Science.gov

Sample records for absorption edge due

  1. The electronic absorption edge of petroleum

    SciTech Connect

    Mullins, O.C.; Mitra-Kirtley, S.; Zhu, Yifu

    1992-09-01

    The electronic absorption spectra of more than 20 crude oils and asphaltenes are examined. The spectral location of the electronic absorption edge varies over a wide range, from the near-infrared for heavy oils and asphaltenes to the near-UV for gas condensates. The functional form of the electronic absorption edge for all crude oils (measured) is characteristic of the {open_quotes}Urbach tail,{close_quotes} a phenomenology which describes electronic absorption edges in wide-ranging materials. The crude oils all show similar Urbach widths, which are significantly larger than those generally found for various materials but are similar to those previously reported for asphaltenes. Monotonically increasing absorption at higher photon energy continues for all crude oils until the spectral region is reached where single-ring aromatics dominate absorption. However, the rate of increasing absorption at higher energies moderates, thereby deviating from the Urbach behavior. Fluorescence emission spectra exhibit small red shifts from the excitation wavelength and small fluorescence peak widths in the Urbach regions of different crude oils, but show large red shifts and large peak widths in spectral regions which deviate from the Urbach behavior. This observation implies that the Urbach spectral region is dominated by lowest-energy electronic absorption of corresponding chromophores. Thus, the Urbach tail gives a direct measure of the population distribution of chromophores in crude oils. Implied population distributions are consistent with thermally activated growth of large chromophores from small ones. 12 refs., 8 figs.

  2. Temperature dependence of the absorption edge of vitreous silica

    NASA Technical Reports Server (NTRS)

    Bates, C. W., Jr.

    1976-01-01

    During an investigation of the optical properties of high-purity vitreous silica (fused quartz), which is being developed by NASA as a reflective and ablative heat shield, some interesting properties of theoretical and experimental nature have become apparent which otherwise may have remained unnoticed. Of particular interest for the NASA application is the shift of the absorption edge toward longer wavelengths with increasing temperature. The results of studies of this shift and of the spectral dependence of the absorption edge are summarized in the present paper. Plots of the absorption edge and the absorption spectrum of fused quartz vs temperature are given and discussed.

  3. Photonic band-edge-induced enhancement in absorption and emission

    NASA Astrophysics Data System (ADS)

    Ummer, Karikkuzhi Variyath; Vijaya, Ramarao

    2015-01-01

    An enhancement in photonic band-edge-induced absorption and emission from rhodamine-B dye doped polystyrene pseudo gap photonic crystals is studied. The band-edge-induced enhancement in absorption is achieved by selecting the incident angle of the excitation beam so that the absorption spectrum of the emitter overlaps the photonic band edge. The band-edge-induced enhancement in emission, on the other hand, is possible with and without an enhancement in band-edge-induced absorption, depending on the collection angle of emission. Through a simple set of measurements with suitably chosen angles for excitation and emission, we achieve a maximum enhancement of 70% in emission intensity with band-edge-induced effects over and above the intrinsic emission in the case of self-assembled opals. This is a comprehensive effort to interpret tunable lasing in opals as well as to predict the wavelength of lasing arising as a result of band-edge-induced distributed feedback effects.

  4. Collisionless absorption in sharp-edged plasmas

    SciTech Connect

    Gibbon, P. ); Bell, A.R. )

    1992-03-09

    The absorption of subpicosecond, obliquely incident laser light is studied using a 11/2D particle-in-cell code. Density scale lengths from {ital L}/{lambda}=0.01 to 2 and laser irradiances between {ital I}{lambda}{sup 2}=10{sup 14} and 10{sup 18} W cm{sup {minus}2} {mu}m{sup 2} are considered. Vacuum heating'' (F. Brunel, Phys. Rev. Lett. 59, 52 (1987)) dominates over resonance absorption for scale lengths {ital L}/{lambda}{lt}0.1, and is most efficient when {ital v}{sub osc}/{ital c}{congruent}3.1({ital L}/{lambda}){sup 2}. Absorbed energy is carried mainly by a superhot'' electron population with {ital U}{sub hot}{similar to}({ital I}{lambda}{sup 2}){sup 1/3--1/2}.

  5. Absorption-edge calculations of inorganic nonlinear optical crystals

    NASA Astrophysics Data System (ADS)

    Wu, Kechen; Chen, Chuangtian

    1992-03-01

    A theoretical model suitable for calculating absorption edges of inorganic nonlinear optical (NLO) crystals is introduced. This model is proved to be useful to elucidate the relationship between electronic structures of NLO-active groups and macroscopic properties of absorption edges on the UV side of most of the inorganic nonlinear optical crystals. A systematic calculation of absorption edges on the UV side for several important inorganic NLO crystals is carried out by means of DV-SCM-Xα method and all calculated results are in good agreement with experimental data. These inorganic NLO crystals include LiB3O5(LBO), β-BaB2O4(BBO), KB5, KDP, Na2SbF5, Ba2TiSi2O8, iodate and NaNO2. The calculated energy level structures of LiB3O5 and β-BaB2O4 crystals are compared with the measured XPS spectra. The unusual transparent spectra of KB5 and KDP crystals are partly explained from the microstructure point of view. The effect of lone electron pair in iodate and NaNO2 crystals on their absorption edges are discussed. All these results show that Anionic Group Theory of Nonlinear Optical Crystals is useful to evaluate the absorption edges of the inorganic nonlinear optical crystal and is a powerful tool in a Molecular Engineering approach to search for new nonlinear optical materials.

  6. Urbach absorption edge in epitaxial erbium-doped silicon

    SciTech Connect

    Shmagin, V. B. Kudryavtsev, K. E.; Shengurov, D. V.; Krasilnik, Z. F.

    2015-02-07

    We investigate the dependencies of the photocurrent in Si:Er p-n junctions on the energy of the incident photons. The exponential absorption edge (Urbach edge) just below fundamental edge of silicon was observed in the absorption spectra of epitaxial Si:Er layers grown at 400–600 C. It is shown that the introduction of erbium significantly enhances the structural disorder in the silicon crystal which was estimated from the slope of the Urbach edge. We discuss the possible nature of the structural disorder in Si:Er and a new mechanism of erbium excitation, which does not require the presence of deep levels in the band gap of silicon.

  7. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    SciTech Connect

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  8. Weibel instability due to inverse bremsstrahlung absorption

    SciTech Connect

    Bendib, A.; Bendib, K.,; Bendib, A.; Bendib, K.; Sid, A.,; Bendib, K.,

    1997-06-01

    A new Weibel source due to the inverse bremsstrahlung absorption is presented. It has been shown that in homogeneous plasmas, this mechanism may drive strong collisionless Weibel modes with growth rates of order of {gamma}{approximately}10{sup 11}s{sup {minus}1} and negligible group velocities. In the laser-produced plasmas, for short laser wavelengths ({lambda}{sub L}{lt}1{mu}m) and high laser fluxes (I{gt}10{sup 14}W/cm{sup 2}), this Weibel source is most efficient as the ones due to the heat flux and the plasma expansion. The useful scaling law of the convective e-foldings, with respect to the laser and the plasma parameters, is also derived. {copyright} {ital 1997} {ital The American Physical Society}

  9. Search for Lyman Limit Absorption Edge in Quasar Continuum

    NASA Astrophysics Data System (ADS)

    Sun, W.-H.; Malkan, M. A.; Chang, Thomas H. W.

    1993-12-01

    We examine the low resolution UV spectra of the 37 quasars in HST Key Project to search for intrinsic Lyman absorption edge which may be a signature of thermal accretion disks. Only 28 QSOs have proper redshifts to place the region of interest in the G160L window. We fit the L_β with two gaussians to remove the line. We then avoid 20 and 50 Angstroms on the blue and red sides of 912 Angstroms in the rest frame, and take 80 Angstroms bins (rest frame) on both sides but further out for analysis. We compare the single power-law fitting (to the entire range across the edge), with the two power-law fitting to blue and red bands. We also measure the percentage drop of flux over the Lyman limit. There are 7 objects with intrinsically noisy spectra, which were presumably caused by intervening Lyman absorption systems. Applying the two methods on the rest 21 objects, we found {24%} candidates to have possible rest frame Lyman limit absorption edges. Same analyses have also been performed on optical spectra of medium- to high-redshift QSOs from Lick Observatory and Hale Observatory. Similar results were also found.

  10. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  11. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-01

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  12. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  13. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Streeck, C.; Löchel, H.; Rudolph, I.; Erko, A.; Stiel, H.; Kanngießer, B.

    2016-05-01

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ˜ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  14. Resonant diffraction in stishovite near the K absorption edge of silicon

    SciTech Connect

    Dmitrienko, V. E.; Ovchinnikova, E. N.

    2011-05-15

    The X-ray resonant diffraction in a stishovite crystal near the K absorption edge of silicon (E{sub K} = 1839 eV) is studied theoretically. For such a long wavelength, the only possible Bragg reflection is the 100 reflection, which is forbidden by the space group of the crystal. It can be excited solely due to anisotropy of the X-ray scattering amplitude. The crystal symmetry is used to determine the polarization and azimuthal dependence of the reflection intensity. Since this reflection is single, it can be detected upon diffraction from a powder, which substantially widens the possibilities of investigations. The numerical calculations of the energy dependences of the forbidden reflection intensity and the absorption coefficient demonstrate that the dipole-quadrupole, quadrupole-quadrupole, and dipole-octupole contributions to the resonant diffraction and absorption are small and that the dipole-dipole contribution is the most important one.

  15. Failure of Energy Transfer between Identical Aromatic Molecules on Excitation at the Long Wave Edge of the Absorption Spectrum

    PubMed Central

    Weber, Gregorio; Shinitzky, Meir

    1970-01-01

    Electronic energy transfer among identical molecules has been followed by the depolarization of the fluorescence in concentrated solutions as well as in dimers, polymers, and micelle systems. In the many aromatic fluorophores examined, unlike a few nonaromatic ones, transfer is much decreased or altogether undetectable on excitation at the red edge of the absorption spectrum. The phenomenon is not due to the transfer taking place during a small fraction of the total fluorescence lifetime, nor is it explainable by a decrease in overlap of absorption and emission upon edge excitation. PMID:16591825

  16. Parametric distortion of the optical absorption edge of a magnetic semiconductor by a strong laser field

    SciTech Connect

    Nunes, O.A.C.

    1985-09-15

    The influence of a strong laser field on the optical absorption edge of a direct-gap magnetic semiconductor is considered. It is shown that as the strong laser intensity increases the absorption coefficient is modified so as to give rise to an absorption tail below the free-field forbidden gap. An application is made for the case of the EuO.

  17. Relativistic Effects Around Black Holes: Smearing Absorption Edges

    NASA Technical Reports Server (NTRS)

    Zhang, X. L.; Feng, Y. X.; Zhang, S. N.; Yao, Y.

    2002-01-01

    Broad iron absorption structures have been observed in the X-ray spectra of both AGNs and black hole X-ray binaries (BHXBs). A correctly modeled absorption structure can reveal the physical condition of the source, help to determine the continuum spectra and thus help to estimate other spectral lifes more accurately. The absorption structures are usually thought to be caused by the reflection of X-rays by the accretion disks around the central black holes, and the broadening can be a ttributed to the ionization states of the disk and relativistic effects.

  18. Tailoring of absorption edge by thermal annealing in tin oxide thin films

    SciTech Connect

    Thakur, Anup; Gautam, Sanjeev; Kumar, Virender; Chae, K. H.; Lee, Ik-Jae; Shin, Hyun Joon

    2015-05-15

    Tin oxide (SnO{sub 2}) thin films were deposited by radio-frequency (RF) magnetron sputtering on silicon and glass substrates in different oxygen-to-argon gas-flow ratio (O{sub 2}-to-Ar = 0%, 10%, 50%). All films were deposited at room temperature and fixed working pressures, 10 mTorr. The X-ray diffraction (XRD) measurement suggests that all films were crystalline in nature except film deposited in argon environment. Thin films were annealed in air at 200 °C, 400 °C and 600 °C for two hours. All films were highly transparent except the film deposited only in the argon environment. It was also observed that transparency was improved with annealing due to decrease in oxygen vacancies. Atomic force microscopy (AFM), results showed that the surface of all the films were highly flat and smooth. Blue shift was observed in the absorption edge with annealing temperature. It was also observed that there was not big change in the absorption edge with annealing for films deposited in 10% and 50% oxygen-to-argon gas-flow ratio.

  19. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  20. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    NASA Astrophysics Data System (ADS)

    Laloum, D.; Printemps, T.; Lorut, F.; Bleuet, P.

    2015-01-01

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  1. Near edge X-ray absorption mass spectrometry on coronene

    SciTech Connect

    Reitsma, G.; Deuzeman, M. J.; Hoekstra, R.; Schlathölter, T.; Boschman, L.; Hoekstra, S.

    2015-01-14

    We have investigated the photoionization and photodissociation of free coronene cations C{sub 24}H{sub 12}{sup +} upon soft X-ray photoabsorption in the carbon K-edge region by means of a time-of-flight mass spectrometry approach. Core excitation into an unoccupied molecular orbital (below threshold) and core ionization into the continuum both leave a C 1s vacancy, that is subsequently filled in an Auger-type process. The resulting coronene dications and trications are internally excited and cool down predominantly by means of hydrogen emission. Density functional theory was employed to determine the dissociation energies for subsequent neutral hydrogen loss. A statistical cascade model incorporating these dissociation energies agrees well with the experimentally observed dehydrogenation. For double ionization, i.e., formation of intermediate C{sub 24}H{sub 12}{sup 3+⋆}trications, the experimental data hint at loss of H{sup +} ions. This asymmetric fission channel is associated with hot intermediates, whereas colder intermediates predominantly decay via neutral H loss.

  2. Characterization of Oxygen Containing Functional Groups on Carbon Materials with Oxygen K-edge X-ray Absorption Near Edge Structure Spectroscopy

    SciTech Connect

    K Kim; P Zhu; L Na; X Ma; Y Chen

    2011-12-31

    Surface functional groups on carbon materials are critical to their surface properties and related applications. Many characterization techniques have been used to identify and quantify the surface functional groups, but none is completely satisfactory especially for quantification. In this work, we used oxygen K-edge X-ray absorption near edge structure (XANES) spectroscopy to identify and quantify the oxygen containing surface functional groups on carbon materials. XANES spectra were collected in fluorescence yield mode to minimize charging effect due to poor sample conductivity which can potentially distort XANES spectra. The surface functional groups are grouped into three types, namely carboxyl-type, carbonyl-type, and hydroxyl-type. XANES spectra of the same type are very similar while spectra of different types are significantly different. Two activated carbon samples were analyzed by XANES. The total oxygen contents of the samples were estimated from the edge step of their XANES spectra, and the identity and abundance of different functional groups were determined by fitting of the sample XANES spectrum to a linear combination of spectra of the reference compounds. It is concluded that oxygen K-edge XANES spectroscopy is a reliable characterization technique for the identification and quantification of surface functional groups on carbon materials.

  3. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy.

    PubMed

    Benuzzi-Mounaix, A; Dorchies, F; Recoules, V; Festa, F; Peyrusse, O; Levy, A; Ravasio, A; Hall, T; Koenig, M; Amadou, N; Brambrink, E; Mazevet, S

    2011-10-14

    The electronic structure evolution of highly compressed aluminum has been investigated using time resolved K edge x-ray absorption spectroscopy. A long laser pulse (500 ps, I(L)≈8×10(13) W/cm(2)) was used to create a uniform shock. A second ps pulse (I(L)≈10(17)  W/cm(2)) generated an ultrashort broadband x-ray source near the Al K edge. The main target was designed to probe aluminum at reshocked conditions up to now unexplored (3 times the solid density and temperatures around 8 eV). The hydrodynamical conditions were obtained using rear side visible diagnostics. Data were compared to ab initio and dense plasma calculations, indicating potential improvements in either description. This comparison shows that x-ray-absorption near-edge structure measurements provide a unique capability to probe matter at these extreme conditions and severally constrains theoretical approaches currently used. PMID:22107398

  4. Defects forming the optical absorption edge in TlGaSe2 layered crystal

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Suleymanov, Rauf A.; Şale, Yasin

    2016-09-01

    In this work, we present the results of optical experiments designed to investigate the changes in optical absorption spectra of TlGaSe2 ferroelectric-semiconductor with incommensurate (INC) phase in experimental conditions where crystal is kept several hours within the INC-phase (the regime of so called "memory" effect). The fundamental absorption of TlGaSe2, experimentally investigated by optical transmission measurements performed in the temperature range 15-300 K. An extraordinary modification of the optical absorption edge in the range of Urbach's tail is discovered as a result of the annealing within the INC-phase. The role of native defects forming the band edge in the observed phenomena in TlGaSe2 is discussed.

  5. An analytic formula for heating due to ozone absorption

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.; Will, D. I.

    1972-01-01

    An attempt was made to devise a simple expression or formula to describe radiative heating in the atmosphere by ozone absorption. Such absorption occurs in the Hartley, Huggins, and Chappuis bands and is only slightly temperature and pressure dependent.

  6. Multiwavelength anomalous diffraction analysis at the M absorption edges of uranium

    PubMed Central

    Liu, Yee; Ogata, Craig M.; Hendrickson, Wayne A.

    2001-01-01

    The multiwavelength anomalous diffraction (MAD) method for phase evaluation is now widely used in macromolecular crystallography. Successful MAD structure determinations have been carried out at the K or L absorption edges of a variety of elements. In this study, we investigate the anomalous scattering properties of uranium at its MIV (3.326 Å) and MV (3.490 Å) edge. Fluorescence spectra showed remarkably strong anomalous scattering at these edges (f′ = −70e, f′′ = 80e at the MIV edge and f′ = −90e, f′′ = 105e at the MV edge), many times higher than from any anomalous scatterers used previously for MAD phasing. However, the large scattering angles and high absorption at the low energies of these edges present some difficulties not found in typical crystallographic studies. We conducted test experiments at the MIV edge with crystals of porcine elastase derivatized with uranyl nitrate. A four-wavelength MAD data set complete to 3.2-Å Bragg spacings was collected from a single small frozen crystal. Analysis of the data yielded satisfactory phase information (average difference of 0ϕT − 0ϕA for replicated determinations is 32°) and produced an interpretable electron-density map. Our results demonstrate that it is practical to measure macromolecular diffraction data at these edges with current instrumentation and that phase information of good accuracy can be extracted from such experiments. We show that such experiments have potential for the phasing of very large macromolecular assemblages. PMID:11526210

  7. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum - Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Van Fossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation on leading edge heat transfer is presented. Experimental and numerical results are given for a circular leading edge and for a 3:1 elliptical leading edge. It is demonstrated that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  8. Direct Correlation Between Aromatization of Kerogen in Organic Shales during Maturation and Its Visible Absorption Edge

    NASA Astrophysics Data System (ADS)

    Ferralis, N.; Liu, Y.; Pomerantz, A.; Grossman, J.

    2014-12-01

    The evolution of the electronic visible-range optical absorption edge of isolated kerogens type 1, 2 (from organic shales) and 3 is characterized by diffuse reflectance UV-Visible absorption spectroscopy. The functional form of the electronic absorption edge for all kerogens measured is in excellent agreement with the "Urbach tail" phenomenology. The Urbach decay width extracted from the exponential fit within the visible range is strongly correlated with the aliphatic/aromatic ratio in isolated kerogen, regardless of the kerogen type. The direct correlation is confirmed by density functional theory calculations on proxy ensemble models of kerogen. The correlation of the decay width with conventional maturity indicators such as vitrinite reflectance is found to be good within a particular kerogen type, but not consistent across different kerogen types. This is explained in terms of the evolution of the population of aromatic constituents in kerogen, which is instead directly measured through the Urbach decay. The optical absorption edge and the Urbach decay width are therefore presented as excellent candidates for the evaluation of thermal maturity in kerogen.

  9. X-ray absorption near edge structure investigation ofvanadium-doped ZnO thin films

    SciTech Connect

    Faiz, M.; Tabet, N.; Mekki, A.; Mun, B.S.; Hussain, Z.

    2006-05-11

    X-ray absorption near edge structure spectroscopy has beenused to investigate the electronic and atomic structure of vanadium-dopedZnO thin films obtained by reactive plasma. The results show no sign ofmetallic clustering of V atoms, +4 oxidation state of V, 4-foldcoordination of Zn in the films, and a secondary phase (possibly VO2)formation at 15 percent V doping. O K edge spectra show V 3d-O 2p and Zn4d-O 2p hybridization, and suggest that V4+ acts as electron donor thatfills the sigma* band.

  10. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption?

    PubMed

    Deparis, O; Mouchet, S R; Su, B-L

    2015-11-11

    Light harvesting enhancement by slow photons in photonic crystal catalysts or dye-sensitized solar cells is a promising approach for increasing the efficiency of photoreactions. This structural effect is exploited in inverse opal TiO2 photocatalysts by tuning the red edge of the photonic band gap to the TiO2 electronic excitation band edge. In spite of many experimental demonstrations, the slow photon effect is not fully understood yet. In particular, observed enhancement by tuning the blue edge has remained unexplained. Based on rigorous couple wave analysis simulations, we quantify light harvesting enhancement in terms of absorption increase at a specific wavelength (monochromatic UV illumination) or photocurrent increase (solar light illumination), with respect to homogeneous flat slab of equivalent material thickness. We show that the commonly accepted explanation relying on light intensity confinement in high (low) dielectric constant regions at the red (blue) edge is challenged in the case of TiO2 inverse opals because of the sub-wavelength size of the material skeleton. The reason why slow photons at the blue edge are also able to enhance light harvesting is the loose confinement of the field, which leads to significant resonantly enhanced field intensity overlap with the skeleton in both red and blue edge tuning cases, yet with different intensity patterns. PMID:26517229

  11. Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    SciTech Connect

    Vittoria, Fabio A. Diemoz, Paul C.; Endrizzi, Marco; Olivo, Alessandro; Wagner, Ulrich H.; Rau, Christoph; Robinson, Ian K.

    2014-03-31

    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.

  12. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L.

    2016-03-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm3 sensitivity, sufficient for detecting the density corresponding to a single nanoparticle.

  13. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  14. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    SciTech Connect

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-12-31

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs.

  15. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography

    PubMed Central

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L.

    2016-01-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm3 sensitivity, sufficient for detecting the density corresponding to a single nanoparticle. PMID:26960695

  16. Intracellular nanoparticles mass quantification by near-edge absorption soft X-ray nanotomography.

    PubMed

    Conesa, Jose Javier; Otón, Joaquín; Chiappi, Michele; Carazo, Jose María; Pereiro, Eva; Chichón, Francisco Javier; Carrascosa, José L

    2016-01-01

    We used soft X-ray three-dimensional imaging to quantify the mass of superparamagnetic iron oxide nanoparticles (SPION) within whole cells, by exploiting the iron oxide differential absorption contrast. Near-edge absorption soft X-ray nanotomography (NEASXT) combines whole-cell 3D structure determination at 50 nm resolution, with 3D elemental mapping and high throughput. We detected three-dimensional distribution of SPIONs within cells with 0.3 g/cm(3) sensitivity, sufficient for detecting the density corresponding to a single nanoparticle. PMID:26960695

  17. Oscillator strength of the peptide bond {pi}* resonances at all relevant x-ray absorption edges

    SciTech Connect

    Kummer, K.; Vyalikh, D. V.; Molodtsov, S. L.; Sivkov, V. N.; Nekipelov, S. V.; Maslyuk, V. V.; Mertig, I.; Blueher, A.; Mertig, M.; Bredow, T.

    2009-10-15

    Absolute x-ray absorption cross sections of a regular bacterial surface-layer protein deposited on a naturally oxidized silicon substrate were determined experimentally. Upon separation of the partial cross sections of the three relevant 1s absorption edges, the oscillator strengths of the 1s{yields}{pi}* excitations within the peptide-backbone unit were extracted. Comparison with results of first-principles calculations revealed their close correlation to the topology of {pi}{sub peptide}* orbitals of the peptide backbone.

  18. Multiple-scattering calculations of the uranium L3-edge x-ray-absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Hudson, E. A.; Rehr, J. J.; Bucher, J. J.

    1995-11-01

    A theoretical study of the uranium L3-edge x-ray absorption near-edge structure (XANES) is presented for several uranium compounds, including oxides, intermetallics, uranyl fluoride, and α-uranium. Calculations were performed using feff6, an ab initio multiple-scattering (MS) code that includes the most important features of current theories. The results, which account for both the fine structure χ and the atomiclike background μ0 of the absorption coefficient μ, are compared to new and previously measured experimental spectra, reavealing very good agreement for most systems. For several compounds, a more detailed theoretical analysis determined the influence of cluster size and scattering order upon the calculated spectra. Results indicate that MS paths and scattering paths that include rather distant atoms make significant contributions for UO2, whereas XANES for crystals with lower symmetry and density can be modeled using only shorter single-scattering paths. In most cases, assumption of a screened final state in the calculation gives better agreement with experiment than use of an unscreened final state. The successful modeling of spectra for a variety of different uranium compounds, with differing spectral features, indicates that the semirelativistic treatment of XANES used here is adequate even for heavy elements. The well-known resonance, observed experimentally for uranyl (UO2+2) compounds ~=15 eV above the white line, is successfully modeled here for the first time, using multiple-scattering paths within the O-U-O axial bonds. Overlapping muffin-tin spheres were required in the calculation, probably as a result of the short uranyl axial bonds.

  19. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure. PMID:27510989

  20. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  1. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  2. X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge

    PubMed Central

    2015-01-01

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W0(PMe3)6], [WIICl2(PMePh2)4], [WIIICl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [WIVCl4(PMePh2)2], [WV(NPh)Cl3(PMe3)2], and [WVICl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [WIV(mdt)2(CO)2] and [WIV(mdt)2(CN)2]2– (mdt2– = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively WIV species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal–ligand distances, exaggerate the difference

  3. Atomic form factors and photoelectric absorption cross-sections near absorption edges in the soft X-ray region

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2003-01-01

    Reliable knowledge of the complex X-ray form factor [Re(f) and Im(f)] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety and XAFS studies. Key discrepancies in earlier theoretical work are due to the smoothing of edge structure, the use of non-relativistic wave functions, and the lack of appropriate convergence of wave functions. These discrepancies lead to significant corrections for most comprehensive (i.e. all-Z) tabulations. This work has led to a major comprehensive database tabulation [Chantler, C. T. (2000). J. Phys. Chem. Ref. Data, 29, 597-1048] which serves as a sequel and companion to earlier relativistic Dirac-Fock computations [Chantler, C. T. (1995). J. Phys. Chem. Ref. Data, 24, 71-643]. The paper finds that earlier work needs improvement in the near-edge region for soft X-ray energies, and derives new theoretical results of substantially higher accuracy in near-edge soft X-ray regions. Fine grids near edges are tabulated demonstrating the current comparison with alternate theory and with available experimental data. The best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future. This work forms the latest component of the FFAST NIST database [http://physics.nist.gov/PhysRefData/FFast02/Text/cover.html].

  4. Generic helical edge states due to Rashba spin-orbit coupling in a topological insulator

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Molina, Rafael A.; Platero, Gloria; Lunde, Anders Mathias

    2016-05-01

    We study the helical edge states of a two-dimensional topological insulator without axial spin symmetry due to the Rashba spin-orbit interaction. Lack of axial spin symmetry can lead to so-called generic helical edge states, which have energy-dependent spin orientation. This opens the possibility of inelastic backscattering and thereby nonquantized transport. Here we find analytically the new dispersion relations and the energy dependent spin orientation of the generic helical edge states in the presence of Rashba spin-orbit coupling within the Bernevig-Hughes-Zhang model, for both a single isolated edge and for a finite width ribbon. In the single-edge case, we analytically quantify the energy dependence of the spin orientation, which turns out to be weak for a realistic HgTe quantum well. Nevertheless, finite size effects combined with Rashba spin-orbit coupling result in two avoided crossings in the energy dispersions, where the spin orientation variation of the edge states is very significantly increased for realistic parameters. Finally, our analytical results are found to compare well to a numerical tight-binding regularization of the model.

  5. Water ice self-absorption in three Ophiuchus edge-on disks

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Beck, Tracy; Grosso, Nicolas; McCabe, Caer; Menard, Francois; Pinte, Christophe

    2008-02-01

    We propose to use NIRI to measure the depth and shape of the 3(micron) water ice absorption feature in three edge-on disks in the Ophiuchus molecular cloud. This will provide us with an estimate of the total column density of ice in these disks and an indication of the thermal processing it has experienced. In protoplanetary disks, water ice coats dust grains in the majority of the disk volume and plays a major role in favoring grain-grain sticking during collisions, a key phenomenon towards the formation of planetesimals. In edge-on disks, the disk near- infrared thermal radiation, arising from the innermost regions, provides a continuous background that can be absorbed by water ice in the cold outer regions of the disks. These systems therefore offer a unique opportunity to probe water ice in protoplanetary disks. The proposed observations will double the number of edge-on disks with detected water ice absorption and represent the first such observations in the Ophiuchus molecular cloud.

  6. Interstellar dust grain composition from high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2016-06-01

    X-ray light is sufficient to excite electrons from n=1 (K-shell) and n=2 (L-shell) energy levels of neutral interstellar metals, causing a sharp increase in the absorption cross-section. Near the ionization energy, the shape of the photoelectric absorption edge depends strongly on whether the atom is isolated or bound in molecules or minerals (dust). With high resolution X-ray spectroscopy, we can directly measure the state of metals and the mineral composition of dust in the interstellar medium. In addition, the scattering contribution to the X-ray extinction cross-section can be used to gauge grain size, shape, and filling factor. In order to fully take advantage of major advances in high resolution X-ray spectroscopy, lab measurements of X-ray absorption fine structure (XAFS) from suspected interstellar minerals are required. Optical constants derived from the absorption measurements can be used with Mie scattering or anomalous diffraction theory in order to model the full extinction cross-sections from the interstellar medium. Much like quasar spectra are used to probe other intergalactic gas, absorption spectroscopy of Galactic X-ray binaries and bright stars will yield key insights to the mineralogy and evolution of dust grains in the Milky Way.

  7. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Chu, W. S.; Yang, F. F.; Yu, M. J.; Chen, D. L.; Guo, X. Y.; Zhou, D. W.; Shi, N.; Marcelli, A.; Niu, L. W.; Teng, M. K.; Gong, W. M.; Benfatto, M.; Wu, Z. Y.

    2007-09-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase ( LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  8. Absorption-edge transmission technique using Ce- 139 for measurement of stable iodine concentration.

    PubMed

    Sorenson, J A

    1979-12-01

    We have investigated a technique for measuring stable iodine concentrations by absorption-edge transmission measurements using a Ce 139 radiation source. The lanthanum daughter emits characteristic x-rays whose energies just bracket the absorption edge of iodine at 33.2 keV. Relative transmission of these x-rays is sensitive to iodine concentration in the sample, but is relatively insensitive to other elements. By applying energy-selective beam filtration, it is possible to determine the relative transmission of these closely spaced x-ray energies with NaI(Tl) detectors. Optimizations of sample thickness, detector thickness, and Ce-139 source activity are discussed. Using sample volumes of about 10 ml, one can determine iodine concentration to an uncertainty (standard deviation) of +/- 5 microgram/ml with a 5-mCi source in a measurement time of 400 sec. Potential clinical applications of the in vitro technique are discussed, along with comparative aspects of the Ce-139 technique and other absorption and fluorescence techniques for measuring stable iodine. PMID:536797

  9. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Garcia, Javier; Wilms, Joern; Baganoff, Frederick K.

    2016-04-01

    In high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. We focus in particular on the Fe L-edge at 0.7 keV, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of imaging resolution. We discuss the various astrophysical cases in which scattering effects need to be taken into account.

  10. The irradiation of ammonia ice studied by near edge x-ray absorption spectroscopy

    SciTech Connect

    Parent, Ph.; Bournel, F.; Lasne, J.; Laffon, C.; Carniato, S.; Lacombe, S.; Strazzulla, G.; Gardonio, S.; Lizzit, S.; Kappler, J.-P.; Joly, L.

    2009-10-21

    A vapor-deposited NH{sub 3} ice film irradiated at 20 K with 150 eV photons has been studied with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy at the nitrogen K-edge. Irradiation leads to the formation of high amounts (12%) of molecular nitrogen N{sub 2}, whose concentration as a function of the absorbed energy has been quantified to 0.13 molecule/eV. The stability of N{sub 2} in solid NH{sub 3} has been also studied, showing that N{sub 2} continuously desorbs between 20 and 95 K from the irradiated ammonia ice film. Weak concentrations (<1%) of other photoproducts are also detected. Our NEXAFS simulations show that these features own to NH{sub 2}, N{sub 2}H{sub 2}, and N{sub 3}{sup -}.

  11. Near-edge X-ray absorption spectroscopy signature of image potential states in multilayer epitaxial graphene

    NASA Astrophysics Data System (ADS)

    Coelho, P. M.; dos Reis, D. D.; Matos, M. J. S.; Mendes-de-Sa, T. G.; Goncalves, A. M. B.; Lacerda, R. G.; Malachias, A.; Magalhaes-Paniago, R.

    2016-02-01

    Single layer behavior in multilayer epitaxial graphene has been a matter of intense investigation. This is due to the layer decoupling that occurs during growth of graphene on some types of substrates, such as carbon-terminated silicon carbide. We show here that near-edge X-ray absorption spectroscopy can be used to observe the signature of this decoupling. To this end, samples of multilayer graphene from silicon carbide sublimation were grown with different degrees of decoupling. Raman spectroscopy was used to infer the degree of structural decoupling. X-ray grazing-incidence diffraction and scanning tunneling microscopy showed that growth initiates with the presence of bilayer graphene commensurate structures, while layer decoupling is associated to the formation of incommensurate structures observed for longer sublimation time. Near-edge X-ray absorption spectroscopy was used to probe the electronic states above the Fermi energy. Besides the σ* and π* empty states, image potential states are observed and show a clear change of intensity as a function of incident angle. These image potential states evolve from a graphite- to graphene-like behavior as a function of growth time and can be used to infer the degree of structural coupling among layers.

  12. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics.

    PubMed

    Laloum, D; Printemps, T; Lorut, F; Bleuet, P

    2015-01-01

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections. PMID:25638086

  13. Three Dimensional Mapping of Nicle Oxidation States Using Full Field Xray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, G.J.; Chu, Y.; Harris, W.M.; Izzo, J.R.; Grew, K.N., Chiu, W.K.S.; Yi, J.; Andrews, J.C.; Liu, Y., Pierro, P.

    2011-04-28

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  14. Near-Edge X-Ray Absorption Fine Structures Revealed in Core Ionization Photoelectron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakano, M.; Selles, P.; Lablanquie, P.; Hikosaka, Y.; Penent, F.; Shigemasa, E.; Ito, K.; Carniato, S.

    2013-09-01

    Simultaneous core ionization and core excitation have been observed in the C2H2n (n=1, 2, 3) molecular series using synchrotron radiation and a magnetic bottle time-of-flight electron spectrometer. Rich satellite patterns corresponding to (K-2V) core excited states of the K-1 molecular ions have been identified by detecting in coincidence the photoelectron with the two Auger electrons resulting from the double core hole relaxation. A theoretical model is proposed providing absolute photoionization cross sections and revealing clear signatures of direct (monopolar) and conjugate (dipolar near-edge x-ray absorption fine structure) shakeup lines of comparable magnitude.

  15. Near-edge x-ray absorption fine structures revealed in core ionization photoelectron spectroscopy.

    PubMed

    Nakano, M; Selles, P; Lablanquie, P; Hikosaka, Y; Penent, F; Shigemasa, E; Ito, K; Carniato, S

    2013-09-20

    Simultaneous core ionization and core excitation have been observed in the C(2)H(2n) (n=1, 2, 3) molecular series using synchrotron radiation and a magnetic bottle time-of-flight electron spectrometer. Rich satellite patterns corresponding to (K(-2)V) core excited states of the K(-1) molecular ions have been identified by detecting in coincidence the photoelectron with the two Auger electrons resulting from the double core hole relaxation. A theoretical model is proposed providing absolute photoionization cross sections and revealing clear signatures of direct (monopolar) and conjugate (dipolar near-edge x-ray absorption fine structure) shakeup lines of comparable magnitude. PMID:24093255

  16. An energy and intensity monitor for X-ray absorption near-edge structure measurements

    NASA Astrophysics Data System (ADS)

    de Jonge, Martin D.; Paterson, David; McNulty, Ian; Rau, Christoph; Brandes, Jay A.; Ingall, Ellery

    2010-07-01

    An in-line X-ray beam energy and intensity monitor has been developed for use in focussed X-ray absorption near-edge spectroscopy (XANES) measurements. The monitor uses only the X-ray intensity that would otherwise bypass our zone-plate focussing optic and relies on a measurement of photoemission current. The monitor is inexpensive, easy to align, and provides valuable feedback about the X-ray energy. Operation of the monitor is demonstrated for measurements of phosphorus XANES. The precision of the energy determination is around 0.5 eV.

  17. Double conical crystal x-ray spectrometer for high resolution ultrafast x-ray absorption near-edge spectroscopy of Al K edge

    NASA Astrophysics Data System (ADS)

    Levy, A.; Dorchies, F.; Fourment, C.; Harmand, M.; Hulin, S.; Santos, J. J.; Descamps, D.; Petit, S.; Bouillaud, R.

    2010-06-01

    An x-ray spectrometer devoted to dynamical studies of transient systems using the x-ray absorption fine spectroscopy technique is presented in this article. Using an ultrafast laser-induced x-ray source, this optical device based on a set of two potassium acid phthalate conical crystals allows the extraction of x-ray absorption near-edge spectroscopy structures following the Al absorption K edge. The proposed experimental protocol leads to a measurement of the absorption spectra free from any crystal reflectivity defaults and shot-to-shot x-ray spectral fluctuation. According to the detailed analysis of the experimental results, a spectral resolution of 0.7 eV rms and relative fluctuation lower than 1% rms are achieved, demonstrated to be limited by the statistics of photon counting on the x-ray detector.

  18. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems. PMID:24197060

  19. Local disorder investigation in NiS(2-x)Se(x) using Raman and Ni K-edge x-ray absorption spectroscopies.

    PubMed

    Marini, C; Joseph, B; Caramazza, S; Capitani, F; Bendele, M; Mitrano, M; Chermisi, D; Mangialardo, S; Pal, B; Goyal, M; Iadecola, A; Mathon, O; Pascarelli, S; Sarma, D D; Postorino, P

    2014-11-12

    We report on Raman and Ni K-edge x-ray absorption investigations of a NiS(2-x)Se(x) (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS(2-x)Se(x) Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS(2-x)Se(x) pyrites. PMID:25320052

  20. Local disorder investigation in NiS2-xSex using Raman and Ni K-edge x-ray absorption spectroscopies

    NASA Astrophysics Data System (ADS)

    Marini, C.; Joseph, B.; Caramazza, S.; Capitani, F.; Bendele, M.; Mitrano, M.; Chermisi, D.; Mangialardo, S.; Pal, B.; Goyal, M.; Iadecola, A.; Mathon, O.; Pascarelli, S.; Sarma, D. D.; Postorino, P.

    2014-11-01

    We report on Raman and Ni K-edge x-ray absorption investigations of a NiS2-xSex (with x = 0.00, 0.50/0.55, 0.60, and 1.20) pyrite family. The Ni K-edge absorption edge shows a systematic shift going from an insulating phase (x = 0.00 and 0.50) to a metallic phase (x = 0.60 and 1.20). The near-edge absorption features show a clear evolution with Se doping. The extended x-ray absorption fine structure data reveal the evolution of the local structure with Se doping which mainly governs the local disorder. We also describe the decomposition of the NiS2-xSex Raman spectra and investigate the weights of various phonon modes using Gaussian and Lorentzian profiles. The effectiveness of the fitting models in describing the data is evaluated by means of Bayes factor estimation. The Raman analysis clearly demonstrates the disorder effects due to Se alloying in describing the phonon spectra of NiS2-xSex pyrites.

  1. Sub-gap and band edge optical absorption in a-Si:H by photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Jackson, W. B.; Amer, N. M.

    1981-07-01

    Using photothermal deflection spectroscopy, the optical absorption of various a-Si:H films was investigated in the range of 2.1 to 0.6 eV. An absorption shoulder which depends on deposition conditions and on doping was found and was attributed to dangling bonds. The exponential edge broadens with increasing spin density.

  2. AKARI observations of ice absorption bands towards edge-on young stellar objects

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Terada, H.; Noble, J. A.; Pontoppidan, K. M.; Fraser, H. J.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2012-02-01

    Context. Circumstellar disks and envelopes of low-mass young stellar objects (YSOs) contain significant amounts of ice. Such icy material will evolve to become volatile components of planetary systems, such as comets in our solar system. Aims: To investigate the composition and evolution of circumstellar ice around low-mass young stellar objects (YSOs), we observed ice absorption bands in the near infrared (NIR) towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Methods: We performed slit-less spectroscopic observations using the grism mode of the InfraRed Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO2 band and the blue wing of the H2O band, which are inaccessible from the ground. We developed procedures to carefully process the spectra of targets with nebulosity. The spectra were fitted with polynomial baselines to derive the absorption spectra. The molecular absorption bands were then fitted with the laboratory database of ice absorption bands, considering the instrumental line profile and the spectral resolution of the grism dispersion element. Results: Towards the class 0-I sources (L1527, IRC-L1041-2, and IRAS 04302), absorption bands of H2O, CO2, CO, and XCN are clearly detected. Column density ratios of CO2 ice and CO ice relative to H2O ice are 21-28% and 13-46%, respectively. If XCN is OCN-, its column density is as high as 2-6% relative to H2O ice. The HDO ice feature at 4.1 μm is tentatively detected towards the class 0-I sources and HV Tau. Non-detections of the CH-stretching mode features around 3.5 μm provide upper limits to the CH3OH abundance of 26% (L1527) and 42% (IRAS 04302) relative to H2O. We tentatively detect OCS ice absorption towards IRC-L1041-2. Towards class 0-I sources, the detected features should mostly originate in the cold envelope, while CO gas and OCN- could originate in the region close to the protostar

  3. AKARI observations of ice absorption bands towards edge-on YSOs

    NASA Astrophysics Data System (ADS)

    Aikawa, Y.; Kamuro, D.; Sakon, I.; Itoh, Y.; Noble, J. A.; Pontoppidan, K. M., Fraser, H. J.; Terada, H.; Tamura, M.; Kandori, R.; Kawamura, A.; Ueno, M.

    2011-05-01

    Circumstellar disks and envelopes of low-mass YSOs contain significant amounts of ice. Such icy material will evolve to volatile components of planetary systems, such as comets in our solar system. In order to investigate the composition and evolution of circumstellar ice around low-mass YSOs, we have observed ice absorption bands towards eight YSOs ranging from class 0 to class II, among which seven are associated with edge-on disks. Slit-less spectroscopic observations are performed using the grism mode of Infrared Camera (IRC) on board AKARI, which enables us to obtain full NIR spectra from 2.5 μm to 5 μm, including the CO_2 band and the blue wing of the H_2O band, which are not accessible from the ground. We developed procedures to reduce the spectra of targets with nebulosity. The spectra are fitted with polynomial baselines to derive the absorption spectra. Then we fit the molecular absorption bands with the laboratory spectra from the database, considering the instrumental line profile and the spectral resolution of the dispersion element. Towards the Class 0-I sources, absorption bands of H_2O, CO_2, CO and XCN (OCN^-) are clearly detected. Weak features of 13CO_2, HDO, the C-H band, and gaseous CO are detected as well. OCS ice absorption is tentatively detected towards IRC-L1041-2. The detected features would mostly originate in the cold envelope, while CO gas and OCN^- could originate in the region close to the protostar. Towards class II stars, H_2O ice band is detected. We also detected H_2O ice, CO_2 ice and tentative CO gas features of the foreground component of class II stars.

  4. Room-Temperature Absorption Edge of InGaN/GaN Quantum Wells Characterized by Photoacoustic Measurement

    NASA Astrophysics Data System (ADS)

    Takeda, Yosuke; Takagi, Daigo; Sano, Tatsuji; Tabata, Shin; Kobayashi, Naoki; Shen, Qing; Toyoda, Taro; Yamamoto, Jun; Ban, Yuzaburo; Matsumoto, Kou

    2008-12-01

    The absorption edges of five periods of InxGa1-xN (3 nm)/GaN (15 nm) (x=0.07-0.23) quantum wells (QWs) are characterized by photoacoustic (PA) measurement at room temperature. The absorption edge is determined by differentiating the PA signal curve to obtain the inflection point on the assumption that the signal curve consists of Urbach tail in the low-energy region and Elliott's equation in the high-energy region. The constant absorption edge of GaN is observed at 3.4 eV and an absorption edge redshift with increasing In composition is observed for InGaN QWs. As a result, the Stokes shift increases with In composition and the highest shift of 435 meV is observed at x=0.23. From the energy calculation of optical transition in the InGaN/GaN QWs under an internal polarization field, the transition between the ground states confined in the well with a triangular potential causes a low-energy shift in the photoluminescence peak from the bulk band-gap energy, and the excited bound states whose wave functions are confined by the step-linear potential extending over the GaN barrier lead to the high-energy shift in the absorption edge.

  5. Parameters Influencing Sulfur Speciation in Environmental Samples Using Sulfur K-Edge X-Ray Absorption Near-Edge Structure

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Kositanont, Charnwit; Schwarzer, Klaus; Prietzel, Jörg; Hirunyatrakul, Phoosak; Kittikoon, Itthipon

    2012-01-01

    This paper aims to enhance the credibility of applying the sulfur K-edge XANES spectroscopy as an innovative “fingerprint” for characterizing environmental samples. The sensitivities of sulfur K-edge XANES spectra of ten sulfur compound standards detected by two different detectors, namely, Lytle detector (LyD) and Germanium detector (GeD), were studied and compared. Further investigation on “self-absorption” effect revealed that the maximum sensitivities of sulfur K-edge XANES spectra were achieved when diluting sulfur compound standards with boron nitride (BN) at the mixing ratio of 0.1%. The “particle-size” effect on sulfur K-edge XANES spectrum sensitivities was examined by comparing signal-to-noise ratios of total suspended particles (TSP) and particulate matter of less than 10 millionths of a meter (PM10) collected at three major cities of Thailand. The analytical results have demonstrated that the signal-to-noise ratios of sulfur K-edge XANES spectra were positively correlated with sulfate content in aerosols and negatively connected with particle sizes. The combination of hierarchical cluster analysis (HCA) and principal component analysis (PCA) has proved that sulfur K-edge XANES spectrum can be used to characterize German terrestrial soils and Andaman coastal sediments. In addition, this study highlighted the capability of sulfur K-edge XANES spectra as an innovative “fingerprint” to distinguish tsunami backwash deposits (TBD) from typical marine sediments (TMS). PMID:23193498

  6. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  7. Variation in optical-absorption edge in SiN{sub x} layers with silicon clusters

    SciTech Connect

    Efremov, M. D. Volodin, V. A.; Marin, D. V.; Arzhannikova, S. A.; Kamaev, G. N.; Kochubei, S. A.; Popov, A. A.

    2008-02-15

    Using optical methods, data on optical constants are obtained for silicon nitride films synthesized by plasma-chemical vapor deposition (PCVD). Models for calculating the permittivity in the model of inhomogeneous phase mixture of silicon and silicon nitride are considered. It is found that the optical-absorption edge (E{sub g}) and the photoluminescence peak shift to longer wavelengths with increasing nitrogen atomic fraction x in sin{sub x} films. When x approaches the value 4/3 characteristic for stoichiometric silicon nitride Si{sub 3}N{sub 4}, a nonlinear sharp increase in E{sub g} is observed. Using Raman scattering, Si-Si bonds are revealed, which confirms the direct formation of silicon clusters during the film deposition. The relation between the composition of nonstoichiometric silicon nitride films, values of permittivity, and the optical-band width is established for light transmission.

  8. Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy.

    PubMed

    Pattanasiriwisawa, Wanwisa; Siritapetawee, Jaruwan; Patarapaiboolchai, Orasa; Klysubun, Wantana

    2008-09-01

    X-ray absorption near-edge spectroscopy (XANES) has been applied to natural rubber in order to study the local environment of sulfur atoms in sulfur crosslinking structures introduced in the vulcanization process. Different types of chemical accelerators in conventional, semi-efficient and efficient vulcanization systems were investigated. The experimental results show the good sensitivity and reproducibility of XANES to characterize the local geometry and electronic environment of the sulfur K-shell under various conditions of vulcanization and non-vulcanization of natural rubber. Several applications of XANES in this study demonstrate an alternative way of identifying sulfur crosslinks in treated natural rubber based on differences in their spectra and oxidation states. PMID:18728323

  9. Attenuation studies near K-absorption edges using Compton scattered 241 Am gamma rays

    NASA Astrophysics Data System (ADS)

    Abdullah, K. K.; Ramachandran, N.; Karunakaran Nair, K.; Babu, B. R. S.; Joseph, Antony; Thomas, Rajive; Varier, K. M.

    2008-04-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from ^{241}Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package.

  10. Role of exciton-phonon interactions and disordering processes in the formation of the absorption edge in Cu6P(S1- x Sex)5Br crystals

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kranjcec, M.; Suslikov, L. M.; Kovacs, D. Sh.; Pan'ko, V. V.

    2002-04-01

    The absorption edge in Cu6P(S1- x Sex)5Br crystals has been studied for strong absorption in the temperature range of 77 330 K. The parameters of the Urbach absorption edge and exciton-phonon interactions in Cu6P(S1- x Sex)5Br crystals are determined and their effect on the composition disorder is studied.

  11. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    SciTech Connect

    Gann, Eliot; McNeill, Christopher R.; Szumilo, Monika; Sirringhaus, Henning; Sommer, Michael; Maniam, Subashani; Langford, Steven J.; Thomsen, Lars

    2014-04-28

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy.

  12. Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory

    SciTech Connect

    George, S.DeBeer; Petrenko, T.; Neese, F.

    2009-05-14

    Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.

  13. Time-Dependent Density Functional Calculations of Ligand K-Edge X-Ray Absorption Spectra

    SciTech Connect

    DeBeer George, S.; Petrenko, T.; Neese, F.

    2007-07-10

    X-ray absorption spectra (XAS) at the Cl and S K edge and Mo L edge have been calculated at the TDDFT level for a series of dioxomolybdenum complexes LMoO{sub 2}X (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate, X = Cl, SCH{sub 2}Ph, OPh), which play an important role in modeling the catalytic cycle of the sulfite oxidase enzyme. Also, the XAS spectra of model molecules of the Mo complexes have been simulated and interpreted in terms of the Mo 4d orbital splitting, in order to find possible correlations with the spectral pattern of the complexes. Comparison with the available experimental data allows us to assess the performances of the present computational scheme to describe the core excitations in large bioinorganic systems. The theoretical interpretation of the spectral features of both the metal and ligand core excitations in terms of the oscillator strength distribution provides important insight into the covalency of the metal-ligand bond.

  14. Evaluation of iron-containing carbon nanotubes by near edge X-ray absorption technique

    NASA Astrophysics Data System (ADS)

    Osorio, A. G.; Bergmann, C. P.

    2015-10-01

    The synthesis of carbon nanotubes (CNTs) via Chemical Vapor Deposition method with ferrocene results in CNTs filled with Fe-containing nanoparticles. The present work proposes a novel route to characterize the Fe phases in CNTs inherent to the synthesis process. CNTs were synthesized and, afterwards, the CNTs were heat treated at 1000 °C for 20 min in an inert atmosphere during a thermogravimetric experiment. X-Ray Absorption Spectroscopy (XAS) experiments were performed on the CNTs before and after the heat treatment and, also, during the heat treatment, e.g., in situ tests were performed while several Near-Edge X-Ray Absorption (XANES) spectra were collected during the heating of the samples. The XAS technique was successfully applied to evaluate the phases encapsulated by CNTs. Phase transformations of the Fe-based nanoparticles were also observed from iron carbide to metallic iron when the in situ experiments were performed. Results also indicated that the applied synthesis method guarantees that Fe phases are not oxidize. In addition, the results show that heat treatment under inert atmosphere can control which phase remains encapsulated by the CNTs.

  15. Isoabsorption and spectrometric studies of optical absorption edge in Cu6AsS5I superionic crystal

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Kayla, M. I.; Kranjčec, M.; Kokhan, O. P.; Minets, Yu. V.

    2011-12-01

    Cu6AsS5I single crystals were grown using chemical vapour transport method. Two low-temperature phase transitions (PT) are observed from isoabsorption studies: a first-order PT at ТІ=153±1 K and a second-order PT in the temperature interval TІI=260-280 K. At low temperatures and high absorption levels an excitonic absorption band was revealed in the range of direct optical transitions. At Т>ТІ, the absorption edge has an exponential shape and a characteristic Urbach bundle is observed. The influence of the cationic P→As substitution on the parameters of the Urbach absorption edge, parameters of exciton-phonon interaction, and phase transitions temperatures are studied.

  16. Absolute determination of charge-coupled device quantum detection efficiency using Si K-edge x-ray absorption fine structure

    SciTech Connect

    Dunn, J; Steel, A B

    2012-05-06

    We report a method to determine the quantum detection efficiency and the absorbing layers on a front-illuminated charge-coupled device (CCD). The CCD under study, as part of a crystal spectrometer, measures intense continuum x-ray emission from a picosecond laser-produced plasma and spectrally resolves the Si K-edge x-ray absorption fine structure features due to the electrode gate structure of the device. The CCD response across the Si K-edge shows a large discontinuity as well as a number of oscillations that are identified individually and uniquely from Si, SiO{sub 2}, and Si{sub 3}N{sub 4} layers. From the spectral analysis of the structure and K-edge discontinuity, the active layer thickness and the different absorbing layers thickness can be determined precisely. A precise CCD detection model from 0.2-10 keV can be deduced from this highly sensitive technique.

  17. Simulating Cl K-edge X-ray absorption spectroscopy in MCl62- (M= U, Np, Pu) complexes and UOCl5- using time-dependent density functional theory

    SciTech Connect

    Govind, Niranjan; De Jong, Wibe A.

    2014-02-21

    We report simulations of the X-ray absorption near edge structure (XANES) at the Cl K-edge of actinide hexahalides MCl62- (M = U, Np, Pu) and the UOCl5- complex using linear-response time-dependent density functional theory (LR-TDDFT) extended for core excitations. To the best of our knowledge, these are the first calculations of the Cl K-edge spectra of NpCl62- and PuCl62-. In addition, the spectra are simulated with and without the environmental effects of the host crystal as well as ab initio molecular dynamics (AIMD) to capture the dynamical effects due to atomic motion. The calculated spectra are compared with experimental results, where available and the observed trends are discussed.

  18. First-principles study of phonon effects in x-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Nemausat, R.; Brouder, Ch; Gervais, Ch; Cabaret, D.

    2016-05-01

    Usually first-principles x-ray absorption near-edge structure (XANES) calculations are performed in the Born-Oppenheimer approximation assuming a static lattice, whereas the nuclear motion undoubtedly impacts XANES spectra notably at the K pre-edge of light elements in oxides. Here, an efficient method based on density-functional theory to account for quantum thermal fluctuations of nuclei is developed and is successfully applied to the K edge of corundum for temperatures up to 930 K. The zero-point motion influence is estimated. Comparison is made with previous theoretical approaches also developed to account for vibrations in XANES.

  19. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  20. Probing Warm Dense Matter electronic structure using X-ray absorption Near Edge Spectroscopy (XANES)

    NASA Astrophysics Data System (ADS)

    Benuzzi Mounaix, Alessandra

    2011-06-01

    The behavior and physical properties of warm dense matter, fundamental for various branches of physics including planetology and Inertial Confinement Fusion, are non trivial to simulate either theoretically, numerically or experimentally. Despite important progress obtained in the last decade on macroscopic characterization (e.g. equations of state), microscopic studies are today necessary to investigate finely the WDM structure changes, the phase transitions and to test physical hypothesis and approximations commonly used in calculations. In this work, highly compressed aluminum has been investigated with the aim of bringing information on the evolution of its electronic structure by using K-edge shift and XANES. The experiment was performed at LULI laboratory where we used one long pulse (500 ps, IL ~ 8 1013 W/cm2) to create a uniform shock and a second ps beam (IL ~ 1017 W/cm2) to generate an ultra-short broadband X-ray source near the Al K-edge. The spectra were registered by using two conical KAP Bragg crystals. The main target was designed to probe the Aluminum in reshocked conditions allowing us to probe and to test theories in an extreme regime up to now unexplored (ρ ~ 3 ρ0 and T ~ 8 eV). The hydrodynamical Al conditions were measured by using VISARs interferometers and self-emission diagnostics. By increasing the delay between the two beams, we have been able to observe the modification of absorption spectra for unloading Al conditions (ρ >= 0.5 g/cc), and to put in evidence the relocalization of the 3p valence electrons occurring in the metal-non metal transition. All data have been compared to ab initio and dense plasma calculations.

  1. Geometric Structure Determination of N694C Lipoxygenase: a Comparative Near-Edge X-Ray Absorption Spectroscopy And Extended X-Ray Absorption Fine Structure Study

    SciTech Connect

    Sarangi, R.; Hocking, R.K.; Neidig, M.L.; Benfatto, M.; Holman, T.R.; Solomon, E.I.; Hodgson, K.O.; Hedman, B.

    2009-05-27

    The mononuclear nonheme iron active site of N694C soybean lipoxygenase (sLO1) has been investigated in the resting ferrous form using a combination of Fe-K-pre-edge, near-edge (using the minuit X-ray absorption near-edge full multiple-scattering approach), and extended X-ray absorption fine structure (EXAFS) methods. The results indicate that the active site is six-coordinate (6C) with a large perturbation in the first-shell bond distances in comparison to the more ordered octahedral site in wild-type sLO1. Upon mutation of the asparigine to cystiene, the short Fe-O interaction with asparigine is replaced by a weak Fe-(H{sub 2}O), which leads to a distorted 6C site with an effective 5C ligand field. In addition, it is shown that near-edge multiple scattering analysis can give important three-dimensional structural information, which usually cannot be accessed using EXAFS analysis. It is further shown that, relative to EXAFS, near-edge analysis is more sensitive to partial coordination numbers and can be potentially used as a tool for structure determination in a mixture of chemical species.

  2. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  3. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments. PMID:24811926

  4. Link between K absorption edges and thermodynamic properties of warm dense plasmas established by an improved first-principles method

    NASA Astrophysics Data System (ADS)

    Zhang, Shen; Zhao, Shijun; Kang, Wei; Zhang, Ping; He, Xian-Tu

    2016-03-01

    A precise calculation that translates shifts of x-ray K absorption edges to variations of thermodynamic properties allows quantitative characterization of interior thermodynamic properties of warm dense plasmas by x-ray absorption techniques, which provides essential information for inertial confinement fusion and other astrophysical applications. We show that this interpretation can be achieved through an improved first-principles method. Our calculation shows that the shift of K edges exhibits selective sensitivity to thermal parameters and thus would be a suitable temperature index to warm dense plasmas. We also show with a simple model that the shift of K edges can be used to detect inhomogeneity inside warm dense plasmas when combined with other experimental tools.

  5. Fire risk due to convective drying at forest edges in Rondonia

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Rastogi, D.

    2010-12-01

    Fire in tropical forests is a severe and growing problem that is exacerbated by forest fragmentation and selective logging. Despite the importance of uncontrolled forest fires in the tropics, there is currently little understanding of the processes by which disturbances alter the moisture dynamics of these normally near-fire-immune ecosystems. In this project we show that horizontal temperature gradients due to forest fragmentation generate organized mesoscale convective circulations. These circulations are anchored within the gaps and pump moisture away from the forest edges, effectively acting in opposition to the moisture-trapping evapotranspiration process. We conducted a set of 12-hour simulations and a 2-month-long simulation with the RAMS model to study the impact of these convective cells on the temperature and humidity of canopy air. These simulations show that during the 2004 dry season (June-July) the convective cells lead to a rapid drying of the forest edges to the point of fire susceptibility. This difference between intact and disturbed forests must be accounted for while predicting fire susceptibility in the tropics.

  6. Absorption edge and the refractive index dispersion of carbon-nickel composite films at different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Dalouji, Vali; Elahi, Seyed Mohammad; Solaymani, Shahram; Ghaderi, Atefeh

    2016-04-01

    In this paper, the optical properties of carbon-nickel films annealed at different temperatures 300, 500, 800 and 1000 ° C, with a special emphasis on the absorption edge, were investigated. The optical transmittance spectra in the wavelength range 300-1000nm were used to compute the absorption coefficient. The optical dispersion parameters were calculated according to Wemple and DiDomenico (WDD) single-oscillator model. Photoluminescence (PL) measurements of carbon-nickel films exhibit two main peaks at about 2.5 and 3.3eV which correspond to the fundamental indirect and direct gap, respectively. The field emission scanning electron microscopy (FESEM) showed that the absorption edge in the films was controlled by the nanoparticle size. The films annealed at 500 ° C have minimum indirect optical band gap and maximum disorder.

  7. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  8. Near-Edge X-Ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T.M.; Fabbri, J.D.; Lee, J.R.I.; Schreiner, P.R.; Fokin, A.A.; Tkachenko, B.A.; Fokina, N.A.; Dahl, J.E.P.; Carlson, R.M.K.; Vance, A.L.; Yang, W.; Terminello, L.J.; Buuren, T.van; Melosh, N.A.

    2009-05-26

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 and 0.16 {+-} 0.04 eV, respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different degrees of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond nanoparticles.

  9. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    SciTech Connect

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  10. Iron near absorption edge X-ray spectroscopy at aqueous-membrane interfaces

    SciTech Connect

    Wang, Wenjie; Kuzmenko, Ivan; Vaknin, David

    2014-01-01

    Employing synchrotron X-ray scattering, we systematically determine the absorption near-edge spectra (XANES) of iron in its ferrous (Fe2+) and ferric (Fe3+) states both as ions in aqueous solutions and as they bind to form a single layer to anionic templates that consist of carboxyl or phosphate groups at aqueous/vapor interfaces. While the XANES of bulk iron ions show that the electronic state and coordination of iron complexes in the bulk are isotropic, the interfacial bound ions show a signature of a broken inversion-symmetry environment. The XANES of Fe2+ and Fe3+ in the bulk possess distinct profiles however, upon binding they practically exhibit similar patterns. This indicates that both bound ions settle into a stable electronic and coordination configuration with an effective fractional valence (for example, Fe[2+nu]+, 0 < nu < 1) at charged organic templates. Such two dimensional properties may render interfacial iron, abundant in living organisms, a more efficient and versatile catalytic behavior.

  11. Temperature and high-pressure dependent x-ray absorption of SmNiO3 at the Ni K and Sm L3 edges

    NASA Astrophysics Data System (ADS)

    Massa, Néstor E.; Ramos, Aline Y.; Tolentino, Helio C. N.; Sousa-Neto, Narcizo M.; Fonseca, Jairo, Jr.; Alonso, José Antonio

    2015-12-01

    We report on x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements of SmNiO3 from 20 K to 600 K and up to 38 GPa at the Ni K and Sm L3 edges. A multiple component pre-Ni K edge tail is understood, originating from 1 s transitions to 3d-4p states while a post-edge shoulder increases distinctively smoothly, at about the insulator to metal phase transition (TIM), due to the reduction of electron-phonon interactions as the Ni 3d and O 2p band overlap triggers the metallic phase. This effect is concomitant with pressure-induced Ni-O-Ni angle increments toward more symmetric Ni3+ octahedra of the rhombohedral R¯3c space group. Room temperature pressure-dependent Ni white line peak energies have an abrupt ˜3.10 ± 0.04 GPa valence discontinuity from non-equivalent Ni3+δ + Ni3-δ charge disproportionate net unresolved absorber turning at ˜TIM into Ni3+ of the orthorhombic Pbnm metal oxide phase. At 20 K the overall white line response, still distinctive at TIM ˜8.1 ± 0.6 GPa is much smoother due to localization. Octahedral bond contraction up to 38 GPa and at 300 K and 20 K show breaks in its monotonic increase at the different structural changes. The Sm L3 edge does not show distinctive behaviors either at 300 K or 20 K up to about 35 GPa but the perovskite Sm cage, coordinated to eight oxygen atoms, undergoes strong uneven bond contractions at intermediate pressures where we found the coexistence of octahedral and rhombohedral superexchange angle distortions. We found that the white line pressure-dependent anomaly may be used as an accurate alternative for delineating pressure-temperature phase diagrams.

  12. Core-hole effects on theoretical electron-energy-loss near-edge structure and near-edge x-ray absorption fine structure of MgO

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Teruyasu; Tanaka, Isao; Yoshiya, Masato; Oba, Fumiyasu; Ogasawara, Kazuyoshi; Adachi, Hirohiko

    2000-01-01

    First-principles molecular orbital calculations using model clusters are made in order to reproduce and interpret experimental electron-energy-loss near-edge structure and near-edge x-ray absorption fine structure of MgO at Mg K, L2,3 and O K edges. Ground-state calculations using a model cluster composed of 125 atoms and by a band-structure method are in good agreement, but they do not reproduce the experimental spectra satisfactory. They are well reproduced only by the cluster calculations for the Slater transition state, where a half-electron is removed from a core orbital and placed into the lowest unoccupied molecular orbital. The core-hole effect is therefore essential for theoretical reproduction of the spectral shapes. A large supercell is required to reproduce the experimental spectra when one uses a band-structure method. The origin of peaks appearing in the experimental spectra is interpreted in terms of orbital interactions using overlap-population diagrams. Some features of the spectra at different edges are pointed out to have common origins. Experimental spectra are aligned accordingly. The transition energies and qualitative features of experimental spectra are found to be reproduced even using a smaller cluster composed of 27 atoms, although some of fine structure is missing.

  13. Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure.

    PubMed

    Yamaguchi, Noriko; Nakano, Masashi; Takamatsu, Rieko; Tanida, Hajime

    2010-06-01

    The transformation of inorganic iodine (I(-) and IO(3)(-)) incubated in soils with varying amounts of organic matter (Andosols from the surface layer of an upland field and forest, as well as Acrisols from surface and subsurface layers of an upland field) was investigated by using the iodine K-edge X-ray absorption near-edge structure (XANES). After 60d of reaction, both I(-) and IO(3)(-) were transformed into organoiodine in surface soils containing sufficient amounts of organic matter, whereas IO(3)(-) remained unchanged in the subsurface soil of Acrisols with low organic matter contents. Transformation of IO(3)(-) into organoiodine was not retarded when the microbial activity in soil was reduced by gamma-ray irradiation, suggesting that microbial activity was not essential for the transformation of inorganic iodine into organoiodine. Soil organic matter has the ability to transform inorganic iodine into organoiodine. PMID:18640749

  14. Structural changes of nucleic acid base in aqueous solution as observed in X-ray absorption near edge structure (XANES)

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-01-01

    X-ray absorption near edge structure (XANES) spectra for adenine-containing nucleotides, adenosine 5‧-monophosphate (AMP) and adenosine 5‧-triphosphate (ATP) in aqueous solutions at the nitrogen K-edge region were measured. The two intense peaks in XANES spectra are assigned to transitions of 1s electrons to the π∗ orbitals of different types of N atoms with particular bonding characteristics. The difference between their spectra is ascribed to protonation of a particular N atom. Similarity observed in XANES spectra of guanosine 5‧-monophosphate (GMP) and ATP is also interpreted as similar bonding characters of the N atoms in the nucleobase moiety.

  15. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    NASA Astrophysics Data System (ADS)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  16. Angle-resolved x-ray absorption near edge structure study of vertically aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Zhongrui; Zhang, Liang; Resasco, Daniel E.; Mun, Bongjin Simon; Requejo, Félix G.

    2007-03-01

    Vertically aligned single-walled carbon nanotube (SWNT) forest was studied by using angular-dependent C K-edge x-ray absorption near edge structure (XANES) with linearly polarized x-ray beam. The XANES analysis found a crust of entangled nanotubes on top of the forest formed at the first stage of the forest growth, which shapes the morphology of the entire forest and constricts the nanotubes to grow to the same length. It indicates that this type of SWNT forest has a different growth mechanism from the multiwalled carbon nanotube forest.

  17. Dipping in CygnusX-2 in a multi-wavelength campaign due to absorption of extended ADC emission

    NASA Astrophysics Data System (ADS)

    Bałucińska-Church, M.; Schulz, N. S.; Wilms, J.; Gibiec, A.; Hanke, M.; Spencer, R. E.; Rushton, A.; Church, M. J.

    2011-06-01

    We report results of one-day simultaneous multiwavelength observations of CygnusX-2 using XMM, Chandra, the European VLBI Network and the XMM Optical Monitor. During the observations, the source did not exhibit Z-track movement, but remained in the vicinity of the soft apex. It was in a radio quiescent/quiet state of <150 μJy. Strong dip events were seen as 25% reductions in X-ray intensity. The use of broadband CCD spectra in combination with narrow-band grating spectra has now demonstrated for the first time that these dipping events in CygnusX-2 are caused by absorption in cool material in quite a unique way. In the band 0.2 - 10 keV, dipping appears to be due to progressive covering of the Comptonized emission of an extended accretion disk corona, the covering factor rising to 40% in deep dipping with an associated column density of 3 × 1023 atom cm-2. Remarkably, the blackbody emission of the neutron star is not affected by these dips, in strong contrast with observations of typical low mass X-ray binary dipping sources. The Chandra and XMM gratings directly measure the optical depths in absorption edges such as Ne K, Fe L, and O K and a comparison of the optical depths in the edges of non-dip and dip data reveals no increase of optical depth during dipping even though the continuum emission sharply decreases. Based on these findings, at orbital phase 0.35, we propose that dipping in this observation is caused by absorption in the outer disk by structures located opposite to the impact bulge of the accretion stream. With an inclination angle >60° these structures can still cover large parts of the extended ADC, without absorbing emission from the central neutral star.

  18. The C 1s and N 1s near edge x-ray absorption fine structure spectra of five azabenzenes in the gas phase.

    PubMed

    Vall-llosera, G; Gao, B; Kivimäki, A; Coreno, M; Alvarez Ruiz, J; de Simone, M; Agren, H; Rachlew, E

    2008-01-28

    Near edge x-ray absorption fine structure spectra have been measured and interpreted by means of density functional theory for five different azabenzenes (pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine) in the gas phase. The experimental and theoretical spectra at the N 1s and C 1s edges show a strong resonance assigned to the transition of the 1s electron in the respective N or C atoms to the lowest unoccupied molecular orbital with pi(*) symmetry. As opposed to the N 1s edge, at the C 1s edge this resonance is split due to the different environments of the core hole atom in the molecule. The shift in atomic core-level energy due to a specific chemical environment is explained with the higher electronegativity of the N atom compared to the C atom. The remaining resonances below the ionization potential (IP) are assigned to sigma or pi [corrected] orbitals with mixed valence/Rydberg [corrected] character. Upon N addition, a reduction of intensity is observed in the Rydberg region at both edges as compared to the intensity in the continuum. Above the IP one or more resonances are seen and ascribed here to transitions to sigma(*) orbitals. Calculating the experimental and theoretical Delta(pi) term values at both edges, we observe that they are almost the same within +/-1 eV as expected for isoelectronic bonded pairs. The term values of the pi(*) and sigma(*) resonances are discussed in terms of the total Z number of the atoms participating in the bond. PMID:18247958

  19. Modeling Ionospheric HF/VHF Radio-Wave Absorption due to Solar Energetic Proton Events

    NASA Astrophysics Data System (ADS)

    Sauer, H. H.; Wilkinson, D. C.

    2007-12-01

    Simple, one-parameter, algorithms have been applied to the observed energetic proton flux as provided by the GOES series of satellites to yield estimates of the high latitude HF and VHF radio-wave absorption for both day and night respectively. The twilight response is obtained as a bi-linear function of the solar zenith angle at the observation positions, and the latitude dependence of the absorption region near the edge of the absorbing region (the polar caps) are estimated from extant models of geomagnetic cut-offs and their dependence on geomagnetic activity. The approximate inverse square frequency dependence of ionospheric absorption is used to translate across the HF/VHF range and predictions of the minimum duration of events are determined. Calculations of the polar cap absorption of HF radio waves have been performed for eleven larger Solar Energetic Proton (SEP) events during the period from 1992 through 2002 and the results compared to observations of 30 MHz Riometers operated by the AFGL and located at Thule, Greenland. While discrepancies between the estimated and observed absorption using these procedures occur, especially at low absorption levels, this model has operational value in view of its simplicity and its being the only extant model, to our knowledge, which treats solar-illumination, geomagnetic cutoff variation, and frequency effects, at least to first order. Specimen graphical representations of the north and south polar caps illustrate the output of the model for the peak of the 12 December 2006 solar proton event. Given sufficient interest, improvements to the methodology used here are practicable and could be expected to achieve accuracies to the order of 25% or better.

  20. THE STATE OF MANGANESE IN THE PHOTOSYNTHETIC APPARATUS. II. X-RAY ABSORPTION EDGE STUDIES ON MANGANESE IN PHOTOSYNTHETIC MEMBRANES

    SciTech Connect

    Kirby, J. A.; Goodin, D. B.; Wydrzynski, T.; Robertson, A. S.; Klein, M. P.

    1980-11-01

    X-ray absorption spectra at the Manganese K-edge are presented for spinach chloroplasts, and chloroplasts which have been Tris-treated and hence unable to evolve oxygen. A significant change in the electronic environment of manganese is observed and is attributed to the release of manganese from the thylakoid membranes with a concomitant change in oxidation state. A correlation of the K-edge energy, defined as the energy at the first inflection point, with coordination charge has been established for a number of manganese compounds of known structure and oxidation state. Comparison of the manganese K-edge energies of the chloroplast samples with the reference compounds places the average oxidation state of the chloroplasts between +2 and +3. Using the edge spectra for Tris-treated membranes which were osmotically shocked to remove the released manganese, difference edge spectra were synthesized to approximate the active pool of manganese. Coordination charge predictions for this fraction are consistent with an average resting oxidation state higher than +2. The shape at the edge is also indicative of heterogeneity of the manganese site, of low symmetry, or both.

  1. Ab initio x-ray absorption study of copper K-edge XANES spectra in Cu(II) compounds

    SciTech Connect

    Chaboy, Jesus; Munoz-Paez, Adela; Carrera, Flora; Merkling, Patrick; Marcos, Enrique Sanchez

    2005-04-01

    This work reports a theoretical study of the x-ray absorption near-edge structure spectra at the Cu K edge in several Cu(II) complexes with N-coordinating ligands showing a square-planar arrangement around metal cation. It is shown that single-channel multiple-scattering calculations are not able to reproduce the experimental spectra. The comparison between experimental data and ab initio computations indicates the need of including the contribution of two electronic configurations (3d{sup 9} and 3d{sup 10}L) to account for a proper description of the final state during the photoabsorption process. The best agreement between theory and experiment is obtained by considering a relative weight of 68% and 32% for the two absorption channels 3d{sup 10}L and 3d{sup 9}, respectively.

  2. Sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) of thiol and thioether compounds

    SciTech Connect

    Beyhan, Shirin; Urquhart, Stephen G.; Hu Yongfeng

    2011-06-28

    The speciation and quantification of sulfur species based on sulfur K-edge x-ray absorption spectroscopy is of wide interest, particularly for biological and petroleum science. These tasks require a firm understanding of the sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of relevant species. To this end, we have examined the gas phase sulfur 1s NEXAFS spectra of a group of simple thiol and thioether compounds. These high-resolution gas phase spectra are free of solid-state broadening, charging, and saturation effects common in the NEXAFS spectra of solids. These experimental data have been further analyzed with the aid of improved virtual orbital Hartree-Fock ab initio calculations. The experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve assignment of spectroscopic features relevant for the speciation and quantification of the sulfur compounds.

  3. Theory of x-ray absorption and linear dichroism at the Ca L23-edge of CaCO3

    NASA Astrophysics Data System (ADS)

    Krüger, Peter; Natoli, Calogero R.

    2016-05-01

    X-ray absorption calculations of Ca L23-edge spectra of calcium carbonate in its two main crystal phases, calcite and aragonite, are reported. The multichannel multiple scattering theory with a correlated particle-hole wave function and a partially screened core-hole potential is used. Very good agreement with experiment for both CaCO3 phases is obtained, while the independent particle approximation completely fails. For aragonite, appreciable linear dichroism is predicted in agreement with recent observations.

  4. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  5. Iron speciation in human cancer cells by K-edge total reflection X-ray fluorescence-X-ray absorption near edge structure analysis

    NASA Astrophysics Data System (ADS)

    Polgári, Zs.; Meirer, F.; Sasamori, S.; Ingerle, D.; Pepponi, G.; Streli, C.; Rickers, K.; Réti, A.; Budai, B.; Szoboszlai, N.; Záray, G.

    2011-03-01

    X-ray absorption near edge structure (XANES) analysis in combination with synchrotron radiation induced total reflection X-ray fluorescence (SR-TXRF) acquisition was used to determine the oxidation state of Fe in human cancer cells and simultaneously their elemental composition by applying a simple sample preparation procedure consisting of pipetting the cell suspension onto the quartz reflectors. XANES spectra of several inorganic and organic iron compounds were recorded and compared to that of different cell lines. The XANES spectra of cells, independently from the phase of cell growth and cell type were very similar to that of ferritin, the main Fe store within the cell. The spectra obtained after CoCl 2 or NiCl 2 treatment, which could mimic a hypoxic state of cells, did not differ noticeably from that of the ferritin standard. After 5-fluorouracil administration, which could also induce an oxidative-stress in cells, the absorption edge position was shifted toward higher energies representing a higher oxidation state of Fe. Intense treatment with antimycin A, which inhibits electron transfer in the respiratory chain, resulted in minor changes in the spectrum, resembling rather the N-donor Fe-α,α'-dipyridyl complex at the oxidation energy of Fe(III), than ferritin. The incorporation of Co and Ni in the cells was followed by SR-TXRF measurements.

  6. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  7. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  8. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids. PMID:27538989

  9. The Prediction of Noise Due to Jet Turbulence Convecting Past Flight Vehicle Trailing Edges

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2014-01-01

    High intensity acoustic radiation occurs when turbulence convects past airframe trailing edges. A mathematical model is developed to predict this acoustic radiation. The model is dependent on the local flow and turbulent statistics above the trailing edge of the flight vehicle airframe. These quantities are dependent on the jet and flight vehicle Mach numbers and jet temperature. A term in the model approximates the turbulent statistics of single-stream heated jet flows and is developed based upon measurement. The developed model is valid for a wide range of jet Mach numbers, jet temperature ratios, and flight vehicle Mach numbers. The model predicts traditional trailing edge noise if the jet is not interacting with the airframe. Predictions of mean-flow quantities and the cross-spectrum of static pressure near the airframe trailing edge are compared with measurement. Finally, predictions of acoustic intensity are compared with measurement and the model is shown to accurately capture the phenomenon.

  10. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiment of the N K-edge and Ga M{sub 2,3} edges

    SciTech Connect

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B.; Lawniczak-Jablonska, K.; Suski, T.; Gullikson, E.M.; Underwood, J.H.; Perera, R.C.C.; Rife, J.C.

    1997-12-31

    X-ray absorption and glancing angle reflectivity measurements in the energy range of the Nitrogen K-edge and Gallium M{sub 2,3} edges are reported. Linear muffin-tin orbital band-structure and spectral function calculations are used to interpret the data. Polarization effects are evidenced for the N-K-edge spectra by comparing X-ray reflectivity in s- and p-polarized light.

  11. Electronic transitions and fermi edge singularity in polar heterostructures studied by absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Cavalcoli, D.; Minj, A.; Fraboni, B.; Cavallini, A.; Gamarra, P.; Poisson, M. A.

    2012-12-01

    Optically induced electronic transitions in nitride based polar heterostructures have been investigated by absorption and emission spectroscopy. Surface photovoltage (SPV), photocurrent (PC), and photo luminescence spectroscopy have been applied to high quality InAlN/AlN/GaN structures to study the optical properties of two dimensional electron gas. Energy levels within the two dimensional electron gas (2DEG) well at the interface between the GaN and AlN have been directly observed by SPV and PC. Moreover, a strong enhancement of the photoluminescence intensity due to holes recombining with electrons at the Fermi Energy, known as fermi energy singularity, has been observed. These analyses have been carried out on InAlN/AlN/GaN heterojunctions with the InAlN barrier layer having different In content, a parameter which affects the energy levels within the 2DEG well as well as the optical signal intensity. The measured energy values are in a very good agreement with the ones obtained by Schrödinger-Poisson simulations.

  12. Radiative ablation with two ionizing fronts when opacity displays a sharp absorption edge.

    PubMed

    Poujade, Olivier; Bonnefille, Max; Vandenboomgaerde, Marc

    2015-11-01

    The interaction of a strong flux of photons with matter through an ionizing front (I-front) is an ubiquitous phenomenon in the context of astrophysics and inertial confinement fusion (ICF) where intense sources of radiation put matter into motion. When the opacity of the irradiated material varies continuously in the radiation spectral domain, only one single I-front is formed. In contrast, as numerical simulations tend to show, when the opacity of the irradiated material presents a sharp edge in the radiation spectral domain, a second I-front (an edge front) can form. A full description of the mechanism behind the formation of this edge front is presented in this article. It allows us to understand extra shocks (edge-shocks), displayed by ICF simulations, that might affect the robustness of the design of fusion capsules in actual experiments. Moreover, it may have consequences in various domains of astrophysics where ablative flows occur. PMID:26651800

  13. Radiative ablation with two ionizing fronts when opacity displays a sharp absorption edge

    NASA Astrophysics Data System (ADS)

    Poujade, Olivier; Bonnefille, Max; Vandenboomgaerde, Marc

    2015-11-01

    The interaction of a strong flux of photons with matter through an ionizing front (I-front) is an ubiquitous phenomenon in the context of astrophysics and inertial confinement fusion (ICF) where intense sources of radiation put matter into motion. When the opacity of the irradiated material varies continuously in the radiation spectral domain, only one single I-front is formed. In contrast, as numerical simulations tend to show, when the opacity of the irradiated material presents a sharp edge in the radiation spectral domain, a second I-front (an edge front) can form. A full description of the mechanism behind the formation of this edge front is presented in this article. It allows us to understand extra shocks (edge-shocks), displayed by ICF simulations, that might affect the robustness of the design of fusion capsules in actual experiments. Moreover, it may have consequences in various domains of astrophysics where ablative flows occur.

  14. Multiple-scattering calculations of the uranium {ital L}{sub 3}-edge x-ray-absorption near-edge structure

    SciTech Connect

    Hudson, E.A.; Rehr, J.J.; Bucher, J.J.

    1995-11-15

    A theoretical study of the uranium {ital L}{sub 3}-edge x-ray absorption near-edge structure (XANES) is presented for several uranium compounds, including oxides, intermetallics, uranyl fluoride, and {alpha}-uranium. Calculations were performed using FEFF6, an {ital ab} {ital initio} multiple-scattering (MS) code that includes the most important features of current theories. The results, which account for both the fine structure {chi} and the atomiclike background {mu}{sub 0} of the absorption coefficient {mu}, are compared to new and previously measured experimental spectra, reavealing very good agreement for most systems. For several compounds, a more detailed theoretical analysis determined the influence of cluster size and scattering order upon the calculated spectra. Results indicate that MS paths and scattering paths that include rather distant atoms make significant contributions for UO{sub 2}, whereas XANES for crystals with lower symmetry and density can be modeled using only shorter single-scattering paths. In most cases, assumption of a screened final state in the calculation gives better agreement with experiment than use of an unscreened final state. The successful modeling of spectra for a variety of different uranium compounds, with differing spectral features, indicates that the semirelativistic treatment of XANES used here is adequate even for heavy elements. The well-known resonance, observed experimentally for uranyl (UO{sub 2}{sup 2+}) compounds {approx}15 eV above the white line, is successfully modeled here for the first time, using multiple-scattering paths within the O-U-O axial bonds. Overlapping muffin-tin spheres were required in the calculation, probably as a result of the short uranyl axial bonds.

  15. Stress concentration factors due to flaws near the edge of a plate under tension

    SciTech Connect

    Hanus, J.B.

    1980-01-01

    The primary goal of this research was to determine how flaws near an edge relate to structural reliability. The effect of ligament fracture for circular and elliptical holes was examined and the resulting surface breaking flaw and its relationship to a standard U-shaped notch were investigated using photoelastic techniques.

  16. Edge plasma physics modifications due to magnetic ripple in RFX-mod

    NASA Astrophysics Data System (ADS)

    Scarin, P.; Agostini, M.; Carraro, L.; Cavazzana, R.; Ciaccio, G.; De Masi, G.; Spizzo, G.; Spolaore, M.; Vianello, N.

    2015-08-01

    The edge of the RFX-mod (R = 2 m, a = 0.46 m) Reversed Field Pinch is characterized by weak magnetic chaos affecting ion and electron diffusion. Edge particle transport is strongly influenced by a toroidal asymmetry caused by magnetic islands. An ambipolar radial electric field ensures local neutrality and possesses the same symmetry as the parent magnetic ripple: the result is the modulation of the perpendicular flow, with a slowing-down at the island X-point. In this paper we present a complete statistical analysis, over a large database of RFX-mod discharges, of the edge properties as they are modified by the magnetic topology: the plasma wall footprint follows the helical shape of the dominant central mode (m/n = 1/7), with an increase of Hα emission and electron density corresponding to the O-point of the inner magnetic island. Edge turbulence is modified by the magnetic topology, being generated in the O-point region and damped near the X-point.

  17. Local environment of Mn dopant in ZnO by near-edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Kunisu, Masahiro; Oba, Fumiyasu; Ikeno, Hidekazu; Tanaka, Isao; Yamamoto, Tomoyuki

    2005-03-01

    High-resolution near-edge x-ray absorption fine structure (NEXAFS) at MnK edge is employed to probe the local environment of Mn dopant in ZnO. First-principles supercell calculations are systematically made to obtain theoretical NEXAFS. Mn is found to substitute for Zn up to 5at. %Mn in polycrystalline samples sintered at 1623K in air. Presence of Mn3O4 is apparent for samples with higher Mn content. The NEXAFS does not change in the range of Mn concentration from 0.01 to 5at.%, indicating the absence of Mn precipitates. The results are confirmed by examining the polarization dependence of the NEXAFS for a 5at.%-doped ZnO thin film.

  18. Micro-x-ray absorption near-edge structure imaging for detecting metallic Mn in GaN

    NASA Astrophysics Data System (ADS)

    Martínez-Criado, G.; Somogyi, A.; Homs, A.; Tucoulou, R.; Susini, J.

    2005-08-01

    In this study, we report the application of a synchrotron radiation microprobe to the analysis of Mn valencies in GaN. X-ray absorption near-edge structure (XANES) images taken around MnK-edge in fluorescence detection mode reveal the concentration of oxidation states of Mn centers. By fitting the XANES curve for each point of the image, the distributions of the Mn0, Mn2+, and Mn3+ oxidation states are obtained. At low Mn concentrations, there is a homogeneous mixture of Mn2+ and Mn3+ centers, while at high Mn content strong spatial-dependent Mn0 and Mn2+ distributions characterize the XANES maps. In a supplementary way with respect to Mn2+, the Mn0 pattern suggests the presence of specific cluster-like features, indicating surface segregation of metallic Mn centers.

  19. Photoelectron Experiments and Studies of X-Ray Absorption Near Edge Structure in Alkaline-Earth and Rare - Fluorides.

    NASA Astrophysics Data System (ADS)

    Gao, Yuan

    Alkaline-earth fluorides and rare-earth trifluorides possess technological importance for applications in multi -layer electronic device structures and opto-electronic devices. Interfaces between thin films of YbF _3 and Si(111) substrates were studied by photoelectron spectroscopy and x-ray absorption spectroscopy using synchrotron radiation. Results of YbF_3 /Si(111) were compared with those of TmF _3/Si(111). While electrons in the Si valence band are prevented from occupying the empty 4f levels in TmF_3 at the interface by the on -site Coulomb repulsion energy, the charge transfer from Si to YbF_3 is possible because the totally filled 4f states in Yb still lie below the Si valence band maximum. The theory of x-ray absorption near edge structure (XANES) is incomplete except for a few particularly simple special cases. A Bragg reflection model was developed to qualitatively explain the oscillations in XANES, in terms of the scattering of the photoelectron wave between families of lattice planes as set out by the Bragg condition for backscattering. The model was found to represent the data for systems with nearly free electron like conduction bands reasonably well. High resolution CaF_2 fluorine K edge XANES was used as a prototype to understand XANES in more depth on systems with strong core hole effects. Unlike previous work which involved multiple scattering cluster calculations that include only short range order effects, both the long range order and the symmetry breaking core holes are included in a new bandstructure approach in which the core hole is treated with a supercell technique. A first principles calculation with the use of pseudopotentials successfully reproduced all the main features of the first 15 eV of the fluorine K edge in CaF_2 which had not been explained with the cluster calculations. A comparison of the theoretical and experimental fluorine K edges in CaF_2 and BaF _2 was used to identify the structure related features. The possibility

  20. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu Yijin; Pianetta, Piero

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  1. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    NASA Astrophysics Data System (ADS)

    Nelson, George J.; Harris, William M.; Izzo, John R.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero

    2011-04-01

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  2. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure

    DOE PAGESBeta

    Timoshenko, J.; Shivhare, A.; Scott, R. W.; Lu, D.; Frenkel, A. I.

    2016-06-30

    We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  3. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  4. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  5. An asymmetric BODIPY triad with panchromatic absorption for high-performance red-edge laser emission.

    PubMed

    Duran-Sampedro, Gonzalo; Agarrabeitia, Antonia R; Garcia-Moreno, Inmaculada; Gartzia-Rivero, Leire; de la Moya, Santiago; Bañuelos, Jorge; López-Arbeloa, Íñigo; Ortiz, María J

    2015-07-21

    A rational design of an unprecedented asymmetric cassette triad based entirely on BODIPY chromophores allows efficient light harvesting over the UV-vis spectral region, leading to a bright and stable red-edge laser emission via efficient energy-transfer processes. PMID:26084606

  6. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  7. Increased heat transfer to a cylindrical leading edge due to spanwise variations in the freestream velocity

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1991-01-01

    The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3 D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.

  8. Evaluation of edge effect due to phase contrast imaging for mammography

    SciTech Connect

    Matsuo, Satoru; Katafuchi, Tetsuro; Tohyama, Keiko; Morishita, Junji; Yamada, Katsuhiko; Fujita, Hiroshi

    2005-08-15

    It is well-known that the edge effect produced by phase contrast imaging results in the edge enhancement of x-ray images and thereby sharpens those images. It has recently been reported that phase contrast imaging using practical x-ray tubes with small focal spots has improved image sharpness as observed in the phase contrast imaging with x-ray from synchrotron radiation or micro-focus x-ray tubes. In this study, we conducted the phase contrast imaging of a plastic fiber and plant seeds using a customized mammography equipment with a 0.1 mm focal spot, and the improvement of image sharpness was evaluated in terms of spatial frequency response of the images. We observed that the image contrast of the plastic fiber was increased by edge enhancement, and, as predicted elsewhere, spectral analysis revealed that as the spatial frequencies of the x-ray images increased, so did the sharpness gained through phase contrast imaging. Thus, phase contrast imaging using a practical molybdenum anode tube with a 0.1 mm-focal spot would benefit mammography, in which the morphological detectability of small species such as micro-calcifications is of great concern. And detectability of tumor-surrounded glandular tissues in dense breast would be also improved by the phase contrast imaging.

  9. Development of Palladium L-Edge X-Ray Absorption Spectroscopy And Its Application for Chloropalladium Complexes

    SciTech Connect

    Boysen, R.B.; Szilagyi, R.K.

    2009-05-12

    X-ray absorption spectroscopy (XAS) is a synchrotron-based experimental technique that provides information about geometric and electronic structures of transition metal complexes. Combination of metal L-edge and ligand K-edge XAS has the potential to define the complete experimental ground state electronic structures for metal complexes with unoccupied d manifolds. We developed a quantitative treatment for Pd L-edge spectroscopy on the basis of the well-established chlorine K-edge XAS for a series of chloropalladium complexes that are pre-catalysts in various organic transformations. We found that Pd-Cl bonds are highly covalent, such as 24 {+-} 2%, 34 {+-} 3%, and 48 {+-} 4% chloride 3p character for each Pd-Cl bond in [PdCl{sub 4}]{sup 2-}, [PdCl{sub 6}]{sup 2-}, and PdCl{sub 2}, respectively. Pd(2p {yields} 4d) transition dipole integrals of 20.8 (SSRL)/16.9 (ALS) eV and 14.1 (SSRL)/11.9 (ALS) eV were determined using various combinations of L-edges for Pd(II) and Pd(IV), respectively. Application of metal-ligand covalency and transition dipole integrals were demonstrated for the example of bridging chloride ligands in PdCl{sub 2}. Our work lays the foundation for extending the quantitative treatment to other catalytically important ligands, such as phosphine, phosphite, olefin, amine, and alkyl in order to correlate the electronic structures of palladium complexes with their catalytic activity.

  10. Enhancement of microbial motility due to speed-dependent nutrient absorption.

    PubMed

    Di Salvo, Mario E; Condat, C A

    2014-02-01

    Marine microorganisms often reach high swimming speeds, either to take advantage of evanescent nutrient patches or to beat Brownian forces. Since this implies that a sizable part of their energetic budget must be allocated to motion, it is reasonable to assume that some fast-swimming microorganisms may increase their nutrient intake by increasing their speed v. We formulate a model to investigate this hypothesis and its consequences, finding the steady-state solutions and analyzing their stability. Surprisingly, we find that even modest increases in nutrient absorption may lead to a significant increase of the microbial speed. In fact, evaluations obtained using realistic parameter values for bacteria indicate that the speed increase due to the enhanced nutrient absorption may be quite large. PMID:24451235

  11. Behavior of Propagation and Heating Due to Absorption of Ultrasound in Medium

    NASA Astrophysics Data System (ADS)

    Yamaya, Chiaki; Inoue, Hiroshi

    2006-05-01

    Recently, ultrasound waves have been put to practical use not only in diagnostic equipment but also in thermotherapy that uses the effect of ultrasound waves in a living body. The analysis of temperature rise due to the absorption of ultrasound in a soft tissue medium is an important analyzing object for the clarification of the effect of ultrasound waves in biological tissues and the estimation of medium constants. Three-dimensional simulations by the finite-difference time-domain (FDTD) method which used the equations that considers the absorption attenuation based on acoustic basic equations (ABEs) and the Westervelt equation have been performed. The consistency between the ABEs and the Westervelt equation is confirmed. The results of temperature measurement that uses glycerin as the absorbing medium of ultrasound are compared with those of FDTD simulation. The temperature distribution obtained by FDTD simulation almost corresponds to that obtained by experiment.

  12. Selective spatial damping of propagating kink waves due to resonant absorption

    NASA Astrophysics Data System (ADS)

    Terradas, J.; Goossens, M.; Verth, G.

    2010-12-01

    Context. There is observational evidence of propagating kink waves driven by photospheric motions. These disturbances, interpreted as kink magnetohydrodynamic (MHD) waves are attenuated as they propagate upwards in the solar corona. Aims: We show that resonant absorption provides a simple explanation to the spatial damping of these waves. Methods: Kink MHD waves are studied using a cylindrical model of solar magnetic flux tubes, which includes a non-uniform layer at the tube boundary. Assuming that the frequency is real and the longitudinal wavenumber complex, the damping length and damping per wavelength produced by resonant absorption are analytically calculated in the thin tube (TT) approximation, valid for coronal waves. This assumption is relaxed in the case of chromospheric tube waves and filament thread waves. Results: The damping length of propagating kink waves due to resonant absorption is a monotonically decreasing function of frequency. For kink waves with low frequencies, the damping length is exactly inversely proportional to frequency, and we denote this as the TGV relation. When moving to high frequencies, the TGV relation continues to be an exceptionally good approximation of the actual dependency of the damping length on frequency. This dependency means that resonant absorption is selective as it favours low-frequency waves and can efficiently remove high-frequency waves from a broad band spectrum of kink waves. The efficiency of the damping due to resonant absorption depends on the properties of the equilibrium model, in particular on the width of the non-uniform layer and the steepness of the variation in the local Alfvén speed. Conclusions: Resonant absorption is an effective mechanism for the spatial damping of propagating kink waves. It is selective because the damping length is inversely proportional to frequency so that the damping becomes more severe with increasing frequency. This means that radial inhomogeneity can cause solar

  13. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  14. Log spiral of revolution highly oriented pyrolytic graphite monochromator for fluorescence x-ray absorption edge fine structure

    SciTech Connect

    Pease, D. M.; Daniel, M.; Budnick, J. I.; Rhodes, T.; Hammes, M.; Potrepka, D. M.; Sills, K.; Nelson, C.; Heald, S. M.; Brewe, D. I.

    2000-09-01

    We have constructed an x-ray monochromator based on a log spiral of revolution covered with highly oriented pyrolytic graphite. Such a monochromator is used for obtaining x-ray absorption edge fine structure by the fluorescence method, and is particularly useful for measuring the fine structure of dilute element A in a concentrated matrix of element B, where B is to the left of A in the Periodic Table. Using the log spiral monochromator, we measure good Cr x-ray fine structure in an alloy of 1% Cr in a V matrix, whereas the corresponding spectrum is severely distorted by the V background if nonmonochromatized fluorescence is used. We also obtain excellent rejection of Mn fluorescence relative to Cr fluorescence in a Cr{sub 80}Mn{sub 20} alloy, and can tune the monochromator such that the entire Mn step height is significantly smaller than the Cr x-ray absorption edge fine structure oscillations for this system. (c) 2000 American Institute of Physics.

  15. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  16. Angular Resolved X-Ray Absorption Near Edge Structure Investigation of Adsorbed Alkanethiol Monolayers on III-V(110) Surfaces

    NASA Astrophysics Data System (ADS)

    Chassé, T.; Zerulla, D.; Hallmeier, K. H.

    The structure of alkanethiol monolayers on III-V(110) surfaces was studied by analyzing the X-ray absorption near edge structure (XANES) of the carbon K edge. Pronounced absorption maxima were observed for special orientations of the polarization vector of the radiation as revealed from angular-dependent measurements, suggesting a rather well-defined molecular axis of the alkyl chains. From quantitative evaluations of these angular dependences the chains were found to be tilted from the normal towards the [001] direction of the (110) surfaces by 34° and 15° in the case of hexadecanethiol (HDT) adsorption on InP and GaP, respectively. The similarities as well as the differences in tilt angles between the substrates are dicussed in terms of constraints imposed by the surface structure and lattice constants as well as the space requirements of the van der Waals spheres of the adsorbed thiols. A unique feature observed on these monolayers is the nearly complete alignment of the alkyl chains with respect to the azimuthal orientation. We suggest that this adsorbate system represents the case of a single domain orientation within the organic monolayer.

  17. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  18. Shift of optical absorption edge in SnO2 films with high concentrations of nitrogen grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Lu, Yinmei; Meyer, Bruno K.; Hofmann, Detlev M.; Eickhoff, Martin

    2016-06-01

    The optical and electrical properties of n-type SnO2 films with high concentrations of nitrogen (SnO2:N) grown by chemical vapor deposition are studied. The carrier concentration increases from 4.1 × 1018 to 3.9 × 1019 cm-3 and the absorption edge shifts from 4.26 to 4.08 eV with increasing NH3 flow rate. Typical Urbach tails were observed from the absorption spectra and the Urbach energy increases from 0.321 to 0.526 eV with increasing NH3 flow rate. An "effective" absorption edge of about 4.61 eV was obtained for all investigated samples from fitting the extrapolations of the Urbach tails. Burstein-Moss effect, electron-impurity, and electron-electron interactions are shown to play a minor role for the shift of the absorption edges in SnO2:N thin films.

  19. Life on a Changing Edge: Arctic-Alpine Plants at the Edges of Permanent Snowfields that are Receding Due to Climate Change at Glacier National Park

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Martin, A. C.; Moritz, D. J.

    2013-12-01

    Glaciers and snowfields are intrinsic parts of many alpine landscapes but they are retreating rapidly at Glacier National Park in Montana, USA. Plants that inhabit the edges of glaciers and snowfields are vulnerable to habitat changes wrought by the recession of these frozen bodies. Snowfields provide plants with frost protection in the winter and water in the form of melting snow during the summer. However, changes in snowfield and glacial edges may leave plants exposed to frost in the winter and subjected to water stress in the summer, which would likely have an impact on important processes, including emergence from the soil, leaf expansion, root growth, flowering, seed germination, seedling establishment, photosynthesis, and transpiration. Because these processes influence the survival of plants, responses of snowfield plants to changing edges will likely result in changes in species abundance, distribution and diversity, which will in turn influence community composition. In summer 2012, we initiated a study of Glacier National Park's snowfield plants by establishing 2m2 plots at geospatially referenced 50m transects extending outwards from the toe and perpendicularly outward from the lateral edges of currently permanent snowfields at Siyeh Pass, Piegan Pass, and Preston Park, with an additional 100m transect extending from an impermanent snowfield to treeline at Mt. Clements near Logan Pass. We constructed species lists and determined percent cover for each species in each 2m2 plot, and used high resolution photographs of each plot as records and for fine scale determinations of species presence and location. In addition, we searched for rare arctic-alpine plants which, due to their rarity, may be especially vulnerable to changes in snowfields and glaciers. Two species of rare arctic-alpine plants, Tofieldia pusilla and Pinguicula vulgaris, were found near snowmelt-fed springs, rivulets, and tarns but were not found adjacent to the snowfields. Thus, they may

  20. Complicated high-order harmonic generation due to the falling edge of a trapezoidal laser pulse

    NASA Astrophysics Data System (ADS)

    Ahmadi, H.; Vafaee, M.; Maghari, A.

    2016-02-01

    High-order harmonic generation (HHG) is investigated for {{{H}}}2+ and its isotopologues under seven and ten-cycle trapezoidal laser pulses at an 800 nm wavelength and I = 4 × 1014 W cm-2 intensity. We numerically solved the full-dimensional electronic time-dependent Schrödinger equation (TDSE) with and without the Born-Oppenheimer approximation (BO). We show that contribution to the HHG spectrum from the trailing edge of a trapezoidal laser pulse can result in a redshift and complexity in the total HHG spectrum. This effect can be removed by considering different laser pulse durations and nuclear motion that is not possible for sin2 and Gaussian laser pulses. We have resolved the contributions to the redshift and other patterns in the HHG spectra into the different electronic and vibrational channels and the interference thereof.

  1. Aerodynamic heating on AFE due to nonequilibrium flow with variable entropy at boundary layer edge

    NASA Technical Reports Server (NTRS)

    Ting, P. C.; Rochelle, W. C.; Bouslog, S. A.; Tam, L. T.; Scott, C. D.; Curry, D. M.

    1991-01-01

    A method of predicting the aerobrake aerothermodynamic environment on the NASA Aeroassist Flight Experiment (AFE) vehicle is described. Results of a three dimensional inviscid nonequilibrium solution are used as input to an axisymmetric nonequilibrium boundary layer program to predict AFE convective heating rates. Inviscid flow field properties are obtained from the Euler option of the Viscous Reacting Flow (VRFLO) code at the boundary layer edge. Heating rates on the AFE surface are generated with the Boundary Layer Integral Matrix Procedure (BLIMP) code for a partially catalytic surface composed of Reusable Surface Insulation (RSI) times. The 1864 kg AFE will fly an aerobraking trajectory, simulating return from geosynchronous Earth orbit, with a 75 km perigee and a 10 km/sec entry velocity. Results of this analysis will provide principal investigators and thermal analysts with aeroheating environments to perform experiment and thermal protection system design.

  2. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-01

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra. PMID:26959687

  3. Lead uptake in diverse plant families: a study applying X-ray absorption near edge spectroscopy.

    PubMed

    Bovenkamp, Gudrun L; Prange, Alexander; Schumacher, Wolfgang; Ham, Kyungmin; Smith, Aaron P; Hormes, Josef

    2013-05-01

    The chemical environment of lead in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel Mountains in Germany was determined by Pb L3-edge XANES measurements using solid reference compounds and also aqueous solutions of different ionic strength simulating the plant environment. Pb(2+) ions in the plants were found to have two major coordinations, one with nine oxygen atoms in the first coordination shell similar to outer-sphere complexation and a second coordination with just three oxygen atoms similar to inner-sphere complexation. This can be interpreted assuming that lead is sorbed on the surface of cell walls depending on the concentration of lead in the soil solution. Pb L3-edge XANES spectra of dried and fresh plant samples are very similar because sorption does not change with removal of water but only because of the initial ionic strength. No bonding to biologically important groups (-S, - N) or precipitation (-PO4) was found. PMID:23517351

  4. The Protonation States of Oxo-Bridged MnIV-Dimers Resolved by Experimental and Computational Mn K Pre-Edge X-Ray Absorption Spectroscopy

    PubMed Central

    Krewald, Vera; Lassalle-Kaiser, Benedikt; Boron, Thaddeus T.; Pollock, Christopher J.; Kern, Jan; Beckwith, Martha A.; Yachandra, Vittal K.; Pecoraro, Vincent L.; Yano, Junko; Neese, Frank; DeBeer, Serena

    2013-01-01

    In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of Photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn-dimer is represented by the system [MnIV2(salpn)2(μ-OH(n))2](n+). Although the three species [MnIV2(salpn)2(μ-O)2], [MnIV2(salpn)2(μ-O)(μ-OH)]+ and [MnIV2(salpn)2(μ-OH)2]2+ differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretical ly calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high-spin (HS) and broken-symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn-1s core electrons into the unoccupied orbitals of local eg character (dz2 and dxy based in the chosen coordinate system). The lowest by energy experimental feature is dominated by excitations of 1s-α electrons and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in both the HS

  5. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    PubMed

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure. PMID:26827321

  6. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    SciTech Connect

    Dorchies, F. Fedorov, N.; Lecherbourg, L.

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  7. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    SciTech Connect

    Andreeva, M. A.; Repchenko, Yu. L.; Smekhova, A. G.; Dumesnil, K.; Wilhelm, F.; Rogalev, A.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  8. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  9. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    SciTech Connect

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    2012-04-14

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  10. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Dorchies, F.; Fedorov, N.; Lecherbourg, L.

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ˜1 mn and ˜100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  11. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    NASA Astrophysics Data System (ADS)

    Andreeva, M. A.; Repchenko, Yu. L.; Smekhova, A. G.; Dumesnil, K.; Wilhelm, F.; Rogalev, A.

    2015-06-01

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L 3 absorption edge of yttrium in a single-crystal YFe2 film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe2(40 nm<110>)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  12. Tracking Drug Loading Capacities of Calcium Silicate Hydrate Carrier: A Comparative X-ray Absorption Near Edge Structures Study.

    PubMed

    Guo, Xiaoxuan; Wang, Zhiqiang; Wu, Jin; Yiu, Yun-Mui; Hu, Yongfeng; Zhu, Ying-Jie; Sham, Tsun-Kong

    2015-08-01

    Mesoporous spheres of calcium silicate hydrate (MS-CSH) have been prepared by an ultrasonic method. Following an earlier work in which we have revealed the interactions between ibuprofen (IBU) and CSH carriers with different morphologies by X-ray absorption near edge structures (XANES) analysis. In the present investigation, two new drug molecules, alendronate sodium (ALN) and gentamicin sulfate (GS), were incorporated into MS-CSH, and their drug loading capacities (DLCs) were measured using thermogravimetric analysis to establish the relationship between drug-carrier interactions and DLCs. The XANES spectra clearly indicate that acidic functional groups of the drug molecules linked to the active sites (Ca-OH and Si-OH groups) of MS-CSH on the surface by electrostatic interactions. In addition, it is found that the stoichiometric ratio of Ca(2+) ions of CSH carriers and the functional groups of drug molecules may significantly influence the DLCs. PMID:26162602

  13. Anisotropy of Chemical Bonds in Collagen Molecules Studied by X-ray Absorption Near-Edge Structure (XANES) Spectroscopy

    PubMed Central

    Lam, Raymond S.K.; Metzler, Rebecca A.; Gilbert, Pupa U.P.A.; Beniash, Elia

    2012-01-01

    Collagen type I fibrils are the major building blocks of connective tissues. Collagen fibrils are anisotropic supra-molecular structures, and their orientation can be revealed by polarized light microscopy and vibrational microspectroscopy. We hypothesized that the anisotropy of chemical bonds in the collagen molecules, and hence their orientation, might also be detected by X-ray photoemission electron spectromicroscopy (X-PEEM) and X-ray absorption near-edge structure (XANES) spectroscopy, which use linearly polarized synchrotron light. To test this hypothesis, we analyzed sections of rat-tail tendon, composed of parallel arrays of collagen fibrils. The results clearly indicate that XANES-PEEM is sensitive to collagen fibril orientation and, more specifically, to the orientations of carbonyl and amide bonds in collagen molecules. These data suggest that XANES-PEEM is a promising technique for characterizing the chemical composition and structural organization at the nanoscale of collagen-based connective tissues, including tendons, cartilage, and bone. PMID:22148847

  14. Electrospun nanofibers of Er{sup 3+}-doped TiO{sub 2} with photocatalytic activity beyond the absorption edge

    SciTech Connect

    Zheng, Yali; Wang, Wenzhong

    2014-02-15

    Er{sup 3+}-doped TiO{sub 2} nanofibers with different Er{sup 3+} contents were prepared via electrospinning and characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflectance spectroscopy and photocurrent measurement. Photocatalytic activities of the as-prepared samples were evaluated by the decolorization of methyl orange aqueous solution under simulated solar light irradiation. The results indicated that the photocatalytic activity of Er{sup 3+}-doped TiO{sub 2} nanofibers was much higher than that of the undoped one, and the optimal dosage of Er{sup 3+} at 1 mol% achieved the highest degradation rate. Moreover, the photocatalytic activity of Er{sup 3+}-doped TiO{sub 2} nanofibers under the irradiation of light with the wavelength beyond the absorption edge of TiO{sub 2} was explored by the decolorization of a dye, rhodamine B and the photodegradation of a typical colorless pollutant, phenol. The results further revealed the mechanism of the enhanced photocatalytic activity through Er{sup 3+} doping in TiO{sub 2} nanofibers. - Graphical abstract: Display Omitted - Highlights: ●Er{sup 3+}:TiO{sub 2} nanofibers with different Er{sup 3+} contents were prepared via electrospinning. ●The photocatalytic activity of Er{sup 3+}:TiO{sub 2} was much higher than that of undoped one. ●Er{sup 3+}:TiO{sub 2} could be activated by the light with wavelength beyond the absorption edge.

  15. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  16. Ligand and Charge Dependence for Absorption Edge in XANES Spectra of TPP[Fe(Pc)L2]2 Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Watanabe, Akie; Niki, Kaori; Hanasaki, Noriaki; Kanda, Akinori; Fujikawa, Takashi

    We apply real space full multiple scattering theory to interpret the Fe K-edge XANES spectra of TPP[Fe(Pc)L2]2 (L = CN, Cl and Br) systems, which show the giant magnetoresistance (GMR) at the low temperatures. In the previous paper, we have reported the absorption edge shift of the XANES spectra, whose origin remains unclear, for TPP[Fe(Pc)L2]2 systems. In order to clarify the relation between the charge of the Fe atom, the local structure of the axial ligand and the XANES spectra, we improve the calculation of the XANES spectra by taking into account the wider region including the neighboring Fe(Pc)L2 and TPP molecules. Our multiple scattering analyses suggest that the spectral shape is strongly influenced by the distance between a central Fe and axial ligands L. The number of Fe 3d electrons obtained by density functional theory calculations show weak dependence on the axial ligands L. The EXAFS spectra, the polarization dependence and the temperature dependence of the XANES spectra are also discussed.

  17. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium.

    PubMed

    Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna

    2015-09-01

    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium. PMID:26253227

  18. X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC

    PubMed Central

    Ohkubo, M.; Shiki, S.; Ukibe, M.; Matsubayashi, N.; Kitajima, Y.; Nagamachi, S.

    2012-01-01

    Fluorescence-yield X-ray absorption fine structure (FY-XAFS) is extensively used for investigating atomic-scale local structures around specific elements in functional materials. However, conventional FY-XAFS instruments frequently cannot cover trace light elements, for example dopants in wide gap semiconductors, because of insufficient energy resolution of semiconductor X-ray detectors. Here we introduce a superconducting XAFS (SC-XAFS) apparatus to measure X-ray absorption near-edge structure (XANES) of n-type dopant N atoms (4 ×1019 cm−3) implanted at 500°C into 4H-SiC substrates annealed subsequently. The XANES spectra and ab initio multiple scattering calculations indicate that the N atoms almost completely substitute for the C sites, associated with a possible existence of local CN regions, in the as-implanted state. This is a reason why hot implantation is necessary for dopant activation in ion implantation. The SC-XAFS apparatus may play an important role in improving doping processes for energy-saving wide-gap semiconductors and other functional materials. PMID:23152937

  19. Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle

    SciTech Connect

    Klein,R.; Fischer, D.; Lenhart, J.

    2008-01-01

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double OC bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 {+-} 2, due primarily to chemical heterogeneity. Annealing above Tg allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  20. X-ray phase-amplitude contrast mapping of single-crystal alloys near the absorption edge of the alloy impurity

    NASA Astrophysics Data System (ADS)

    Nikulin, A. Yu.; Davis, J. R.; Jones, N. T.; Zaumseil, P.

    1998-11-01

    An experimental-analytical method for the nondestructive structural and chemical composition mapping of single-crystal alloys is proposed, implemented, and successfully tested. The technique is based on analytical measurements of phase and amplitude changes in a narrow polychromatic region near the absorption edge of the alloy impurity. Synchrotron radiation energies of 11.096-11.105 keV were used to measure the Bragg diffraction profiles near the absorption edge of germanium at 11.103 keV in SiGe/Si crystal alloy superstructures. Physical dimensions and chemical composition of SiGe alloys were determined with a spatial resolution 8.6 Å.

  1. Interaction of Isophorone with Pd(111): A Combination of Infrared Reflection–Absorption Spectroscopy, Near-Edge X-ray Absorption Fine Structure, and Density Functional Theory Studies

    PubMed Central

    2014-01-01

    Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998

  2. SYNCHROTRON X-RAY ABSORPTION-EDGE COMPUTED MICROTOMOGRAPHY IMAGING OF THALLIUM COMPARTMENTALIZATION IN IBERIS INTERMEDIA

    EPA Science Inventory

    Thallium (TI) is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants. Thallium is efficiently hyperaccumulated in Iberis intermedia as TI(I). Distribution and compartmentalization of TI in I. intermedia is highes...

  3. Effect of the plasma shapes on intrinsic rotation due to collisionless ion orbit loss in the tokamak edge plasmas

    SciTech Connect

    Ou, Jing; Wu, Guojiang; Li, Xinxia

    2014-07-15

    Distribution of the intrinsic rotation due to collisionless ion orbit loss near the tokamak edge region is studied by using an analytical model based on ion guiding center orbit approximation. A peak of the averaged ion orbit loss momentum fraction is found very near inside the separatrix region in a double null divertor configuration but is not found inside the last closed flux surface region in an outer limiter configuration. For the double null divertor configuration, the intrinsic rotation due to ion orbit loss depends on the plasma shape. With the increase in elongation and triangularity, the peak of the averaged ion orbit loss momentum fraction increases and it moves inward for the lower plasma current.

  4. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  5. Tokamak-edge toroidal rotation due to inhomogeneous transport and geodesic curvature

    SciTech Connect

    Stoltzfus-Dueck, T.

    2012-05-15

    In a model kinetic ion transport equation for the pedestal and scrape-off layer, passing-ion drift orbit excursions interact with spatially inhomogeneous but purely diffusive transport to cause the orbit-averaged diffusivities to depend on the sign of {nu}{sub Parallel-To }, preferentially transporting counter-current ions for realistic parameter values. The resulting pedestal-top intrinsic rotation is typically co-current, reaches experimentally relevant values, and is proportional to pedestal-top ion temperature T{sub i} Double-Vertical-Line {sub pt} over plasma current I{sub p}, as observed in experiment. The rotation drive is independent of the toroidal velocity and its radial gradient, representing a residual stress. Co-current spin-up at the L-H transition is expected due to increasing T{sub i} Double-Vertical-Line {sub pt} and a steepening of the turbulence intensity gradient. A more inboard (outboard) X-point leads to additional co- (counter-) current rotation drive. Beyond intrinsic rotation, comparison of heat and momentum transport reveals that neutral beam injection must be significantly unbalanced in the counter-current direction to cause zero toroidal rotation at the pedestal top.

  6. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  7. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  8. Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms

    NASA Astrophysics Data System (ADS)

    Oger, Phil M.; Daniel, I.; Simionovici, A.; Picard, A.

    2008-04-01

    X-ray spectroscopies are very powerful tools to determine the chemistry of complex dilute solutes in abiotic and biotic systems. We have assayed their suitability to monitor the chemistry of complex solutions in a live biotic system. The impact of the probe on cells was quantified for 4 different cellular organisms differing in their resistance level to environmental stresses. We show that none of the organisms tested can survive the radiation doses needed for the acquisition of meaningful spectroscopic data. Therefore, on one hand, X-ray spectroscopy cannot be applied to the monitoring of single cells, and cellular damages have to be taken into account in the interpretation of the evolution of such systems. On the other hand, due to the limited extension of X-ray induced cellular damages in the culture volume, it is possible to probe a population of live cells provided that the culture to beam probe ratio is large enough to minimize the impact of mortality on the evolution of the biological system. Our results suggest that it could be possible to probe the volume in the close vicinity of a cell without affecting its activity. Using this setup we could monitor the reduction of selenite by the X-ray sensitive bacterium, Agrobacterium tumefaciens strain C58, for 24 h. This method has a great potential to monitor the respiration of various metals, such as iron, manganese and arsenic, in situ under relevant environmental conditions by live microorganisms.

  9. Adsorption of dopamine on rutile TiO2 (110): a photoemission and near-edge X-ray absorption fine structure study.

    PubMed

    Jackman, Mark J; Syres, Karen L; Cant, David J H; Hardman, Samantha J O; Thomas, Andrew G

    2014-07-29

    Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction. PMID:25003716

  10. Sulfur and nitrogen speciation in humic substances by x-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Vairavamurthy, M.A.; Wang, Shenghe; Maletic, D.

    1996-12-31

    Understanding the chemical composition and structure of complex macromolecules in the geosphere, such as humic substances and kerogen, poses a challenging analytical problem. Widely used chromatographic techniques, such as the pyrolysis GC-MS, cause severe changes in structure during preparation and analysis of the sample, and thus, may not give accurate information. An important non-destructive technique that is becoming popular in speciation studies of environmental and geochemical samples is x-ray absorption fine structure spectroscopy. We used the x-ray absorption near-edge structure (XANFS) spectroscopy for examining the speciation of sulfur and nitrogen in humic substances of different origins, including soil and marine sediments. XANES provides information on the characteristics of the functional groups containing these atoms because of its sensitivity to the electronic structure, oxidation state, and the geometry of the neighboring atoms. Organic sulfides, di- and poly-sulfides, sulfonates and organic sulfates are the major forms of sulfur detected in all the humics we examined. The oxidized sulfonate-sulfur dominates the composition of sulfur species in soil humics accounting for more than 60% of the total sulfur. In marine humics, although sulfonates are abundant in near-surface sediments, reduced sulfur species, particularly di-and poly-sulfides, also constitute an important fraction. The nitrogen XANES indicates the dominance of amino and amide groups among nitrogen functionalities, although porphyrinic and pyridinic groups also are present. The significance of these results for the transformations of nitrogen and sulfur in soil and sedimentary systems will be presented.

  11. Molybdenum X-ray absorption edges from 200 to 20,000eV: the benefits of soft X-ray spectroscopy for chemical speciation.

    PubMed

    George, Simon J; Drury, Owen B; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J; George, Graham N; White, Jonathan M; Young, Charles G; Cramer, Stephen P

    2009-02-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum X-ray absorption edges from the hard X-ray K-edge at 20,000eV down to the soft X-ray M(4,5)-edges at approximately 230eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO(4)(2-) and MoS(4)(2-). We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO(4)(2-) and MoS(4)(2-) and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L(2,3)-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft X-ray M(2,3)-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L(2,3)-edges. Interestingly, the soft X-ray, low energy ( approximately 230eV) M(4,5)-edges had greatest potential chemical sensitivity and using our high-resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d-->5p transitions, while the broad edge structure has predominately 3d-->4f character. A proper understanding of the dependence of these soft X-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M(4,5)-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  12. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  13. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. PMID:26502979

  14. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    SciTech Connect

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus; Odelius, Michael

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3−} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3−} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  15. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-08-01

    We derived the absorption coefficient ( μ a) and the reduced scattering coefficient ( μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/ μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  16. Speciation of sulfur in humic and fulvic acids using X-ray Absorption Near-Edge Structures (XANES) spectroscopy

    SciTech Connect

    Morra, M.J.; Fendorf, S.E.; Brown, P.D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils. 27 refs., 4 figs., 3 tabs.

  17. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  18. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  19. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichiro

    2016-07-01

    We derived the absorption coefficient (μ a) and the reduced scattering coefficient (μ s') using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s'. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s' that we obtained using the ELM were similar to those obtained using the VRM, when μ a/μ s' was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

  20. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    ERIC Educational Resources Information Center

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  1. Removal of OH Absorption Bands Due to Pyrohydrolysis Reactions in Fluoride-Containing Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keiji

    1997-05-01

    The purpose of this study is to decrease and to remove OH ions and H2O in borosilicate glasses. Fluoride-containing borosilicate glasses followed by dry-air-bubbling showed the significant decrease of OH absorption bands around 3500 cm-1. The decrease of OH absorption bands was elucidated by the use of pyrohydrolysis reactions in these glasses where fluoride ions react with OH ions or H2O during melting. The rates of the decrease of OH absorption bands substantially depend on high valence cations of fluorides. Particularly, the decrease rates of OH absorption coefficients were in the order of ZrF4-containing glass>AlF3-containing glass>ZnF2-containing glass. ZrF4-containing glass treated by dry-air-bubbling showed a good capability to remove OH absorption band. Fluoride-containing glasses showed the low flow point in comparison with fluoride-free glasses.

  2. New methodological approach for the vanadium K-edge X-ray absorption near-edge structure interpretation: application to the speciation of vanadium in oxide phases from steel slag.

    PubMed

    Chaurand, Perrine; Rose, Jérôme; Briois, Valérie; Salome, Murielle; Proux, Olivier; Nassif, Vivian; Olivi, Luca; Susini, Jean; Hazemann, Jean-Louis; Bottero, Jean-Yves

    2007-05-17

    This paper presents a comparison between several methods dedicated to the interpretation of V K-edge X-ray absorption near-edge structure (XANES) features. V K-edge XANES spectra of several V-bearing standard compounds were measured in an effort to evaluate advantages and limits of each method. The standard compounds include natural minerals and synthetic compounds containing vanadium at various oxidation state (from +3 to +5) and in different symmetry (octahedral, tetrahedral, and square pyramidal). Correlations between normalized pre-edge peak area and its centroid position have been identified as the most reliable method for determining quantitative and accurate redox and symmetry information for vanadium. This methodology has been previously developed for the Fe K edge. It is also well adapted for the V K edge and is less influenced by the standard choice than other methods. This methodology was applied on an "environmental sample," i.e., a well-crystallized leached steel slag containing vanadium as traces. Micro-XANES measurements allowed elucidating the microdistribution of vanadium speciation in leached steel slag. The vanadium exhibits an important evolution from the unaltered to the altered phases. Its oxidation state increases from +3 to +5 together with the decrease of its symmetry (from octahedral to tetrahedral). PMID:17429991

  3. On the importance of nuclear quantum motions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy of molecules

    SciTech Connect

    Schwartz, Craig P.; Uejio, Janel S.; Saykally, Richard J.; Prendergast, David

    2009-02-26

    We report the effects of sampling nuclear quantum motion with path integral molecular dynamics (PIMD) on calculations of the nitrogen K-edge spectra of two isolated organic molecules. S-triazine, a prototypical aromatic molecule occupying primarily its vibrational ground state at room temperature, exhibits substantially improved spectral agreement when nuclear quantum effects are included via PIMD, as compared to the spectra obtained from either a single fixed-nuclei based calculation or from a series of configurations extracted from a classical molecular dynamics trajectory. Nuclear quantum dynamics can accurately explain the intrinsic broadening of certain features. Glycine, the simplest amino acid, is problematic due to large spectral variations associated with multiple energetically accessible conformations at the experimental temperature. This work highlights the sensitivity of NEXAFS to quantum nuclear motions in molecules, and the necessity of accurately sampling such quantum motion when simulating their NEXAFS spectra.

  4. L-edge x-ray absorption fine structure study of growth and morphology of ultrathin nickel films deposited on copper

    SciTech Connect

    Nietubyc, Robert; Foehlisch, Alexander; Glaser, Leif; Lau, Julian Tobias; Martins, Michael; Reif, Matthias; Wurth, Wilfried

    2004-12-15

    We have studied the Ni L edge x-ray absorption fine structure for thin Ni films evaporated on a Cu(001) substrate. The measurements have been carried out for films having coverages ranging from 0.07 monolayers (ML) up to 3.1 ML. The coverage has been calibrated using the ratio of the Ni L{sub 3} to Cu L{sub 3} edge jump heights and independently verified with titration experiments. We have found a clear evolution of the x-ray absorption fine structure at the Ni L{sub 3} edge with coverage. To interpret the measured spectra first-principles calculations have been performed modeling a two-dimensional growth. The calculations reproduced all features observed experimentally. From the comparison between experiment and theory we can conclude that submonolayer films contain a large number of small islands. Deposition of an amount of nickel corresponding to a single layer results in the formation of an almost perfect flat layer. Our studies show that L edge x-ray absorption spectroscopy can provide useful information on thin-film growth and morphology.

  5. Monochromatic calculations of atmospheric radiative transfer due to molecular line absorption

    NASA Technical Reports Server (NTRS)

    Chou, M.-D.; Kouvaris, L.

    1986-01-01

    Sensitivity studies related to the effects of line cutoff, spectral resolution, and temperature and pressure interpolations in radiative transfer have been performed so that a data set of absorption coefficients for water vapor, CO2, and O3 may be created efficiently. Results show that computations of absorption coefficients are affected only slightly by cutting a line off at a wave number 190 times the Lorentz half width from the center, or equivalently, cutting off 0.33 percent of the line intensity from the wings. To achieve a relative cooling rate error smaller than 2 percent, it is sufficient to precompute the absorption coefficient at three temperatures (210, 250, and 290 K) and 19 pressures with Delta (log 10 p) = 0.2. The absorption coefficient at other conditions can be interpolated linearly with pressure and exponentially with a quadratic in temperature. For the spectral resolution the absorption coefficients can be adequately computed at 0.01, 0.002, 0.005, and 0.025/cm intervals in the thermal water vapor, the CO2 and O3 bands, and the solar water vapor bands, respectively, which limits the error to only a few percent in the cooling and heating rates. Using the precomputed absorption coefficients, repeated monochromatic calculations of atmospheric heating/cooling rates for radiation model developments and for comparison with less detailed calculations are no longer difficult.

  6. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  7. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  8. Quantitative Evaluation of the Carbon Hybridization State by Near Edge X-ray Absorption Fine Structure Spectroscopy.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Carpick, Robert W

    2016-03-01

    The characterization of the local bonding configuration of carbon in carbon-based materials is of paramount importance since the properties of such materials strongly depend on the distribution of carbon hybridization states, the local ordering, and the degree of hydrogenation. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful techniques for gaining insights into the bonding configuration of near-surface carbon atoms. The common methodology for quantitatively evaluating the carbon hybridization state using C 1s NEXAFS measurements, which is based on the analysis of the sample of interest and of a highly ordered pyrolytic graphite (HOPG) reference sample, was reviewed and critically assessed, noting that inconsistencies are found in the literature in applying this method. A theoretical rationale for the specific experimental conditions to be used for the acquisition of HOPG reference spectra is presented together with the potential sources of uncertainty and errors in the correctly computed fraction of sp(2)-bonded carbon. This provides a specific method for analyzing the distribution of carbon hybridization state using NEXAFS spectroscopy. As an illustrative example, a hydrogenated amorphous carbon film was analyzed using this method and showed good agreement with X-ray photoelectron spectroscopy (which is surface sensitive). Furthermore, the results were consistent with analysis from Raman spectroscopy (which is not surface sensitive), indicating the absence of a structurally different near-surface region in this particular thin film material. The present work can assist surface scientists in the analysis of NEXAFS spectra for the accurate characterization of the structure of carbon-based materials. PMID:26814796

  9. Biogeochemical reductive release of soil embedded arsenate around a crater area (Guandu) in northern Taiwan using X-ray absorption near-edge spectroscopy.

    PubMed

    Chiang, Kai-Ying; Chen, Tsan-Yao; Lee, Chih-Hao; Lin, Tsang-Lang; Wang, Ming-Kuang; Jang, Ling-Yun; Lee, Jyh-Fu

    2013-03-01

    This study investigates biogeochemical reductive release of arsenate from beudantite into solution in a crater area in northern Taiwan, using a combination of X-ray absorption near-edge structure (XANES) and atomic absorption spectrometry. Total arsenic (As) concentrations in the soil were more than 200 mg/kg. Over four months of laboratory experiments, less than 0.8% As was released into solution after reduction experiments. The 71% to 83% As was chemically reduced into arsenite (As(III)) and partially weathering into the soluble phase. The kinetic dissolution and re-precipitation of As, Fe, Pb and sulfate in this area of paddy soils merits further study. PMID:23923437

  10. A microsecond time resolved x-ray absorption near edge structure synchrotron study of phase transitions in Fe undergoing ramp heating at high pressure

    SciTech Connect

    Marini, C.; Mathon, O.; Pascarelli, S.; Occelli, F.; Torchio, R.; Recoules, V.; Loubeyre, P.

    2014-03-07

    We report a microsecond time-resolved x-ray absorption near edge structure study using synchrotron radiation to dynamically detect structural phase transitions in Fe undergoing rapid heating along a quasi-isochoric path. Within a few ms, we observed two structural phase transitions, which transform the ambient bcc phase of Fe into the fcc phase, and then into the liquid phase. This example illustrates the opportunities offered by energy dispersive x-ray absorption spectroscopy in the study of matter under extreme dynamic conditions. Advanced simulations are compared to these data.

  11. X-ray absorption resonances near L2,3-edges from real-time propagation of the Dirac-Kohn-Sham density matrix.

    PubMed

    Kadek, Marius; Konecny, Lukas; Gao, Bin; Repisky, Michal; Ruud, Kenneth

    2015-09-21

    The solution of the Liouville-von Neumann equation in the relativistic Dirac-Kohn-Sham density matrix formalism is presented and used to calculate X-ray absorption cross sections. Both dynamical relaxation effects and spin-orbit corrections are included, as demonstrated by calculations of the X-ray absorption of SF6 near the sulfur L2,3-edges. We also propose an analysis facilitating the interpretation of spectral transitions from real-time simulations, and a selective perturbation that eliminates nonphysical excitations that are artifacts of the finite basis representation. PMID:26268195

  12. Radiative absorption enhancements due to the mixing state of atmospheric black carbon

    SciTech Connect

    Cappa, Christopher D.; Onasch, Timothy B.; Massoli, Paola; Worsnop, Douglas R.; Bates, Timothy S.; Cross, Eben S.; Davidovits, Paul; Hakala, Jani; Hayden, Katherine; Jobson, Bertram Thomas; Kolesar, K. R.; Lack, D. A.; Lerner, Brian M.; Li, Shao-Meng; Mellon, Daniel; Nuaaman, Ibraheem; Olfert, Jason; Petaja, Tuukka; Quinn, P. K.; Song, Chen; Subramanian, R.; Williams, Eric; Zaveri, Rahul A.

    2012-08-30

    Atmospheric particulate black carbon (BC) leads to warming of the Earth's climate. Many models that include forcing by BC assume that non-BC aerosol species internally mixed with BC enhance BC absorption, often by a factor of {approx}2. However, such model estimates have yet to be clearly validated through atmospheric observations. Here, we report on direct measurements of the absorption enhancement (Eabs) of BC in the atmosphere around California and find that it is negligible at 532 nm and much smaller than predicted from theoretical calculations that are uniquely constrained by observations, suggesting that the warming by BC may be significantly overestimated (factor of 2) in many climate models. Additionally, non-BC particulate matter is found to contribute {approx}10% to the total absorption at 405 nm.

  13. Ballistic transport in planetary ring systems due to particle erosion mechanisms. II - Theoretical models for Saturn's A- and B-ring inner edges

    NASA Technical Reports Server (NTRS)

    Durisen, Richard H.; Bode, Paul W.; Cuzzi, Jeffrey N.; Cederbloom, Steven E.; Murphy, Brian W.

    1992-01-01

    The present numerical simulations and analytic arguments show that many of the common morphological features of the Saturn A- and B-ring inner-edge regions are due to 'ballistic transport', or the net radial transport of mass and angular momentum generated by exchanges of meteoroid impact ejecta. It is suggested that the observed 100-km undulatory structure of the inner B-ring arises from ballistic transport echoing of the inner edge. A strongly prograde ejecta-distribution function is used to fit the edge-region features.

  14. Absorption lines in the spectrum of Q0248 + 4302 due to a foreground tidal tail

    SciTech Connect

    Sargent, W.L.W.; Steidel, C.C. California Univ., Berkeley )

    1990-08-01

    The strong absorption lines in the spectrum of the quasar Q0248 + 4302 are discussed. The absorption has been shown to be produced in a sinuous tidal tail which emanates from the nearby galaxy pair G0248 + 4302A,B. There is a velocity difference of about 260 km/s between the systemic redshift of the interacting galaxies and the redshift of the tidal tail at a galactocentric distance of about 11/h kpc. The large velocity spread observed in the tail gas is probably responsible for the unusual strength of the interstellar lines. 18 refs.

  15. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

    PubMed Central

    Hitchock, Adam P; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris P; Guttmann, Peter

    2012-01-01

    Summary We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV. PMID:23016137

  16. A comparison of experimental and calculated thin-shell leading-edge buckling due to thermal stresses

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1988-01-01

    High-temperature thin-shell leading-edge buckling test data are analyzed using NASA structural analysis (NASTRAN) as a finite element tool for predicting thermal buckling characteristics. Buckling points are predicted for several combinations of edge boundary conditions. The problem of relating the appropriate plate area to the edge stress distribution and the stress gradient is addressed in terms of analysis assumptions. Local plasticity was found to occur on the specimen analyzed, and this tended to simplify the basic problem since it effectively equalized the stress gradient from loaded edge to loaded edge. The initial loading was found to be difficult to select for the buckling analysis because of the transient nature of thermal stress. Multiple initial model loadings are likely required for complicated thermal stress time histories before a pertinent finite element buckling analysis can be achieved. The basic mode shapes determined from experimentation were correctly identified from computation.

  17. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, N.; Schoenlein, R. W.; Govind, Niranjan; Khalil, Munira

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+, [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.

  18. Simulating Ru L3-Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Kuiken, Benjamin E. Van; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-04-26

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  19. Limitations and design considerations for donor–acceptor systems in luminescent solar concentrators: the effect of coupling-induced red-edge absorption

    NASA Astrophysics Data System (ADS)

    MacQueen, Rowan W.; Tayebjee, Murad J. Y.; Webb, James E. A.; Falber, Alexander; Thordarson, Pall; Schmidt, Timothy W.

    2016-06-01

    Luminescent solar concentrators (LSCs) use luminescence and waveguiding to concentrate photons within thin dielectric slabs for use in photovoltaic, lighting, and photobioreactor applications. Donor–acceptor systems of organic chromophores are widely used in LSCs to broaden the sunlight absorption range and attempt to reduce loss-inducing reabsorption by the emitting chromophore. We use raytrace simulations across a large parameter space to model the performance of LSCs containing two novel donor–acceptor trimers based on the perylene moiety. We find that under certain conditions, trimers outperform single-dye LSCs as expected. However, at higher concentrations, a slight increase in red-edge absorption by the trimers increases reabsorption and has a deleterious effect on LSC performance. This underscores the large effect that even small changes in the red edge can have, and may discourage the use of donor–acceptor schemes with high interchromophore coupling that promotes red-edge absorption. Finally, we show that for a LSC-PV pair, selecting a PV cell that is well-matched with the LSC emission spectrum has a large effect on the flux gain of the system, and that the systems studied here are well-matched to emerging PV technologies.

  20. A case of consciousness disturbance resulting from severe hypothyroidism due to chronic thyroiditis and excess iodine absorption.

    PubMed

    Hayashi, Masayuki; Onodera, Kazunari; Suzuki, Kengo; Kataoka, Yuko; Tachikawa, Kazushige; Riku, Shigeo; Tanaka, Hiroshi

    2011-01-01

    An 82-year-old Japanese man had consciousness disturbance due to severe hypothyroidism triggered by percutaneous absorption of iodine from an iodine-containing ointment used in diabetic gangrene treatment. Laboratory data revealed extremely high urinary iodine concentrations, and chronic thyroiditis-induced hypothyroidism. Excess iodine intake can also cause hypothyroidism. It was unlikely that iodine intoxication or Hashimoto's encephalopathy had caused the consciousness disturbance. The patient regained consciousness after discontinuing the use of the ointment and commencing thyroid hormone therapy. We conclude that consciousness disturbance resulted from severe hypothyroidism caused by chronic thyroiditis and excess iodine absorption. PMID:22041370

  1. Mn L{sub 2,3}-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li{sub 2}MnO{sub 3}

    SciTech Connect

    Kubobuchi, Kei; Mogi, Masato; Imai, Hideto; Ikeno, Hidekazu; Tanaka, Isao; Mizoguchi, Teruyasu

    2014-02-03

    The redox reaction of Mn in Li{sub 2}MnO{sub 3} was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L{sub 2,3} X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L{sub 2,3} XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn{sup 4+} to Mn{sup 5+} but can be explained well by the changes of local atomic structures around Mn{sup 4+} due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li{sub 2}MnO{sub 3}.

  2. Bulk damage and absorption in fused silica due to high-power laser applications

    NASA Astrophysics Data System (ADS)

    Nürnberg, F.; Kühn, B.; Langner, A.; Altwein, M.; Schötz, G.; Takke, R.; Thomas, S.; Vydra, J.

    2015-11-01

    Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and

  3. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  4. Tunable Optical Limiting Action due to Non-linear Absorption in ZnO/Ag Nanocomposites

    NASA Astrophysics Data System (ADS)

    Radhu, S.; Vijayan, C.; Sandeep, Suchand; Philip, Reji

    2011-07-01

    ZnO/Ag nanocomposites with different silver concentration are successfully synthesized by solvothermal method. The characterization of the as- synthesized samples is done using XRD, UV-visible spectroscopy and HRTEM and the results indicate that the composites consist of silver nanoparticles attached to the ZnO nanoparticles. The optical non-linearity in these samples is studied using open aperture Z-scan technique and the experimental results agree well with a theoretical model involving two- photon absorption. It is found that the parameters of optical limiting can be tuned in a broad band by varying the silver concentration in the samples.

  5. Ligand K-edge x-ray absorption spectroscopy as a probe of ligand-metal bonding: Charge donation and covalency in copper-chloride systems

    SciTech Connect

    Shadle, S.E.; Hedman, B.; Solomon, E.I.; Hodgson, K.O.

    1994-09-14

    X-ray absorption spectra (XAS) have been measured at the chloride K-edge for a series of complexes containing chloride ligands bound to open shell d{sup 9} copper ions in order to probe ligand-metal bonding. The intensity of the pre-edge feature in these spectra reflects the covalency in the half-occupied d{sub x}{sup 2-}{sub y}{sup 2-} derived molecular orbital (HOMO) of the complex. The energy of the pre-edge feature as well as the energy of the rising absorption edge provides quantitative information about the covalency of the ligand-metal interaction, the charge donated by the chloride, and the energy of the copper d-manifold. The results demonstrate that ligand K-edge XAS features can be used to obtain information about ligand-metal bonding. The results also identify the chemical basis for trends in the XAS data for the following complexes: D{sub 4h} CuCl{sub 4}{sup 2-}, D{sub 2d} CuCl{sub 4}{sup 2-}, planar trans-CuCl{sub 2-} (pdmp){sub 2} (pdmp = N-phenyl-3,5-dimethylpyrazole), square pyramidal CuCl{sub 5}{sup 3-}, the planar dimer KCuCl{sub 3}, the distorted tetrahedral dimer (Ph{sub 4}P)CuCl{sub 3}, and two dimers with mixed ligation, one containing a bridging chloride, and the other, containing terminally bound chloride. Several of these results are supported by independent spectral data or by basic ligand field concepts. A geometric distortion from square planar to distorted tetrahedral results in a decrease in the chloride-copper HOMO covalency but an increase in the total charge donation by the chlorides. While the geometry can maximize the overlap for a highly covalent HOMO, this does not necessarily reflect the overall charge donation.

  6. Comparison of the magnetic properties of GeMn thin films through Mn L-edge x-ray absorption

    SciTech Connect

    Ahlers, S.; Stone, P.R.; Sircar, N.; Arenholz, E.; Dubon, O. D.; Bougeard, D.

    2009-08-04

    X-ray absorption spectroscopy of epitaxial GeMn thin films reveals an experimentally indistinguishable electronic configuration of Mn atoms incorporated in Ge{sub 1?x}Mn{sub x} nanoclusters and in precipitates of the intermetallic compound Mn{sub 5}Ge{sub 3}, respectively. However, the average magnetic response of thin films containing Ge{sub 1?x}Mn{sub x} nanoclusters is lower than the response of films containing Mn{sub 5}Ge{sub 3} precipitates. This reduced magnetic response of Ge{sub 1?x}Mn{sub x} nanoclusters is explained in terms of a fraction of Mn atoms being magnetically inactive due to antiferromagnetic coupling or the presence of structural disorder. A determination of the role of magnetically inactive Mn atoms in the self-assembly of the thermodynamically metastable Ge{sub 1?x}Mn{sub x} nanoclusters seems to be an essential ingredient for an enhanced control of this promising high Curie temperature magnetic semiconductor.

  7. Enhancement of microbial motility due to advection-dependent nutrient absorption

    NASA Astrophysics Data System (ADS)

    Condat, Carlos A.; di Salvo, Mario E.

    2014-03-01

    In their classical work, Berg and Purcell [Biophys. J. 20, 193 (1977)] concluded that the motion of a small microorganism would not significantly increase its nutrient uptake rate, if the nutrient consisted of high diffusivity particles. As a result, it has been generally assumed that nutrient transport to small microorganisms such as bacteria is dominated by molecular diffusion and that swimming and feeding currents play a negligible role. On the other hand, recent studies have found that flagellar motion may increase advection-mediated uptake. We formulate a model to investigate the hypothesis that fast-moving microbes may enhance their swimming speed by taking advantage of advection to increase nutrient absorption. Surprisingly, using realistic parameter values for bacteria and algae, we find that even modest increases in nutrient absorption may lead to a significant increase of the microbial speed. We also show that, optimally, the rate of effective energy transfer to the microbial propulsion system should be proportional to the speed for slow motion, while it should be proportional to a power of the speed close to two for fast motion. We are grateful to SECyT-UNC and CONICET, Argentina, for financial support.

  8. Changes of color and water-absorption of Hungarian porous limestone due to biomineralization

    NASA Astrophysics Data System (ADS)

    Juhász, P.; Kopecskó, K.

    2013-12-01

    Bacteria induced calcium carbonate precipitation nowadays is a widely examined process being a possible alternative for traditional stone conservation methods. While research has been mostly limited to laboratory measurements, application connected, further in situ experiments should be performed in order to evaluate the applicability of the method. In our experiment, several bio-based treating compounds were compared, which have already been analyzed in different laboratories. Method for the treatment was based on the treatment of a French research group, and the compounds were applied on Hungarian porous limestone slabs, in situ. For inoculation bacteria strains Bacillus cereus and Myxococcus xanthus were used, and non-inoculated compounds were also analyzed. After the treatment, specimens were analyzed by means of discoloration effect, water absorption and migration characteristics. Almost all the treating compounds gave favorable or acceptable results for the examined properties, comparing to the properties measured in the non-cured state. Measurements on the chromatic- and on the water absorption aspects gave significant results, while further measurements are running for the more exact evaluation of the migration characteristics, i.e. effective migration depth and wetted volume.

  9. Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C{sub 6}-ring-containing molecules

    SciTech Connect

    Kolczewski, C.; Puettner, R.; Martins, M.; Schlachter, A.S.; Snell, G.; Sant'Anna, M.M.; Hermann, K.; Kaindl, G.

    2006-01-21

    We report high-resolution C 1s near-edge x-ray-absorption fine-structure (NEXAFS) spectra of the C{sub 6}-ring-containing molecules benzene (C{sub 6}H{sub 6}), 1,3- and 1,4-cyclohexadiene (C{sub 6}H{sub 8}), cyclohexene (C{sub 6}H{sub 10}), cyclohexane (C{sub 6}H{sub 12}), styrene (C{sub 8}H{sub 8}), and ethylbenzene (C{sub 8}H{sub 10}) which allow us to examine the gradual development of delocalization of the corresponding {pi} electron systems. Due to the high experimental resolution, vibrational progressions can be partly resolved in the spectra. The experimental spectra are compared with theoretical NEXAFS spectra obtained from density-functional theory calculations where electronic final-state relaxation is accounted for. The comparison yields very good agreement between theoretical spectra and experimental results. In all cases, the spectra can be described by excitations to {pi}*- and {sigma}*-type final-state orbitals with valence character, while final-state orbitals of Rydberg character make only minor contributions. The lowest C 1s{yields}1{pi}* excitation energy is found to agree in the (experimental and theoretical) spectra of all molecules except for 1,3-cyclohexadiene (C{sub 6}H{sub 8}) where an energy smaller by about 0.6 eV is obtained. The theoretical analysis can explain this result by different binding properties of this molecule compared to the others.

  10. Electronic structure of individual hybrid colloid particles studied by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the X-ray microscope.

    PubMed

    Henzler, Katja; Guttmann, Peter; Lu, Yan; Polzer, Frank; Schneider, Gerd; Ballauff, Matthias

    2013-02-13

    The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials. PMID:23360082

  11. Experimental and Theoretical Comparison of the O K-Edge Non-Resonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, T.; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-09-14

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g. O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation effects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO41- and provide methodology for obtaining trustworthy and quantitative data on non-conducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by non-resonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO41-, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Time dependent density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t2 molecular orbitals that result from Re 5d and O 2p covalent mixing in Td symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time-dependent density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO4 may serve as a well-defined O K-edge energy and intensity standard for future O K edge XAS studies.

  12. Experimental and Theoretical Comparison of the O K-Edge Nonresonant Inelastic X-ray Scattering and X-ray Absorption Spectra of NaReO[subscript 4

    SciTech Connect

    Bradley, Joseph A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Kozimor, Stosh A.; Martin, Richard L.; Seidler, Gerald T.; Scott, Brian L.; Shuh, David K.; Tyliszczak, Tolek; Wilkerson, Marianne P.; Wolfsberg, Laura E.

    2010-12-07

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO{sub 4}{sup 1-} and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO{sub 4}{sup 1-}, TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t{sub 2} molecular orbitals that result from Re 5d and O 2p covalent mixing in T{sub d} symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO{sub 4} may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  13. Photogalvanic effect in the HgTe/CdTe topological insulator due to edge-bulk optical transitions

    NASA Astrophysics Data System (ADS)

    Kaladzhyan, V.; Aseev, P. P.; Artemenko, S. N.

    2015-10-01

    We study theoretically the 2D HgTe/CdTe quantum well topological insulator illuminated by circularly polarized light with frequencies higher than the difference between the equilibrium Fermi level and the bottom of the conduction band (THz range). We show that electron-hole asymmetry results in spin-dependent electric dipole transitions between edge and bulk states, and we predict an occurrence of a circular photocurrent. If the edge state is tunnel-coupled to a conductor, then the photocurrent can be detected by measuring an electromotive force in the conductor, which is proportional to the photocurrent.

  14. Formation of an SEI on a LiMn(2)O(4) Cathode during Room Temperature Charge-Discharge Cycling Studied by Soft X-Ray Absorption Spectroscopy at the Fluorine K-edge

    SciTech Connect

    Chung, K.Y.; Yang, X.; Yoon, W.-S.; Kim, K.-B.; Cho, B.-W.

    2011-11-01

    The solid electrolyte interface (SEI) formation on the surface of LiMn{sub 2}O{sub 4} electrodes during room temperature charge-discharge cycling was studied using soft X-ray absorption spectroscopy at the Fluorine (F) K-edge. LiMn{sub 2}O{sub 4} electrodes without any binder were prepared by electrostatic spray deposition to eliminate the signal originating from the PVDF binder in the F K-edge X-ray absorption spectra. The F K-edge absorption spectra show that the SEI layer forms at a very early stage of cycling. SEI growth takes place during discharge. In addition, LiF formation is accelerated if the discharge step follows a charge step. The F K-edge absorption spectra suggest that the major component of the SEI is LiF.

  15. Experimental and theoretical comparison between absorption, total electron yield, and fluorescence spectra of rare-earth M{sub 5} edges

    SciTech Connect

    Pompa, M.; Flank, A.M.; Lagarde, P.; Rife, J.C.; Stekhin, I.; Nakazawa, M.; Ogasawara, H.; Kotani, A.

    1997-07-01

    Besides the now well-known self-absorption effect, several phenomena related to the multiplet structure of the intermediate state may occur which render x-ray fluorescence different from the true absorption in 3d transition metals at the L edge and at the M{sub 4,5} edges of rare earths. Special selection rules of the radiative de-excitation process play an important role there. We have measured the absorption coefficient of thin films of lanthanum, samarium, and thulium deposited on an aluminum foil, at room temperature, through the simultaneous detection of the transmission, total electron yield, and 150-eV bandwidth fluorescence yield. The latter result shows differences as compared to the other two, and exhibits polarization effects depending upon the angle between incident and outgoing photons. The resonant x-ray fluorescence spectrum is calculated using an atomic model, and then integrated over the emitted energy, to predict the fluorescence yield spectrum. Very good agreement is obtained between the theory and experiment. {copyright} {ital 1997} {ital The American Physical Society}

  16. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  17. Time-resolved near-edge x-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grossmann, P.; Rajkovic, I.; Moré, R.; Norpoth, J.; Techert, S.; Jooss, C.; Mann, Klaus

    2012-05-01

    We present a table-top soft-x-ray spectrometer for the wavelength range λ = 1-5 nm based on a stable laser-driven x-ray source, making use of a gas-puff target. With this setup, optical light-pump/soft-x-ray probe near-edge x-ray absorption fine structure (NEXAFS) experiments with a temporal resolution of about 230 ps are feasible. Pump-probe NEXAFS measurements were carried out in the "water-window" region (2.28 nm-4.36 nm) on the manganite Pr0.7Ca0.3MnO3, investigating diminutive changes of the oxygen K edge that derive from an optically induced phase transition. The results show the practicability of the table-top soft-x-ray spectrometer on demanding investigations so far exclusively conducted at synchrotron radiation sources.

  18. Percolative superconductivity in La{sub 2}CuO{sub 4.06} by lattice granularity patterns with scanning micro x-ray absorption near edge structure

    SciTech Connect

    Poccia, Nicola; Chorro, Matthieu; Ricci, Alessandro; Xu, Wei; Marcelli, Augusto; Campi, Gaetano; Bianconi, Antonio

    2014-06-02

    The simplest cuprate superconductor La{sub 2}CuO{sub 4+y} with mobile oxygen interstitials exhibits a clear phase separation. It is known that oxygen interstitials enter into the rocksalt La{sub 2}O{sub 2+y} spacer layers forming oxygen interstitials rich puddles and poor puddles but only recently a bulk multiscale structural phase separation has been observed by using scanning micro X-ray diffraction. Here we get further information on their spatial distribution, using scanning La L{sub 3}-edge micro X-ray absorption near edge structure. Percolating networks of oxygen rich puddles are observed in different micrometer size portions of the crystals. Moreover, the complex surface resistivity shows two jumps associated to the onset of intra-puddle and inter-puddles percolative superconductivity. The similarity of oxygen doped La{sub 2}CuO{sub 4+y}, with the well established phase separation in iron selenide superconductors is also discussed.

  19. Soliton Formation and Superluminality Effect due to Nonlinear Absorption of Femtosecond Laser Pulse Energy by the Medium Containing Nanorods

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Lysak, Tatiana M.

    2016-02-01

    We investigate a femtosecond pulse propagation in a medium, containing nanorods, with taking into account the dependence of multi-photon absorption from the aspect ratio of nanorods. Nanorods melting due to the laser energy absorption leads to the non-stationary interaction of laser pulse with the medium and time-dependent nanorod aspect ratio changing. Under certain conditions, we found out the soliton-like mode of a laser pulse propagation and the superluminality effect: acceleration of light (fast light) in comparison with light propagation in a linear medium. We discuss a physical mechanism of superluminality effect for considering laser pulse propagation. Using spatio-temporal analogy, one can see the similarity between the pulse centre evolution along longitudinal coordinate and the beam centre evolution under the infrared optical radiation propagation in a cloud, or fog, which moves across the beam, with taking into account its thermal blooming.

  20. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-02-24

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group. PMID:26866785

  1. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS₂).

    PubMed

    Woodward, R I; Kelleher, E J R; Howe, R C T; Hu, G; Torrisi, F; Hasan, T; Popov, S V; Taylor, J R

    2014-12-15

    We fabricate a few-layer molybdenum disulfide (MoS₂) polymer composite saturable absorber by liquid-phase exfoliation, and use this to passively Q-switch an ytterbium-doped fiber laser, tunable from 1030 to 1070 nm. Self-starting Q-switching generates 2.88 μs pulses at 74 kHz repetition rate, with over 100 nJ pulse energy. We propose a mechanism, based on edge states within the bandgap, responsible for the wideband nonlinear optical absorption exhibited by our few-layer MoS₂ sample, despite operating at photon energies lower than the material bandgap. PMID:25607060

  2. Mechanism of the CO oxidation reaction on O-precovered Pt(111) surfaces studied with near-edge x-ray absorption fine structure spectroscopy

    SciTech Connect

    Nakai, I.; Kondoh, H.; Amemiya, K.; Nagasaka, M.; Shimada, T.; Yokota, R.; Nambu, A.; Ohta, T.

    2005-04-01

    The mechanism of CO oxidation reaction on oxygen-precovered Pt(111) surfaces has been studied by using time-resolved near-edge x-ray absorption fine structure spectroscopy. The whole reaction process is composed of two distinct paths: (1) a reaction of isolated oxygen atoms with adsorbed CO, and (2) a reaction of island-periphery oxygen atoms after the CO saturation. CO coadsorption plays a role to induce the dynamic change in spatial distribution of O atoms, which switches over the two reaction paths. These mechanisms were confirmed by kinetic Monte Carlo simulations. The effect of coadsorbed water in the reaction mechanism was also examined.

  3. C 1s Near Edge X-ray Absorption Fine Structure (NEXAFS) of substituted benzoic acids: a theoretical and experimental study

    SciTech Connect

    Baldea,I.; Schimmelpfennig, B.; Plaschke, M.; Rothe, J.; Schirmer, J.; Trofimov, A.; Fanghaenel, T.

    2007-01-01

    Ab initio calculations are performed to explain the discrete transitions in experimental C 1s-NEXAFS (near edge X-ray absorption fine structure) spectra of various benzoic acid derivates. Transition energies and oscillator strengths of the contributing C 1s-{pi}* excitations are computed using the ADC(2) (second-order algebraic-diagrammatic construction) method. This method is demonstrated to be well suited for the finite electronic systems represented by these simple organic acids. There is good agreement between experiment and theory reproducing all the relevant spectral features. Some transitions can only be assigned based on a theoretical foundation. Remaining discrepancies between experimental and computed spectra are discussed.

  4. Unraveling the Solid-Liquid-Vapor Phase Transition Dynamics at the Atomic Level with Ultrafast X-Ray Absorption Near-Edge Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dorchies, F.; Lévy, A.; Goyon, C.; Combis, P.; Descamps, D.; Fourment, C.; Harmand, M.; Hulin, S.; Leguay, P. M.; Petit, S.; Peyrusse, O.; Santos, J. J.

    2011-12-01

    X-ray absorption near-edge spectroscopy (XANES) is a powerful probe of electronic and atomic structures in various media, ranging from molecules to condensed matter. We show how ultrafast time resolution opens new possibilities to investigate highly nonequilibrium states of matter including phase transitions. Based on a tabletop laser-plasma ultrafast x-ray source, we have performed a time-resolved (˜3ps) XANES experiment that reveals the evolution of an aluminum foil at the atomic level, when undergoing ultrafast laser heating and ablation. X-ray absorption spectra highlight an ultrafast transition from the crystalline solid to the disordered liquid followed by a progressive transition of the delocalized valence electronic structure (metal) down to localized atomic orbitals (nonmetal—vapor), as the average distance between atoms increases.

  5. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    PubMed

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems. PMID:26742851

  6. 2015 WFNDEC eddy current benchmark modeling of impedance variation in coil due to a crack located at the plate edge

    NASA Astrophysics Data System (ADS)

    Rocha, João Vicente; Camerini, Cesar; Pereira, Gabriela

    2016-02-01

    The 2015 World Federation of NDE Centers (WFNDEC) eddy current benchmark problem involves the inspection of two EDM notches placed at the edge of a conducting plate with a pancake coil that runs parallel to the plate's edge line. Experimental data consists of impedance variation measured with a precision LCR bridge as a XY scanner moves the coil. The authors are pleased to present the numerical results obtained with commercial FEM packages (OPERA 3-D). Values of electrical resistance and inductive reactance variation between base material and the region around the notch are plotted as function of the coil displacement over the plate. The calculations were made for frequencies of 1 kHz and 10 kHz and agreement between experimental and numerical results are excellent for all inspection conditions. Explanations are made about how the impedance is calculated as well as pros and cons of the presented methods.

  7. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition

    SciTech Connect

    Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru; Mochiji, Kozo

    2010-09-15

    Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BN films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.

  8. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  9. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-01

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa. PMID:26742465

  10. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Noked, O.; Kantor, I.; Joseph, B.; Mathon, O.; Shuker, R.; Kennedy, B. J.; Pascarelli, S.; Sterer, E.

    2016-02-01

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb5+ towards Nb4+ above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ˜14.5 GPa.

  11. Effect of a drag force due to absorption of solar radiation on solar sail orbital dynamics

    NASA Astrophysics Data System (ADS)

    Kezerashvili, Roman Ya.; Vázquez-Poritz, Justin F.

    2013-03-01

    While solar electromagnetic radiation can be used to propel a solar sail, it is shown that the Poynting-Robertson effect related to the absorbed portion of the radiation leads to a drag force in the transversal direction. The Poynting-Robertson effect is considered for escape trajectories, Heliocentric bound orbits and non-Keplerian bound orbits. For escape trajectories, this drag force diminishes the cruising velocity, which has a cumulative effect on the Heliocentric distance. For Heliocentric and non-Keplerian bound orbits, the Poynting-Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the Sun. Since the Poynting-Robertson effect is due to the absorbed portion of the electromagnetic radiation, degradation of a solar sail implies that this effect becomes enhanced during a mission.

  12. Fabrication of multilayer mirrors consisting of oxide and nitride layers for continual use across the K-absorption edge of carbon.

    PubMed

    Ishino, Masahiko; Yoda, Osamu

    2004-03-20

    The development of multilayer mirrors for continual use around the K-absorption edge of carbon (4.4 nm) has been begun. Cobalt oxide (Co3O4), silicon oxide (SiO2), and boron nitride (BN) are found to be suitable for multilayer mirrors on the basis of theoretical calculations for wavelengths around the carbon K-absorption edge region. X-ray reflectivity curves with CuKalpha1 x rays of the fabricated Co3O4/SiO2 multilayers have sharp Bragg peaks, and the layer structures evaluated from transmission electron microscopy (TEM) observations are uniform. On the other hand, the Bragg peaks of Co3O4/BN multilayers split, and aggregated Co3O4 is observed. To improve the Co3O4 layer structure, chromium oxide (Cr2O3) was mixed into Co3O4. The mixed oxide layer structure in the Mix/BN multilayer (Mix = Co3O4 + Cr2O3) is relatively uniform, and the Bragg peaks do not split. PMID:15065714

  13. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    SciTech Connect

    Puri, Sanjiv

    2015-08-28

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  14. X-ray Absorption Spectroscopy at the Sulfur K-Edge: A New Tool to Investigate the Biochemical Mechanisms of Neurodegeneration

    PubMed Central

    2012-01-01

    Sulfur containing molecules such as thiols, disulfides, sulfoxides, sulfonic acids, and sulfates may contribute to neurodegenerative processes. However, previous study in this field has been limited by the lack of in situ analytical techniques. This limitation may now be largely overcome following the development of synchrotron radiation X-ray absorption spectroscopy at the sulfur K-edge, which has been validated as a novel tool to investigate and image the speciation of sulfur in situ. In this investigation, we build the foundation required for future application of this technique to study and image the speciation of sulfur in situ within brain tissue. This study has determined the effect of sample preparation and fixation methods on the speciation of sulfur in thin sections of rat brain tissue, determined the speciation of sulfur within specific brain regions (brain stem and cerebellum), and identified sulfur specific markers of peroxidative stress following metal catalyzed reactive oxygen species production. X-ray absorption spectroscopy at the sulfur K-edge is now poised for an exciting new range of applications to study thiol redox, methionine oxidation, and the role of taurine and sulfatides during neurodegeneration. PMID:22860187

  15. X-ray absorption near-edge structure (XANES) spectroscopy study of the interaction of silver ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli.

    PubMed

    Bovenkamp, Gudrun Lisa; Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef; Prange, Alexander

    2013-10-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag(+) treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and DL-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  16. L-Edge X-ray Absorption Spectroscopy of Dilute Systems Relevant to Metalloproteins Using an X-ray Free-Electron Laser

    PubMed Central

    Mitzner, Rolf; Rehanek, Jens; Kern, Jan; Gul, Sheraz; Hattne, Johan; Taguchi, Taketo; Alonso-Mori, Roberto; Tran, Rosalie; Weniger, Christian; Schröder, Henning; Quevedo, Wilson; Laksmono, Hartawan; Sierra, Raymond G.; Han, Guangye; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Kubicek, Katharina; Schreck, Simon; Kunnus, Kristjan; Brzhezinskaya, Maria; Firsov, Alexander; Minitti, Michael P.; Turner, Joshua J.; Moeller, Stefan; Sauter, Nicholas K.; Bogan, Michael J.; Nordlund, Dennis; Schlotter, William F.; Messinger, Johannes; Borovik, Andrew; Techert, Simone; de Groot, Frank M. F.; Föhlisch, Alexander; Erko, Alexei; Bergmann, Uwe; Yachandra, Vittal K.; Wernet, Philippe; Yano, Junko

    2013-01-01

    L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of suitable detection systems. Here we present spectra from a dilute Mn aqueous solution using a high-transmission zone-plate spectrometer at the Linac Coherent Light Source (LCLS). The spectrometer has been optimized for discriminating the Mn L-edge signal from the overwhelming O K-edge background that arises from water and protein itself, and the ultrashort LCLS X-ray pulses can outrun X-ray induced damage. We show that the deviations of the partial-fluorescence yield-detected spectra from the true absorption can be well modeled using the state-dependence of the fluorescence yield, and discuss implications for the application of our concept to biological samples. PMID:24466387

  17. Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations

    PubMed Central

    Krüger, Peter; Lagos, Maureen J; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris; Umek, Polona; Guttmann, Peter

    2012-01-01

    Summary Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS–TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/ΔE = 104 and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS–TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs. PMID:23213642

  18. Towards atomic resolution in sodium titanate nanotubes using near-edge X-ray-absorption fine-structure spectromicroscopy combined with multichannel multiple-scattering calculations.

    PubMed

    Bittencourt, Carla; Krüger, Peter; Lagos, Maureen J; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Ewels, Chris; Umek, Polona; Guttmann, Peter

    2012-01-01

    Recent advances in near-edge X-ray-absorption fine-structure spectroscopy coupled with transmission X-ray microscopy (NEXAFS-TXM) allow large-area mapping investigations of individual nano-objects with spectral resolution up to E/ΔE = 10(4) and spatial resolution approaching 10 nm. While the state-of-the-art spatial resolution of X-ray microscopy is limited by nanostructuring process constrains of the objective zone plate, we show here that it is possible to overcome this through close coupling with high-level theoretical modelling. Taking the example of isolated bundles of hydrothermally prepared sodium titanate nanotubes ((Na,H)TiNTs) we are able to unravel the complex nanoscale structure from the NEXAFS-TXM data using multichannel multiple-scattering calculations, to the extent of being able to associate specific spectral features in the O K-edge and Ti L-edge with oxygen atoms in distinct sites within the lattice. These can even be distinguished from the contribution of different hydroxyl groups to the electronic structure of the (Na,H)TiNTs. PMID:23213642

  19. Thermal stresses due to a uniform heat flow past a circular hole with a radial edge crack

    SciTech Connect

    Edmonds, G.F.

    1987-01-01

    The problem solved here is that of finding the stresses in an isotropic, linear, thermoelastic solid when a uniform heat flow is disturbed by the presence of an insulated circular hole with a radial edge crack. By superimposing a Mellin-transform solution of the equations of thermoelasticity on a Michell series solution the author reduces the problem to a pair of singular integral equations which are then solved numerically. The stress-intensity factors and crack-formation energies, quantities of interest to workers in fracture mechanics, are then calculated.

  20. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: application to transition metal L-edge X-ray absorption spectroscopy.

    PubMed

    Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2013-05-28

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S,..., -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory∕ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These

  1. A combined DFT and restricted open-shell configuration interaction method including spin-orbit coupling: Application to transition metal L-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Roemelt, Michael; Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2013-05-01

    A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S' = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with MS = S, …, -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row transition metals. These

  2. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reductase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E.; Jr.; Adams, M.W.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.

    2009-06-02

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results

  3. X-ray absorption near-edge structures of LiMn2O4 and LiNi0.5Mn1.5O4 spinel oxides for lithium-ion batteries: the first-principles calculation study.

    PubMed

    Okumura, Toyoki; Yamaguchi, Yoichi; Kobayashi, Hironori

    2016-07-21

    Experimental Mn and Ni K-edge X-ray absorption near-edge structure (XANES) spectra were well reproduced for 5 V-class LixNi0.5Mn1.5O4 spinels as well as 4 V-class LixMn2O4 spinels using density functional theory. Local environmental changes around the Mn or Ni centres due to differences in the locations of Li ions and/or phase transitions in the spinel oxides were found to be very important contributors to the XANES shapes, in addition to the valence states of the metal ions. PMID:27333155

  4. Ge L{sub 3}-edge x-ray absorption near-edge structure study of structural changes accompanying conductivity drift in the amorphous phase of Ge{sub 2}Sb{sub 2}Te{sub 5}

    SciTech Connect

    Mitrofanov, K. V.; Kolobov, A. V. Fons, P.; Wang, X.; Tominaga, J.; Tamenori, Y.; Uruga, T.; Ciocchini, N.; Ielmini, D.

    2014-05-07

    A gradual uncontrollable increase in the resistivity of the amorphous phase of phase-change alloys, such as Ge{sub 2}Sb{sub 2}Te{sub 5}, known as drift, is a serious technological issue for application of phase-change memory. While it has been proposed that drift is related to structural relaxation, no direct structural results have been reported so far. Here, we report the results of Ge L{sub 3}-edge x-ray absorption measurements that suggest that the drift in electrical conductivity is associated with the gradual conversion of tetrahedrally coordinated Ge sites into pyramidal sites, while the system still remains in the amorphous phase. Based on electronic configuration arguments, we propose that during this process, which is governed by the existence of lone-pair electrons, the concentration of free carriers in the system decreases resulting in an increase in resistance despite the structural relaxation towards the crystalline phase.

  5. The dust-scattering component of X-ray extinction: effects on continuum fitting and high-resolution absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; García, J.; Wilms, J.; Baganoff, F.

    2016-05-01

    Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust-scattering component is not included in the current absorption models: phabs, TBabs, and TBnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25 per cent. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high-resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total extinction template fits well to the high-resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of angular imaging resolution. This approach will be particularly relevant for dust in quasar absorption line systems and might constrain clump sizes in active galactic nuclei.

  6. Temperature dependence and annealing effects of absorption edges for selenium quantum dots formed by ion implantation in silica glass

    SciTech Connect

    Ueda, A.; Wu, M.; Mu, R.

    1998-12-31

    The authors have fabricated Se nanoparticles in silica substrates by ion implantation followed by thermal annealing up to 1000 C, and studied the Se nanoparticle formation by optical absorption spectroscopy, Rutherford backscattering spectrometry, X-ray diffraction, and transmission electron microscopy. The sample with the highest dose (1 {times} 10{sup 17} ions/cm{sup 2}) showed the nanoparticle formation during the ion implantation, while the lower dose samples (1 and 3 {times} 10{sup 16} ions/cm{sup 2}) required thermal treatment to obtain nano-sized particles. The Se nanoparticles in silica were found to be amorphous. After thermal annealing, the particle doses approached the value of bulk after thermal annealing. The temperature dependent absorption spectra were also measured for this system in a temperature range from 15 to 300 K.

  7. Variation of Magnetic Fluctuation due to Gas Puffing in Edge Region of Reversed-Field Pinch Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Hirano, Yoichi; Sakakita, Hajime; Koguchi, Haruhisa

    2016-09-01

    We measured the variation of magnetic and electrostatic fluctuations observed during the gas puffing in the edge region of the toroidal pinch experiment-reversed experiment (TPE-RX) reversed-field pinch plasma. In the short period in which the electron density increased slowly just after the gas puffing, the confinement of fast electrons in the core region was maintained by the decrease in the fast radial magnetic fluctuation with the deepening of the reversal of the toroidal field. During the following period in which the electron density increased rapidly, the radial gradient of electron density decreased, and the loss of fast electrons from the core region increased owing to the increase in the toroidal and radial magnetic fluctuations in the high-frequency band, although the poloidal magnetic fluctuation decreased. Therefore, the confinement of fast electrons would be maintained by keeping the radial gradient of plasma thermal pressure with a moderate neutral particle supply of small quantity in a short time.

  8. DEEP SILICATE ABSORPTION FEATURES IN COMPTON-THICK ACTIVE GALACTIC NUCLEI PREDOMINANTLY ARISE DUE TO DUST IN THE HOST GALAXY

    SciTech Connect

    Goulding, A. D.; Forman, W. R.; Jones, C.; Trichas, M.; Alexander, D. M.; Mullaney, J. R.; Bauer, F. E.; Hickox, R. C.

    2012-08-10

    We explore the origin of mid-infrared (mid-IR) dust extinction in all 20 nearby (z < 0.05) bona fide Compton-thick (N{sub H} > 1.5 Multiplication-Sign 10{sup 24} cm{sup -2}) active galactic nuclei (AGNs) with hard energy (E > 10 keV) X-ray spectral measurements. We accurately measure the silicate absorption features at {lambda} {approx} 9.7 {mu}m in archival low-resolution (R {approx} 57-127) Spitzer Infrared Spectrograph spectroscopy, and show that only a minority ( Almost-Equal-To 45%) of nearby Compton-thick AGNs have strong Si-absorption features (S{sub 9.7} = ln (f{sub int}/f{sub obs}) {approx}> 0.5) which would indicate significant dust attenuation. The majority ( Almost-Equal-To 60%) are star formation dominated (AGN:SB < 0.5) at mid-IR wavelengths and lack the spectral signatures of AGN activity at optical wavelengths, most likely because the AGN emission lines are optically extinguished. Those Compton-thick AGNs hosted in low-inclination-angle galaxies exhibit a narrow range in Si-absorption (S{sub 9.7} {approx} 0-0.3), which is consistent with that predicted by clumpy-torus models. However, on the basis of the IR spectra and additional lines of evidence, we conclude that the dominant contribution to the observed mid-IR dust extinction is dust located in the host galaxy (i.e., due to disturbed morphologies, dust lanes, galaxy inclination angles) and not necessarily a compact obscuring torus surrounding the central engine.

  9. Calculations of Solar Shortwave Heating Rates due to Black Carbon and Ozone Absorption Using in Situ Measurements

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Hall, S. R.; Swartz, W. H.; Spackman, J. R.; Watts, L. A.; Fahey, D. W.; Aikin, K. C.; Shetter, R. E.; Bui, T. P.

    2008-01-01

    Results for the solar heating rates in ambient air due to absorption by black-carbon (BC) containing particles and ozone are presented as calculated from airborne observations made in the tropical tropopause layer (TTL) in January-February 2006. The method uses airborne in situ observations of BC particles, ozone and actinic flux. Total BC mass is obtained along the flight track by summing the masses of individually detected BC particles in the range 90 to 600-nm volume-equivalent diameter, which includes most of the BC mass. Ozone mixing ratios and upwelling and partial downwelling solar actinic fluxes were measured concurrently with BC mass. Two estimates used for the BC wavelength-dependent absorption cross section yielded similar heating rates. For mean altitudes of 16.5, 17.5, and 18.5 km (0.5 km) in the tropics, average BC heating rates were near 0.0002 K/d. Observed BC coatings on individual particles approximately double derived BC heating rates. Ozone heating rates exceeded BC heating rates by approximately a factor of 100 on average and at least a factor of 4, suggesting that BC heating rates in this region are negligible in comparison.

  10. Band-Selective Measurements of Electron Dynamics in VO2 UsingFemtosecond Near-Edge X-Ray Absorption

    SciTech Connect

    Cavalleri, A.; Rini, M.; Chong, H.H.W.; Fourmaux, S.; Glover,T.E.; Heimann, P.A.; Kieffer, J.C.; Schoenlein, R.W.

    2005-07-20

    We report on the first demonstration of femtosecond x-rayabsorption spectroscopy, made uniquely possible by the use of broadlytunable bending-magnet radiation from "laser-sliced" electron buncheswithin a synchrotron storage ri ng. We measure the femtosecond electronicrearrangements that occur during the photoinduced insulator-metal phasetransition in VO2. Symmetry- and element-specific x-ray absorption fromV2p and O1s core levels (near 500 eV) separately measures the fillingdynamics of differently hybridized V3d-O2p electronic bands near theFermi level.

  11. Method and apparatus for simulating atomospheric absorption of solar energy due to water vapor and CO.sub.2

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth's surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO.sub.2 and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO.sub.2 and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO.sub.2 and moisture.

  12. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  13. CHANGES IN EDGE AND SCRAPE-OFF LAYER PLASMA BEHAVIOE DUE TO VAARIATION IN MAGNETIC BALANCE IN DIII-D

    SciTech Connect

    PETRIE, T.W.; WATKINS, J.G.; BAYLOR, L.R.; BROOKS, N.H.; FENSTERMACHER, M.E.; HYATT, A.W.; JACKSON, G.L.; LASNIER, C.J.; LEONARD, A.W.; PIGAROV, A.YU.; RENSINK, M.E.; ROGNLIEN, T.D.; SCHAFFER, M.J.; WOLF, N.S.; DIII-D TEAM

    2002-06-01

    Changes in the divertor magnetic balance in DIII-D H-mode plasmas affects core, edge, and divertor plasma behavior. Both the pedestal density n{sub e,PED} and plasma stored energy W{sub T} were sensitive to changes in magnetic balance near the double-null (DN) configuration, e.g., both decreased 20%-30% when the DN shifted to a slightly unbalanced DN, where the B x {del}B drift direction pointed away from the main X-point. Recycling at each of the four divertor targets was sensitive to changes in magnetic balance and the B x {del}B drift direction. The poloidal distribution of the recycling in DN is in qualitative agreement with the predictions of UEDGE modeling with particle drifts included. The particle flux at the inner divertor target is shown to be much more sensitive to magnetic balance than the particle flux at the outer divertor target near the DN shape. These results suggest possible advantages and drawbacks for balanced DN operation.

  14. Study of hard disk and slider surfaces using X-ray photoemission electron microscopy and near-edge X-ray absorption fine structure spectroscopy

    SciTech Connect

    Anders, S.; Stammler, T.; Bhatia, C.S.; Fong, W.; Chen, C.Y.; Bogy, D.B.

    1998-04-01

    X-ray Photo Emission Electron Microscopy (X-PEEM) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy were applied to study the properties of amorphous hard carbon overcoats on disks and sliders, and the properties of the lubricant. The modification of lubricants after performing thermal desorption studies was measured by NEXAFS, and the results are compared to the thermal desorption data. The study of lubricant degradation in wear tracks is described. Sliders were investigated before and after wear test, and the modification of the slider coating as well as the transfer of lubricant to the slider was studied. The studies show that the lubricant is altered chemically during the wear. Fluorine is removed and carboxyl groups are formed.

  15. Liquid crystal alignment on ion-beam-treated polyimide with a long alkyl side chain: near edge X-ray absorption fine structure spectroscopy analysis.

    PubMed

    Seo, Joo-Hong; Hwang, Soo Won; Song, Dong Han; Shin, Jae Hoon; Yoon, Tae-Hoon; Kim, Jae Chang; Yi, Mi Hye

    2009-02-19

    Liquid crystal alignment on ion-beam-treated polyimides with a long alkyl side chain was investigated using near edge X-ray absorption fine structure (NEXAFS) spectroscopy. The long alkyl side chains and the asymmetric distribution and orientational order of the pi-bonds of the polyimide surface can be determined by analyzing the angular dependent resonance intensities of the NEXAFS measurements. Herein, we demonstrate that the pretilt angle of the LC cell made by our method decreases as more long alkyl side chains are destroyed. Additionally, the tilt direction of the LC molecules can be determined from the asymmetric distribution of pi-bonds of the polyimide created by the ion beam irradiation. PMID:19161281

  16. Particle Formation from Pulsed Laser Irradiation of SootAggregates studied with scanning mobility particle sizer, transmissionelectron microscope and near-edge x-ray absorption fine structure.

    SciTech Connect

    Michelsen, Hope A.; Tivanski, Alexei V.; Gilles, Mary K.; vanPoppel, Laura H.; Dansson, Mark A.; Buseck, Peter R.; Buseck, Peter R.

    2007-02-20

    We investigated the physical and chemical changes induced in soot aggregates exposed to laser radiation using a scanning mobility particle sizer, a transmission electron microscope, and a scanning transmission x-ray microscope to perform near-edge x-ray absorption fine structure spectroscopy. Laser-induced nanoparticle production was observed at fluences above 0.12 J/cm(2) at 532 nm and 0.22 J/cm(2) at 1064 nm. Our results indicate that new particle formation proceeds via (1) vaporization of small carbon clusters by thermal or photolytic mechanisms, followed by homogeneous nucleation, (2) heterogeneous nucleation of vaporized carbon clusters onto material ablated from primary particles, or (3) both processes.

  17. Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids.

    PubMed

    Hähner, Georg

    2006-12-01

    Synchrotron-based spectroscopic techniques have contributed significantly to a better understanding of the properties of materials on the macroscopic and microscopic scale over the last decades. They can be applied to samples from a diversity of fields, including Biology, Life Sciences, Chemistry and Materials. One of these techniques is Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy, revealing electronic structure and information on the orientation of adsorbed molecules. The present article describes the basics of the technique and the progress it has made over the last three decades, and summarizes some of its more recent developments and applications. This tutorial review article should be accessible for novices to the field from Physics, Chemistry, Biology, Materials, and the Life Sciences, interested in thin organic films and liquid systems. PMID:17225886

  18. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  19. X-ray absorption spectra of nucleotides (AMP, GMP, and CMP) in liquid water solutions near the nitrogen K-edge

    NASA Astrophysics Data System (ADS)

    Ukai, Masatoshi; Yokoya, Akinari; Fujii, Kentaro; Saitoh, Yuji

    2010-07-01

    The X-ray absorption of nucleotides (adenosine-5'-monophosphate, guanosine 5'-monophosphate, and cytidine 5'-monophosphate) are measured in both water solutions and thin solid films at X-ray energies near the nitrogen K-edge in the 'water-window' region. Each spectrum corresponds to the selective excitation of a nucleobase site in a nucleotide, and thus has features similar to the spectrum of the corresponding nucleobase. An additional new peak in the energy region of the nitrogen 1s → π* resonance is observed for each nucleotide. No significant difference between the water solutions and thin solid films is found, which might be attributable to the hydrophobic properties of a nucleobase in a nucleotide.

  20. The effect of nanocrystallite size in monoclinic HfO{sub 2} films on lattice expansion and near-edge optical absorption

    SciTech Connect

    Cisneros-Morales, M. C.; Aita, C. R.

    2010-05-10

    Nanocrystalline monoclinic HfO{sub 2} films were sputter deposited on fused silica substrates, air annealed at 573 to 1273 K to affect crystallite growth, and analyzed by x-ray diffraction and spectrophotometry. Lattice expansion occurs with diminishing crystallite size. O 2p->Hf 5d interband absorption dominates the optical edge at energy E>=6.24 eV, with an optical band gap, E{sub o}=5.48+-0.023, which is independent of crystallite size. However, the strength of a localized resonant band, with onset at 5.65 eV and maximum at 5.94 eV, is affected by crystallite size. Its polaronic origin in a perfect HfO{sub 2} lattice is discussed.

  1. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  2. Effect of gas residence time on near-edge X-ray absorption fine structures of hydrogenated amorphous carbon films grown by plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jia, Lingyun; Sugiura, Hirotsugu; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Oda, Osamu; Sekine, Makoto; Hiramatsu, Mineo; Hori, Masaru

    2016-04-01

    In hydrogenated amorphous carbon films, deposited using a radical-injection plasma-enhanced chemical vapor deposition system, the chemical bonding structure was analyzed by near-edge X-ray absorption fine-structure spectroscopy. With a change in the residence times of source gases in a reactor, whereby total gas flow rates of H2/CH4 increased from 50 to 400 sccm, sp2-C fractions showed the minimum value at 150 sccm, while H concentration negligibly changed according to the results of secondary ion mass spectroscopy. On the other hand, widths of σ* C-C peaks increased with decreasing gas residence time, which indicates an increase in the fluctuation of bonding structures.

  3. Assessment of chemical species of lead accumulated in tidemarks of human articular cartilage by X-ray absorption near-edge structure analysis

    PubMed Central

    Meirer, Florian; Pemmer, Bernhard; Pepponi, Giancarlo; Zoeger, Norbert; Wobrauschek, Peter; Sprio, Simone; Tampieri, Anna; Goettlicher, Joerg; Steininger, Ralph; Mangold, Stefan; Roschger, Paul; Berzlanovich, Andrea; Hofstaetter, Jochen G.; Streli, Christina

    2011-01-01

    A highly specific accumulation of the toxic element lead was recently measured in the transition zone between non-calcified and calcified normal human articular cartilage. This transition zone, the so-called ‘tidemark’, is considered to be an active calcification front of great clinical importance. However, little is known about the mechanisms of accumulation and the chemical form of Pb in calcified cartilage and bone. Using spatially resolved X-ray absorption near-edge structure analysis (µ-XANES) at the Pb L 3-edge, the chemical state of Pb in the osteochondral region was investigated. The feasibility of the µ-XANES set-up at the SUL-X beamline (ANKA synchrotron light source) was tested and confirmed by comparing XANES spectra of bulk Pb-reference compounds recorded at both the XAS and the SUL-X beamline at ANKA. The µ-XANES set-up was then used to investigate the tidemark region of human bone (two patella samples and one femoral head sample). The spectra recorded at the tidemark and at the trabecular bone were found to be highly correlated with the spectra of synthetic Pb-doped carbonated hydroxyapatite, suggesting that in both of these very different tissues Pb is incorporated into the hydroxyapatite structure. PMID:21335911

  4. Electronic defect states at the LaAlO3/SrTiO3 heterointerface revealed by O K-edge X-ray absorption spectroscopy.

    PubMed

    Palina, Natalia; Annadi, Anil; Asmara, Teguh Citra; Diao, Caozheng; Yu, Xiaojiang; Breese, Mark B H; Venkatesan, T; Ariando; Rusydi, Andrivo

    2016-05-18

    Interfaces of two dissimilar complex oxides exhibit exotic physical properties that are absent in their parent compounds. Of particular interest is insulating LaAlO3 films on an insulating SrTiO3 substrate, where transport measurements have shown a metal-insulator transition as a function of LaAlO3 thickness. Their origin has become the subject of intense research, yet a unifying consensus remains elusive. Here, we report evidence for the electronic reconstruction in both insulating and conducting LaAlO3/SrTiO3 heterointerfaces revealed by O K-edge X-ray absorption spectroscopy. For the insulating samples, the O K-edge XAS spectrum exhibits features characteristic of electronically active point defects identified as noninteger valence states of Ti. For conducting samples, a new shape-resonance at ∼540.5 eV, characteristic of molecular-like oxygen (empty O-2p band), is observed. This implies that the concentration of electronic defects has increased in proportion with LaAlO3 thickness. For larger defect concentrations, the electronic defect states are no longer localized at the Ti orbitals and exhibit pronounced O 2p-O 2p character. Our results demonstrate that, above a critical thickness, the delocalization of O 2p electronic states can be linked to the presence of oxygen vacancies and is responsible for the enhancement of conductivity at the oxide heterointerfaces. PMID:27146607

  5. Three-dimensional Fe speciation of an inclusion cloud within an ultradeep diamond by confocal μ-X-ray absorption near edge structure: evidence for late stage overprint.

    PubMed

    Silversmit, Geert; Vekemans, Bart; Appel, Karen; Schmitz, Sylvia; Schoonjans, Tom; Brenker, Frank E; Kaminsky, Felix; Vincze, Laszlo

    2011-08-15

    A stream of 1-20 μm sized mineral inclusions having the negative crystal shape of its host within an "ultra-deep" diamond from Rio Soriso (Juina area, Mato Grosso State, Brazil) has been studied with confocal μ-X-ray absorption near edge structure (μXANES) at the Fe K and Mn K edges. This technique allows the three-dimensional nondestructive speciation of the Fe and Mn containing minerals within the inclusion cloud. The observed Fe-rich inclusions were identified to be ferropericlase (Fe,Mg)O, hematite and a mixture of these two minerals. Confocal μ-X-ray fluorescence (μXRF) further showed that Ca-rich inclusions were present as well, which are spatially separated from or in close contact with the Fe-rich inclusions. The inclusions are aligned along a plane, which most likely represents a primary growth zone. In the close vicinity of the inclusions, carbon coated planar features are visible. The three-dimensional distribution indicates a likely fluid overprint along an open crack. Our results imply that an imposed negative diamond shape of an inclusion alone does not exclude epigenetic formation or intense late stage overprint. PMID:21707095

  6. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  7. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes. PMID:26584082

  8. Evidence for 5d-σ and 5d-π covalency in lanthanide sesquioxides from oxygen K-edge X-ray absorption spectroscopy.

    PubMed

    Altman, Alison B; Pacold, Joseph I; Wang, Jian; Lukens, Wayne W; Minasian, Stefan G

    2016-06-14

    The electronic structure in the complete series of stable lanthanide sesquioxides, Ln2O3 (Ln = La to Lu, except radioactive Pm), has been evaluated using oxygen K-edge X-ray absorption spectroscopy (XAS) with a scanning transmission X-ray microscope (STXM). The experimental results agree with recent synthetic, spectroscopic and theoretical investigations that provided evidence for 5d orbital involvement in lanthanide bonding, while confirming the traditional viewpoint that there is little Ln 4f and O 2p orbital mixing. However, the results also showed that changes in the energy and occupancy of the 4f orbitals can impact Ln 5d and O 2p mixing, leading to several different bonding modes for seemingly identical Ln2O3 structures. On moving from left to right in the periodic table, abrupt changes were observed for the energy and intensity of transitions associated with Ln 5d and O 2p antibonding states. These changes in peak intensity, which were directly related to the amounts of O 2p and Ln 5d mixing, were closely correlated to the well-established trends in the chemical accessibility of the 4f orbitals towards oxidation or reduction. The unique insight provided by the O K-edge XAS is discussed in the context of several recent theoretical and physical studies on trivalent lanthanide compounds. PMID:26979662

  9. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components.

    PubMed

    Patel, Manu U M; Arčon, Iztok; Aquilanti, Giuliana; Stievano, Lorenzo; Mali, Gregor; Dominko, Robert

    2014-04-01

    Understanding the mechanism(s) of polysulfide formation and knowledge about the interactions of sulfur and polysulfides with a host matrix and electrolyte are essential for the development of long-cycle-life lithium-sulfur (Li-S) batteries. To achieve this goal, new analytical tools need to be developed. Herein, sulfur K-edge X-ray absorption near-edge structure (XANES) and (6,7) Li magic-angle spinning (MAS) NMR studies on a Li-S battery and its sulfur components are reported. The characterization of different stoichiometric mixtures of sulfur and lithium compounds (polysulfides), synthesized through a chemical route with all-sulfur-based components in the Li-S battery (sulfur and electrolyte), enables the understanding of changes in the batteries measured in postmortem mode and in operando mode. A detailed XANES analysis is performed on different battery components (cathode composite and separator). The relative amounts of each sulfur compound in the cathode and separator are determined precisely, according to the linear combination fit of the XANES spectra, by using reference compounds. Complementary information about the lithium species within the cathode are obtained by using (7) Li MAS NMR spectroscopy. The setup for the in operando XANES measurements can be viewed as a valuable analytical tool that can aid the understanding of the sulfur environment in Li-S batteries. PMID:24497200

  10. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  11. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  12. Low-temperature adsorption of H2S on Ni(001) studied by near-edge- and surface-extended-x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.

    1989-11-01

    The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  13. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K[Formula: see text] emission spectra.

    PubMed

    Rees, Julian A; Wandzilak, Aleksandra; Maganas, Dimitrios; Wurster, Nicole I C; Hugenbruch, Stefan; Kowalska, Joanna K; Pollock, Christopher J; Lima, Frederico A; Finkelstein, Kenneth D; DeBeer, Serena

    2016-09-01

    A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry. PMID:27251139

  14. Neutralization of calcite in mineral aerosols by acidic sullur species collected in China and Japan studied by ca K-edge X-ray absorption near-edge structure.

    PubMed

    Takahashi, Yoshio; Miyoshi, Takuro; Higashi, Masayuki; Kamioka, Hikari; Kanai, Yutaka

    2009-09-01

    Calcium species in mineral aerosols collected simultaneously in Aksu (near the Taklimakan Desert), Qingdao (eastern China), and Tsukuba (Japan) during dust and nondust periods were determined using Ca K-edge X-ray absorption near-edge structure (XANES). From the fitting of XANES spectra, it was found that (i) calcite and gypsum were the main Ca species in the aerosol samples, and (ii) the gypsum fraction versus total Ca minerals [Gyp]/[Ca2+]t increased progressively in the order Aksu < Qingdao < Tsukuba. Surface-sensitive XANES in the conversion electron yield mode (CEY) showed that the gypsum is formed selectively at the surface of mineral aerosols for all the samples except for that taken in Aksu during the dust period. The decrease of the [Gyp]/[Ca2+]t ratio with an increase in particle size showed that the neutralization effect proceeds from the particle surface. For the Aksu sample in the dust period, however, (i) the [Gyp]/[Ca2+]t ratios obtained by XANES measured in the fluorescence (FL; regarded as bulk analysis) and CEY modes were similar and (ii) size dependence was not found, showing that neutralization is not important for the sample because of the large supply of mineral aerosol with little neutralization effect in Aksu. It was also found that the pH of the aerosol and the ratio of (NH4)2SO4 to gypsum were positively and negatively correlated with the Ca (or calcite) content, respectively. The speciation of Ca by XANES revealed the neutralization processes of acidic sulfur species by calcite during the long-range transport of mineral aerosols. PMID:19764213

  15. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems. PMID:27136720

  16. Improvement in the photocurrent collection due to enhanced absorption of light by synthesizing staggered layers of silver nanoclusters in silicon

    SciTech Connect

    Dhoubhadel, Mangal S.; Lakshantha, Wickramaarachchige J.; Rout, Bibhudutta; McDaniel, Floyd D.; Lightbourne, Sherard; D’Souza, Francis

    2015-07-23

    The quest for increased efficiency of solar cells has driven the research in synthesizing photovoltaic cells involving Si based materials. The efficiency of solar cells involving crystalline Si is stalled around 25% for the last decade. Recently Shi et al. had shown that light trapping can be enhanced by fabricating double layers of Ag nanoparticles in silicon based materials. The light trapping is critically important in a photo devices such as solar cells in order to increase light absorption and efficiency. In the present work, we report enhancement in the absorption of light in Ag ion implanted Si substrates. Multiple low energies Ag ions, ranging from ∼80 keV to ∼30 keV, with different fluences ranging from ∼1 × 10{sup 16} to ∼1 × 10{sup 17} atoms/cm{sup 2} were sequentially implanted into commercially available Si (100) substrates followed by post-thermal annealing to create different sizes of Ag nanoclusters (NC) at different depths in the top 100 nm of the Si. The absorbance of light is increased in Ag implanted Si with a significant increase in the current collection in I-V (current-voltage) photo switching measurements. The experimental photovoltaic cells fabricated with the Ag-implanted Si samples were optically characterized under AM (air mass) 1.5 solar radiation conditions (∼1.0 kW/m{sup 2}). An enhancement in the charge collection were measured in the annealed samples, where prominent Ag NCs were formed in the Si matrix compared to the as-implanted samples with amorphous layers. We believe the enhancement of the photo-current density from the samples with Ag NC is due to the improvement of efficiency of charge collection of e{sup −}-h{sup +} pairs produced by the incident light.

  17. Bandgap and optical absorption edge of GaAs1-xBix alloys with 0 < x < 17.8%

    NASA Astrophysics Data System (ADS)

    Masnadi-Shirazi, M.; Lewis, R. B.; Bahrami-Yekta, V.; Tiedje, T.; Chicoine, M.; Servati, P.

    2014-12-01

    The compositional dependence of the fundamental bandgap of pseudomorphic GaAs1-xBix layers on GaAs substrates is studied at room temperature by optical transmission and photoluminescence spectroscopies. All GaAs1-xBix films (0 ≤ x ≤ 17.8%) show direct optical bandgaps, which decrease with increasing Bi content, closely following density functional theory predictions. The smallest measured bandgap is 0.52 eV (˜2.4 μm) at 17.8% Bi. Extrapolating a fit to the data, the GaAs1-xBix bandgap is predicted to reach 0 eV at 35% Bi. Below the GaAs1-xBix bandgap, exponential absorption band tails are observed with Urbach energies 3-6 times larger than that of bulk GaAs. The Urbach parameter increases with Bi content up to 5.5% Bi, and remains constant at higher concentrations. The lattice constant and Bi content of GaAs1-xBix layers (0 < x ≤ 19.4%) are studied using high resolution x-ray diffraction and Rutherford backscattering spectroscopy. The relaxed lattice constant of hypothetical zincblende GaBi is estimated to be 6.33 ± 0.05 Å, from extrapolation of the Rutherford backscattering spectrometry and x-ray diffraction data.

  18. Probing Variable Amine/Amide Ligation in NiIIN2S2 Complexes Using Sulfur K-Edge and Nickel L-Edge X-ray Absorption Spectroscopies: Implications for the Active Site of Nickel Superoxide Dismutase

    SciTech Connect

    Shearer,J.; Dehestani, A.; Abanda, F.

    2008-01-01

    Nickel superoxide dismutase (NiSOD) is a recently discovered metalloenzyme that catalyzes the disproportionation of O2* into O2 and H2O2. In its reduced state, the mononuclear NiII ion is ligated by two cis-cysteinate sulfurs, an amine nitrogen (from the protein N-terminus), and an amide nitrogen (from the peptide backbone). Unlike many small molecule and metallopeptide-based NiN2S2 complexes, S-based oxygenation is not observed in NiSOD. Herein we explore the spectroscopic properties of a series of three NiIIN2S2 complexes (bisamine-ligated (bmmp-dmed)NiII, amine/amide-ligated (NiII(BEAAM)), and bisamide-ligated (NiII(emi))2) with varying amine/amide ligation to determine the origin of the dioxygen stability of NiSOD. Ni L-edge X-ray absorption spectroscopy (XAS) demonstrates that there is a progression in ligand-field strength with (bmmp-dmed)NiII having the weakest ligand field and (NiII(emi)2) having the strongest ligand field. Furthermore, these Ni L-edge XAS studies also show that all three complexes are highly covalent with (NiII(BEEAM)) having the highest degree of metal-ligand covalency of the three compounds studied. S K-edge XAS also shows a high degree of NiS covalency in all three complexes. The electronic structures of the three complexes were probed using both hybrid-DFT and multiconfigurational SORCI calculations. These calculations demonstrate that the nucleophilic Ni(3d)/S()* HOMO of these NiN2S2 complexes progressively decreases in energy as the amide-nitrogens are replaced with amine nitrogens. This decrease in energy of the HOMO deactivates the Ni-center toward O2 reactivity. Thus, the NiS bond is protected from S-based oxygenation explaining the enhanced stability of the NiSOD active-site toward oxygenation by dioxygen.

  19. Interaction of vanadium and sulfate in blood cells from the tunicate Ascidia ceratodes: Observations using x-ray absorption edge structure and EPR spectroscopies

    SciTech Connect

    Frank, P.; Hedman, B.; Hodgson, K.O.; Carlson, R.M.K.

    1994-08-17

    Sulfur K-edge X-ray absorption spectroscopy (S-K XAS) and EPR spectroscopy have been used to investigate the inorganic solution chemistry of vanadium, sulfate, and methanesulfonate, with application to blood cells from the tunicate Ascidia ceratodes. Three independent whole blood cell preparations (S85, S86, W87) collected over a period of 18 months were examined. Average blood cell vanadium concentrations were determined to be 0.099, 0.079, and 0.062 M, respectively. All three collections gave sulfur XAS spectra consistent with significant intracellular concentrations of low-valent sulfur, an alkanesulfonic acid, and sulfate. In model studies, the line width of the sulfate K-edge XAS spectrum was found to titrate with both pH and [V(III)]. Application of this finding to A. ceratodes blood cell sulfur XAS spectra provided evidence for direct interactions between endogenous dissolved sulfate and V(III) in two of the three collections. All three collections yielded sulfate XAS edge spectra consistent with low pH. Curve-fitting analysis of the S-K edge XAS spectra for the three whole blood cell collections yielded the ratios of intracellular sulfate:alkane sulfonate:low-valent sulfur to be as follows: S85, 1.0:0.9:0.36;S86, 1.0;0.5;1.5;W87,1.0;0.44:0.24. Comparisons with models indicated that the low-valent blood cell sulfur included various disulfide-like compounds unlike cystine. This all implies a surprisingly rich and variable sulfur biochemistry in these marine organisms. EPR spectroscopy of whole blood cells from one animal from the W87 collection revealed an endogenous VO{sup 2+}-sulfate interaction. Thus both V(III) and VO{sup 2+} can sense an intracellular pool of sulfate, implying the biological colocation of these two metal ions. The variations in blood chemistry observed over time as described herein caution against definitive application of single point experiments.

  20. Near-edge x-ray absorption studies of Na-doped tetracyanoethylene films: A model system for the V(TCNE)x room-temperature molecular magnet

    NASA Astrophysics Data System (ADS)

    Carlegrim, E.; Gao, B.; Kanciurzewska, A.; de Jong, M. P.; Wu, Z.; Luo, Y.; Fahlman, M.

    2008-02-01

    V(TCNE)x , with TCNE=tetracyanoethylene and xtilde 2 , is an organic-based molecular magnet with potential to be used in spintronic devices. With the aim of shedding light on the unoccupied frontier electronic structure of V(TCNE)x we have studied pristine TCNE and sodium-intercalated TCNE by near edge x-ray absorption fine structure (NEXAFS) spectroscopy as well as with theoretical calculations. Sodium-intercalated TCNE was used as a model system of the more complex V(TCNE)x and both experimental and theoretical results of the model compound have been used to interpret the NEXAFS spectra of V(TCNE)x . By comparing the experimental and theoretical C K -edge of pristine TCNE, the contributions from the various carbon species (cyano and vinyl) could be disentangled. Upon fully sodium intercalation, TCNE is n doped with one electron per molecule and the features in the C and N K -edge spectra of pristine TCNE undergo strong modification caused by partially filling the TCNE lowest unoccupied molecular orbital (LUMO). When comparing the C and N K -edge NEXAFS spectra of fully sodium-doped TCNE with V(TCNE)x , the spectra are similar except for broadening of the features which originates from structural disorder of the V(TCNE)x films. The combined results from the model system and V(TCNE)x suggest that the lowest unoccupied molecular orbital with density on the nitrogen atoms in V(TCNE)x has no significant hybridization with vanadium and is similar to the so-called singly occupied molecular orbital of the TCNE anion. This suggests that the LUMO of V(TCNE)x is TCNE- or vanadiumlike, in contrast to the frontier occupied electronic structure where the highest occupied molecular orbital is a hybridization between V(3d) and cyano carbons. The completely different nature of the unoccupied and occupied frontier electronic structure of the material will most likely affect both charge injection and transport properties of a spintronic device featuring V(TCNE)x .

  1. Sulfur K-Edge X-Ray Absorption Spectroscopy And Density Functional Theory Calculations on Superoxide Reduc Tase: Role of the Axial Thiolate in Reactivity

    SciTech Connect

    Dey, A.; Jenney, F.E., Jr.; Adams, M.W.; Johnson, M.K.; Hodgson, K.O.; Hedman, B.; Solomon, E.I.; /Stanford U., Chem. Dept. /Athens U. /SLAC, SSRL

    2007-10-26

    Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN{sup -} bound low-spin Fe{sup III} forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin Fe{sup III}-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the Fe{sup III} bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pK{sub a} of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin Fe{sup III}-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C Fe{sup III} product. Additionally, the presence of the dianionic porphyrin {pi} ring in cytochrome P450 allows O-O heterolysis, forming an Fe{sup IV}-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand

  2. Tetrahalide Complexes of the [U(NR)(2)]2+ Ion: Synthesis, Theory, and Chlorine K-Edge X-ray Absorption Spectroscopy

    SciTech Connect

    Spencer, Liam P.; Yang, Ping; Minasian, Stefan G.; Jilek, Robert E.; Batista, Enrique R.; Boland, Kevin S.; Boncella, James M.; Conradson, S. D.; Clark, David L.; Hayton, Trevor W.; Kozimor, Stosh A.; Martin, Richard L.; MacInnes, Molly M.; Olson, Angela C.; Scott, Brian L.; Shuh, D. K.; Wilkerson, Marianne P.

    2013-02-13

    Synthetic routes to salts containing uranium bisimido tetrahalide anions [U(NR)(2)X-4](2-) (X = Cl-, Br-) and non-coordinating NEt4+ and PPh4+ countercations are reported. In general, these compounds can be prepared from U(NR)(2)I-2(THF)(x) (x = 2 and R = 'Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl-, the [U(NMe)(2)](2 +) cation also reacts with Br- to form stable [NEt4](2)[U(NMe)(2)Br-4] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO2](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh4](2)[U((NBu)-Bu-t)(2)Cl-4] and [PPh4](2)[UO2Cl4]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  3. The iron-site structure of [Fe]-hydrogenase and model systems: an X-ray absorption near edge spectroscopy study†‡

    PubMed Central

    Salomone-Stagni, Marco; Stellato, Francesco; Whaley, C. Matthew; Vogt, Sonja; Morante, Silvia; Shima, Seigo; Rauchfuss, Thomas B.; Meyer-Klaucke, Wolfram

    2012-01-01

    The [Fe]-hydrogenase is an ideal system for studying the electronic properties of the low spin iron site that is common to the catalytic centres of all hydrogenases. Because they have no auxiliary iron-sulfur clusters and possess a cofactor containing a single iron centre, the [Fe]-hydrogenases are well suited for spectroscopic analysis of those factors required for the activation of molecular hydrogen. Specifically, in this study we shed light on the electronic and molecular structure of the iron centre by XAS analysis of [Fe]-hydrogenase from Methanocaldococcus jannashii and five model complexes (Fe(ethanedithiolate)-(CO)2(PMe3)2, [K(18-crown-6)]2[Fe(CN)2(CO)3], K[Fe(CN)(CO)4], K3[Fe(iii)(CN)6], K4[Fe(ii)(CN)6]). The different electron donors have a strong influence on the iron absorption K-edge energy position, which is frequently used to determine the metal oxidation state. Our results demonstrate that the K-edges of Fe(ii) complexes, achieved with low-spin ferrous thiolates, are consistent with a ferrous centre in the [Fe]-hydrogenase from Methanocaldococcus jannashii. The metal geometry also strongly influences the XANES and thus the electronic structure. Using in silico simulation, we were able to reproduce the main features of the XANES spectra and describe the effects of individual donor contributions on the spectra. Thereby, we reveal the essential role of an unusual carbon donor coming from an acyl group of the cofactor in the determination of the electronic structure required for the activity of the enzyme. PMID:20221540

  4. Iron L-edge X-ray Absorption Spectroscopy of Oxy-Picket Fence Porphyrin: Experimental Insight into Fe-O2 Bonding

    PubMed Central

    Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487

  5. Determination of the K absorption edge energy of Ho in element and its compounds using the bremsstrahlung technique

    NASA Astrophysics Data System (ADS)

    Niranjana, K. M.; Badiger, N. M.

    2013-05-01

    The K shell binding energies of Ho in element and in compounds Ho2O3 and HoF3 have been measured for the first time by adopting a novel method. The method involves a weak beta source, an external bremsstrahlung (EB) converter, element and compound targets and a high-resolution HPGe detector coupled to a 16K multichannel analyser. A spectrum of continuous EB photons, produced by the interaction of beta particles from a 90Sr-90Y radioactive source with an iron foil, is allowed to pass through the element and compound targets of Ho. The spectrum of transmitted EB photons is measured with a high-resolution HPGe detector spectrometer. The transmitted spectrum shows a sudden drop in intensity at K shell binding energy of the target. Such a sudden drop, which is essentially due to the onset of the K shell photoelectric effect, has been used to determine the K shell binding energy of Ho in element. The K shell binding energies of Ho in Ho2O3 and HoF3 compounds have also been determined using the same technique. From these data, the chemical shift in the K shell binding energy has been measured. It is found to be positive for Ho2O3 and negative for HoF3, indicating the dependence of the chemical shift on the crystal structure.

  6. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

    2004-01-06

    Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

  7. Impurity-defect emission from undoped Cd1- x Zn x Te single crystals near the fundamental absorption edge

    NASA Astrophysics Data System (ADS)

    Krivobok, V. S.; Denisov, I. A.; Mozhevitina, E. N.; Nikolaev, S. N.; Onishchenko, E. E.; Pruchkina, A. A.; Silina, A. A.; Smirnova, N. A.; Chernopitsskii, M. A.; Shmatov, N. I.

    2016-05-01

    Shallow impurity-defect states in undoped Cd1- x Zn x Te ( x ˜ 3-6%) single crystals have been studied using low-temperature photoluminescence measurements. It has been found that the effect exerted by zinc is mainly reduced to a rigid shift of all the specific features associated with the exciton radiation, which made it possible, with a high (˜0.3 meV) accuracy, to measure the band gap and the zinc concentration in solid solutions. Hydrogen-like donors with the ground-state energy of ˜14 meV and four types of acceptors with average activation energies of 59.3 ± 0.6 meV, 69.6 ± 1.5 meV, 155.8 ± 2.0 meV, and 52.3 ± 0.6 meV have been identified in all the crystals studied. Based on a comparison with the results of the analysis of the impurity background and the data available in the literature on impurity-defect emission in undoped CdTe, the first three acceptors can be assigned to the substitutional impurities NaCd, PTe, and CuCd, respectively. The most shallow acceptor (52.3 ± 0.6 meV) is a complex defect in which there is a nonstandard excited level separated by only 7 meV from the ground level. This level is formed apparently due to the removal of degeneracy, which is characteristic of T D acceptors, by the low-symmetry potential of the complex defect.

  8. Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D

    NASA Astrophysics Data System (ADS)

    King, J. D.; Strait, E. J.; Nazikian, R.; Paz-Soldan, C.; Eldon, D.; Fenstermacher, M. E.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; La Haye, R. J.; Lanctot, M. J.; Lazerson, S. A.; Logan, N. C.; Liu, Y. Q.; Okabayashi, M.; Park, J.-K.; Shiraki, D.; Turnbull, A. D.

    2015-11-01

    Experiments in the DIII-D tokamak show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidal mode numbers of n = 2 and n = 3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes (ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n = 1 component despite the application of a constant amplitude, slowly toroidally rotating, n = 2 applied field. The n = 1 mode is born locked to the vacuum vessel wall, while the n = 2 mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇Te occurs near the q = 4 and 5 rational surfaces, suggesting five unique islands are possible (m = 8, 9, or 10 for n = 2) and (m = 4 or 5 for n = 1). In all cases, the island width is estimated to be 2-3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%-12%, which is close to the 13%-14% measured between the ELMs and suppressed states. This suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression.

  9. Specific absorption rate variation in a brain phantom due to exposure by a 3G mobile phone: problems in dosimetry.

    PubMed

    Behari, J; Nirala, Jay Prakash

    2013-12-01

    A specific absorption rate (SAR) measurements system has been developed for compliance testing of personal mobile phone in a brain phantom material contained in a Perspex box. The volume of the box has been chosen corresponding to the volume of a small rat and illuminated by a 3G mobile phone frequency (1718.5 MHz), and the emitted radiation directed toward brain phantom .The induced fields in the phantom material are measured. Set up to lift the plane carrying the mobile phone is run by a pulley whose motion is controlled by a stepper motor. The platform is made to move at a pre-determined rate of 2 degrees per min limited up to 20 degrees. The measured data for induced fields in various locations are used to compute corresponding SAR values and inter comparison obtained. These data are also compared with those when the mobile phone is placed horizontally with respect to the position of the animal. The SAR data is also experimentally obtained by measuring a rise in temperature due to this mobile exposures and data compared with those obtained in the previous set. To seek a comparison with the safety criteria same set of measurements are performed in 10 g phantom material contained in a cubical box. These results are higher than those obtained with the knowledge of induced field measurements. It is concluded that SAR values are sensitive to the angular position of the moving platform and are well below the safety criteria prescribed for human exposure. The data are suggestive of having a fresh look to understand the mode of electromagnetic field -bio interaction. PMID:24579373

  10. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  11. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations.

    PubMed

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-08-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules. PMID:20707545

  12. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-08-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  13. Measurement of mass attenuation coefficients in some Cr, Co and Fe compounds around the absorption edge and the validity of the mixture rule

    NASA Astrophysics Data System (ADS)

    Turgut, U.; Simsek, O.; Büyükkasap, E.

    2007-08-01

    The total mass attenuation coefficients for elements Cr, Co and Fe and compounds CrCl_{2}, CrCl_{3}, Cr_{2}(SO_{4})_{3}K_{2}SO_{4}\\cdot24H_{2}O, CoO, CoCl_{2}, Co(CH_{3}COO)_{2}, FePO_{4}, FeCl_{3}\\cdot6H_{2}O, Fe(SO_{4})_{2}NH_{4}\\cdot12H_{2}O were measured at different energies between 4.508 and 14.142 keV using secondary excitation method. Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr were chosen as secondary exciters. 59.5 keV γ-rays emitted from a ^{241}Am annular source were used to excite a secondary exciter and K_{α}(K-L_{3}, L_{2}) lines emitted by the secondary exciter were counted by a Si(Li) detector with a resolution of 160 eV at 5.9 keV. It was observed that mixture rule method is not a suitable method for determination of the mass attenuation coefficients of compounds, especially at an energy that is near the absorption edge. The obtained values were compared with theoretical values.

  14. Aluminum incorporation in Ti{sub 1-x}Al{sub x}N films studied by x-ray absorption near-edge structure

    SciTech Connect

    Gago, R.; Redondo-Cubero, A.; Endrino, J. L.; Jimenez, I.; Shevchenko, N.

    2009-06-01

    The local bonding structure of titanium aluminum nitride (Ti{sub 1-x}Al{sub x}N) films grown by dc magnetron cosputtering with different AlN molar fractions (x) has been studied by x-ray absorption near-edge structure (XANES) recorded in total electron yield mode. Grazing incidence x-ray diffraction (GIXRD) shows the formation of a ternary solid solution with cubic structure (c-Ti{sub 1-x}Al{sub x}N) that shrinks with the incorporation of Al and that, above a solubility limit of xapprox0.7, segregation of w-AlN and c-Ti{sub 1-x}Al{sub x}N phases occurs. The Al incorporation in the cubic structure and lattice shrinkage can also be observed using XANES spectral features. However, contrary to GIXRD, direct evidence of w-AlN formation is not observed, suggesting a dominance and surface enrichment of cubic environments. For x>0.7, XANES shows the formation of Ti-Al bonds, which could be related to the segregation of w-AlN. This study shows the relevance of local-order information to assess the atomic structure of Ti{sub 1-x}Al{sub x}N solutions.

  15. X-ray absorption near-edge structure study on the configuration of Cu 2+ /histidine complexes at different pH values

    NASA Astrophysics Data System (ADS)

    Mei-Juan, Yu; Yu, Wang; Wei, Xu

    2016-04-01

    The local configurations around metal ions in metalloproteins are of great significance for understanding their biological functions. Cu2+/histidine (His) is a typical complex existing in many metalloproteins and plays an important role in lots of physiological functions. The three-dimensional (3D) structural configurations of Cu2+/His complexes at different pH values (2.5, 6.5, and 8.5) are quantitatively determined by x-ray absorption near-edge structure (XANES). Generally Cu2+/His complex keeps an octahedral configuration consisting of oxygen atoms from water molecules and oxygen or nitrogen atoms from histidine molecules coordinated around Cu2+. It is proved in this work that the oxygen atoms from water molecules, when increasing the pH value from acid to basic value, are gradually substituted by the Ocarboxyl, Nam, and Nim from hisitidine molecules. Furthermore, the symmetries of Cu2+/His complexes at pH 6.5 and pH 8.5 are found to be lower than at pH 2.5. Project supported by the National Natural Science Foundation of China (Grant No. 11205186).

  16. Probing the Ordering of Semiconducting Fluorene-Thiophene Copolymer Surfaces on Rubbed Polyimide Substrates by Near-Edge X-ray Absorption Fine Structure

    SciTech Connect

    Pattison,L.; Hexemer, A.; Kramer, E.; Krishnan, S.; Petroff, P.; Fischer, D.

    2006-01-01

    The temperature-dependent alignment of semiconducting liquid crystalline fluorene-thiophene copolymer (F8T2) thin film surfaces was investigated using the near-edge X-ray absorption fine structure (NEXAFS) technique. Partial electron yield spectra were recorded over a range of temperatures in order to observe directly the surface orientation as the polymer is heated and cooled through glass, crystal, and liquid crystal phases. In addition, samples annealed under varying processing conditions and quenched to room temperature were analyzed. The NEXAFS data show that (a) in thin F8T2 films at all temperatures the polymer backbone lies in the plane of the substrate, (b) the fluorene and thiophene rings are rotated randomly about the molecular axis, (c) orientation of the polymer backbone can be controlled using a rubbed polyimide alignment layer as a template for liquid crystal orientation, and (d) under proper annealing conditions there is strong temperature-dependent alignment of the copolymer main-chain axis to the rubbing direction which extends from the polyimide/F8T2 interface all the way to the F8T2 surface. The surface alignment does not disappear after annealing at temperatures {approx}30 K above the bulk nematic to isotropic transition.

  17. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    PubMed

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB. PMID:25191695

  18. Extended X- ray absorption fine structure study at the K-edge of copper in mixed ligand complexes having benzimidazole as one of the ligands

    NASA Astrophysics Data System (ADS)

    Hinge, V. K.; Joshi, S. K.; Nitin Nair, N.; Singh Verma, Vikram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    Extended X-ray absorption fine structure (EXAFS) spectra have been studied at the K-edge of copper in some of its biologically important complexes, viz., [Cu(BzImH)4X2] and [Cu(BzIm)2], where X= Cl, Br, 1/2SO4, ClO4, NO3, and BzIm = Benzimidazolato anion. The spectra have been recorded using a bent crystal 0.4 m Cauchois-type transmission spectrograph. The positions of EXAFS maxima and minima have been used to determine the bond lengths in the complexes with the help of three different methods, namely, Levy's, Lytle's and Lytle, Sayers and Stern's (L.S.S.) methods. The phase uncorrected bond lengths have also been determined from Fourier transforms of the experimental spectra. The results obtained from these methods have been discussed and it has been found that the results obtained by L.S.S. method are comparable with the results obtained by Fourier transformation method and that these two methods give phase uncorrected bond lengths.

  19. Point defects in hexagonal BN, BC{sub 3} and BC{sub x}N compounds studied by x-ray absorption near-edge structure

    SciTech Connect

    Caretti, Ignacio; Jimenez, Ignacio

    2011-07-15

    The generation of point defects in highly oriented pyrolytic boron nitride (HOPBN) after Ar{sup +} ion bombardment in ultrahigh vacuum and subsequent exposure to air was studied by angle-resolved x-ray absorption near edge structure (XANES). The pristine HOPBN showed well-oriented boron nitride (BN) basal planes parallel to the surface, with a negligible amount of defects. Amorphization of the BN structure took place after Ar{sup +} sputtering, as indicated by the broadening of the XANES spectra and significant decrease of the characteristic {pi}* states. Following air exposure, the XANES analysis revealed a spontaneous reorganization of the sample structure. The appearance of four new B1s {pi}* excitonic peaks indicates an oxygen decoration process of the nitrogen vacancies created by ion bombardment. A core-level shift model is presented to support this statement. This model is successfully extended to the case of oxygen substitutional defects in hexagonal BC{sub 3} and BC{sub x}N (0 < x < 4) materials, which can be applied to any B-based sp{sup 2}-bonded honeycomb structure.

  20. Understanding conversion mechanism of NiO anodic materials for Li-ion battery using in situ X-ray absorption near edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Jang, Jue-Hyuk; Chae, Byung-Mok; Oh, Hyun-Jung; Lee, Yong-Kul

    2016-02-01

    Nano-scaled NiO particles (nano-NiO) are prepared by a ligand stabilization method and compared with micron-sized NiO particles (micro-NiO) as anodic material of Li-ion battery. The structural and physical properties are characterized by N2 physisorption, transmission electron microscopy, and X-ray diffraction. The nano-NiO shows uniform spheres with an average particle size of 9 nm with high and stable discharge capacity of 637 mAh g-1, while the micro-NiO forms irregularly shaped particles with an average particle size of 750 nm with low capacity of 431 mAh g-1 at 0.5C. In situ X-ray absorption near edge structure (XANES) analysis reveals that the capacity and reversibility of the NiO anode is highly affected by the particle size of the NiO. The micro-NiO exhibits a low capacity with absence of phase transformation upon the discharge/charge cycles. In contrast, the nano-NiO exhibits a high capacity with reversible phase transformation between NiO and Ni metal upon the cycle test.

  1. A setup for synchrotron-radiation-induced total reflection X-ray fluorescence and X-ray absorption near-edge structure recently commissioned at BESSY II BAMline.

    PubMed

    Fittschen, U; Guilherme, A; Böttger, S; Rosenberg, D; Menzel, M; Jansen, W; Busker, M; Gotlib, Z P; Radtke, M; Riesemeier, H; Wobrauschek, P; Streli, C

    2016-05-01

    An automatic sample changer chamber for total reflection X-ray fluorescence (TXRF) and X-ray absorption near-edge structure (XANES) analysis in TXRF geometry was successfully set up at the BAMline at BESSY II. TXRF and TXRF-XANES are valuable tools for elemental determination and speciation, especially where sample amounts are limited (<1 mg) and concentrations are low (ng ml(-1) to µg ml(-1)). TXRF requires a well defined geometry regarding the reflecting surface of a sample carrier and the synchrotron beam. The newly installed chamber allows for reliable sample positioning, remote sample changing and evacuation of the fluorescence beam path. The chamber was successfully used showing accurate determination of elemental amounts in the certified reference material NIST water 1640. Low limits of detection of less than 100 fg absolute (10 pg ml(-1)) for Ni were found. TXRF-XANES on different Re species was applied. An unknown species of Re was found to be Re in the +7 oxidation state. PMID:27140163

  2. Solar radiation absorption in the atmosphere due to water and ice clouds: Sensitivity experiments with plane-parallel clouds

    SciTech Connect

    Gautier, C.

    1995-09-01

    One cloud radiation issue that has been troublesome for several decades is the absorption of solar radiation by clouds. Many hypotheses have been proposed to explain the discrepancies between observations and modeling results. A good review of these often-competing hypotheses has been provided by Stephens and Tsay. They characterize the available hypotheses as failing into three categories: (1) those linked to cloud microphysical and consequent optical properties; (2) those linked to the geometry and heterogeneity of clouds; and (3) those linked to atmospheric absorption.Current modeling practice is seriously inconsistent with new observational inferences concerning absorption of solar radiation in the atmosphere. The author and her colleagues contend that an emphasis on R may, therefore, not be the optimal way of addressing the cloud solar absorption issue. 4 refs., 1 fig.

  3. Temperature dependent electronic structure of Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film probed by X-ray absorption near edge structure

    SciTech Connect

    Zhang, Bangmin; Sun, Cheng-Jun E-mail: msecgm@nus.edu.sg; Heald, Steve M.; Chen, Jing-Sheng; Moog Chow, Gan E-mail: msecgm@nus.edu.sg; Venkatesan, T.

    2014-05-07

    The Mn K edge X-ray absorption near edge structures (XANES) of Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film (100 nm) on (001) LaAlO{sub 3} substrate was measured at different temperatures to probe the MnO{sub 6} octahedron distortion and corresponding electronic structure. The absorption of high temperature paramagnetic-insulator phase differed from that of the low temperature ferromagnetic-metal phase. The temperature-dependent absorption intensity of Mn K edge XANES was correlated with the relaxation of distorted MnO{sub 6} octahedron, which changed the crystal field acting on the Mn site and the related electronic structure and properties. At low temperature, the splitting of Mn majority e{sub g} orbitals decreased and the density of states above the Fermi level increased in the relaxed MnO{sub 6} octahedron, as reflected by a wider separation between two sub-peaks in the pre-edge XANES spectra.

  4. Variation of spectral properties of dielectric ionic crystal in the terahertz range due to the polariton absorption.

    PubMed

    Dzedolik, Igor V; Pereskokov, Vladislav

    2014-05-20

    The dispersion equations for polariton waves in dielectric ionic crystal with the absorption are obtained. The self-consistent solutions of the system of Maxwell electromagnetic field equations and the equations of motion of ions have been used. The elastic and absorption properties of the crystal are taken into account in the ion equations of motion. It is shown that the separated equations of motion for positive and negative ions allow obtaining all branches of phonon and polariton spectrum by the example of the ionic crystal of cubic symmetry at the terahertz range. It has been shown that the variation of absorption in the crystal leads to changing of the character of spectrum branch and the polariton velocities. PMID:24922221

  5. Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D

    SciTech Connect

    King, J. D.; Strait, E. J.; Nazikian, R.; Paz-Soldan, Carlos; Eldon, D.; Fenstermacher, M. E.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; La Haye, R. J.; Lanctot, Matthew J.; Lazerson, Sam A.; Logan, N. C.; Liu, Y. Q.; Okabayashi, M.; Park, J. -K.; Turnbull, A. D.

    2015-11-16

    In this research, we conducted experiments in the DIII-D tokamak that show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidalmode numbers of n=2 and n=3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes(ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n=1 component despite the application of a constant amplitude, slowly toroidally rotating, n=2 applied field. The n=1 mode is born locked to the vacuum vessel wall, while the n=2 mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇Te occurs near the q=4 and 5 rational surfaces, suggesting five unique islands are possible (m=8, 9, or 10 for n=2) and (m=4 or 5 for n=1). In all cases, the island width is estimated to be 2–3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%–12%, which is close to the 13%–14% measured between the ELMs and suppressed states. In conclusion, this suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression.

  6. Three-dimensional equilibria and island energy transport due to resonant magnetic perturbation edge localized mode suppression on DIII-D

    DOE PAGESBeta

    King, J. D.; Strait, E. J.; Nazikian, R.; Paz-Soldan, Carlos; Eldon, D.; Fenstermacher, M. E.; Ferraro, N. M.; Hanson, J. M.; Haskey, S. R.; La Haye, R. J.; et al

    2015-11-16

    In this research, we conducted experiments in the DIII-D tokamak that show that the plasma responds to resonant magnetic perturbations (RMPs) with toroidalmode numbers of n=2 and n=3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions, while a strong nonlinear bifurcation is apparent when edge localized modes(ELMs) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side of the machine and exhibits a dominant n=1 component despite the application of a constant amplitude, slowly toroidally rotating, n=2 applied field. The n=1 mode is born locked to the vacuum vessel wall, while the n=2more » mode is entrained to the rotating field. Based on these magnetic response measurements and Thomson scattering measurements of flattening of the electron temperature profile, it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇Te occurs near the q=4 and 5 rational surfaces, suggesting five unique islands are possible (m=8, 9, or 10 for n=2) and (m=4 or 5 for n=1). In all cases, the island width is estimated to be 2–3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8%–12%, which is close to the 13%–14% measured between the ELMs and suppressed states. In conclusion, this suggests that edge tearing modes may alter the pedestal causing peeling-ballooning stability during RMP induced ELM suppression.« less

  7. Effect of heat treatment on the activity and stability of PtCo/C catalyst and application of in-situ X-ray absorption near edge structure for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Lin, Rui; Zhao, Tiantian; Shang, Mingfeng; Wang, Jianqiang; Tang, Wenchao; Guterman, Vladimir E.; Ma, Jianxin

    2015-10-01

    For the purpose of reducing the cost and improving the performance of the proton exchange membrane fuel cell (PEMFC), some low-Pt or non-Pt catalysts have been studied in recent years. PtCo/C electrocatalysts are synthesized by a two-step reduction approach followed by the heat treatment. PtCo metal particles are uniformly dispersed on the surface of XC-72 carbon support, with a uniform particle size distribution. The PtCo/C catalyst after 400 °C heat treatment has the best electrochemical performance among the as-prepared catalysts, even superior to the commercial Pt/C catalyst. In the durability test, PtCo/C-400 also shows excellent stability with only 6.9% decline of electrochemical surface area (ECSA) after 1000 cyclic voltammetry (CV) cycles. In-situ X-ray absorption near edge structure (XANES) technique is conducted to explore the nanostructure change of Pt during the PEMFC operation. For PtCo/C catalyst, with the fuel cell operation potential decreasing from open circuit voltage (OCV) to 0.3 V, the Pt L3 white line intensity decreases continuously, indicating the decline of Pt 5d-vacancy due to the adsorption of oxygenated species.

  8. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  9. Synchrotron-based X-ray absorption near-edge spectroscopy imaging for laterally resolved speciation of selenium in fresh roots and leaves of wheat and rice

    PubMed Central

    Wang, Peng; Menzies, Neal W.; Lombi, Enzo; McKenna, Brigid A.; James, Simon; Tang, Caixian; Kopittke, Peter M.

    2015-01-01

    Knowledge of the distribution of selenium (Se) species within plant tissues will assist in understanding the mechanisms of Se uptake and translocation, but in situ analysis of fresh and highly hydrated plant tissues is challenging. Using synchrotron-based fluorescence X-ray absorption near-edge spectroscopy (XANES) imaging to provide laterally resolved data, the speciation of Se in fresh roots and leaves of wheat (Triticum aestivum L.) and rice (Oryza sativa L.) supplied with 1 μM of either selenate or selenite was investigated. For plant roots exposed to selenate, the majority of the Se was efficiently converted to C-Se-C compounds (i.e. methylselenocysteine or selenomethionine) as selenate was transported radially through the root cylinder. Indeed, even in the rhizodermis which is exposed directly to the bulk solution, only 12–31% of the Se was present as uncomplexed selenate. The C-Se-C compounds were probably sequestered within the roots, whilst much of the remaining uncomplexed Se was translocated to the leaves—selenate accounting for 52–56% of the total Se in the leaves. In a similar manner, for plants exposed to selenite, the Se was efficiently converted to C-Se-C compounds within the roots, with only a small proportion of uncomplexed selenite observed within the outer root tissues. This resulted in a substantial decrease in translocation of Se from the roots to leaves of selenite-exposed plants. This study provides important information for understanding the mechanisms responsible for the uptake and subsequent transformation of Se in plants. PMID:26019258

  10. Cu K-edge X-ray Absorption Spectroscopy Reveals Differential Copper Coordimation Within Amyloid-beta Oligomers Compared to Amyloid-beta Monomers

    SciTech Connect

    J Shearer; P Callan; T Tran; V Szalai

    2011-12-31

    The fatal neurodegenerative disorder Alzheimer's disease (AD) has been linked to the formation of soluble neurotoxic oligomers of amyloid-{beta} (A{beta}) peptides. These peptides have high affinities for copper cations. Despite their potential importance in AD neurodegeneration few studies have focused on probing the Cu{sup 2+/1+} coordination environment within A{beta} oligomers. Herein we present a Cu K-edge X-ray absorption spectroscopic study probing the copper-coordination environment within oligomers of A{beta}(42) (sequence: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA). We find that the Cu{sup 2+} cation is contained within a square planar mixed N/O ligand environment within A{beta}(42) oligomers, which is similar to the copper coordination environment of the monomeric forms of {l_brace}Cu{sup II}A{beta}(40){r_brace} and {l_brace}Cu{sup II}A{beta}(16){r_brace}. Reduction of the Cu{sup 2+} cation within the A{beta}(42) oligomers to Cu{sup 1+} yields a highly dioxygen sensitive copper-species that contains Cu{sup 1+} in a tetrahedral coordination geometry. This can be contrasted with monomers of {l_brace}Cu{sup I}A{beta}(40){r_brace} and {l_brace}Cu{sup I}A{beta}(16){r_brace}, which contain copper in a dioxygen inert linear bis-histidine ligand environment [Shearer and Szalai, J. Am. Chem. Soc., 2008, 130, 17826]. The biological implications of these findings are discussed.

  11. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    SciTech Connect

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul Williams, R. Stanley; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio

    2015-07-21

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ∼100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  12. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul; Kilcoyne, A. L. David; Tyliszczak, Tolek; Nishi, Yoshio; Williams, R. Stanley

    2015-07-01

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively. During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ˜100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.

  13. Near-Edge X-ray Absorption Fine Structure Imaging of Spherical and Flat Counterfaces of Ultrananocrystalline Diamond Tribological Contacts: A Correlation of Surface Chemistry and Friction

    SciTech Connect

    A Konicek; C Jaye; M Hamilton; W Sawyer; D Fischer; R Carpick

    2011-12-31

    A recently installed synchrotron radiation near-edge X-ray absorption fine structure (NEXAFS) full field imaging electron spectrometer was used to spatially resolve the chemical changes of both counterfaces from an ultra-nanocrystalline diamond (UNCD) tribological contact. A silicon flat and Si{sub 3}N{sub 4} sphere were both coated with UNCD, and employed to form two wear tracks on the flat in a linear reciprocating tribometer. The first wear track was produced using a new, unconditioned sphere whose surface was thus conditioned during this first experiment. This led to faster run-in and lower friction when producing a second wear track using the conditioned sphere. The large depth of field of the magnetically guided NEXAFS imaging detector enabled rapid, large area spectromicroscopic imaging of both the spherical and flat surfaces. Laterally resolved NEXAFS data from the tribological contact area revealed that both substrates had an as-grown surface layer that contained a higher fraction of sp{sup 2}-bonded carbon and oxygen which was mechanically removed. Unlike the flat, the film on the sphere showed evidence of having graphitic character, both before and after sliding. These results show that the graphitic character of the sphere is not solely responsible for low friction and short run-in. Rather, conditioning the sphere, likely by removing asperities and passivating dangling bonds, leads to lower friction with less chemical modification of the substrate in subsequent tests. The new NEXAFS imaging spectroscopy detector enabled a more complete understanding of the tribological phenomena by imaging, for the first time, the surface chemistry of the spherical counterface which had been in continual contact during wear track formation.

  14. Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles

    NASA Astrophysics Data System (ADS)

    Lehmann, Johannes; Liang, Biqing; Solomon, Dawit; Lerotic, Mirna; LuizãO, Flavio; Kinyangi, James; SchäFer, Thorsten; Wirick, Sue; Jacobsen, Chris

    2005-03-01

    Small-scale heterogeneity of organic carbon (C) forms in soils is poorly quantified since appropriate analytical techniques were not available up to now. Specifically, tools for the identification of functional groups on the surface of micrometer-sized black C particles were not available up to now. Scanning Transmission X-ray Microscopy (STXM) using synchrotron radiation was used in conjunction with Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy to investigate nano-scale distribution (50-nm resolution) of C forms in black C particles and compared to synchrotron-based FTIR spectroscopy. A new embedding technique was developed that did not build on a C-based embedding medium and did not pose the risk of heat damage to the sample. Elemental sulfur (S) was melted to 220°C until it polymerized and quenched with liquid N2 to obtain a very viscous plastic S in which the black C could be embedded until it hardened to a noncrystalline state and was ultrasectioned. Principal component and cluster analysis followed by singular value decomposition was able to resolve distinct areas in a black carbon particle. The core of the studied biomass-derived black C particles was highly aromatic even after thousands of years of exposure in soil and resembled the spectral characteristics of fresh charcoal. Surrounding this core and on the surface of the black C particle, however, much larger proportions of carboxylic and phenolic C forms were identified that were spatially and structurally distinct from the core of the particle. Cluster analysis provided evidence for both oxidation of the black C particle itself as well as adsorption of non-black C. NEXAFS spectroscopy has great potential to allow new insight into black C properties with important implications for biogeochemical cycles such as mineralization of black C in soils and sediments, and adsorption of C, nutrients, and pollutants as well as transport in the geosphere, hydrosphere, and atmosphere.

  15. Local dynamics and phase transition in quantum paraelectric SrTiO3 studied by Ti K-edge x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Anspoks, Andris; Timoshenko, Janis; Purans, Juris; Rocca, Francesco; Trepakov, Vladimir; Dejneka, Alexander; Itoh, Mitsuru

    2016-05-01

    Strontium titanate is a model quantum paraelectric in which, in the region of dominating quantum statistics, the ferroelectric instability is inhibited due to nearly complete compensation of the harmonic contribution into ferroelectric soft mode frequency by the zero- point motion contribution. The enhancement of atomic masses by the substitution of 16 O with 18O decreases the zero-point atomic motion, and low-T ferroelectricity in SrTi18O3 is realized. In this study we report on the local structure of Ti in SrTi16O3 and SrTi18O3 investigated by Extended X-ray Absorption Fine Structure measurements in the temperature range 6 - 300 K.

  16. Assessment of the deformation of the Bateman bipolar hip prosthesis inner bearing due to moisture absorption and creep.

    PubMed

    Lockie, K; Binns, M; Fisher, J; Jobbins, B

    1992-01-01

    The mechanism of inner bearing stiffness of bipolar hip prostheses has been investigated. The Ultra-high Molecular Weight Polyethylene (UHMWPE) component of the Bateman bipolar hip prosthesis has been subjected to a series of static and dynamic tests to assess water absorption and creep. Although deformation of the UHMWPE occurred, this did not produce an increased resistance to movement in the inner bearing. PMID:1572706

  17. Correlated visible-light absorption and intrinsic magnetism of SrTiO3 due to oxygen deficiency: bulk or surface effect?

    PubMed

    Choi, Heechae; Song, Jin Dong; Lee, Kwang-Ryeol; Kim, Seungchul

    2015-04-20

    The visible-light absorption and luminescence of wide band gap (3.25 eV) strontium titanate (SrTiO3) are well-known, in many cases, to originate from the existence of natural oxygen deficiency in the material. In this study based on density functional theory (DFT) calculations, we provide, to the best of our knowledge, the first report indicating that oxygen vacancies in the bulk and on the surfaces of SrTiO3 (STO) play different roles in the optical and magnetic properties. We found that the doubly charged state of oxygen vacancy (VO(2+)) is dominant in bulk SrTiO3 and does not contribute to the sub-band gap photoexcitation or intrinsic magnetism of STO. Neutral oxygen vacancies (VO(0)) on (001) surfaces terminated with both TiO2 and SrO layers induce magnetic moments, which are dependent on the charged state of VO. The calculated absorption spectra for the (001) surfaces exhibit mid-infrared absorption (<0.5 eV) and sub-band gap absorption (2.5-3.1 eV) due to oxygen vacancies. In particular, VO(0) on the TiO2-terminated surface has a relatively low formation energy and magnetic moments, which can explain the recently observed spin-dependent photon absorptions of STO in a magnetic circular dichroism measurement [Rice, W. D.; et al. Nat. Mater.13, 481, 2014]. PMID:25815532

  18. The yields of free radicals induced by monochromatic soft X-rays with energy of the K-absorption edge of bromine in BrdU/dThd complexes

    SciTech Connect

    Kuwabara, M.; Sawamura, S.; Inanami, O.; Kobayashi, K.

    1995-12-31

    Biological Auger effects have been found not only in Br-substituted plasmid DNA (Menke et al. 1991) but also in cells with Br-DNA when they are exposed to soft X-rays with energies above and below the K-absorption edge of Br. These biological Auger effects were sometimes correlated to enhanced DNA damage such as single- or double-strand breaks in these studies. Free radicals induced in DNA are regarded as precursors of base damage and strand breaks. Therefore, it is of interest to examine whether the Auger effects are also reflected in free-radical formation in Br-substituted DNA when they are exposed to soft X-rays with energy corresponding to the K-absorption edge of Br. In the present study BrdU{center_dot}dThd complexes were employed as Br-substituted DNA models, and the yields of free radicals were measured by ESR after irradiating them in the solid state with soft X-rays having energies above and below the K-absorption edge of Br.

  19. Search for partial systemic Lyman edges in nearby quasars

    NASA Technical Reports Server (NTRS)

    Koratkar, A. P.; Kinney, A. L.; Bohlin, R. C.

    1992-01-01

    IUE archival spectra of nearby quasars with redshifts in the range 0.4-2.3 were searched for changes in the continuum at the systemic Lyman edge positions. Thirty-nine percent of the sample do not show any discontinuities. Twenty-nine percent of the sample show complete Lyman edges at redshifts less than the quasar redshift. These objects have associated narrow absorption lines; hence the intervening gas responsible for the absorption is extrinsic to the quasar and its environment. Twenty-two percent of the sample show Lyman edges at the quasar redshift with associated narrow absorption lines. In these objects the gas is associated with the AGN or its host galaxy. Ten percent of the sample have Lyman edges with no known associated absorption lines. If Lyman edge discontinuities are due to optically thick, geometrically thin accretion disks, which are randomly oriented to the line of sight, these results indicate that the Lyman edge discontinuity, either in emission or absorption, has to be not more than 15 percent in most quasars.

  20. Characterization of Functionalized Self-Assembled Monolayers and Surface-Attached Interlocking Molecules Using Near-Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect

    Willey, T; Willey, T

    2004-03-24

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a ''molecular riveting'' step to hold the mechanically attached

  1. Characterization of functionalized self-assembled monolayers and surface-attached interlocking molecules using near-edge X-ray absorption fine structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Willey, Trevor Michael

    Quantitative knowledge of the fundamental structure and substrate binding, as well as the direct measurement of conformational changes, are essential to the development of self-assembled monolayers (SAMs) and surface-attached interlocking molecules, catenanes and rotaxanes. These monolayers are vital to development of nano-mechanical, molecular electronic, and biological/chemical sensor applications. This dissertation investigates properties of functionalized SAMs in sulfur-gold based adsorbed molecular monolayers using quantitative spectroscopic techniques including near-edge x-ray absorption fine structure spectroscopy (NEXAFS) and x-ray photoelectron spectroscopy (XPS). The stability of the gold-thiolate interface is addressed. A simple model SAM consisting of dodecanethiol adsorbed on Au(111) degrades significantly in less than 24 hours under ambient laboratory air. S 2p and O 1s XPS show the gold-bound thiolates oxidize to sulfinates and sulfonates. A reduction of organic material on the surface and a decrease in order are observed as the layer degrades. The effect of the carboxyl vs. carboxylate functionalization on SAM structure is investigated. Carboxyl-terminated layers consisting of long alkyl-chain thiols vs. thioctic acid with short, sterically separated, alkyl groups are compared and contrasted. NEXAFS shows a conformational change, or chemical switchability, with carboxyl groups tilted over and carboxylate endgroups more upright. Surface-attached loops and simple surface-attached rotaxanes are quantitatively characterized, and preparation conditions that lead to desired films are outlined. A dithiol is often insufficient to form a molecular species bound at each end to the substrate, while a structurally related disulfide-containing polymer yields surface-attached loops. Similarly, spectroscopic techniques show the successful production of a simple, surface-attached rotaxane that requires a "molecular riveting" step to hold the mechanically attached

  2. Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system

    SciTech Connect

    Hasan, Mohammad; Ghatak, Ananya; Mandal, Bhabani Prasad

    2014-05-15

    We consider a non-Hermitian medium with a gain and loss symmetric, exponentially damped potential distribution to demonstrate different scattering features analytically. The condition for critical coupling (CC) for unidirectional wave and coherent perfect absorption (CPA) for bidirectional waves are obtained analytically for this system. The energy points at which total absorption occurs are shown to be the spectral singular points for the time reversed system. The possible energies at which CC occurs for left and right incidence are different. We further obtain periodic intervals with increasing periodicity of energy for CC and CPA to occur in this system. -- Highlights: •Energy ranges for CC and CPA are obtained explicitly for complex WS potential. •Analytical conditions for CC and CPA for PT symmetric WS potential are obtained. •Conditions for left and right CC are shown to be different. •Conditions for CC and CPA are shown to be that of SS for the time reversed system. •Our model shows the great flexibility of frequencies for CC and CPA.

  3. First principles calculations of the structure and V L-edge X-ray absorption spectra of V2O5 using local pair natural orbital coupled cluster theory and spin-orbit coupled configuration interaction approaches.

    PubMed

    Maganas, Dimitrios; Roemelt, Michael; Hävecker, Michael; Trunschke, Annette; Knop-Gericke, Axel; Schlögl, Robert; Neese, Frank

    2013-05-21

    A detailed study of the electronic and geometric structure of V2O5 and its X-ray spectroscopic properties is presented. Cluster models of increasing size were constructed in order to represent the surface and the bulk environment of V2O5. The models were terminated with hydrogen atoms at the edges or embedded in a Madelung field. The structure and interlayer binding energies were studied with dispersion-corrected local, hybrid and double hybrid density functional theory as well as the local pair natural orbital coupled cluster method (LPNO-CCSD). Convergence of the results with respect to cluster size was achieved by extending the model to up to 20 vanadium centers. The O K-edge and the V L2,3-edge NEXAFS spectra of V2O5 were calculated on the basis of the newly developed Restricted Open shell Configuration Interaction with Singles (DFT-ROCIS) method. In this study the applicability of the method is extended to the field of solid-state catalysis. For the first time excellent agreement between theoretically predicted and experimentally measured vanadium L-edge NEXAFS spectra of V2O5 was achieved. At the same time the agreement between experimental and theoretical oxygen K-edge spectra is also excellent. Importantly, the intensity distribution between the oxygen K-edge and vanadium L-edge spectra is correctly reproduced, thus indicating that the covalency of the metal-ligand bonds is correctly described by the calculations. The origin of the spectral features is discussed in terms of the electronic structure using both quasi-atomic jj coupling and molecular LS coupling schemes. The effects of the bulk environment driven by weak interlayer interactions were also studied, demonstrating that large clusters are important in order to correctly calculate core level absorption spectra in solids. PMID:23575467

  4. The energy margin strategy for reducing dose variation due to setup uncertainty in intensity modulated proton therapy (IMPT) delivered with distal edge tracking (DET)

    PubMed Central

    Zhang, Miao; Flynn, Ryan T.; Mo, Xiaohu; Mackie, Thomas Rock

    2015-01-01

    Intensity-modulated proton therapy (IMPT) can produce plans with similar target dose conformity but lower normal tissue dose than intensity-modulated X-ray therapy (IMXT). However, due to the finite range of proton beams in tissue, proton therapy treatment plans are usually more sensitive to setup uncertainties than X-ray therapy plans. In this work, the energy margin (EM) concept, which was initially developed for passive scattering proton therapy, was generalized to apply to IMPT treatment planning. The effectiveness of the EM method was evaluated on five head-and-neck cancer patients with distal edge tracking (DET) treatment plans by comparing the original plans (ORG) without an EM to those with an EM. Three beam arrangements were considered: 24 beams delivered over a 360° arc, 12 beams delivered over a 180° arc, and 12 beams delivered over two 90° fan angles. Setup uncertainty was modeled by sampling rigid translational shifts from a Gaussian distribution with a mean of 0 mm and standard deviation of 2 mm in all directions. Delivered dose distributions for all 30 fractions were recalculated using the Geant4 Monte Carlo code. Normalized total dose (NTD) for both the CTV and a ring structure surrounding the PTV were recorded. The plan quality comparison revealed that EM plans had the same CTV coverage but higher dose to the normal tissue than ORG plans. After the simulated delivery, ORG plans resulted in more than 3% underdosage to 5% of the CTV volume in all three beam arrangements, whereas the EM plans did not. Both ORG and EM plans did not produce more than of the ring structure. The use of an EM for IMPT treatment 5% overdose to D2% planning can substantially reduce sensitivity of the resulting dose distributions to setup uncertainty. PMID:22955652

  5. The energy margin strategy for reducing dose variation due to setup uncertainty in intensity modulated proton therapy (IMPT) delivered with distal edge tracking (DET).

    PubMed

    Zhang, Miao; Flynn, Ryan T; Mo, Xiaohu; Mackie, Thomas Rock

    2012-01-01

    Intensity-modulated proton therapy (IMPT) can produce plans with similar target dose conformity but lower normal tissue dose than intensity-modulated X-ray therapy (IMXT). However, due to the finite range of proton beams in tissue, proton therapy treatment plans are usually more sensitive to setup uncertainties than X-ray therapy plans. In this work, the energy margin (EM) concept, which was initially developed for passive scattering proton therapy, was generalized to apply to IMPT treatment planning. The effectiveness of the EM method was evaluated on five head-and-neck cancer patients with distal edge tracking (DET) treatment plans by comparing the original plans (ORG) without an EM to those with an EM. Three beam arrangements were considered: 24 beams delivered over a 360° arc, 12 beams delivered over a 180° arc, and 12 beams delivered over two 90° fan angles. Setup uncertainty was modeled by sampling rigid translational shifts from a Gaussian distribution with a mean of 0 mm and standard deviation of 2 mm in all directions. Delivered dose distributions for all 30 fractions were recalculated using the Geant4 Monte Carlo code. Normalized total dose (NTD) for both the CTV and a ring structure surrounding the PTV were recorded. The plan quality comparison revealed that EM plans had the same CTV coverage but higher dose to the normal tissue than ORG plans. After the simulated delivery, ORG plans resulted in more than 3% underdosage to 5% of the CTV volume in all three beam arrangements, whereas the EM plans did not. Both ORG and EM plans did not produce more than 5% overdose to D2% of the ring structure. The use of an EM for IMPT treatment planning can substantially reduce sensitivity of the resulting dose distributions to setup uncertainty. PMID:22955652

  6. 4.6 micron absorption features due to solid phase CO and cyano group molecules toward compact infrared sources

    NASA Technical Reports Server (NTRS)

    Lacy, J. H.; Baas, F.; Allamandola, L. J.; Van De Bult, C. E. P.; Persson, S. E.; Mcgregor, P. J.; Lonsdale, C. J.; Geballe, T. R.

    1984-01-01

    Spectra obtained at a resolving power of 840, for seven protostellar sources in the region of the 4.67-micron fundamental vibrational band of CO, indicate that the deep absorption feature in W33A near 4.61 microns consists of three features which are seen in other sources, but with varying relative strength. UV-irradiation laboratory experiments with 'dirty ice' temperature cycling allow the identification of two of the features cited with solid CO and CO complexed to other molecules. Cyano group-containing molecules have a lower vapor pressure than CO, and can therefore survive in much warmer environments. The formation and location of the CO- and CN-bearing grain mantles and sources of UV irradiation in cold molecular clouds are discussed. Plausible UV light sources can produce the observed cyano group features, but only under conditions in which local heat sources do not cause evaporation of the CO molecules prior to their photoprocessing.

  7. The enhancement of cosmic radio noise absorption due to hiss-driven energetic electron precipitation during substorms

    NASA Astrophysics Data System (ADS)

    Li, Haimeng; Yuan, Zhigang; Yu, Xiongdong; Huang, Shiyong; Wang, Dedong; Wang, Zhenzhen; Qiao, Zheng; Wygant, John R.

    2015-07-01

    The Van Allen probes, low-altitude NOAA satellite, MetOp satellite, and riometer are used to analyze variations of precipitating energetic electron fluxes and cosmic radio noise absorption (CNA) driven by plasmaspheric hiss with respect to geomagnetic activities. The hiss-driven energetic electron precipitations (at L ~ 4.7-5.3, magnetic local time (MLT) ~ 8-9) are observed during geomagnetic quiet condition and substorms, respectively. We find that the CNA detected by riometers increased very little in the hiss-driven event during quiet condition on 6 September 2012. The hiss-driven enhancement of riometer was still little during the first substorm on 30 September 2012. However, the absorption detected by the riometer largely increased, while the energies of the injected electrons became higher during the second substorm on 30 September 2012. The enhancement of CNA (ΔCNA) observed by the riometer and calculated with precipitating energetic electrons is in agreement during the second substorm, implying that the precipitating energetic electrons increase CNA to an obviously detectable level of the riometer during the second substorm on 30 September 2012. The conclusion is consistent with Rodger et al. (2012), which suggest that the higher level of ΔCNA prefers to occur in the substorms, because substorms may produce more intense energetic electron precipitation associated with electron injection. Furthermore, the combination of the observations and theory calculations also suggests that higher-energy electron (>55 keV) precipitation contributes more to the ΔCNA than the lower energy electron precipitation. In this paper, the higher-energy electron precipitation is related to lower frequency hiss.

  8. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  9. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption.

    PubMed

    Torii, Kunio; Uneyama, Hisayuki; Nakamura, Eiji

    2013-04-01

    Dietary glutamate (Glu) stimulates to evoke the umami taste, one of the five basic tastes, enhancing food palatability. But it is also the main gut energy source for the absorption and metabolism for each nutrient, thus, only a trace amount of Glu reaches the general circulation. Recently, we demonstrated a unique gut sensing system for free Glu (glutamate signaling). Glu is the only nutrient among amino acids, sugars and electrolytes that activates rat gastric vagal afferents from the luminal side specifically via metabotropic Glu receptors type 1 on mucosal cells releasing mucin and nitrite mono-oxide (NO), then NO stimulates serotonin (5HT) release at the enterochromaffin cell. Finally released 5HT stimulates 5HT3 receptor at the nerve end of the vagal afferent fiber. Functional magnetic resonance imaging (f-MRI, 4.7 T) analysis revealed that luminal sensing with 1 % (w/v) monosodium L-glutamate (MSG) in rat stomach activates both the medial preoptic area (body temperature controller) and the dorsomedial hypothalamus (basic metabolic regulator), resulting in diet-induced thermogenesis during mealing without changes of appetite for food. Interestingly, rats were forced to eat a high fat and high sugar diet with free access to 1 % (w/w) MSG and water in a choice paradigm and showed the strong preference for the MSG solution and subsequently, they displayed lower fat deposition, weight gain and blood leptin. On the other hand, these brain functional changes by the f-MRI signal after 60 mM MSG intubation into the stomach was abolished in the case of total vagotomized rats, suggesting that luminal glutamate signaling contributes to control digestion and thermogenesis without obesity. PMID:23463402

  10. Observation of the surface 4f state of CePd{sub 7} by means of the resonant-inverse-photoemission study at the Ce 4d absorption edge

    SciTech Connect

    Kanai, K.; Tezuka, Y.; Fujisawa, M.; Harada, Y.; Shin, S.; Schmerber, G.; Kappler, J.P.; Parlebas, J.C.; Kotani, A.

    1997-01-01

    The resonant inverse photoemission study (RIPES) of CePd{sub 7}, has been carried out at the Ce 4d{r_arrow}4f absorption edge. The strong resonant enhancement of the 4f cross section enables us to distinguish two 4f components in the empty electronic state near the Fermi level. The incidence-angle dependence of the RIPES indicates a clear difference between ground-state configurations at the bulk and surface. It is found that the former shows a strongly hybridized 4f state, while the latter shows a localized 4f character. The angle dependence of the RIPES of {alpha}-Ce metal has been also carried out and similar results as those of CePd{sub 7} were obtained. The RIPES at the Ce 4d{r_arrow}4f edge is found to be a powerful method to investigate the surface 4f state. {copyright} {ital 1997} {ital The American Physical Society}

  11. Si K Edge Measurements of the ISM with Chandra

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Corrales, Lia; Canizares, C. R.

    2016-01-01

    The Si K edge structure in X-ray spectra of the diffuse ISM is expected to exhibit substructure related to the fact that most absorption is due to silicates in dust. We surveyed high resolution X-ray spectra of a large number of bright low-mass X-ray binaries with column densities significantly larger than 10^22 cm^2. Using the to date unprecedented spectral resolution of the high energy transmission gratings onboard the Chandra X-ray observatory we find complex substructure in the Si K edge. The highest resolved spectra show two edges, one at the expected value for atomic, one at the value for most silicate compounds with the dominant contribution of the latter. There is specific subtructure from silicate optical depth caused by absorption and scattering. Some is also variable and can be attributed to ionized absorption in the vicinity of the X-ray sources.

  12. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES)

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Na Pattalung, Warangkana; Hirunyatrakul, Phoosak; Kittikoon, Itthipon; Ho, Kin Fai; Cao, Junji

    2012-01-01

    This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs) and pressure-controlled glove boxes (PCGBs), which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI), even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10. PMID:22988545

  13. Moderate-resolution spectroscopy of the lensed quasar 2237 + 0305 - A search for CA II absorption due to the interstellar medium in the foreground lensing galaxy

    NASA Astrophysics Data System (ADS)

    Hintzen, Paul; Maran, Stephen P.; Michalitsianos, Andrew G.; Foltz, Craig B.; Chaffee, Frederic H., Jr.; Kafatos, Minas

    1990-01-01

    The gravitational lens system 2237+0305 consists of a low-redshift barred spiral galaxy (z = 0.0394) centered on a more distant quasar (z = 1.695). Because the lensing galaxy is nearly face on, spectroscopy of the background quasar affords a unique opportunity to study the interstellar medium in the galaxy's center and . We report moderate-resolution spectroscopy of QSO2237+0305 yielding a 3σ upper limit of 72 mÅ for the rest equivalent width of Ca II K absorption due to gas in the intervening galaxy. Since gas in the Milky Way "thick disk" typically produces 220 mÅ Ca II lines along lines of sight at high galactic latitude, while our line of sight to QSO 2237+0305 is effectively the weighted mean of four lines of sight, each of which transects an entire halo diameter in the lensing galaxy rather than just a radius, our Ca II upper limit argues against the presence of such a thick disk near the center of the lensing galaxy. Also, published studies indicate that at 8200 Å, QSO 2237+0305 suffers roughly 0.5 mag of extinction due to the leasing galaxy. Assuming a normal gas-to-dust ratio and allowing for various sources of uncertainty, this absorption estimate combined with our Ca II K upper limit implies that calcium is depleted with respect to hydrogen by at least 2.7-3.7 dex, compared to solar abundances. This depletion is similar to the more extreme cases seen in our own galaxy, and higher-dispersion observations may further decrease the upper limit on Ca II absorption.

  14. The first UV absorption band of l-tryptophan is not due to two simultaneous orthogonal electronic transitions differing in the dipole moment.

    PubMed

    Catalán, Javier

    2016-06-01

    Based on UV/Vis spectroscopic evidence obtained in this work, the first band in the absorption spectrum of l-tryptophan is largely due to a single electronic transition from the ground state to the (1)Lb excited state. However, emission spectra of this compound recorded at a variable temperature in ethanol, n-butanol and diethyl ether are structureless and considerably red-shifted at room temperature; also, lowering the temperature causes the emission to become structured and to undergo such a strong blue shift that it appears to be due to the (1)Lb state of the compound. Based on these findings, the formation (from the excited (1)Lb state) of the excited state responsible for the structureless, markedly red-shifted emission in l-tryptophan is strongly dependent not only on the viscosity of the medium, but also on its dipolarity. PMID:27197597

  15. Rotation dependence of a phase delay between plasma edge electron density and temperature fields due to a fast rotating, resonant magnetic perturbation field

    SciTech Connect

    Stoschus, H.; Schmitz, O.; Frerichs, H.; Unterberg, B.; Abdullaev, S. S.; Clever, M.; Coenen, J. W.; Kruezi, U.; Schega, D.; Samm, U.; Jakubowski, M. W.

    2010-06-15

    Measurements of the plasma edge electron density n{sub e} and temperature T{sub e} fields during application of a fast rotating, resonant magnetic perturbation (RMP) field show a characteristic modulation of both, n{sub e} and T{sub e} coherent to the rotation frequency of the RMP field. A phase delay PHI between the n{sub e}(t) and T{sub e}(t) waveforms is observed and it is demonstrated that this phase delay PHI is a function of the radius with PHI(r) depending on the relative rotation of the RMP field and the toroidal plasma rotation. This provides for the first time direct experimental evidence for a rotation dependent damping of the external RMP field in the edge layer of a resistive high-temperature plasma which breaks down at low rotation and high resonant field amplitudes.

  16. Near-infrared photoluminescence and ligand K-edge x-ray absorption spectroscopies of AnO2Cl42-(An:u, NP, Pu)

    SciTech Connect

    Wilkerson, Marianne P; Berg, John M; Clark, David L; Conradson, Steven D; Hobart, David E; Kozimor, Stosh A; Scott, Brian L

    2008-01-01

    We have used photoluminescence and X-ray absorption spectroscopies to investigate electronic structures and metal-ligand bonding of a series of An02CI/ ' (An = U, Np, Pu) compounds. Specifically, we will discuss time-resolved near-infrared emission spectra of crystalline Cs2U(An)02C14 (An = Np and Pu) both at 23 K and 75 K, as well as chlorine Kedge X-ray absorption spectra ofCs2An02CI4 (An = U, Np).

  17. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    PubMed Central

    Zhang, Bangmin; Chen, Jingsheng; Yang, Ping; Chi, Xiao; Lin, Weinan; Venkatesan, T.; Sun, Cheng-Jun; Heald, Steve M.; Chow, Gan Moog

    2016-01-01

    The Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate was measured, and the effects of strain relaxation on film properties were investigated. The films showed in-plane compressive and out-of-plane tensile strains. Strain relaxation occurred with increasing film thickness, affecting both lattice constant and MnO6 octahedral rotation. In polarization dependent XANES measurements using in-plane (parallel) and out-of-plane (perpendicular) geometries, the different values of absorption resonance energy Er confirmed the film anisotropy. The values of Er along these two directions shifted towards each other with increasing film thickness. Correlating with X-ray diffraction (XRD) results it is suggested that the strain relaxation decreased the local anisotropy and corresponding probability of electronic charge transfer between Mn 3d and O 2p orbitals along the in-plane and out-of-plane directions. The XANES results were used to explain the film-thickness dependent magnetic and transport properties. PMID:26818583

  18. Element distribution and iron speciation in mature wheat grains (Triticum aestivum L.) using synchrotron X-ray fluorescence microscopy mapping and X-ray absorption near-edge structure (XANES) imaging.

    PubMed

    De Brier, Niels; Gomand, Sara V; Donner, Erica; Paterson, David; Smolders, Erik; Delcour, Jan A; Lombi, Enzo

    2016-08-01

    Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue-level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe-speciation data obtained directly from different grain tissues using the newly developed synchrotron-based technique of X-ray absorption near-edge spectroscopy imaging, coupling this with high-definition μ-X-ray fluorescence microscopy to map the co-localization of essential elements. In the aleurone, phosphorus (P) is co-localized with Fe and Zn, and X-ray absorption near-edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co-occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co-localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility. PMID:27038325

  19. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGESBeta

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; Sun, Cheng -Jun; Heald, Steve M.; Chow, Gan Moog; Yang, Ping; Chi, Xiao; Lin, Weinan

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy Er. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results, it was suggested that themore » strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of Er. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  20. Effects of strain relaxation in Pr0.67Sr0.33MnO3 films probed by polarization dependent X-ray absorption near edge structure.

    PubMed

    Zhang, Bangmin; Chen, Jingsheng; Yang, Ping; Chi, Xiao; Lin, Weinan; Venkatesan, T; Sun, Cheng-Jun; Heald, Steve M; Chow, Gan Moog

    2016-01-01

    The Mn K edge X-ray absorption near edge structure (XANES) of Pr0.67Sr0.33MnO3 films with different thicknesses on (001) LaAlO3 substrate was measured, and the effects of strain relaxation on film properties were investigated. The films showed in-plane compressive and out-of-plane tensile strains. Strain relaxation occurred with increasing film thickness, affecting both lattice constant and MnO6 octahedral rotation. In polarization dependent XANES measurements using in-plane (parallel) and out-of-plane (perpendicular) geometries, the different values of absorption resonance energy Er confirmed the film anisotropy. The values of Er along these two directions shifted towards each other with increasing film thickness. Correlating with X-ray diffraction (XRD) results it is suggested that the strain relaxation decreased the local anisotropy and corresponding probability of electronic charge transfer between Mn 3d and O 2p orbitals along the in-plane and out-of-plane directions. The XANES results were used to explain the film-thickness dependent magnetic and transport properties. PMID:26818583

  1. Surface and in-depth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis

    NASA Astrophysics Data System (ADS)

    Menzel, Magnus; Schlifke, Annalena; Falk, Mareike; Janek, Jürgen; Fröba, Michael; Fittschen, Ursula Elisabeth Adriane

    2013-07-01

    The cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi0.5Mn1.5O4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn3 + to Mn4 + only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling.

  2. Theoretical Calculations of the Pressures, Forces, and Moments Due to Various Lateral Motions Acting on Tapered Sweptback Vertical Tails with Supersonic Leading and Trailing Edges

    NASA Technical Reports Server (NTRS)

    Margolis, Kenneth; Elliott, Miriam H.

    1960-01-01

    Based on expressions for the linearized velocity potentials and pressure distributions given in NACA Technical Report 1268, formulas for the span load distribution, forces, and moments are derived for families of thin isolated vertical tails with arbitrary aspect ratio, taper ratio, and sweepback performing the motions constant sideslip, steady rolling, steady yawing, and constant lateral acceleration. The range of Mach number considered corresponds, in general, to the condition that the tail leading and trailing edges are supersonic. To supplement the analytical results, design-type charts are presented which enable rapid estimation of the forces and moments (expressed as stability derivatives) for given combinations of geometry parameters and Mach number.

  3. A HIRES Detection of NA I D Absorption in the Spectrum of the QSO PKS 2020-370 Due to the Galaxy Klemola 31A

    NASA Astrophysics Data System (ADS)

    Junkkarinen, V. T.; Barlow, T. A.

    1994-12-01

    By using the Keck telescope and HIRES spectrograph we have detected Na I D absorption lines in the spectrum of the QSO PKS 2020-370 (V = 17.5, z = 1.048) due to the galaxy Klemola 31A (z = 0.0288). The PKS 2020-370 line of sight is near an apparent spiral arm only 20" from the nucleus of Klemola 31A which corresponds to 17 kpc (H_o = 50 km s(-1) Mpc(-1) ). The spectrum of PKS 2020-370 has strong Ca II absorption lines (W_λ ~ 350 m Angstroms \\ for the K line) at the galaxy redshift (Boksenberg et al, 1980, ApJ, 242, L145), but previous attempts to detect Na I have resulted in upper limits (Boisse et al. 1988, A&A, 191, 193, Womble, 1992, thesis UCSD). We observed PKS 2020-370 with HIRES in May 1994 at a resolution of 8 km s(-1) FWHM for a total of 90 minutes. The Na I D doublet is detected with a total W_λ for the Na I 5891.6 Angstroms \\ (vac) absorption line of about 160 m Angstroms . The absorption appears as two main velocity components separated by 23 km s(-1) . The optically thin estimate for N(Na I) = 1.0 times 10(12) cm(-2) gives an estimated N(Ca II)/N(Na I) = 5. This value suggests that the gas in Klemola 31A along the QSO line of sight is ``halo like''. Along ``disk like'' lines of sight where Ca is thought to be depleted onto grains in our Galaxy, the N(Ca II)/N(Na I) ratio is usually small (<= 1). Other QSO--galaxy pairs often show disk like N(Ca II)/N(Na I) ratios when the line of sight intersects starlight at 25 mag per sq. arcsec (Womble, 1992 thesis UCSD). The PKS 2020-370 sightline is near the optical extent of Klemola 31A but the N(Ca II)/N(Na I) is consistent with the sightline passing through two clouds in the halo. This research has been supported in part by NASA NAS5--29293 and NAG5--1630.

  4. Thermo-Active Behavior of Ethylene-Vinyl Acetate | Multiwall Carbon Nanotube Composites Examined by in Situ near-Edge X-ray Absorption Fine-Structure Spectroscopy

    PubMed Central

    2015-01-01

    NEXAFS spectroscopy was used to investigate the temperature dependence of thermally active ethylene-vinyl acetate | multiwall carbon nanotube (EVA|MWCNT) films. The data shows systematic variations of intensities with increasing temperature. Molecular orbital assignment of interplaying intensities identified the 1s → π*C=C and 1s → π*C=O transitions as the main actors during temperature variation. Furthermore, enhanced near-edge interplay was observed in prestrained composites. Because macroscopic observations confirmed enhanced thermal-mechanical actuation in prestrained composites, our findings suggest that the interplay of C=C and C=O π orbitals may be instrumental to actuation. PMID:24803975

  5. Multimodal tissue imaging: using coregistered optical tomography data to estimate tissue autofluorescence intensity change due to scattering and absorption by neoplastic epithelial cells.

    PubMed

    Pahlevaninezhad, Hamid; Cecic, Ivana; Lee, Anthony M D; Kyle, Alastair H; Lam, Stephen; MacAulay, Calum; Lane, Pierre M

    2013-10-01

    Autofluorescence (AF) imaging provides valuable information about the structural and chemical states of tissue that can be used for early cancer detection. Optical scattering and absorption of excitation and emission light by the epithelium can significantly affect observed tissue AF intensity. Determining the effect of epithelial attenuation on the AF intensity could lead to a more accurate interpretation of AF intensity. We propose to use optical coherence tomography coregistered with AF imaging to characterize the AF attenuation due to the epithelium. We present imaging results from three vital tissue models, each consisting of a three-dimensional tissue culture grown from one of three epithelial cell lines (HCT116, OVCAR8, and MCF7) and immobilized on a fluorescence substrate. The AF loss profiles in the tissue layer show two different regimes, each approximately linearly decreasing with thickness. For thin cell cultures (<300 μm), the AF signal changes as AF(t)/AF(0)=1-1.3t (t is the thickness in millimeter). For thick cell cultures (>400 μm), the AF loss profiles have different intercepts but similar slopes. The data presented here can be used to estimate AF loss due to a change in the epithelial layer thickness and potentially to reduce AF bronchoscopy false positives due to inflammation and non-neoplastic epithelial thickening. PMID:24108573

  6. Ab initio Bethe-Salpeter calculations of the x-ray absorption spectra of transition metals at the L-shell edges

    NASA Astrophysics Data System (ADS)

    Vinson, J.; Rehr, J. J.

    2012-11-01

    We present ab initio Bethe-Salpeter equation (BSE) calculations of the L2,3 edges of several insulating and metallic compounds containing Ca, V, Fe, Co, Ni, and Cu, spanning a range of 3d-electron occupations. Our approach includes the key ingredients of a unified treatment of both extended states and atomic multiplet effects, i.e., Bloch states, self-consistent crystal potentials, ground-state magnetism, GW self-energy corrections, spin-orbit terms, and Coulomb interactions between the L2 and L3 levels. The method is implemented in the ocean package, which uses plane-wave pseudopotential wave functions as a basis, a projector-augmented-wave construction for the transition matrix elements, and a resolvent formalism for the BSE calculation. The results are in near quantitative agreement with experiment, including both fine structure at the edges and the nonstatistical L3/L2 ratios observed for these systems. Approximations such as time-dependent density-functional theory are shown to be less accurate.

  7. Hybrid-like 2/1 flux-pumping and magnetic island evolution due to edge localized mode-neoclassical tearing mode coupling in DIII-D

    NASA Astrophysics Data System (ADS)

    King, J. D.; La Haye, R. J.; Petty, C. C.; Osborne, T. H.; Lasnier, C. J.; Groebner, R. J.; Volpe, F. A.; Lanctot, M. J.; Makowski, M. A.; Holcomb, C. T.; Solomon, W. M.; Allen, S. L.; Luce, T. C.; Austin, M. E.; Meyer, W. H.; Morse, E. C.

    2012-02-01

    Direct analysis of internal magnetic field pitch angles measured using the motional Stark effect diagnostic shows m /n=2/1 neoclassical tearing modes exhibit stronger poloidal magnetic flux-pumping than typical hybrids containing m /n=3/2 modes. This flux-pumping causes the avoidance of sawteeth, and is present during partial electron cyclotron current drive suppression of the tearing mode. This finding could lead to hybrid discharges with higher normalized fusion performance at lower q95. The degree of edge localized mode-neoclassical tearing mode (ELM-NTM) coupling and the strength of flux-pumping increase with beta and the proximity of the modes to the ELMing pedestal. Flux-pumping appears independent of magnetic island width. Individual ELM-NTM coupling events show a rapid timescale drop in the island width followed by a resistive recovery that is successfully modeled using the modified Rutherford equation. The fast transient drop in island width increases with ELM size.

  8. The effect of film thickness on the optical absorption edge and optical constants of the Cr(III) organic thin films

    NASA Astrophysics Data System (ADS)

    Yakuphanoglu, F.; Sekerci, M.; Balaban, A.

    2005-05-01

    The effect of film thickness on optical properties of the Cr(III) complex having 2-pyridincarbaldehye thiosemicarbazone thin films was investigated. The analyses of the optical absorption data revealed existence of direct and indirect transitions in the optical band gap. The optical constants (refractive index and dielectric constant) of the thin films were determined. The thickness of the films causes important changes in refractive index and real part-imaginary parts of the dielectric constant. The most significant result of the present study is to indicate that thickness of the film can be used to modify in the optical band gaps and optical constant of the thin films.

  9. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  10. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes – Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-β-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes

  11. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions. PMID:25311904

  12. Origin of improved scintillation efficiency in (Lu,Gd){sub 3}(Ga,Al){sub 5}O{sub 12}:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study

    SciTech Connect

    Wu, Yuntao Luo, Jialiang; Ren, Guohao; Nikl, Martin

    2014-01-01

    In the recent successful improvement of scintillation efficiency in Lu{sub 3}Al{sub 5}O{sub 12}:Ce driven by Ga{sup 3+} and Gd{sup 3+} admixture, the “band-gap engineering” and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce{sup 3+}/Ce{sup 4+} ratio by Ga{sup 3+} admixture was evidenced, while it was kept nearly stable with the Gd{sup 3+} admixture. Ce valence instability and Ce{sup 3+}/Ce{sup 4+} ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce{sup 3+} and Fermi level.

  13. Preliminary optical design of a varied line-space spectrograph for the multi-channel detection of near-edge X-ray absorption fine structure (NEXAFS) spectra in the 280-550 eV energy range

    SciTech Connect

    Wheeler, B.S.; McKinney, W.R.; Hussain, Z.; Padmore, H.

    1996-07-01

    The optical design of a varied line-space spectrograph for the multi-channel recording of NEXAFS spectra in a single {open_quotes}snapshot{close_quotes} is proposed. The spectrograph is to be used with a bending magnet source on beamline 7.3.2 at the Advanced Light Source (ALS). Approximately 20 volts of spectra are simultaneously imaged across a small square of material sample at each respective K absorption edge of carbon, nitrogen, and oxygen. Photoelectrons emitted from the material sample will be collected by an electron imaging microscope, the view field of which determines the sampling size. The sample also forms the exit slit of the optical system. This dispersive method of NEXAFS data acquisition is three to four orders of magnitude faster than the conventional method of taking data point-to-point using scanning of the grating. The proposed design is presented along with the design method and supporting SHADOW raytrace analysis.

  14. Local structure of epitaxial GeTe and Ge2Sb2Te5 films grown on InAs and Si substrates with (100) and (111) orientations: An x-ray absorption near-edge structure study

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Krbal, M.; Tominaga, J.; Giussani, A.; Perumal, K.; Riechert, H.; Calarco, R.; Uruga, T.

    2015-03-01

    GeTe is an end-point of the GeTe-Sb2Te3 quasibinary alloys often referred to as phase-change memory materials. The polycrystalline nature of the crystalline films used in devices and the concomitant presence of grain boundaries complicate detailed structural studies of the local structure. Recent progress in the epitaxial growth of phase-change materials offers unique possibilities for precise structural investigations. In this work, we report on results of x-ray absorption near-edge structure (XANES) studies of GeTe and Ge2Sb2Te5 epitaxial films grown on Si and InAs substrates with (100) and (111) orientations. The results show a strong dependence of the local structure on the substrate material and especially orientation and are discussed in conjunction with polycrystalline samples and ab-initio XANES simulations.

  15. Novel Technique for Improving the Signal-to-Background Ratio of X-ray Absorption Near-Edge Structure Spectrum in Fluorescence Mode and Its Application to the Chemical State Analysis of Magnesium Doped in GaN

    NASA Astrophysics Data System (ADS)

    Yonemura, Takumi; Iihara, Junji; Saito, Yoshihiro; Ueno, Masaki

    2013-12-01

    A novel measurement technique for an X-ray absorption near-edge structure (XANES) for magnesium (Mg) doped in gallium nitride (GaN) has been developed. XANES spectra from Mg at very low concentrations of 1 ×1018/cm3 doped in GaN have successfully been obtained by optimizing the region of interest (ROI) and by using highly brilliant synchrotron radiation X-rays of SPring-8. The ROI is the limited energy region from an X-ray fluorescence spectrum to elicit signals of particular atoms. Using this new technique, we have investigated the effect of the annealing process for Mg-doped GaN on the XANES spectra. It has been found that the XANES spectra of Mg significantly changed as the annealing temperature increased. This indicates that the local structure around Mg atoms in GaN was modified by the annealing process.

  16. Theoretical analysis of X-ray magnetic circular dichroism at the Yb L2, 3 absorption edges of YbInCu4 in high magnetic fields around the field-induced valence transition

    NASA Astrophysics Data System (ADS)

    Kotani, A.

    2012-01-01

    High-magnetic-field X-ray absorption spectra (XAS) and its X-ray magnetic circular dichroism (XMCD) at the Yb L2, 3 edges of YbInCu4 are calculated around the field-induced valence transition at about 30 T. The calculations are made by using a new theoretical framework with an extended single impurity Anderson model (SIAM) developed recently by the present author. Two parameters in SIAM, the 4 f level and the hybridization strength, are taken as different values in low- and high-magnetic-field phases of the field-induced valence transition. The calculated results are compared with recent experimental data measured by Matsuda et al. by utilizing a miniature pulsed magnet up to 40 T. The field-dependence of the calculated XMCD spectra is explained in detail on the basis of the field-dependence of the Yb 4 f wavefunctions in the ground state. Some possibilities are discussed on the negative XMCD signal observed experimentally at the L2 edge.

  17. X-ray absorption, glancing-angle reflectivity, and theoretical study of the N K- and Ga M{sub 2,3}-edge spectra in GaN

    SciTech Connect

    Lambrecht, W.R.; Rashkeev, S.N.; Segall, B.; Lawniczak-Jablonska, K.; Suski, T.; Gullikson, E.M.; Underwood, J.H.; Perera, R.C.; Rife, J.C.; Grzegory, I.; Porowski, S.; Wickenden, D.K.

    1997-01-01

    A comprehensive study of the nitrogen K edge and gallium M{sub 2,3} edge in gallium nitride is presented. Results of two different experimental techniques, x-ray absorption by total photocurrent measurements and glancing-angle x-ray reflectivity, are compared with each other. First-principles calculations of the (polarization averaged) dielectric response {epsilon}{sub 2}({omega}) contributions from the relevant core-level to conduction-band transitions and derived spectral functions are used to interpret the data. These calculations are based on the local density approximation (LDA) and use a muffin-tin orbital basis for the band structure and matrix elements. The angular dependence of the x-ray reflectivity is studied and shown to be in good agreement with the theoretical predictions based on Fresnel theory and the magnitude of the calculated x-ray optical response functions. The main peaks in the calculated and measured spectra are compared with those in the relevant partial density of conduction-band states. Assignments are made to particular band transitions and corrections to the LDA are discussed. From the analysis of the N K and Ga M{sub 2,3} edges the latter are found to be essentially constant up to {approximately}10 eV above the conduction-band minimum. The differences in spectral shape found between the various measurements were shown to be a result of polarization dependence. Since the c axis in all the measurements was normal to the sample surface, p-polarized radiation at glancing angles corresponds to {bold E}{parallel}{bold c} while s polarization corresponds to {bold E}{perpendicular}{bold c} at all incident angles. Thus, this polarization dependence is a result of the intrinsic anisotropy of the wurtzite structure. Spectra on powders which provide an average of both polarizations as well as separate measurements of reflectivity with s polarization and p polarization were used. {copyright} {ital 1997} {ital The American Physical Society}

  18. Acid-site characterization of water-oxidized alumina films by near-edge x-ray absorption and soft x-ray photoemission

    SciTech Connect

    O`Hagan, P.J.; Merrill, R.P.; Rhodin, T.N.; Woronick, S.W.; Shinn, N.D.; Woolery, G.L.; Chester, A.W.

    1994-12-01

    Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. A maximum in the defect-DOS occurs for oxides heated to 350 to 400C, which is where the materials exhibit maximum Lewis acidity with respect to C{sub 2}H{sub 4}. Adsorbed C{sub 2}H{sub 4} produces thermally active C{sub 2} species which interact covalently with the defect-DOS and nonbonding O(2p) from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni evaporated onto the surface, however, transfers charge directly to Al species and does not interact with O atoms at the defect site. The defect-DOS is regenerated when the C{sub 2} species decomposes or when Ni migrates thermally through the oxide layer.

  19. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Kotani, Akio; Matsuda, Yasuhiro H.; Nojiri, Hiroyuki

    2009-11-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi2(Si0.18Ge0.82)2 and YbInCu4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  20. Analysis of modulated Ho2PdSi3 crystal structure at Pd K and Ho L absorption edges using resonant elastic X-scattering.

    PubMed

    Nentwich, Melanie; Zschornak, Matthias; Richter, Carsten; Novikov, Dmitri; Meyer, Dirk C

    2016-02-17

    Replacing Si atoms with a transition metal in rare earth disilicides results in a family of intermetallic compounds with a variety of complex magnetic phase transitions. In particular, the family R 2PdSi3 shows interesting magnetic behavior arising from the electronic interaction of the R element with the transition metal in the Si network, inducing the specific structure of the related phase. Within this series, the highest degree of superstructural order was reported for the investigated representative Ho2PdSi3, although several competing superstructures have been proposed in literature. The diffraction anomalous fine structure (DAFS) method is highly sensitive to the local structure of chosen atoms at specific positions within the unit cell of a crystalline phase. In combination with x-ray absorption fine structure (XAFS), this sophisticated synchrotron method has been applied in the present work to several selected reflections, i.a. a satellite reflection. Extensive electronic modeling was used to test the most relevant structure proposals. The [Formula: see text] superstructure has been strongly confirmed, although a small amount of disorder in the modulation is very probable. PMID:26788844

  1. Analysis of modulated Ho2PdSi3 crystal structure at Pd K and Ho L absorption edges using resonant elastic X-scattering

    NASA Astrophysics Data System (ADS)

    Nentwich, Melanie; Zschornak, Matthias; Richter, Carsten; Novikov, Dmitri; Meyer, Dirk C.

    2016-02-01

    Replacing Si atoms with a transition metal in rare earth disilicides results in a family of intermetallic compounds with a variety of complex magnetic phase transitions. In particular, the family R 2PdSi3 shows interesting magnetic behavior arising from the electronic interaction of the R element with the transition metal in the Si network, inducing the specific structure of the related phase. Within this series, the highest degree of superstructural order was reported for the investigated representative Ho2PdSi3, although several competing superstructures have been proposed in literature. The diffraction anomalous fine structure (DAFS) method is highly sensitive to the local structure of chosen atoms at specific positions within the unit cell of a crystalline phase. In combination with x-ray absorption fine structure (XAFS), this sophisticated synchrotron method has been applied in the present work to several selected reflections, i.a. a satellite reflection. Extensive electronic modeling was used to test the most relevant structure proposals. The 2× 2× 8 superstructure has been strongly confirmed, although a small amount of disorder in the modulation is very probable.

  2. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    PubMed

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability. PMID:25208420

  3. Bandgap and optical absorption edge of GaAs{sub 1−x}Bi{sub x} alloys with 0 < x < 17.8%

    SciTech Connect

    Masnadi-Shirazi, M.; Lewis, R. B.; Bahrami-Yekta, V.; Tiedje, T.; Chicoine, M.; Servati, P.

    2014-12-14

    The compositional dependence of the fundamental bandgap of pseudomorphic GaAs{sub 1−x}Bi{sub x} layers on GaAs substrates is studied at room temperature by optical transmission and photoluminescence spectroscopies. All GaAs{sub 1−x}Bi{sub x} films (0 ≤ x ≤ 17.8%) show direct optical bandgaps, which decrease with increasing Bi content, closely following density functional theory predictions. The smallest measured bandgap is 0.52 eV (∼2.4 μm) at 17.8% Bi. Extrapolating a fit to the data, the GaAs{sub 1−x}Bi{sub x} bandgap is predicted to reach 0 eV at 35% Bi. Below the GaAs{sub 1−x}Bi{sub x} bandgap, exponential absorption band tails are observed with Urbach energies 3–6 times larger than that of bulk GaAs. The Urbach parameter increases with Bi content up to 5.5% Bi, and remains constant at higher concentrations. The lattice constant and Bi content of GaAs{sub 1−x}Bi{sub x} layers (0 < x ≤ 19.4%) are studied using high resolution x-ray diffraction and Rutherford backscattering spectroscopy. The relaxed lattice constant of hypothetical zincblende GaBi is estimated to be 6.33 ± 0.05 Å, from extrapolation of the Rutherford backscattering spectrometry and x-ray diffraction data.

  4. Trends in Covalency for d- and f-Element Metallocene Dichlorides Identified Using Chlorine K-Edge X-Ray Absorption Spectroscopy and Time Dependent-Density Functional Theory

    SciTech Connect

    Kozimor, Stosh A.; Yang, Ping; Batista, Enrique R.; Boland, Kevin S.; Burns, Carol J.; Clark, David L.; Conradson, Steven D.; Martin, Richard L.; Wikerson, Marianne P.; Wolfsberg, Laura E.

    2009-09-02

    We describe the use of Cl K-edge X-ray Absorption Spectroscopy (XAS) and both ground state and time-dependent hybrid density functional theory (DFT) to probe electronic structure and determine the degree of orbital mixing in M-Cl bonds for (C5Me5)2MCl2 (M = Ti, 1; Zr, 2; Hf, 3; Th, 4; and U, 5), where we can directly compare a class of structurally similar compounds for d- and f-elements. We report direct experimental evidence for covalency in M-Cl bonding, including actinides, and offer insight into the relative roles of the valence f- and dorbitals in these systems. The Cl K-edge XAS data for the group IV transition metals, 1 – 3, show slight decreases in covalency in M-Cl bonding with increasing principal quantum number, in the order Ti > Zr > Hf. The percent Cl 3p character per M-Cl bond was experimentally determined to be 25, 23, and 22% per M-Cl bond for 1-3, respectively. For actinides, we find a shoulder on the white line for (C5Me5)2ThCl2, 4, and distinct, but weak pre-edge features for 2 (C5Me5)2UCl2, 5. The percent Cl 3p character in Th-Cl bonds in 4 was determined to be 14 %, with high uncertainty, while the U-Cl bonds in 5 contains 9 % Cl 3p character. The magnitudes of both values are approximately half what was observed for the transition metal complexes in this class of bent metallocene dichlorides. Using the hybrid DFT calculations as a guide to interpret the experimental Cl K-edge XAS, these experiments suggest that when evaluating An- Cl bonding, both 5f- and 6d-orbitals should be considered. For (C5Me5)2ThCl2, the calculations and XAS indicate that the 5f- and 6d-orbitals are nearly degenerate and heavily mixed. In contrast, the 5f- and 6d-orbitals in (C5Me5)2UCl2 are no longer degenerate, and fall in two distinct energy groupings. The 5f-orbitals are lowest in energy and split into a 5-over-2 pattern with the high lying U 6d-orbitals split in a 4-over-1 pattern, the latter of which is similar to the dorbital splitting in group IV transition

  5. Numerical analysis of specific absorption rate in the human head due to a 13.56 MHz RFID-based intra-ocular pressure measurement system.

    PubMed

    Hirtl, Rene; Schmid, Gernot

    2013-09-21

    A modern wireless intra-ocular pressure monitoring system, based on 13.56 MHz inductively coupled data transmission, was dosimetrically analyzed with respect to the specific absorption rate (SAR) induced inside the head and the eye due to the electromagnetic field exposure caused by the reader antenna of the transmission system. The analysis was based on numerical finite difference time domain computations using a high resolution anatomical eye model integrated in a modern commercially available anatomical model of a male head. Three different reader antenna configurations, a 7-turn elliptic (30 mm × 50 mm) antenna at 12 mm distance from the eye, a flexible circular antenna (60 mm diameter, 8 turns on 2 mm substrate) directly attached to the skin, and a circular 7-turn antenna (30 mm diameter at 12 mm distance to the eye) were analyzed, respectively. Possible influences of the eye-lid status (closed or opened) and the transponder antenna contained in a contact lens directly attached to the eye were taken into account. The results clearly demonstrated that for typical reader antenna currents required for proper data transmission, the SAR values remain far below the limits for localized exposure of the head, as defined by the International Commission for Non-Ionizing Radiation Protection. Particularly the induced SAR inside the eye was found to be substantially (orders of magnitudes for typical reader antenna currents in the order of 1 A turn) below values which have been reported to be critical with respect to thermally induced adverse health effects in eye tissues. PMID:24002053

  6. Study on the d state of platinum in Pt/SiO sub 2 and Na/Pt/SiO sub 2 catalysts under C double bond C hydrogenation conditions by X-ray absorption near-edge structure spectroscopy

    SciTech Connect

    Yoshitake, Hideaki; Iwasawa, Yasuhiro )

    1991-09-19

    The change in the d-electron density of platinum during D{sub 2} + CH{sub 2}{double bond}CHX reactions on Pt/SiO{sub 2} and Na/Pt/SiO{sub 2} catalysts and its influence on the catalysis were studied by X-ray absorption near-edge structure (XANES) spectroscopy, kinetics and FT-IR. It was demonstrated from the change of the white lines in XANES spectra at Pt L{sub 2} and L{sub 3} edges that CH{sub 2}{double bond}CHX (X = H, CH{sub 3}, COCH{sub 3}, CF{sub 3}, and CN) is adsorbed on the Pt surface and extracts the electrons of the d state. Hence, the deuterogenation rate is reduced as the value of Hammett's {sigma}{sub P} increases. The linear free energy relationship between the reaction rate and {sigma}{sub P} was observed for the deuterogenation of CH{sub 2}{double bond}CHX. The rate of ethene deuterogenation was promoted by Na{sub 2}O addition. The electron density of unoccupied d states of pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. The electron density of unoccupied d states of Pt under vacuum decreased by Na{sub 2}O addition, indicating the electron donation from Na{sub 2}O addition. However, most of these additional electrons were observed to move to ethene under reaction conditions. The acceptor of the electrons was suggested by di-{sigma}-ethene by the shift of {upsilon}(C-H). The kinetic parameters are discussed in relation to the change in the d state of Pt as a function of {sigma}{sub P} and Na quantity.

  7. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  8. Properties of impurity-bearing ferrihydrite II: Insights into the surface structure and composition of pure, Al- and Si-bearing ferrihydrite from Zn(II) sorption experiments and Zn K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cismasu, A. Cristina; Levard, Clément; Michel, F. Marc; Brown, Gordon E.

    2013-10-01

    Naturally occurring ferrihydrite often contains impurities such as Al and Si, which can impact its chemical reactivity with respect to metal(loid) adsorption and (in)organic or microbially induced reductive dissolution. However, the surface composition of impure ferrihydrites is not well constrained, and this hinders our understanding of the factors controlling the surface reactivity of these nanophases. In this study, we conducted Zn(II) adsorption experiments combined with Zn K-edge X-ray absorption spectroscopy measurements on pure ferrihydrite (Fh) and Al- or Si-bearing ferrihydrites containing 10 and 20 mol% Al or Si (referred to as 10AlFh, 20AlFh and 10SiFh, 20SiFh) to evaluate Zn(II) uptake in relation to Zn(II) speciation at their surfaces. Overall, Zn(II) uptake at the surface of AlFh is similar to that of pure Fh, and based on Zn K-edge EXAFS data, Zn(II) speciation at the surface of Fh and AlFh also appears similar. Binuclear bidentate IVZn-VIFe complexes (at ∼3.46 Å (2C[1]) and ∼3.25 Å (2C[2])) were identified at low Zn(II) surface coverages from Zn K-edge EXAFS fits. With increasing Zn(II) surface coverage, the number of second-neighbor Fe ions decreased, which was interpreted as indicating the formation of IVZn polymers at the ferrihydrite surface, and a deviation from Langmuir uptake behavior. Zn(II) uptake at the surface of SiFh samples was more significant than at Fh and AlFh surfaces, and was attributed to the formation of outer-sphere complexes (on average 24% of sorbed Zn). Although similar Zn-Fe/Zn distances were obtained for the Zn-sorbed SiFh samples, the number of Fe second neighbors was lower in comparison with Fh. The decrease in second-neighbor Fe is most pronounced for sample 20SiFh, suggesting that the amount of reactive surface Fe sites diminishes with increasing Si content. Although our EXAFS results shown here do not provide evidence for the existence of Zn-Al or Zn-Si complexes, their presence is not excluded for Zn-sorbed Al

  9. The Red Edge Problem in asteroid band parameter analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.

    2016-04-01

    Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

  10. Sulfur K-edge X-ray Absorption Spectroscopy and Density Functional Calculations on Mo(IV) and Mo(VI)=O Bis-dithiolenes: Insights into the Mechanism of Oxo Transfer in DMSO Reductase and Related Functional Analogues

    PubMed Central

    Tenderholt, Adam L.; Wang, Jun-Jieh; Szilagyi, Robert K.; Holm, Richard H.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.

    2010-01-01

    Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two Mo bis-dithiolene complexes, [Mo(OSi)(bdt)2]1− and [MoO(OSi)(bdt)2]1− where OSi = [OSiPh2tBu]1− and bdt = benzene-1,2-dithiolate(2−), that model the Mo(IV) and Mo(VI)=O states of the DMSO reductase family of molybdenum enzymes. These results show that the Mo(IV) complex undergoes metal-based oxidation unlike the Mo(IV) tris-dithiolene complexes, indicating that the dithiolene ligands are behaving innocently. Experimentally-validated calculations have been extended to model the oxo-transfer reaction coordinate using dimethylsulfoxide (DMSO) as a substrate. The reaction proceeds through a transition state (TS1) to an intermediate with DMSO weakly bound, followed by a subsequent transition state (TS2) which is the largest barrier of the reaction. The factors that control the energies of these transition states, the nature of the oxo transfer process, and the role of the dithiolene ligand are discussed. PMID:20499905

  11. Interrogation of Surface, Skin, and Core Orientation in Thermotropic Liquid-Crystalline Copolyester Moldings by Near-Edge X-ray Absorption Fine Structure and Wide-Angle X-ray Scattering

    SciTech Connect

    Rendon,S.; Bubeck, R.; Thomas, L.; Burghardt, W.; Hexemer, A.; Fischer, D.

    2007-01-01

    Injection molding thermotropic liquid-crystalline polymers (TLCPs) usually results in the fabrication of molded articles that possess complex states of orientation that vary greatly as a function of thickness. 'Skin-core' morphologies are often observed in TLCP moldings. Given that both 'core' and 'skin' orientation states may often differ both in magnitude and direction, deconvolution of these complex orientation states requires a method to separately characterize molecular orientation in the surface region. A combination of two-dimensional wide-angle X-ray scattering (WAXS) in transmission and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to probe the molecular orientation in injection molded plaques fabricated from a 4,4'-dihydroxy-{alpha}-methylstilbene (DH{alpha}MS)-based thermotropic liquid crystalline copolyester. Partial electron yield (PEY) mode NEXAFS is a noninvasive ex situ characterization tool with exquisite surface sensitivity that samples to a depth of 2 nm. The effects of plaque geometry and injection molding processing conditions on surface orientation in the regions on- and off- axis to the centerline of injection molded plaques are presented and discussed. Quantitative comparisons are made between orientation parameters obtained by NEXAFS and those from 2D WAXS in transmission, which are dominated by the microstructure in the skin and core regions. Some qualitative comparisons are also made with 2D WAXS results from the literature.

  12. Structure analyses using X-ray photoelectron spectroscopy and X-ray absorption near edge structure for amorphous MS3 (M: Ti, Mo) electrodes in all-solid-state lithium batteries

    NASA Astrophysics Data System (ADS)

    Matsuyama, Takuya; Deguchi, Minako; Mitsuhara, Kei; Ohta, Toshiaki; Mori, Takuya; Orikasa, Yuki; Uchimoto, Yoshiharu; Kowada, Yoshiyuki; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2016-05-01

    Electronic structure changes of sulfurs in amorphous TiS3 and MoS3 for positive electrodes of all-solid-state lithium batteries are examined by X-ray photoelectron spectroscopy (XPS) and the X-ray absorption near edge structure (XANES). The all-solid-state cell with amorphous TiS3 electrode shows the reversible capacity of about 510 mAh g-1 for 10 cycles with sulfur-redox in amorphous TiS3 during charge-discharge process. On the other hand, the cell with amorphous MoS3 shows the 1st reversible capacity of about 720 mAh g-1. The obtained capacity is based on the redox of both sulfur and molybdenum in amorphous MoS3. The irreversible capacity of about 50 mAh g-1 is observed at the 1st cycle, which is attributed to the irreversible electronic structure change of sulfur during the 1st cycle. The electronic structure of sulfur in amorphous MoS3 after the 10th charge is similar to that after the 1st charge. Therefore, the all-solid-state cell with amorphous MoS3 electrode shows relatively good cyclability after the 1st cycle.

  13. Probing the f-state configuration of URu2Si2 with U LIII-edge resonant x-ray absorption spectroscopy

    SciTech Connect

    Medling, S. A.; Booth, C. H.; Tobin, J. G.; Baumbach, R. E.; Bauer, E. D.; Sokaras, D.; Nordlund, D.; Weng, T. C.

    2015-09-05

    It has often been said that the most interesting physics occurs when competing interactions are of nearly the same magnitude. Such a situation is surely occurring at URu2Si2’s so-called “hidden-order transition”, which garners its name from the missing entropy at a 17.5 K phase transition relative to that expected for a conventional antiferromagnetic phase transition, despite the presence of only a very small ordered magnetic moment. Despite this discrepancy being identified in 1985, the identification of the order parameter remains elusive, although progress toward understand- ing this transition has been steady since that time, and URu2Si2 remains an important research subject today. The work described provides measures of the 5f orbital occupancy and itinerancy using resonant x-ray emission spectroscopy (RXES) at the U LIII absorption edge and measuring U Lα1 emission that potentially acts as a dividing line between different classes of “hidden-order” theories.

  14. Edge Bioinformatics

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in amore » genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance« less

  15. Edge Bioinformatics

    SciTech Connect

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen or co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance

  16. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KLII&III, KLI) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    SciTech Connect

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas; Bylaska, Eric J.; Vjunov, Aleksei; Pin, Sonia; Smurthwaite, Tricia D.

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KLII&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KLII&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂O the KLII&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KLII&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KLII&III and KLI onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at

  17. Detection of a z=0.0515, 0.0522 absorption system in the QSO S4 0248+430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    In some of the few cases where the line of sight to a Quasi-Stellar Object (QSO) passes near a galaxy, the galaxy redshift is almost identical to an absorption redshift in the spectrum of the QSO. Although these relatively low redshift QSO-galaxy pairs may not be typical of the majority of the narrow heavy-element QSO absorption systems, they provide a direct measure of column densities in the outer parts of galaxies and some limits on the relative abundances of the gas. Observations are presented here of the QSO S4 0248+430 and a nearby anonymous galaxy (Kuhr 1977). The 14 second separation of the line of sight to the QSO (z sub e = 1.316) and the z=0.052 spiral galaxy, (a projected separation of 20 kpc ((h sub o = 50, q sub o = 0)), makes this a particularly suitable pair for probing the extent and content of gas in the galaxy. Low resolution (6A full width half maximum), long slit charge coupled device (CCD) spectra show strong CA II H and K lines in absorption at the redshift of the galaxy (Junkkarinen 1987). Higher resolution spectra showing both Ca II H and K and Na I D1 and D2 in absorption and direct images are reported here.

  18. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  19. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    PubMed

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. PMID:27379398

  20. Edge phonons in black phosphorus

    NASA Astrophysics Data System (ADS)

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-07-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.

  1. Edge phonons in black phosphorus.

    PubMed

    Ribeiro, H B; Villegas, C E P; Bahamon, D A; Muraca, D; Castro Neto, A H; de Souza, E A T; Rocha, A R; Pimenta, M A; de Matos, C J S

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  2. Edge phonons in black phosphorus

    PubMed Central

    Ribeiro, H. B.; Villegas, C. E. P.; Bahamon, D. A.; Muraca, D.; Castro Neto, A. H.; de Souza, E. A. T.; Rocha, A. R.; Pimenta, M. A.; de Matos, C. J. S.

    2016-01-01

    Black phosphorus has recently emerged as a new layered crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and behaviour of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements. PMID:27412813

  3. Enhanced photoluminescence due to two-photon enhanced three-photon absorption in Mn{sup 2+}-doped ZnS quantum dots

    SciTech Connect

    Subha, Radhu; Nalla, Venkatram; Ji, Wei; Feng, Xiaobo; Vijayan, C.

    2014-10-15

    In this work, we have investigated the multi-photon absorption induced photoluminescence in Mn{sup 2+}-doped ZnS quantum dots in the wavelength range 860 – 1050 nm (Near-Infrared Window I). The observed three-photon action cross-section has been compared with the theoretical prediction under four band approximation. An enhancement of four to five orders has been observed in the range from 970 to 1050 nm compared to the theoretical value, which is attributed to two-photon enhanced three-photon absorption. Transient lifetime measurements reveal a lifetime of 0.35 ± 0.3 ms, which is four to five orders higher than other conventional fluorescent probes.

  4. Thin Film Structure of Tetraceno[2,3-B]thiophene Characterized By Grazing Incidence X-Ray Scattering And Near-Edge X-Ray Absorption Fine Structure Analysis

    SciTech Connect

    Yuan, Q.; Mannsfeld, S.C.B.; Tang, M.L.; Toney, M.F.; Luening, J.; Bao, Z.A.; /Stanford U., Chem. Eng. /SLAC, SSRL

    2009-05-11

    Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno[2,3-b]thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on

  5. High-resolution Mn K -edge x-ray emission and absorption spectroscopy study of the electronic and local structure of the three different phases in N d0.5S r0.5Mn O3

    NASA Astrophysics Data System (ADS)

    Lafuerza, S.; García, J.; Subías, G.; Blasco, J.; Glatzel, P.

    2016-05-01

    N d0.5S r0.5Mn O3 is particularly representative of mixed-valent manganites since their three characteristic macroscopic phases (charge-ordered insulator, ferromagnetic-metallic, and paramagnetic insulator) appear at different temperatures. We here report a complete x-ray emission and absorption spectroscopy (XES-XAS) study of N d0.5S r0.5Mn O3 as a function of temperature to investigate the electronic and local structure changes of the Mn atom in these three phases. Compared with the differences in the XES-XAS spectra between N d0.5S r0.5Mn O3 and the single-valent reference compounds NdMn O3 (M n3 + ) and Sr/CaMn O3 (M n4 + ), only modest changes have been obtained across the magnetoelectrical transitions. The XES spectra, including both the Mn Kα and Kβ emission lines, have mainly shown a subtle decrease in the local spin density accompanying the passage to the ferromagnetic-metallic phase. For the same phase, the small intensity variations in the pre-edge region of the high-resolution XAS spectra reflect an increase of the p -d mixing. The analysis of these XAS spectra imply a charge segregation between the two different Mn sites far from one electron, being in intermediate valences M n+3.5 ±δ /2(δ <0.2 e -) for all the phases. Our results indicate that the spin, charge, and geometrical structure of the Mn atom hardly change among the three macroscopic phases demonstrating the strong competition between the ferromagnetic conductor and the charge-ordered insulator behaviors in the manganites.

  6. Effect of particle size and adsorbates on the L{sub 3}, L{sub 2} and L{sub 1} x-ray absorption near edge structure of supported Pt nanoparaticles.

    SciTech Connect

    Lei, Y.; Jelic, J.; Nitsche, L. C.; Meyer, R.; Miller, J.

    2011-04-01

    Pt nano-particles from about 1 to 10 nm have been prepared on silica, alkali-silica, alumina, silica-alumina, carbon and SBA-15 supports. EXAFS spectra of the reduced catalysts in He show a contraction of the Pt-Pt bond distance as particle size is decreased below 3 nm. The bond length decreased as much as 0.13 {angstrom} for 1 nm Pt particles. Adsorption of CO and H{sub 2} lead to a increase in Pt-Pt bond distance to that near Pt foil, e.g., 2.77 {angstrom}. In addition to changes in the Pt bond distance with size, as the particle size decreases below about 5 nm there is a shift in the XANES to higher energy at the L{sub 3} edge, a decrease in intensity near the edge and an increase in intensity beyond the edge. We suggest these features correspond to effects of coordination (the decrease at the edge) and lattice contraction (the increase beyond the edge). At the L{sub 2} edge, there are only small shifts to higher energy at the edge. However, beyond the edge, there are large increases in intensity with decreasing particle size. At the L{sub 1} edge there are no changes in position or shape of the XANES spectra. Adsorption of CO and H{sub 2} also lead to changes in the L{sub 3} and L{sub 2} edges, however, no changes are observed at the L1 edge. Density Functional Theory and XANES calculations show that the trends in the experimental XANES can be explained in terms of the states available near the edge. Both CO and H{sub 2} adsorption result in a depletion of states at the Fermi level but the creation of anti-bonding states above the Fermi level which give rise to intensity increases beyond the edge.

  7. Bias in Dobson total ozone measurements at high latitudes due to approximations in calculations of ozone absorption coefficients and air mass

    NASA Astrophysics Data System (ADS)

    Bernhard, G.; Evans, R. D.; Labow, G. J.; Oltmans, S. J.

    2005-05-01

    The Dobson spectrophotometer is the primary standard instrument for ground-based measurements of total column ozone. The accuracy of its data depends on the knowledge of ozone absorption coefficients used for data reduction. We document an error in the calculations that led to the set of absorption coefficients currently recommended by the World Meteorological Organisation (WMO). This error has little effect because an empirical adjustment was applied to the original calculations before the coefficients were adopted by WMO. We provide evidence that this adjustment was physically sound. The coefficients recommended by WMO are applied in the Dobson network without correction for the temperature dependence of the ozone absorption cross sections. On the basis of data measured by Dobson numbers 80 and 82, which were operated by the National Oceanic and Atmospheric Administration (NOAA) Climate Monitoring and Diagnostics Laboratory at the South Pole, we find that omission of temperature corrections may lead to systematic errors in Dobson ozone data of up to 4%. The standard Dobson ozone retrieval method further assumes that the ozone layer is located at a fixed height. This approximation leads to errors in air mass calculations, which are particularly relevant at high latitudes where ozone measurements are performed at large solar zenith angles (SZA). At the South Pole, systematic errors caused by this approximation may exceed 2% for SZAs larger than 80°. The bias is largest when the vertical ozone distribution is distorted by the "ozone hole" and may lead to underestimation of total ozone by 4% at SZA = 85° (air mass 9). Dobson measurements at the South Pole were compared with ozone data from a collocated SUV-100 UV spectroradiometer and Version 8 overpass data from NASA's Total Ozone Mapping Spectrometer (TOMS). Uncorrected Dobson ozone values tend to be lower than data from the two other instruments when total ozone is below 170 Dobson units or SZAs are larger than

  8. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  9. Impaired Intestinal Calcium Absorption in Protein 4.1R-deficient Mice Due to Altered Expression of Plasma Membrane Calcium ATPase 1b (PMCA1b)*

    PubMed Central

    Liu, Congrong; Weng, Haibao; Chen, Lixiang; Yang, Shaomin; Wang, Hua; Debnath, Gargi; Guo, Xinhua; Wu, Liancheng; Mohandas, Narla; An, Xiuli

    2013-01-01

    Protein 4.1R was first identified in the erythrocyte membrane skeleton. It is now known that the protein is expressed in a variety of epithelial cell lines and in the epithelia of many tissues, including the small intestine. However, the physiological function of 4.1R in the epithelial cells of the small intestine has not so far been explored. Here, we show that 4.1R knock-out mice exhibited a significantly impaired small intestinal calcium absorption that resulted in secondary hyperparathyroidism as evidenced by increased serum 1,25-(OH)2-vitamin D3 and parathyroid hormone levels, decreased serum calcium levels, hyperplasia of the parathyroid, and demineralization of the bones. 4.1R is located on the basolateral membrane of enterocytes, where it co-localizes with PMCA1b (plasma membrane calcium ATPase 1b). Expression of PMCA1b in enterocytes was decreased in 4.1−/− mice. 4.1R directly associated with PMCA1b, and the association involved the membrane-binding domain of 4.1R and the second intracellular loop and C terminus of PMCA1b. Our findings have enabled us to define a functional role for 4.1R in small intestinal calcium absorption through regulation of membrane expression of PMCA1b. PMID:23460639

  10. Edge detection

    NASA Astrophysics Data System (ADS)

    Hildreth, E. C.

    1985-09-01

    For both biological systems and machines, vision begins with a large and unwieldly array of measurements of the amount of light reflected from surfaces in the environment. The goal of vision is to recover physical properties of objects in the scene such as the location of object boundaries and the structure, color and texture of object surfaces, from the two-dimensional image that is projected onto the eye or camera. This goal is not achieved in a single step: vision proceeds in stages, with each stage producing increasingly more useful descriptions of the image and then the scene. The first clues about the physical properties of the scene are provided by the changes of intensity in the image. The importance of intensity changes and edges in early visual processing has led to extensive research on their detection, description and use, both in computer and biological vision systems. This article reviews some of the theory that underlies the detection of edges, and the methods used to carry out this analysis.

  11. Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and Scattering Cross Section, and Mass Attenuation Coefficients in the Vicinity of Absorption Edges in the Soft X-Ray (Z=30-36, Z=60-89, E=0.1 keV-10 keV), Addressing Convergence Issues of Earlier Work

    NASA Astrophysics Data System (ADS)

    Chantler, C. T.

    2000-07-01

    Reliable knowledge of the complex x-ray form factor [Re(f ) and f″] and the photoelectric attenuation coefficient (σPE) is required for crystallography, medical diagnosis, radiation safety, and XAFS studies. Discrepancies between currently used theoretical approaches of 200% exist for numerous elements from 1 to 3 keV x-ray energies. The key discrepancies are due to the smoothing of edge structure, the use of nonrelativistic wave functions, and the lack of appropriate convergence of wave functions. This paper addresses these key discrepancies and derives new theoretical results of substantially higher accuracy in near-edge soft x-ray regions. The high-energy limitations of the current approach are also illustrated. The energy range covered is 0.1 to 10 keV. The associated figures and tabulation demonstrate the current comparison with alternate theory and with available experimental data. In general, experimental data are not sufficiently accurate to establish the errors and inadequacies of theory at this level. However, the best experimental data and the observed experimental structure as a function of energy are strong indicators of the validity of the current approach. New developments in experimental measurement hold great promise in making critical comparisons with theory in the near future.

  12. Ultraviolet Continuum of the Quasar PKS 0405-123: Lyman Edge in the Accretion Disk Spectrum

    NASA Astrophysics Data System (ADS)

    Lee, G.; Kriss, G. A.; Davidsen, A. F.; Zheng, W.

    1995-05-01

    We study the characteristics of the ultraviolet continuum of the quasar PKS 0405-123 using the archival HST/FOS spectrum. The spectrum from 1150 to 3300 Angstroms shows a steeply rising continuum in F_λ with a strong absorption feature ~ 100 Angstroms wide around the intrinsic Lyman limit of this z=0.574 quasar. The spectrum also shows Lyman absorption line systems in the wavelength range of the broad absorption feature. A Lyalpha absorption line whose corresponding Lyman limit could contribute to the broad absorption feature is also identified. We investigate the possibility that the broad absorption feature may be due to the sum of the contributions from each Lyman absorption system. The estimated opacity due to the Lyman absorption systems in the region of the broad absorption feature, however, is not high enough to completely account for it. We thus propose that a significant part of the continuum drop in the broad absorption feature may be due to a broadened Lyman edge in the spectrum of an accretion disk. We model the ultraviolet continuum using an alpha -disk with an adiabatic vertical structure. We compute the emitted spectrum by solving the radiative transfer numerically. The observed spectrum is corrected for relativistic effects assuming a Schwarzschild metric, and we also consider the effect of Comptonization by a surrounding hot corona on the observed spectrum. A realistic disk spectrum with a significant amount of Comptonization describes the steep continuum shape and the broad Lyman edge feature, and it is consistent with the X-ray flux observed with EINSTEIN observatory IPC. This work was supported by NASA Grant NAG 5-1630 to the FOS team and NASA contract NAS 5-27000 to the Johns Hopkins University.

  13. Enhanced squeezing by absorption

    NASA Astrophysics Data System (ADS)

    Grünwald, P.; Vogel, W.

    2016-04-01

    Absorption is usually expected to be detrimental to quantum coherence effects. However, there have been few studies into the situation for complex absorption spectra. We consider the resonance fluorescence of excitons in a semiconductor quantum well. The creation of excitons requires absorption of the incoming pump-laser light. Thus, the absorption spectrum of the medium acts as a spectral filter for the emitted light. Surprisingly, absorption can even improve quantum effects, as is demonstrated for the squeezing of the resonance fluorescence of the quantum-well system. This effect can be explained by an improved phase matching due to absorption.

  14. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film

    NASA Astrophysics Data System (ADS)

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-02-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials.PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm-2, AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the

  15. Magneto-thermoelectric effects in the two-dimensional electron gas of a HgTe quantum well due to THz laser heating by cyclotron resonance absorption

    NASA Astrophysics Data System (ADS)

    Pakmehr, Mehdi; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens; McCombe, Bruce

    2015-03-01

    HgTe quantum wells (QWs) have shown a number of interesting phenomena over the past 20 years, most recently the first two-dimensional topological insulating state. We have studied thermoelectric photovoltages of 2D electrons in a 6.1 nm wide HgTe quantum well induced by cyclotron resonance absorption (B = 2 - 5 T) of a focused THz laser beam. We have estimated thermo-power coefficients by detailed analysis of the beam profile at the sample surface and the photovoltage signals developed across various contacts of a large Hall bar structure at a bath temperature of 1.6 K. We obtain reasonable values of the magneto-thermopower coefficients. Work at UB was supported by NSF DMR 1008138 and the Office of the Provost, and at the University of Wuerzburg by DARPA MESO Contract N6601-11-1-4105, by DFG Grant HA5893/4-1 within SPP 1666 and the Leibnitz Program, and the EU ERC-AG Program (Project 3-TOP.

  16. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate-titanate film.

    PubMed

    Zheng, Fengang; Zhang, Peng; Wang, Xiaofeng; Huang, Wen; Zhang, Jinxing; Shen, Mingrong; Dong, Wen; Fang, Liang; Bai, Yongbin; Shen, Xiaoqing; Sun, Hua; Hao, Jianhua

    2014-03-01

    PZT film of 300 nm thickness was deposited on tin indium oxide (ITO) coated quartz by a sol-gel method. Four metal electrodes, such as Pt, Au, Cu and Ag, were used as top electrodes deposited on the same PZT film by sputtering at room temperature. In ITO-PZT-Ag and ITO-PZT-Au structures, the visible light (400-700 nm) can be absorbed partially by a PZT film, and the maximum efficiency of photoelectric conversion of the ITO-PZT-Ag structure was enhanced to 0.42% (100 mW cm(-2), AM 1.5G), which is about 15 times higher than that of the ITO-PZT-Pt structure. Numerical simulations show that the natural random roughness of polycrystalline-PZT-metal interface can offer a possibility of coupling between the incident photons and SPs at the metal surface. The coincidence between the calculated SP properties and the measured EQE spectra reveals the SP origin of the photovoltaic enhancement in these ITO-PZT-metal structures, and the improved photocurrent output is caused by the enhanced optical absorption in the PZT region near the metal surface, rather than by the direct charge-transfer process between two materials. PMID:24477668

  17. Carbon K edge spectroscopy of internal interface and defect states of chemical vapor deposited diamond films

    SciTech Connect

    Nithianandam, J.; Rife, J.C. ); Windischmann, H. )

    1992-01-06

    We have made carbon {ital K} edge reflectivity and absorption measurements using synchrotron radiation on diamond crystals and chemical vapor deposited diamond films to determine their electronic structures. Our spectra of diamond films show that both {ital sp}{sup 2} and {ital sp}{sup 3} bonded carbon atoms are formed during initial nucleation and growth. Transmission spectra of a diamond film with 30 nm diameter cystallites show striking features below the carbon {ital sp}{sup 3} {ital K} edge due to internal interface states and/or defects. We compare these absorption features to x-ray absorption spectra of clean diamond (111) surface, graphite, and hydrocarbon gases to understand surface chemistry involved in the deposition process.

  18. Shape-dependent canny edge detector

    NASA Astrophysics Data System (ADS)

    Panetta, Karen A.; Agaian, Sos S.; Nercessian, Shahan C.; Almunstashri, Ali A.

    2011-08-01

    Edges characterize the boundaries of objects in images and are informative structural cues for computer vision and target/object detection and recognition systems. The Canny edge detector is widely regarded as the edge detection standard. It is fairly adaptable to different environments, as its parametric nature attempts to tailor the detection of edges based on image-dependent characteristics or the particular requirements of a given implementation. Though it has been used in a myriad of image processing tasks, the Canny edge detector is still vulnerable to edge losses, localization errors, and noise sensitivity. These issues are largely due to the key tradeoff made in the scale and size of the edge detection filters used by the algorithm. Small-scaled filters are sensitive to edges but also to noise, whereas large-scaled filters are robust to noise but could filter out fine details. In this paper, novel edge detection kernel generalizations and a shape-dependent edge detector are introduced to alleviate these shortcomings. While most standard edge detection algorithms are based on convolving the input image with fixed size square kernels, this paper will illustrate the benefits of different filter sizes, and more importantly, different kernel shapes for edge detection. Moreover, new edge fusion methods are introduced to more effectively combine the individual edge responses. Existing edge detectors, including the Canny edge detector, can be obtained from the generalized edge detector by specifying corresponding parameters and kernel shapes. The proposed representations and edge detector have been qualitatively and quantitatively evaluated on several different types of image data. Computer simulations demonstrate that nonsquare kernel approaches can outperform square kernel approaches such as Canny, Sobel, Prewitt, Roberts, and others, providing better tradeoffs between noise rejection, accurate edge localization, and resolution. Where possible, Pratt's figure of

  19. The Edge

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the edge (running diagonally from the lower left to the upper right) of a trough, which is part of a large pit crater complex in Noachis Terra. This type of trough forms through the collapse of surface materials into the subsurface, and often begins as a series of individual pit craters. Over time, continued collapse increases the diameter of individual pits until finally, adjacent pits merge to form a trough such as the one captured in this image. The deep shadowed area is caused in part by an overhang; layered rock beneath this overhang is less resistant to erosion, and thus has retreated tens of meters backward, beneath the overhang. A person could walk up inside this 'cave' formed by the overhanging layered material.

    Location near: 47.0oS, 355.7oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  20. Osteopetrorickets due to Snx10 Deficiency in Mice Results from Both Failed Osteoclast Activity and Loss of Gastric Acid-Dependent Calcium Absorption

    PubMed Central

    Ye, Liang; Morse, Leslie R.; Zhang, Li; Sasaki, Hajime; Mills, Jason C.; Odgren, Paul R.; Sibbel, Greg; Stanley, James R. L.; Wong, Gee; Zamarioli, Ariane; Battaglino, Ricardo A.

    2015-01-01

    Mutations in sorting nexin 10 (Snx10) have recently been found to account for roughly 4% of all human malignant osteopetrosis, some of them fatal. To study the disease pathogenesis, we investigated the expression of Snx10 and created mouse models in which Snx10 was knocked down globally or knocked out in osteoclasts. Endocytosis is severely defective in Snx10-deficent osteoclasts, as is extracellular acidification, ruffled border formation, and bone resorption. We also discovered that Snx10 is highly expressed in stomach epithelium, with mutations leading to high stomach pH and low calcium solubilization. Global Snx10-deficiency in mice results in a combined phenotype: osteopetrosis (due to osteoclast defect) and rickets (due to high stomach pH and low calcium availability, resulting in impaired bone mineralization). Osteopetrorickets, the paradoxical association of insufficient mineralization in the context of a positive total body calcium balance, is thought to occur due to the inability of the osteoclasts to maintain normal calcium–phosphorus homeostasis. However, osteoclast-specific Snx10 knockout had no effect on calcium balance, and therefore led to severe osteopetrosis without rickets. Moreover, supplementation with calcium gluconate rescued mice from the rachitic phenotype and dramatically extended life span in global Snx10-deficient mice, suggesting that this may be a life-saving component of the clinical approach to Snx10-dependent human osteopetrosis that has previously gone unrecognized. We conclude that tissue-specific effects of Snx10 mutation need to be considered in clinical approaches to this disease entity. Reliance solely on hematopoietic stem cell transplantation can leave hypocalcemia uncorrected with sometimes fatal consequences. These studies established an essential role for Snx10 in bone homeostasis and underscore the importance of gastric acidification in calcium uptake. PMID:25811986

  1. Unified EDGE

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines,more » and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in “Basis Manual Set” by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.« less

  2. Unified EDGE

    SciTech Connect

    2007-06-18

    UEDGE is an interactive suite of physics packages using the Python or BASIS scripting systems. The plasma is described by time-dependent 2D plasma fluid equations that include equations for density, velocity, ion temperature, electron temperature, electrostatic potential, and gas density in the edge region of a magnetic fusion energy confinement device. Slab, cylindrical, and toroidal geometries are allowed, and closed and open magnetic field-line regions are included. Classical transport is assumed along magnetic field lines, and anomalous transport is assumed across field lines. Multi-charge state impurities can be included with the corresponding line-radiation energy loss. Although UEDGE is written in Fortran, for efficient execution and analysis of results, it utilizes either Python or BASIS scripting shells. Python is easily available for many platforms (http://www.Python.org/). The features and availability of BASIS are described in “Basis Manual Set” by P.F. Dubois, Z.C. Motteler, et al., Lawrence Livermore National Laboratory report UCRL-MA-1 18541, June, 2002 and http://basis.llnl.gov. BASIS has been reviewed and released by LLNL for unlimited distribution. The Python version utilizes PYBASIS scripts developed by D.P. Grote, LLNL. The Python version also uses MPPL code and MAC Perl script, available from the public-domain BASIS source above. The Forthon version of UEDGE uses the same source files, but utilizes Forthon to produce a Python-compatible source. Forthon has been developed by D.P. Grote at LBL (see http://hifweb.lbl.gov/Forthon/ and Grote et al. in the references below), and it is freely available. The graphics can be performed by any package importable to Python, such as PYGIST.

  3. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig P.; Prendergast, David

    2015-09-01

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2.

  4. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra.

    PubMed

    Schwartz, Craig P; Prendergast, David

    2015-09-21

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2. PMID:26395677

  5. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  6. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  7. Tunable skewed edges in puckered structures

    NASA Astrophysics Data System (ADS)

    Grujić, Marko M.; Ezawa, Motohiko; Tadić, Milan Ž.; Peeters, François M.

    2016-06-01

    We propose a type of edges arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge state is gapped by applying arbitrary small electric field Ez. A topological argument is presented, revealing the condition for the emergence of such edge states.

  8. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  9. Photoabsorption spectra of potassium and rubidium near the K-edge

    SciTech Connect

    Azuma, Y.; Berry, H.G.; Cowan, P.L.

    1995-08-01

    We have used a high-temperature circulating heat-pipe absorption cell together with monochromatized X-ray beams at the X24A and X23A2 beam lines at the NSLS to obtain photoabsorption spectra of potassium and rubidium at their K- and KM-edges. The photon-energy ranges lay near 3600 eV and 15200 eV, respectively. We have also obtained first measurements of the LII and LIII edges in cesium. Although the K-edge photoabsorptions of the rare gases have been studied, there is little previous work on other atomic vapors. Most of the edges and resonance peaks that we observed have now been identified using Dirac Hartree-Fock calculations. As a check, we have compared these results with those obtained previously in closed-shell rare-gas absorption spectra. The absolute energies were obtained through a calibration of the X24A systems using measurements of several metal L-edges in the 3200-5000 eV energy range. We found that the 4p resonance in potassium is significantly enhanced compared with the corresponding situation in argon. Likewise, the 5p resonance in krypton is unresolved from the background ionization cross section, whereas it is well resolved in rubidium. As suggested by Amusia, these enhancements may be due to the enhanced potential seen in the excited state of the alkali systems as a result of the presence of an s-electron which reduces the nuclear shielding.

  10. The Lyman edge test of the quasar emission mechanism

    NASA Technical Reports Server (NTRS)

    Antonucci, R. R. J.; Kinney, A. L.; Ford, H. C.

    1989-01-01

    The Lyman edge region in the spectra of 11 high-redshift quasars is studied using data designed to detect broadened Lyman edge absorption predicted by thermal models of the 'big blue bump' continuum component, especially thin accretion disks. Three objects have broadened, partial edges near the systemic redshifts, as expected for thermal models. In two cases, however, narrow Lyamn lines with the edge absorption, ruling out the disk interpretation. Thus, the data are negative for thermal models, at least for opaque thin accretion disks.

  11. Low Scatter Edge Blackening Compounds For Refractive Optical Elements

    NASA Astrophysics Data System (ADS)

    Lewis, Isabella T.; Telkamp, Arthur R.; Ledebuhr, Arno G.

    1990-01-01

    Perkin-Elmer's Applied Optics Operation recently delivered several prototype wide-field-of-view (WFOV), F/2.8, 250 mm efl, near diffraction limited, concentric refractive lenses to Lawrence Livermore National Laboratory (LLNL). In these lenses, special attention was paid to reducing stray light to allow viewing of very dim objects. Because of the very large FOV, the use of a long baffle to eliminate direct illumination of lens edges was not practical. With the existing relatively short baffle design, one-bounce stray light paths off the element edges are possible. The scattering off the inside edges thus had to be kept to an absolute minimum. While common means for blackening the edges of optical elements are easy to apply and quite cost effective for normal lens assemblies, their blackening effect is limited by the Fresnel reflection due to the index of refraction mismatch at the glass boundary. At high angles of incidence, total internal reflection (TIR) might occur ruining the effect of the blackening process. An index-matched absorbing medium applied to the edges of such elements is the most effective approach for reducing the amount of undesired light reflected or scattered off these edges. The presence of such a medium provides an extended path outside the glass boundary in which an absorptive non-scattering dye can be used to eliminate light that might otherwise have propagated to the focal plane. Perkin-Elmer and LLNL undertook a program to develop epoxy-based dye carrier compounds with refractive indices corresponding to the glass types used in the WFOV lens. This program involved the measuring of the refractive index of a number of epoxy compounds and catalysts, the experimental combination of epoxies to match our glass indices, and the identification of a suitable non-scattering absorptive dye. Measurements on these blacks showed Bidirectional Reflectance Distribution Functions (BRDFs) between 1.4 and 3.1 orders of magnitude lower than Perkin

  12. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  13. The edges of graphene.

    PubMed

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-04-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth. PMID:23420074

  14. The edges of graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuyun; Xin, John; Ding, Feng

    2013-03-01

    The edge of two dimensional (2D) graphene, as the surface of a three dimensional (3D) crystal, plays a crucial role in the determination of its physical, electronic and chemical properties and thus has been extensively studied recently. In this review, we summarize the recent advances in the study of graphene edges, including edge formation energy, edge reconstruction, method of graphene edge synthesis and the recent progress on metal-passivated graphene edges and the role of edges in graphene CVD growth. We expect this review to provide a guideline for readers to gain a clear picture of graphene edges from several aspects, especially the catalyst-passivated graphene edges and their role in graphene CVD growth.

  15. Electro-absorption of silicene and bilayer graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Talaat, Mohamed H.; Lukyanchuk, Igor; Portnoi, M. E.; Saroka, V. A.

    2016-07-01

    We study numerically the optical properties of low-buckled silicene and AB-stacked bilayer graphene quantum dots subjected to an external electric field, which is normal to their surface. Within the tight-binding model, the optical absorption is calculated for quantum dots, of triangular and hexagonal shapes, with zigzag and armchair edge terminations. We show that in triangular silicene clusters with zigzag edges a rich and widely tunable infrared absorption peak structure originates from transitions involving zero energy states. The edge of absorption in silicene quantum dots undergoes red shift in the external electric field for triangular clusters, whereas blue shift takes place for hexagonal ones. In small clusters of bilayer graphene with zigzag edges the edge of absorption undergoes blue/red shift for triangular/hexagonal geometry. In armchair clusters of silicene blue shift of the absorption edge takes place for both cluster shapes, while red shift is inherent for both shapes of the bilayer graphene quantum dots.

  16. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  17. Optimal edge filters explain human blur detection.

    PubMed

    McIlhagga, William H; May, Keith A

    2012-01-01

    Edges are important visual features, providing many cues to the three-dimensional structure of the world. One of these cues is edge blur. Sharp edges tend to be caused by object boundaries, while blurred edges indicate shadows, surface curvature, or defocus due to relative depth. Edge blur also drives accommodation and may be implicated in the correct development of the eye's optical power. Here we use classification image techniques to reveal the mechanisms underlying blur detection in human vision. Observers were shown a sharp and a blurred edge in white noise and had to identify the blurred edge. The resultant smoothed classification image derived from these experiments was similar to a derivative of a Gaussian filter. We also fitted a number of edge detection models (MIRAGE, N(1), and N(3)(+)) and the ideal observer to observer responses, but none performed as well as the classification image. However, observer responses were well fitted by a recently developed optimal edge detector model, coupled with a Bayesian prior on the expected blurs in the stimulus. This model outperformed the classification image when performance was measured by the Akaike Information Criterion. This result strongly suggests that humans use optimal edge detection filters to detect edges and encode their blur. PMID:22984222

  18. Impurity Sub-Band in Heavily Cu-Doped InAs Nanocrystal Quantum Dots Detected by Ultrafast Transient Absorption.

    PubMed

    Yang, Chunfan; Faust, Adam; Amit, Yorai; Gdor, Itay; Banin, Uri; Ruhman, Sanford

    2016-05-19

    The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs. PMID:26720008

  19. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  20. Measurement of the depolarization ratio of Rayleigh scattering at absorption bands

    NASA Astrophysics Data System (ADS)

    Anglister, J.; Steinberg, I. Z.

    1981-01-01

    Measurements of the depolarization ratio ρv of light scattered by the pigments lycopene and β-carotene at the red part of their absorption bands yielded values which are very close to the theoretical value 1/3 of a fully anisotropic molecular polarizability, i.e., that due to an electric dipole moment. Measurements of ρv at the blue edge of the visible absorption band of pinacyanol chloride yielded a value of 0.75 at 472.2 nm, which is the maximum value that a depolarization ratio can assume, and is attained if the average molecular polarizability is zero. This is possible only if the diagonalized polarizability tensor has at least one negative element to counterbalance the positive ones. A negative refractive index at the blue edge of the absorption band is thus experimentally demonstrated.

  1. Multiple Scattering Approach to Polarization Dependence of F K-Edge XANES Spectra for Highly Oriented Polytetrafluoroethylene (PTFE) Thin Film

    SciTech Connect

    Nagamatsu, S.; Ono, M.; Kera, S.; Okudaira, K. K.; Fujikawa, T.; Ueno, N.

    2007-02-02

    The polarization dependence of F K-edge X-ray absorption near edge structure (XANES) spectra of highly-oriented thin-film of polytetrafluoroethylene (PTFE) has been analyzed by using multiple scattering theory. The spectra show clear polarization dependence due to the highly-oriented structure. The multiple scattering calculations reflects a local structure around an absorbing atom. The calculated results obtained by considering intermolecular-interactions are in good agreement with the observed polarization-dependence. We have also analyzed structural models of the radiation damaged PTFE films.

  2. Continued Growth on Graphene Edges

    NASA Astrophysics Data System (ADS)

    Luo, Zhengtang

    Previously, we have shown that the large-size single crystal graphene can be obtained by suppressing the nucleation density during Chemical Vapor Deposition (CVD) growth. Here we demonstrate that the graphene single crystal can be amplified by a continued growth method. In this process, we used a mild oxidation step after the first-growth, which lead to the observed fromation of oxides at the vicinity of graphene edges, which allows the graphene growth at seed edges due to reduced activation energy. Consequently, we successful grown a secondary single-crystal graphene structures with the same lattice structure, orientation on the graphene edges. This amplification method would enable the production of graphene electronics with controlled properties.

  3. Method for encapsulating the edge of a flexible sheet

    SciTech Connect

    Keenihan, James R; Clarey, Todd M

    2013-02-19

    The present invention is premised upon an inventive method of producing an over-molded edge portion on a flexible substrate, wherein the edge portion is void of open areas due to support devices in the mold cavity.

  4. Exciton absorption in CdS1- xSex and ZnSe1- xTex solid solutions

    NASA Astrophysics Data System (ADS)

    Naumov, A.; Permogorov, S.; Reznitsky, A.; Verbin, S.; Klochikhin, A.

    1990-04-01

    Absorption spectra of CdS1- xSex and ZnSe1- xTex semiconductor solid solutions have been studied at T = 2 K in the region of fundamental absorption edge for composition range (0.02 < x < 0.6). It is shown that potential fluctuations due to compositional disorder of the alloy have a strong effect on both the exciton state broadening and the band gap shift. A model for description of the exciton absorption spectra is developed. The contribution of the fluctuations to the part of the band gap shift which is nonlinear in concentration is separated from the other mechanisms.

  5. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  6. TCT measurements with slim edge strip detectors

    NASA Astrophysics Data System (ADS)

    Mandić, Igor; Cindro, Vladimir; Gorišek, Andrej; Kramberger, Gregor; Mikuž, Marko; Zavrtanik, Marko; Fadeyev, Vitaliy; Sadrozinski, Hartmut F.-W.; Christophersen, Marc; Phlips, Bernard

    2014-07-01

    Transient current technique (TCT) measurements with focused laser light on miniature silicon strip detectors (n+-type strips on p-type bulk) with one inactive edge thinned to about 100 μm using the Scribe-Cleave-Passivate (SCP) method are presented. Pulses of focused IR (λ=1064 nm) laser light were directed to the surface of the detector and charge collection properties near the slim edge were investigated. Measurements before and after irradiation with reactor neutrons up to 1 MeV equivalent fluence of 1.5×1015 neq/cm2 showed that SCP thinning of detector edge does not influence its charge collection properties. TCT measurements were done also with focused red laser beam (λ=640 nm) directed to the SCP processed side of the detector. The absorption length of red light in silicon is about 3 μm so with this measurement information about the electric field at the edge can be obtained. Observations of laser induced signals indicate that the electric field distribution along the depth of the detector at the detector edge is different than in the detector bulk: electric field is higher near the strip side and lower at the back side. This is a consequence of negative surface charge caused by passivation of the cleaved edge with Al2O3. The difference between bulk and edge electric field distributions gets smaller after irradiation.

  7. Cholesterol absorption.

    PubMed

    Ostlund, Richard E

    2002-03-01

    Cholesterol absorption is a key regulatory point in human lipid metabolism because it determines the amount of endogenous biliary as well as dietary cholesterol that is retained, thereby influencing whole body cholesterol balance. Plant sterols (phytosterols) and the drug ezetimibe reduce cholesterol absorption and low-density lipoprotein cholesterol in clinical trials, complementing the statin drugs, which inhibit cholesterol biosynthesis. The mechanism of cholesterol absorption is not completely known but involves the genes ABC1, ABCG5, and ABCG8, which are members of the ATP-binding cassette protein family and appear to remove unwanted cholesterol and phytosterols from the enterocyte. ABC1 is upregulated by the liver X (LXR) and retinoid X (RXR) nuclear receptors. Acylcholesterol acytransferase-2 is an intestinal enzyme that esterifies absorbed cholesterol and increases cholesterol absorption when dietary intake is high. New clinical treatments based on better understanding of absorption physiology are likely to substantially improve clinical cholesterol management in the future. PMID:17033296

  8. DOPING AND BOND LENGTH CONTRIBUTIONS TO Mn K-EDGE SHIFT IN La1-xSrxMnO3 AND THEIR CORRELATION WITH ELECTRICAL TRANSPORT BEHAVIOUR.

    SciTech Connect

    PANDEY,S.K.; KHALID,S.; BINDU, R.; KUMAR, A.; PIMPALE, A.V.

    2006-12-04

    The experimental Mn K-edge x-ray absorption spectra of La{sub 1-x}Sr{sub x}MnO{sub 3}, x = 0 - 0.7 are compared with the band structure calculations using spin polarized density functional theory. It is explicitly shown that there is a correspondence between the inflection point on the absorption edge and the center of gravity of the unoccupied Mn 4p-band. This correspondence has been used to separate the doping and size contributions to edge shift due to variation in number of electrons in valence band and Mn-O bond lengths, respectively when Sr is doped into LaMnO{sub 3}. Such separation is helpful to find the localization behavior of charge carriers and to understand the observed transport properties and type of charge carrier participating in the conduction process in these compounds.

  9. L-edge X-ray absorption spectroscopy and DFT calculations on Cu2O2 species: direct electrophilic aromatic attack by side-on peroxo bridged dicopper(II) complexes.

    PubMed

    Qayyum, Munzarin F; Sarangi, Ritimukta; Fujisawa, Kiyoshi; Stack, T Daniel P; Karlin, Kenneth D; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2013-11-20

    The hydroxylation of aromatic substrates catalyzed by coupled binuclear copper enzymes has been observed with side-on-peroxo-dicopper(II) (P) and bis-μ-oxo-dicopper(III) (O) model complexes. The substrate-bound-O intermediate in [Cu(II)2(DBED)2(O)2](2+) (DBED = N,N'-di-tert-butyl-ethylenediamine) was shown to perform aromatic hydroxylation. For the [Cu(II)2(NO2-XYL)(O2)](2+) complex, only a P species was spectroscopically observed. However, it was not clear whether this O-O bond cleaves to proceed through an O-type structure along the reaction coordinate for hydroxylation of the aromatic xylyl linker. Accurate evaluation of these reaction coordinates requires reasonable quantitative descriptions of the electronic structures of the P and O species. We have performed Cu L-edge XAS on two well-characterized P and O species to experimentally quantify the Cu 3d character in their ground state wave functions. The lower per-hole Cu character (40 ± 6%) corresponding to higher covalency in the O species compared to the P species (52 ± 4%) reflects a stronger bonding interaction of the bis-μ-oxo core with the Cu(III) centers. DFT calculations show that 10-20% Hartree-Fock (HF) mixing for P and ~38% for O species are required to reproduce the Cu-O bonding; for the P species this HF mixing is also required for an antiferromagnetically coupled description of the two Cu(II) centers. B3LYP (with 20% HF) was, therefore, used to calculate the hydroxylation reaction coordinate of P in [Cu(II)2(NO2-XYL)(O2)](2+). These experimentally calibrated calculations indicate that the electrophilic attack on the aromatic ring does not involve formation of a Cu(III)2(O(2-))2 species. Rather, there is direct electron donation from the aromatic ring into the peroxo σ* orbital of the Cu(II)2(O2(2-)) species, leading to concerted C-O bond formation with O-O bond cleavage. Thus, species P is capable of direct hydroxylation of aromatic substrates without the intermediacy of an O-type species

  10. Molecular conformation changes in alkylthiol ligands as a function of size in gold nanoparticles: X-ray absorption studies

    SciTech Connect

    Ramallo-Lopez, J. M.; Giovanetti, L. J.; Requejo, F. G.; Isaacs, S. R.; Shon, Y. S.; Salmeron, M.

    2006-08-15

    The bonding of hexanethiols to gold nanoparticles of 1.5, 2.0, and 3 nm was studied using x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS). The XANES spectra revealed that a substantial fraction of weakly bound hexanethiol molecules are present in addition to those forming covalent bonds with Au atoms. The weakly bound molecules can be removed by washing in dichloromethane. After removal of the weakly bound molecules the S K-edge XANES reveals peaks due to S-Au and S-C bonds with intensities that change as a function of particle size. Au L{sub 3}-edge EXAFS results indicate that these changes follow the changes in coordination number of Au to the S atoms at the surface of the particles.

  11. Improved method of edge coating flat ribbon wire

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Method to coat the edges of flat ribbon wire is devised by using enamel with modified flow properties due to addition of 2 to 4 percent silicon. Conventional coating procedes several edge coatings to minimize oxidation and additional conventional coats are applied after edge coating to build up thickness.

  12. A reverberation room round robin on the determination of absorption coefficients

    NASA Astrophysics Data System (ADS)

    Kath, U.

    In ten reverberation rooms with very different volumes and different room shapes, the absorption coefficients for mineral fiber mat were measured. The particular feature of this round robin was that the absorption material was much thicker than in other similar experiments and that it was measured not only with an area of 12 sq m on the floor, but also as a complete surface covering of a small wall in order to avoid the edge effect. The decay curves were evaluated in at least two institutions and the absorption coefficients were calculated using the Eyring equation. The absorption coefficients were quite dispersed from one room to another and also from one-third octave band to the adjacent ones. Errors due to change are small, thus one is dealing with systematic errors.

  13. Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers.

    PubMed

    Tumbleston, John R; Ko, Doo-Hyun; Samulski, Edward T; Lopez, Rene

    2009-04-27

    We analyze optical absorption enhancements and quasiguided mode properties of organic solar cells with highly ordered nanostructured photoactive layers comprised of the bulk heterojunction blend, poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and a low index of refraction conducting material (LICM). This photonic crystal geometry is capable of enhancing spectral absorption by approximately 17% in part due to the excitation of quasiguided modes near the band edge of P3HT:PCBM. A nanostructure thickness between 200 nm and 300 nm is determined to be optimal, while the LICM must have an index of refraction approximately 0.3 lower than P3HT:PCBM to produce absorption enhancements. Quasiguided modes that differ in lifetime by an order of magnitude are also identified and yield absorption that is concentrated in the P3HT:PCBM flash layer. PMID:19399146

  14. Magnetism of zigzag edge phosphorene nanoribbons

    SciTech Connect

    Zhu, Zhili E-mail: jiayu@zzu.edu.cn; Li, Chong; Yu, Weiyang; Chang, Dahu; Sun, Qiang; Jia, Yu E-mail: jiayu@zzu.edu.cn

    2014-09-15

    We have investigated, by means of ab initio calculations, the electronic and magnetic structures of zigzag edge phosphorene nanoribbons (ZPNRs) with various widths. The stable magnetic state was found in pristine ZPNRs by allowing the systems to be spin-polarized. The ground state of pristine ZPNRs prefers ferromagnetic order in the same edge but antiferromagnetic order between two opposite edges. The magnetism arises from the dangling bond states as well as edge localized π-orbital states. The presence of a dangling bond is crucial to the formation of the magnetism of ZPNRs. The hydrogenated ZPNRs get nonmagnetic semiconductors with a direct band gap. While, the O-saturated ZPNRs show magnetic ground states due to the weak P-O bond in the ribbon plane between the p{sub z}-orbitals of the edge O and P atoms.

  15. Supersonic Leading Edge Receptivity

    NASA Technical Reports Server (NTRS)

    Maslov, Anatoly A.

    1998-01-01

    This paper describes experimental studies of leading edge boundary layer receptivity for imposed stream disturbances. Studies were conducted in the supersonic T-325 facility at ITAM and include data for both sharp and blunt leading edges. The data are in agreement with existing theory and should provide guidance for the development of more complete theories and numerical computations of this phenomena.

  16. The Edge, Fall 1999.

    ERIC Educational Resources Information Center

    Edge, 1999

    1999-01-01

    "The Edge" is a Canadian publication for youth. The mandate of the Edge is to support and celebrate all career journeys embraced by youth. This issue contains career profile articles covering three jobs: crane operator, indoor climbing instructor, and product certification tester. Career trends and the state of today's workplace are also…

  17. Substitution behavior of x(Na{sub 0.5}K{sub 0.5})NbO{sub 3}-(1 − x)BaTiO{sub 3} ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    SciTech Connect

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-30

    The doping effect of (Na{sub 0.5}K{sub 0.5})NbO{sub 3} (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO{sub 3} has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO{sub 3}, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb{sup 5+} ion for Ti-sites. Therefore, the simultaneous substitution of Na{sup +}/K{sup +} and Nb{sup 5+} ions into BaTiO{sub 3} can improve dielectric properties, based on the charge-transfer process.

  18. Structure and Composition of Cu Doped CdSe Nanocrystals Using Soft X-ray Absorption Spectroscopy

    SciTech Connect

    Meulenberg, R W; van Buuren, T; Hanif, K M; Willey, T M; Strouse, G F; Terminello, L J

    2004-06-04

    The local structure and composition of Cu ions dispersed in CdSe nanocrystals is examined using soft x-ray absorption near edge spectroscopy (XANES). Using Cu L-edge XANES and X-ray photoelectron measurements (XPS), we find that the Cu ions exist in the Cu(I) oxidation state. We also find that the observed Cu L-edge XANES signal is directly proportional to the molar percent of Cu present in our final material. Se L-edge XANES indicates changes in the Se density of states with Cu doping, due to a chemical bonding effect, and supports a statistical doping mechanism. Photoluminescence (PL) measurements indicate the Cu ions may act as deep electron traps. We show that XANES, XPS, and PL are a powerful combination of methods to study the electronic and chemical structure of dopants in nanostructured materials.

  19. Edge-on thick discs

    NASA Astrophysics Data System (ADS)

    Kasparova, A.; Katkov, I.; Chilingarian, I.; Silchenko, O.; Moiseev, A.; Borisov, S.

    2016-06-01

    Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Russian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on early-type disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4 ‑ 5 Gyr) metal rich ([Fe/H] ~ ‑0.2 ‑ 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its only disc is thick and old (10 Gyr) and its α-element abundance suggests a long formation epoch implying its formation at high redshift. Our results prove the diversity of thick disc formation scenarios.

  20. FAST EDGE-FILTERED IMAGE UPSAMPLING

    PubMed Central

    Joshi, Shantanu H.; Marquina, Antonio L.; Osher, Stanley J.; Dinov, Ivo; Toga, Arthur W.; Van Horn, John D.

    2011-01-01

    We present a novel edge preserved interpolation scheme for fast upsampling of natural images. The proposed piecewise hyperbolic operator uses a slope-limiter function that conveniently lends itself to higher-order approximations and is responsible for restricting spatial oscillations arising due to the edges and sharp details in the image. As a consequence the upsampled image not only exhibits enhanced edges, and discontinuities across boundaries, but also preserves smoothly varying features in images. Experimental results show an improvement in the PSNR compared to typical cubic, and spline-based interpolation approaches. PMID:22323066

  1. Edge of chaos and genesis of turbulence.

    PubMed

    Chian, Abraham C-L; Muñoz, Pablo R; Rempel, Erico L

    2013-11-01

    The edge of chaos is analyzed in a spatially extended system, modeled by the regularized long-wave equation, prior to the transition to permanent spatiotemporal chaos. In the presence of coexisting attractors, a chaotic saddle is born at the basin boundary due to a smooth-fractal metamorphosis. As a control parameter is varied, the chaotic transient evolves to well-developed transient turbulence via a cascade of fractal-fractal metamorphoses. The edge state responsible for the edge of chaos and the genesis of turbulence is an unstable traveling wave in the laboratory frame, corresponding to a saddle point lying at the basin boundary in the Fourier space. PMID:24329334

  2. Lipids: Absorption and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic nature of lipids, dietary fat is handled differently than protein or carbohydrate with respect with digestion and absorption. Dietary fats are broken down throughout the gastrointestinal system. A unique group of enzymes and cofactors allows this process to proceed in an eff...

  3. Agile robotic edge finishing

    SciTech Connect

    Powell, M.

    1996-08-01

    Edge finishing processes have seemed like ideal candidates for automation. Most edge finishing processes are unpleasant, dangerous, tedious, expensive, not repeatable and labor intensive. Estimates place the cost of manual edge finishing processes at 12% of the total cost of fabricating precision parts. For small, high precision parts, the cost of hand finishing may be as high as 305 of the total part cost. Up to 50% of this cost could be saved through automation. This cost estimate includes the direct costs of edge finishing: the machining hours required and the 30% scrap and rework rate after manual finishing. Not included in these estimates are the indirect costs resulting from cumulative trauma disorders and retraining costs caused by the high turnover rate for finishing jobs.. Despite the apparent economic advantages, edge finishing has proven difficult to automate except in low precision and/or high volume production environments. Finishing automation systems have not been deployed successfully in Department of Energy defense programs (DOE/DP) production, A few systems have been attempted but have been subsequently abandoned for traditional edge finishing approaches: scraping, grinding, and filing the edges using modified dental tools and hand held power tools. Edge finishing automation has been an elusive but potentially lucrative production enhancement. The amount of time required for reconfiguring workcells for new parts, the time required to reprogram the workcells to finish new parts, and automation equipment to respond to fixturing errors and part tolerances are the most common reasons cited for eliminating automation as an option for DOE/DP edge finishing applications. Existing automated finishing systems have proven to be economically viable only where setup and reprogramming costs are a negligible fraction of overall production costs.

  4. Edge detection: a tutorial review

    SciTech Connect

    Kunt, M.

    1982-01-01

    Major edge detection methods are reviewed from the signal processing and artificial intelligence point of views. In the first class, images are processed first to enhance edges. Then a decision is made to label each picture point as edge or not edge. In the second class edges are viewed as the border-lines of regions whose points share a common property. 21 references.

  5. Relic Neutrino Absorption Spectroscopy

    SciTech Connect

    Eberle, b

    2004-01-28

    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10{sup 21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m{sub {nu}} 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.

  6. Maintenance of the Sea-Ice Edge.

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.; Holland, M. M.; Hunke, E. C.; Moritz, R. E.

    2005-08-01

    A coupled global climate model is used to evaluate processes that determine the equilibrium location of the sea-ice edge and its climatological annual cycle. The extent to which the wintertime ice edge departs from a symmetric ring around either pole depends primarily on coastlines, ice motion, and the melt rate at the ice-ocean interface. At any location the principal drivers of the oceanic heat flux that melts sea ice are absorbed solar radiation and the convergence of heat transported by ocean currents. The distance between the ice edge and the pole and the magnitude of the ocean heat flux convergence at the ice edge are inversely related. The chief exception to this rule is in the East Greenland Current, where the ocean heat flux convergence just east of the ice edge is relatively high but ice survives due to its swift southward motion and the protection of the cold southward-flowing surface water. In regions where the ice edge extends relatively far equatorward, absorbed solar radiation is the largest component of the ocean energy budget, and the large seasonal range of insolation causes the ice edge to traverse a large distance. In contrast, at relatively high latitudes, the ocean heat flux convergence is the largest component and it has a relatively small annual range, so the ice edge traverses a much smaller distance there. When the model is subject to increased CO2 forcing up to twice preindustrial levels, the ocean heat flux convergence weakens near the ice edge in most places. This weakening reduces the heat flux from the ocean to the base of the ice and tends to offset the effects of increased radiative forcing at the ice surface, so the ice edge retreats less than it would otherwise.

  7. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    PubMed Central

    2014-01-01

    Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodology to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed. PMID:25492398

  8. Local vibrational properties of GaAs studied by extended X-ray absorption fine structure.

    PubMed

    Ahmed, S I; Aquilanti, G; Novello, N; Olivi, L; Grisenti, R; Fornasini, P

    2013-10-28

    Extended X-ray absorption fine structure (EXAFS) has been measured at both the K edges of gallium and arsenic in GaAs, from 14 to 300 K, to investigate the local vibrational and thermodynamic behaviour in terms of bond expansion, parallel, and perpendicular mean square relative displacements and third cumulant. The separate analysis of the two edges allows a self-consistent check of the results and suggests that a residual influence of Ga EXAFS at the As edge cannot be excluded. The relation between bond expansion, lattice expansion, and expansion due to anharmonicity of the effective potential is quantitatively clarified. The comparison with previous EXAFS results on other crystals with the diamond or zincblende structure shows that the values of a number of parameters determined from EXAFS are clearly correlated with the fractional ionicity and with the strength and temperature interval of the lattice negative expansion. PMID:24182054

  9. Comparison of edges detected at different polarisations in MAESTRO data

    NASA Technical Reports Server (NTRS)

    Caves, Ronald G.; Harley, Peter J.; Quegan, Shaun

    1992-01-01

    Edge detection would appear to be a crucial tool for analyzing multi-polarized, multi-frequency, and multi-temporal Synthetic Aperture Radar (SAR) images. Edge structure provides a simple means for comparing different polarizations and frequencies, and for detecting changes over time. Due to the fact that edges and segments (homogeneous regions) are dual concepts, edge detection has an important role to play in identifying segments within which mean backscatter measurements for use in image classification can be made. As part of a general investigation into edge detection in SAR imagery, an initial investigation was carried out into the detectability and nature of edges in multi-polarized and multi-frequency SAR images. The contrast ratio (CR) operator was used to detect edges. This operator was previously shown to perform well at detecting edges in single-polarized and single-frequency SAR images.

  10. In situ measurements of the oblique incidence sound absorption coefficient for finite sized absorbers.

    PubMed

    Ottink, Marco; Brunskog, Jonas; Jeong, Cheol-Ho; Fernandez-Grande, Efren; Trojgaard, Per; Tiana-Roig, Elisabet

    2016-01-01

    Absorption coefficients are mostly measured in reverberation rooms or with impedance tubes. Since these methods are only suitable for measuring the random incidence and the normal incidence absorption coefficient, there exists an increasing need for absorption coefficient measurement of finite absorbers at oblique incidence in situ. Due to the edge diffraction effect, oblique incidence methods considering an infinite sample fail to measure the absorption coefficient at large incidence angles of finite samples. This paper aims for the development of a measurement method that accounts for the finiteness of the absorber. A sound field model, which accounts for scattering from the finite absorber edges, assuming plane wave incidence is derived. A significant influence of the finiteness on the radiation impedance and the corresponding absorption coefficient is found. A finite surface method, which combines microphone array measurements over a finite sample with the sound field model in an inverse manner, is proposed. Besides, a temporal subtraction method, a microphone array method, impedance tube measurements, and an equivalent fluid model are used for validation. The finite surface method gives promising agreement with theory, especially at near grazing incidence. Thus, the finite surface method is proposed for further measurements at large incidence angles. PMID:26827003

  11. Edge Plasma Analysis for Liquid-wall MFE Concepts

    SciTech Connect

    Moir, R W; Rensink, M; Rognlien, T D

    2000-09-21

    A thick flowing layer of liquid (e.g., flibe-a molten salt, or Sn{sub 80}Li{sub 20}--a liquid metal) protects the structural walls of the magnetic fusion configuration so that they can last the life of the plant even with intense 14 MeV neutron bombardment from the D-T fusion reaction, The surface temperature of the liquid rises as it passes from the inlet nozzles to the exit nozzles due to absorption of line and bremsstrahlung radiation, and neutrons. The surface temperature can be reduced by enhanced turbulent convection of hot surface liquid into the cooler interior. This surface temperature is affected by the temperature of liquid from a heat transport and energy recovery system. The evaporative flux from the wall driven by the surface temperature must also result in an acceptable impurity level in the core plasma. The shielding of the core by the edge plasma is modeled with a 2D-transport code for the DT and impurity ions; these impurity ions are either swept out to the divertor, or diffuse to the hot plasma core. An auxiliary plasma between the edge plasma and the liquid wall may further attenuate evaporating flux of atoms and molecules by ionization near the wall.

  12. Edge mode dynamics of quenched topological wires

    NASA Astrophysics Data System (ADS)

    Sacramento, P. D.

    2016-06-01

    The fermionic and Majorana edge mode dynamics of various topological systems are compared, after a sudden global quench of the Hamiltonian parameters takes place. Attention is focused on the regimes where the survival probability of an edge state has oscillations either due to critical or off-critical quenches. The nature of the wave functions and the overlaps between the eigenstates of different points in parameter space determine the various types of behaviors, and the distinction due to the Majorana nature of the excitations plays a lesser role. Performing a sequence of quenches, it is shown that the edge states, including Majorana modes, may be switched off and on. Also, the generation of Majoranas due to quenching from a trivial phase is discussed.

  13. The Edge supersonic transport

    NASA Technical Reports Server (NTRS)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  14. Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    PubMed Central

    Nams, Vilis O.

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965

  15. Leading edge protection for composite blades

    NASA Technical Reports Server (NTRS)

    Brantley, J. W.; Irwin, T. P. (Inventor)

    1977-01-01

    A laminated filament composite structure, such as an airfoil for use in an environment in which it is subjected to both foreign object impact and bending is provided with improved leading edge protection. At least one fine wire mesh layer is partially bonded within the composite structure along its neutral bending axis. A portion of the wire mesh layer extends beyond the neutral bending axis and partially around the leading edge where it is bonded to the outer periphery of the primary composite structure. The wire mesh is clad with a metal such as nickel to provide an improved leading edge protective device which is firmly anchored within the composite structure. Also described is a novel method of constructing a composite airfoil so as to further minimize the possibility of losing the leading edge protective device due to delamination caused by impact and bending.

  16. Camera Edge Response

    NASA Astrophysics Data System (ADS)

    Zisk, Stanley H.; Wittels, Norman

    1988-02-01

    Edge location is an important machine vision task. Machine vision systems perform mathematical operations on rectangular arrays of numbers that are intended to faithfully represent the spatial distribution of scene luminance. The numbers are produced by periodic sampling and quantization of the camera's video output. This sequence can cause artifacts to appear in the data with a noise spectrum that is high in power at high spatial frequencies. This is a problem because most edge detection algorithms are preferentially sensitive to the high-frequency content in an image. Solid state cameras can introduce errors because of the spatial periodicity of their sensor elements. This can result in problems when image edges are aligned with camera pixel boundaries: (a) some cameras introduce transients into the video signal while switching between sensor elements; (b) most cameras use analog low-pass filters to minimize sampling artifacts and these introduce video phase delays that shift the locations of edges. The problems compound when the vision system samples asynchronously with the camera's pixel rate. Moire patterns (analogous to beat frequencies) can result. In this paper, we examine and model quantization effects in a machine vision system with particular emphasis on edge detection performance. We also compare our models with experimental measurements.

  17. Carbon K-Edge Scanning Transmission X-ray Spectromicroscopy (STXM) of Uranium Binding to Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Gillow, J.; Wirick, S.; Feser, M.; Jacobsen, C.; Francis, A.

    2002-12-01

    The sorption of uranium by bacteria was studied by interrogation of the C K-absorption edge using scanning transmission x-ray spectromicroscopy (STXM). The unique imaging and spectroscopy capability of STXM was used to elucidate the chemical environment of C in the bacterial cell. Washed whole cells and cell wall preparations of bacteria commonly found in soil environments including Pseudomonas fluorescens, Bacillus subtilis, the facultative anaerobe Shewanella putrefaciens and the strict anaerobe Clostridium sp. were exposed to uranyl nitrate at pH 5. After washing to remove potential surface precipitates and non-bonded uranium the cells and walls were dried onto TEM gridx. Standards (uranyl salts and organic complexes), bacterial cells unexposed, and U-exposed cells were analyzed by STXM at 280-310 eV with the C K-edge x-ray absorption near-edge spectroscopy (XANES) examined for evidence of U in the C coordination environment. Principle spectral features of the bacteria included the 285 eV C=C and 288 eV C=O 1s-π * resonances due to the major C function groups that comprise the bacterial cell wall. There was no change in peak position of 1s-π * spectral features for whole cells or cell walls when U was present. This indicates that U does not exert an influence on the electron resonance of C when bonded as carboxylate species at the bacterial cell surface. This finding is supported by the analysis of uranyl citrate and uranyl alanine standards. The extended x-ray absorption fine structure spectroscopy region of the C K-edge of bacterial cells exposed to U shows slight changes in spectral features at >290 eV. Other absorption edges accessible by soft x-ray spectroscopy were examined; U was detected at it's NV (736.2 eV) and NIV (778.3 eV) edges however there was poor resolution of U associated with the bacteria. Analysis at the O K-edge (529 eV) provided evidence for metal-ligand interaction and forms the basis for further study to gain a molecular

  18. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2016-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  19. High Speed Edge Detection

    NASA Technical Reports Server (NTRS)

    Prokop, Norman F (Inventor)

    2015-01-01

    Analog circuits for detecting edges in pixel arrays are disclosed. A comparator may be configured to receive an all pass signal and a low pass signal for a pixel intensity in an array of pixels. A latch may be configured to receive a counter signal and a latching signal from the comparator. The comparator may be configured to send the latching signal to the latch when the all pass signal is below the low pass signal minus an offset. The latch may be configured to hold a last negative edge location when the latching signal is received from the comparator.

  20. Computation of leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Newsome, R. W.; Thomas, J. L.

    1986-01-01

    The simulation of the leading edge vortex flow about a series of conical delta wings through solution of the Navier-Stokes and Euler equations is studied. The occurrence, the validity, and the usefulness of separated flow solutions to the Euler equations of particular interest. Central and upwind difference solutions to the governing equations are compared for a series of cross sectional shapes, including both rounded and sharp tip geometries. For the rounded leading edge and the flight condition considered, viscous solutions obtained with either central or upwind difference methods predict the classic structure of vortical flow over a highly swept delta wing. Predicted features include the primary vortex due to leading edge separation and the secondary vortex due to crossflow separation. Central difference solutions to the Euler equations show a marked sensitivity to grid refinement. On a coarse grid, the flow separates due to numerical error and a primary vortex which resembles that of the viscous solution is predicted. In contrast, the upwind difference solutions to the Euler equations predict attached flow even for first-order solutions on coarse grids. On a sufficiently fine grid, both methods agree closely and correctly predict a shock-curvature-induced inviscid separation near the leeward plane of symmetry. Upwind difference solutions to the Navier-Stokes and Euler equations are presented for two sharp leading edge geometries. The viscous solutions are quite similar to the rounded leading edge results with vortices of similar shape and size. The upwind Euler solutions predict attached flow with no separation for both geometries. However, with sufficient grid refinement near the tip or through the use of more accurate spatial differencing, leading edge separation results. Once the leading edge separation is established, the upwind solution agrees with recently published central difference solutions to the Euler equations.

  1. Lower Hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.

    2015-11-01

    For the first time, the power deposition of Lower Hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t <τE) response of the scrape-off-layer (SOL) plasma to LHRF power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be key for the LHRF edge power deposition physics. These observations support the existence a loss mechanism near the edge for LHRF at high density (ne > 1 . 0 .1020 [m-3]). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivates the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE award DE-FC02-99ER54512.

  2. Swords with Blunt Edges

    ERIC Educational Resources Information Center

    Popham, W. James

    2004-01-01

    Many U.S. educators now wonder whether they're teachers or targets. This mentality stems from the specter of their school being sanctioned for failing the state accountability tests mandated under No Child Left Behind (NCLB). According to this author, most of those tests are like blunt-edged swords: They function badly in two directions. While…

  3. Oscillating edge-flames

    NASA Astrophysics Data System (ADS)

    Buckmaster, J.; Zhang, Yi

    1999-09-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.

  4. The Inner Urban Edge

    ERIC Educational Resources Information Center

    Ferebee, Ann; Carpenter, Edward K.

    1974-01-01

    In this article, renewal of the inner urban edge is discussed. Norfolk (Virginia) is attempting to blur the difference between old and new neighbor hoods through zoning and architectural controls. Cincinnati (Ohio) is developing an environmentally sound hillside design. Reading (Pennsylvania) is utilizing old railyards for greenbelts of hiking and…

  5. Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes?

    NASA Astrophysics Data System (ADS)

    Mani, Arjun; Benjamin, Colin

    2016-04-01

    On the surface of 2D topological insulators, 1D quantum spin Hall (QSH) edge modes occur with Dirac-like dispersion. Unlike quantum Hall (QH) edge modes, which occur at high magnetic fields in 2D electron gases, the occurrence of QSH edge modes is due to spin-orbit scattering in the bulk of the material. These QSH edge modes are spin-dependent, and chiral-opposite spins move in opposing directions. Electronic spin has a larger decoherence and relaxation time than charge. In view of this, it is expected that QSH edge modes will be more robust to disorder and inelastic scattering than QH edge modes, which are charge-dependent and spin-unpolarized. However, we notice no such advantage accrues in QSH edge modes when subjected to the same degree of contact disorder and/or inelastic scattering in similar setups as QH edge modes. In fact we observe that QSH edge modes are more susceptible to inelastic scattering and contact disorder than QH edge modes. Furthermore, while a single disordered contact has no effect on QH edge modes, it leads to a finite charge Hall current in the case of QSH edge modes, and thus a vanishing of the pure QSH effect. For more than a single disordered contact while QH states continue to remain immune to disorder, QSH edge modes become more susceptible—the Hall resistance for the QSH effect changes sign with increasing disorder. In the case of many disordered contacts with inelastic scattering included, while quantization of Hall edge modes holds, for QSH edge modes a finite charge Hall current still flows. For QSH edge modes in the inelastic scattering regime we distinguish between two cases: with spin-flip and without spin-flip scattering. Finally, while asymmetry in sample geometry can have a deleterious effect in the QSH case, it has no impact in the QH case.

  6. Edge states in polariton honeycomb lattices

    NASA Astrophysics Data System (ADS)

    Milićević, M.; Ozawa, T.; Andreakou, P.; Carusotto, I.; Jacqmin, T.; Galopin, E.; Lemaître, A.; Le Gratiet, L.; Sagnes, I.; Bloch, J.; Amo, A.

    2015-09-01

    The experimental study of edge states in atomically thin layered materials remains a challenge due to the difficult control of the geometry of the sample terminations, the stability of dangling bonds, and the need to measure local properties. In the case of graphene, localized edge modes have been predicted in zigzag and bearded edges, characterized by flat dispersions connecting the Dirac points. Polaritons in semiconductor microcavities have recently emerged as an extraordinary photonic platform to emulate 1D and 2D Hamiltonians, allowing the direct visualization of the wavefunctions in both real- and momentum-space as well as of the energy dispersion of eigenstates via photoluminescence experiments. Here we report on the observation of edge states in a honeycomb lattice of coupled micropillars. The lowest two bands of this structure arise from the coupling of the lowest energy modes of the micropillars, and emulate the π and π* bands of graphene. We show the momentum-space dispersion of the edge states associated with the zigzag and bearded edges, holding unidimensional quasi-flat bands. Additionally, we evaluate polarization effects characteristic of polaritons on the properties of these states.

  7. Predicting edge seal performance from accelerated testing

    NASA Astrophysics Data System (ADS)

    Hardikar, Kedar; Vitkavage, Dan; Saproo, Ajay; Krajewski, Todd

    2014-10-01

    Degradation in performance of a PV module attributable to moisture ingress has received significant attention in PV reliability research. Assessment of field performance of PV modules against moisture ingress through product-level testing in temperature-humidity control chambers poses challenges. Development of a meaningful acceleration factor model is challenging due to different rates of degradation of components embedded in a PV module, when exposed to moisture. Test results are typically a convolution of moisture barrier performance of the edge seal and degradation of laminated components when exposed to moisture. It is desirable to have an alternate method by which moisture barrier performance of the edge seal in its end product form can be assessed in any given field conditions, independent of particular cell design. In this work, a relatively inexpensive test technique was developed to test the edge seal in its end product form in a manner that is decoupled from other components of the PV module. A theoretical framework was developed to assess moisture barrier performance of edge seal with desiccants subjected to different conditions. This framework enables the analysis of test results from accelerated tests and prediction of the field performance of the edge seal. Results from this study lead to the conclusion that the edge seal on certain Miasole glass-glass modules studied is effective for the most aggressive weather conditions examined, beyond the intended service.

  8. The red edge of plant leaf reflectance

    NASA Technical Reports Server (NTRS)

    Horler, D. N. H.; Dockray, M.; Barber, J.

    1983-01-01

    A detailed study of the red edge spectral feature of green vegetation based on laboratory reflectance spectrophotometry is presented. A parameter lambda is defined as the wavelength is defined as the wavelength of maximum slope and found to be dependent on chlorophyll concentration. Species, development stage, leaf layering, and leaf water content of vegetation also influences lambda. The maximum slope parameter is found to be independent of simulated ground area coverage. The results are interpreted in terms of Beer's Law and Kubelka-Munk theory. The chlorophyll concentration dependence of lambda seems to be explained in terms of a pure absorption effect, and it is suggested that the existence of two lambda components arises from leaf scattering properties. The results indicate that red edge measurements will be valuable for assessment of vegetative chlorophyll status and leaf area index independently of ground cover variations, and will be particularly suitable for early stress detection.

  9. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  10. Edge localized mode control with an edge resonant magnetic perturbation

    SciTech Connect

    Moyer, R.A.; Boedo, J.A.; Rudakov, D.L.; Evans, T.E.; Osborne, T.H.; Gohil, P.; Groebner, R.J.; Jackson, G.L.; La Haye, R.J.; Leonard, A.W.; Schaffer, M.J.; Snyder, P.B.; West, W.P.; Thomas, P.R.; Becoulet, M.; Harris, J.; Finken, K.-H.; Doyle, E.J.; Rhodes, T.L.; Wang, G.

    2005-05-15

    A low amplitude ({delta}b{sub r}/B{sub T}=1 part in 5000) edge resonant magnetic field perturbation with toroidal mode number n=3 and poloidal mode numbers between 8 and 15 has been used to suppress most large type I edge localized modes (ELMs) without degrading core plasma confinement. ELMs have been suppressed for periods of up to 8.6 energy confinement times when the edge safety factor q{sub 95} is between 3.5 and 4. The large ELMs are replaced by packets of events (possibly type II ELMs) with small amplitude, narrow radial extent, and a higher level of magnetic field and density fluctuations, creating a duty cycle with long 'active' intervals of high transport and short 'quiet' intervals of low transport. The increased transport associated with these events is less impulsive and slows the recovery of the pedestal profiles to the values reached just before the large ELMs without the n=3 perturbation. Changing the toroidal phase of the perturbation by 60 deg. with respect to the best ELM suppression case reduces the ELM amplitude and frequency by factors of 2-3 in the divertor, produces a more stochastic response in the H-mode pedestal profiles, and displays similar increases in small scale events, although significant numbers of large ELMs survive. In contrast to the best ELM suppression case where the type I ELMs are also suppressed on the outboard midplane, the midplane recycling increases until individual ELMs are no longer discernable. The ELM response depends on the toroidal phase of the applied perturbation because intrinsic error fields make the target plasma nonaxisymmetric, and suggests that at least some of the variation in ELM behavior in a single device or among different devices is due to differences in the intrinsic error fields in these devices. These results indicate that ELMs can be suppressed by small edge resonant magnetic field perturbations. Extrapolation to next-step burning plasma devices will require extending the regime of operation to

  11. ABSORPTION ANALYZER

    DOEpatents

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  12. On thermal edge effects in composite laminates

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1976-01-01

    Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.

  13. Temperature dependence of Zr and Ti K-edge XANES spectra for para- and ferro-electric perovskite-type PbZrO3, PbTiO3 and BaTiO3

    NASA Astrophysics Data System (ADS)

    Yoshiasa, A.; Nakatani, T.; Hiratoko, T.; Tobase, T.; Nakatsuka, A.; Okube, M.; Arima, H.; Sugiyama, K.

    2016-05-01

    Zr and Ti K-edge XANES spectra of PbZrO3, PbTiO3 and BaTiO3 perovskite-type compounds were measured in the temperature range from 10K to 850K. Quantitative comparisons for the near-edge spectra were performed in a wide temperature range using the absorption intensity invariant point (AIIP) standardization. Clear temperature dependence for pre-edge shoulder is identified by the calculating the temperature difference of the XANES spectrum intensity. Decrease of pre-edge shoulder and peak intensity is observed only in the para- and ferro-electric phases and draw curves, not straight lines. The gradients for shoulder and pre-edge peak intensity are rich in a variety. The decrease in absorption of pre-edge peak and shoulder is speculated due to the shift from the off-centre position of the Zr atom with respect to the oxygen octahedron to center position. The Zr ion in the PbZrO3 para-electric phase has same temperature behaviors of Ti ions in the ferroelectric perovskite.

  14. Edge detection by nonlinear dynamics

    SciTech Connect

    Wong, Yiu-fai

    1994-07-01

    We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.

  15. Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra

    SciTech Connect

    Groot, F. M. F. de

    2007-02-02

    This paper discusses the role of resonant inelastic X-ray scattering (RIXS) to unravel the nature of the states that are visible in the pre-edge region of the 3d metal K edges. The traditional pre-edge analysis into quadrupole transitions to the 3d-states plus dipole transitions to the 4p states is outlined, with special attention to the situation of TiO2. The general possibilities of RIXS are described, including the various possible cross-sections through the 2D RIXS plane. Recent developments in High-Energy Resolution Fluorescence Detection (HERFD) are discussed, that yield XANES-like spectra with unprecedented resolution. Using the 1s2p RIXS of LiCoO2 as example, the presence of an extra peak due to non-local dipole transitions is explained. The non-local nature of this dipole pre-edge peak is proven from its behavior in the 2D RIXS plane. The paper also discusses a range of selective X-ray absorption experiments, where the selectivity is towards (a) the spin-state, (b) the valence, (c) the neighbor atom and (d) the edge. In the outlook, a number of additional experimental routes is suggested, which shows that the use of RIXS, HERFD and selective XAS techniques is only just starting.

  16. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    SciTech Connect

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye; Jurss, Jonah W.; Concepcion, Javier J.; Meyer, Thomas J.; Soldatov, Alexander; Pushkar, Yulia

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XAS spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.

  17. Coulomb effects on edge scattering in elastic nuclear collisions

    SciTech Connect

    Silveira, R. da; Leclercq-Willain, Ch.

    2011-04-15

    We present a qualitative analysis of the effects of the Coulomb force on the edge scattering produced in elastic nuclear collisions occurring under strong absorption conditions. This analysis is illustrated with several examples of nucleus-nucleus and antiproton-nucleus elastic scattering.

  18. Edge Mode Coupling within a Plasmonic Nanoparticle.

    PubMed

    Schmidt, Franz-Philipp; Ditlbacher, Harald; Hohenau, Andreas; Hohenester, Ulrich; Hofer, Ferdinand; Krenn, Joachim R

    2016-08-10

    The coupling of plasmonic nanoparticles can strongly modify their optical properties. Here, we show that the coupling of the edges within a single rectangular particle leads to mode splitting and the formation of bonding and antibonding edge modes. We are able to unambiguously designate the modes due to the high spatial resolution of electron microscopy-based electron energy loss spectroscopy and the comparison with numerical simulations. Our results provide simple guidelines for the interpretation and the design of plasmonic mode spectra. PMID:27427962

  19. Gastrointestinal citrate absorption in nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  20. Si K Edge Structure and Variability in Galactic X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-01

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 1022 cm‑2. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edge absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s‑1. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.

  1. Line Edge Detection and Characterization in SEM Images using Wavelets

    SciTech Connect

    Sun, W; Romagnoli, J A; Tringe, J W; L?tant, S E; Stroeve, P; Palazoglu, A

    2008-10-07

    Edge characterization has become increasingly important in nanotechnology due to the growing demand for precise nanoscale structure fabrication and assembly. Edge detection is often performed by thresholding the spatial information of a top-down image obtained by Scanning Electron Microscopy (SEM) or other surface characterization techniques. Results are highly dependent on an arbitrary threshold value, which makes it difficult to reveal the nature of the real surface and to compare results among images. In this paper, we present an alternative edge boundary detection technique based on the wavelet framework. Our results indicate that the method facilitates nano-scale edge detection and characterization, by providing a systematic threshold determination step.

  2. Competing edge networks

    NASA Astrophysics Data System (ADS)

    Parsons, Mark; Grindrod, Peter

    2012-06-01

    We introduce a model for a pair of nonlinear evolving networks, defined over a common set of vertices, subject to edgewise competition. Each network may grow new edges spontaneously or through triad closure. Both networks inhibit the other's growth and encourage the other's demise. These nonlinear stochastic competition equations yield to a mean field analysis resulting in a nonlinear deterministic system. There may be multiple equilibria; and bifurcations of different types are shown to occur within a reduced parameter space. This situation models competitive communication networks such as BlackBerry Messenger displacing SMS; or instant messaging displacing emails.

  3. The cutting edge.

    PubMed

    Hagland, M; Lumsdon, K; Montague, J; Serb, C

    1995-08-01

    With managed care payment becoming the norm, employers actively pursuing keener benefits management, health care markets evolving at warp speed, and clinical and information technologies spawning new capabilities every day, the cutting edge in health care keeps slicing ever-deeper. With that in mind, we at Hospitals & Health Networks have developed a browser's compendium of some of the leading people, places (organizations and programs) and technologies that are helping move the field forward into the next stage. Each entry is unique; what they all share is an innovative quality that others will emulate. PMID:7627230

  4. Reconstruction of Fractional Quantum Hall Edges: Numerical Studies

    NASA Astrophysics Data System (ADS)

    Wan, Xin; Yang, Kun; Rezayi, E. H.

    2003-03-01

    The interplay of electron-electron interaction and confining potential can lead to the reconstruction of fractional quantum Hall edges (Xin Wan, Kun Yang, and E. H. Rezayi, Phys. Rev. Lett. 88, 056802 (2002).). We have performed exact diagonalization studies on microscopic models of fractional quantum Hall liquids, in finite size systems with disc geometry, and found numerical evidence that suggests edge reconstruction occurs under rather general conditions. Due to edge reconstruction, additional nonchiral edge modes can arise for both incompressible and compressible states. We have studied the electron dipole spectral function that is directly related to the microwave conductivity measurement of a two-dimensional electron gas with an array of antidots (P. D. Ye et al., Phys. Rev. B 65, 121305 (2002).). Our results are consistent with the enhanced microwave conductivity observed in experiments at low temperatures, and its suppression at higher temperatures. We also discuss the effects of the edge reconstruction on the fractional quantum Hall edge tunneling experiments.

  5. Topological number of edge states

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kimura, Taro

    2016-05-01

    We show that the edge states of the four-dimensional class A system can have topological charges, which are characterized by Abelian/non-Abelian monopoles. The edge topological charges are a new feature of relations among theories with different dimensions. From this novel viewpoint, we provide a non-Abelian analog of the TKNN number as an edge topological charge, which is defined by an SU(2) 't Hooft-Polyakov BPS monopole through an equivalence to Nahm construction. Furthermore, putting a constant magnetic field yields an edge monopole in a noncommutative momentum space, where D-brane methods in string theory facilitate study of edge fermions.

  6. Tuning semiconductor band edge energies for solar photocatalysis via surface ligand passivation.

    PubMed

    Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey B

    2012-01-11

    Semiconductor photocatalysts capable of broadband solar photon absorption may be nonetheless precluded from use in driving water splitting and other solar-to-fuel related reactions due to unfavorable band edge energy alignment. Using first-principles density functional theory and beyond, we calculate the electronic structure of passivated CdSe surfaces and explore the opportunity to tune band edge energies of this and related semiconductors via electrostatic dipoles associated with chemisorbed ligands. We predict substantial shifts in band edge energies originating from both the induced dipole at the ligand/CdSe interface and the intrinsic dipole of the ligand. Building on important induced dipole contributions, we further show that, by changing the size and orientation of the ligand's intrinsic dipole moment via functionalization, we can control the direction and magnitude of the shifts of CdSe electronic levels. Our calculations suggest a general strategy for enabling new active semiconductor photocatalysts with both optimal opto-electronic, and photo- and electrochemical properties. PMID:22192078

  7. The blue of iron in mineral pigments: a Fe K-edge XANES study of vivianite

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2010-05-01

    Iron is a powerful chromophore element whose pigmenting properties were the first to be recognized among transition metals. The interest in blue iron minerals as pigments for painting was enhanced with the use of vivianite—a natural hydrated ferrous phosphate, Fe3(PO4)2ṡ8H2O—which in medieval Europe became an alternative to the expensive lapis lazuli, (Na, Ca)4(AlSiO4)3(SO4, Cl, S), a member of the ultramarines whose appreciated blue tone is due to the presence of sulfur polyanions. Conversely, vivianite coloring is attributed to the intervalence charge transfer (IVCT) Fe2+-Fe3+ that in later decades was studied by optical techniques and Mössbauer spectroscopy. However, the aging of blue vivianite pigments in old paintings has become a serious concern for conservators, but the aging process still awaits a satisfactory explanation. As an input to this problem, an X-ray absorption near-edge structure (XANES) study at the Fe K-edge of vivianite with different colors and origins was undertaken at the European Synchrotron Radiation Facility using the instrumental facilities of beamline ID-21. The analysis of pre-edge features corroborates previous data on the origin of vivianite color and emphasizes the need for a precautious assessment of iron speciation on the exclusive basis of XANES data. Actual results are discussed and further work is outlined.

  8. Reduction process of Pd-containing La-Fe perovskite-type oxides by in-situ Dispersive X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Uchiyama, T.; Kamitani, K.; Kato, K.; Nishibori, M.

    2016-05-01

    Reduction process of Pd-containing La-Fe perovskites was investigated by in-situ Pd K-edge dispersive X-ray absorption fine structure as well as mass spectroscopy. The prepared perovskite was characterized by a conventional X-ray absorption spectra to confirm the incorporation of cationic Pd into perovskite matrix. Under the reductive atmosphere (5 vol%H2/He), we found the presence of three reduction processes of Pd cations in perovskite structure. The segregation of Pd metal particles was observed from 200-400 oC although the cationic Pd species remained at 700 oC due to the strong metal-support interaction.

  9. Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons

    PubMed Central

    Chang, Shen-Lin; Lin, Shih-Yang; Lin, Shih-Kang; Lee, Chi-Hsuan; Lin, Ming-Fa

    2014-01-01

    Edge-decorated graphene nanoribbons are investigated with the density functional theory; they reveal three stable geometric structures. The first type is a tubular structure formed by the covalent bonds of decorating boron or nitrogen atoms. The second one consists of curved nanoribbons created by the dipole-dipole interactions between two edges when decorated with Be, Mg, or Al atoms. The final structure is a flat nanoribbon produced due to the repulsive force between two edges; most decorated structures belong to this type. Various decorating atoms, different curvature angles, and the zigzag edge structure are reflected in the electronic properties, magnetic properties, and bonding configurations. Most of the resulting structures are conductors with relatively high free carrier densities, whereas a few are semiconductors due to the zigzag-edge-induced anti-ferromagnetism. PMID:25123103

  10. Spectrally narrowed leaky waveguide edge emission and transient electrluminescent dynamics of OLEDs

    SciTech Connect

    Zhengqing, Gan

    2010-01-01

    In summary, there are two major research works presented in this dissertation. The first research project (Chapter 4) is spectrally narrowed edge emission from Organic Light Emitting Diodes. The second project (Chapter 5) is about transient electroluminescent dynamics in OLEDs. Chapter 1 is a general introduction of OLEDs. Chapter 2 is a general introduction of organic semiconductor lasers. Chapter 3 is a description of the thermal evaporation method for OLED fabrication. The detail of the first project was presented in Chapter 4. Extremely narrowed spectrum was observed from the edge of OLED devices. A threshold thickness exists, above which the spectrum is narrow, and below which the spectrum is broad. The FWHM of spectrum depends on the material of the organic thin films, the thickness of the organic layers, and length of the OLED device. A superlinear relationship between the output intensity of the edge emission and the length of the device was observed, which is probably due to the misalignment of the device edge and the optical fiber detector. The original motivation of this research is for organic semiconductor laser that hasn't been realized due to the extremely high photon absorption in OLED devices. Although we didn't succeed in fabricating an electrically pumped organic laser diode, we made a comprehensive research in edge emission of OLEDs which provides valuable results in understanding light distribution and propagation in OLED devices. Chapter 5 focuses on the second project. A strong spike was observed at the falling edge of a pulse, and a long tail followed. The spike was due to the recombination of correlated charge pair (CCP) created by trapped carriers in guest molecules of the recombination zone. When the bias was turned off, along with the decreasing of electric field in the device, the electric field induced quenching decreases and the recombination rate of the CCP increases which result in the spike. This research project provides a

  11. Edge remap for solids

    SciTech Connect

    Kamm, James R.; Love, Edward; Robinson, Allen C.; Young, Joseph G.; Ridzal, Denis

    2013-12-01

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approach is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.

  12. Edge-on!

    NASA Astrophysics Data System (ADS)

    2007-08-01

    Peering at Uranus's Rings as they Swing Edge-on to Earth for the First Time Since their Discovery in 1977 As Uranus coasts through a brief window of time when its rings are edge-on to Earth - a view of the planet we get only once every 42 years - astronomers peering at the rings with ESO's Very Large Telescope and other space or ground-based telescopes are getting an unprecedented view of the fine dust in the system, free from the glare of the bright rocky rings. They may even find a new moon or two. ESO PR Photo 37/07 ESO PR Photo 37/07 The Uranus System "ESO's VLT took data at the precise moment when the rings were edge-on to Earth," said Imke de Pater, of University of California, Berkeley who coordinated the worldwide campaign. She worked with two team members observing in Chile: Daphne Stam of the Technical University Delft in the Netherlands and Markus Hartung of ESO. The observations were done with NACO, one of the adaptive optics instruments installed at the VLT. With adaptive optics, it is possible to obtain images almost free from the blurring effect of the atmosphere. It is as if the 8.2-m telescope were observing from space. Observations were also done with the Keck telescope in Hawaii, the Hubble Space Telescope, and at the Palomar Observatory. "Using different telescopes around the world allows us to observe as much of the changes during the ring-plane crossing as possible: when Uranus sets as seen from the VLT, it can still be observed by the Keck," emphasised Stam. Uranus orbits the Sun in 84 years. Twice during a Uranian year, the rings appear edge-on to Earth for a brief period. The rings were discovered in 1977, so this is the first time for a Uranus ring-crossing to be observed from Earth. The advantage of observations at a ring-plane crossing is that it becomes possible to look at the rings from the shadowed or dark side. From that vantage point, the normally bright outer rings grow fainter because their centimetre- to metre-sized rocks obscure

  13. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  14. On the Structure of the Iron K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.

  15. Edge-based image restoration.

    PubMed

    Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan

    2005-10-01

    In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases. PMID:16238052

  16. Edge conduction in vacuum glazing

    SciTech Connect

    Simko, T.M.; Collins, R.E.; Beck, F.A.; Arasteh, D.

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  17. Probing the Atomic and Molecular Inventory of a Beta-Pic Analog, the Young, Edge-On Debris Disk of HD32297

    NASA Astrophysics Data System (ADS)

    Redfield, Seth

    2009-07-01

    Edge-on, optically thin, debris disks provide unique opportunities to probe physical properties of the disk itself. Using the host star as the background source, trace atomic and molecular disk species can be detected in absorption. Redfield {2007} found that the recently discovered edge-on system, HD32297, has the strongest NaI absorption feature of any known debris disk, 5 times the level observed toward beta Pic, the canonical edge-on debris disk. Roberge et al. {2006} compiled the only comprehensive chemical inventory of a debris disk, using beta Pic, and found that carbon was surprisingly overabundant, which has important implications for the physical structure and support of a stable gas disk. What is severely lacking are comparison observations to determine if such an abundance pattern is typical of debris disk systems. HD32297 represents the best opportunity to make such a comparative study and perform a comprehensive gas inventory of a debris disk, due to its high NaI column density. The UV is critical for this work due to the large number of strong transitions {almost 50 ions and molecules are accessible} that are located in, and often only in, the UV. These observations will provide a much needed comparison dataset for addressing the gas chemistry of debris disk systems that are at the critical stage, near the end of planet formation, and in the process of clearing their interplanetary environments.

  18. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and Making it…

  19. Giant edge state splitting at atomically precise graphene zigzag edges

    NASA Astrophysics Data System (ADS)

    Wang, Shiyong; Talirz, Leopold; Pignedoli, Carlo A.; Feng, Xinliang; Müllen, Klaus; Fasel, Roman; Ruffieux, Pascal

    2016-05-01

    Zigzag edges of graphene nanostructures host localized electronic states that are predicted to be spin-polarized. However, these edge states are highly susceptible to edge roughness and interaction with a supporting substrate, complicating the study of their intrinsic electronic and magnetic structure. Here, we focus on atomically precise graphene nanoribbons whose two short zigzag edges host exactly one localized electron each. Using the tip of a scanning tunnelling microscope, the graphene nanoribbons are transferred from the metallic growth substrate onto insulating islands of NaCl in order to decouple their electronic structure from the metal. The absence of charge transfer and hybridization with the substrate is confirmed by scanning tunnelling spectroscopy, which reveals a pair of occupied/unoccupied edge states. Their large energy splitting of 1.9 eV is in accordance with ab initio many-body perturbation theory calculations and reflects the dominant role of electron-electron interactions in these localized states.

  20. Edge-edge interactions in stacked graphene nanoplatelets

    SciTech Connect

    Cruz Silva, Eduardo; Terrones Maldonado, Humberto; Terrones Maldonado, Mauricio; Jia, Xiaoting; Sumpter, Bobby G; Dresselhaus, M; Meunier, V.

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.