

  9. The potential of UV-VIS-NIR absorption spectroscopy in glass studies

    NASA Astrophysics Data System (ADS)

    Meulebroeck, Wendy; Baert, Kitty; Ceglia, Andrea; Cosyns, Peter; Wouters, Hilde; Nys, Karin; Terryn, Herman; Thienpont, Hugo

    Absorption spectroscopy is the technique that measures the absorption of radiation as a function of wavelength, due to its interaction with the material. During a research project funded by our home university, we were able to investigate the possibilities of this technique to study ancient glasses. One of our main conclusions is that UV-VIS-NIR absorption spectroscopy is especially suited to characterize colored artifacts in terms of composition and furnace conditions. Moreover, for naturally colored window glasses, we have shown that this technique allows us to classify fragments based on differences in iron impurity levels. It is a semi-quantitative analysis tool that can be applied for a first-line analysis of (large) glass collections. Thanks to the commercial available portable instruments, these measurements can be performed at relative high speed and this in-situ if necessary. To illustrate the possibilities of this technique, we describe in this paper two case-studies. In a first test-case we analyze 63 naturally colored window glasses and demonstrate how groups with different iron concentrations can be identified by calculating the absorption edge position from the measured optical spectrum. In a second case-study 8 modern naturally colored and 31 intentionally colored Roman glass fragments are the point of focus. For these samples we first estimate which samples are potentially fabricated under the same furnace conditions. This is done based on the calculated color values. Finally we identify the type of applied colorants.

  10. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  11. Phosphorus K-edge XANES Spectroscopy of Mineral Standards

    SciTech Connect

    E Ingall; J Brandes; J Diaz; M de Jonge; D Paterson; I McNulty; C Elliott; P Northrup

    2011-12-31

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens.

  12. Large eddy simulation of trailing edge noise

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Nitzkorski, Zane; Mahesh, Krishnan

    2015-11-01

    Noise generation is an important engineering constraint to many marine vehicles. A significant portion of the noise comes from propellers and rotors, specifically due to flow interactions at the trailing edge. Large eddy simulation is used to investigate the noise produced by a turbulent 45 degree beveled trailing edge and a NACA 0012 airfoil. A porous surface Ffowcs-Williams and Hawkings acoustic analogy is combined with a dynamic endcapping method to compute the sound. This methodology allows for the impact of incident flow noise versus the total noise to be assessed. LES results for the 45 degree beveled trailing edge are compared to experiment at M = 0 . 1 and Rec = 1 . 9 e 6 . The effect of boundary layer thickness on sound production is investigated by computing using both the experimental boundary layer thickness and a thinner boundary layer. Direct numerical simulation results of the NACA 0012 are compared to available data at M = 0 . 4 and Rec = 5 . 0 e 4 for both the hydrodynamic field and the acoustic field. Sound intensities and directivities are investigated and compared. Finally, some of the physical mechanisms of far-field noise generation, common to the two configurations, are discussed. Supported by Office of Naval research.

  13. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2010-05-02

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  14. Atomic Resolution Mapping of the Excited-State Electronic Structure of Cu2O with Time-Resolved X-Ray Absorption Spectroscopy

    SciTech Connect

    Hillyard, Patrick B.; Kuchibhatla, Satyanarayana V N T; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, Ponnusamy; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Gaffney, Kelly J.

    2009-09-29

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that that the conduction band and valence band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  15. Edge effects in propagation of terahertz radiation in subwavelength periodic structures

    SciTech Connect

    Gelmont, B. Parthasarathy, R.; Globus, T.

    2008-08-15

    Improving detection sensitivity of biological molecules with low absorption characteristics in the terahertz gap still remains an important issue in terahertz vibrational resonance spectroscopy. One possible way to increase coupling of incident terahertz radiation to molecules is to exploit local enhancement of electromagnetic field in periodic slot arrays. In this work, we show that periodic arrays of rectangular slots with subwavelength widths provide for local electromagnetic field enhancements due to edge effects in our low frequency range of interest, 10-25 cm{sup -1}. Periodic structures of Au doped Si and InSb were studied. The half power enhancement width is {approx}500 nm or less around the slot, edges in all cases, thereby possibly bringing terahertz sensing to the nanoscale. InSb is confirmed to offer the highest results with local power enhancements on the order of 1100 at frequency 14 cm{sup -1}. InSb and Si have large skin depths in our frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Surface impedance boundary conditions were employed to model the Au structure. The applications possibly include development of novel biosensors, and monitoring biophysical processes such as DNA denaturation.

  16. Elongated Silicon-Carbon Bonds at Graphene Edges.

    PubMed

    Chen, Qu; Robertson, Alex W; He, Kuang; Gong, Chuncheng; Yoon, Euijoon; Kirkland, Angus I; Lee, Gun-Do; Warner, Jamie H

    2016-01-26

    We study the bond lengths of silicon (Si) atoms attached to both armchair and zigzag edges using aberration corrected transmission electron microscopy with monochromation of the electron beam. An in situ heating holder is used to perform imaging of samples at 800 °C in order to reduce chemical etching effects that cause rapid structure changes of graphene edges at room temperature under the electron beam. We provide detailed bond length measurements for Si atoms both attached to edges and also as near edge substitutional dopants. Edge reconstruction is also involved with the addition of Si dopants. Si atoms bonded to the edge of graphene are compared to substitutional dopants in the bulk lattice and reveal reduced out-of-plane distortion and bond elongation. An extended linear array of Si atoms at the edge is found to be energy-favorable due to inter-Si interactions. These results provide detailed structural information about the Si-C bonds in graphene, which may have importance in future catalytic and electronic applications.

  17. A X-Ray Absorption Spectroscopy Study of Manganese Containing Compounds and Photosynthetic Spinach Chloroplasts.

    NASA Astrophysics Data System (ADS)

    Kirby, Jon Allan

    The manganese sites in chloroplasts, long thought to be involved in photosynthetic oxygen evolution have been examined and partially characterized by X-ray Absorption Spectroscopy (XAS) using synchrotron radiation. The local environment about the manganese atoms is estimated from an analysis of the extended X-ray Absorption Fine Structure (EXAFS). Comparisons with and simulations of the manganese EXAFS for several reference compounds leads to a model in which the chloroplast manganese atoms are contained in a binuclear complex similar to di-u-oxo -tetrakis-(2,2'-bipyridine) dimanganese. It is suggested that the partner metal is another manganese. The bridging ligands are most probably oxygen. The remaining manganese ligands are carbon, oxygen, or nitrogen. A roughly linear correlation between the X-ray K edge onset energy and the "coordination charge" of a large number of manganese coordination complexes and compounds has been developed. Entry of the chloroplast manganese edge energy onto this correlation diagram establishes that the active pool of manganese is in an oxidation state greater than +2. If the manganese is in a dimeric form the oxidation states are most probably (II,III). Underlying these results is an extensive data analysis methodology. The method developed involves the use of many different background removal techniques, Fourier transforms and ultimately curve fitting to the modulations in the x-ray absorption cross sections. A large number of model compounds were used to evaluate the analysis method. These analyses are used to show that the two major curve fitting models available are essentially equivalent. Due to its greater versatility, the theoretical model of Teo and Lee is preferred (J. Am. Chem. Soc. (1979), 101, 2815). The results are also used to determine the informational limitations of XAS within the limits of the present understanding of X-ray absorption phenomena by inner shell electrons for atoms with atomic number greater than that

  18. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number. PMID:24116405

  19. Symmetric airfoil geometry effects on leading edge noise.

    PubMed

    Gill, James; Zhang, X; Joseph, P

    2013-10-01

    Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number.

  20. RING EDGE WAVES AND THE MASSES OF NEARBY SATELLITES

    SciTech Connect

    Weiss, John W.; Porco, Carolyn C.

    2009-07-15

    Moons embedded in gaps within Saturn's main rings generate waves on the gap edges due to their gravitational disturbances. These edge waves can serve as diagnostics for the masses and, in some cases, orbital characteristics of the embedded moons. Although N-body simulations of the edges are far better in inferring masses from edge morphology, the long run-times of this technique often make it impractical. In this paper, we describe a faster approach to narrow the range of masses to explore with N-body simulations, to explore the multidimensional parameter space of edge/moon interactions, and to guide the planning of spacecraft observations. Using numerical, test-particle models and neglecting particle-particle interactions, we demonstrate that the simple analytic theory of the edge waves applies well to Pan in the Encke Gap but breaks down for smaller moons/gaps like Daphnis in the Keeler Gap. Fitting an analytic model to our simulation results allows us to suggest an improved relationship between moon-mass and edge wave amplitude. Numerical methods also grant freedom to explore a wider range of moon and ring orbits than the circular, coplanar case considered by analytic theory. We examine how pre-encounter inclinations and eccentricities affect the properties of the edge waves. In the case where the moon or ring-edge particle orbits initially have eccentric radial variations that are large compared to the gap width, there is considerable variation in edge wave amplitude depending on the orbital phase of the encounter. Inclined moons also affect the edge wave amplitude, potentially significantly, as well as generate vertical waves on the gap-edges. Recent Cassini images acquired as Saturn approaches equinox and the Sun's elevation on the ringplane is extremely low have revealed long shadows associated with the Keeler gap edge waves created by the embedded moon Daphnis. We interpret these as being cast by {approx}1 km high vertical structure in the waves created by