Sample records for absorption edge position

  1. Studies on absorption coefficient near edge of multi elements

    NASA Astrophysics Data System (ADS)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  2. The P K-near edge absorption spectra of phosphates

    NASA Astrophysics Data System (ADS)

    Franke, R.; Hormes, J.

    1995-12-01

    The X-ray absorption near edge structure (XANES) at the P K-edge in several orthophosphates with various cations, in condensed, and in substituted sodium phosphates have been measured using synchrotron radiation from the ELSA storage ring at the University of Bonn. The measured spectra demonstrate that chemical changes beyond the PO 4- tetrahedra are reflected by energy shifts of the pre-edge and continuum resonances, by the presence of characteristic shoulders and new peaks and by differences in the intensity of the white line. We discuss the energy differences between the white line positions and the corresponding P ls binding energies as a measure of half of the energy gap. The corresponding values correlate with the valence of the cations and the intensity of the white lines. The energy positions of the continuum resonances are discussed on the basis of an empirical bond-length correlation supporting a 1/ r2 - dependence.

  3. Fundamental absorption edge of NiO nanocrystals

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Druzhinin, A. V.; Kim, G. A.; Gruzdev, N. B.; Yermakov, A. Ye.; Uimin, M. A.; Byzov, I. V.; Shchegoleva, N. N.; Vykhodets, V. B.; Kurennykh, T. E.

    2013-12-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5-4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p-d charge transfer transitions form the fundamental absorption edge.

  4. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using

  5. The influence of coordination geometry and valency on the K-edge absorption near edge spectra of selected chromium compounds

    NASA Astrophysics Data System (ADS)

    Pantelouris, A.; Modrow, H.; Pantelouris, M.; Hormes, J.; Reinen, D.

    2004-05-01

    X-ray absorption spectra at the chromium K-edge are reported for a number of selected chromium compounds of known chemical structure. The spectra were obtained with use of synchrotron radiation available at the ELectron Stretcher Accelerator ELSA in Bonn. The compounds studied include the tetrahedrally coordinated compounds Ca 2Ge 0.8Cr 0.2O 4, Ba 2Ge 0.1Cr 0.9O 4, Sr 2CrO 4, Ca 2(PO 4) x(CrO 4) 1- xCl ( x=0.25,0.5), Ca 5(CrO 4) 3Cl, CrO 3, the octahedrally coordinated compounds Cr(II)-acetate, CrCl 3, CrF 3, Cr 2O 3, KCr(SO 4) 2 · 12H 2O, CrO 2 and cubic coordinated metallic chromium. In these compounds chromium exhibits a wide range of formal oxidation states (0 to VI). The absorption features in the near edge region are shown to be characteristic of the spatial environment of the absorbing atom. The occurrence of a single pre-edge line easily allows one to distinguish between tetrahedral and octahedral coordination geometry, whereas the energy position of the absorption edge is found to be very sensitive to the valency of the excited chromium atom. Calculations of the ionisation potential of Cr in different oxidation states using the non-relativistic Hartree-Fock method (Froese-Fischer) confirm that the ionisation limit shifts to higher energy with increasing Cr valency. More detailed information on the electronic structure of the different compounds is gained by real-space full multiple scattering calculations using the FEFF8 code.

  6. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  7. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  8. Emission and absorption x-ray edges of Li

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callcott, T A; Arakawa, E T; Ederer, D L

    1977-01-01

    Measurements of the K X-ray absorption and emission edges of Li are reported. They were made with the same spectrometer at the NBS storage ring and serve to establish a 0.1 eV separation between the edges with no possibility of instrument calibration error. These results are compared with recent theories of Almbladh and Mahan describing the effects of incomplete phonon relaxation about the core hole. It is concluded that these theories give a satisfactory explanation of the data.

  9. Two-Photon Absorption of Soft X-Ray Free Electron Laser Radiation by Graphite Near the Carbon K-Absorption Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Steven T; Lam, Royce K.; Raj, Sumana L.

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ~308 and ~260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ~284.2 eV. The measured two-photon absorption cross section at 284.18 eV (~6 x 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atomsmore » - a result of resonance effects.« less

  10. Two-photon absorption of soft X-ray free electron laser radiation by graphite near the carbon K-absorption edge

    NASA Astrophysics Data System (ADS)

    Lam, Royce K.; Raj, Sumana L.; Pascal, Tod A.; Pemmaraju, C. D.; Foglia, Laura; Simoncig, Alberto; Fabris, Nicola; Miotti, Paolo; Hull, Christopher J.; Rizzuto, Anthony M.; Smith, Jacob W.; Mincigrucci, Riccardo; Masciovecchio, Claudio; Gessini, Alessandro; De Ninno, Giovanni; Diviacco, Bruno; Roussel, Eleonore; Spampinati, Simone; Penco, Giuseppe; Di Mitri, Simone; Trovò, Mauro; Danailov, Miltcho B.; Christensen, Steven T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Coreno, Marcello; Poletto, Luca; Drisdell, Walter S.; Prendergast, David; Giannessi, Luca; Principi, Emiliano; Nordlund, Dennis; Saykally, Richard J.; Schwartz, Craig P.

    2018-07-01

    We have examined the transmission of soft X-ray pulses from the FERMI free electron laser through carbon films of varying thickness, quantifying nonlinear effects of pulses above and below the carbon K-edge. At typical of soft X-ray free electron laser intensities, pulses exhibit linear absorption at photon energies above and below the K-edge, ∼308 and ∼260 eV, respectively; whereas two-photon absorption becomes significant slightly below the K-edge, ∼284.2 eV. The measured two-photon absorption cross section at 284.18 eV (∼6 × 10-48 cm4 s) is 7 orders of magnitude above what is expected from a simple theory based on hydrogen-like atoms - a result of resonance effects.

  11. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    PubMed

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  12. Absorption edge parameters of the LIII edge for compounds of Hg, Tl, Pb and Bi using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Gurinderjeet; Singh, Amrit; Gupta, Manoj Kumar; Dhaliwal, A. S.; Kahlon, K. S.

    2018-03-01

    The measurement of Absorption edge parameters of the LIII edge of pure elements Hg, Tl, Pb and Bi along with their compounds HgCl2, HgO, HgF2, TlCl, Tl2O3, PbCl2, PbF2, Pb3O4, BiF3, BiCl3 and Bi2O3 has been done using EDXRF technique. In the present measurements 241Am (59.54 keV) radioactive source of activity 100 mCi along with CANBERRA make cryo-cooled Si (Li) detector is used. The measured results are compared with theoretically calculated values from FFAST version 2.1 (Chantler et al., 2005) and shows good agreement with each other within experimental uncertainties within 3.5%. It is observed that the values of absorption edge parameters of the LIII edge depends slightly on the chemical environment and shows almost constant behaviour with effective atomic number (Zeff)

  13. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  14. Calculation of optical and K pre-edge absorption spectra for ferrous iron of distorted sites in oxide crystals

    NASA Astrophysics Data System (ADS)

    Vercamer, Vincent; Hunault, Myrtille O. J. Y.; Lelong, Gérald; Haverkort, Maurits W.; Calas, Georges; Arai, Yusuke; Hijiya, Hiroyuki; Paulatto, Lorenzo; Brouder, Christian; Arrio, Marie-Anne; Juhin, Amélie

    2016-12-01

    Advanced semiempirical calculations have been performed to compute simultaneously optical absorption and K pre-edge x-ray absorption spectra of Fe2 + in four distinct site symmetries found in minerals. The four symmetries, i.e., a distorted octahedron, a distorted tetrahedron, a square planar site, and a trigonal bipyramidal site, are representative of the Fe2 + sites found in crystals and glasses. A particular attention has been paid to the definition of the p -d hybridization Hamiltonian which occurs for noncentrosymmetric symmetries in order to account for electric dipole transitions. For the different sites under study, an excellent agreement between calculations and experiments was found for both optical and x-ray absorption spectra, in particular in terms of relative intensities and energy positions of electronic transitions. To our knowledge, these are the first calculations of optical absorption spectra on Fe2 + placed in such diverse site symmetries, including centrosymmetric sites. The proposed theoretical model should help to interpret the features of both the optical absorption and the K pre-edge absorption spectra of 3 d transition metal ions and to go beyond the usual fingerprint interpretation.

  15. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    PubMed

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  16. Abnormal blueshift of the absorption edge in graphene nanodots

    NASA Astrophysics Data System (ADS)

    Sheng, Weidong

    2018-06-01

    In a conventional semiconductor, when the dielectric screening effect is suppressed, the exciton binding energy increases and the corresponding excitonic transition would exhibit a redshift in the spectrum. In this work, I study the optical properties of hexagonal graphene nanodots by using a configuration interaction approach and reveal that the edge of the absorption spectrum shows an abnormal blueshift as the environmental dielectric constant ɛr decreases. The two dominant many-body effects in the nanodot: the quasiparticle and excitonic effects are both found to scale almost linearly with ɛr-1. The former is shown to have a larger proportionality constant and thus accounts for the blueshift of the absorption edge. In contrast to the long-range Coulomb interaction, the on-site Coulomb energy is found to have a negative impact on the bright excitonic states. In the presence of a strong dielectric screening effect, a strong short-range Coulomb interaction is revealed to be responsible for the disintegration of the bright exciton.

  17. X-Ray Absorption near Edge Structure Spectroscopy of Nanodiamonds from the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Hill, H.; Jacobsen, C.; Wirick, S.

    2000-01-01

    Carbon X-ray Absorption Near Edge Structure Spectroscopy shows Allende DM nanodiamonds have two pre-edge peaks, consistent with other small diamonds, but fail to show a diamond exciton which is seen in 3.6 nm diamond thin films.

  18. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arber, J.M.; de Boer, E.; Garner, C.D.

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure datamore » confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.« less

  19. X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge

    PubMed Central

    2015-01-01

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W0(PMe3)6], [WIICl2(PMePh2)4], [WIIICl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [WIVCl4(PMePh2)2], [WV(NPh)Cl3(PMe3)2], and [WVICl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [WIV(mdt)2(CO)2] and [WIV(mdt)2(CN)2]2– (mdt2– = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively WIV species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal–ligand distances, exaggerate the difference

  20. Atomic multiplets at the L2,3 edge of 3d transition metals and the ligand K edge in x-ray absorption spectroscopy of ionic systems

    NASA Astrophysics Data System (ADS)

    Olalde-Velasco, P.; Jiménez-Mier, J.; Denlinger, J.; Yang, W.-L.

    2013-06-01

    Experimental X-ray absorption spectra at the fluorine K and transition metal L2,3 absorption edges of the MF2 (M=Cr-Ni) family are presented. Ligand field calculations in D4h symmetry show very good agreement with the transition metal L2,3 XAS spectra. To successfully explain nominal Cr2+ L2,3 XAS spectrum in CrF2, the inclusion of Cr+ and Cr3+ was needed implying the presence of a disproportionation reaction. The multiplet calculations were then modified to remove the structure of the 2p hole in the calculated M 2p→3d absorption spectra. These results for the 3dn+1 states are in one to one correspondence with the leading edge structures found at the fluorine K edge. A direct comparison with the metal L2,3 edges also indicates that there is evidence of the metal multiplet at the fluorine K pre-edge structures.

  1. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  2. Band-edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kost, Alan; Zou, Yao; Dapkus, P. D.; Garmire, Elsa; Lee, H. C.

    1989-01-01

    A novel approach to determining absorption coefficients in thin films using luminescence is described. The technique avoids many of the difficulties typically encountered in measurements of thin samples, Fabry-Perot effects, for example, and can be applied to a variety of materials. The absorption edge for GaAs/AlGaAs multiple quantum well structures, with quantum well widths ranging from 54 to 193 A is examined. Urbach (1953) parameters and excitonic linewidths are tabulated.

  3. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  4. Optical absorption edge of ZnO thin films: The effect of substrate

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1997-05-01

    The optical absorption edge and the near-absorption edge characteristics of undoped ZnO films grown by laser ablation on various substrates have been investigated. The band edge of films on C [(0001)] and R-plane [(1102)] sapphire, 3.29 and 3.32 eV, respectively, are found to be very close to the single crystal value of ZnO (3.3 eV) with the differences being accounted for in terms of the thermal mismatch strain using the known deformation potentials of ZnO. In contrast, films grown on fused silica consistently exhibit a band edge ˜0.1 eV lower than that predicted using the known deformation potential and the thermal mismatch strains. This behavior is attributed to the small grain size (50 nm) realized in these films and the effect of electrostatic potentials that exist at the grain boundaries. Additionally, the spread in the tail (E0) of the band edge for the different films is found to be very sensitive to the defect structure in the films. For films grown on sapphire substrates, values of E0 as low as 30 meV can be achieved on annealing in air, whereas films on fused silica always show a value >100 meV. We attribute this difference to the substantially higher density of high-angle grain boundaries in the films on fused silica.

  5. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Minami, Hirotake; Okuizumi, Naoto; Sakuma, Ichiro; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2015-05-01

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5'-monophosphate (CMP), 2'-deoxythymidine 5'-monophosphate (dTMP), and uridine 5'-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations. This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.

  6. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantouvalou, I., E-mail: ioanna.mantouvalou@tu-berlin.de; Witte, K.; Martyanov, W.

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ∼ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns.more » Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.« less

  7. X-ray absorption spectroscopy systematics at the tungsten L-edge.

    PubMed

    Jayarathne, Upul; Chandrasekaran, Perumalreddy; Greene, Angelique F; Mague, Joel T; DeBeer, Serena; Lancaster, Kyle M; Sproules, Stephen; Donahue, James P

    2014-08-18

    A series of mononuclear six-coordinate tungsten compounds spanning formal oxidation states from 0 to +VI, largely in a ligand environment of inert chloride and/or phosphine, was interrogated by tungsten L-edge X-ray absorption spectroscopy. The L-edge spectra of this compound set, comprised of [W(0)(PMe3)6], [W(II)Cl2(PMePh2)4], [W(III)Cl2(dppe)2][PF6] (dppe = 1,2-bis(diphenylphosphino)ethane), [W(IV)Cl4(PMePh2)2], [W(V)(NPh)Cl3(PMe3)2], and [W(VI)Cl6], correlate with formal oxidation state and have usefulness as references for the interpretation of the L-edge spectra of tungsten compounds with redox-active ligands and ambiguous electronic structure descriptions. The utility of these spectra arises from the combined correlation of the estimated branching ratio of the L3,2-edges and the L1 rising-edge energy with metal Zeff, thereby permitting an assessment of effective metal oxidation state. An application of these reference spectra is illustrated by their use as backdrop for the L-edge X-ray absorption spectra of [W(IV)(mdt)2(CO)2] and [W(IV)(mdt)2(CN)2](2-) (mdt(2-) = 1,2-dimethylethene-1,2-dithiolate), which shows that both compounds are effectively W(IV) species even though the mdt ligands exist at different redox levels in the two compounds. Use of metal L-edge XAS to assess a compound of uncertain formulation requires: (1) Placement of that data within the context of spectra offered by unambiguous calibrant compounds, preferably with the same coordination number and similar metal ligand distances. Such spectra assist in defining upper and/or lower limits for metal Zeff in the species of interest. (2) Evaluation of that data in conjunction with information from other physical methods, especially ligand K-edge XAS. (3) Increased care in interpretation if strong π-acceptor ligands, particularly CO, or π-donor ligands are present. The electron-withdrawing/donating nature of these ligand types, combined with relatively short metal-ligand distances, exaggerate

  8. X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M–O2 systems

    PubMed Central

    Sarangi, Ritimukta

    2012-01-01

    Metal K-edge X-ray absorption spectroscopy (XAS) has been extensively applied to bioinorganic chemistry to obtain geometric structure information on metalloprotein and biomimetic model complex active sites by analyzing the higher energy extended X-ray absorption fine structure (EXAFS) region of the spectrum. In recent years, focus has been on developing methodologies to interpret the lower energy K-pre-edge and rising-edge regions (XANES) and using it for electronic structure determination in complex bioinorganic systems. In this review, the evolution and progress of 3d-transition metal K-pre-edge and rising-edge methodology development is presented with particular focus on applications to bioinorganic systems. Applications to biomimetic transition metal–O2 intermediates (M = Fe, Co, Ni and Cu) are reviewed, which demonstrate the power of the method as an electronic structure determination technique and its impact in understanding the role of supporting ligands in tuning the electronic configuration of transition metal–O2 systems. PMID:23525635

  9. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS tomore » study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.« less

  10. Nitrogen K-edge x-ray absorption near edge structure of pyrimidine-containing nucleotides in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, Hiroyuki, E-mail: hshimada@cc.tuat.ac.jp; Minami, Hirotake; Okuizumi, Naoto

    2015-05-07

    X-ray absorption near edge structure (XANES) was measured at energies around the N K-edge of the pyrimidine-containing nucleotides, cytidine 5′-monophosphate (CMP), 2′-deoxythymidine 5′-monophosphate (dTMP), and uridine 5′-monophosphate (UMP), in aqueous solutions and in dried films under various pH conditions. The features of resonant excitations below the N K-edge in the XANES spectra for CMP, dTMP, and UMP changed depending on the pH of the solutions. The spectral change thus observed is systematically explained by the chemical shift of the core-levels of N atoms in the nucleobase moieties caused by structural changes due to protonation or deprotonation at different proton concentrations.more » This interpretation is supported by the results of theoretical calculations using density functional theory for the corresponding nucleobases in the neutral and protonated or deprotonated forms.« less

  11. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  12. Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.

    PubMed

    Vasseur, Romain; Moore, Joel E

    2014-04-11

    The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.

  13. Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1

    NASA Astrophysics Data System (ADS)

    Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.

    2017-03-01

    Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.

  14. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less

  15. Nonlinear refraction at the absorption edge in InAs.

    PubMed

    Poole, C D; Garmire, E

    1984-08-01

    The results of measurements of nonlinear refraction at the absorption edge in InAs between 68 and 90 K taken with an HF laser are compared with those of a band-gap resonant model in which the contribution of the light-hole band is included and found to account for more than 40% of the observed nonlinear refraction. A generalized expression for the nonlinear index is derived by using the complete Fermi-Dirac distribution function. Good agreement between theory and experiment is obtained, with no free parameters.

  16. Mechanism of Pressure-Induced Phase Transitions, Amorphization, and Absorption-Edge Shift in Photovoltaic Methylammonium Lead Iodide.

    PubMed

    Szafrański, Marek; Katrusiak, Andrzej

    2016-09-01

    Our single-crystal X-ray diffraction study of methylammonium lead triiodide, MAPbI3, provides the first comprehensive structural information on the tetragonal phase II in the pressure range to 0.35 GPa, on the cubic phase IV stable between 0.35 and 2.5 GPa, and on the isostructural cubic phase V observed above 2.5 GPa, which undergoes a gradual amorphization. The optical absorption study confirms that up to 0.35 GPa, the absorption edge of MAPbI3 is red-shifted, allowing an extension of spectral absorption. The transitions to phases IV and V are associated with the abrupt blue shifts of the absorption edge. The strong increase of the energy gap in phase V result in a spectacular color change of the crystal from black to red around 3.5 GPa. The optical changes have been correlated with the pressure-induced strain of the MAPbI3 inorganic framework and its frustration, triggered by methylammonium cations trapped at random orientations in the squeezed voids.

  17. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laloum, D., E-mail: david.laloum@cea.fr; CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9; STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  18. X-ray Absorption and Emission Spectroscopy of CrIII (Hydr)Oxides: Analysis of the K-Pre-Edge Region

    NASA Astrophysics Data System (ADS)

    Frommer, Jakob; Nachtegaal, Maarten; Czekaj, Izabela; Weng, Tsu-Chien; Kretzschmar, Ruben

    2009-10-01

    Pre-edge spectral features below the main X-ray absorption K-edge of transition metals show a pronounced chemical sensitivity and are promising sources of structural information. Nevertheless, the use of pre-edge analysis in applied research is limited because of the lack of definite theoretical peak-assignments. The aim of this study was to determine the factors affecting the chromium K-pre-edge features in trivalent chromium-bearing oxides and oxyhydroxides. The selected phases varied in the degree of octahedral polymerization and the degree of iron-for-chromium substitution in the crystal structure. We investigated the pre-edge fine structure by means of high-energy-resolution fluorescence detected X-ray absorption spectroscopy and by 1s2p resonant X-ray emission spectroscopy. Multiplet theory and full multiple-scattering calculations were used to analyze the experimental data. We show that the chromium K-pre-edge contains localized and nonlocalized transitions. Contributions arising from nonlocalized metal-metal transitions are sensitive to the nearest metal type and to the linkage mode between neighboring metal octahedra. Analyzing these transitions opens up new opportunities for investigating the local coordination environment of chromium in poorly ordered solids of environmental relevance.

  19. Experimental observation of the shift and width of the aluminium K absorption edge in laser shock-compressed plasmas

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Al-Kuzee, J.; Benuzzi, A.; Koenig, M.; Krishnan, J.; Grandjouan, N.; Batani, D.; Bossi, S.; Nicolella, S.

    1998-03-01

    Experimental measurements of the shift and width of the aluminium K-absorption edge in laser shock-compressed plasma is presented. The spectrometer used in these experiments allows an accurate wavelength calibration and fiduciary and hence provides precise measurements of both the shift and the width of the absorption edge. Results have been obtained for compressions up to approximately ×2 and temperatures up to about 1.5 eV. The values of shift and width are compared with a new model with which there is very good agreement.

  20. Virtual edge illumination and one dimensional beam tracking for absorption, refraction, and scattering retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot

    2014-03-31

    We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.

  1. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.

    PubMed

    Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George

    2002-09-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  2. Temperature dependence of the fundamental optical absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-04-01

    We present a first principles theory of the temperature dependence of the Urbach optical absorption edge in crystals and disordered semiconductors which incorporates the effects of short range correlated static disorder and the non-adiabatic quantum dynamics of the coupled electron-phonon system. At finite temperatures the dominant features of the Urbach tail are accounted for by multiple phonon absorption and emission side bands which accompany the optically induced electronic transition and which provide a dynamic polaronic potential well that localizes the electron. Excellent agreement is found with experimental data on both crystalline and amorphous silicon.

  3. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    PubMed

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  4. Red-edge position of habitable exoplanets around M-dwarfs.

    PubMed

    Takizawa, Kenji; Minagawa, Jun; Tamura, Motohide; Kusakabe, Nobuhiko; Narita, Norio

    2017-08-08

    One of the possible signs of life on distant habitable exoplanets is the red-edge, which is a rise in the reflectivity of planets between visible and near-infrared (NIR) wavelengths. Previous studies suggested the possibility that the red-edge position for habitable exoplanets around M-dwarfs may be shifted to a longer wavelength than that for Earth. We investigated plausible red-edge position in terms of the light environment during the course of the evolution of phototrophs. We show that phototrophs on M-dwarf habitable exoplanets may use visible light when they first evolve in the ocean and when they first colonize the land. The adaptive evolution of oxygenic photosynthesis may eventually also use NIR radiation, by one of two photochemical reaction centers, with the other center continuing to use visible light. These "two-color" reaction centers can absorb more photons, but they will encounter difficulty in adapting to drastically changing light conditions at the boundary between land and water. NIR photosynthesis can be more productive on land, though its evolution would be preceded by the Earth-type vegetation. Thus, the red-edge position caused by photosynthetic organisms on habitable M-dwarf exoplanets could initially be similar to that on Earth and later move to a longer wavelength.

  5. Mn K-Edge X-ray Absorption Studies of Oxo- and Hydroxo-manganese(IV) Complexes: Experimental and Theoretical Insights into Pre-Edge Properties

    PubMed Central

    2015-01-01

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [MnII(Cl)2(Me2EBC)], [MnIV(OH)2(Me2EBC)]2+, and [MnIV(O)(OH)(Me2EBC)]+, which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [MnIV(O)(OH)(Me2EBC)]+ revealed Mn–O scatterers at 1.71 and 1.84 Å and Mn–N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [MnII(Cl)2(Me2EBC)] and [MnIV(OH)2(Me2EBC)]2+ are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn–O(H) distances and pre-edge peak areas of MnIV=O and MnIV–OH complexes, but this trend was strongly modulated by the MnIV coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn–O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal MnIV=O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn=O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn=O σ* molecular orbital (MO) but also show intense transitions to 3dx2–y2 and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal MnIV=O adducts. These results underscore the importance of reporting experimental pre-edge areas

  6. Mn K-edge X-ray absorption studies of oxo- and hydroxo-manganese(IV) complexes: experimental and theoretical insights into pre-edge properties.

    PubMed

    Leto, Domenick F; Jackson, Timothy A

    2014-06-16

    Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [Mn(II)(Cl)2(Me2EBC)], [Mn(IV)(OH)2(Me2EBC)](2+), and [Mn(IV)(O)(OH)(Me2EBC)](+), which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [Mn(IV)(O)(OH)(Me2EBC)](+) revealed Mn-O scatterers at 1.71 and 1.84 Å and Mn-N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [Mn(II)(Cl)2(Me2EBC)] and [Mn(IV)(OH)2(Me2EBC)](2+) are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn-O(H) distances and pre-edge peak areas of Mn(IV)═O and Mn(IV)-OH complexes, but this trend was strongly modulated by the Mn(IV) coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn-O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal Mn(IV)═O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn═O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn═O σ* molecular orbital (MO) but also show intense transitions to 3dx(2)-y(2) and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal Mn(IV)═O adducts. These results underscore the importance of

  7. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  8. Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption

    DOE PAGES

    Wolf, T. J. A.; Myhre, R. H.; Cryan, J. P.; ...

    2017-06-22

    Many photoinduced processes including photosynthesis and human vision happen in organic molecules and involve coupled femtosecond dynamics of nuclei and electrons. Organic molecules with heteroatoms often possess an important excited-state relaxation channel from an optically allowed ππ* to a dark nπ* state. The ππ*/nπ* internal conversion is difficult to investigate, as most spectroscopic methods are not exclusively sensitive to changes in the excited-state electronic structure. Here, we report achieving the required sensitivity by exploiting the element and site specificity of near-edge soft X-ray absorption spectroscopy. As a hole forms in the n orbital during ππ*/nπ* internal conversion, the absorption spectrummore » at the heteroatom K-edge exhibits an additional resonance. We demonstrate the concept using the nucleobase thymine at the oxygen K-edge, and unambiguously show that ππ*/nπ* internal conversion takes place within (60 ± 30) fs. Furthermore, high-level-coupled cluster calculations confirm the method’s impressive electronic structure sensitivity for excited-state investigations.« less

  9. Nickel L-edge and K-edge X-ray absorption spectroscopy of non-innocent Ni[S₂C₂(CF₃)₂]₂(n) series (n = -2, -1, 0): direct probe of nickel fractional oxidation state changes.

    PubMed

    Gu, Weiwei; Wang, Hongxin; Wang, Kun

    2014-05-07

    A series of nickel dithiolene complexes Ni[S2C2(CF3)2]2(n) (n = -2, -1, 0) has been investigated using Ni L- and K-edge X-ray absorption spectroscopy (XAS). The L3 centroid shifts about 0.3 eV for a change of one unit in the formal oxidation state (or 0.3 eV per oxi), corresponding to ~33% of the shift for Ni oxides or fluorides (about 0.9 eV per oxi). The K-edge XAS edge position shifts about 0.7 eV per oxi, corresponding to ~38% of that for Ni oxides (1.85 eV per oxi). In addition, Ni L sum rule analysis found the Ni(3d) ionicity in the frontier orbitals being 50.5%, 44.0% and 38.5% respectively (for n = -2, -1, 0), in comparison with their formal oxidation states (of Ni(II), Ni(III), and Ni(IV)). For the first time, direct and quantitative measurement of the Ni fractional oxidation state changes becomes possible for Ni dithiolene complexes, illustrating the power of L-edge XAS and L sum rule analysis in such a study. The Ni L-edge and K-edge XAS can be used in a complementary manner to better assess the oxidation states for Ni.

  10. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    PubMed

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  11. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Sohrab; Kabir, Humayun; Rahman, M. Mahbubur; Hasan, Kamrul; Bashar, Muhammad Shahriar; Rahman, Mashudur; Gafur, Md. Abdul; Islam, Shariful; Amri, Amun; Jiang, Zhong-Tao; Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z.

    2017-01-01

    In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV-vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.

  12. Extremely asymmetric diffraction as a method of determining magneto-optical constants for X-rays near absorption edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, M. A., E-mail: Mandreeva1@yandex.ru; Repchenko, Yu. L., E-mail: kent160@mail.ru; Smekhova, A. G.

    2015-06-15

    The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.

  13. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    PubMed

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  14. Multi-epoch Detections of Water Ice Absorption in Edge-on Disks around Herbig Ae Stars: PDS 144N and PDS 453

    NASA Astrophysics Data System (ADS)

    Terada, Hiroshi; Tokunaga, Alan T.

    2017-01-01

    We report the multi-epoch detections of water ice in 2.8-4.2 μ {{m}} spectra of two Herbig Ae stars, PDS 144N (A2 IVe) and PDS 453 (F2 Ve), which have an edge-on circumstellar disk. The detected water ice absorption is found to originate from their protoplanetary disks. The spectra show a relatively shallow absorption of water ice of around 3.1 μ {{m}} for both objects. The optical depths of the water ice absorption are ˜0.1 and ˜0.2 for PDS 144N and PDS 453, respectively. Compared to the water ice previously detected in low-mass young stellar objects with an edge-on disk with a similar inclination angle, these optical depths are significantly lower. It suggests that stronger UV radiation from the central stars effectively decreases the water ice abundance around the Herbig Ae stars through photodesorption. The water ice absorption in PDS 453 shows a possible variation of the feature among the six observing epochs. This variation could be due to a change of absorption materials passing through our line of sight to the central star. The overall profile of the water ice absorption in PDS 453 is quite similar to the absorption previously reported in the edge-on disk object d216-0939, and this unique profile may be seen only at a high inclination angle in the range of 76°-80°.

  15. Iron K-edge X-ray absorption near-edge structure spectroscopy of aerodynamically levitated silicate melts and glasses

    DOE PAGES

    Alderman, O. L. G.; Wilding, M. C.; Tamalonis, A.; ...

    2017-01-26

    Here, the local structure about Fe(II) and Fe(III) in silicate melts was investigated in-situ using iron K-edge X-ray absorption near-edge structure (XANES) spectroscopy. An aerodynamic levitation and laser heating system was used to allow access to high temperatures without contamination, and was combined with a chamber and gas mixing system to allow the iron oxidation state, Fe 3+/ΣFe, to be varied by systematic control of the atmospheric oxygen fugacity. Eleven alkali-free, mostly iron-rich and depolymerized base compositions were chosen for the experiments, including pure oxide FeO, olivines (Fe,Mg) 2SiO 4, pyroxenes (Fe,Mg)SiO 3, calcic FeO-CaSiO 3, and a calcium aluminosilicatemore » composition, where total iron content is denoted by FeO for convenience. Melt temperatures varied between 1410 and 2160 K and oxygen fugacities between FMQ – 2.3(3) to FMQ + 9.1(3) log units (uncertainties in parentheses) relative to the fayalite-magnetite-β-quartz (FMQ) buffer.« less

  16. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well asmore » at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.« less

  17. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    NASA Astrophysics Data System (ADS)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  18. Membrane tension controls adhesion positioning at the leading edge of cells

    PubMed Central

    Pontes, Bruno; Gole, Laurent; Kosmalska, Anita Joanna; Tam, Zhi Yang; Luo, Weiwei; Kan, Sophie; Viasnoff, Virgile; Roca-Cusachs, Pere; Tucker-Kellogg, Lisa

    2017-01-01

    Cell migration is dependent on adhesion dynamics and actin cytoskeleton remodeling at the leading edge. These events may be physically constrained by the plasma membrane. Here, we show that the mechanical signal produced by an increase in plasma membrane tension triggers the positioning of new rows of adhesions at the leading edge. During protrusion, as membrane tension increases, velocity slows, and the lamellipodium buckles upward in a myosin II–independent manner. The buckling occurs between the front of the lamellipodium, where nascent adhesions are positioned in rows, and the base of the lamellipodium, where a vinculin-dependent clutch couples actin to previously positioned adhesions. As membrane tension decreases, protrusion resumes and buckling disappears, until the next cycle. We propose that the mechanical signal of membrane tension exerts upstream control in mechanotransduction by periodically compressing and relaxing the lamellipodium, leading to the positioning of adhesions at the leading edge of cells. PMID:28687667

  19. Accurate and facile determination of the index of refraction of organic thin films near the carbon 1s absorption edge.

    PubMed

    Yan, Hongping; Wang, Cheng; McCarn, Allison R; Ade, Harald

    2013-04-26

    A practical and accurate method to obtain the index of refraction, especially the decrement δ, across the carbon 1s absorption edge is demonstrated. The combination of absorption spectra scaled to the Henke atomic scattering factor database, the use of the doubly subtractive Kramers-Kronig relations, and high precision specular reflectivity measurements from thin films allow the notoriously difficult-to-measure δ to be determined with high accuracy. No independent knowledge of the film thickness or density is required. High confidence interpolation between relatively sparse measurements of δ across an absorption edge is achieved. Accurate optical constants determined by this method are expected to greatly improve the simulation and interpretation of resonant soft x-ray scattering and reflectivity data. The method is demonstrated using poly(methyl methacrylate) and should be extendable to all organic materials.

  20. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  1. Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1989-01-01

    The optical absorption coefficient for subgap electronic transitions in crystalline and disordered semiconductors is calculated by first-principles means with use of a variational principle based on the Feynman path-integral representation of the transition amplitude. This incorporates the synergetic interplay of static disorder and the nonadiabatic quantum dynamics of the coupled electron-phonon system. Over photon-energy ranges of experimental interest, this method predicts accurate linear exponential Urbach behavior of the absorption coefficient. At finite temperatures the nonlinear electron-phonon interaction gives rise to multiple phonon emission and absorption sidebands which accompany the optically induced electronic transition. These sidebands dominate the absorption in the Urbach regime and account for the temperature dependence of the Urbach slope and energy gap. The physical picture which emerges is that the phonons absorbed from the heat bath are then reemitted into a dynamical polaronlike potential well which localizes the electron. At zero temperature we recover the usual polaron theory. At high temperatures the calculated tail is qualitatively similar to that of a static Gaussian random potential. This leads to a linear relationship between the Urbach slope and the downshift of the extrapolated continuum band edge as well as a temperature-independent Urbach focus. At very low temperatures, deviations from these rules are predicted arising from the true quantum dynamics of the lattice. Excellent agreement is found with experimental data on c-Si, a-Si:H, a-As2Se3, and a-As2S3. Results are compared with a simple physical argument based on the most-probable-potential-well method.

  2. Infrared study of the absorption edge of {beta}-InN films grown on GaN/MgO structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Caro, M.; Rodriguez, A. G.; Vidal, M. A.

    2010-07-15

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that {beta}-InN films have large free-carrier concentrations present (>10{sup 19} cm{sup -3}), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observedmore » temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in {beta}-InN, analogous to wurtzite InN, follows a nonparabolic behavior.« less

  3. Infrared study of the absorption edge of β-InN films grown on GaN/MgO structures

    NASA Astrophysics Data System (ADS)

    Pérez-Caro, M.; Rodríguez, A. G.; Vidal, M. A.; Navarro-Contreras, H.

    2010-07-01

    Infrared optical studies were carried out in a group of cubic InN samples grown by gas source molecular beam epitaxy on MgO (001) substrates. Room temperature (RT) reflectance and low-temperature (LT) transmittance measurements were performed by using fast Fourier transform infrared spectrometry. Reflectance fittings allowed to establish that β-InN films have large free-carrier concentrations present (>1019 cm-3), a result that is corroborated by Hall effect measurements. Each sample explored exhibited a different optical absorption edge. The Varshni parameters that describe adequately the optical absorption edge responses with temperature are obtained for the set of samples studied. The observed temperatures changes, from LT to RT, are the lowest reported for III-V semiconductor binary compounds. The temperature coefficient of the conduction band depends on the strength of the electron-phonon interaction (e-ph-i), as well as on the thermal expansion. It has been predicted that cubic InN has one of the smallest e-ph-i of all III-V compounds, which is corroborated by these results. The variation in values of absorption edges is clearly consistent with the Burstein-Moss and band renormalization effects, produced by high free electron concentrations. It is shown that the conduction band in β-InN, analogous to wurtzite InN, follows a nonparabolic behavior.

  4. Mass attenuation coefficient of chromium and manganese compounds around absorption edge.

    PubMed

    Sharanabasappa; Kaginelli, S B; Kerur, B R; Anilkumar, S; Hanumaiah, B

    2009-01-01

    The total mass attenuation coefficient for Potassium dichromate, Potassium chromate and Manganese acetate compounds are measured at different photon energies 5.895, 6.404, 6.490, 7.058, 8.041 and 14.390 keV using Fe-55, Co-57 and 241Am source with Copper target, radioactive sources. The photon intensity is analyzed using a high resolution HPGe detector system coupled to MCA under good geometrical arrangement. The obtained values of mass attenuation coefficient values are compared with theoretical values. This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 5-28%.

  5. Effects of acoustic- and optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors

    NASA Astrophysics Data System (ADS)

    Grein, C. H.; John, Sajeev

    1990-04-01

    We present the results of a parameter-free first-principles theory for the fine structure of the Urbach optical-absorption edge in crystalline and disordered semiconductors. The dominant features are recaptured by means of a simple physical argument based on the most probable potential-well analogy. At finite temperatures, the overall linear exponential Urbach behavior of the subgap optical-absorption coefficient is a consequence of multiple LA-phonon emission and absorption sidebands that accompany the electronic transition. The fine structure of subgap absorption spectra observed in some materials is accounted for by multiple TO-, LO-, and TA-phonon absorption and emission sidebands. Good agreement is found with experimental data on crystalline silicon. The effects of nonadiabaticity in the electron-phonon interaction are calculated.

  6. Resource distribution influences positive edge effects in a seagrass fish.

    PubMed

    Macreadie, Peter I; Hindell, Jeremy S; Keough, Michael J; Jenkins, Gregory P; Connolly, Rod M

    2010-07-01

    According to conceptual models, the distribution of resources plays a critical role in determining how organisms distribute themselves near habitat edges. These models are frequently used to achieve a mechanistic understanding of edge effects, but because they are based predominantly on correlative studies, there is need for a demonstration of causality, which is best done through experimentation. Using artificial seagrass habitat as an experimental system, we determined a likely mechanism underpinning edge effects in a seagrass fish. To test for edge effects, we measured fish abundance at edges (0-0.5 m) and interiors (0.5-1 m) of two patch configurations: continuous (single, continuous 9-m2 patches) and patchy (four discrete 1-m2 patches within a 9-m2 area). In continuous configurations, pipefish (Stigmatopora argus) were three times more abundant at edges than interiors (positive edge effect), but in patchy configurations there was no difference. The lack of edge effect in patchy configurations might be because patchy seagrass consisted entirely of edge habitat. We then used two approaches to test whether observed edge effects in continuous configurations were caused by increased availability of food at edges. First, we estimated the abundance of the major prey of pipefish, small crustaceans, across continuous seagrass configurations. Crustacean abundances were highest at seagrass edges, where they were 16% greater than in patch interiors. Second, we supplemented interiors of continuous treatment patches with live crustaceans, while control patches were supplemented with seawater. After five hours of supplementation, numbers of pipefish were similar between edges and interiors of treatment patches, while the strong edge effects were maintained in controls. This indicated that fish were moving from patch edges to interiors in response to food supplementation. These approaches strongly suggest that a numerically dominant fish species is more abundant at seagrass

  7. Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene/Guanine Interface - A Proposal for High Mobility, Organic Graphene Field Effect Transistors

    DTIC Science & Technology

    2015-07-01

    AFRL-AFOSR-UK-TR-2015-0034 Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine...Interface – A Proposal for High Mobility, Organic Graphene Field Effect Transistors Eva Campo BANGOR UNIVERSITY COLLEGE ROAD BANGOR...April 2015 4. TITLE AND SUBTITLE Studies by Near Edge X-ray Absorption Spectroscopies of Bonding Dynamics at the Graphene /Guanine Interface - A

  8. A high pressure La K-edge X-ray absorption fine structure spectroscopy investigation of La1/3NbO3

    NASA Astrophysics Data System (ADS)

    Marini, C.; Joseph, B.; Noked, O.; Shuker, R.; Kennedy, B. J.; Mathon, O.; Pascarelli, S.; Sterer, E.

    2018-01-01

    La K-edge X-ray absorption spectroscopy has been used to elucidate the changes in the local electronic and lattice structure that occur in the A-site deficient double perovskite La?NbO? up to 6 GPa. The pressure evolution of the oxygen dodecahedrum around the A-site has been examined. XANES (X-ray absorption near edge structure) data show modifications ascribed to the increase of bands overlapping as a consequence of the bond distance contraction, which has been directly probed by EXAFS (extended x-ray absorption fine structure) spectra. The La-O Debye Waller factors (DWFs) tend to increase whereas the La-Nb bond DWFs show only a tendency to decrease indicating the robustness of the crystal lattice structure, even in presence of the oxygen disordering. This permits the system to reverse back to its original conditions in this pressure range as evident from the measurements upon pressure release. The present results have been interpreted in the light of charge transfer related to the two-step reduction mechanism acting at the Nb site (with niobium ions passing from Nb? to Nb?) which also results in the elongation of the Nb-O bond distances in the octahedra, in agreement with the Nb K-edge results reported earlier.

  9. Interaction of Nanostructured Calcium Silicate Hydrate with Ibuprofen Drug Molecules: X-ray Absorption Near Edge Structure (XANES) Study at the Ca, Si and O K-edge

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Sham, T. K.; Zhu, Y. J.; Hu, Y. F.

    2013-04-01

    Mesoporous calcium silicate hydrate (CSH) nanostructure has been proven to be bioactive and biocompatible, and has a bright future in the application of bone treatment among other applications. X-ray absorption near edge structure (XANES) is a powerful tool for the study of the interactions of calcium silicate hydrates with drug molecules because it is element specific and it probes the unoccupied electronic states. Herein, we report the use of the calcium, silicon and oxygen K-edge XANES spectroscopy to identify how drug molecules interact with different groups in calcium silicate hydrate mesoporous nano-carriers with different morphologies. Significant changes are observed in XANES spectra after drug loading into the calcium silicate hydrate system, especially at the Si and O K-edge. The implications of these findings are discussed.

  10. Theoretical X-ray production cross sections at incident photon energies across Li (i=1-3) absorption edges of Br

    NASA Astrophysics Data System (ADS)

    Puri, Sanjiv

    2015-08-01

    The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.

  11. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    PubMed Central

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-01-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications. PMID:28508866

  12. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE PAGES

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; ...

    2017-05-16

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  13. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the bandmore » edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. As a result, we expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.« less

  14. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification

    NASA Astrophysics Data System (ADS)

    Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.; McNichols, Brett W.; Miller, Elisa M.; Gu, Jing; Nozik, Arthur J.; Sellinger, Alan; Galli, Giulia; Beard, Matthew C.

    2017-05-01

    Band edge positions of semiconductors determine their functionality in many optoelectronic applications such as photovoltaics, photoelectrochemical cells and light emitting diodes. Here we show that band edge positions of lead sulfide (PbS) colloidal semiconductor nanocrystals, specifically quantum dots (QDs), can be tuned over 2.0 eV through surface chemistry modification. We achieved this remarkable control through the development of simple, robust and scalable solution-phase ligand exchange methods, which completely replace native ligands with functionalized cinnamate ligands, allowing for well-defined, highly tunable chemical systems. By combining experiments and ab initio simulations, we establish clear relationships between QD surface chemistry and the band edge positions of ligand/QD hybrid systems. We find that in addition to ligand dipole, inter-QD ligand shell inter-digitization contributes to the band edge shifts. We expect that our established relationships and principles can help guide future optimization of functional organic/inorganic hybrid nanostructures for diverse optoelectronic applications.

  15. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  16. X-Ray Absorption Near-Edge Structure (XANES) Spectroscopy Study of the Interaction of Silver Ions with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli

    PubMed Central

    Zanzen, Ulrike; Krishna, Katla Sai; Hormes, Josef

    2013-01-01

    Silver ions are widely used as antibacterial agents, but the basic molecular mechanism of this effect is still poorly understood. X-ray absorption near-edge structure (XANES) spectroscopy at the Ag LIII, S K, and P K edges reveals the chemical forms of silver in Staphylococcus aureus and Escherichia coli (Ag+ treated). The Ag LIII-edge XANES spectra of the bacteria are all slightly different and very different from the spectra of silver ions (silver nitrate and silver acetate), which confirms that a reaction occurs. Death or inactivation of bacteria was observed by plate counting and light microscopy. Silver bonding to sulfhydryl groups (Ag-S) in cysteine and Ag-N or Ag-O bonding in histidine, alanine, and dl-aspartic acid was detected by using synthesized silver-amino acids. Significantly lower silver-cysteine content, coupled with higher silver-histidine content, in Gram-positive S. aureus and Listeria monocytogenes cells indicates that the peptidoglycan multilayer could be buffering the biocidal effect of silver on Gram-positive bacteria, at least in part. Bonding of silver to phosphate groups was not detected. Interaction with DNA or proteins can occur through Ag-N bonding. The formation of silver-cysteine can be confirmed for both bacterial cell types, which supports the hypothesis that enzyme-catalyzed reactions and the electron transport chain within the cell are disrupted. PMID:23934494

  17. X-ray absorption near edge structure/electron energy loss near edge structure calculation using the supercell orthogonalized linear combination of atomic orbitals method

    NASA Astrophysics Data System (ADS)

    Ching, Wai-Yim; Rulis, Paul

    2009-03-01

    Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.

  18. Transition metal atomic multiplets in the ligand K-edge x-ray absorption spectra and multiple oxidation states in the L2,3 emission of strongly correlated compounds

    NASA Astrophysics Data System (ADS)

    Jiménez-Mier, J.; Olalde-Velasco, P.; Yang, W.-L.; Denlinger, J.

    2014-07-01

    We present results that show that atomic multiplet ligand field calculations are in very good agreement with experimental x-ray absorption spectra at the L2,3 edge of transition metal (TM) di-fluorides (MF2, MCrCu). For chromium more than one TM oxidation state is needed to achieve such an agreement. We also show that signature of the TM atomic multiplet can be found at the pre-edge of the fluorine K-edge x-ray absorption spectra. TM atomic multiplet ligand field calculations with a structureless core hole show good agreement with the observed pre-edges in the experimental fluorine absorption spectra. Preliminary results for the comparison between calculated and experimental resonant x-ray emission spectra for nominal CrF2 with more than one oxidation state indicate the presence of three chromium oxidation states in the bulk.

  19. Identification of F impurities in F-doped ZnO by synchrotron X-ray absorption near edge structures

    NASA Astrophysics Data System (ADS)

    Na-Phattalung, Sutassana; Limpijumnong, Sukit; Min, Chul-Hee; Cho, Deok-Yong; Lee, Seung-Ran; Char, Kookrin; Yu, Jaejun

    2018-04-01

    Synchrotron X-ray absorption near edge structure (XANES) measurements of F K-edge in conjunction with first-principles calculations are used to identify the local structure of the fluorine (F) atom in F-doped ZnO. The ZnO film was grown by pulsed laser deposition with an Nd:YAG laser, and an oxyfluoridation method was used to introduce F ions into the ZnO films. The measured XANES spectrum of the sample was compared against the first-principles XANES calculations based on various models for local atomic structures surrounding F atoms. The observed spectral features are attributed to ZnF2 and FO defects in wurtzite bulk ZnO.

  20. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: probing first-row transition-metal M-edges in chemical complexes.

    PubMed

    Wang, Hongxin; Young, Anthony T; Guo, Jinghua; Cramer, Stephen P; Friedrich, Stephan; Braun, Artur; Gu, Weiwei

    2013-07-01

    X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d-d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed.

  1. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  2. Low Z elements (Mg, Al, and Si) K-edge X-ray absorption spectroscopy in minerals and disordered systems

    NASA Astrophysics Data System (ADS)

    Ildefonse, Ph.; Calas, G.; Flank, A. M.; Lagarde, P.

    1995-05-01

    Soft X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy have been performed at the Mg-, Al- and Si-K edges in order to establish the ability of this spectroscopy to derive structural information in disordered solids such as glasses and gels. Mg- and Al-K XANES are good structural probes to determine the coordination state of these elements in important minerals, glasses and gels. In a CaOsbnd MgOsbnd 2SiO2 glass Mg XANES spectra differ from that found in the crystalline equivalent, with a significant shift of the edge maxima to lower energy, consistent with a CN lower than 6. Mg-EXAFS on the same sample are in agreement and indicate the presence of 5-coordinated Mg with Mgsbnd O distances of 2.01Å. In aluminosilicate gels, Alsbnd K XANES has been used to investigate the [4]Al/Altotal ratios. These ratios increase as the Al/Si ratios decrease. Aluminosilicate and ferric-silicate gels were studied by using Sisbnd K edge XANES. XANES spectra differ significantly among the samples studied. Aluminosilicate gels with Al/Si= 1 present a different Al and Si local environment from that known in clay minerals with the same Al/Si ratio. The gel-to-mineral transformation thus implies a dissolution-recrystallization mechanism. On the contrary, ferric-silicate gel presents a Si local environment close to that found in nontronite which may be formed by a long range ordering of the initial gels.

  3. Photoabsorption study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty,Ian; Richmond, Robert C.; Ehret, Charles F.

    2003-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include red phosphorus, hydrated sodium phosphate (Na3PO4 12 H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position, where each is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B.meguterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition, the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  4. Photoabsorption Study of Bacillus megaterium, DNA and Related Biological Materials in the Phosphorus K-edge Region

    NASA Technical Reports Server (NTRS)

    Frigo, Sean P.; McNulty, Ian; Richmond, Robert C.; Ehret, Charles F.

    2002-01-01

    We have measured the x-ray transmission spectra of several biologically related samples in the phosphorus K-edge absorption region. These include elemental red phosphorus, hydrated sodium phosphate (Na3PO4.12H2O), deoxyribonucleic acid (DNA), adenosinetriphosphate (ATP), diolylphosphatidyl choline (DOPC), and Bacillus megaterium spores. Elemental red phosphorus essentially displays an edge-jump. All other spectra are similar in form and energy position. Each spectrum for these substances is dominated by a narrower, more intense first peak and a broader but less intense second peak. The corresponding K-edge absorption thresholds are shifted towards higher energy relative to that for elemental red phosphorus, as expected for increasing degrees of phosphorus oxidation. The B. megaterium spectrum has aspects common to both the phosphate and DNA spectra and is therefore interpreted as a composite of spectra arising from DNA/RNA and phosphates within the spore. The B. megaterium spore spectrum provides needed information for resonant radiation damage studies in the phosphorus K-edge absorption region by identifying candidate photoexcitations. In addition,the absorption spectra will be useful in macromolecular crystallography studies employing anomalous dispersion effects at the phosphorus K-edge.

  5. Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, S.DeBeer; Petrenko, T.; Neese, F.

    2009-05-14

    Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis setmore » on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.« less

  6. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  7. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  8. Band-edge positions in G W : Effects of starting point and self-consistency

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Pasquarello, Alfredo

    2014-10-01

    We study the effect of starting point and self-consistency within G W on the band-edge positions of semiconductors and insulators. Compared to calculations based on a semilocal starting point, the use of a hybrid-functional starting point shows a larger quasiparticle correction for both band-edge states. When the self-consistent treatment is employed, the band-gap opening is found to result mostly from a shift of the valence-band edge. Within the non-self-consistent methods, we analyse the performance of empirical and nonempirical schemes in which the starting point is optimally tuned. We further assess the accuracy of the band-edge positions through the calculation of ionization potentials of surfaces. The ionization potentials for most systems are reasonably well described by one-shot calculations. However, in the case of TiO2, we find that the use of self-consistency is critical to obtain a good agreement with experiment.

  9. Combined Mössbauer spectroscopic, multi-edge X-ray absorption spectroscopic, and density functional theoretical study of the radical SAM enzyme spore photoproduct lyase.

    PubMed

    Silver, Sunshine C; Gardenghi, David J; Naik, Sunil G; Shepard, Eric M; Huynh, Boi Hanh; Szilagyi, Robert K; Broderick, Joan B

    2014-03-01

    Spore photoproduct lyase (SPL), a member of the radical S-adenosyl-L-methionine (SAM) superfamily, catalyzes the direct reversal of the spore photoproduct, a thymine dimer specific to bacterial spores, to two thymines. SPL requires SAM and a redox-active [4Fe-4S] cluster for catalysis. Mössbauer analysis of anaerobically purified SPL indicates the presence of a mixture of cluster states with the majority (40 %) as [2Fe-2S](2+) clusters and a smaller amount (15 %) as [4Fe-4S](2+) clusters. On reduction, the cluster content changes to primarily (60 %) [4Fe-4S](+). The speciation information from Mössbauer data allowed us to deconvolute iron and sulfur K-edge X-ray absorption spectra to uncover electronic (X-ray absorption near-edge structure, XANES) and geometric (extended X-ray absorption fine structure, EXAFS) structural features of the Fe-S clusters, and their interactions with SAM. The iron K-edge EXAFS data provide evidence for elongation of a [2Fe-2S] rhomb of the [4Fe-4S] cluster on binding SAM on the basis of an Fe···Fe scatterer at 3.0 Å. The XANES spectra of reduced SPL in the absence and presence of SAM overlay one another, indicating that SAM is not undergoing reductive cleavage. The X-ray absorption spectroscopy data for SPL samples and data for model complexes from the literature allowed the deconvolution of contributions from [2Fe-2S] and [4Fe-4S] clusters to the sulfur K-edge XANES spectra. The analysis of pre-edge features revealed electronic changes in the Fe-S clusters as a function of the presence of SAM. The spectroscopic findings were further corroborated by density functional theory calculations that provided insights into structural and electronic perturbations that can be correlated by considering the role of SAM as a catalyst or substrate.

  10. Electron-intramolecular-vibration interactions in positively charged phenanthrene-edge-type hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kato, Takashi; Yamabe, Tokio

    2004-02-01

    Electron-phonon interactions in positively charged phenanthrene-edge-type hydrocarbons such as phenanthrene, chrysene, and picene are studied. The C-C stretching modes around 1500 cm-1 and the low-frequency modes around 500 cm-1 strongly couple to the highest occupied molecular orbitals (HOMO) in phenanthrene-edge-type hydrocarbons. The total electron-phonon coupling constants for the monocations (lHOMO) of 0.251, 0.135, and 0.149 eV for phenanthrene, chrysene, and picene, respectively, are estimated to be larger than those of 0.130, 0.107, and 0.094 eV for anthracene, tetracene, and pentacene, respectively. The phase patterns difference between the HOMO localized on carbon atoms which are located at the molecular edge in acene-edge-type hydrocarbons and the delocalized HOMO in phenanthrene-edge-type hydrocarbons is the main reason for the result. Strengths of orbital interactions between two neighboring carbon atoms in the HOMO become weaker with an increase in molecular size because the electron density on each carbon atom in the HOMO becomes smaller with an increase in molecular size in phenanthrene-edge-type hydrocarbons. On the other hand, the frontier orbitals of acene-edge-type hydrocarbons have somewhat nonbonding characters and thus cannot strongly couple to the totally symmetric vibrational modes compared with the frontier orbitals of phenanthrene-edge-type hydrocarbons. This is the reason why the lHOMO value for phenanthrene-edge-type hydrocarbons decreases with an increase in molecular size more significantly than that for acene-edge-type hydrocarbons, and the reason why the lHOMO value for polyphenanthrene with C2v geometry (0.033 eV) is estimated to be similar to that for polyacene (0.036 eV). The reorganization energies between the neutral molecules and the corresponding monocations for phenanthrene-edge-type hydrocarbons with large molecular size are estimated to be larger than those for acene-edge-type hydrocarbons with large molecular size.

  11. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  12. Temperature and radiation effects at the fluorine K-edge in LiF

    DOE PAGES

    Schwartz, Craig P.; Ponce, Francisco; Friedrich, Stephan; ...

    2017-05-30

    Here, the fluorine K-edge of LiF is studied both experimentally and theoretically as a function of temperature. Instantaneous thermal fluctuations in atomic positions are shown in molecular dynamics simulations to increase in amplitude from 0.029 to 0.064 nm in the temperature range from 40 to 298 K. This is sufficient to cause instantaneous deviations from local octahedral atomic symmetry in this rock-salt crystal, resulting in altered electronic structure. The lowered symmetry of the lowest core-excited states of fluorine atoms is evident in X-ray absorption spectra at the F K-edge. In addition, sufficient radiation exposure produces a new X-ray absorption peak,more » below the F K-edge of LiF, which is assigned to defects in LiF based on both calculations and comparison to previous experiments.« less

  13. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; hide

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  14. First-Principles Predictions of Near-Edge X-ray Absorption Fine Structure Spectra of Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gregory M.; Patel, Shrayesh N.; Pemmaraju, C. D.

    The electronic structure and molecular orientation of semiconducting polymers in thin films determine their ability to transport charge. Methods based on near-edge X-ray absorption fine structure (NEXAFS) spectroscopy can be used to probe both the electronic structure and microstructure of semiconducting polymers in both crystalline and amorphous films. However, it can be challenging to interpret NEXAFS spectra on the basis of experimental data alone, and accurate, predictive calculations are needed to complement experiments. Here, we show that first-principles density functional theory (DFT) can be used to model NEXAFS spectra of semiconducting polymers and to identify the nature of transitions inmore » complicated NEXAFS spectra. Core-level X-ray absorption spectra of a set of semiconducting polymers were calculated using the excited electron and core-hole (XCH) approach based on constrained-occupancy DFT. A comparison of calculations on model oligomers and periodic structures with experimental data revealed the requirements for accurate prediction of NEXAFS spectra of both conjugated homopolymers and donor–acceptor polymers. The NEXAFS spectra predicted by the XCH approach were applied to study molecular orientation in donor–acceptor polymers using experimental spectra and revealed the complexity of using carbon edge spectra in systems with large monomeric units. The XCH approach has sufficient accuracy in predicting experimental NEXAFS spectra of polymers that it should be considered for design and analysis of measurements using soft X-ray techniques, such as resonant soft X-ray scattering and scanning transmission X-ray microscopy.« less

  15. Soft X-ray absorption spectroscopy and resonant inelastic X-ray scattering spectroscopy below 100 eV: probing first-row transition-metal M-edges in chemical complexes

    PubMed Central

    Wang, Hongxin; Young, Anthony T.; Guo, Jinghua; Cramer, Stephen P.; Friedrich, Stephan; Braun, Artur; Gu, Weiwei

    2013-01-01

    X-ray absorption and scattering spectroscopies involving the 3d transition-metal K- and L-edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M-edges, which are below 100 eV. Synchrotron-based X-ray sources can have higher energy resolution at M-edges. M-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) could therefore provide complementary information to K- and L-edge spectroscopies. In this study, M 2,3-edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M 2,3-edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different d–d transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M-edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high-sensitivity and high-resolution superconducting tunnel junction X-ray detectors below 100 eV is also illustrated and discussed. PMID:23765304

  16. Modulating the spin transport behaviors in ZBNCNRs by edge hydrogenation and position of BN chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Jun; Long, Mengqiu, E-mail: mqlong@csu.edu.cn, E-mail: ygao@csu.edu.cn; Zhang, Dan

    2016-03-15

    Using the density functional theory and the nonequilibrium Green’s function method, we study the spin transport behaviors in zigzag boron-nitrogen-carbon nanoribbons (ZBNCNRs) by modulating the edge hydrogenation and the position of B-N nanoribbons (BNNRs) chain. The different edge hydrogenations of the ZBNCNRs and the different position relationships of the BNNRs have been considered systematically. Our results show that the metallic, semimetallic and semiconductive properties of the ZBNCNRs can be modulated by the different edge hydrogenations and different position relationships of BN chains. And our proposaled ZBNCNRs devices act as perfect spin-filters with nearly 100% spin polarization. These effects would havemore » potential applications for boron-nitrogen-carbon-based nanomaterials in spintronics nano-devices.« less

  17. Subgap Absorption in Conjugated Polymers

    DOE R&D Accomplishments Database

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of < 10{sup {minus}5}, Photothermal Deflection Spectroscopy (PDS) is ideal for determining the absorption coefficients of thin films of transparent'' materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  18. A pre-edge analysis of Mn K-edge XANES spectra to help determine the speciation of manganese in minerals and glasses

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Farges, F.; Brown, G. E.

    2009-01-01

    High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses.

  19. Picosecond sulfur K-edge X-ray absorption spectroscopy with applications to excited state proton transfer

    DOE PAGES

    Van Kuiken, Benjamin E.; Ross, Matthew R.; Strader, Matthew L.; ...

    2017-05-08

    Picosecond X-ray absorption (XA) spectroscopy at the S K-edge (~2.4 keV) is demonstrated and used to monitor excited state dynamics in a small organosulfur molecule (2-Thiopyridone, 2TP) following optical excitation. Multiple studies have reported that the thione (2TP) is converted into the thiol (2-Mercaptopyridine, 2MP) following photoexcitation. However, the timescale and photochemical pathway of this reaction remain uncertain. In this work, time-resolved XA spectroscopy at the S K-edge is used to monitor the formation and decay of two transient species following 400nm excitation of 2TP dissolved in acetonitrile. The first transient species forms within the instrument response time (70 ps)more » and decays within 6 ns. The second transient species forms on a timescale of ~400 ps and decays on a 15 ns timescale. Time-dependent density functional theory is used to identify the first and second transient species as the lowestlying triplet states of 2TP and 2MP, respectively. This study demonstrates transient S K-edge XA spectroscopy as a sensitive and viable probe of time-evolving charge dynamics near sulfur sites in small molecules with future applications towards studying complex biological and material systems.« less

  20. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grush, M.M.; Chen, J.; George, S.J.

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compoundmore » spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.« less

  1. Theoretical X-ray production cross sections at incident photon energies across L{sub i} (i=1-3) absorption edges of Br

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Sanjiv

    The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, inmore » order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.« less

  2. The use of C-near edge X-ray absorption fine structure spectroscopy for the elaboration of chemistry in lignocellulosics

    Treesearch

    Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick

    2006-01-01

    The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...

  3. Novel visualization studies of lignocellulosic oxidation chemistry by application of C-near edge X-ray absorption fine structure spectroscopy

    Treesearch

    Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun

    2005-01-01

    The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...

  4. Cerium LIII-edge x-ray absorption study of the CexFe4-yCoySb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Grandjean, Fernande; Long, Gary J.; Cortes, Robert; Morelli, Donald T.; Meisner, Gregory P.

    2000-11-01

    The cerium LIII-edge x-ray absorption near-edge spectra of the CexFe4-yCoySb12 compounds have been obtained at 295 K and unambiguously indicate that cerium is in the 4f1 electronic ground state for all values of 0.22<=x<=0.98 and 0.0<=y<=3.5. This stable trivalent state of cerium is in agreement with the proposed (CeFe4Sb12)1-α(□Co4Sb12)α, solid solution structure, in which the cerium atoms are always surrounded by twelve antimony first neighbors and six iron second neighbors, the observed magnetic properties of CeFe4Sb12 and Ce0.9Fe3CoSb12, and the electronic structure of CeFe4Sb12 obtained from band-structure calculations.

  5. Experimental and theoretical study of the structural environment of magnesium in minerals and silicate glasses using X-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Trcera, Nicolas; Cabaret, Delphine; Rossano, Stéphanie; Farges, François; Flank, Anne-Marie; Lagarde, Pierre

    2009-05-01

    X-ray absorption spectroscopy at the Mg K-edge is used to obtain information on magnesium environment in minerals, silicate and alumino-silicate glasses. First-principles XANES calculations are performed for minerals using a plane-wave density functional formalism with core-hole effects treated in a supercell approach. The good agreement obtained between experimental and theoretical spectra provides useful information to interpret the spectral features. With the help of calculation, the position of the first peak of XANES spectra is related to both coordination and polyhedron distortion changes. In alumino-silicate glasses, magnesium is found to be mainly 5-fold coordinated to oxygen whatever the aluminum saturation index value. In silicate glasses, magnesium coordination increases from 4 in Cs-, Rb- and K-bearing glasses to 5 in Na- and Li-bearing glasses but remains equal as the polymerization degree of the glass varies. The variation of the C feature (position and intensity) is strongly related to the alkali type providing information on the medium range order.

  6. Magnesium K-edge XANES spectroscopy of geological standards.

    PubMed

    Yoshimura, Toshihiro; Tamenori, Yusuke; Iwasaki, Nozomu; Hasegawa, Hiroshi; Suzuki, Atsushi; Kawahata, Hodaka

    2013-09-01

    Magnesium K-edge X-ray absorption near-edge structure (XANES) spectra have been investigated to develop a systematic understanding of a suite of Mg-bearing geological materials such as silicate and carbonate minerals, sediments, rocks and chemical reagents. For the model compounds the Mg XANES was found to vary widely between compounds and to provide a fingerprint for the form of Mg involved in geologic materials. The energy positions and resonance features obtained from these spectra can be used to specify the dominant molecular host site of Mg, thus shedding light on Mg partitioning and isotope fractionation in geologic materials and providing a valuable complement to existing knowledge of Mg geochemistry.

  7. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    PubMed

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  8. Chemical forms of sulfur in geological and archeological asphaltenes from Middle East, France, and Spain determined by sulfur K- and L-edge X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarret, Géraldine; Connan, Jacques; Kasrai, Masoud; Bancroft, G. Michael; Charrié-Duhaut, Armelle; Lemoine, Sylvie; Adam, Pierre; Albrecht, Pierre; Eybert-Bérard, Laurent

    1999-11-01

    Asphaltene samples extracted from archeological and geological bitumens from the Middle East, France, and Spain were studied by sulfur K- and L-edge X-ray absorption near-edge structure (XANES) spectroscopy in combination with isotopic analyses (δ 13C and δD). Within each series, the samples were genetically related by their δ 13C values. The gross and elemental composition and the δD values were used to characterize the weathering state of the samples. Sulfur K- and L-edge XANES results show that in all the samples, dibenzothiophenes are the dominant forms of sulfur. In the least oxidized asphaltenes, minor species include disulfides, alkyl and aryl sulfides, and sulfoxides. With increasing alteration the proportion of oxidized sulfur (sulfoxides, sulfones, sulfonates and sulfates) increases, whereas the disulfide and sulfide content decreases. This evolution is observed in all the series, regardless of the origin of the asphaltenes. This work illustrates the advantages of XANES spectroscopy as a selective probe for determining sulfur speciation in natural samples. It also shows that S K- and L-edge XANES spectroscopy are complementary for identifying the oxidized and reduced forms of sulfur, respectively.

  9. Pushing the limits of CMOS optical parametric amplifiers with USRN:Si7N3 above the two-photon absorption edge

    PubMed Central

    Ooi, K. J. A.; Ng, D. K. T.; Wang, T.; Chee, A. K. L.; Ng, S. K.; Wang, Q.; Ang, L. K.; Agarwal, A. M.; Kimerling, L. C.; Tan, D. T. H.

    2017-01-01

    CMOS platforms operating at the telecommunications wavelength either reside within the highly dissipative two-photon regime in silicon-based optical devices, or possess small nonlinearities. Bandgap engineering of non-stoichiometric silicon nitride using state-of-the-art fabrication techniques has led to our development of USRN (ultra-silicon-rich nitride) in the form of Si7N3, that possesses a high Kerr nonlinearity (2.8 × 10−13 cm2 W−1), an order of magnitude larger than that in stoichiometric silicon nitride. Here we experimentally demonstrate high-gain optical parametric amplification using USRN, which is compositionally tailored such that the 1,550 nm wavelength resides above the two-photon absorption edge, while still possessing large nonlinearities. Optical parametric gain of 42.5 dB, as well as cascaded four-wave mixing with gain down to the third idler is observed and attributed to the high photon efficiency achieved through operating above the two-photon absorption edge, representing one of the largest optical parametric gains to date on a CMOS platform. PMID:28051064

  10. Near- and Extended-Edge X-Ray-Absorption Fine-Structure Spectroscopy Using Ultrafast Coherent High-Order Harmonic Supercontinua

    NASA Astrophysics Data System (ADS)

    Popmintchev, Dimitar; Galloway, Benjamin R.; Chen, Ming-Chang; Dollar, Franklin; Mancuso, Christopher A.; Hankla, Amelia; Miaja-Avila, Luis; O'Neil, Galen; Shaw, Justin M.; Fan, Guangyu; Ališauskas, Skirmantas; Andriukaitis, Giedrius; Balčiunas, Tadas; Mücke, Oliver D.; Pugzlys, Audrius; Baltuška, Andrius; Kapteyn, Henry C.; Popmintchev, Tenio; Murnane, Margaret M.

    2018-03-01

    Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV . Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K - and L -absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 109 photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 1026 photons/s /mrad2/mm2/1 % bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

  11. Phosphorus K-edge XANES spectroscopy of mineral standards

    PubMed Central

    Ingall, Ellery D.; Brandes, Jay A.; Diaz, Julia M.; de Jonge, Martin D.; Paterson, David; McNulty, Ian; Elliott, W. Crawford; Northrup, Paul

    2011-01-01

    Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals rich in either reduced iron or manganese; (e) four phosphate minerals rich in either oxidized iron or manganese; (f) eight phosphate minerals rich in either magnesium, copper, lead, zinc or rare-earth elements; and (g) four uranium phosphate minerals. The identity of all minerals examined in this study was independently confirmed using X-ray powder diffraction. Minerals were distinguished using XANES spectra with a combination of pre-edge features, edge position, peak shapes and post-edge features. Shared spectral features were observed in minerals with compositions dominated by the same specific cation. Analyses of apatite-group minerals indicate that XANES spectral patterns are not strongly affected by variations in composition and crystallinity typical of natural mineral specimens. PMID:21335905

  12. Positive edge effects on forest-interior cryptogams in clear-cuts.

    PubMed

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0-50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality

  13. Positive Edge Effects on Forest-Interior Cryptogams in Clear-Cuts

    PubMed Central

    Caruso, Alexandro; Rudolphi, Jörgen; Rydin, Håkan

    2011-01-01

    Biological edge effects are often assessed in high quality focal habitats that are negatively influenced by human-modified low quality matrix habitats. A deeper understanding of the possibilities for positive edge effects in matrix habitats bordering focal habitats (e.g. spillover effects) is, however, essential for enhancing landscape-level resilience to human alterations. We surveyed epixylic (dead wood inhabiting) forest-interior cryptogams (lichens, bryophytes, and fungi) associated with mature old-growth forests in 30 young managed Swedish boreal forest stands bordering a mature forest of high conservation value. In each young stand we registered species occurrences on coarse dead wood in transects 0–50 m from the border between stand types. We quantified the effect of distance from the mature forest on the occurrence of forest-interior species in the young stands, while accounting for local environment and propagule sources. For comparison we also surveyed epixylic open-habitat (associated with open forests) and generalist cryptogams. Species composition of epixylic cryptogams in young stands differed with distance from the mature forest: the frequency of occurrence of forest-interior species decreased with increasing distance whereas it increased for open-habitat species. Generalists were unaffected by distance. Epixylic, boreal forest-interior cryptogams do occur in matrix habitats such as clear-cuts. In addition, they are associated with the matrix edge because of a favourable microclimate closer to the mature forest on southern matrix edges. Retention and creation of dead wood in clear-cuts along the edges to focal habitats is a feasible way to enhance the long-term persistence of epixylic habitat specialists in fragmented landscapes. The proposed management measures should be performed in the whole stand as it matures, since microclimatic edge effects diminish as the matrix habitat matures. We argue that management that aims to increase habitat quality

  14. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  15. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  16. Si K EDGE STRUCTURE AND VARIABILITY IN GALACTIC X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, Norbert S.; Corrales, Lia; Canizares, Claude R.

    2016-08-10

    We survey the Si K edge structure in various absorbed Galactic low-mass X-ray binaries (LMXBs) to study states of silicon in the inter- and circum-stellar medium. The bulk of these LMXBs lie toward the Galactic bulge region and all have column densities above 10{sup 22} cm{sup −2}. The observations were performed using the Chandra High Energy Transmission Grating Spectrometer. The Si K edge in all sources appears at an energy value of 1844 ± 0.001 eV. The edge exhibits significant substructure that can be described by a near edge absorption feature at 1849 ± 0.002 eV and a far edgemore » absorption feature at 1865 ± 0.002 eV. Both of these absorption features appear variable with equivalent widths up to several mÅ. We can describe the edge structure using several components: multiple edge functions, near edge absorption excesses from silicates in dust form, signatures from X-ray scattering optical depths, and a variable warm absorber from ionized atomic silicon. The measured optical depths of the edges indicate much higher values than expected from atomic silicon cross sections and interstellar medium abundances, and they appear consistent with predictions from silicate X-ray absorption and scattering. A comparison with models also indicates a preference for larger dust grain sizes. In many cases, we identify Si xiii resonance absorption and determine ionization parameters between log ξ = 1.8 and 2.8 and turbulent velocities between 300 and 1000 km s{sup −1}. This places the warm absorber in close vicinity of the X-ray binaries. In some data, we observe a weak edge at 1.840 keV, potentially from a lesser contribution of neutral atomic silicon.« less

  17. Experimental and theoretical comparison of the O K-edge nonresonant inelastic X-ray scattering and X-ray absorption spectra of NaReO4.

    PubMed

    Bradley, Joseph A; Yang, Ping; Batista, Enrique R; Boland, Kevin S; Burns, Carol J; Clark, David L; Conradson, Steven D; Kozimor, Stosh A; Martin, Richard L; Seidler, Gerald T; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Wolfsberg, Laura E

    2010-10-06

    Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

  18. Imaging at an x-ray absorption edge using free electron laser pulses for interface dynamics in high energy density systems [Resonant phase contrast imaging for interface physics

    DOE PAGES

    Beckwith, M. A.; Jiang, S.; Schropp, A.; ...

    2017-05-01

    Tuning the energy of an x-ray probe to an absorption line or edge can provide material-specific measurements that are particularly useful for interfaces. Simulated hard x-ray images above the Fe K-edge are presented to examine ion diffusion across an interface between Fe 2O 3 and SiO 2 aerogel foam materials. The simulations demonstrate the feasibility of such a technique for measurements of density scale lengths near the interface with submicron spatial resolution. A proof-of-principle experiment is designed and performed at the Linac coherent light source facility. Preliminary data show the change of the interface after shock compression and heating withmore » simultaneous fluorescence spectra for temperature determination. Here, the results provide the first demonstration of using x-ray imaging at an absorption edge as a diagnostic to detect ultrafast phenomena for interface physics in high-energy-density systems.« less

  19. X-Ray Absorption Near Edge Structure And Extended X-Ray Absorption Fine Structure Analysis of Standards And Biological Samples Containing Mixed Oxidation States of Chromium(III) And Chromium(VI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, J.G.; Dokken, K.; Peralta-Videa, J.R.

    For the first time a method has been developed for the extended X-ray absorption fine structure (EXAFS) data analyses of biological samples containing multiple oxidation states of chromium. In this study, the first shell coordination and interatomic distances based on the data analysis of known standards of potassium chromate (Cr(VI)) and chromium nitrate hexahydrate (Cr(III)) were investigated. The standards examined were mixtures of the following molar ratios of Cr(VI):Cr(III), 0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, and 1:0. It was determined from the calibration data that the fitting error associated with linear combination X-ray absorption near edge structure (LC-XANES) fittings was approximately {+-}10%more » of the total fitting. The peak height of the Cr(VI) pre-edge feature after normalization of the X-ray absorption (XAS) spectra was used to prepare a calibration curve. The EXAFS fittings of the standards were also investigated and fittings to lechuguilla biomass samples laden with different ratios of Cr(III) and Cr(VI) were performed as well. An excellent agreement between the XANES data and the data presented in the EXAFS spectra was observed. The EXFAS data also presented mean coordination numbers directly related to the ratios of the different chromium oxidation states in the sample. The chromium oxygen interactions had two different bond lengths at approximately 1.68 and 1.98 {angstrom} for the Cr(VI) and Cr(III) in the sample, respectively.« less

  20. Near Edge X-Ray Absorption and X-Ray Photoelectron Diffraction Studies of the Structural Environment of Ge-Si Systems

    NASA Astrophysics Data System (ADS)

    Castrucci, P.; Gunnella, R.; Pinto, N.; Bernardini, R.; de Crescenzi, M.; Sacchi, M.

    Near edge X-ray absorption spectroscopy (XAS), X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED) are powerful techniques for the qualitative study of the structural and electronic properties of several systems. The recent development of a multiple scattering approach to simulating experimental spectra opened a friendly way to the study of structural environments of solids and surfaces. This article reviews recent X-ray absorption experiments using synchrotron radiation which were performed at Ge L edges and core level electron diffraction measurements obtained using a traditional X-ray source from Ge core levels for ultrathin Ge films deposited on silicon substrates. Thermodynamics and surface reconstruction have been found to play a crucial role in the first stages of Ge growth on Si(001) and Si(111) surfaces. Both techniques show the occurrence of intermixing processes even for room-temperature-grown Ge/Si(001) samples and give a straightforward measurement of the overlayer tetragonal distortion. The effects of Sb as a surfactant on the Ge/Si(001) interface have also been investigated. In this case, evidence of layer-by-layer growth of the fully strained Ge overlayer with a reduced intermixing is obtained when one monolayer of Sb is predeposited on the surface.

  1. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory.

    PubMed

    Lima, Frederico A; Bjornsson, Ragnar; Weyhermüller, Thomas; Chandrasekaran, Perumalreddy; Glatzel, Pieter; Neese, Frank; DeBeer, Serena

    2013-12-28

    X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.

  2. Effect of aluminum on the local structure of silicon in zeolites as studied by Si K edge X-ray absorption near-edge fine structure: spectra simulation with a non-muffin tin atomic background.

    PubMed

    Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V

    2009-04-09

    Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.

  3. Full-Field Calcium K-Edge X-ray Absorption Near-Edge Structure Spectroscopy on Cortical Bone at the Micron-Scale: Polarization Effects Reveal Mineral Orientation.

    PubMed

    Hesse, Bernhard; Salome, Murielle; Castillo-Michel, Hiram; Cotte, Marine; Fayard, Barbara; Sahle, Christoph J; De Nolf, Wout; Hradilova, Jana; Masic, Admir; Kanngießer, Birgit; Bohner, Marc; Varga, Peter; Raum, Kay; Schrof, Susanne

    2016-04-05

    Here, we show results on X-ray absorption near edge structure spectroscopy in both transmission and X-ray fluorescence full-field mode (FF-XANES) at the calcium K-edge on human bone tissue in healthy and diseased conditions and for different tissue maturation stages. We observe that the dominating spectral differences originating from different tissue regions, which are well pronounced in the white line and postedge structures are associated with polarization effects. These polarization effects dominate the spectral variance and must be well understood and modeled before analyzing the very subtle spectral variations related to the bone tissue variations itself. However, these modulations in the fine structure of the spectra can potentially be of high interest to quantify orientations of the apatite crystals in highly structured tissue matrices such as bone. Due to the extremely short wavelengths of X-rays, FF-XANES overcomes the limited spatial resolution of other optical and spectroscopic techniques exploiting visible light. Since the field of view in FF-XANES is rather large the acquisition times for analyzing the same region are short compared to, for example, X-ray diffraction techniques. Our results on the angular absorption dependence were verified by both site-matched polarized Raman spectroscopy, which has been shown to be sensitive to the orientation of bone building blocks and by mathematical simulations of the angular absorbance dependence. As an outlook we further demonstrate the polarization based assessment of calcium-containing crystal orientation and specification of calcium in a beta-tricalcium phosphate (β-Ca3(PO4)2 scaffold implanted into ovine bone. Regarding the use of XANES to assess chemical properties of Ca in human bone tissue our data suggest that neither the anatomical site (tibia vs jaw) nor pathology (healthy vs necrotic jaw bone tissue) affected the averaged spectral shape of the XANES spectra.

  4. A search for the iron absorption edge in the tail of an X-ray burst from X1636 - 53

    NASA Astrophysics Data System (ADS)

    Day, C. S. R.; Fabian, A. C.; Ross, R. R.

    1992-08-01

    Model atmosphere calculations of the spectrum of a neutron star cooling after an X-ray burst show that the photoelectric edge of iron should be prominent. No clear evidence for such a redshifted feature in the spectrum of a burst from X1636 - 53 is found, and it is concluded that the iron abundance there must be less than 0.3 solar. Unless the iron abundance of the surface matter on the neutron star is highly time-dependent, the present result argues against the 4.1-keV absorption line seen in some bursts from X1636 - 53 by Waki et al. (1984) being due to iron. The iron edge will be a powerful diagnostic of the surface redshift of the neutron star in burst sources where the iron abundance is more nearly solar.

  5. A search for the iron absorption edge in the tail of an X-ray burst from X1636 - 53

    NASA Technical Reports Server (NTRS)

    Day, C. S. R.; Fabian, A. C.; Ross, R. R.

    1992-01-01

    Model atmosphere calculations of the spectrum of a neutron star cooling after an X-ray burst show that the photoelectric edge of iron should be prominent. No clear evidence for such a redshifted feature in the spectrum of a burst from X1636 - 53 is found, and it is concluded that the iron abundance there must be less than 0.3 solar. Unless the iron abundance of the surface matter on the neutron star is highly time-dependent, the present result argues against the 4.1-keV absorption line seen in some bursts from X1636 - 53 by Waki et al. (1984) being due to iron. The iron edge will be a powerful diagnostic of the surface redshift of the neutron star in burst sources where the iron abundance is more nearly solar.

  6. Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy.

    PubMed

    Engel, Annette Summers; Lichtenberg, Henning; Prange, Alexander; Hormes, Josef

    2007-04-01

    Most transformations within the sulfur cycle are controlled by the biosphere, and deciphering the abiotic and biotic nature and turnover of sulfur is critical to understand the geochemical and ecological changes that have occurred throughout the Earth's history. Here, synchrotron radiation-based sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy is used to examine sulfur speciation in natural microbial mats from two aphotic (cave) settings. Habitat geochemistry, microbial community compositions, and sulfur isotope systematics were also evaluated. Microorganisms associated with sulfur metabolism dominated the mats, including members of the Epsilonproteobacteria and Gammaproteobacteria. These groups have not been examined previously by sulfur K-edge XANES. All of the mats consisted of elemental sulfur, with greater contributions of cyclo-octasulfur (S8) compared with polymeric sulfur (Smicro). While this could be a biological fingerprint for some bacteria, the signature may also indicate preferential oxidation of Smicro and S8 accumulation. Higher sulfate content correlated to less S8 in the presence of Epsilonproteobacteria. Sulfur isotope compositions confirmed that sulfur content and sulfur speciation may not correlate to microbial metabolic processes in natural samples, thereby complicating the interpretation of modern and ancient sulfur records.

  7. Kα X-Ray Emission Spectra and K X-Ray Absorption-Edge Structures of Fluorine in 3d Transition-Metal Difluorides

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1991-08-01

    The fluorine Kα emission spectra in fluorescence from a series of 3d transition-metal difluorides MF2 (M=Mn, Fe, Co, Ni, Cu and Zn) have been measured with a high-resolution two-crystal vacuum spectrometer. It is shown that the observed FWHM of the Kα1,2 emission band is closely related to the difference in the electronegativity between the metal and fluorine atoms. The measured emission spectra are presented along with the UPS or XPS spectra of the valence bands and the fluorine K absorption spectra of the metal difluorides, reported previously. The structures at the fluorine K absorption edges are interpreted in terms of a molecular orbital (MO) model.

  8. A X-Ray Absorption Study of Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Bunker, Grant Byrd

    This work is an experimental and theoretical study of the x-ray absorption near-edge structure of selected 3d transition metal compounds. The goal is to understand the physical mechanisms of XANES, using the competing multiple scattering (MS) and single scattering formalisms of Durham et al, and of Muller and Schaich, respectively. Careful experimental measurements of the K edge absorption of Mn oxides and KMnO(,4) at 300(DEGREES)K, 140(DEGREES)K and 80(DEGREES)K were made. These materials were chosen because they exhibit a variety of structures and oxidation states. Computer simulations of the XANES using the formalisms above were also performed. The experimental results show that atoms beyond the first coordination shell significantly affect the XANES near and above the edge; in particular the temperature dependent XANES and the "white line" in MnO establish this. We conclude that XANES, like EXAFS, is primarily sensitive to geometrical structure, except within about 1 Rydberg of the Fermi level. Two types of MS are distinguished: type 1 (forward scattering) is important in both XANES and EXAFS regions; type 2 (large angle scattering) is important only at and below the edge. MS of the photoelectron among the first shell Oxygen atoms in KMnO(,4) is observed experimentally, and found to become negligible above (DBLTURN) 1 Rydberg past the edge. The sharp features in XANES are primarily due to scattering from distant atoms, rather than localized states, except below the edge. This is supported by the observation that (alpha)-Mn(,2)O(,3) and Mn(,3)O(,4) spectra are nearly identical; their structures are the same, but the average oxidation states are different. We find the bond length strongly affects the edge position and the intensity of the 3d absorption in tetrahedrally coordinated transition metals. Other new results are the first shell EXAFS amplitude in MnO shows an anomalous energy dependence, which apparently cannot be explained by current theory. A new

  9. Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Luo, Jialiang; Nikl, Martin; Ren, Guohao

    2014-01-01

    In the recent successful improvement of scintillation efficiency in Lu3Al5O12:Ce driven by Ga3+ and Gd3+ admixture, the "band-gap engineering" and energy level positioning have been considered the valid strategies so far. This study revealed that this improvement was also associated with the cerium valence instability along with the changes of chemical composition. By utilizing X-ray absorption near edge spectroscopy technique, tuning the Ce3+/Ce4+ ratio by Ga3+ admixture was evidenced, while it was kept nearly stable with the Gd3+ admixture. Ce valence instability and Ce3+/Ce4+ ratio in multicomponent garnets can be driven by the energy separation between 4f ground state of Ce3+ and Fermi level.

  10. In Situ X-ray Absorption Near-Edge Structure Spectroscopy of ZnO Nanowire Growth During Chemical Bath Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPeak, Kevin M.; Becker, Matthew A.; Britton, Nathan G.

    2010-12-03

    Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. Here we report the first use of in situ X-ray absorption spectroscopy during CBD, enabling detailed investigation of both reaction mechanisms and kinetics of ZnO nanowire growth from zinc nitrate and hexamethylenetetramine (HMTA) precursors. Time-resolved X-ray absorption near-edge structure (XANES) spectra were used to quantify Zn(II) speciation in both solution and solid phases. ZnO crystallizes directly from [Zn(H{sub 2}O){sub 6}]{sup 2+} without long-lived intermediates. Using ZnO nanowire deposition as an example,more » this study establishes in situ XANES spectroscopy as an excellent quantitative tool to understand CBD of nanomaterials.« less

  11. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  12. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  13. NO binding kinetics in myoglobin investigated by picosecond Fe K-edge absorption spectroscopy

    PubMed Central

    Silatani, Mahsa; Lima, Frederico A.; Penfold, Thomas J.; Rittmann, Jochen; Reinhard, Marco E.; Rittmann-Frank, Hannelore M.; Borca, Camelia; Grolimund, Daniel; Milne, Christopher J.; Chergui, Majed

    2015-01-01

    Diatomic ligands in hemoproteins and the way they bind to the active center are central to the protein’s function. Using picosecond Fe K-edge X-ray absorption spectroscopy, we probe the NO-heme recombination kinetics with direct sensitivity to the Fe-NO binding after 532-nm photoexcitation of nitrosylmyoglobin (MbNO) in physiological solutions. The transients at 70 and 300 ps are identical, but they deviate from the difference between the static spectra of deoxymyoglobin and MbNO, showing the formation of an intermediate species. We propose the latter to be a six-coordinated domed species that is populated on a timescale of ∼200 ps by recombination with NO ligands. This work shows the feasibility of ultrafast pump–probe X-ray spectroscopic studies of proteins in physiological media, delivering insight into the electronic and geometric structure of the active center. PMID:26438842

  14. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  15. Changes in the near edge X-ray absorption fine structure of hybrid organic-inorganic resists upon exposure.

    PubMed

    Fallica, Roberto; Watts, Benjamin; Roesner, Benedikt; Della Giustina, Gioia; Brigo, Laura; Brusatin, Giovanna; Ekinci, Yasin

    2018-06-14

    We report on the near edge X-ray absorption fine structure (NEXAFS) spectroscopy of hybrid organic-inorganic resists. These materials are nonchemically amplified systems based on Si, Zr, and Ti oxides, synthesized from organically modified precursors and transition metal alkoxides by a sol-gel route and designed for ultraviolet, extreme ultraviolet and electron beam lithography. The experiments were conducted using a scanning transmission X-ray microscope (STXM) which combines high spatial-resolution microscopy and NEXAFS spectroscopy. The absorption spectra were collected in the proximity of the carbon edge (~ 290 eV) before and after in situ exposure, enabling the measurement of a significant photo-induced degradation of the organic group (phenyl or methyl methacrylate, respectively), the degree of which depends on the configuration of the ligand. Photo-induced degradation was more efficient in the resist synthesized with pendant phenyl substituents than it was in the case of systems based on bridging phenyl groups. The degradation of the methyl methacrylate group was relatively efficient, with about half of the initial ligands dissociated upon exposure. Our data reveal that the such dissociation can produce different outcomes, depending on the structural configuration. While all the organic groups were expected to detach and desorb from the resist in their entirety, a sizeable amount of them remain and form undesired byproducts such as alkene chains. In the framework of the materials synthesis and engineering through specific building blocks, these results provide a deeper insight into the photochemistry of resists, in particular for extreme ultraviolet lithography. © 2018 IOP Publishing Ltd.

  16. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  17. Silicon K-edge XANES spectra of silicate minerals

    NASA Astrophysics Data System (ADS)

    Li, Dien; Bancroft, G. M.; Fleet, M. E.; Feng, X. H.

    1995-03-01

    Silicon K-edge x-ray absorption near-edge structure (XANES) spectra of a selection of silicate and aluminosilicate minerals have been measured using synchrotron radiation (SR). The spectra are qualitatively interpreted based on MO calculation of the tetrahedral SiO{4/4-}cluster. The Si K-edge generally shifts to higher energy with increased polymerization of silicates by about 1.3 eV, but with considerable overlap for silicates of different polymerization types. The substitution of Al for Si shifts the Si K-edge to lower energy. The chemical shift of Si K-edge is also sensitive to cations in more distant atom shells; for example, the Si K-edge shifts to lower energy with the substitution of Al for Mg in octahedral sites. The shifts of the Si K-edge show weak correlation with average Si-O bond distance (dSi-O), Si-O bond valence (sSi-O) and distortion of SiO4 tetrahedra, due to the crystal structure complexity of silicate minerals and multiple factors effecting the x-ray absorption processes.

  18. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  19. Quantum simulation of thermally-driven phase transition and oxygen K-edge x-ray absorption of high-pressure ice

    PubMed Central

    Kang, Dongdong; Dai, Jiayu; Sun, Huayang; Hou, Yong; Yuan, Jianmin

    2013-01-01

    The structure and phase transition of high-pressure ice are of long-standing interest and challenge, and there is still a huge gap between theoretical and experimental understanding. The quantum nature of protons such as delocalization, quantum tunneling and zero-point motion is crucial to the comprehension of the properties of high-pressure ice. Here we investigated the temperature-induced phase transition and oxygen K-edge x-ray absorption spectra of ice VII, VIII and X using ab initio path-integral molecular dynamics simulations. The tremendous difference between experiments and the previous theoretical predictions is closed for the phase diagram of ice below 300 K at pressures up to 110 GPa. Proton tunneling assists the proton-ordered ice VIII to transform into proton-disordered ice VII where only thermal activated proton-transfer cannot occur. The oxygen K edge with its shift is sensitive to the order-disorder transition, and therefore can be applied to diagnose the dynamics of ice structures. PMID:24253589

  20. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru

    2010-09-15

    Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BNmore » films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.« less

  1. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium.

    PubMed

    Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna

    2015-09-01

    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.

  2. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  3. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  4. Electronic structure and optical properties of CdSxSe1-x solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.

    2014-11-01

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  5. Orientational behavior of thin films of poly(3-methylthiophene) on platinium: A FTIR and near edge x-ray absorption fine structure (NEXAFS) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.Q.; Chen, J.; Hale, P.D.

    1988-01-01

    Near edge x-ray absorption fine structure (NEXAFS) and infrared reflection-absorption spectroscopy (IRRAS) have been used to study the orientational behavior of thin films of poly(3-methylthiophene) electrochemically polymerized on a platinum surface. Clear orientational effects, with the thiophene rings predominantly oriented parallel to the platinum surface, were observed when the thickness of the polymer films were within a few hundred /angstrom/A. It was found that more highly ordered films were produced at lower polymerization potential (1.4V vs SCE) than at higher potential (1.8V vs SCE). 5 refs., 4 figs., 2 tabs.

  6. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  7. Intrinsic defect oriented visible region absorption in zinc oxide films

    NASA Astrophysics Data System (ADS)

    Rakhesh, V.; Shankar, Balakrishnan

    2018-05-01

    Zinc Oxide films were deposited on the glass substrate using vacuum arc sputtering technology. Films were prepared in oxygen ambience for 10mA and 15 mA deposition current separately. The UV-Visible spectroscopy of the samples showed that both samples possess sharp absorption near 3.5eV which is the characteristic band gap absorption energy of ZnO films. The absorption coefficient were calculated for the samples and the (αℎϑ)2 vs energy plot is drawn. The plot suggested that in addition to the sharp band edge absorption, the sample prepared at 10mA deposition current showed sharp absorption edge near 1.51eV and that at 15 mA showed absorption edge near 1.47eV. This refers to the presence of an intrinsic defect level which is likely to be deep in the band gap.

  8. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    PubMed

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    PubMed

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  10. Optical Kerr effect and two-photon absorption in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2018-05-01

    A theoretical treatment of nonlinear refraction and two-photon absorption is presented for a novel two-dimensional material, monolayer black phosphorus (or phosphorene), irradiated by a normally incident and linearly polarized coherent laser beam of frequency ω. It is found that both the nonlinear refractive index n 2(ω) and the two-photon absorption coefficient α 2(ω) of phosphorene depend upon the polarization of the radiation field relative to phosphorene’s crystallographic axes. For the two principal polarization directions considered—viz, the armchair ({ \\mathcal A }{ \\mathcal C }) and zigzag ({ \\mathcal Z }{ \\mathcal Z }), the calculated values of n 2 and α 2 are distinguished by the order of their magnitude, with the n 2 and α 2 values being greater for the { \\mathcal A }{ \\mathcal C } direction. Furthermore, for almost all the incident photon energies below the fundamental absorption edge, except its neighborhood, the signs of n 2 as well as α 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions are opposed to each other. Also, for both the directions, the change of sign of n 2 is predicted to occur in the way between the two-photon absorption edge and the fundamental absorption edge, as well as in the near vicinity of the latter, where the Kerr nonlinearity has a pronounced resonant character and the magnitude of n 2 for the { \\mathcal A }{ \\mathcal C } and { \\mathcal Z }{ \\mathcal Z } polarization directions reaches its largest positive values of the order of 10‑9 and 10‑10 cm2 W‑1, respectively. The implications of the findings for practical all-optical switching applications are discussed.

  11. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  12. Optical Absorption in Liquid Semiconductors

    NASA Astrophysics Data System (ADS)

    Bell, Florian Gene

    An infrared absorption cell has been developed which is suitable for high temperature liquids which have absorptions in the range .1-10('3) cm('-1). The cell is constructed by clamping a gasket between two flat optical windows. This unique design allows the use of any optical windows chemically compatible with the liquid. The long -wavelength limit of the measurements is therefore limited only by the choice of the optical windows. The thickness of the cell can easily be set during assembly, and can be varied from 50 (mu)m to .5 cm. Measurements of the optical absorption edge were performed on the liquid alloy Se(,1-x)Tl(,x) for x = 0, .001, .002, .003, .005, .007, and .009, from the melting point up to 475(DEGREES)C. The absorption was found to be exponential in the photon energy over the experimental range from 0.3 eV to 1.2 eV. The absorption increased linearly with concentration according to the empirical relation (alpha)(,T)(h(nu)) = (alpha)(,1) + (alpha)(,2)x, and the absorption (alpha)(,1) was interpreted as the absorption in the absence of T1. (alpha)(,1) also agreed with the measured absorption in 100% Se at corresponding temperatures and energies. The excess absorption defined by (DELTA)(alpha) = (alpha)(,T)(h(nu))-(alpha)(,1) was interpreted as the absorption associated with Tl and was found to be thermally activated with an activation energy E(,t) = 0.5 eV. The exponential edge is explained as absorption on atoms immersed in strong electric fields surrounding ions. The strong fields give rise to an absorption tail similar to the Franz-Keldysh effect. A simple calculation is performed which is based on the Dow-Redfield theory of absorption in an electric field with excitonic effects included. The excess absorption at low photon energies is proportional to the square of the concentration of ions, which are proposed to exist in the liquid according to the relation C(,i) (PROPORTIONAL) x(' 1/2)(.)e('-E)t('/kT), which is the origin of the thermal activation

  13. L-Edge X-ray Absorption Spectroscopic Investigation of {FeNO} 6: Delocalization vs Antiferromagnetic Coupling

    DOE PAGES

    Yan, James J.; Gonzales, Margarita A.; Mascharak, Pradip K.; ...

    2016-12-22

    NO is a classic non-innocent ligand, and iron nitrosyls can have different electronic structure descriptions depending on their spin state and coordination environment. These highly covalent ligands are found in metalloproteins and are also used as models for Fe–O 2 systems. Here, this study utilizes iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction multiplet model, to directly experimentally probe the electronic structure of the S = 0 {FeNO} 6 compound [Fe(PaPy 3)NO] 2+ (PaPy 3 = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and the S = 0 [Fe(PaPy 3)CO] + reference compound. This method allows separation of the σ-donation andmore » π-acceptor interactions of the ligand through ligand-to-metal and metal-to-ligand charge-transfer mixing pathways. The analysis shows that the {FeNO} 6 electronic structure is best described as Fe III–NO(neutral), with no localized electron in an NO π* orbital or electron hole in an Fe dπ orbital. This delocalization comes from the large energy gap between the Fe–NO π-bonding and antibonding molecular orbitals relative to the exchange interactions between electrons in these orbitals. This study demonstrates the utility of L-edge XAS in experimentally defining highly delocalized electronic structures.« less

  14. Dynamic study of sub-micro sized LiFePO4 cathodes by in-situ tender X-ray absorption near edge structure

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Wang, Huixin; Yang, Jinli; Zhou, Jigang; Hu, Yongfeng; Xiao, Qunfeng; Fang, Haitao; Sham, Tsun-Kong

    2016-01-01

    Olivine-type phosphates (LiMPO4, M = Fe, Mn, Co) are promising cathode materials for lithium-ion batteries that are generally accepted to follow first order equilibrium phase transformations. Herein, the phase transformation dynamics of sub-micro sized LiFePO4 particles with limited rate capability at a low current density of 0.14 C was investigated. An in-situ X-ray Absorption Near Edge Structure (XANES) measurement was conducted at the Fe and P K-edge for the dynamic studies upon lithiation and delithiation. Fe K-edge XANES spectra demonstrate that not only lithium-rich intermediate phase LixFePO4 (x = 0.6-0.75), but also lithium-poor intermediate phase LiyFePO4 (y = 0.1-0.25) exist during the charge and discharge, respectively. Furthermore, during charge and discharge, a fluctuation of the FePO4 and LiFePO4 fractions obtained by liner combination fitting around the imaginary phase fractions followed Faraday's law and the equilibrium first-order two-phase transformation versus reaction time is present, respectively. The charging and discharging process has a reversible phase transformation dynamics with symmetric structural evolution routes. P K-edge XANES spectra reveal an enrichment of PF6-1 anions at the surface of the electrode during charging.

  15. Aluminium X-ray absorption Near Edge Structure in model compounds and Earth's surface minerals

    NASA Astrophysics Data System (ADS)

    Ildefonse, P.; Cabaret, D.; Sainctavit, P.; Calas, G.; Flank, A.-M.; Lagarde, P.

    Aluminium K-edge X-ray absorption near edge spectra (XANES) of a suite of silicate and oxides minerals consist of electronic excitations occurring in the edge region, and multiple scattering resonances at higher energies. The main XANES feature for four-fold Al is at around 2 eV lower energy than the main XANES feature for six-fold Al. This provides a useful probe for coordination numbers in clay minerals, gels, glasses or material with unknown Al-coordination number. Six-fold aluminium yields a large variety of XANES features which can be correlated with octahedral point symmetry, number of aluminium sites and distribution of Al-O distances. These three parameters may act together, and the quantitative interpretation of XANES spectra is difficult. For a low point symmetry (1), variations are mainly related to the number of Al sites and distribution of Al-O distances: pyrophyllite, one Al site, is clearly distinguished from kaolinite and gibbsite presenting two Al sites. For a given number of Al-site (1), variations are controlled by changes in point symmetry, the number of XANES features being increased as point symmetry decreases. For a given point symmetry (1) and a given number of Al site (1), variations are related to second nearest neighbours (gibbsite versus kaolinite). The amplitude of the XANES feature at about 1566 eV is a useful probe for the assessment of AlIV/Altotal ratios in 2/1 phyllosilicates. Al-K XANES has been performed on synthetic Al-bearing goethites which cannot be studied by 27Al NMR. At low Al content, Al-K XANES is very different from that of α-AlOOH but at the highest level, XANES spectrum tends to that of diaspore. Al-K XAS is thus a promising tool for the structural study of poorly ordered materials such as clay minerals and natural alumino-silicate gels together with Al-subsituted Fe-oxyhydroxides.

  16. Spectral K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Samadi, N.; Martinson, M.; Bassey, B.; Wei, Z.; Belev, G.; Chapman, D.

    2014-05-01

    We describe a spectral x-ray transmission method to provide images of independent material components of an object using a synchrotron x-ray source. The imaging system and process is similar to K-edge subtraction (KES) imaging where two imaging energies are prepared above and below the K-absorption edge of a contrast element and a quantifiable image of the contrast element and a water equivalent image are obtained. The spectral method, termed ‘spectral-KES’ employs a continuous spectrum encompassing an absorption edge of an element within the object. The spectrum is prepared by a bent Laue monochromator with good focal and energy dispersive properties. The monochromator focuses the spectral beam at the object location, which then diverges onto an area detector such that one dimension in the detector is an energy axis. A least-squares method is used to interpret the transmitted spectral data with fits to either measured and/or calculated absorption of the contrast and matrix material-water. The spectral-KES system is very simple to implement and is comprised of a bent Laue monochromator, a stage for sample manipulation for projection and computed tomography imaging, and a pixelated area detector. The imaging system and examples of its applications to biological imaging are presented. The system is particularly well suited for a synchrotron bend magnet beamline with white beam access.

  17. Self-Supported Copper Oxide Electrocatalyst for Water Oxidation at Low Overpotential and Confirmation of Its Robustness by Cu K-edge X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Cui, Shengsheng; Sun, Zijun

    Developing efficient water oxidation catalysts made of earth-abundant elements is a demanding challenge that should be met to fulfill the promise of water splitting for clean energy. Herein we report an annealing approach to synthesize binder-free, self-supported heterogeneous copper oxide (CuO) on conductive electrodes for oxygen evolution reaction (OER), producing electrodes with excellent electrocatalytic properties such as high efficiency, low overpotential, and good stability. The catalysts were grown in situ on fluorine-doped tin oxide (FTO) by electrodeposition from a simple Cu(II) salt solution, followed by annealing at a high temperature. Under optimal conditions, the CuO-based OER catalyst shows an onsetmore » potential of <0.58 V (vs Ag/AgCl) in 1.0 M KOH at pH 13.6. From the Tafel plot, the required overpotentials for current densities of 0.1 and 1.0 mA/cm2 are only 360 and 430 mV, respectively. The structure and the presence of a CuO motif in the catalyst have been identified by high-energy X-ray diffraction (HE-XRD), Cu K-edge X-ray absorption (XAS) spectra including X-ray absorption near-edge structure (XANES), and extended X-ray absorption fine structure (EXAFS). To the best of our knowledge, this represents the best catalytic activity for CuO-based OER catalysts to date.« less

  18. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. © 2015 Wiley Periodicals, Inc.

  19. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    PubMed

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  20. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2016-08-01

    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  1. Sulfur K-edge extended X-ray absorption fine structure spectroscopy of homoleptic thiolato complexes with Zn(II) and Cd(II).

    PubMed

    Matsunaga, Yuki; Fujisawa, Kiyoshi; Ibi, Naoko; Fujita, Mitsuharu; Ohashi, Tetuya; Amir, Nagina; Miyashita, Yoshitaro; Aika, Ken-Ichi; Izumi, Yasuo; Okamoto, Ken-Ichi

    2006-02-01

    The sulfur K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy is applied to homoleptic thiolato complexes with Zn(II) and Cd(II), (Et(4)N)[Zn(SAd)(3)] (1), (Et(4)N)(2)[{Zn(ScHex)(2)}(2)(mu-ScHex)(2)] (2), (Et(4)N)(2)[{Cd(ScHex)(2)}(2)(mu-ScHex)(2)] (3), (Et(4)N)(2)[{Cd(ScHex)}(4)(mu-ScHex)(6)] (4), [Zn(mu-SAd)(2)](n) (5), and [Cd(mu-SAd)(2)](n) (6) (HSAd=1-adamantanethiol, HScHex=cyclohexanethiol). The EXAFS results are consistent with the X-ray crystal data of 1-4. The structures of 5 and 6, which have not been determined by X-ray crystallography, are proposed to be polynuclear structures on the basis of the sulfur K-edge EXAFS, far-IR spectra, and elemental analysis. Clear evidences of the S...S interactions (between bridging atoms or neighboring sulfur atoms) and the S...C(far) interactions (in which C(far) atom is next to carbon atom directly bonded to sulfur atom) were observed in the EXAFS data for all complexes and thus lead to the reliable determination of the structures of 5 and 6 in combination with conventional zinc K-edge EXAFS analysis for 5. This new methodology, sulfur K-edge EXAFS, could be applied for the structural determination of in vivo metalloproteins as well as inorganic compounds.

  2. Nb K-edge x-ray absorption investigation of the pressure induced amorphization in A-site deficient double perovskite La1/3NbO3.

    PubMed

    Marini, C; Noked, O; Kantor, I; Joseph, B; Mathon, O; Shuker, R; Kennedy, B J; Pascarelli, S; Sterer, E

    2016-02-03

    Nb K-edge x-ray absorption spectroscopy is utilized to investigate the changes in the local structure of the A-site deficient double perovskite La1/3NbO3 which undergoes a pressure induced irreversible amorphization. EXAFS results show that with increasing pressure up to 7.5 GPa, the average Nb-O bond distance decreases in agreement with the expected compression and tilting of the NbO6 octahedra. On the contrary, above 7.5 GPa, the average Nb-O bond distance show a tendency to increase. Significant changes in the Nb K-edge XANES spectrum with evident low energy shift of the pre-peak and the absorption edge is found to happen in La1/3NbO3 above 6.3 GPa. These changes evidence a gradual reduction of the Nb cations from Nb(5+) towards Nb(4+) above 6.3 GPa. Such a valence change accompanied by the elongation of the average Nb-O bond distances in the octahedra, introduces repulsion forces between non-bonding adjacent oxygen anions in the unoccupied A-sites. Above a critical pressure, the Nb reduction mechanism can no longer be sustained by the changing local structure and amorphization occurs, apparently due to the build-up of local strain. EXAFS and XANES results indicate two distinct pressure regimes having different local and electronic response in the La1/3NbO3 system before the occurence of the pressure induced amorphization at  ∼14.5 GPa.

  3. Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure

    DOE PAGES

    Timoshenko, J.; Shivhare, A.; Scott, R. W.; ...

    2016-06-30

    We adopted ab-initio X-ray Absorption Near Edge Structure (XANES) modelling for structural refinement of local environments around metal impurities in a large variety of materials. Our method enables both direct modelling, where the candidate structures are known, and the inverse modelling, where the unknown structural motifs are deciphered from the experimental spectra. We present also estimates of systematic errors, and their influence on the stability and accuracy of the obtained results. We illustrate our approach by following the evolution of local environment of palladium atoms in palladium-doped gold thiolate clusters upon chemical and thermal treatments.

  4. X-ray K-edge absorption spectra of Fe minerals and model compounds: II. EXAFS

    NASA Astrophysics Data System (ADS)

    Waychunas, Glenn A.; Brown, Gordon E.; Apted, Michael J.

    1986-01-01

    K-edge extended X-ray absorption fine structure (EXAFS) spectra of Fe in varying environments in a suite of well-characterized silicate and oxide minerals were collected using synchrotron radiation and analyzed using single scattering approximation theory to yield nearest neighbor Fe-O distances and coordination numbers. The partial inverse character of synthetic hercynite spinal was verified in this way. Comparison of the results from all samples with structural data from X-ray diffraction crystal structure refinements indicates that EXAFS-derived first neighbor distances are generally accurate to ±0.02 Å using only theoretically generated phase information, and may be improved over this if similar model compounds are used to determine EXAFS phase functions. Coordination numbers are accurate to ±20 percent and can be similarly improved using model compound EXAFS amplitude information. However, in particular cases the EXAFS-derived distances may be shortened, and the coordination number reduced, by the effects of static and thermal disorder or by partial overlap of the longer Fe-O first neighbor distances with second neighbor distances in the EXAFS structure function. In the former case the total information available in the EXAFS is limited by the disorder, while in the latter case more accurate results can in principle be obtained by multiple neighbor EXAFS analysis. The EXAFS and XANES spectra of Fe in Nain, Labrador osumulite and Lakeview, Oregon plagioclase are also analyzed as an example of the application of X-ray absorption spectroscopy to metal ion site occupation determination in minerals.

  5. EDGES result versus CMB and low-redshift constraints on ionization histories

    NASA Astrophysics Data System (ADS)

    Witte, Samuel; Villanueva-Domingo, Pablo; Gariazzo, Stefano; Mena, Olga; Palomares-Ruiz, Sergio

    2018-05-01

    We examine the results from the Experiment to Detect the Global Epoch of Reionization Signature (EDGES), which has recently claimed the detection of a strong absorption in the 21 cm hyperfine transition line of neutral hydrogen, at redshifts demarcating the early stages of star formation. More concretely, we study the compatibility of the shape of the EDGES absorption profile, centered at a redshift of z ˜17.2 , with measurements of the reionization optical depth, the Gunn-Peterson optical depth, and Lyman-α emission from star-forming galaxies, for a variety of possible reionization models within the standard Λ CDM framework (that is, a Universe with a cosmological constant Λ and cold dark matter CDM). When, conservatively, we only try to accommodate the location of the absorption dip, we identify a region in the parameter space of the astrophysical parameters that successfully explains all of the aforementioned observations. However, one of the most abnormal features of the EDGES measurement is the absorption amplitude, which is roughly a factor of 2 larger than the maximum allowed value in the Λ CDM framework. We point out that the simple considered astrophysical models that produce the largest absorption amplitudes are unable to explain the depth of the dip and of reproducing the observed shape of the absorption profile.

  6. [Effect of Long-Term Fertilization on Organic Nitrogen Functional Groups in Black Soil as Revealed by Synchrotron-Based X-Ray Absorption Near-Edge Structure Spectroscopy].

    PubMed

    Li, Hui; Gao, Qiang; Wang, Shuai; Zhu, Ping; Zhang, Jin-jing; Zhao, Yi-dong

    2015-07-01

    Nitrogen (N) is a common limiting nutrient in crop production. The N content of soil has been used as an important soil fertility index. Organic N is the major form of N in soil. In most agricultural surface soils, more than 90% of total N occurs in organic forms. Therefore, understanding the compositional characteristics of soil organic N functional groups can provide the scientific basis for formulating the reasonable farmland management strategies. Synchrotron radiation soft X-ray absorption near-edge structure (N K-edge XANES) spectroscopy is the most powerful tool to characterize in situ organic N functional groups compositions in soil. However, to our most knowledge, no studies have been conducted to examine the organic N functional groups compositions of soil using N K-edge XANES spectroscopy under long-term fertilization practices. Based on a long-term field experiment (started in 1990) in a black soil (Gongzhuling, Northeast China), we investigated the differences in organic N functional groups compositions in bulk soil and clay-size soil fraction among fertilization patterns using synchrotron-based N K- edge XANES spectroscopy. Composite soil samples (0-20 cm) were collected in 2008. The present study included six treatments: farmland fallow (FALL), no-fertilization control (CK), chemical nitrogen, phosphorus, and potassium fertilization (NPK), NPK in combination with organic manure (NPKM), 1.5 times of NPKM (1.5 NPKM), and NPK in combination with maize straw (NPKS). The results showed that N K-edge XANES spectra of all the treatments under study exhibited characteristic absorption peaks in the ranges of 401.2-401.6 and 402.7-403.1 eV, which were assigned as amides/amine-N and pyrrole-N, respectively. These characteristic absorption peaks were more obvious in clay-size soil fraction than in bulk soil. The results obtained from the semi-quantitative analysis of N K-edge XANES spectra indicated that the relative proportion of amides/amine-N was the highest

  7. Electronic and chemical state of aluminum from the single- (K) and double-electron excitation (KL II&III, KL I) x-ray absorption near-edge spectra of α-alumina, sodium aluminate, aqueous Al³⁺•(H₂O)₆, and aqueous Al(OH)₄⁻

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Govind, Niranjan; Huthwelker, Thomas

    2015-07-02

    We probe, at high energy resolution, the double electron excitation (KL II&II) x-ray absorption region that lies approximately 115 eV above the main Al K-edge (1566 eV) of α-alumina and sodium aluminate. The two solid standards, α-alumina (octahedral) and sodium aluminate (tetrahedral) are compared to aqueous species that have the same Al coordination symmetries, Al³⁺•6H₂O (octahedral) and Al(OH)₄⁻ (tetrahedral). For the octahedral species, the edge height of the KL II&III-edge is approximately 10% of the main K-edge however the edge height is much weaker (3% of K-edge height) for Al species with tetrahedral symmetry. For the α-alumina and aqueous Al³⁺•6H₂Omore » the KL II&III spectra contain white line features and extended absorption fine structure (EXAFS) that mimics the K-edge spectra. The KL II&III-edge feature interferes with an important region of the extended-XAFS region of the spectra for the K-edge of the crystalline and aqueous standards. The K-edge spectra and K-edge positions are predicted using time-dependent density functional theory (TDDFT). The TDDFT calculations for the K-edge XANES spectra reproduce the observed transitions in the experimental spectra of the four Al species. The KL II&III and KL I onsets and their corresponding chemical shifts for the four standards are estimated using the delta self-consistent field (ΔSCF) method. Research by JLF, NG, EJB, AV, TDS was supported by U.S. Department of Energy’s (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. NG thanks Amity Andersen for help with the α-Al₂O₃ and tetrahedral sodium aluminate (NaAlO₂) clusters. All the calculations were performed using the Molecular Science Computing Capability at EMSL, a national scientific user facility sponsored by the U.S. Department of Energy’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL

  8. Shallow-trap-induced positive absorptive two-beam coupling 'gain' and light-induced transparency in nominally undoped barium titanate

    NASA Technical Reports Server (NTRS)

    Garrett, M. H.; Tayebati, P.; Chang, J. Y.; Jenssen, H. P.; Warde, C.

    1992-01-01

    The asymmetry of beam coupling with respect to the orientation of the polar axis in a nominally undoped barium titanate crystal is used to determine the electro-optic and absorptive 'gain' in the usual beam-coupling geometry. For small grating wave vectors, the electrooptic coupling vanishes but the absorptive coupling remains finite and positive. Positive absorptive coupling at small grating wave vectors is correlated with the light-induced transparency of the crystal described herein. The intensity and grating wave vector dependence of the electrooptic and absorptive coupling, and the light-induced transparency are consistent with a model incorporating deep and shallow levels.

  9. Application toward Confocal Full-Field Microscopic X-ray Absorption Near Edge Structure Spectroscopy.

    PubMed

    Tack, Pieter; Vekemans, Bart; Laforce, Brecht; Rudloff-Grund, Jennifer; Hernández, Willinton Y; Garrevoet, Jan; Falkenberg, Gerald; Brenker, Frank; Van Der Voort, Pascal; Vincze, Laszlo

    2017-02-07

    Using X-ray absorption near edge structure (XANES) spectroscopy, information on the local chemical structure and oxidation state of an element of interest can be acquired. Conventionally, this information can be obtained in a spatially resolved manner by scanning a sample through a focused X-ray beam. Recently, full-field methods have been developed to obtain direct 2D chemical state information by imaging a large sample area. These methods are usually in transmission mode, thus restricting the use to thin and transmitting samples. Here, a fluorescence method is displayed using an energy-dispersive pnCCD detector, the SLcam, characterized by measurement times far superior to what is generally applicable. Additionally, this method operates in confocal mode, thus providing direct 3D spatially resolved chemical state information from a selected subvolume of a sample, without the need of rotating a sample. The method is applied to two samples: a gold-supported magnesia catalyst (Au/MgO) and a natural diamond containing Fe-rich inclusions. Both samples provide XANES spectra that can be overlapped with reference XANES spectra, allowing this method to be used for fingerprinting and linear combination analysis of known XANES reference compounds.

  10. Sulfur K-edge X-ray absorption spectroscopy and time-dependent density functional theory of arsenic dithiocarbamates.

    PubMed

    Donahue, Courtney M; Pacheco, Juan S Lezama; Keith, Jason M; Daly, Scott R

    2014-06-28

    S K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT) calculations were performed on a series of As[S2CNR2]3 complexes, where R2 = Et2, (CH2)5 and Ph2, to determine how dithiocarbamate substituents attached to N affect As[S2CNR2]3 electronic structure. Complimentary [PPh4][S2CNR2] salts were also studied to compare dithiocarbamate bonding in the absence of As. The XAS results indicate that changing the orientation of the alkyl substituents from trans to cis (R2 = Et2vs. (CH2)5) yields subtle variations whereas differences associated with a change from alkyl to aryl are much more pronounced. For example, despite the differences in As 4p mixing, the first features in the S K-edge XAS spectra of [PPh4][S2CNPh2] and As[S2CNPh2]3 were both shifted by 0.3 eV compared to their alkyl-substituted derivatives. DFT calculations revealed that the unique shift observed for [PPh4][S2CNPh2] is due to phenyl-induced splitting of the π* orbitals delocalized over N, C and S. A similar phenomenon accounts for the shift observed for As[S2CNPh2]3, but the presence of two unique S environments (As-S and As···S) prevented reliable analysis of As-S covalency from the XAS data. In the absence of experimental values, DFT calculations revealed a decrease in As-S orbital mixing in As[S2CNPh2]3 that stems from a redistribution of electron density to S atoms participating in weaker As···S interactions. Simulated spectra obtained from TDDFT calculations reproduce the experimental differences in the S K-edge XAS data, which suggests that the theory is accurately modeling the experimental differences in As-S orbital mixing. The results highlight how S K-edge XAS and DFT can be used cooperatively to understand the electronic structure of low symmetry coordination complexes containing S atoms in different chemical environments.

  11. Effects of strain relaxation in Pr 0.67Sr 0.33MnO 3 films probed by polarization dependent X-ray absorption near edge structure

    DOE PAGES

    zhang, Bangmin; Chen, Jingsheng; Venkatesan, T.; ...

    2016-01-28

    In this study, the Mn K edge X-ray absorption near edge structure (XANES) of Pr 0.67Sr 0.33MnO 3 films with different thicknesses on (001) LaAlO 3 substrate were measured, and the effects of strain relaxation on film properties were investigated. The films experienced in-plane compressive strain and out-of-plane tensile strain. Strain relaxation evolved with the film thickness. In the polarization dependent XANES measurements, the in-plane (parallel) and out-of-plane (perpendicular) XANES spectrocopies were anisotropic with different absorption energy E r. The resonance energy Er along two directions shifted towards each other with increasing film thickness. Based on the X-ray diffraction results,more » it was suggested that the strain relaxation weakened the difference of the local environment and probability of electronic charge transfer (between Mn 3d and O 2p orbitals) along the in-plane and out-of-plane directions, which was responsible for the change of E r. XANES is a useful tool to probe the electronic structures, of which the effects on magnetic properties with the strain relaxation was also been studied.« less

  12. Temperature dependence of pre-edge features in Ti K-edge XANES spectra for ATiO₃ (A = Ca and Sr), A₂TiO₄ (A = Mg and Fe), TiO₂ rutile and TiO₂ anatase.

    PubMed

    Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2013-07-01

    XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.

  13. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xianqing; Pan, Deyou; Lao, Ming; Liang, Shuiying; Huang, Dan; Zhou, Wenzheng; Guo, Jin

    2017-05-01

    The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  14. X-ray absorption Studies of Zinc species in Centella asiatica

    NASA Astrophysics Data System (ADS)

    Dehipawala, Sunil; Cheung, Tak; Hogan, Clayton; Agoudavi, Yao; Dehipawala, Sumudu

    2013-03-01

    Zinc is a very important mineral present in a variety of vegetables. It is an essential element in cellular metabolism and several bodily functions. We used X-ray fluorescence, and X-ray Absorption near Edge structure(XANES) to study the amount of zinc present in several leafy vegetables as well as its chemical environment within the plant. Main absorption edge position of XANES is sensitive to the oxidation state of zinc and is useful when comparing the type of zinc present in different vegetables to the standard zinc present in supplements. Normalized main edge height is proportional to the amount of zinc present in the sample. Several leafy greens were used in this study, such as Spinacia oleracea, Basella alba, Brassica oleracea, Cardiospermum halicacabumand Centella asiatica. All of these plant leaves contained approximately the same amount of zinc in the leaf portion of the plant and a slightly lower amount in the stems, except Centella asiatica. Both leaves and stems of the plant Centella asiatica contained nearly two times the zinc compared to other plants. Further investigation of zinc's chemical environment within Centella asiatica could lead to a much more efficient dietary consumption of zinc. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886

  15. Near-Edge X-ray Absorption Fine Structure Studies of Electrospun Poly(dimethylsiloxane)/Poly (methyl methacrylate)/Multiwall Carbon Nanotube Composites

    PubMed Central

    Winter, A. Douglas; Larios, Eduardo; Alamgir, Faisal M.; Jaye, Cherno; Fischer, Daniel; Campo, Eva M.

    2014-01-01

    This work describes the near conduction band edge structure of electrospun mats of MWCNT-PDMS-PMMA by near edge X-Ray absorption fine structure (NEXAFS) spectroscopy. Effects of adding nanofillers of different sizes were addressed. Despite observed morphological variations and inhomogeneous carbon nanotube distribution, spun mats appeared homogeneous under NEXAFS analysis. Spectra revealed differences in emissions from glancing and normal spectra; which may evidence phase separation within the bulk of the micron-size fibers. Further, dichroic ratios show polymer chains did not align, even in the presence of nanofillers. Addition of nanofillers affected emissions in the C-H, C=O and C-C regimes, suggesting their involvement in interfacial matrix-carbon nanotube bonding. Spectral differences at glancing angles between pristine and composite mats suggest that geometric conformational configurations are taking place between polymeric chains and carbon nanotubes. These differences appear to be carbon nanotube-dimension dependent, and are promoted upon room temperature mixing and shear flow during electrospinning. CH-π bonding between polymer chains and graphitic walls, as well as H-bonds between impurities in the as-grown CNTs and polymer pendant groups are proposed bonding mechanisms promoting matrix conformation. PMID:24308286

  16. X-ray absorption edge spectroscopy and computational studies on LCuO2 species: Superoxide-Cu(II) versus peroxide-Cu(III) bonding.

    PubMed

    Sarangi, Ritimukta; Aboelella, Nermeen; Fujisawa, Kiyoshi; Tolman, William B; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I

    2006-06-28

    The geometric and electronic structures of two mononuclear CuO2 complexes, [Cu(O2){HB(3-Ad-5-(i)Prpz)3}] (1) and [Cu(O2)(beta-diketiminate)] (2), have been evaluated using Cu K- and L-edge X-ray absorption spectroscopy (XAS) studies in combination with valence bond configuration interaction (VBCI) simulations and spin-unrestricted broken symmetry density functional theory (DFT) calculations. Cu K- and L-edge XAS data indicate the Cu(II) and Cu(III) nature of 1 and 2, respectively. The total integrated intensity under the L-edges shows that the 's in 1 and 2 contain 20% and 28% Cu character, respectively, indicative of very covalent ground states in both complexes, although more so in 1. Two-state VBCI simulations also indicate that the ground state in 2 has more Cu (/3d8) character. DFT calculations show that the in both complexes is dominated by O2(n-) character, although the O2(n-) character is higher in 1. It is shown that the ligand L plays an important role in modulating Cu-O2 bonding in these LCuO2 systems and tunes the ground states of 1 and 2 to have dominant Cu(II)-superoxide-like and Cu(III)-peroxide-like character, respectively. The contributions of ligand field (LF) and the charge on the absorbing atom in the molecule (Q(mol)M) to L- and K-edge energy shifts are evaluated using DFT and time-dependent DFT calculations. It is found that LF makes a dominant contribution to the edge energy shift, while the effect of Q(mol)M is minor. The charge on the Cu in the Cu(III) complex is found to be similar to that in Cu(II) complexes, which indicates a much stronger interaction with the ligand, leading to extensive charge transfer.

  17. Near sulfur L-edge X-ray absorption spectra of methanethiol in isolation and adsorbed on a Au(111) surface: a theoretical study using the four-component static exchange approximation.

    PubMed

    Villaume, Sebastien; Ekström, Ulf; Ottosson, Henrik; Norman, Patrick

    2010-06-07

    The relativistic four-component static exchange approach for calculation of near-edge X-ray absorption spectra has been reviewed. Application of the method is made to the Au(111) interface and the adsorption of methanethiol by a study of the near sulfur L-edge spectrum. The binding energies of the sulfur 2p(1/2) and 2p(3/2) sublevels in methanethiol are determined to be split by 1.2 eV due to spin-orbit coupling, and the binding energy of the 2p(3/2) shell is lowered from 169.2 eV for the isolated system to 167.4 and 166.7-166.8 eV for methanethiol in mono- and di-coordinated adsorption sites, respectively (with reference to vacuum). In the near L-edge X-ray absorption fine structure spectrum only the sigma*(S-C) peak at 166 eV remains intact by surface adsorption, whereas transitions of predominantly Rydberg character are largely quenched in the surface spectra. The sigma*(S-H) peak of methanethiol is replaced by low-lying, isolated, sigma*(S-Au) peak(s), where the number of peaks in the latter category and their splittings are characteristic of the local bonding situation of the sulfur.

  18. Moveable Leading Edge Device for a Wing

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  19. Egocentric Direction and Position Perceptions are Dissociable Based on Only Static Lane Edge Information

    PubMed Central

    Nakashima, Ryoichi; Iwai, Ritsuko; Ueda, Sayako; Kumada, Takatsune

    2015-01-01

    When observers perceive several objects in a space, at the same time, they should effectively perceive their own position as a viewpoint. However, little is known about observers’ percepts of their own spatial location based on the visual scene information viewed from them. Previous studies indicate that two distinct visual spatial processes exist in the locomotion situation: the egocentric position perception and egocentric direction perception. Those studies examined such perceptions in information rich visual environments where much dynamic and static visual information was available. This study examined these two perceptions in information of impoverished environments, including only static lane edge information (i.e., limited information). We investigated the visual factors associated with static lane edge information that may affect these perceptions. Especially, we examined the effects of the two factors on egocentric direction and position perceptions. One is the “uprightness factor” that “far” visual information is seen at upper location than “near” visual information. The other is the “central vision factor” that observers usually look at “far” visual information using central vision (i.e., foveal vision) whereas ‘near’ visual information using peripheral vision. Experiment 1 examined the effect of the “uprightness factor” using normal and inverted road images. Experiment 2 examined the effect of the “central vision factor” using normal and transposed road images where the upper half of the normal image was presented under the lower half. Experiment 3 aimed to replicate the results of Experiments 1 and 2. Results showed that egocentric direction perception is interfered with image inversion or image transposition, whereas egocentric position perception is robust against these image transformations. That is, both “uprightness” and “central vision” factors are important for egocentric direction perception, but not

  20. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  1. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites

    DOE PAGES

    Baker, Michael L.; Mara, Michael W.; Yan, James J.; ...

    2017-02-09

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less

  2. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Michael L.; Mara, Michael W.; Yan, James J.

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as Kα resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3dmore » orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of σ and π donor bonding and π back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. Here, the application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.« less

  3. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  4. Evidence for Al/Si tetrahedral network in aluminosilicate glasses from Al K-edge x-ray-absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Ziyu; Romano, C.; Marcelli, A.; Mottana, A.; Cibin, G.; della Ventura, G.; Giuli, G.; Courtial, P.; Dingwell, D. B.

    1999-10-01

    The structure of aluminosilicate melts and/or glasses plays a key role in the earth sciences for the understanding of rock-forming igneous processes, as well as in the materials sciences for their technical applications. In particular, the alkaline-earth aluminosilicate glasses are an extremely important group of materials, with a wide range of commercial application, as well as serving as an analog for natural basaltic melts. However, definition of their structure and properties is still controversial, and in particular the role and effect of Al has long been a subject of debate. Here we report a series of experimental x-ray absorption near-edge structure spectra at the Al K edge on a series of synthetic glasses of peralkaline composition in the CaO-Al2O3-SiO2 system, together with a general theoretical framework for data analysis based on an ab initio full multiple-scattering theory. We propose an Al/Si tetrahedral network model for aluminosilicate glasses based on distorted polyhedra, with varying both the T-O (T=Al or Si) bond lengths and the T-O-T angles, and with different Al/Si composition. This model achieves a significant agreement between experiments and simulations. In these glasses, experimental data and theoretical results concur to support a model in which Al is network former with a comparatively well ordered local medium-range order (up to 5 Å).

  5. Unidirectional edge modes launched by surface fluctuation in magnetic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Huajin; Luo, Youzhu; Liang, Chenghua; Li, Zhenglin; Liu, Shiyang; Lin, Zhifang

    2018-03-01

    We demonstrate theoretically that the surface fluctuation can be used to launch the unidirectional electromagnetic edge mode for a Gaussian beam incident normal to the magnetic metamaterials (MMs) composed of an array of ferrite rods with the uppermost layer introduced position or size fluctuation in the coupling region. Such an edge mode is solely allowed to propagate in one direction due to the time-reversal symmetry breaking in MMs under the exertion of an external magnetic field, and it is substantially enhanced by the magnetic surface plasmon resonance. The nonreciprocal excitation of the edge states can also be understood by examining the scattering amplitudes of different partial waves, which indicate that the 1st order of the angular momentum channel plays a crucial role in realizing the nonreciprocity. The present research might be significant for the implementation of unidirectional absorption and the reexamination of bound states in the continuum in the context of MMs. In addition, the unique optical property can be exploited to design electromagnetic waveguide devices, such as one-way waveguide and wave bender, which are strongly robust against the obstacles placed in the channel of designed devices, facilitating to realize optical integrated circuits.

  6. [Distribution and speciation of Pb in Arabidopsis thaliana shoot and rhizosphere soil by in situ synchrotron radiation micro X-ray fluorescence and X-ray absorption near edge structure].

    PubMed

    Shen, Ya-Ting

    2014-03-01

    In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence (micro-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure (micro-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO (64.2%), Pb (OH)2 (28.8%) and Pb3O4 (6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.

  7. Computational study of the absorption spectrum of defected ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Michos, F. I.; Sigalas, M. M.

    2018-04-01

    Energy levels and absorption spectra of defected ZnS nanoparticles (NPs) were calculated with Density Functional Theory (DFT) and Time Dependent DFT. Several types of defects were examined such as vacancies and substitutions. NPs with S vacancies were found to have their absorption spectra moved to lower energies well inside the visible spectrum with significantly high oscillator strength. Also, NPs with substitution of S atoms with Cl, Br, or I showed significant absorption. In general, this type of defect moves the absorption spectra in lower energies, thus bringing the absorption edge into the visible spectrum, while the unperturbed NPs have absorption edges in the UV region. In addition, ZnS NPs are made from more abundant and less toxic elements than the more commonly used CdSe NPs. For that reason, they may find significant applications in solar cells and other photonic applications, as well as in biosensing applications as biomarkers.

  8. Low-temperature adsorption of H2S on Ni(001) studied by near-edge- and surface-extended-x-ray-absorption fine structure

    NASA Astrophysics Data System (ADS)

    McGrath, R.; MacDowell, A. A.; Hashizume, T.; Sette, F.; Citrin, P. H.

    1989-11-01

    The adsorption of H2S on Ni(001) has been studied with surface-extended x-ray-absorption fine structure and near-edge x-ray-absorption fine structure (NEXAFS) using the AT&T Bell Laboratories X15B beamline at the National Synchrotron Light Source. At 95 K and full saturation coverage, ~0.45 monolayer (ML) of S atoms in fourfold-hollow sites are produced, characteristic of room-temperature adsorption, accompanied by ~0.05 ML of oriented molecular H2S. Both these atomic and molecular chemisorbed species are buried under ~0.9 ML of disordered physisorbed H2S. No evidence for HS is found. Above 190 K the two molecular H2S phases desorb, leaving only dissociated S. These findings differ from previously reported interpretations of data obtained with high-resolution electron-energy-loss spectroscopy. They also exemplify the utility of NEXAFS for identifying and quantifying atomic and molecular surface species even when their difference involves only H and the two species coexist.

  9. Sulfur species in source rock bitumen before and after hydrous pyrolysis determined by X-ray absorption near-edge structure

    USGS Publications Warehouse

    Bolin, Trudy B.; Birdwell, Justin E.; Lewan, Michael; Hill, Ronald J.; Grayson, Michael B.; Mitra-Kirtley, Sudipa; Bake, Kyle D.; Craddock, Paul R.; Abdallah, Wael; Pomerantz, Andrew E.

    2016-01-01

    The sulfur speciation of source rock bitumen (chloroform-extractable organic matter in sedimentary rocks) was examined using sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy for a suite of 11 source rocks from around the world. Sulfur speciation was determined for both the native bitumen in thermally immature rocks and the bitumen produced by thermal maturation of kerogen via hydrous pyrolysis (360 °C for 72 h) and retained within the rock matrix. In this study, the immature bitumens had higher sulfur concentrations than those extracted from samples after hydrous pyrolysis. In addition, dramatic and systematic evolution of the bitumen sulfur moiety distributions following artificial thermal maturation was observed consistently for all samples. Specifically, sulfoxide sulfur (sulfur double bonded to oxygen) is abundant in all immature bitumen samples but decreases substantially following hydrous pyrolysis. The loss in sulfoxide sulfur is associated with a relative increase in the fraction of thiophene sulfur (sulfur bonded to aromatic carbon) to the extent that thiophene is the dominant sulfur form in all post-pyrolysis bitumen samples. This suggests that sulfur moiety distributions might be used for estimating thermal maturity in source rocks based on the character of the extractable organic matter.

  10. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  11. Second-harmonic generation at angular incidence in a negative-positive index photonic band-gap structure.

    PubMed

    D'Aguanno, Giuseppe; Mattiucci, Nadia; Scalora, Michael; Bloemer, Mark J

    2006-08-01

    In the spectral region where the refractive index of the negative index material is approximately zero, at oblique incidence, the linear transmission of a finite structure composed of alternating layers of negative and positive index materials manifests the formation of a new type of band gap with exceptionally narrow band-edge resonances. In particular, for TM-polarized (transverse magnetic) incident waves, field values that can be achieved at the band edge may be much higher compared to field values achievable in standard photonic band-gap structures. We exploit the unique properties of these band-edge resonances for applications to nonlinear frequency conversion, second-harmonic generation, in particular. The simultaneous availability of high field localization and phase matching conditions may be exploited to achieve second-harmonic conversion efficiencies far better than those achievable in conventional photonic band-gap structures. Moreover, we study the role played by absorption within the negative index material, and find that the process remains efficient even for relatively high values of the absorption coefficient.

  12. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    PubMed

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    PubMed

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  14. Investigating the interstellar dust through the Fe K-edge

    NASA Astrophysics Data System (ADS)

    Rogantini, D.; Costantini, E.; Zeegers, S. T.; de Vries, C. P.; Bras, W.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.

    2018-01-01

    Context. The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm-2). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. Aims: In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. Methods: In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. Results: From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust. The absorption, scattering, and extinction cross sections of the compounds are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A22

  15. X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing.

    PubMed

    Ennifar, E; Carpentier, P; Ferrer, J L; Walter, P; Dumas, P

    2002-08-01

    Multi-wavelength anomalous dispersion (MAD) using brominated derivatives is considered a common and convenient technique for solving chemically synthesized nucleic acid structures. Here, it is shown that a relatively moderate X-ray dose (of the order of 5 x 10(15) photons mm(-2)) can induce sufficient debromination to prevent structure determination. The decrease in bromine occupancy with radiation dose can be accounted for by a simple exponential, with an estimated rate constant at the absorption-peak wavelength, 7.4 (0.8) MGy, that is not significantly different from its value at the absorption-edge wavelength, 9.2 (2.6) MGy (the given e.s.d.s assess the relative closeness of the two values, not their absolute accuracy, which is probably worse). Chemically, these results (and others) are consistent with bromine cleavage resulting from direct photodissociation and/or from the action of free electrons, rather than from the action of hydroxyl radicals originating from water dissociation. The free bromine species (Br(-)) diffuse too quickly, even in amorphous ice around 100 K, to allow the determination of a diffusion coefficient. From a practical point of view, it is suggested that a single data collection with a crystal consisting of iodinated instead of brominated derivatives could provide both anomalous scattering and SIR phase information by the progressive cleavage of iodine.

  16. Ultrafast X-Ray Absorption Spectroscopy of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Engelhorn, Kyle Craig

    This dissertation will present a series of new tools, together with new techniques, focused on the understanding of warm and dense matter. We report on the development of a high time resolution and high detection efficiency x-ray camera. The camera is integrated with a short pulse laser and an x-ray beamline at the Advanced Light Source synchrotron. This provides an instrument for single shot, broadband x-ray absorption spectroscopy of warm and dense matter with 2 picosecond time resolution. Warm and dense matter is created by isochorically heating samples of known density with an ultrafast optical laser pulse, and X-ray absorption spectroscopy probes the unoccupied electronic density of states before the onset of hydrodynamic expansion and electron-ion equilibrium is reached. Measured spectra from a variety of materials are compared with first principle molecular dynamics and density functional theory calculations. In heated silicon dioxide spectra, two novel pre-edge features are observed, a peak below the band gap and absorption within the band gap, while a reduction was observed in the features above the edge. From consideration of the calculated spectra, the peak below the gap is attributed to valence electrons that have been promoted to the conduction band, the absorption within the gap is attributed to broken Si-O bonds, and the reduction above the edge is attributed to an elevated ionic temperature. In heated copper spectra, a time-dependent shift and broadening of the absorption edge are observed, consistent with and elevated electron temperature. The temporal evolution of the electronic temperature is accurately determined by fitting the measured spectra with calculated spectra. The electron-ion equilibration is studied with a two-temperature model. In heated nickel spectra, a shift of the absorption edge is observed. This shift is found to be inconsistent with calculated spectra and independent of incident laser fluence. A shift of the chemical potential

  17. Electronic structure of nickel silicide in subhalf-micron lines and blanket films: An x-ray absorption fine structures study at the Ni and Si L3,2 edge

    NASA Astrophysics Data System (ADS)

    Naftel, S. J.; Coulthard, I.; Sham, T. K.; Xu, D.-X.; Erickson, L.; Das, S. R.

    1999-05-01

    We report a Ni and Si L3,2-edge x-ray absorption near edge structures (XANES) study of nickel-silicon interaction in submicron (0.15 and 0.2 μm) lines on a n-Si(100) wafer as well as a series of well characterized Ni-Si blanket films. XANES measurements recorded in both total electron yield and soft x-ray fluorescence yield indicate that under the selected silicidation conditions, the more desirable low resistivity phase, NiSi, is indeed the dominant phase in the subhalf-micron lines although the formation of this phase is less complete as the line becomes narrower and this is accompanied by a Ni rich surface.

  18. Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption

    DOE PAGES

    Slavney, Adam H.; Leppert, Linn; Bartesaghi, Davide; ...

    2017-03-29

    In this study, halide double perovskites have recently been developed as less toxic analogs of the lead perovskite solar-cell absorbers APbX 3 (A = monovalent cation; X = Br or I). However, all known halide double perovskites have large bandgaps that afford weak visible-light absorption. The first halide double perovskite evaluated as an absorber, Cs 2AgBiBr 6 (1), has a bandgap of 1.95 eV. Here, we show that dilute alloying decreases 1’s bandgap by ca. 0.5 eV. Importantly, time-resolved photoconductivity measurements reveal long-lived carriers with microsecond lifetimes in the alloyed material, which is very promising for photovoltaic applications. The alloyedmore » perovskite described herein is the first double perovskite to show comparable bandgap energy and carrier lifetime to those of (CH 3NH 3)PbI 3. By describing how energy- and symmetry-matched impurity orbitals, at low concentrations, dramatically alter 1’s band edges, we open a potential pathway for the large and diverse family of halide double perovskites to compete with APbX 3 absorbers.« less

  19. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexesmore » in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.« less

  20. Simulating Ru L3-edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.

    2013-05-01

    Ruthenium L2,3-edge X-ray absorption (XA) spectroscopy probes transitions from core 2p orbitals to the 4d levels of the atom and is a powerful tool for interrogating the local electronic and molecular structure around the metal atom. However, a molecular-level interpretation of the Ru L2,3-edge spectral lineshapes is often complicated by spin–orbit coupling (SOC) and multiplet effects. In this study, we develop spin-free time-dependent density functional theory (TDDFT) as a viable and predictive tool to simulate the Ru L3-edge spectra. We successfully simulate and analyze the ground state Ru L3-edge XA spectra of a series of RuII and RuIII complexes: [Ru(NH3)6]2+/3+,more » [Ru(CN)6]4-/3-, [RuCl6]4-/3-, and the ground (1A1) and photoexcited (3MLCT) transient states of [Ru(bpy)3]2+ and Ru(dcbpy)2(NCS)2 (termed N3). The TDDFT simulations reproduce all the experimentally observed features in Ru L3-edge XA spectra. The advantage of using TDDFT to assign complicated Ru L3-edge spectra is illustrated by its ability to identify ligand specific charge transfer features in complex molecules. We conclude that the B3LYP functional is the most reliable functional for accurately predicting the location of charge transfer features in these spectra. Experimental and simulated Ru L3-edge XA spectra are presented for the transition metal mixed-valence dimers [(NC)5MII-CN-RuIII(NH3)5]- (where M = Fe or Ru) dissolved in water. We explore the spectral signatures of electron delocalization in Ru L3-edge XA spectroscopy and our simulations reveal that the inclusion of explicit solvent molecules is crucial for reproducing the experimentally determined valencies, highlighting the importance of the role of the solvent in transition metal charge transfer chemistry.« less

  1. Distributed transition-edge sensors for linearized position response in a phonon-mediated X-ray imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Cabrera, Blas; Brink, Paul L.; Leman, Steven W.; Castle, Joseph P.; Tomada, Astrid; Young, Betty A.; Martínez-Galarce, Dennis S.; Stern, Robert A.; Deiker, Steve; Irwin, Kent D.

    2004-03-01

    For future solar X-ray satellite missions, we are developing a phonon-mediated macro-pixel composed of a Ge crystal absorber with four superconducting transition-edge sensors (TES) distributed on the backside. The X-rays are absorbed on the opposite side and the energy is converted into phonons, which are absorbed into the four TES sensors. By connecting together parallel elements into four channels, fractional total energy absorbed between two of the sensors provides x-position information and the other two provide y-position information. We determine the optimal distribution for the TES sub-elements to obtain linear position information while minimizing the degradation of energy resolution.

  2. Training and business performance: the mediating role of absorptive capacities.

    PubMed

    Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito

    2016-01-01

    Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.

  3. Minerals discovered in paleolithic black pigments by transmission electron microscopy and micro-X-ray absorption near-edge structure

    NASA Astrophysics Data System (ADS)

    Chalmin, E.; Vignaud, C.; Salomon, H.; Farges, F.; Susini, J.; Menu, M.

    2006-05-01

    Analysis of archeological materials aims to rediscover the know-how of prehistoric men by determining the nature of the painting matter, its preparation mode, and the geographic origin of its raw materials. The preparation mode of the painting matter of the paleolithic rock art apparently consisted of mixing, grinding, and also heat-treatment. In this study, we focus on black pigments and more particularly manganese oxides. Using the combined approach of transmission electron microscopy (TEM) and Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopy, we analyzed a variety of archeological black painted samples. The studied pigments arise from the caves of Ekain (Basque country, Spain), Labastide and Gargas (Hautes-Pyrénées, France). In addition, a black “crayon” (i.e., a “pen”) from the cave of Combe Saunière (Dordogne, France) was also investigated. From the analysis of these painting matters, several unusual minerals have been identified as black pigment, such as manganite, groutite, todorokite and birnessite. These conclusions enable us to estimate the technical level of paleolithic artists: they didn’t use heat-treatment to prepare black painting matter. Consequently, the unusual mineralogy found in some of these pigments suggests that some of the manganese ores are coming from geological settings that are sometimes relatively far away from the Dordogne and Basque region such as in Ariège (central-oriental Pyrénées).

  4. Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons?

    NASA Astrophysics Data System (ADS)

    Schleife, André.; Rödl, Claudia; Hannewald, Karsten; Bechstedt, Friedhelm

    2012-02-01

    In the exploration of material properties, parameter-free calculations are a modern, sophisticated complement to cutting-edge experimental techniques. Ab-initio calculations are now capable of providing a deep understanding of the interesting physics underlying the electronic structure and optical absorption, e.g., of the transparent conductive oxides. Due to electron doping, these materials are conductive even though they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab-initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

  5. Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

    DOE PAGES

    Sneeden, Eileen Y.; Hackett, Mark J.; Cotelesage, Julien J. H.; ...

    2017-07-27

    Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s → 3p transition tomore » the singly occupied molecular orbital of the free radical. In conclusion, our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.« less

  6. Determination of interstitial oxygen atom position in U2N3+xOy by near edge structure study

    NASA Astrophysics Data System (ADS)

    Jiang, A. K.; Zhao, Y. W.; Long, Z.; Hu, Y.; Wang, X. F.; Yang, R. L.; Bao, H. L.; Zeng, R. G.; Liu, K. Z.

    2018-06-01

    The determination of interstitial oxygen atom site in U2N3+xOy film could facilitate the understanding of the oxidation mechanism of α-U2N3 and the effect of U2N3+xOy on anti-oxidation. By comparing the similarities and variances between N K edge and O K edge electron energy loss spectra (EELS) for oxidized α-U2N3 and UO2, the present work looks at the local structure of nitrogen and oxygen atoms in U2N3+xOy film, identifying the most possible position of interstitial O atom.

  7. Fermi-Edge Singularity of Spin-Polarized Electrons

    NASA Astrophysics Data System (ADS)

    Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.

    2007-05-01

    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

  8. Application of x-ray absorption fine structure (XAFS) to local-order analysis in Fe-Cr maghemite-like materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Fuentes-Cobas, L. E.; Macías-Ríos, E.

    2015-07-23

    The maghemite-like oxide system γ-Fe{sub 2-x}Cr{sub x}O{sub 3} (x=0.75, 1 and 1.25) was studied by X-ray absorption fine structure (XAFS) and by synchrotron radiation X-ray diffraction (XRD). Measurements were performed at the Stanford Synchrotron Radiation Lightsource at room temperature, at beamlines 2-1, 2-3 and 4-3. High-resolution XRD patterns were processed by means of the Rietveld method. In cases of atoms being neighbors in the Periodic Table, the order/disorder degree of the considered solutions is indiscernible by “normal” (absence of “anomalous scattering”) diffraction experiments. Thus, maghemite-like materials were investigated by XAFS in both Fe and Cr K-edges to clarify, via short-rangemore » structure characterization, the local ordering of the investigated system. Athena and Artemis graphic user interfaces for IFEFFIT and FEFF8.4 codes were employed for XAFS spectra interpretation. Pre-edge decomposition and theoretical modeling of X-ray absorption near edge structure (XANES) transitions were performed. By analysis of the Cr K-edge XANES, it has been confirmed that Cr is located in an octahedral environment. Fitting of the extended X-ray absorption fine structure (EXAFS) spectra was performed under the consideration that the central atom of Fe is allowed to occupy octa- and tetrahedral positions, while Cr occupies only octahedral ones. Coordination number of neighboring atoms, interatomic distances and their quadratic deviation average were determined for x=1, by fitting simultaneously the EXAFS spectra of both Fe and Cr K-edges. The results of fitting the experimental spectra with theoretical standards showed that the cation vacancies tend to follow a regular pattern within the structure of the iron-chromium maghemite (FeCrO{sub 3})« less

  9. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  10. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    NASA Astrophysics Data System (ADS)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis

    2017-12-01

    We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.

  11. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westre, Tami E.

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been appliedmore » to the study of non-heme iron enzyme active sites.« less

  12. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    NASA Astrophysics Data System (ADS)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  13. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  14. L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array

    DOE PAGES

    Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; ...

    2017-12-07

    Here, we present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements then demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100–2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique abilitymore » to characterize frozen solutions of radiation- and temperature-sensitive samples.« less

  15. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    NASA Astrophysics Data System (ADS)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  16. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Grace O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it,more » from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.« less

  17. The protonation states of oxo-bridged Mn(IV) dimers resolved by experimental and computational Mn K pre-edge X-ray absorption spectroscopy.

    PubMed

    Krewald, Vera; Lassalle-Kaiser, Benedikt; Boron, Thaddeus T; Pollock, Christopher J; Kern, Jan; Beckwith, Martha A; Yachandra, Vittal K; Pecoraro, Vincent L; Yano, Junko; Neese, Frank; DeBeer, Serena

    2013-11-18

    In nature, the protonation of oxo bridges is a commonly encountered mechanism for fine-tuning chemical properties and reaction pathways. Often, however, the protonation states are difficult to establish experimentally. This is of particular importance in the oxygen evolving complex of photosystem II, where identification of the bridging oxo protonation states is one of the essential requirements toward unraveling the mechanism. In order to establish a combined experimental and theoretical protocol for the determination of protonation states, we have systematically investigated a series of Mn model complexes by Mn K pre-edge X-ray absorption spectroscopy. An ideal test case for selective bis-μ-oxo-bridge protonation in a Mn dimer is represented by the system [Mn(IV)2(salpn)2(μ-OHn)2](n+). Although the three species [Mn(IV)2(salpn)2(μ-O)2], [Mn(IV)2(salpn)2(μ-O)(μ-OH)](+) and [Mn(IV)2(salpn)2(μ-OH)2](2+) differ only in the protonation of the oxo bridges, they exhibit distinct differences in the pre-edge region while maintaining the same edge energy. The experimental spectra are correlated in detail to theoretically calculated spectra. A time-dependent density functional theory approach for calculating the pre-edge spectra of molecules with multiple metal centers is presented, using both high spin (HS) and broken symmetry (BS) electronic structure solutions. The most intense pre-edge transitions correspond to an excitation of the Mn 1s core electrons into the unoccupied orbitals of local e(g) character (d(z)(2) and d(xy) based in the chosen coordinate system). The lowest energy experimental feature is dominated by excitations of 1s-α electrons, and the second observed feature is primarily attributed to 1s-β electron excitations. The observed energetic separation is due to spin polarization effects in spin-unrestricted density functional theory and models final state multiplet effects. The effects of spin polarization on the calculated Mn K pre-edge spectra, in

  18. Systematic oxidation of polystyrene by ultraviolet-ozone, characterized by near-edge X-ray absorption fine structure and contact angle.

    PubMed

    Klein, Robert J; Fischer, Daniel A; Lenhart, Joseph L

    2008-08-05

    The process of implanting oxygen in polystyrene (PS) via exposure to ultraviolet-ozone (UV-O) was systematically investigated using the characterization technique of near-edge X-ray absorption fine structure (NEXAFS). Samples of PS exposed to UV-O for 10-300 s and washed with isopropanol were analyzed using the carbon and oxygen K-edge NEXAFS partial electron yields, using various retarding bias voltages to depth-profile the oxygen penetration into the surface. Evaluation of reference polymers provided a scale to quantify the oxygen concentration implanted by UV-O treatment. We find that ozone initially reacts with the double bonds on the phenyl rings, forming carbonyl groups, but within 1 min of exposure, the ratio of double to single oxygen bonds stabilizes at a lower value. Oxygen penetrates the film with relative ease, creating a fairly uniform distribution of oxygen within at least the first 4 nm (the effective depth probed by NEXAFS here). Before oxygen accumulates in large concentrations, however, it preferentially degrades the uppermost layer of the film by removing oxygenated low-molecular-weight oligomers. The failure to accumulate high concentrations of oxygen is seen in the nearly constant carbon edge jump, the low concentration of oxygen even at 5 min exposure (58% of that in poly(4-acetoxystyrene), the polymer with the most similarities to UV-O-treated PS), and the relatively high contact angles. At 5 min exposure the oxygen concentration contains ca. 7 atomic % oxygen. The oxygen species that are implanted consist predominantly of single O-C bonds and double O=C bonds but also include a small fraction of O-H. UV-O treatment leads a plateau after 2 min exposure in the water contact angle hysteresis, at a value of 67 +/- 2 degrees , due primarily to chemical heterogeneity. Annealing above T(g) allows oxygenated species to move short distances away from the surface but not diffuse further than 1-2 nm.

  19. Method for a Leading Edge Slat on a Wing of an Aircraft

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2016-01-01

    A method for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  20. Image reconstruction for x-ray K-edge imaging with a photon counting detector

    NASA Astrophysics Data System (ADS)

    Meng, Bo; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2014-09-01

    Contrast agents with high-Z elements have K-absorption edges which significantly change X-ray attenuation coefficients. The K-edge characteristics is different for various kinds of contrast agents, which offers opportunities for material decomposition in biomedical applications. In this paper, we propose a new K-edge imaging method, which not only quantifies a distribution of a contrast agent but also provides an optimized contrast ratio. Our numerical simulation tests demonstrate the feasibility and merits of the proposed methodology.

  1. Complex Resonance Absorption Structure in the X-Ray Spectrum of IRAS 13349+2438

    NASA Technical Reports Server (NTRS)

    Sako, M.; Kahn, S. M.; Behar, E.; Kaastra, J. S.; Brinkman, A. C.; Boller, Th.; Puchnarewicz, E. M.; Starling, R.; Liedahl, D. A.; Clavel, J.

    2000-01-01

    The luminous infrared-loud quasar IRAS 13349+2438 was observed with the XMM - Newton Observatory as part of the Performance Verification program. The spectrum obtained by the Reflection Grating Spectrometer (RGS) exhibits broad (FWHM - 1400 km/s) absorption lines from highly ionized elements including hydrogen- and helium-like carbon, nitrogen, oxygen, and neon, and several iron L - shell ions (Fe XVII - XX). Also shown in the spectrum is the first astrophysical detection of a broad absorption feature around lambda = 16 - 17 A identified as an unresolved transition array (UTA) of 2p - 3d inner-shell absorption by iron M-shell ions in a much cooler medium; a feature that might be misidentified as an O VII edge when observed with moderate resolution spectrometers. No absorption edges are clearly detected in the spectrum. We demonstrate that the RGS spectrum of IRAS 13349+2438 exhibits absorption lines from two distinct regions, one of which is tentatively associated with the medium that produces the optical/UV reddening.

  2. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    NASA Astrophysics Data System (ADS)

    Belyakov, V. A.; Semenov, S. V.

    2016-05-01

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM) frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.

  3. Direct determination of oxidation state of gold deposits in metal-reducing bacterium Shewanella algae using X-ray absorption near-edge structure spectroscopy (XANES).

    PubMed

    Konishi, Yasuhiro; Tsukiyama, Takeshi; Saitoh, Norizoh; Nomura, Toshiyuki; Nagamine, Shinsuke; Takahashi, Yoshio; Uruga, Tomoya

    2007-06-01

    X-ray absorption near-edge structure spectroscopy (XANES) was successfully employed to determine the gold valence in the metal-reducing bacterium Shewanella algae after exposure to a 1 mM aqueous HAuCl4 solution for 10-120 min. XANES spectra revealed the oxidation state of gold in the bacterial cells to be Au(0) without any contribution from Au(III), demonstrating that S. algae cells can reduce AuCl4- ions to elemental gold. Transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) analysis confirmed that gold nanoparticles 5-15 nm in size were deposited in the periplasmic space of the bacterial cells; a preferable, cell surface location for the easy recovery of biogenic nanoparticles.

  4. Complex polarization propagator approach in the restricted open-shell, self-consistent field approximation: the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine.

    PubMed

    Linares, Mathieu; Stafström, Sven; Rinkevicius, Zilvinas; Ågren, Hans; Norman, Patrick

    2011-05-12

    A presentation of the complex polarization propagator in the restricted open-shell self-consistent field approximation is given. It rests on a formulation of a resonant-convergent, first-order polarization propagator approach that makes it possible to directly calculate the X-ray absorption cross section at a particular frequency without explicitly addressing the excited states. The quality of the predicted X-ray spectra relates only to the type of density functional applied without any separate treatment of dynamical relaxation effects. The method is applied to the calculation of the near K-edge X-ray absorption fine structure spectra of allyl and copper phthalocyanine. Comparison is made between the spectra of the radicals and those of the corresponding cations and anions to assess the effect of the increase of electron charge in the frontier orbital. The method offers the possibility for unique assignment of symmetry-independent atoms. The overall excellent spectral agreement motivates the application of the method as a routine precise tool for analyzing X-ray absorption of large systems of technological interest.

  5. Iron L-edge X-ray Absorption Spectroscopy of Oxy-Picket Fence Porphyrin: Experimental Insight into Fe-O2 Bonding

    PubMed Central

    Wilson, Samuel A.; Kroll, Thomas; Decreau, Richard A.; Hocking, Rosalie K.; Lundberg, Marcus; Hedman, Britt; Hodgson, Keith O.; Solomon, Edward I.

    2013-01-01

    The electronic structure of the Fe–O2 center in oxy-hemoglobin and oxy-myoglobin is a long-standing issue in the field of bioinorganic chemistry. Spectroscopic studies have been complicated by the highly delocalized nature of the porphyrin and calculations require interpretation of multi-determinant wavefunctions for a highly covalent metal site. Here, iron L-edge X-ray absorption spectroscopy (XAS), interpreted using a valence bond configuration interaction (VBCI) multiplet model, is applied to directly probe the electronic structure of the iron in the biomimetic Fe–O2 heme complex [Fe(pfp)(1-MeIm)O2] (pfp = meso-tetra(α,α,α,α-o-pivalamidophenyl) porphyrin or TpivPP). This method allows separate estimates of σ-donor, π-donor, and π-acceptor interactions through ligand to metal charge transfer (LMCT) and metal to ligand charge transfer (MLCT) mixing pathways. The L-edge spectrum of [Fe(pfp)(1-MeIm)O2] is further compared to those of [FeII(pfp)(1-MeIm)2], [FeII(pfp)], and [FeIII(tpp)(ImH)2]Cl (tpp = meso-tetraphenylporphyrin) which have FeII S = 0, FeII S = 1 and FeIII S = 1/2 ground states, respectively. These serve as references for the three possible contributions to the ground state of oxy-pfp. The Fe–O2 pfp site is experimentally determined to have both significant σ-donation and a strong π-interaction of the O2 with the iron, with the latter having implications with respect to the spin polarization of the ground state. PMID:23259487

  6. Tetrahalide complexes of the [U(NR)2]2+ ion: synthesis, theory, and chlorine K-edge X-ray absorption spectroscopy.

    PubMed

    Spencer, Liam P; Yang, Ping; Minasian, Stefan G; Jilek, Robert E; Batista, Enrique R; Boland, Kevin S; Boncella, James M; Conradson, Steven D; Clark, David L; Hayton, Trevor W; Kozimor, Stosh A; Martin, Richard L; MacInnes, Molly M; Olson, Angela C; Scott, Brian L; Shuh, David K; Wilkerson, Marianne P

    2013-02-13

    Synthetic routes to salts containing uranium bis-imido tetrahalide anions [U(NR)(2)X(4)](2-) (X = Cl(-), Br(-)) and non-coordinating NEt(4)(+) and PPh(4)(+) countercations are reported. In general, these compounds can be prepared from U(NR)(2)I(2)(THF)(x) (x = 2 and R = (t)Bu, Ph; x = 3 and R = Me) upon addition of excess halide. In addition to providing stable coordination complexes with Cl(-), the [U(NMe)(2)](2+) cation also reacts with Br(-) to form stable [NEt(4)](2)[U(NMe)(2)Br(4)] complexes. These materials were used as a platform to compare electronic structure and bonding in [U(NR)(2)](2+) with [UO(2)](2+). Specifically, Cl K-edge X-ray absorption spectroscopy (XAS) and both ground-state and time-dependent hybrid density functional theory (DFT and TDDFT) were used to probe U-Cl bonding interactions in [PPh(4)](2)[U(N(t)Bu)(2)Cl(4)] and [PPh(4)](2)[UO(2)Cl(4)]. The DFT and XAS results show the total amount of Cl 3p character mixed with the U 5f orbitals was roughly 7-10% per U-Cl bond for both compounds, which shows that moving from oxo to imido has little effect on orbital mixing between the U 5f and equatorial Cl 3p orbitals. The results are presented in the context of recent Cl K-edge XAS and DFT studies on other hexavalent uranium chloride systems with fewer oxo or imido ligands.

  7. Edge Extraction by an Exponential Function Considering X-ray Transmission Characteristics

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Youp Synn, Sang; Cho, Sung Man; Jong Joo, Won

    2011-04-01

    3-D radiographic methodology has been into the spotlight for quality inspection of mass product or in-service inspection of aging product. To locate a target object in 3-D space, its characteristic contours such as edge length, edge angle, and vertices are very important. In spite of a simple geometry product, it is very difficult to get clear shape contours from a single radiographic image. The image contains scattering noise at the edges and ambiguity coming from X-Ray absorption within the body. This article suggests a concise method to extract whole edges from a single X-ray image. At the edge point of the object, the intensity of the X-ray decays exponentially as the X-ray penetrates the object. Considering this X-Ray decaying property, edges are extracted by using the least square fitting with the control of Coefficient of Determination.

  8. Bayes-Turchin analysis of x-ray absorption data above the Fe L{sub 2,3}-edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossner, H. H.; Schmitz, D.; Imperia, P.

    2006-10-01

    Extended x-ray absorption fine structure (EXAFS) data and magnetic EXAFS (MEXAFS) data were measured at two temperatures (180 and 296 K) in the energy region of the overlapping L-edges of bcc Fe grown on a V(110) crystal surface. In combination with a Bayes-Turchin data analysis procedure these measurements enable the exploration of local crystallographic and magnetic structures. The analysis determined the atomic-like background together with the EXAFS parameters which consisted of ten shell radii, the Debye-Waller parameters, separated into structural and vibrational components, and the third cumulant of the first scattering path. The vibrational components for 97 different scattering pathsmore » were determined by a two parameter force-field model using a priori values adjusted to Born-von Karman parameters of inelastic neutron scattering data. The investigations of the system Fe/V(110) demonstrate that the simultaneous fitting of atomic background parameters and EXAFS parameters can be performed reliably. Using the L{sub 2}- and L{sub 3}-components extracted from the EXAFS analysis and the rigid-band model, the MEXAFS oscillations can only be described when the sign of the exchange energy is changed compared to the predictions of the Hedin Lundquist exchange and correlation functional.« less

  9. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory.

    PubMed

    Verma, Prakash; Derricotte, Wallace D; Evangelista, Francesco A

    2016-01-12

    Orthogonality constrained density functional theory (OCDFT) provides near-edge X-ray absorption (NEXAS) spectra of first-row elements within one electronvolt from experimental values. However, with increasing atomic number, scalar relativistic effects become the dominant source of error in a nonrelativistic OCDFT treatment of core-valence excitations. In this work we report a novel implementation of the spin-free exact-two-component (X2C) one-electron treatment of scalar relativistic effects and its combination with a recently developed OCDFT approach to compute a manifold of core-valence excited states. The inclusion of scalar relativistic effects in OCDFT reduces the mean absolute error of second-row elements core-valence excitations from 10.3 to 2.3 eV. For all the excitations considered, the results from X2C calculations are also found to be in excellent agreement with those from low-order spin-free Douglas-Kroll-Hess relativistic Hamiltonians. The X2C-OCDFT NEXAS spectra of three organotitanium complexes (TiCl4, TiCpCl3, TiCp2Cl2) are in very good agreement with unshifted experimental results and show a maximum absolute error of 5-6 eV. In addition, a decomposition of the total transition dipole moment into partial atomic contributions is proposed and applied to analyze the nature of the Ti pre-edge transitions in the three organotitanium complexes.

  10. X-ray absorption spectroscopy investigations on oxidized Ni/Au contacts to p-GaN.

    PubMed

    Jan, J C; Asokan, K; Chiou, J W; Pong, W F; Tseng, P K; Chen, L C; Chen, F R; Lee, J F; Wu, J S; Lin, H J; Chen, C T

    2001-03-01

    X-ray absorption spectroscopy was used to investigate the electronic structure of as-deposited and oxidized Ni/Au contacts to p-GaN and to elucidate the mechanism responsible for low impedance. X-ray absorption near edge spectra of Ni K- and L3,2-edges clearly indicate formation of NiO on the sample surface after annealing. The reason for low impedance may be attributed to increase in hole concentration and existence of p-NiO layer on the surface.

  11. On the Electronic Structure of Cu Chlorophyllin and Its Breakdown Products: A Carbon K-Edge X-ray Absorption Spectroscopy Study.

    PubMed

    Witte, Katharina; Mantouvalou, Ioanna; Sánchez-de-Armas, Rocío; Lokstein, Heiko; Lebendig-Kuhla, Janina; Jonas, Adrian; Roth, Friedrich; Kanngießer, Birgit; Stiel, Holger

    2018-02-15

    Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.

  12. Balancing the edge effects budget: bay scallop settlement and loss along a seagrass edge.

    PubMed

    Carroll, John M; Furman, Bradley T; Tettelbach, Stephen T; Peterson, Bradley J

    2012-07-01

    Edge effects are a dominant subject in landscape ecology literature, yet they are highly variable and poorly understood. Often, the literature suggests simple models for edge effects-positive (enhancement at the edge), negative (enhancement at the interior), or no effect (neutral)--on a variety of metrics, including abundance, diversity, and mortality. In the marine realm, much of this work has focused on fragmented seagrass habitats due to their importance for a variety of commercially important species. In this study, the settlement, recruitment, and survival of bay scallops was investigated across a variety of seagrass patch treatments. By simultaneously collecting settlers (those viable larvae available to settle and metamorphose) and recruits (those settlers that survive some period of time, in this case, 6 weeks) on the same collectors, we were able to demonstrate a "balance" between positive and negative edge effects, resulting in a net neutral effect. Scallop settlement was significantly enhanced along seagrass edges, regardless of patch type while survival was elevated within patch interiors. However, recruitment (the net result of settlement and post-settlement loss) did not vary significantly from edge to center, representing a neutral effect. Further, results suggest that post-settlement loss, most likely due to predation, appears to be the dominant mechanism structuring scallop abundance, not patterns in settlement. These data illustrate the complexity of edge effects, and suggest that the metric used to investigate the effect (be it abundance, survival, or other metrics) can often influence the magnitude and direction of the perceived effect. Traditionally, high predation along a habitat edge would have indicated an "ecological trap" for the species in question; however, this study demonstrates that, at the population level, an ecological trap may not exist.

  13. Localized modes in optics of photonic liquid crystals with local anisotropy of absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyakov, V. A., E-mail: bel1937@mail.ru, E-mail: bel@landau.ac.ru; Semenov, S. V.

    2016-05-15

    The localized optical modes in spiral photonic liquid crystals are theoretically studied for the certainty at the example of chiral liquid crystals (CLCs) for the case of CLC with an anisotropic local absorption. The model adopted here (absence of dielectric interfaces in the structures under investigation) makes it possible to get rid of mixing of polarizations on the surfaces of the CLC layer and of the defect structure and to reduce the corresponding equations to only the equations for light with polarization diffracting in the CLC. The dispersion equations determining connection of the edge mode (EM) and defect mode (DM)more » frequencies with the CLC layer parameters (anisotropy of local absorption, CLC order parameter) and other parameters of the DMS are obtained. Analytic expressions for the transmission and reflection coefficients of CLC layer and DMS for the case of CLC with an anisotropic local absorption are presented and analyzed. It is shown that the CLC layers with locally anisotropic absorption reduce the EM and DM lifetimes (and increase the lasing threshold) in the way different from the case of CLC with an isotropic local absorption. Due to the Borrmann effect revealing of which is different at the opposite stop-band edges in the case of CLC layers with an anisotropic local absorption the EM life-times for the EM frequencies at the opposite stop-bands edges may be significantly different. The options of experimental observations of the theoretically revealed phenomena are briefly discussed.« less

  14. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL

    PubMed Central

    Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2017-01-01

    The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842

  15. Parametric measurements of the effect of in-duct orifice edge shape on its noise damping performance

    NASA Astrophysics Data System (ADS)

    Ji, Chenzhen; Zhao, Dan; Han, Nuomin; Li, Jing

    2016-12-01

    Acoustic liners perforated with thousands of millimeter-size orifices are widely used in aero-engines and gas turbine engines as an effective noise damper. In this work, experimental investigations of the acoustic damping effect of in-duct perforated orifices are performed on a cold-flow pipe. A mean flow (also known as bias flow) is applied and its flow rate is variable. Emphasis is placed on the effect of the orifice edge shape. For this, 16 in-duct orifices with different edge shapes and porosities are designed and manufactured by using 3D printing technology and conventional laser cutting technique. The damping effect of these in-duct orifices is characterized by using power absorption coefficient Δ and reflection coefficient χ from 100 to 1000 Hz. The performances of these orifices are found to be either improved or deteriorated, depending on (1) edge shape, (2) the ratio T/d of orifice thickness to its diameter, (3) the bias flow Mach number, (4) downstream pipe length Ld and (5) porosity η via varying either the number N or surface area Ao of the orifices. In addition, modifying orifice edge does not lead to an increase of power absorption at lower frequency (⩽ 700 Hz). However, as the frequency is increased, the orifice with square (S-type) edge is found to be associated with 10 percent more power absorption. It is interesting to find that T/d over the tested range (≤ 0.5) has little influence on its damping capacity. However, the mean bias flow Mach number Ma and porosity η are shown to play critical roles on determining the noise damping performance of these orifices. Maximum power absorption Δmax is found to occur at Ma ≈ 0.018, while the optimum porosity corresponding to Δmax is approximately 7 percent. The present parametric measurements shed light on the roles of orifice edge shape, porosity and mean flow on its noise damping capacity, and facilitate the design of effective perforated liners.

  16. On the Structure of the Iron K-Edge

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    It is shown that the commonly held view of a sharp Fe K edge must be modified if the decay pathways of the series of resonances converging to the K thresholds are adequately taken into account. These resonances display damped Lorentzian profiles of nearly constant widths that are smeared to impose continuity across the threshold. By modeling the effects of K damping on opacities, it is found that the broadening of the K edge grows with the ionization level of the plasma, and the appearance at high ionization of a localized absorption feature at 7.2 keV is identified as the Kbeta unresolved transition array.

  17. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  18. An in vitro simulation model to assess the severity of edge loading and wear, due to variations in component positioning in hip joint replacements.

    PubMed

    O'Dwyer Lancaster-Jones, O; Williams, S; Jennings, L M; Thompson, J; Isaac, G H; Fisher, J; Al-Hajjar, M

    2017-09-23

    The aim of this study was to develop a preclinical in vitro method to predict the occurrence and severity of edge loading condition associated with the dynamic separation of the centres of the head and cup (in the absence of impingement) for variations in surgical positioning of the cup. Specifically, this study investigated the effect of both the variations in the medial-lateral translational mismatch between the centres of the femoral head and acetabular cup and the variations in the cup inclination angles on the occurrence and magnitude of the dynamic separation, the severity of edge loading, and the wear rate of ceramic-on-ceramic hip replacement bearings in a multi-station hip joint simulator during a walking gait cycle. An increased mismatch between the centres of rotation of the femoral head and acetabular cup resulted in an increased level of dynamic separation and an increase in the severity of edge loading condition which led to increased wear rate in ceramic-on-ceramic bearings. Additionally for a given translational mismatch, an increase in the cup inclination angle gave rise to increased dynamic separation, worst edge loading conditions, and increased wear. To reduce the occurrence and severity of edge loading, the relative positions (the mismatch) of the centres of rotation of the head and the cup should be considered alongside the rotational position of the acetabular cup. This study has considered the combination of mechanical and tribological factors for the first time in the medial-lateral axis only, involving one rotational angle (inclination) and one translational mismatch. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  19. Optical Absorption in Degenerately Doped Semiconductors: Mott Transition or Mahan Excitons?

    NASA Astrophysics Data System (ADS)

    Schleife, André; Rödl, Claudia; Fuchs, Frank; Hannewald, Karsten; Bechstedt, Friedhelm

    2011-12-01

    Electron doping turns semiconductors conductive even when they have wide fundamental band gaps. The degenerate electron gas in the lowest conduction-band states, e.g., of a transparent conducting oxide, drastically modifies the Coulomb interaction between the electrons and, hence, the optical properties close to the absorption edge. We describe these effects by developing an ab initio technique which captures also the Pauli blocking and the Fermi-edge singularity at the optical-absorption onset, that occur in addition to quasiparticle and excitonic effects. We answer the question whether free carriers induce an excitonic Mott transition or trigger the evolution of Wannier-Mott excitons into Mahan excitons. The prototypical n-type zinc oxide is studied as an example.

  20. Molybdenum L-Edge XAS Spectra of MoFe Nitrogenase

    PubMed Central

    Bjornsson, Ragnar; Delgado-Jaime, Mario U; Lima, Frederico A; Sippel, Daniel; Schlesier, Julia; Weyhermüller, Thomas; Einsle, Oliver; Neese, Frank; DeBeer, Serena

    2015-01-01

    A molybdenum L-edge X-ray absorption spectroscopy (XAS) study is presented for native and oxidized MoFe protein of nitrogenase as well as Mo-Fe model compounds. Recently collected data on MoFe protein (in oxidized and reduced forms) is compared to previously published Mo XAS data on the isolated FeMo cofactor in NMF solution and put in context of the recent Mo K-edge XAS study, which showed a MoIII assignment for the molybdenum atom in FeMoco. The L3-edge data are interpreted within a simple ligand-field model, from which a time-dependent density functional theory (TDDFT) approach is proposed as a way to provide further insights into the analysis of the molybdenum L3-edges. The calculated results reproduce well the relative spectral trends that are observed experimentally. Ultimately, these results give further support for the MoIII assignment in protein-bound FeMoco, as well as isolated FeMoco. PMID:26213424

  1. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE PAGES

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis; ...

    2016-12-30

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  2. Charge and Spin-State Characterization of Cobalt Bis( o-dioxolene) Valence Tautomers Using Co Kβ X-ray Emission and L-Edge X-ray Absorption Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, H. Winnie; Kroll, Thomas; Nordlund, Dennis

    The valence tautomeric states of Co(phen)(3,5-DBQ) 2 and Co(tmeda)(3,5-DBQ) 2, where 3,5-DBQ is either the semiquinone (SQ –) or catecholate (Cat 2–) form of 3,5-di- tert-butyl-1,2-benzoquinone, have been examined by a series of cobalt-specific X-ray spectroscopies. In this work, we have utilized the sensitivity of 1s3p X-ray emission spectroscopy (Kβ XES) to the oxidation and spin states of 3d transition-metal ions to determine the cobalt-specific electronic structure of valence tautomers. A comparison of their Kβ XES spectra with the spectra of cobalt coordination complexes with known oxidation and spin states demonstrates that the low-temperature valence tautomer can be described asmore » a low-spin Co III configuration and the high-temperature valence tautomer as a high-spin Co II configuration. This conclusion is further supported by Co L-edge X-ray absorption spectroscopy (L-edge XAS) of the high-temperature valence tautomers and ligand-field atomic-multiplet calculations of the Kβ XES and L-edge XAS spectra. In conclusion, the nature and strength of the magnetic exchange interaction between the cobalt center and SQ – in cobalt valence tautomers is discussed in view of the effective spin at the Co site from Kβ XES and the molecular spin moment from magnetic susceptibility measurements.« less

  3. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  4. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  5. Free-Free Absorption on Parsec Scales in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Roy, A. L.; Ulvestad, J. S.; Wilson, A. S.; Colbert, E. J. M.; Mundell, C. G.; Wrobel, J. M.; Norris, R. P.; Falcke, H.; Krichbaum, T.

    Seyfert galaxies come in two main types (types 1 and 2) and the difference is probably due to obscuration of the nucleus by a torus of dense molecular material. The inner edge of the torus is expected to be ionized by optical and ultraviolet emission from the active nucleus, and will radiate direct thermal emission (e.g. NGC 1068) and will cause free-free absorption of nuclear radio components viewed through the torus (e.g. Mrk 231, Mrk 348, NGC 2639). However, the nuclear radio sources in Seyfert galaxies are weak compared to radio galaxies and quasars, demanding high sensitivity to study these effects. We have been making sensitive phase referenced VLBI observations at wavelengths between 21 and 2 cm where the free-free turnover is expected, looking for parsec-scale absorption and emission. We find that free-free absorption is common (e.g. in Mrk 348, Mrk 231, NGC 2639, NGC 1068) although compact jets are still visible, and the inferred density of the absorber agrees with the absorption columns inferred from X-ray spectra (Mrk 231, Mrk 348, NGC 2639). We find one-sided parsec-scale jets in Mrk 348 and Mrk 231, and we measure low jet speeds (typically £ 0.1 c). The one-sidedness probably is not due to Doppler boosting, but rather is probably free-free absorption. Plasma density required to produce the absorption is Ne 3 2 105 cm-3 assuming a path length of 0.1 pc, typical of that expected at the inner edge of the obscuring torus.

  6. Method and Apparatus for a Leading Edge Slat on a Wing of an Aircraft

    NASA Technical Reports Server (NTRS)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge device is moved on a leading edge from an undeployed position to a deployed position. The leading edge device has an outer surface, an inner surface, and a deformable fairing attached to the leading edge device such that the deformable fairing covers at least a portion of the inner surface. The deformable fairing changes from a deformed shape to an original shape when the leading edge device is moved to the deployed position. The leading edge device is then moved from the deployed position to the undeployed position, wherein the deformable fairing changes from the original shape to the deformed shape.

  7. Carbon K-edge spectra of carbonate minerals.

    PubMed

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  8. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asakura, Daisuke; Hosono, Eiji; Nanba, Yusuke

    2016-03-07

    Here, we evaluate the utilities of fluorescence-yield (FY) modes in soft X-ray absorption spectroscopy (XAS) of several cathodematerials for Li-ion batteries. In the case of total-FY (TFY) XAS for LiNi 0.5Mn 1.5O 4, the line shape of the Mn L 3-edge XAS was largely distorted by the self-absorption and saturation effects, while the distortions were less pronounced at the Ni L 3 edge. The distortions were suppressed for the inverse-partial-FY (IPFY) spectra. We found that, in the cathodematerials, the IPFY XAS is highly effective for the Cr, Mn, and Fe L edges and the TFY and PFY modes are usefulmore » enough for the Ni L edge which is far from the O K edge.« less

  9. Orbital Ordering Transition in La_4Ru_2O_10 probed by O K-edge X-ray Absorption

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Khalifah, P.; Mandrus, D.; Cava, R. J.

    2004-03-01

    The layered ruthenate compound La_4Ru_2O_10 undergoes a first order monoclinic-to-triclinic structural phase transition at 160 K. An accompanying loss of the Ru local moment gives evidence for a full orbital ordering transition in which the Ru d_yz orbitals become completely unoccupied in the low temperature phase.(P. Khalifah et al.), Science 297, 2237 (2002). Via hybridization of Ru t_2g and O 2p orbitals this temperature-dependent Ru orbital ordering can be indirectly probed using polarized O K-edge x-ray absorption spectroscopy (XAS). O 1s core-level energy shifts allow O site-specific separation of Ru t_2g hybridizations. Identification of O sites is accomplished using polarized XAS angular dependence as well as by O 2p valence PDOS obtained from site-selective soft x-ray emission. Distinct XAS energy and intensity changes are observed upon cooling through the phase transition and are rationalized within the framework of the complete orbital ordering scenario. Supported by the U.S. NSF at U. Mich. (DMR-03-02825) and by the DOE at the Advanced Light Source (DE-AC03-76SF00098).

  10. Temperature dependence of Ti 1s near-edge spectra in Ti-based perovskites: theory and experiment

    NASA Astrophysics Data System (ADS)

    Shirley, Eric; Cockayne, Eric; Ravel, Bruce; Woicik, Joseph

    Ti 1s near-edge spectra (around 4970 eV) in SrTiO3 and PbTiO3 reveal electric-dipole and quadrupole transitions to Ti 3d, 4p and mixed 3d-4p states. Crystal field-split pre-edge features attributed to 1s ->3d transitions are small compared to the main edge jump at the onset of the Ti 4s/4p continuum. Pre-edge and subsequent near-edge features are predicted to be weaker than what is observed, unless one accounts for ferroelectric polarization in PbTiO3 and thermal motion in both compounds. Using density-functional theory molecular dynamics simulations at various temperatures (including sampling two phases of PbTiO3), we capture the statistically averaged root-mean-square deviations of Ti4+ ions from the centers of their oxygen cages. By sampling appropriate snapshots of atomic configurations and averaging Ti 1s absorption spectra computed within a Bethe-Salpeter Equation framework, we obtain absorption spectra that agree well with experiment, including details related to ferroelectric polarization, phase transitions, and fluctuations of atomic coordinates.

  11. Absorption by Spinning Dust: A Contaminant for High-redshift 21 cm Observations

    NASA Astrophysics Data System (ADS)

    Draine, B. T.; Miralda-Escudé, Jordi

    2018-05-01

    Spinning dust grains in front of the bright Galactic synchrotron background can produce a weak absorption signal that could affect measurements of high-redshift 21 cm absorption. At frequencies near 80 MHz where the Experiment to Detect the Global EoR Signature (EDGES) has reported 21 cm absorption at z≈ 17, absorption could be produced by interstellar nanoparticles with radii a≈ 50 \\mathringA in the cold interstellar medium (ISM), with rotational temperature T ≈ 50 K. Atmospheric aerosols could contribute additional absorption. The strength of the absorption depends on the abundance of such grains and on their dipole moments, which are uncertain. The breadth of the absorption spectrum of spinning dust limits its possible impact on measurement of a relatively narrow 21 cm absorption feature.

  12. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-01

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach.

  13. Gait alterations can reduce the risk of edge loading.

    PubMed

    Wesseling, Mariska; Meyer, Christophe; De Groote, Friedl; Corten, Kristoff; Simon, Jean-Pierre; Desloovere, Kaat; Jonkers, Ilse

    2016-06-01

    Following metal-on-metal hip arthroplasty, edge loading (i.e., loading near the edge of a prosthesis cup) can increase wear and lead to early revision. The position and coverage angle of the prosthesis cup influence the risk of edge loading. This study investigates the effect of altered gait patterns, more specific hip, and pelvis kinematics, on the orientation of hip contact force and the consequent risk of antero-superior edge loading using muscle driven simulations of gait. With a cup orientation of 25° anteversion and 50° inclination and a coverage angle of 168°, many gait patterns presented risk of edge loading. Specifically at terminal double support, 189 out of 405 gait patterns indicated a risk of edge loading. At this time instant, the high hip contact forces and the proximity of the hip contact force to the edge of the cup indicated the likelihood of the occurrence of edge loading. Although the cup position contributed most to edge loading, altering kinematics considerably influenced the risk of edge loading. Increased hip abduction, resulting in decreasing hip contact force magnitude, and decreased hip extension, resulting in decreased risk on edge loading, are gait strategies that could prevent edge loading. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1069-1076, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. The Red Edge Problem in asteroid band parameter analysis

    NASA Astrophysics Data System (ADS)

    Lindsay, Sean S.; Dunn, Tasha L.; Emery, Joshua P.; Bowles, Neil E.

    2016-04-01

    Near-infrared reflectance spectra of S-type asteroids contain two absorptions at 1 and 2 μm (band I and II) that are diagnostic of mineralogy. A parameterization of these two bands is frequently employed to determine the mineralogy of S(IV) asteroids through the use of ordinary chondrite calibration equations that link the mineralogy to band parameters. The most widely used calibration study uses a Band II terminal wavelength point (red edge) at 2.50 μm. However, due to the limitations of the NIR detectors on prominent telescopes used in asteroid research, spectral data for asteroids are typically only reliable out to 2.45 μm. We refer to this discrepancy as "The Red Edge Problem." In this report, we evaluate the associated errors for measured band area ratios (BAR = Area BII/BI) and calculated relative abundance measurements. We find that the Red Edge Problem is often not the dominant source of error for the observationally limited red edge set at 2.45 μm, but it frequently is for a red edge set at 2.40 μm. The error, however, is one sided and therefore systematic. As such, we provide equations to adjust measured BARs to values with a different red edge definition. We also provide new ol/(ol+px) calibration equations for red edges set at 2.40 and 2.45 μm.

  15. First-Principles Fe L 2,3 -Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassi, Michel; Pearce, Carolyn I.; Bagus, Paul S.

    X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectroscopies are tools in widespread use for providing detailed local atomic structure, oxidation state, and magnetic structure information for materials and organometallic complexes. The analysis of these spectra for transition-metal L-edges is routinely performed on the basis of ligand-field multiplet theory because one- and two-particle mean-field ab initio methods typically cannot describe the multiplet structure. Here we show that multireference configuration interaction (MRCI) calculations can satisfactorily reproduce measured XANES spectra for a range of complex iron oxide materials including hematite and magnetite. MRCI Fe L2,3-edge XANES and XMCD spectramore » of Fe(II)O6, Fe(III)O6, and Fe(III)O4 in magnetite are found to be in very good qualitative agreement with experiment and multiplet calculations. Point-charge embedding and small distortions of the first-shell oxygen ligands have only small effects. Oxygen K-edge XANES/XMCD spectra for magnetite investigated by a real-space Green’s function approach complete the very good qualitative agreement with experiment. Material-specific differences in local coordination and site symmetry are well reproduced, making the approach useful for assigning spectral features to specific oxidation states and coordination environments.« less

  16. Time dependent density functional theory study of the near-edge x-ray absorption fine structure of benzene in gas phase and on metal surfaces.

    PubMed

    Asmuruf, Frans A; Besley, Nicholas A

    2008-08-14

    The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.

  17. Electronic structure and fundamental absorption edges of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals

    NASA Astrophysics Data System (ADS)

    Tarasova, A. Yu.; Isaenko, L. I.; Kesler, V. G.; Pashkov, V. M.; Yelisseyev, A. P.; Denysyuk, N. M.; Khyzhun, O. Yu.

    2012-05-01

    X-ray photoelectron core-level and valence-band spectra for pristine and Ar+-ion irradiated (001) surfaces of KPb2Br5, K0.5Rb0.5Pb2Br5, and RbPb2Br5 single crystals grown by the Bridgman method have been measured and fundamental absorption edges of the ternary bromides have been recorded in the polarized light at 300 K and 80 K. The present X-ray photoelectron spectroscopy (XPS) results reveal high chemical stability of (001) surfaces of KxRb1-xPb2Br5 (x=0, 0.5, and 1.0) single crystals. Substitution of potassium for rubidium in KxRb1-xPb2Br5 does not cause any changes of binding energy values and shapes of the XPS constituent element core-level spectra. Measurements of the fundamental absorption edges indicate that band gap energy, Eg, increases by about 0.14 and 0.19 eV when temperature decreases from 300 K to 80 K in KPb2Br5 and RbPb2Br5, respectively. Furthermore, there is no dependence of the Eg value for KPb2Br5 upon the light polarization, whilst the band gap energy value for RbPb2Br5 is bigger by 0.03-0.05 eV in the case of E‖c compared to those in the cases of E‖a and E‖b.

  18. Red edge measurements for remotely sensing plant chlorophyll content

    NASA Astrophysics Data System (ADS)

    Horler, D. N. H.; Dockray, M.; Barber, J.; Barringer, A. R.

    The feasibility of using the wavelength of the maximum slope of the red edge of leaf reflectance spectra (λre) as an indication of plant chlorophyll status was examined in the laboratory for single leaves of several species. λre for each sample was determined by derivative reflectance spectroscopy. A high positive correlation was found between λre and leaf chlorophyll content for all species, although there were some differences in the quantitative nature of the relationship for plants of different types. The position of the red edge was found to be unaffected by simulated change in ground cover, but multiple leaf layers produced a shift in its position. Appropriate spectral measurements and processing for obtaining useful information from the red edge are discussed, and the potential of the red edge in relation to other spectral measurements is considered.

  19. X-ray Absorption Near Edge Structure Spectroscopy to Resolve the in Vivo Chemistry of the Redox-Active Indazolium trans-[Tetrachlorobis(1H-indazole)ruthenate(III)] (KP1019)

    PubMed Central

    2013-01-01

    Indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (1, KP1019) and its analogue sodium trans-[tetrachlorobis(1H-indazole)ruthenate(III)] (2, KP1339) are promising redox-active anticancer drug candidates that were investigated with X-ray absorption near edge structure spectroscopy. The analysis was based on the concept of the coordination charge and ruthenium model compounds representing possible coordinations and oxidation states in vivo. 1 was investigated in citrate saline buffer (pH 3.5) and in carbonate buffer (pH 7.4) at 37 °C for different time intervals. Interaction studies on 1 with glutathione in saline buffer and apo-transferrin in carbonate buffer were undertaken, and the coordination of 1 and 2 in tumor tissues was studied too. The most likely coordinations and oxidation states of the compound under the above mentioned conditions were assigned. Microprobe X-ray fluorescence of tumor thin sections showed the strong penetration of ruthenium into the tumor tissue, with the highest concentrations near blood vessels and in the edge regions of the tissue samples. PMID:23282017

  20. Mapping Catalytically Relevant Edge Electronic States of MoS2

    PubMed Central

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  1. Structure formation in organic thin films observed in real time by energy dispersive near-edge x-ray absorption fine-structure spectroscopy

    NASA Astrophysics Data System (ADS)

    Scholz, M.; Sauer, C.; Wiessner, M.; Nguyen, N.; Schöll, A.; Reinert, F.

    2013-08-01

    We study the structure formation of 1,4,5,8-naphthalene-tetracarboxylicacid-dianhydride (NTCDA) multilayer films on Ag(111) surfaces by energy dispersive near-edge x-ray absorption fine-structure spectroscopy (NEXAFS) and photoelectron spectroscopy. The time resolution of seconds of the method allows us to identify several sub-processes, which occur during the post-growth three-dimensional structural ordering, as well as their characteristic time scales. After deposition at low temperature the NTCDA molecules are preferentially flat lying and the films exhibit no long-range order. Upon annealing the molecules flip into an upright orientation followed by an aggregation in a transient phase which exists for several minutes. Finally, three-dimensional islands are established with bulk-crystalline structure involving substantial mass transport on the surface and morphological roughening. By applying the Kolmogorov-Johnson-Mehl-Avrami model the activation energies of the temperature-driven sub-processes can be derived from the time evolution of the NEXAFS signal.

  2. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work

  3. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  4. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  5. Electronic structure of transition metal-cysteine complexes from X-ray absorption spectroscopy.

    PubMed

    Leung, Bonnie O; Jalilehvand, Farideh; Szilagyi, Robert K

    2008-04-17

    The electronic structures of HgII, NiII, CrIII, and MoV complexes with cysteine were investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and density functional theory. The covalency in the metal-sulfur bond was determined by analyzing the intensities of the electric-dipole allowed pre-edge features appearing in the XANES spectra below the ionization threshold. Because of the well-defined structures of the selected cysteine complexes, the current work provides a reference set for further sulfur K-edge XAS studies of bioinorganic active sites with transition metal-sulfur bonds from cysteine residues as well as more complex coordination compounds with thiolate ligands.

  6. Multi-edge X-ray absorption spectroscopy study of road dust samples from a traffic area of Venice using stoichiometric and environmental references.

    PubMed

    Valotto, Gabrio; Cattaruzza, Elti; Bardelli, Fabrizio

    2017-02-15

    The appropriate selection of representative pure compounds to be used as reference is a crucial step for successful analysis of X-ray absorption near edge spectroscopy (XANES) data, and it is often not a trivial task. This is particularly true when complex environmental matrices are investigated, being their elemental speciation a priori unknown. In this paper, an investigation on the speciation of Cu, Zn, and Sb based on the use of conventional (stoichiometric compounds) and non-conventional (environmental samples or relevant certified materials) references is explored. This method can be useful in when the effectiveness of XANES analysis is limited because of the difficulty in obtaining a set of references sufficiently representative of the investigated samples. Road dust samples collected along the bridge connecting Venice to the mainland were used to show the potentialities and the limits of this approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  8. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    PubMed

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  9. Implementation of Complex Signal Processing Algorithms for Position-Sensitive Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.

    2008-01-01

    We have recently reported on a theoretical digital signal-processing algorithm for improved energy and position resolution in position-sensitive, transition-edge sensor (POST) X-ray detectors [Smith et al., Nucl, lnstr and Meth. A 556 (2006) 2371. PoST's consists of one or more transition-edge sensors (TES's) on a large continuous or pixellated X-ray absorber and are under development as an alternative to arrays of single pixel TES's. PoST's provide a means to increase the field-of-view for the fewest number of read-out channels. In this contribution we extend the theoretical correlated energy position optimal filter (CEPOF) algorithm (originally developed for 2-TES continuous absorber PoST's) to investigate the practical implementation on multi-pixel single TES PoST's or Hydras. We use numerically simulated data for a nine absorber device, which includes realistic detector noise, to demonstrate an iterative scheme that enables convergence on the correct photon absorption position and energy without any a priori assumptions. The position sensitivity of the CEPOF implemented on simulated data agrees very well with the theoretically predicted resolution. We discuss practical issues such as the impact of random arrival phase of the measured data on the performance of the CEPOF. The CEPOF algorithm demonstrates that full-width-at- half-maximum energy resolution of < 8 eV coupled with position-sensitivity down to a few 100 eV should be achievable for a fully optimized device.

  10. Illusory displacement of equiluminous kinetic edges.

    PubMed

    Ramachandran, V S; Anstis, S M

    1990-01-01

    A stationary window was cut out of a stationary random-dot pattern. When a field of dots was moved continuously behind the window (a) the window appeared to move in the same direction even though it was stationary, (b) the position of the 'kinetic edges' defining the window was also displaced along the direction of dot motion, and (c) the edges of the window tended to fade on steady fixation even though the dots were still clearly visible. The illusory displacement was enhanced considerably if the kinetic edge was equiluminous and if the 'window' region was seen as 'figure' rather than 'ground'. Since the extraction of kinetic edges probably involves the use of direction-selective cells, the illusion may provide insights into how the visual system uses the output of these cells to localize the kinetic edges.

  11. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  12. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic-Inorganic Lead Halide Perovskites.

    PubMed

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; Sadoughi, Golnaz; Habisreutinger, Severin N; Félix, Roberto; Wilks, Regan G; Snaith, Henry J; Bär, Marcus; Draxl, Claudia

    2018-04-19

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3 ) hybrid inorganic-organic perovskite and its binary phase PbI 2 . The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  13. Morphology-dependent optical absorption and conduction properties of photoelectrochemical photocatalysts for H2 production: A case study

    NASA Astrophysics Data System (ADS)

    Huda, Muhammad N.; Turner, John A.

    2010-06-01

    Efficient photoelectrochemical H2 production by solar irradiation depends not only on the photocatalyst's band gap and its band-edge positions but also on the detailed electronic nature of the bands, such as the localization or delocalization of the band edges and their orbital characteristics. These determine the carrier transport properties, reactivity, light absorption strength, etc. and significantly impact the material's efficiency as a photoconverter. The localization or delocalization of the band edges may arise either due to the orbital nature of the bands or the structural morphology of the material. A recent experimental report on a photocatalyst based on s /p orbitals showed very poor performance for H2 production despite the delocalized nature of the s /p bands as compared to the d-bands of transition metal oxides. It is then important to examine whether this poor performance is inherent to these materials or rather arises from some experimental limitations. A theoretical analysis by first-principle methods is well suited to shed light on this question.

  14. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    PubMed

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  15. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE PAGES

    Li, M.; Breizman, B. N.; Zheng, L. J.; ...

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  16. Detection of metal stress in boreal forest species using the 0.67-micron chlorophyll absorption band

    NASA Technical Reports Server (NTRS)

    Singhroy, Vernon H.; Kruse, Fred A.

    1991-01-01

    Several recent studies have shown that a shift of the red-edge inflection near 0.70 micron in vegetation reflectance spectra is an indicator of metal stress, partially attributable to changes in chlorophyll concentration. This 'red-edge shift', however, is difficult to detect and has been reported both toward longer (red) and shorter (blue) wavelengths. Our work demonstrates that direct measurement of the depth and width of the chlorophyll absorption band at 0.67 micron using digital feature extraction and absorption band characterization procedures developed for the analysis of mineral spectra is a more consistent indicator of metal stress. Additionally, the magnitude of these parameters is generally greater than that of the red edge shift and thus should be more amenable to detection and mapping using field and aircraft spectrometers.

  17. Use of X-ray absorption near edge structure (XANES) to identify physisorption and chemisorption of phosphate onto ferrihydrite-modified diatomite.

    PubMed

    Xiong, Wenhui; Peng, Jian; Hu, Yongfeng

    2012-02-15

    This paper presents a novel technique integrating bulk-sensitive and surface-sensitive XANES methods to distinguish between physisorption and chemisorption for phosphate adsorption onto ferrihydrite-modified diatomite (FHMD). XANES P K-edge, L-edge, and Fe M-edge spectra were obtained for reference samples (K(2)HPO(4) and FePO(4)·2H(2)O) and test samples (phosphate adsorbed onto FHMD (FHMD-Ps) and Si-containing ferrihydrite (FHYD-Ps)). A resolvable pre-edge peak in the P K-edge spectra of FHMD-Ps and FHYD-Ps provided direct evidence for the formation of P-O-Fe(III) coordination and the occurrence of chemisorption. The resemblance between the P L-edge spectra of K(2)HPO(4) and FHMD-Ps and the marked difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O indicated the intact existence of the adsorbate and the adsorbent. The similarity between Fe M-edge spectra of FHMD and FHMD-Ps and the difference between the spectra of FHMD-Ps and FePO(4)·2H(2)O confirmed the findings from P L-edge analyses. Therefore, chemisorption and physisorption coexisted during phosphate adsorption onto FHMD. Phosphate chemisorption occurred in the deeper zone of FHMD (from 50 nm to 5 μm); whereas physisorption occurred in the zone of FHMD shallower than 50 nm since the probing depth of XANES P K-edge method is 5 μm and that of P L-edge and Fe M-edge methods is 50 nm. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    PubMed

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Simulations of iron K pre-edge X-ray absorption spectra using the restricted active space method.

    PubMed

    Guo, Meiyuan; Sørensen, Lasse Kragh; Delcey, Mickaël G; Pinjari, Rahul V; Lundberg, Marcus

    2016-01-28

    The intensities and relative energies of metal K pre-edge features are sensitive to both geometric and electronic structures. With the possibility to collect high-resolution spectral data it is important to find theoretical methods that include all important spectral effects: ligand-field splitting, multiplet structures, 3d-4p orbital hybridization, and charge-transfer excitations. Here the restricted active space (RAS) method is used for the first time to calculate metal K pre-edge spectra of open-shell systems, and its performance is tested against on six iron complexes: [FeCl6](n-), [FeCl4](n-), and [Fe(CN)6](n-) in ferrous and ferric oxidation states. The method gives good descriptions of the spectral shapes for all six systems. The mean absolute deviation for the relative energies of different peaks is only 0.1 eV. For the two systems that lack centrosymmetry [FeCl4](2-/1-), the ratios between dipole and quadrupole intensity contributions are reproduced with an error of 10%, which leads to good descriptions of the integrated pre-edge intensities. To gain further chemical insight, the origins of the pre-edge features have been analyzed with a chemically intuitive molecular orbital picture that serves as a bridge between the spectra and the electronic structures. The pre-edges contain information about both ligand-field strengths and orbital covalencies, which can be understood by analyzing the RAS wavefunction. The RAS method can thus be used to predict and rationalize the effects of changes in both the oxidation state and ligand environment in a number of hard X-ray studies of small and medium-sized molecular systems.

  20. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence.

    PubMed

    Cruz, Carlos M; Márquez, Irene R; Mariz, Inês F A; Blanco, Victor; Sánchez-Sánchez, Carlos; Sobrado, Jesús M; Martín-Gago, José A; Cuerva, Juan M; Maçôas, Ermelinda; Campaña, Araceli G

    2018-04-28

    Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp 2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

  1. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins

    NASA Astrophysics Data System (ADS)

    Rebuffat, Sylvie

    Most bacteria and archaea produce gene-encoded antimicrobial peptides/proteins called bacteriocins, which are secreted by the producing bacteria to compete against other microorganisms in a given niche. They are considered important mediators of intra- and interspecies interactions and therefore a factor in ­maintaining the microbial diversity and stability. They are ribosomally synthesized, and most of them are produced as inactive precursor proteins, which in some cases are further enzymatically modified. Bacteriocins generally exert potent antibacterial activities directed against bacterial species closely related to the producing bacteria. Bacteriocins are abundant and diverse in Gram-negative and Gram-positive bacteria. This chapter focuses on colicins and microcins from enterobacteria (mainly Escherichia coli) and on bacteriocins from lactic acid bacteria (LAB). Microcins are the lower-molecular-mass bacteriocins produced by Gram-negative bacteria with a repertoire of only 14 representatives. They form a very restricted family of bacteriocins, compared to the huge family of LAB bacteriocins that is constituted of several hundreds of peptides, with which microcins share common characteristics. Nevertheless, microcins also show similarities, particularly in their uptake mechanisms, with the higher-molecular-mass colicins, also produced by E. coli strains. On the edge between LAB bacteriocins and colicins, microcins appear to combine highly efficient strategies developed by both Gram-positive and Gram-negative bacteria at different levels, including uptake, translocation, killing of target cells, and immunity of the producing bacteria, making them important actors of bacterial competitions and fascinating models for novel concepts toward antimicrobial strategies and against resistance mechanisms.

  2. [Effects of water stress on red-edge parameters and yield in wheat cropping].

    PubMed

    He, Ke-Xun; Zaho, Shu-He; Lai, Jian-Bin; Luo, Yun-Xiao; Qin, Zhi-Hao

    2013-08-01

    The objective of the present paper is to study the influence of water stress on wheat spectrum red edge parameters by using field wheat spectrum data obtained from water stress experiment. Firstly, the authors analyzed the influence of water stress on wheat spectrum reflectance. Then the authors got the wheat red edge position and red edge peak through calculating wheat spectrum first-order differential and analyzed the influence of water stress on wheat red edge parameters. Finally the authors discussed the relationship between red peak and wheat yield. The results showed that the wheat red edge position shows "red shift" at the beginning of the wheat growth period and "blue shift" at the later period of the wheat growth period under the water stress experiment. Also, the red edge peak of the wheat showed that red edge peak increased with the water stress sharpening at the beginning of the wheat growth period, and then the red edge peak reduced with the water stress sharpening. The wheat red edge peak presented positive correlation with the wheat yield before the elongation period, and exhibited negative correlation after that period.

  3. Optical absorption and disorder in delafossites

    DOE PAGES

    Senty, Tess R.; Haycock, Barry; Lekse, Jonathan; ...

    2017-07-06

    Here, we present compelling experimental results of the optical characteristics of transparent oxide CuGaO 2 and related CuGa 1-xFe xO 2 (with 0.00 ≤ x ≤ 0.05) alloys, whereby the forbidden electronic transitions for CuGaO 2 become permissible in the presence of B-site (Ga sites) alloying with Fe. Our computational structural results imply a correlation between the global strain on the system and a decreased optical absorption edge. However, herein, we show that the relatively ordered CuGa 1-xFe xO 2 (for 0.00 ≤ x ≤ 0.04) structures exhibit much weaker vis-absorption compared to the relatively disordered CuGa 0.95Fe 0.05O 2.

  4. Optical absorption of Mg-doped layers and InGaN quantum wells on c-plane and semipolar GaN structures

    NASA Astrophysics Data System (ADS)

    Sizov, Dmitry; Bhat, Rajaram; Zah, Chung-en

    2013-05-01

    We studied optical absorption of Mg-doped AlInGaN layers using excitation-position dependent and polarization resolved photoluminescence from the slab-waveguide edge of a laser structure. The major absorption in the Mg-doped layers was found only when p-doping is activated. It increases with the removal of residual hydrogen, which in case of Mg doping is a p-type passivation impurity, and reversibly disappears after passivation by hydrogen. This absorption is weakly wavelength and temperature dependent, and isotropic. This can be attributed to acceptor-bound hole absorption, because those holes concentration is nearly equal to that of activated acceptors and weakly temperature dependent (unlike the free hole concentration, which is much lower and is an exponential function of temperature due to high ionization energy). The cross section of photon absorption on such activated acceptor was quantified to be in the order of 10-17 cm-2. The absorption cross section of free electrons was found to be at least one order of magnitude lower and below detection limit. The same technique was used to experimentally quantify band structure polarization components along basis directions for green InGaN quantum wells (QWs) grown on c- and semipolar planes. The A1 and B1 valence subbands of c-plane QW were found to comprise mostly |X⟩ and |Y⟩ states. There was rather minor amount of |Z⟩ states with average square fraction of only 0.02. In (20-21) plane, due to small band anticrossing near gamma-point, we observed highly polarized absorption edges of A1- and B1-subbands consisting mainly of |Y⟩ and |X⟩ states, respectively, and found their energy splitting to be ˜40 meV. For (11-22) plane with smaller band splitting and polarization, we observed polarization switching with indium (In) concentration greater than 30% in the QW (or photon energy less than 2.3 eV). We confirmed our study of valence band structures by optical gain measurements.

  5. Local structure in LaMnO3 and CaMnO3 perovskites: A quantitative structural refinement of Mn K -edge XANES data

    NASA Astrophysics Data System (ADS)

    Monesi, C.; Meneghini, C.; Bardelli, F.; Benfatto, M.; Mobilio, S.; Manju, U.; Sarma, D. D.

    2005-11-01

    Hole-doped perovskites such as La1-xCaxMnO3 present special magnetic and magnetotransport properties, and it is commonly accepted that the local atomic structure around Mn ions plays a crucial role in determining these peculiar features. Therefore experimental techniques directly probing the local atomic structure, like x-ray absorption spectroscopy (XAS), have been widely exploited to deeply understand the physics of these compounds. Quantitative XAS analysis usually concerns the extended region [extended x-ray absorption fine structure (EXAFS)] of the absorption spectra. The near-edge region [x-ray absorption near-edge spectroscopy (XANES)] of XAS spectra can provide detailed complementary information on the electronic structure and local atomic topology around the absorber. However, the complexity of the XANES analysis usually prevents a quantitative understanding of the data. This work exploits the recently developed MXAN code to achieve a quantitative structural refinement of the Mn K -edge XANES of LaMnO3 and CaMnO3 compounds; they are the end compounds of the doped manganite series LaxCa1-xMnO3 . The results derived from the EXAFS and XANES analyses are in good agreement, demonstrating that a quantitative picture of the local structure can be obtained from XANES in these crystalline compounds. Moreover, the quantitative XANES analysis provides topological information not directly achievable from EXAFS data analysis. This work demonstrates that combining the analysis of extended and near-edge regions of Mn K -edge XAS spectra could provide a complete and accurate description of Mn local atomic environment in these compounds.

  6. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less

  7. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    DOE PAGES

    Vorwerk, Christian; Hartmann, Claudia; Cocchi, Caterina; ...

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L 3 and the Pb M 5 edges of the methylammonium lead iodide (MAPbI 3) hybrid inorganic-organic perovskite and its binary phase PbI 2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI 3 are essentially given by its inorganic component, with negligible influence from the organic groups. Furthermore, the theoretical analysis complementing experimental observationsmore » provides the conceptual insights required for a full characterization of this complex material.« less

  8. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    DOE PAGES

    Kroll, Thomas; Kern, Jan; Kubin, Markus; ...

    2016-09-19

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. But, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. We compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based onmore » self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. Lastly, we show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.« less

  9. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    PubMed Central

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. PMID:27828320

  10. Iron L2,3-Edge X-ray Absorption and X-ray Magnetic Circular Dichroism Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of Nitrogenase

    PubMed Central

    2017-01-01

    Herein, a systematic study of a series of molecular iron model complexes has been carried out using Fe L2,3-edge X-ray absorption (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopies. This series spans iron complexes of increasing complexity, starting from ferric and ferrous tetrachlorides ([FeCl4]−/2–), to ferric and ferrous tetrathiolates ([Fe(SR)4]−/2–), to diferric and mixed-valent iron–sulfur complexes [Fe2S2R4]2–/3–. This test set of compounds is used to evaluate the sensitivity of both Fe L2,3-edge XAS and XMCD spectroscopy to oxidation state and ligation changes. It is demonstrated that the energy shift and intensity of the L2,3-edge XAS spectra depends on both the oxidation state and covalency of the system; however, the quantitative information that can be extracted from these data is limited. On the other hand, analysis of the Fe XMCD shows distinct changes in the intensity at both L3 and L2 edges, depending on the oxidation state of the system. It is also demonstrated that the XMCD intensity is modulated by the covalency of the system. For mononuclear systems, the experimental data are correlated with atomic multiplet calculations in order to provide insights into the experimental observations. Finally, XMCD is applied to the tetranuclear heterometal–iron–sulfur clusters [MFe3S4]3+/2+ (M = Mo, V), which serve as structural analogues of the FeMoco and FeVco active sites of nitrogenase. It is demonstrated that the XMCD data can be utilized to obtain information on the oxidation state distribution in complex clusters that is not readily accessible for the Fe L2,3-edge XAS data alone. The advantages of XMCD relative to standard K-edge and L2,3-edge XAS are highlighted. This study provides an important foundation for future XMCD studies on complex (bio)inorganic systems. PMID:28653855

  11. Dye anchored ZnO nanoparticles: The positive and negative photoluminescence quenching effects

    NASA Astrophysics Data System (ADS)

    Ganesh, T.; Kim, Jong Hoon; Yoon, Seog Joon; Lee, Sangjin; Lee, Wonjoo; Mane, Rajaram S.; Han, Jin Wook; Han, Sung-Hwan

    2009-10-01

    The positive and negative photoluminescence quenching effects in dye [BCMoxo and BCtCM (curcumin-derived molecules)] anchored ZnO nanoparticles (NPs) are investigated using the optical and electronic properties. The photoluminescence, band gap (BCMoxo, 2.2 eV; BCtCM, 2.3 eV), and wettability studies confirm an optical quenching, well-matched electronic structure and relative hydrophobic nature, respectively, in the presence of dicarboxylic anchor groups (BCtCM) on ZnO NPs in contrast to that of keto groups (BCMoxo). Systematic change in UV-visible absorption band edge is noticeable for the BCtCM and BCMoxo-anchored ZnO NPs. The atomic absorption spectroscopy and inductively coupled-mass-spectroscopy analysis quantitatively verifies the amount of BCtCM dye molecules present on ZnO NPs surface area about three times higher than that of BCMoxo dye molecule without anchor groups.

  12. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra.

    PubMed

    Vilas, F; Gaffey, M J

    1989-11-10

    Absorption features having depths up to 5% are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  13. Phyllosilicate absorption features in main-belt and outer-belt asteroid reflectance spectra

    NASA Technical Reports Server (NTRS)

    Vilas, Faith; Gaffey, Michael J.

    1989-01-01

    Absorption features having depths up to 5 percent are identified in high-quality, high-resolution reflectance spectra of 16 dark asteroids in the main belt and in the Cybele and Hilda groups. Analogs among the CM2 carbonaceous chondrite meteorites exist for some of these asteroids, suggesting that these absorptions are due to iron oxides in phyllosilicates formed on the asteroidal surfaces by aqueous alteration processes. Spectra of ten additional asteroids, located beyond the outer edge of the main belt, show no discernible absorption features, suggesting that aqueous alteration did not always operate at these heliocentric distances.

  14. Practical Study for the Properties of Hueckel Edge Detection Operator

    NASA Astrophysics Data System (ADS)

    Jabbar, Hameed M. Abdul; Hatem, Amal J.; Ameer, Inbethaq M. A. Abdul

    2018-05-01

    The first practical study for the Hueckel edge detection operator was presented in this research, where it is tested on standard step edge set images. A number of criteria were adopted to evaluate its practical performance, which is the accuracy in detecting the edges direction, the error in the edges location (dislocation), edges width, the calculated edge goodness criterion and the consumed execution time. These criteria were studied with the edge direction and the used disk radius of the Hueckel edge detection operator. Important notes were recorded for the performance of this operator depending on the direction of the edge and/or with the radius of the used disk. There is a variation in the performance of the operator in terms of precision in detecting of the edges direction and position. A discussion was presented for the all criteria adopted in the research.

  15. Transformation-optics description of plasmonic nanostructures containing blunt edges/corners: from symmetric to asymmetric edge rounding.

    PubMed

    Luo, Yu; Lei, Dang Yuan; Maier, Stefan A; Pendry, John B

    2012-07-24

    The sharpness of corners/edges can have a large effect on the optical responses of metallic nanostructures. Here we deploy the theory of transformation optics to analytically investigate a variety of blunt plasmonic structures, including overlapping nanowire dimers and crescent-shaped nanocylinders. These systems are shown to support several discrete optical modes, whose energy and line width can be controlled by tuning the nanoparticle geometry. In particular, the necessary conditions are highlighted respectively for the broadband light absorption effect and the invisibility dips that appear in the radiative spectrum. More detailed discussions are provided especially with respect to the structures with asymmetric edge rounding. These structures can support additional subradiant modes, whose interference with the neighboring dipolar modes results in a rapid change of the scattering cross-section, similar to the phenomenon observed in plasmonic Fano resonances. Finite element numerical calculations are also performed to validate the analytical predictions. The physical insights into blunt nanostructures presented in this work may be of great interest for the design of broadband light-harvesting devices, invisible and noninvasive biosensors, and slowing-light devices.

  16. Using Solution- and Solid-State S K-edge X-ray Absorption Spectroscopy with Density Functional Theory to Evaluate M–S Bonding for MS42- (M = Cr, Mo, W) Dianions

    PubMed Central

    Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.

    2014-01-01

    Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904

  17. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    USGS Publications Warehouse

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2011-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and M??ssbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, r??merite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3??5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750-4000cm-1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. M??ssbauer spectra of selected samples were obtained at room temperature and 80K for ferric minerals jarosite and rhomboclase and mixed ferric-ferrous minerals r??merite, voltaite, and copiapite. Values of Fe2+/[Fe2++Fe3+] determined by M??ssbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases. ?? 2011 Elsevier B.V.

  18. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    USGS Publications Warehouse

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  19. Solvation structure of the halides from x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antalek, Matthew; Hedman, Britt; Sarangi, Ritimukta, E-mail: ritis@slac.stanford.edu

    2016-07-28

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, andmore » a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.« less

  20. Effect of canard position and wing leading-edge flap deflection on wing buffet at transonic speeds

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Henderson, W. P.; Huffman, J. K.

    1974-01-01

    A generalized wind-tunnel model, with canard and wing planform typical of highly maneuverable aircraft, was tested. The addition of a canard above the wing chord plane, for the configuration with leading-edge flaps undeflected, produced substantially higher total configuration lift coefficients before buffet onset than the configuration with the canard off and leading-edge flaps undeflected. The wing buffet intensity was substantially lower for the canard-wing configuration than the wing-alone configuration. The low-canard configuration generally displayed the poorest buffet characteristics. Deflecting the wing leading-edge flaps substantially improved the wing buffet characteristics for canard-off configurations. The addition of the high canard did not appear to substantially improve the wing buffet characteristics of the wing with leading-edge flaps deflected.

  1. Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguri, Katsuya; Okano, Yasuaki; Nishikawa, Tadashi

    2007-10-19

    We study the temperature evolution of aluminum nanoparticles generated by femtosecond laser ablation with spatiotemporally resolved x-ray-absorption fine-structure spectroscopy. We successfully identify the nanoparticles based on the L-edge absorption fine structure of the ablation plume in combination with the dependence of the edge structure on the irradiation intensity and the expansion velocity of the plume. In particular, we show that the lattice temperature of the nanoparticles is estimated from the L-edge slope, and that its spatial dependence reflects the cooling of the nanoparticles during plume expansion. The results reveal that the emitted nanoparticles travel in a vacuum as a condensedmore » liquid phase with a lattice temperature of about 2500 to 4200 K in the early stage of plume expansion.« less

  2. Optical absorption of carbon-gold core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping

    2018-01-01

    In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.

  3. Redox chemistry of a binary transition metal oxide (AB 2 O 4 ): a study of the Cu 2+ /Cu 0 and Fe 3+ /Fe 0 interconversions observed upon lithiation in a CuFe 2 O 4 battery using X-ray absorption spectroscopy

    DOE PAGES

    Cama, Christina A.; Pelliccione, Christopher J.; Brady, Alexander B.; ...

    2016-06-06

    Copper ferrite, CuFe 2 O 4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe 2 O 4. A phase pure tetragonal CuFe 2 O 4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. We used ex situ X-ray absorption spectroscopy (XAS) measurements to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structuremore » (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(II) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(III) cations to octahedral positions previously occupied by copper(II). Then, upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(III) was achieved. Our results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.« less

  4. Lemur responses to edge effects in the Vohibola III classified forest, Madagascar.

    PubMed

    Lehman, Shawn M; Rajaonson, Andry; Day, Sabine

    2006-03-01

    Forest edges are dynamic zones characterized by the penetration (to varying depths and intensities) of conditions from the surrounding environment (matrix) into the forest interior. Although edge effects influence many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs because of the highly fragmented forest landscapes found in Madagascar. In this study, data are presented regarding how the densities of six lemur species (Avahi laniger, Cheirogaleus major, Eulemur rubriventer, Hapalemur griseus griseus, Microcebus rufus, and Propithecus diadema edwardsi) varied between six 500-m interior transects and six 500-m edge transects in the Vohibola III Classified Forest in SE Madagascar. Diurnal (n = 433) and nocturnal (n = 128) lemur surveys were conducted during June-October 2003 and May-November 2004. A. laniger, E. rubriventer, and H. g. griseus exhibited a neutral edge response (no differences in densities between habitats). M. rufus and P. d. edwardsi had a positive edge response (higher densities in edge habitats), which may be related to edge-related variations in food abundance and quality. Positive edge responses by M. rufus and P. d. edwardsi may ultimately be detrimental due to edge-related anthropogenic factors (e.g., hunting by local people). The negative edge response exhibited by C. major (lower densities in edge habitats) may result from heightened ambient temperatures that inhibit torpor in edge habitats.

  5. Full-waveform data for building roof step edge localization

    NASA Astrophysics Data System (ADS)

    Słota, Małgorzata

    2015-08-01

    Airborne laser scanning data perfectly represent flat or gently sloped areas; to date, however, accurate breakline detection is the main drawback of this technique. This issue becomes particularly important in the case of modeling buildings, where accuracy higher than the footprint size is often required. This article covers several issues related to full-waveform data registered on building step edges. First, the full-waveform data simulator was developed and presented in this paper. Second, this article provides a full description of the changes in echo amplitude, echo width and returned power caused by the presence of edges within the laser footprint. Additionally, two important properties of step edge echoes, peak shift and echo asymmetry, were noted and described. It was shown that these properties lead to incorrect echo positioning along the laser center line and can significantly reduce the edge points' accuracy. For these reasons and because all points are aligned with the center of the beam, regardless of the actual target position within the beam footprint, we can state that step edge points require geometric corrections. This article presents a novel algorithm for the refinement of step edge points. The main distinguishing advantage of the developed algorithm is the fact that none of the additional data, such as emitted signal parameters, beam divergence, approximate edge geometry or scanning settings, are required. The proposed algorithm works only on georeferenced profiles of reflected laser energy. Another major advantage is the simplicity of the calculation, allowing for very efficient data processing. Additionally, the developed method of point correction allows for the accurate determination of points lying on edges and edge point densification. For this reason, fully automatic localization of building roof step edges based on LiDAR full-waveform data with higher accuracy than the size of the lidar footprint is feasible.

  6. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    PubMed

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  7. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    PubMed Central

    Kubin, Markus; Kern, Jan; Gul, Sheraz; Kroll, Thomas; Chatterjee, Ruchira; Löchel, Heike; Fuller, Franklin D.; Sierra, Raymond G.; Quevedo, Wilson; Weniger, Christian; Rehanek, Jens; Firsov, Anatoly; Laksmono, Hartawan; Weninger, Clemens; Alonso-Mori, Roberto; Nordlund, Dennis L.; Lassalle-Kaiser, Benedikt; Glownia, James M.; Krzywinski, Jacek; Moeller, Stefan; Turner, Joshua J.; Minitti, Michael P.; Dakovski, Georgi L.; Koroidov, Sergey; Kawde, Anurag; Kanady, Jacob S.; Tsui, Emily Y.; Suseno, Sandy; Han, Zhiji; Hill, Ethan; Taguchi, Taketo; Borovik, Andrew S.; Agapie, Theodor; Messinger, Johannes; Erko, Alexei; Föhlisch, Alexander; Bergmann, Uwe; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe

    2017-01-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6–15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. PMID:28944255

  8. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers

    DOE PAGES

    Kubin, Markus; Kern, Jan; Gul, Sheraz; ...

    2017-09-01

    X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. But, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexesmore » (Mn ~ 6-15 mmol/l) with no visible effects of radiation damage. We then present the first L-edge absorption spectra of the oxygen evolving complex (Mn 4 CaO 5 ) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.« less

  9. A cutting-edge solution for 1µm laser metal processing

    NASA Astrophysics Data System (ADS)

    Baumbach, N.; Kühl, P.; Karam, J.; Jonkers, J.; Villarreal-Saucedo, F.; Reyes, M.

    2017-02-01

    The recent 1μm-laser cutting market is dominated by fiber and disk lasers due to their excellent beam quality of below 4mm*mrad. Teradiode's 4kW direct diode laser source achieves similar beam quality while having a different beam shape and shorter wavelengths which are known for higher absorption rates at the inclined front of the cutting keyhole. Research projects, such as the HALO Project, have additionally shown that polarized radiation and beams with shapes different from the typical LG00 lead to improved cut quality for ferrous and non-ferrous metals. [1] Diode laser have the inherent property of not being sensitive to back reflection which brings advantages in cutting high-reflective materials. The II-VI HIGHYAG laser cutting head BIMO-FSC offers the unique feature of machine controlled and continuous adjustment of both the focus diameter and the focus position. This feature is proven to be beneficial for cutting and piercing with high speed and small hole diameters. In addition, the optics are designed for lowest focus shift. As a leading laser processing head manufacturer, II-VI HIGHYAG qualified its BIMO-FSC MZ (M=magnification, Z=focus position) cutting head for Teradiode's 4kW direct diode laser source to offer a cutting-edge solution for highpower laser cutting. Combining the magnification ability of the cutting head with this laser source, customers experience strong advantages in cutting metals in broad thickness ranges. Thicknesses up to 25mm mild steel can easily be cut with excellent edge quality. Furthermore, a new optical setup equivalent to an axicon with a variable axicon angle is demonstrated which generates variable sized ring spots. The setup provides new degrees of freedom to tailor the energy distribution for even higher productivity and quality.

  10. K- and L-edge X-ray absorption spectrum calculations of closed-shell carbon, silicon, germanium, and sulfur compounds using damped four-component density functional response theory.

    PubMed

    Fransson, Thomas; Burdakova, Daria; Norman, Patrick

    2016-05-21

    X-ray absorption spectra of carbon, silicon, germanium, and sulfur compounds have been investigated by means of damped four-component density functional response theory. It is demonstrated that a reliable description of relativistic effects is obtained at both K- and L-edges. Notably, an excellent agreement with experimental results is obtained for L2,3-spectra-with spin-orbit effects well accounted for-also in cases when the experimental intensity ratio deviates from the statistical one of 2 : 1. The theoretical results are consistent with calculations using standard response theory as well as recently reported real-time propagation methods in time-dependent density functional theory, and the virtues of different approaches are discussed. As compared to silane and silicon tetrachloride, an anomalous error in the absolute energy is reported for the L2,3-spectrum of silicon tetrafluoride, amounting to an additional spectral shift of ∼1 eV. This anomaly is also observed for other exchange-correlation functionals, but it is seen neither at other silicon edges nor at the carbon K-edge of fluorine derivatives of ethene. Considering the series of molecules SiH4-XFX with X = 1, 2, 3, 4, a gradual divergence from interpolated experimental ionization potentials is observed at the level of Kohn-Sham density functional theory (DFT), and to a smaller extent with the use of Hartree-Fock. This anomalous error is thus attributed partly to difficulties in correctly emulating the electronic structure effects imposed by the very electronegative fluorines, and partly due to inconsistencies in the spurious electron self-repulsion in DFT. Substitution with one, or possibly two, fluorine atoms is estimated to yield small enough errors to allow for reliable interpretations and predictions of L2,3-spectra of more complex and extended silicon-based systems.

  11. Consequences of realistic embedding for the L 2,3 edge XAS of α-Fe 2 O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagus, Paul S.; Nelin, Connie J.; Sassi, Michel

    Cluster models of condensed systems are often used to simulate the core-level spectra obtained with X-ray Photoelectron Spectroscopy, XPS, or with X-ray Absorption Spectroscopy, XAS, especially for near edge features.

  12. Using solution- and solid-state S K-edge X-ray absorption spectroscopy with density functional theory to evaluate M-S bonding for MS4(2-) (M = Cr, Mo, W) dianions.

    PubMed

    Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L

    2014-12-14

    Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.

  13. Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems

    DOE PAGES

    Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...

    2014-12-10

    Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less

  14. Time-dependent mean-field theory for x-ray near-edge spectroscopy

    NASA Astrophysics Data System (ADS)

    Bertsch, G. F.; Lee, A. J.

    2014-02-01

    We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.

  15. Effects of phonon broadening on x-ray near-edge spectra in molecular crystals

    NASA Astrophysics Data System (ADS)

    Vinson, John; Jach, Terrence; Elam, Tim; Denlinger, Jonathon

    2014-03-01

    Calculations of near-edge x-ray spectra are often carried out using the average atomic coordinates from x-ray or neutron scattering experiments or from density functional theory (DFT) energy minimization. This neglects disorder from thermal and zero-point vibrations. Here we look at the nitrogen K-edge of ammonium chloride and ammonium nitrate, comparing Bethe-Salpeter calculations of absorption and fluorescence to experiment. We find that intra-molecular vibrational effects lead to significant, non-uniform broadening of the spectra, and that for some features zero-point motion is the primary source of the observed shape.

  16. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  17. Discovery of Hα Absorption in the Unusual Broad Absorption Line Quasar SDSS J083942.11+380526.3

    NASA Astrophysics Data System (ADS)

    Aoki, Kentaro; Iwata, Ikuru; Ohta, Kouji; Ando, Masataka; Akiyama, Masayuki; Tamura, Naoyuki

    2006-11-01

    We discovered Hα absorption in the broad Hα emission line of an unusual broad absorption line quasar, SDSS J083942.11+380526.3, at z=2.318, through near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO) on the Subaru telescope. The presence of nonstellar Hα absorption is known only in the Seyfert galaxy NGC 4151 to date; thus, our discovery is the first case for quasars. The Hα absorption line is blueshifted by 520 km s-1 relative to the Hα emission line, and its redshift almost coincides with those of UV low-ionization metal absorption lines. The width of the Hα absorption (~340 km s-1) is similar to those of the UV low-ionization absorption lines. These facts suggest that the Hα and low-ionization metal absorption lines are produced by the same low-ionization gas, which has a substantial amount of neutral gas. The column density of the neutral hydrogen is estimated to be ~1018 cm-2 by assuming a gas temperature of 10,000 K from the analysis of the curve of growth. The continuum spectrum is reproduced by a reddened [E(B-V)~0.15 mag for the SMC-like reddening law] composite quasar spectrum. Furthermore, the UV spectrum of SDSS J083942.11+380526.3 shows a remarkable similarity to that of NGC 4151 in its low state, suggesting that the physical condition of the absorber in SDSS J083942.11+380526.3 is similar to that of NGC 4151 in the low state. As proposed for NGC 4151, SDSS J083942.11+380526.3 may also be seen through the edge of the obscuring torus. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  18. The speciation of soluble sulphur compounds in bacterial culture fluids by X-ray absorption near edge structure spectroscopy.

    PubMed

    Franz, Bettina; Lichtenberg, Henning; Hormes, Josef; Dahl, Christiane; Prange, Alexander

    2009-11-01

    Over the last decade X-ray absorption near edge structure (XANES) spectroscopy has been used in an increasing number of microbiological studies. In addition to other applications it has served as a valuable tool for the investigation of the sulphur globules deposited intra- or extracellularly by certain photo- and chemotrophic sulphur-oxidizing (Sox) bacteria. For XANES measurements, these deposits can easily be concentrated by filtration or sedimentation through centrifugation. However, during oxidative metabolism of reduced sulphur compounds, such as sulphide or thiosulphate, sulphur deposits are not the only intermediates formed. Soluble intermediates such as sulphite may also be produced and released into the medium. In this study, we explored the potential of XANES spectroscopy for the detection and speciation of sulphur compounds in culture supernatants of the phototrophic purple sulphur bacterium Allochromatium vinosum. More specifically, we investigated A. vinosum DeltasoxY, a strain with an in frame deletion of the soxY gene. This gene encodes an essential component of the thiosulphate-oxidizing Sox enzyme complex. Improved sample preparation techniques developed for the DeltasoxY strain allowed for the first time not only the qualitative but also the quantitative analysis of bacterial culture supernatants by XANES spectroscopy. The results thus obtained verified and supplemented conventional HPLC analysis of soluble sulphur compounds. Sulphite and also oxidized organic sulphur compounds were shown by XANES spectroscopy to be present, some of which were not seen when standard HPLC protocols were used.

  19. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  20. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.

    PubMed

    Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L

    2013-01-30

    The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.

  1. Ex vivo hydrodynamics after central and paracommissural edge-to-edge technique: A further step toward transcatheter tricuspid repair?

    PubMed

    Stock, Sina; Bohm, Heidemarie; Scharfschwerdt, Michael; Richardt, Doreen; Meyer-Saraei, Roza; Tsvelodub, Stanislav; Sievers, Hans-Hinrich

    2018-03-01

    Transcatheter approaches in heart valve disease became tremendously important and are currently established in the aortic position, but transcatheter tricuspid repair is still in its beginning and remains challenging. Replicating the surgical edge-to-edge technique, for example, with the MitraClip System (Abbott Vascular, Santa Clara, Calif), represents a promising option and has been reported successfully in small numbers of cases. However, up to now, few data considering the edge-to-edge technique as a transcatheter approach are available. This study aims to determine the ex vivo hydrodynamics after the central and paracommissural edge-to-edge technique in different pathologies. Because of basal or apical dislocation of papillary muscles, leaflet prolapse or tethering was simulated in porcine tricuspid valves mounted on a flexible holding device. Central and paracommissural edge-to-edge techniques were evaluated successively in these pathologies. Regurgitant volume and mean transvalvular gradient were determined in a pulse duplicator. In this ex vivo model, the isolated edge-to-edge technique reduced tricuspid regurgitation. In the prolapse model, regurgitant volume decreased significantly after central edge-to-edge technique (from 49.4 ± 13.6 mL/stroke to 39.3 ± 14.1 mL/stroke). In the tethering model, both the central and the paracommissural edge-to-edge techniques led to a significant decrease (from 48.7 ± 13.9 to 43.6 ± 15.6 and to 41.1 ± 13.8 mL/stroke). In all cases, the reduction of regurgitant volume was achieved at the cost of significantly increased mean transvalvular gradient. This study provides a reduction of tricuspid regurgitation after the edge-to-edge technique in the specific experimental setup. Whether this reduction is sufficient to treat tricuspid regurgitation successfully in clinical practice remains to be established. Transcatheter approaches need to be evaluated further, probably with regard to concomitant annuloplasty

  2. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques

    PubMed Central

    Limaye, Mukta V.; Chen, S. C.; Lee, C. Y.; Chen, L. Y.; Singh, Shashi B.; Shao, Y. C.; Wang, Y. F.; Hsieh, S. H.; Hsueh, H. C.; Chiou, J. W.; Chen, C. H.; Jang, L. Y.; Cheng, C. L.; Pong, W. F.; Hu, Y. F.

    2015-01-01

    The correlation between sub-band gap absorption and the chemical states and electronic and atomic structures of S-hyperdoped Si have been extensively studied, using synchrotron-based x-ray photoelectron spectroscopy (XPS), x-ray absorption near-edge spectroscopy (XANES), extended x-ray absorption fine structure (EXAFS), valence-band photoemission spectroscopy (VB-PES) and first-principles calculation. S 2p XPS spectra reveal that the S-hyperdoped Si with the greatest (~87%) sub-band gap absorption contains the highest concentration of S2− (monosulfide) species. Annealing S-hyperdoped Si reduces the sub-band gap absorptance and the concentration of S2− species, but significantly increases the concentration of larger S clusters [polysulfides (Sn2−, n > 2)]. The Si K-edge XANES spectra show that S hyperdoping in Si increases (decreased) the occupied (unoccupied) electronic density of states at/above the conduction-band-minimum. VB-PES spectra evidently reveal that the S-dopants not only form an impurity band deep within the band gap, giving rise to the sub-band gap absorption, but also cause the insulator-to-metal transition in S-hyperdoped Si samples. Based on the experimental results and the calculations by density functional theory, the chemical state of the S species and the formation of the S-dopant states in the band gap of Si are critical in determining the sub-band gap absorptance of hyperdoped Si samples. PMID:26098075

  3. Automated generation and ensemble-learned matching of X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-12-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  4. Magnesium K-Edge NEXAFS Spectroscopy of Chlorophyll a in Solution.

    PubMed

    Witte, Katharina; Streeck, Cornelia; Mantouvalou, Ioanna; Suchkova, Svetlana A; Lokstein, Heiko; Grötzsch, Daniel; Martyanov, Wjatscheslav; Weser, Jan; Kanngießer, Birgit; Beckhoff, Burkhard; Stiel, Holger

    2016-11-17

    The interaction of the central magnesium atom of chlorophyll a (Chl a) with the carbon and nitrogen backbone was investigated by magnesium K near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in fluorescence detection mode. A crude extract of Chl a was measured as a 1 × 10 -2 mol/L ethanol solution (which represents an upper limit of concentration without aggregation) and as dried droplets. For the first time, the investigation of Mg bound to Chl a in a liquid environment by means of X-ray absorption spectroscopy is demonstrated. A pre-edge feature in the dissolved as well as in dried Chl a NEXFAS spectra has been identified as a characteristic transition originating from Mg in the Chl a molecule. This result is confirmed by theoretical DFT calculations leading to molecular orbitals (MO) which are mainly situated on the magnesium atom and nitrogen and carbon atoms from the pyrrole rings. The description is the first referring to the MO distribution with respect to the central Mg ion of Chl a and the surrounding atoms. On this basis, new approaches for the investigations of dynamic processes of molecules in solution and structure-function relationships of photosynthetic pigments and pigment-protein complexes in their native environment can be developed.

  5. RF absorption and ion heating in helicon sources.

    PubMed

    Kline, J L; Scime, E E; Boivin, R F; Keesee, A M; Sun, X; Mikhailenko, V S

    2002-05-13

    Experimental data are presented that are consistent with the hypothesis that anomalous rf absorption in helicon sources is due to electron scattering arising from parametrically driven ion-acoustic waves downstream from the antenna. Also presented are ion temperature measurements demonstrating anisotropic heating (T( perpendicular)>T(parallel)) at the edge of the discharge. The most likely explanation is ion-Landau damping of electrostatic slow waves at a local lower-hybrid-frequency resonance.

  6. 10J water-cooled DPSSL system based on Yb:YAG crystal edge-cladded by Cr:YAG ceramics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zheng, Jian-Gang; Yan, Xiongwei; Jiang, Xinying; Wang, Zhenguo; Li, Mingzhong; Zhang, Jun; Zhu, Qihua; Zheng, Wanguo

    2017-05-01

    Laser Inertial Fusion Energy (IFE) has been attracting the interests of the researchers around the world, because of the promising to the future energy. The Yb:YAG was broadly used in the research field of high-peak power and large energy laser with repetition-rate for IFE because of its outstanding performance, including significant thermal and mechanical capacities, long upper energy level lifetime, high quantum efficiency and highly doping capacity. But it exhibits high saturation fluence at room temperature because of the small emission and absorption cross-section. And at the same time this gain material exhibits self-absorption of laser because of the thermal population at lower laser level at room temperature. Ant it appears to have been solved by means of the cryogenic temperature, but the total efficiency of the laser system will be decreased as the use of cryogenic temperature. The amplified spontaneous emission (ASE) effect of the amplifier can be relaxed by means of edge-cladded absorption material. And the difficulties of edge cladding can be will solved as the emergence of ceramics. But at present the ceramics exhibits high scattering and many disfigurements, which limited the application in the high-power large-energy laser system. So the edge-cladding of Yb:YAG crystal will be a key issue for solution the ASE in amplifier. In this paper, we will introduce a 10J water-cooled DPSSL system, based on Yb:YAG crystal at room temperature. In this system a new edge cladding method has been used, that the Yb:YAG crystal was edge cladded by Cr:YAG ceramics, which was used as the absorption material of ASE. The amplifier was an active mirror water-cooled room temperature amplifier. With the help of this edge cladding the ASE has been lowered, and about 5 times small signal gain has been obtained in a single pass amplification, which was much higher than the earlier of 2 times. And the wavefront aberrance of the laser beam was also reduced due to the thermal

  7. Analysis of edge birefringence.

    PubMed Central

    Oldenbourg, R

    1991-01-01

    We present an experimental and theoretical study of the phenomenon of edge birefringence that appears near boundaries of transparent objects which are observed with high extinction and high resolution polarized light microscopy. As test objects, thin flakes of isotropic KCl crystals were immersed in media of various refractive indices. The measured retardation near crystal edges increased linearly with both the crystal thickness (tested between 0.3 and 1 micron), and the difference in refractive indices n between crystal (n = 1.49) and immersion liquids (n between 1.36 and 1.62). The specific edge birefringence, i.e., the retardation per thickness and per refractive index difference, is 0.029 on the high refractive index side of the boundary and -0.015 on the low refractive index side. The transition through zero birefringence specifies the position of a boundary at a much higher precision than predicted by the diffraction limit of the optical setup. The theoretical study employs a ray tracing procedure modeling the change in phase and polarization of rays passing through the specimen. We find good agreement between the model calculations and the experimental results indicating that edge birefringence can be attributed to the change in polarization of light that is refracted and reflected by dielectric interfaces. Images FIGURE 1 FIGURE 3 FIGURE 4 PMID:1932552

  8. Total edge irregularity strength of (n,t)-kite graph

    NASA Astrophysics Data System (ADS)

    Winarsih, Tri; Indriati, Diari

    2018-04-01

    Let G(V, E) be a simple, connected, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ :V(G)\\cup E(G)\\to \\{1,2,\\ldots,k\\} of a graph G is a labeling of vertices and edges of G in such a way that for any different edges e and f, weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The total edge irregularity strength of G, tes(G), is defined as the minimum k for which a graph G has an edge irregular total k-labeling. An (n, t)-kite graph consist of a cycle of length n with a t-edge path (the tail) attached to one vertex of a cycle. In this paper, we investigate the total edge irregularity strength of the (n, t)-kite graph, with n > 3 and t > 1. We obtain the total edge irregularity strength of the (n, t)-kite graph is tes((n, t)-kite) = \\lceil \\frac{n+t+2}{3}\\rceil .

  9. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Takezawa, Kei; Oda, Tetsuji

    2009-08-01

    Atomic oxygen is measured in the afterglow of pulsed positive corona discharge using time-resolved two-photon absorption laser-induced fluorescence. The discharge occurs in a 14 mm point-to-plane gap in dry air. After the discharge pulse, the atomic oxygen density decreases at a rate of 5×104 s-1. Simultaneously, ozone density increases at almost the same rate, where the ozone density is measured using laser absorption method. This agreement between the increasing rate of atomic oxygen and decreasing rate of ozone proves that ozone is mainly produced by the well-known three-body reaction, O+O2+M→O3+M. No other process for ozone production such as O2(v)+O2→O3+O is observed. The spatial distribution of atomic oxygen density is in agreement with that of the secondary streamer luminous intensity. This agreement indicates that atomic oxygen is mainly produced in the secondary streamer channels, not in the primary streamer channels.

  10. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, J.C.

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal IImore » EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.« less

  11. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  12. In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Suhas; Department of Electrical Engineering, Stanford University, Stanford, California 94305; Graves, Catherine E.

    2015-07-21

    Memristors are receiving keen interest because of their potential varied applications and promising large-scale information storage capabilities. Tantalum oxide is a memristive material that has shown promise for high-performance nonvolatile computer memory. The microphysics has been elusive because of the small scale and subtle physical changes that accompany conductance switching. In this study, we probed the atomic composition, local chemistry, and electronic structure of functioning tantalum oxide memristors through spatially mapped O K-edge x-ray absorption. We developed a time-multiplexed spectromicroscopy technique to enhance the weak and possibly localized oxide modifications with spatial and spectral resolutions of <30 nm and 70 meV, respectively.more » During the initial stages of conductance switching of a micrometer sized crosspoint device, the spectral changes were uniform within the spatial resolution of our technique. When the device was further driven with millions of high voltage-pulse cycles, we observed lateral motion and separation of ∼100 nm-scale agglomerates of both oxygen interstitials and vacancies. We also demonstrate a unique capability of this technique by identifying the relaxation behavior in the material during electrical stimuli by identifying electric field driven changes with varying pulse widths. In addition, we show that changes to the material can be localized to a spatial region by modifying its topography or uniformity, as against spatially uniform changes observed here during memristive switching. The goal of this report is to introduce the capability of time-multiplexed x-ray spectromicroscopy in studying weak-signal transitions in inhomogeneous media through the example of the operation and temporal evolution of a memristor.« less

  13. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    NASA Astrophysics Data System (ADS)

    Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh

    2016-10-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.

  14. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-04-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  15. Numerical Investigations of the Influence of Unsteady Vane Trailing Edge Shock Wave on Film Cooling Effectiveness of Rotor Blade Leading Edge

    NASA Astrophysics Data System (ADS)

    Wang, Yufeng; Cai, Le; Wang, Songtao; Zhou, Xun

    2018-04-01

    Unsteady numerical simulations of a high-load transonic turbine stage have been carried out to study the influences of vane trailing edge outer-extending shockwave on rotor blade leading edge film cooling performance. The turbine stage used in this paper is composed of a vane section and a rotor one which are both near the root section of a transonic high-load turbine stage. The Mach number is 0.94 at vane outlet, and the relative Mach number is above 1.10 at rotor outlet. Various positions and oblique angles of film cooling holes were investigated in this research. Results show that the cooling efficiency on the blade surface of rotor near leading edge is significantly affected by vane trailing edge outer-extending shockwave in some cases. In the cases that film holes are close to leading edge, cooling performance suffers more from the sweeping vane trailing edge outer-extending shockwave. In addition, coolant flow ejected from oblique film holes is harder to separate from the blade surface of rotor, and can cover more blade area even under the effects of sweeping vane trailing edge shockwave. As a result, oblique film holes can provide better film cooling performance than vertical film holes do near the leading edge on turbine blade which is swept by shockwaves.

  16. X-ray relative intensities at incident photon energies across the L{sub i} (i=1–3) absorption edges of elements with 35≤Z≤92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Sanjiv, E-mail: sanjivpurichd@yahoo.com

    The intensity ratios, I{sub Lk}/I{sub Lα1} (k=l,η,α{sub 2},β{sub 1},β{sub 2,15},β{sub 3},β{sub 4},β{sub 5,7},β{sub 6},β{sub 9,10},γ{sub 1,5},γ{sub 6,8},γ{sub 2,3},γ{sub 4}) and I{sub Lj}/I{sub Lα} (j=β,γ), have been evaluated at incident photon energies across the L{sub i} (i=1–3) absorption edge energies of all the elements with 35≤Z≤92. Use is made of what are currently considered to be more reliable theoretical data sets of different physical parameters, namely, the L{sub i} (i=1–3) sub-shell photoionization cross sections based on the relativistic Hartree–Fock–Slater (RHFS) model, the X-ray emission rates based on the Dirac–Fock model, and the fluorescence and Coster–Kronig yields based on the Dirac–Hartree–Slater model.more » In addition, the Lα{sub 1} X-ray production cross sections for different elements at various incident photon energies have been tabulated so as to facilitate the evaluation of production cross sections for different resolved L X-ray components from the tabulated intensity ratios. Further, to assist evaluation of the prominent (L{sub i}−S{sub j}) (S{sub j}=M{sub j}, N{sub j} and i=1–3, j=1–7) resonant Raman scattered (RRS) peak energies for an element at a given incident photon energy (below the L{sub i} sub-shell absorption edge), the neutral-atom electron binding energies based on the relaxed orbital RHFS calculations are also listed so as to enable identification of the RRS peaks, which can overlap with the fluorescent X-ray lines. -- Highlights: •The L X-ray relative intensities and Lα{sub 1} XRP cross sections are evaluated using physical parameters based on the IPA models. •Comparison of the intensity ratios evaluated using the DHS and DF models based photoionization cross sections is presented. •Importance of many body effects including electron exchange effects is highlighted.« less

  17. Inhibition of linear absorption in opaque materials using phase-locked harmonic generation.

    PubMed

    Centini, Marco; Roppo, Vito; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-09-12

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs, in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates 650 and 435 nm second- and third-harmonic pulses that propagate across a 450-microm-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress on them its dispersive properties.

  18. Structural evidence for the sorption of Ni(II) atoms on the edges of montmorillonite clay minerals: a polarized X-ray absorption fine structure study

    NASA Astrophysics Data System (ADS)

    Dähn, Rainer; Scheidegger, André M.; Manceau, Alain; Schlegel, Michel L.; Baeyens, Bart; Bradbury, Michael H.; Chateigner, Daniel

    The nature of surface complexes formed on Ni uptake onto montmorillonite (a dioctahedral smectite) has been investigated over an extended time period by polarized extended X-ray absorption fine structure (P-EXAFS) spectroscopy. Self-supporting films of Ni-sorbed montmorillonite were prepared by contacting Ni and montmorillonite at pH 7.2, high ionic strength (0.3 M NaClO 4), and low Ni concentration ([Ni] initial = 19.9 μM) for 14- and 360-d reaction time. The resulting Ni concentration on the clay varied from 4 to 7 μmol/g. Quantitative texture analysis indicates that the montmorillonite particles were well orientated with respect to the plane of the film. The full width at half maximum of the orientation distribution of the c* axes of individual clay platelets about the normal to the film plane was 44.3° (14-d reaction time) and 47.1° (360-d reaction time). These values were used to correct the coordination numbers determined by P-EXAFS for texture effects. Ni K-edge P-EXAFS spectra were recorded at angles between the incident beam and the film normal equal to 10, 35, 55, and 80°. Spectral analysis led to the identification of three nearest cationic subshells containing 2.0 ± 0.5 Al at 3.0 Å and 2.0 ± 0.5 Si at 3.12 Å and 4.0 ± 0.5 Si at 3.26 Å. These distances are characteristic of edge-sharing linkages between Al and Ni octahedra and of corner-sharing linkages between Ni octahedra and Si tetrahedra, as in clay structures. The angular dependence of the Ni-Al and Ni-Si contributions indicates that Ni-Al pairs are oriented parallel to the film plane, whereas Ni-Si pairs are not. The study reveals the formation of Ni inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and thus that heavy metals binding to edge sites is a possible sorption mechanism for dioctahedral smectites. Data analysis further suggests that either the number of neighboring Al atoms slightly increases from 1.6 to 2 or that the structural order

  19. Linear array optical edge sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1987-01-01

    A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.

  20. Analysis of sulfidic linkages formed in natural rubber latex medical gloves by using X-ray absorption near edge structure

    NASA Astrophysics Data System (ADS)

    Chankrachang, M.; Limphirat, W.; Yongyingsakthavorn, P.; Nontakaew, U.; Tohsan, A.

    2017-09-01

    A study of sulfidic linkages formed in natural rubber (NR) latex medical gloves by using X-ray Absorption Near Edge Structure (XANES) is presented in this paper. The NR latex compound was prepared by using prevulcanization method, that is, it was prevulcanized at room temperature for 24 hrs before utilization. After the 24 hrs of prevulcanization, the latex film samples were obtained by dipping process. The dipped films were subjected to vulcanize at 110°C for 5 to 25 min. It was observed that after the compound was prevulcanized for 24 hrs, polysulfidic linkages were mainly formed in the sample. It was however found that after curing at 110°C for 5-25 min, the polysulfidic linkages are tended to change into disulfide linkages. Especially, in the case of 25 minutes cured sample, disulfide linkages are found to be the main linkages. In term of tensile strength, it was observed that when cure time increased from 5 - 10 min, tensile strengths were also increased. But when the cure time of the film is 25 minutes, tensile strength was slightly dropped. The dropped of tensile strength when cure time is longer than 10 minutes can be ascribed to a degradation of polysulfidic and disulfidic linkages during curing. Therefore, by using XANES analysis, it was found to be very useful to understand the cure characteristic, thus it can be very helpful to optimize cure time and tensile properties of the product.

  1. The effect of site geometry, Ti content and Ti oxidation state on the Ti K-edge XANES spectrum of synthetic hibonite

    NASA Astrophysics Data System (ADS)

    Doyle, P. M.; Berry, A. J.; Schofield, P. F.; Mosselmans, J. F. W.

    2016-08-01

    The Al-rich oxide hibonite (CaAl12O19) is modeled to be the second mineral to condense from a gas of solar composition and is found within calcium-aluminum-rich inclusions and the matrix of chondritic meteorites. Both Ti3+ and Ti4+ are reported in meteoritic hibonite, so hibonite has been proposed as a single mineral oxybarometer that could be used to elucidate conditions within the first 0.2 Myrs of the Solar System. Synthetic hibonites with Ti3+/(Ti3+ + Ti4+) (hereafter Ti3+/ΣTi) ranging between 0 and 1 were prepared as matrix-matched standards for meteoritic hibonite. The largest yield of both Ti-free and Ti-bearing hibonite at ∼1300 and ∼1400 °C was obtained by a single sinter under reducing conditions. In situ micro-beam Ti K-edge X-ray absorption near edge structure (XANES) spectra were recorded from the synthetic hibonites, as well as from terrestrial hibonite. Spectral features in the post-crest region were shown to correlate with the Ti4+ content. Furthermore, Ti4+ on the M2 trigonal bipyramidal and the adjoining M4 octahedral sites appears to cause variability in the post-crest region as a function of orientation. For this suite of synthetic hibonites it was observed that the pre-edge peak region is not influenced by orientation, but is controlled by Ti3+/ΣTi, site geometry and/or Ti concentration. In particular, the pre-edge peak intensities reflect Ti coordination environment and distortion of the M4 octahedral site. Therefore, although pre-edge peak intensities have previously been used to determine Ti3+/ΣTi in meteoritic minerals, we excluded use of the pre-edge peak intensities for quantifying Ti valence states in hibonite. The energy of the absorption edge at a normalized intensity of 0.8 (E0.8) and the energy of the minimum between the pre-edge region and the absorption edge (Em1) were found to vary systematically with Ti3+/ΣTi. Ti3+/ΣTi in hibonite as a function of Em1 was modeled by a quadratic function that may be used to quantify Ti3

  2. A next generation processing system for edging and trimming

    Treesearch

    A. Lynn Abbott; Daniel L. Schmoldt; Philip A. Araman

    2000-01-01

    This paper describes a prototype scanning system that is being developed for the processing of rough hardwood lumber. The overall goal of the system is to automate the selection of cutting positions for the edges and ends of rough, green lumber. Such edge and trim cuts are typically performed at sawmills in an effort to increase board value prior to sale, and this...

  3. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.

    PubMed

    Jia, Chuankun; Liu, Qi; Sun, Cheng-Jun; Yang, Fan; Ren, Yang; Heald, Steve M; Liu, Yadong; Li, Zhe-Fei; Lu, Wenquan; Xie, Jian

    2014-10-22

    Synchrotron-based in situ X-ray near-edge absorption spectroscopy (XANES) has been used to study the valence state evolution of the vanadium ion for both the catholyte and anolyte in all-vanadium redox flow batteries (VRB) under realistic cycling conditions. The results indicate that, when using the widely used charge-discharge profile during the first charge process (charging the VRB cell to 1.65 V under a constant current mode), the vanadium ion valence did not reach V(V) in the catholyte and did not reach V(II) in the anolyte. Consequently, the state of charge (SOC) for the VRB cell was only 82%, far below the desired 100% SOC. Thus, such incompletely charged mix electrolytes results in not only wasting the electrolytes but also decreasing the cell performance in the following cycles. On the basis of our study, we proposed a new charge-discharge profile (first charged at a constant current mode up to 1.65 V and then continuously charged at a constant voltage mode until the capacity was close to the theoretical value) for the first charge process that achieved 100% SOC after the initial charge process. Utilizing this new charge-discharge profile, the theoretical charge capacity and the full utilization of electrolytes has been achieved, thus having a significant impact on the cost reduction of the electrolytes in VRB.

  4. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  5. Edge detection and localization with edge pattern analysis and inflection characterization

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2012-05-01

    In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge

  6. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  7. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; ...

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  8. Nuclear Fuel Assay through analysis of Uranium L-shell by Hybrid L-edge/XRF Densitometer using a Surrogate Material

    NASA Astrophysics Data System (ADS)

    Park, Seunghoon; Joung, Sungyeop; Park, Jerry AB(; ), AC(; )

    2018-01-01

    Assay of L-series of nuclear material solution is useful for determination of amount of nuclear materials and ratio of minor actinide in the materials. The hybrid system of energy dispersive X-ray absorption edge spectrometry, i.e. L-edge densitometry, and X-ray fluorescence spectrometry is one of the analysis methods. The hybrid L-edge/XRF densitometer can be a promising candidate for a portable and compact equipment due to advantage of using low energy X-ray beams without heavy shielding systems and liquid nitrogen cooling compared to hybrid K-edge/XRF densitometer. A prototype of the equipment was evaluated for feasibility of the nuclear material assay using a surrogate material (lead) to avoid radiation effects from nuclear materials. The uncertainty of L-edge and XRF characteristics of the sample material and volume effects was discussed in the article.

  9. New acoustical technology of sound absorption based on reverse horn

    NASA Astrophysics Data System (ADS)

    Zhang, Yong Yan; Wu, Jiu Hui; Cao, Song Hua; Cao, Pei; Zhao, Zi Ting

    2016-12-01

    In this paper, a novel reverse horn’s sound-absorption mechanism and acoustic energy focusing mechanism for low-frequency broadband are presented. Due to the alternation of the reverse horn’s thickness, the amplitude of the acoustic pressure propagated in the structure changes, which results in growing energy focused in the edge and in the reverse horn’s tip when the characteristic length is equal to or less than a wavelength and the incident wave is compressed. There are two kinds of methods adopted to realize energy dissipation. On the one hand, sound-absorbing materials are added in incident direction in order to overcome the badness of the reverse horn’s absorption in high frequency and improve the overall high-frequency and low-frequency sound-absorption coefficients; on the other hand, adding mass and film in its tip could result in mechanical energy converting into heat energy due to the coupled vibration of mass and the film. Thus, the reverse horn with film in the tip could realize better sound absorption for low-frequency broadband. These excellent properties could have potential applications in the one-dimensional absorption wedge and for the control of acoustic wave.

  10. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima; Kardynal, Beata; Malureanu, Radu; Mortensen, N. Asger; Lavrinenko, Andrei V.

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  11. Measurement of InAsSb bandgap energy and InAs/InAsSb band edge positions using spectroscopic ellipsometry and photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, P. T.; Riordan, N. A.; Liu, S.

    2015-12-28

    The structural and optical properties of lattice-matched InAs{sub 0.911}Sb{sub 0.089} bulk layers and strain-balanced InAs/InAs{sub 1−x}Sb{sub x} (x ∼ 0.1–0.4) superlattices grown on (100)-oriented GaSb substrates by molecular beam epitaxy are examined using X-ray diffraction, spectroscopic ellipsometry, and temperature dependent photoluminescence spectroscopy. The photoluminescence and ellipsometry measurements determine the ground state bandgap energy and the X-ray diffraction measurements determine the layer thickness and mole fraction of the structures studied. Detailed modeling of the X-ray diffraction data is employed to quantify unintentional incorporation of approximately 1% Sb into the InAs layers of the superlattices. A Kronig-Penney model of the superlattice miniband structure ismore » used to analyze the valence band offset between InAs and InAsSb, and hence the InAsSb band edge positions at each mole fraction. The resulting composition dependence of the bandgap energy and band edge positions of InAsSb are described using the bandgap bowing model; the respective low and room temperature bowing parameters for bulk InAsSb are 938 and 750 meV for the bandgap, 558 and 383 meV for the conduction band, and −380 and −367 meV for the valence band.« less

  12. Tablet compression tooling - Impact of punch face edge modification.

    PubMed

    Anbalagan, Parthiban; Heng, Paul Wan Sia; Liew, Celine Valeria

    2017-05-30

    The influence of punch face edge geometry modification on tablet compression and the properties of the resultant tablets produced on a rotary press were investigated. The results revealed that tablets produced from the punches with radius edge face geometry consistently displayed better physical quality; higher tensile strength and lower capping tendency. Modification of the angled edge of the bevel face to the curved edge of the radius face, enabled deeper punch penetration in the die cavity during the compression cycle, bringing about greater compact densification. Improved die fill packing increased interparticulate bond formation and helped to dissipate destructive elasticity within the compact, consequently reduced tablet expansion during the decompression phase. The positive impact of punch face edge modification was also more noticeable at a higher turret speed. The application of the precompression force along with dwell time extension amplified the tableting performance of radius edge punch face design to a greater extent when compared to bevel edge punch face design. This could be attributed to the enhanced packing efficiency at both precompression and main compression stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  14. Multifractality in plasma edge electrostatic turbulence

    NASA Astrophysics Data System (ADS)

    Neto, C. Rodrigues; Guimarães-Filho, Z. O.; Caldas, I. L.; Nascimento, I. C.; Kuznetsov, Yu. K.

    2008-08-01

    Plasma edge turbulence in Tokamak Chauffage Alfvén Brésilien (TCABR) [R. M. O. Galvão et al., Plasma Phys. Contr. Fusion 43, 1181 (2001)] is investigated for multifractal properties of the fluctuating floating electrostatic potential measured by Langmuir probes. The multifractality in this signal is characterized by the full multifractal spectra determined by applying the wavelet transform modulus maxima. In this work, the dependence of the multifractal spectrum with the radial position is presented. The multifractality degree inside the plasma increases with the radial position reaching a maximum near the plasma edge and becoming almost constant in the scrape-off layer. Comparisons between these results with those obtained for random test time series with the same Hurst exponents and data length statistically confirm the reported multifractal behavior. Moreover, the persistence of these signals, characterized by their Hurst exponent, present radial profile similar to the deterministic component estimated from analysis based on dynamical recurrences.

  15. Electronic properties and optical absorption of a phosphorene quantum dot

    NASA Astrophysics Data System (ADS)

    Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.

    2018-03-01

    Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.

  16. Safety improvement from edge lines on rural two-lane highways : tech summary.

    DOT National Transportation Integrated Search

    2012-01-01

    The previous study "Impact of Edge Lines on Safety of Rural Two-Lane Highways" completed in 2005 concluded that, : with edge lines, centralization of a vehicle's position is more apparent during nighttime, which reduces the risk of runoff : -road (RO...

  17. X-ray absorption spectra: Graphene, h-BN, and their alloy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Somnath; Rusz, Jan; Eriksson, Olle

    2013-04-01

    Using first-principles density functional theory calculations, in conjunction with the Mahan-Nozières-de Dominicis theory, we calculate the x-ray absorption spectra of the alloys of graphene and monolayer hexagonal boron nitride on a Ni (111) substrate. The chemical neighborhood of the constituent atoms (B, C, and N) inside the alloy differs from that of the parent phases. In a systematic way, we capture the change in the K-edge spectral shape, depending on the chemical neighborhood of B, C, and N. Our work also reiterates the importance of the dynamical core-hole screening for a proper description of the x-ray absorption process in sp2-bonded layered materials.

  18. Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials

    NASA Astrophysics Data System (ADS)

    von Blanckenhagen, Bernhard; Tonova, Diana; Ullmann, Jens

    2002-06-01

    Recent progress in ellipsometry instrumentation permits precise measurement and characterization of optical coating materials in the deep-UV wavelength range. Dielectric coating materials exhibit their first electronic interband transition in this spectral range. The Tauc-Lorentz model is a powerful tool with which to parameterize interband absorption above the band edge. The application of this model for the parameterization of the optical absorption of TiO2, Ta2O5, HfO2, Al2O3, and LaF3 thin-film materials is described.

  19. Efficient reverse saturable absorption of sol-gel hybrid plasmonic glasses

    NASA Astrophysics Data System (ADS)

    Lundén, H.; Lopes, C.; Lindgren, M.; Liotta, A.; Chateau, D.; Lerouge, F.; Chaput, F.; Désert, A.; Parola, S.

    2017-07-01

    Monolithic silica sol-gel glasses doped with platinum(II) acetylide complexes possessing respectively four or six phenylacetylene units (PE2-CH2OH and PE3-CH2OH) in combination with various concentrations of spherical and bipyramidal gold nanoparticles (AuNPs) known to enhance non-linear optical absorption, were prepared and polished to high optical quality. The non-linear absorption of the glasses was measured and compared to glasses doped solely with AuNPs, a platinum(II) acetylide with shorter delocalized structure, or combinations of both. At 532 nm excitation wavelength the chromophore inhibited the non-linear scattering previously found for glasses only doped with AuNPs. The measured non-linear absorption was attributed to reverse saturable absorption from the chromophore, as previously reported for PE2-CH2OH/AuNP glasses. At 600 nm strong nonlinear absorption was observed for the PE3-CH2OH/AuNPs glasses, also attributed to reverse saturable absorption. But contrary to previous findings for PE2-CH2OH/AuNPs, no distinct enhancement of the non-linear absorption for PE3-CH2OH/AuNPs was observed. A numerical population model for PE3-CH2OH was used to give a qualitative explanation of this difference. A stronger linear absorption in PE3-CH2OH would cause the highly absorbing triplet state to populate quicker during the leading edge of the laser pulse and this would in turn reduce the influence from two-photon absorption enhancement from AuNPs.

  20. A synthetic genetic edge detection program.

    PubMed

    Tabor, Jeffrey J; Salis, Howard M; Simpson, Zachary Booth; Chevalier, Aaron A; Levskaya, Anselm; Marcotte, Edward M; Voigt, Christopher A; Ellington, Andrew D

    2009-06-26

    Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E. coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks.

  1. A Synthetic Genetic Edge Detection Program

    PubMed Central

    Tabor, Jeffrey J.; Salis, Howard; Simpson, Zachary B.; Chevalier, Aaron A.; Levskaya, Anselm; Marcotte, Edward M.; Voigt, Christopher A.; Ellington, Andrew D.

    2009-01-01

    Summary Edge detection is a signal processing algorithm common in artificial intelligence and image recognition programs. We have constructed a genetically encoded edge detection algorithm that programs an isogenic community of E.coli to sense an image of light, communicate to identify the light-dark edges, and visually present the result of the computation. The algorithm is implemented using multiple genetic circuits. An engineered light sensor enables cells to distinguish between light and dark regions. In the dark, cells produce a diffusible chemical signal that diffuses into light regions. Genetic logic gates are used so that only cells that sense light and the diffusible signal produce a positive output. A mathematical model constructed from first principles and parameterized with experimental measurements of the component circuits predicts the performance of the complete program. Quantitatively accurate models will facilitate the engineering of more complex biological behaviors and inform bottom-up studies of natural genetic regulatory networks. PMID:19563759

  2. Edge effect modeling of small tool polishing in planetary movement

    NASA Astrophysics Data System (ADS)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  3. Small angle x-ray scattering with edge-illumination

    NASA Astrophysics Data System (ADS)

    Modregger, Peter; Cremona, Tiziana P.; Benarafa, Charaf; Schittny, Johannes C.; Olivo, Alessandro; Endrizzi, Marco

    2016-08-01

    Sensitivity to sub-pixel sample features has been demonstrated as a valuable capability of phase contrast x-ray imaging. Here, we report on a method to obtain angular-resolved small angle x-ray scattering distributions with edge-illumination- based imaging utilizing incoherent illumination from an x-ray tube. Our approach provides both the three established image modalities (absorption, differential phase and scatter strength), plus a number of additional contrasts related to unresolved sample features. The complementarity of these contrasts is experimentally validated by using different materials in powder form. As a significant application example we show that the extended complementary contrasts could allow the diagnosis of pulmonary emphysema in a murine model. In support of this, we demonstrate that the properties of the retrieved scattering distributions are consistent with the expectation of increased feature sizes related to pulmonary emphysema. Combined with the simplicity of implementation of edge-illumination, these findings suggest a high potential for exploiting extended sub-pixel contrasts in the diagnosis of lung diseases and beyond.

  4. Automated edge finishing using an active XY table

    DOEpatents

    Loucks, Clifford S.; Starr, Gregory P.

    1993-01-01

    The disclosure is directed to an apparatus and method for automated edge finishing using hybrid position/force control of an XY table. The disclosure is particularly directed to learning the trajectory of the edge of a workpiece by "guarded moves". Machining is done by controllably moving the XY table, with the workpiece mounted thereon, along the learned trajectory with feedback from a force sensor. Other similar workpieces can be mounted, without a fixture on the XY table, located and the learned trajectory adjusted

  5. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  6. Transaortic Alfieri Edge-to-Edge Repair for Functional Mitral Regurgitation.

    PubMed

    Imasaka, Ken-Ichi; Tayama, Eiki; Morita, Shigeki; Toriya, Ryohei; Tomita, Yukihiro

    2018-03-01

    There is controversy about handling functional mitral regurgitation in patients undergoing aortic valve or proximal aortic operations. We describe a transaortic Alfieri edge-to-edge repair for functional mitral regurgitation that reduces operative excessive invasion and prolonged cardiopulmonary bypass time. Between May 2013 and December 2016, 10 patients underwent transaortic Alfieri edge-to-edge mitral repair. There were no operative deaths. The severity of mitral regurgitation immediately after the operation by transesophageal echocardiography was none or trivial in all patients. A transaortic Alfieri edge-to-edge repair for functional mitral regurgitation is a simple and safe approach. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. On the Total Edge Irregularity Strength of Generalized Butterfly Graph

    NASA Astrophysics Data System (ADS)

    Dwi Wahyuna, Hafidhyah; Indriati, Diari

    2018-04-01

    Let G(V, E) be a connected, simple, and undirected graph with vertex set V and edge set E. A total k-labeling is a map that carries vertices and edges of a graph G into a set of positive integer labels {1, 2, …, k}. An edge irregular total k-labeling λ: V(G) ∪ E(G) → {1, 2, …, k} of a graph G is a total k-labeling such that the weights calculated for all edges are distinct. The weight of an edge uv in G, denoted by wt(uv), is defined as the sum of the label of u, the label of v, and the label of uv. The total edge irregularity strength of G, denoted by tes(G), is the minimum value of the largest label k over all such edge irregular total k-labelings. A generalized butterfly graph, BFn , obtained by inserting vertices to every wing with assumption that sum of inserting vertices to every wing are same then it has 2n + 1 vertices and 4n ‑ 2 edges. In this paper, we investigate the total edge irregularity strength of generalized butterfly graph, BFn , for n > 2. The result is tes(B{F}n)=\\lceil \\frac{4n}{3}\\rceil .

  8. Living on the edge: roads and edge effects on small mammal populations.

    PubMed

    Fuentes-Montemayor, Elisa; Cuarón, Alfredo D; Vázquez-Domínguez, Ella; Benítez-Malvido, Julieta; Valenzuela-Galván, David; Andresen, Ellen

    2009-07-01

    1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides

  9. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    ERIC Educational Resources Information Center

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  10. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    PubMed

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  11. Edge-functionalization of armchair graphene nanoribbons with pentagonal-hexagonal edge structures.

    PubMed

    Ryou, Junga; Park, Jinwoo; Kim, Gunn; Hong, Suklyun

    2017-06-21

    Using density functional theory calculations, we have studied the edge-functionalization of armchair graphene nanoribbons (AGNRs) with pentagonal-hexagonal edge structures. While the AGNRs with pentagonal-hexagonal edge structures (labeled (5,6)-AGNRs) are metallic, the edge-functionalized (5,6)-AGNRs with substitutional atoms opens a band gap. We find that the band structures of edge-functionalized (5,6)-N-AGNRs by substitution resemble those of defect-free (N-1)-AGNR at the Γ point, whereas those at the X point show the original ones of the defect-free N-AGNR. The overall electronic structures of edge-functionalized (5,6)-AGNRs depend on the number of electrons, supplied by substitutional atoms, at the edges of functionalized (5,6)-AGNRs.

  12. Oxide ion diffusion mechanism related to Co and Fe ions in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ using in-situ X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Itoh, Takanori; Imai, Hideto

    2018-03-01

    The time changes of the white line and pre-edge intensities of Co and Fe K-edge in (Ba0.5Sr0.5)(Co0.8Fe0.2)O3-δ (BSCF) were observed to estimate the oxide ion diffusion related to Co and Fe ions by using in - situ X-ray absorption spectroscopy (XAS) during oxidation. The 20 μm self-standing BSCF film was prepared for in - situ XAS measurements. The time changes of absorption were fitted to the exponential decay function with two terms. The longer relaxation time (τ), related to the oxide ion diffusion during the oxidation of BSCF, is dependent on temperature. The oxide ion diffusion coefficients (D) were calculated from the τ s estimated by in - situ XAS. The values of the activation energy (Ea) for D related to Co K-edge white line, Co pre-edge, and Fe pre-edge were 1.8-2.0 eV. The value of Ea for D related to Fe K-edge white line, however, was higher than other absorption values at approximately 2.3 eV. We discussed the oxide ion diffusion mechanism related to Co and Fe ions in BSCF using in - situ XAS.

  13. Polarity control of h-BN nanoribbon edges by strain and edge termination.

    PubMed

    Yamanaka, Ayaka; Okada, Susumu

    2017-03-29

    We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.

  14. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    PubMed

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-02

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  15. Reflectivity Around the Gold M-Edges of X-ray Reflector of the Soft X-Ray Telescope Onboard ASTRO-H

    NASA Technical Reports Server (NTRS)

    Kurashimaa, Sho; Furuzawa, Akihiro; Sato, Toshiki; Kikuchia, Naomichi; Nakaniwaa, Nozomi; Maeda, Yoshitomo; Ishida, Manabu; Izuka, Ryo; Okajima, Takashi; Mori, Hideyuki; hide

    2016-01-01

    The X-ray astronomy satellite ASTRO-H are equipped with two equivalent soft X-ray telescopes (SXT-I and SXT-S) which cover the energy band 0.3-12 keV. The X-ray reflectors of the SXTs are coated with a gold monolayer by means of the replication technique. A series of gold M absorption edges in the 2-4 keV band causes complex structures in the energy response of the SXTs. In the same band, there are astrophysically important emission lines from Si, Ar and S. Since the SXS has unprecedentedly high spectral resolution, we have measured the reflectivity around the gold M-edges in an extremely fine energy pitch at the synchrotron radiation facility KEK PF BL11-B, with the 2 eV pitch in 2100 eV to 4100 eV band that covers the entire series of the absorption edges (M-I through M-V) at grazing incident angles to the reflectors of 0.5, 0.8, 1.0, 1.2, 1.4 degree, and with a finer pitch of 0.25 eV in the 2200 eV to 2350 eV band where the two deepest M-IV and M-V edges are included. In the resultant reflectivity curves, we have clearly identified the fine structures associated with all the M-edges. Using these data, we calculated atomic scattering factor f1 as a function of X-ray energy, with which we have built the mirror response function which can be applied to the Suzaku spectra. As a result, we have found that discrepancy of the spectral model to the Suzaku data of 4U1630-472 (a black hole transient) and the Crab nebula around the M-edges are significantly reduced from those with the official Suzaku response.

  16. Depth Profile of Induced Magnetic Polarization in Cu Layers of Co/Cu(111) Metallic Superlattices by Resonant X-ray Magnetic Scattering at the Cu K Absorption Edge

    NASA Astrophysics Data System (ADS)

    Uegaki, Shin; Yoshida, Akihiro; Hosoito, Nobuyoshi

    2015-03-01

    We investigated induced spin polarization of 4p conduction electrons in Cu layers of antiferromagnetically (AFM) and ferromagnetically (FM) coupled Co/Cu(111) metallic superlattices by resonant X-ray magnetic scattering at the Cu K absorption edge. Magnetic reflectivity profiles of the two superlattices were measured in the magnetic saturation state with circularly polarized synchrotron radiation X-rays at 8985 eV. Depth profiles of the resonant magnetic scattering length of Cu, which corresponds to the induced spin polarization of Cu, were evaluated in the two Co/Cu superlattices by analyzing the observed magnetic reflectivity profiles. We demonstrated that the spin polarization induced in the Cu layer was distributed around the Co/Cu interfaces with an attenuation length of several Å in both AFM and FM coupled superlattices. The uniform component, which exists in Au layers of Fe/Au(001) superlattices, was not found in the depth distribution of induced magnetic polarization in the Cu layers of Co/Cu(111) superlattices.

  17. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, B. I.; Cho, M. S.; Kim, M.

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  18. Observation of Reverse Saturable Absorption of an X-ray Laser

    DOE PAGES

    Cho, B. I.; Cho, M. S.; Kim, M.; ...

    2017-08-16

    A nonlinear absorber in which the excited state absorption is larger than the ground state can undergo a process called reverse saturable absorption. It is a well-known phenomenon in laser physics in the optical regime, but is more difficult to generate in the x-ray regime, where fast nonradiative core electron transitions typically dominate the population kinetics during light matter interactions. Here, we report the first observation of decreasing x-ray transmission in a solid target pumped by intense x-ray free electron laser pulses. The measurement has been made below the K-absorption edge of aluminum, and the x-ray intensity ranges are 10more » 16 –10 17 W=cm 2. It has been confirmed by collisional radiative population kinetic calculations, underscoring the fast spectral modulation of the x-ray pulses and charge states relevant to the absorption and transmission of x-ray photons. The processes shown through detailed simulations are consistent with reverse saturable absorption, which would be the first observation of this phenomena in the x-ray regime. These light matter interactions provide a unique opportunity to investigate optical transport properties in the extreme state of matters, as well as affording the potential to regulate ultrafast x-ray freeelectron laser pulses.« less

  19. Researches on Position Detection for Vacuum Switch Electrode

    NASA Astrophysics Data System (ADS)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  20. Understanding the Electronic Structure of 4d Metal Complexes: From Molecular Spinors to L-Edge Spectra of a di-Ru Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperovich, Igor; Smolentsev, Grigory; Moonshiram, Dooshaye

    2015-09-17

    L{sub 2,3}-edge X-ray absorption spectroscopy (XAS) has demonstrated unique capabilities for the analysis of the electronic structure of di-Ru complexes such as the blue dimer cis,cis-[Ru{sub 2}{sup III}O(H{sub 2}O){sub 2}(bpy){sub 4}]{sup 4+} water oxidation catalyst. Spectra of the blue dimer and the monomeric [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex show considerably different splitting of the Ru L{sub 2,3} absorption edge, which reflects changes in the relative energies of the Ru 4d orbitals caused by hybridization with a bridging ligand and spin-orbit coupling effects. To aid the interpretation of spectroscopic data, we developed a new approach, which computes L{sub 2,3}-edges XASmore » spectra as dipole transitions between molecular spinors of 4d transition metal complexes. This allows for careful inclusion of the spin-orbit coupling effects and the hybridization of the Ru 4d and ligand orbitals. The obtained theoretical Ru L{sub 2,3}-edge spectra are in close agreement with experiment. Critically, existing single-electron methods (FEFF, FDMNES) broadly used to simulate XAS could not reproduce the experimental Ru L-edge spectra for the [Ru(NH{sub 3}){sub 6}]{sup 3+} model complex nor for the blue dimer, while charge transfer multiplet (CTM) calculations were not applicable due to the complexity and low symmetry of the blue dimer water oxidation catalyst. We demonstrated that L-edge spectroscopy is informative for analysis of bridging metal complexes. The developed computational approach enhances L-edge spectroscopy as a tool for analysis of the electronic structures of complexes, materials, catalysts, and reactive intermediates with 4d transition metals.« less

  1. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    PubMed

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  2. Inelastic losses in X-ray absorption theory

    NASA Astrophysics Data System (ADS)

    Campbell, Luke Whalin

    There is a surprising lack of many body effects observed in XAS (X-ray Absorption Spectroscopy) experiments. While collective excitations and other satellite effects account for between 20% and 40% of the spectral weight of the core hole and photoelectron excitation spectrum, the only commonly observed many body effect is a relatively structureless amplitude reduction to the fine structure, typically no more than a 10% effect. As a result, many particle effects are typically neglected in the XAS codes used to predict and interpret modern experiments. To compensate, the amplitude reduction factor is simply fitted to experimental data. In this work, a quasi-boson model is developed to treat the case of XAS, when the system has both a photoelectron and a core hole. We find that there is a strong interference between the extrinsic and intrinsic losses. The interference reduces the excitation amplitudes at low energies where the core hole and photo electron induced excitations tend to cancel. At high energies, the interference vanishes, and the theory reduces to the sudden approximation. The x-ray absorption spectrum including many-body excitations is represented by a convolution of the one-electron absorption spectrum with an energy dependent spectral function. The latter has an asymmetric quasiparticle peak and broad satellite structure. The net result is a phasor sum, which yields the many body amplitude reduction and phase shift of the fine structure oscillations (EXAFS), and possibly additional satellite structure. Calculations for several cases of interest are found to be in reasonable agreement with experiment. Edge singularity effects and deviations from the final state rule arising from this theory are also discussed. The ab initio XAS code FEFF has been extended for calculations of the many body amplitude reduction and phase shift in x-ray spectroscopies. A new broadened plasmon pole self energy is added. The dipole matrix elements are modified to include a

  3. Controllable Edge Feature Sharpening for Dental Applications

    PubMed Central

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry. PMID:24741376

  4. Controllable edge feature sharpening for dental applications.

    PubMed

    Fan, Ran; Jin, Xiaogang

    2014-01-01

    This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.

  5. Responses of Euglossine Bees (Hymenoptera, Apidae, Euglossina) to an Edge-Forest Gradient in a Large Tabuleiro Forest Remnant in Eastern Brazil.

    PubMed

    Coswosk, J A; Ferreira, R A; Soares, E D G; Faria, L R R

    2018-08-01

    Euglossine fauna of a large remnant of Brazilian Atlantic forest in eastern Brazil (Reserva Natural Vale) was assessed along an edge-forest gradient towards the interior of the fragment. To test the hypotheses that the structure of assemblages of orchid bees varies along this gradient, the following predictions were evaluated: (i) species richness is positively related to distance from the forest edge, (ii) species diversity is positively related to distance from the edge, (iii) the relative abundance of species associated with forest edge and/or open areas is inversely related to the distance from edge, and (iv) relative abundance of forest-related species is positively related to distance from the edge. A total of 2264 bees of 25 species was assessed at five distances from the edge: 0 m (the edge itself), 100 m, 500 m, 1000 m and 1500 m. Data suggested the existence of an edge-interior gradient for euglossine bees regarding species diversity and composition (considering the relative abundance of edge and forest-related species as a proxy for species composition) but not species richness.

  6. Fast Time-Dependent Density Functional Theory Calculations of the X-ray Absorption Spectroscopy of Large Systems.

    PubMed

    Besley, Nicholas A

    2016-10-11

    The computational cost of calculations of K-edge X-ray absorption spectra using time-dependent density functional (TDDFT) within the Tamm-Dancoff approximation is significantly reduced through the introduction of a severe integral screening procedure that includes only integrals that involve the core s basis function of the absorbing atom(s) coupled with a reduced quality numerical quadrature for integrals associated with the exchange and correlation functionals. The memory required for the calculations is reduced through construction of the TDDFT matrix within the absorbing core orbitals excitation space and exploiting further truncation of the virtual orbital space. The resulting method, denoted fTDDFTs, leads to much faster calculations and makes the study of large systems tractable. The capability of the method is demonstrated through calculations of the X-ray absorption spectra at the carbon K-edge of chlorophyll a, C 60 and C 70 .

  7. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  8. Probing Chemical Bonding in Uranium Dioxide by Means of High-Resolution X-ray Absorption Spectroscopy

    DOE PAGES

    Butorin, Sergei M.; Modin, Anders; Vegelius, Johan R.; ...

    2016-11-30

    Here, a systematic X-ray absorption study at the U 3d, 4d, and 4f edges of UO 2 was performed, and the data were analyzed within framework of the Anderson impurity model. By applying the high-energy-resolution fluorescence-detection (HERFD) mode of X-ray absorption spectroscopy (XAS) at the U 3d 3/2 edge and conducting the XAS measurements at the shallower U 4f levels, fine details of the XAS spectra were resolved resulting from reduced core-hole lifetime broadening. This multiedge study enabled a far more effective analysis of the electronic structure at the U sites and characterization of the chemical bonding and degree ofmore » the 5f localization in UO 2. The results support the covalent character of UO 2 and do not agree with the suggestions of rather ionic bonding in this compound as expressed in some publications.« less

  9. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  10. Crystallographic Analysis of a Japanese Sword by using Bragg Edge Transmission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shiota, Yoshinori; Hasemi, Hiroyuki; Kiyanagi, Yoshiaki

    Neutron imaging using a pulsed neutron source can give crystallographic information over wide area of a sample by analysing position dependent transmission spectra. With the use of a Bragg edge imaging method we non-destructively obtained crystallographic information of a Japanese sword, signed by Bishu Osafune Norimitsu, in order to know position dependent crystallographic characteristics and to check usefulness of the method for the Japanese sword investigation. Strong texture appeared on the back side. On the other hand in the middle area almost isotropic feature appeared and edge side showed feature between them. Rather isotropic area in the centre area gradually reduced from the grip side to the tip side. The crystallite size was smaller near the edge and became larger towards the back side. The smaller crystallite size will be due to quenching around the edge and this trend disappeared in the grip (nakago) area. The larger crystallite size will be due to strong hammering. Coarse grains were also observed directly as transmission images with the use of a high spatial resolution detector. The spatial distribution of the grains was not uniform but the reason have not been understood. Furthermore, a white area around a tip area was proved to be a void by looking at the Brag edge transmission spectra. This void may be formed during forging process of two kinds of steel. It is suggested that consideration on differences in the texture and the crystallite size depending on position will give information to clarify the manufacturing process, and Bragg edge analysis will be a profitable tool for research of Japanese sword.

  11. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  12. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  13. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution.

    PubMed

    Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald

    2016-01-01

    The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup.

  14. Comparing Broad-Band and Red Edge-Based Spectral Vegetation Indices to Estimate Nitrogen Concentration of Crops Using Casi Data

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Liao, Qinhong; Yang, Guijun; Feng, Haikuan; Yang, Xiaodong; Yue, Jibo

    2016-06-01

    In recent decades, many spectral vegetation indices (SVIs) have been proposed to estimate the leaf nitrogen concentration (LNC) of crops. However, most of these indices were based on the field hyperspectral reflectance. To test whether they can be used in aerial remote platform effectively, in this work a comparison of the sensitivity between several broad-band and red edge-based SVIs to LNC is investigated over different crop types. By using data from experimental LNC values over 4 different crop types and image data acquired using the Compact Airborne Spectrographic Imager (CASI) sensor, the extensive dataset allowed us to evaluate broad-band and red edge-based SVIs. The result indicated that NDVI performed the best among the selected SVIs while red edge-based SVIs didn't show the potential for estimating the LNC based on the CASI data due to the spectral resolution. In order to search for the optimal SVIs, the band combination algorithm has been used in this work. The best linear correlation against the experimental LNC dataset was obtained by combining the 626.20nm and 569.00nm wavebands. These wavelengths correspond to the maximal chlorophyll absorption and reflection position region, respectively, and are known to be sensitive to the physiological status of the plant. Then this linear relationship was applied to the CASI image for generating an LNC map, which can guide farmers in the accurate application of their N fertilization strategies.

  15. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    PubMed

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ < 500 nm) to the perovskite along with enhanced absorption of long-wavelength photons (500 nm < λ < 780 nm). Moreover, the light-driven electric field is proven to allow efficient charge extraction upon light absorption, thereby leading to the increased photocurrent density as well as the fill factor prompted by the slow recombination rate. Additionally, the photocurrent density of the cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Creation of forest edges has a global impact on forest vertebrates

    PubMed Central

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  17. X-ray absorption studies of gamma irradiated Nd doped phosphate glass

    NASA Astrophysics Data System (ADS)

    Rai, V. N.; Rajput, Parasmani; Jha, S. N.; Bhattacharyya, D.

    2015-06-01

    This paper presents the X-ray absorption near edge structure (XANES) studies of Nd doped phosphate glasses before and after gamma irradiation. The intensity and location of LIII edge white line peak of Nd changes depending on its concentration as well as on the ratio of O/Nd in the glass matrix. The decrease in the peak intensity of white line after gamma irradiation indicates towards reduction of Nd3+ to Nd2+ in the glass matrix, which increases with an increase in the doses of gamma irradiation. Similarity in the XANES spectra of Nd doped phosphate glasses and Nd2O3 suggests that coordination geometry around Nd3+ in glass samples may be identical to that of Nd2O3.

  18. Near-field tsunami edge waves and complex earthquake rupture

    USGS Publications Warehouse

    Geist, Eric L.

    2013-01-01

    The effect of distributed coseismic slip on progressive, near-field edge waves is examined for continental shelf tsunamis. Detailed observations of edge waves are difficult to separate from the other tsunami phases that are observed on tide gauge records. In this study, analytic methods are used to compute tsunami edge waves distributed over a finite number of modes and for uniformly sloping bathymetry. Coseismic displacements from static elastic theory are introduced as initial conditions in calculating the evolution of progressive edge-waves. Both simple crack representations (constant stress drop) and stochastic slip models (heterogeneous stress drop) are tested on a fault with geometry similar to that of the M w = 8.8 2010 Chile earthquake. Crack-like ruptures that are beneath or that span the shoreline result in similar longshore patterns of maximum edge-wave amplitude. Ruptures located farther offshore result in reduced edge-wave excitation, consistent with previous studies. Introduction of stress-drop heterogeneity by way of stochastic slip models results in significantly more variability in longshore edge-wave patterns compared to crack-like ruptures for the same offshore source position. In some cases, regions of high slip that are spatially distinct will yield sub-events, in terms of tsunami generation. Constructive interference of both non-trapped and trapped waves can yield significantly larger tsunamis than those that produced by simple earthquake characterizations.

  19. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  20. Power spectrum weighted edge analysis for straight edge detection in images

    NASA Astrophysics Data System (ADS)

    Karvir, Hrishikesh V.; Skipper, Julie A.

    2007-04-01

    Most man-made objects provide characteristic straight line edges and, therefore, edge extraction is a commonly used target detection tool. However, noisy images often yield broken edges that lead to missed detections, and extraneous edges that may contribute to false target detections. We present a sliding-block approach for target detection using weighted power spectral analysis. In general, straight line edges appearing at a given frequency are represented as a peak in the Fourier domain at a radius corresponding to that frequency, and a direction corresponding to the orientation of the edges in the spatial domain. Knowing the edge width and spacing between the edges, a band-pass filter is designed to extract the Fourier peaks corresponding to the target edges and suppress image noise. These peaks are then detected by amplitude thresholding. The frequency band width and the subsequent spatial filter mask size are variable parameters to facilitate detection of target objects of different sizes under known imaging geometries. Many military objects, such as trucks, tanks and missile launchers, produce definite signatures with parallel lines and the algorithm proves to be ideal for detecting such objects. Moreover, shadow-casting objects generally provide sharp edges and are readily detected. The block operation procedure offers advantages of significant reduction in noise influence, improved edge detection, faster processing speed and versatility to detect diverse objects of different sizes in the image. With Scud missile launcher replicas as target objects, the method has been successfully tested on terrain board test images under different backgrounds, illumination and imaging geometries with cameras of differing spatial resolution and bit-depth.

  1. From Flashes to Edges to Objects: Recovery of Local Edge Fragments Initiates Spatiotemporal Boundary Formation

    PubMed Central

    Erlikhman, Gennady; Kellman, Philip J.

    2016-01-01

    Spatiotemporal boundary formation (SBF) is the perception of illusory boundaries, global form, and global motion from spatially and temporally sparse transformations of texture elements (Shipley and Kellman, 1993a, 1994; Erlikhman and Kellman, 2015). It has been theorized that the visual system uses positions and times of element transformations to extract local oriented edge fragments, which then connect by known interpolation processes to produce larger contours and shapes in SBF. To test this theory, we created a novel display consisting of a sawtooth arrangement of elements that disappeared and reappeared sequentially. Although apparent motion along the sawtooth would be expected, with appropriate spacing and timing, the resulting percept was of a larger, moving, illusory bar. This display approximates the minimal conditions for visual perception of an oriented edge fragment from spatiotemporal information and confirms that such events may be initiating conditions in SBF. Using converging objective and subjective methods, experiments showed that edge formation in these displays was subject to a temporal integration constraint of ~80 ms between element disappearances. The experiments provide clear support for models of SBF that begin with extraction of local edge fragments, and they identify minimal conditions required for this process. We conjecture that these results reveal a link between spatiotemporal object perception and basic visual filtering. Motion energy filters have usually been studied with orientation given spatially by luminance contrast. When orientation is not given in static frames, these same motion energy filters serve as spatiotemporal edge filters, yielding local orientation from discrete element transformations over time. As numerous filters of different characteristic orientations and scales may respond to any simple SBF stimulus, we discuss the aperture and ambiguity problems that accompany this conjecture and how they might be resolved

  2. Evaluation of potential substrates for restenosis and thrombosis in overlapped versus edge-to-edge juxtaposed bioabsorbable scaffolds: Insights from a computed fluid dynamic study.

    PubMed

    Rigatelli, Gianluca; Zuin, Marco; Dell'Avvocata, Fabio; Cardaioli, Paolo; Vassiliev, Dobrin; Ferenc, Miroslaw; Nghia, Nguyen Tuan; Nguyen, Thach; Foin, Nicholas

    2018-04-01

    Multiple BRSs and specifically the Absorb scaffold (BVS) (Abbott Vascular, Santa Clara, CA USA) have been often used to treat long diffuse coronary artery lesions. We evaluate by a computational fluid dynamic(CFD) study the impact on the intravascular fluid rheology on multiple bioabsorbable scaffolds (BRS) by standard overlapping versus edge-to-edge technique. We simulated the treatment of a real long significant coronary lesion (>70% luminal narrowing) involving the left anterior descending artery (LAD) treated with a standard or edge-to-edge technique, respectively. Simulations were performed after BVS implantations in two different conditions: 1) Edge-to-edge technique, where the scaffolds are kissed but not overlapped resulting in a luminal encroachment of 0.015cm (150μm); 2) Standard overlapping, where the scaffolds are overlapped resulting in a luminal encroachment of 0.030cm (300μm). After positioning the BVS across the long lesion, the implantation procedure was performed in-silico following all the usual procedural steps. Analysis of the wall shear stress (WSS) suggested that at the vessel wall level the WSS were lower in the overlapping zones overlapping compared to the edge-to-edge zone (∆=0.061Pa, p=0.01). At the struts level the difference between the two WSS was more striking (∆=1.065e-004 p=0.01) favouring the edge-to-edge zone. Our study suggested that at both vessel wall and scaffold struts levels, there was lowering WSS when multiple BVS were implanted with the standard overlapping technique compared to the "edge-to-edge" technique. This lower WSS might represent a substrate for restenosis, early and late BVS thrombosis, potentially explaining at least in part the recent evidences of devices poor performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Absorption and quasiguided mode analysis of organic solar cells with photonic crystal photoactive layers.

    PubMed

    Tumbleston, John R; Ko, Doo-Hyun; Samulski, Edward T; Lopez, Rene

    2009-04-27

    We analyze optical absorption enhancements and quasiguided mode properties of organic solar cells with highly ordered nanostructured photoactive layers comprised of the bulk heterojunction blend, poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and a low index of refraction conducting material (LICM). This photonic crystal geometry is capable of enhancing spectral absorption by approximately 17% in part due to the excitation of quasiguided modes near the band edge of P3HT:PCBM. A nanostructure thickness between 200 nm and 300 nm is determined to be optimal, while the LICM must have an index of refraction approximately 0.3 lower than P3HT:PCBM to produce absorption enhancements. Quasiguided modes that differ in lifetime by an order of magnitude are also identified and yield absorption that is concentrated in the P3HT:PCBM flash layer.

  4. Arthropods on plants in a fragmented Neotropical dry forest: a functional analysis of area loss and edge effects.

    PubMed

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2015-02-01

    Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  5. Ferromagnetism regulated by edged cutting and optical identification in monolayer PtSe2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Zhang, QiZhen; Wang, Lifen; Shan, Yun; Du, Yuandong; Qin, Nan; Liu, Lizhe

    2018-06-01

    Regulation of ferromagnetism and electronic structure in PtSe2 nanostructures has attracted much attention because of its potential in spintronics. The magnetic and optical properties of PtSe2 nanoribbons with different edge reconstruction and external deformations are calculated by density function theory. In 1 T phase PtSe2 nanoribbons, the ferromagnetism induced by spin polarization of exposed Pt or Se atoms is decreased with the reducing nanoribbon width. For smaller nanoribbon, the magnetism can be regulated by external strain more easily. However, the magnetism cannot occur in 1 H phase PtSe2 nanoribbon. The absorption spectra are suggested to identify the nanoribbon structural changes in detail. Our results suggest the use of edge reconstruction and strain engineering in spintronics applications.

  6. The red edge in arid region vegetation: 340-1060 nm spectra

    NASA Technical Reports Server (NTRS)

    Ray, Terrill W.; Murray, Bruce C.; Chehbouni, A.; Njoku, Eni

    1993-01-01

    The remote sensing study of vegetated regions of the world has typically been focused on the use of broad-band vegetation indices such as NDVI. Various modifications of these indices have been developed in attempts to minimize the effect of soil background, e.g., SAVI, or to reduce the effect of the atmosphere, e.g., ARVI. Most of these indices depend on the so-called 'red edge,' the sharp transition between the strong absorption of chlorophyll pigment in visible wavelengths and the strong scattering in the near-infrared from the cellular structure of leaves. These broadband indices tend to become highly inaccurate as the green canopy cover becomes sparse. The advent of high spectral resolution remote sensing instrument such as the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) has allowed the detection of narrow spectral features in vegetation and there are reports of detection of the red edge even for pixels with very low levels of green vegetation cover by Vane et al. and Elvidge et al., and to characterize algal biomass in coastal areas. Spectral mixing approaches similar to those of Smith et al. can be extended into the high spectral resolution domain allowing for the analysis of more endmembers, and potentially, discrimination between material with narrow spectral differences. Vegetation in arid regions tends to be sparse, often with small leaves such as the creosote bush. Many types of arid region vegetation spend much of the year with their leaves in a senescent state, i.e., yellow, with lowered chlorophyll pigmentation. The sparseness of the leaves of many arid region plants has the dual effect of lowering the green leaf area which can be observed and of allowing more of the sub-shrub soil to be visible which further complicates the spectrum of a region covered with arid region vegetation. Elvidge examined the spectral characteristics of dry plant materials showing significant differences in the region of the red edge and the diagnostic ligno

  7. Edge Evaluation Using Local Edge Coherence

    DTIC Science & Technology

    1980-12-01

    response within each region. (The operators discussed below also compute an esti- mate of the direction of brightness change .) In the next step, the edges...worth remarking on is that Abdou and Pratt vary the relative strength of signal to noise by holding the contrast constant and changing the standard...threshold level on the basis of the busyness of the resulting thresholded image.) In applications where edge extraction is an important part of the processing

  8. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution

    PubMed Central

    Müller, Oliver; Nachtegaal, Maarten; Just, Justus; Lützenkirchen-Hecht, Dirk; Frahm, Ronald

    2016-01-01

    The quick-EXAFS (QEXAFS) method adds time resolution to X-ray absorption spectroscopy (XAS) and allows dynamic structural changes to be followed. A completely new QEXAFS setup consisting of monochromator, detectors and data acquisition system is presented, as installed at the SuperXAS bending-magnet beamline at the Swiss Light Source (Paul Scherrer Institute, Switzerland). The monochromator uses Si(111) and Si(311) channel-cut crystals mounted on one crystal stage, and remote exchange allows an energy range from 4.0 keV to 32 keV to be covered. The spectral scan range can be electronically adjusted up to several keV to cover multiple absorption edges in one scan. The determination of the Bragg angle close to the position of the crystals allows high-accuracy measurements. Absorption spectra can be acquired with fast gridded ionization chambers at oscillation frequencies of up to 50 Hz resulting in a time resolution of 10 ms, using both scan directions of each oscillation period. The carefully developed low-noise detector system yields high-quality absorption data. The unique setup allows both state-of-the-art QEXAFS and stable step-scan operation without the need to exchange whole monochromators. The long-term stability of the Bragg angle was investigated and absorption spectra of reference materials as well as of a fast chemical reaction demonstrate the overall capabilities of the new setup. PMID:26698072

  9. Resonance lamp absorption technique for simultaneous determination of the OH concentration and temperature at 10 spatial positions in combustion environments

    NASA Technical Reports Server (NTRS)

    Shirinzadeh, B.; Gregory, Ray W.

    1994-01-01

    A rugged, easy to implement, line-of-sight absorption instrument which utilizes a low pressure water vapor microwave discharge cell as the light source, has been developed to make simultaneous measurements of the OH concentration and temperature at 10 spatial positions. The design, theory, and capability of the instrument are discussed. Results of the measurements obtained on a methane/air flat flame burner are compared with those obtained using a single-frequency, tunable dye laser system.

  10. Optical absorption spectra and energy band gap in manganese containing sodium zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sardarpasha, K. R.; Hanumantharaju, N.; Gowda, V. C. Veeranna

    2018-05-01

    Optical band gap energy in the system 25Na2O-(75-x)[0.6P2O5-0.4ZnO]-xMnO2 (where x = 0.5,1,5,10 and 20 mol.%) have been studied. The intensity of the absorption band found to increase with increase of MnO2 content. The decrease in the optical band gap energy with increase in MnO2 content in the investigated glasses is attributed to shifting of absorption edge to a longer wavelength region. The obtained results were discussed in view of the structure of phosphate glass network.

  11. Edge Detection Method Based on Neural Networks for COMS MI Images

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee

    2016-12-01

    Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.

  12. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons.

    PubMed

    Chen, Wen-Chao; Zhou, Yuan; Yu, Shun-Li; Yin, Wei-Guo; Gong, Chang-De

    2017-07-12

    Quantum confinement and interference often generate exotic properties in nanostructures. One recent highlight is the experimental indication of a magnetic phase transition in zigzag-edged graphene nanoribbons at the critical ribbon width of about 7 nm [ Magda , G. Z. et al. Nature 2014 , 514 , 608 ]. Here we show theoretically that with further increase in the ribbon width, the magnetic correlation of the two edges can exhibit an intriguing oscillatory behavior between antiferromagnetic and ferromagnetic, driven by acquiring the positive coherence between the two edges to lower the free energy. The oscillation effect is readily tunable in applied magnetic fields. These novel properties suggest new experimental manifestation of the edge magnetic orders in graphene nanoribbons and enhance the hopes of graphene-like spintronic nanodevices functioning at room temperature.

  13. Time-Resolved K-shell Photoabsorption Edge Measurement in a Strongly Coupled Matter Driven by Laser-converted Radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Jia-Min; Zhang, Ji-Yan; Yang, Guo-Hong; Xiong, Gang; Wei, Min-Xi; Song, Tian-Ming; Zhang, Zhi-Yu

    2013-06-01

    A time-resolved K edge absorption measurement of warm dense KCl was performed on Shenguang II laser facility. The x-ray radiation driven shocks were adopted to take colliding shocks compression. By using Dog bone hohlraum the CH/KCl/CH sample was shielded from the laser hitting point to suppress the M band preheating and enhance the compressibility. Thus, an unexplored and extreme region of the plasma state with the maximum 5 times solid density and temperature lower than 3 eV (with coupling constant Γii around 100) was first obtained. The photoabsorption spectra of chlorine near the K-shell edge have been measured with a crystal spectrometer using a short x-ray backlighter. The K edge red shift up to 11.7 eV and broadening of 15.2 eV were obtained for the maximum compression. The electron temperature, inferred by Fermi-Dirac fit of the measured K-edge broadening, was consistent with the hydrodynamic predictions. The comparison of the K edge shift with a plasma model, in which the ionization effect, continuum lowering and partial degeneracy are considered, shows that more improvements are desired to describe in details the variation of K edge shift. This work might extend future study of WDM in extreme conditions of high compression.

  14. Pseudopotential calculations and photothermal lensing measurements of two-photon absorption in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.T. III

    1985-11-04

    We have studied two-photon absorption in solids theoretically and experimentally. We have shown that it is possible to use accurate band structure techniques to compute two-photon absorption spectra within 15% of measured values in a wide band-gap material, ZnS. The empirical pseudopotential technique that we used is significantly more accurate than previous models of two-photon absorption in zinc blende materials, including present tunneling theories (which are essentially parabolic-band results in disguise) and the nonparabolic-band formalism of Pidgeon et al. and Weiler. The agreement between our predictions and previous measurements allowed us to use ZnS as a reference material in ordermore » to validate a technique for measuring two-photon absorption that was previously untried in solids, pulsed dual-beam thermal lensing. With the validated technique, we examined nonlinear absorption in one other crystal (rutile) and in several glasses, including silicates, borosilicates, and one phosphate glass. Initially, we believed that the absorption edges of all the materials were comparable; however, subsequent evidence suggested that the effective band-gap energies of the glasses were above the energy of two photons in our measurement. Therefore, we attribute the nonlinear absorption that we observed in glasses to impurities or defects. The measured nonlinear absorption coefficients were of the order of a few cm/TW in the glasses and of the order of 10 cm/GW in the crystals, four orders of magnitude higher than in glasses. 292 refs.« less

  15. Characterization of extracellular polymeric substances in the biofilms of typical bacteria by the sulfur K-edge XANES spectroscopy.

    PubMed

    Lin, Huirong; Ye, Chengsong; Lv, Lu; Zheng, Clark Renjun; Zhang, Shenghua; Zheng, Lei; Zhao, Yidong; Yu, Xin

    2014-08-01

    A combined approach of physicochemical extraction and sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy was applied to characterize the extracellular polymeric substances (EPS) of typical bacterial biofilms in this study. Physicochemical analysis showed variation of the contents of DNA, polysaccharide and protein in different fractions of EPS in different mediums. The sulfur K-edge XANES analysis yielded a variety of spectra. Spectral fitting of the XANES spectra utilizing a large set of model compounds showed that there was more reduced sulfur in both LB-EPS (loosely bound EPS) and TB-EPS (tightly bound EPS) of all the biofilms in LB medium than in R2A medium. More oxidized sulfur was identified in LB-EPS than that in TB-EPS, suggesting different niches and physiological heterogeneity in the biofilms. Our results suggested that the sulfur K-edge XANES can be a useful tool to analyze the sulfur speciation in EPS of biofilms. Copyright © 2014. Published by Elsevier B.V.

  16. Sound absorption by a Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Komkin, A. I.; Mironov, M. A.; Bykov, A. I.

    2017-07-01

    Absorption characteristics of a Helmholtz resonator positioned at the end wall of a circular duct are considered. The absorption coefficient of the resonator is experimentally investigated as a function of the diameter and length of the resonator neck and the depth of the resonator cavity. Based on experimental data, the linear analytic model of a Helmholtz resonator is verified, and the results of verification are used to determine the dissipative attached length of the resonator neck so as to provide the agreement between experimental and calculated data. Dependences of sound absorption by a Helmholtz resonator on its geometric parameters are obtained.

  17. A simple heat-pipe cell for X-ray absorption spectrometry of potassium vapor

    NASA Astrophysics Data System (ADS)

    Pres̆eren, R.; Kodre, A.; Arc̆on, I.; Padez̆nik Gomils̆ek, J.; Hribar, M.

    1999-01-01

    The construction and operation of a simple high-temperature X-ray absorption cell for potassium vapor is described. The principle of "spectroscopic heat pipe" is exploited to separate kapton windows, indispensable for good transmission in the low-energy region, from the hot and aggressive vapor. High-resolution spectrum of the K-edge region of atomic potassium reveals fingerprints of multielectron photoexcitations.

  18. Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector

    PubMed Central

    Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge

    2017-01-01

    Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900

  19. Elastically Deformable Side-Edge Link for Trailing-Edge Flap Aeroacoustic Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); Moore, James B. (Inventor); Su, Ji (Inventor); Turner, Travis L. (Inventor); Lin, John C. (Inventor); Taminger, Karen M. (Inventor); Kahng, Seun K. (Inventor); Verden, Scott A. (Inventor)

    2014-01-01

    A system is provided for reducing aeroacoustic noise generated by an aircraft having wings equipped with trailing-edge flaps. The system includes a plurality of elastically deformable structures. Each structure is coupled to and along one of the side edges of one of the trailing-edge flaps, and is coupled to a portion of one of the wings that is adjacent to the one of the side edges. The structures elastically deform when the trailing-edge flaps are deployed away from the wings.

  20. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.

    PubMed

    Protasenko, Vladimir; Bacinello, Daniel; Kuno, Masaru

    2006-12-21

    Absorption cross-sections and corresponding molar extinction coefficients of solution-based CdSe and CdTe nanowires (NWs) are determined. Chemically grown semiconductor NWs are made via a recently developed solution-liquid-solid (SLS) synthesis, employing low melting Au/Bi bimetallic nanoparticle "catalysts" to induce one-dimensional (1D) growth. Resulting wires are highly crystalline and have diameters between 5 and 12 nm as well as lengths exceeding 10 microm. Narrow diameters, below twice the corresponding bulk exciton Bohr radius of each material, place CdSe and CdTe NWs within their respective intermediate to weak confinement regimes. Supporting this are solution linear absorption spectra of NW ensembles showing blue shifts relative to the bulk band gap as well as structure at higher energies. In the case of CdSe, the wires exhibit band edge emission as well as strong absorption/emission polarization anisotropies at the ensemble and single-wire levels. Analogous photocurrent polarization anisotropies have been measured in recently developed CdSe NW photodetectors. To further support fundamental NW optical/electrical studies as well as to promote their use in device applications, experimental absorption cross-sections are determined using correlated transmission electron microscopy, UV/visible extinction spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Measured CdSe NW cross-sections for 1 microm long wires (diameters, 6-42 nm) range from 6.93 x 10(-13) to 3.91 x 10(-11) cm2 at the band edge (692-715 nm, 1.73-1.79 eV) and between 3.38 x 10(-12) and 5.50 x 10(-11) cm2 at 488 nm (2.54 eV). Similar values are obtained for 1 microm long CdTe NWs (diameters, 7.5-11.5 nm) ranging from 4.32 x 10(-13) to 5.10 x 10(-12) cm2 at the band edge (689-752 nm, 1.65-1.80 eV) and between 1.80 x 10(-12) and 1.99 x 10(-11) cm2 at 2.54 eV. These numbers compare well with previous theoretical estimates of CdSe/CdTe NW cross-sections far to the blue of the

  1. Creation of forest edges has a global impact on forest vertebrates.

    PubMed

    Pfeifer, M; Lefebvre, V; Peres, C A; Banks-Leite, C; Wearn, O R; Marsh, C J; Butchart, S H M; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D'Cruze, N; Faria, D; Hadley, A; Harris, S M; Klingbeil, B T; Kormann, U; Lens, L; Medina-Rangel, G F; Morante-Filho, J C; Olivier, P; Peters, S L; Pidgeon, A; Ribeiro, D B; Scherber, C; Schneider-Maunoury, L; Struebig, M; Urbina-Cardona, N; Watling, J I; Willig, M R; Wood, E M; Ewers, R M

    2017-11-09

    Forest edges influence more than half of the world's forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  2. Creation of forest edges has a global impact on forest vertebrates

    NASA Astrophysics Data System (ADS)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  3. Quantitative analysis of L-edge white line intensities: the influence of saturation and transverse coherence.

    PubMed

    Hahlin, A; Karis, O; Brena, B; Dunn, J H; Arvantis, D

    2001-03-01

    We have performed x-ray absorption spectroscopy at the Fe, Ni, and Co L2,3 edges of in situ grown thin magnetic films. We compare electron yield measurements performed at SSRL and BESSY-I. Differences in the L2,3 white line intensities are found for all three elements, comparing data from the two facilities. We propose a correlation between spectral intensities and the degree of spatial coherence of the exciting radiation. The electron yield saturation effects are stronger for light with a higher degree of spatial coherence. Therefore the observed, coherence related, intensity variations are due to an increase in the absorption coefficient, and not to secondary channel related effects.

  4. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas

    Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less

  5. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    DOE PAGES

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; ...

    2018-04-14

    Here, the connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterizedmore » by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.« less

  6. X-ray absorption spectroscopy and photoluminescence study of rare earth ions doped strontium sulphide phosphors

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Gautam, Sanjeev; Kumar, Vinay; Brajpuriya, R.; Kumar, Ravi; Singh, Nafa; Chae, Keun Hwa

    2013-01-01

    We present here the electronic structure and photoluminescence properties of Sm (0.1-1.0 mol%) doped SrS phosphors. The doping in SrS was probed by near-edge X-ray absorption fine structure (NEXAFS) at M5,4-edges of Sm in total electron yield mode. The simulated absorption edges using atomic multiplet calculations were correlated with experimental results, which clearly reveal the presence of trivalent state of Sm in SrS matrix. However, for Sm (1 mol%), very minor traces of Sm2+ were also observed, which have been explained by comparing the NEXAFS spectra in total electron and florescence yield mode. The PL emission of SrS:Sm comprises of three sharp bands at 567, 602 and 650 nm owing to the well-known intra 4f transitions from 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2) levels of Sm3+ ions in SrS host. The effect of Ce co-doping on SrS:Sm phosphors was also investigated, which exhibits characteristic PL emission of independent ions at their respective excitation wavelengths. However, at an excitation wavelength of 393 nm, SrS:Ce,Sm exhibits the simultaneous characteristic PL emission of both ions spanning into blue-green-red region. The CIE chromaticity coordinates also clearly show the influence of excitation wavelengths on the emission colour of SrS:Ce,Sm.

  7. Theory and X-ray Absorption Spectroscopy for Aluminum Coordination Complexes – Al K-Edge Studies of Charge and Bonding in (BDI)Al, (BDI)AlR2, and (BDI)AlX2 Complexes.

    PubMed

    Altman, Alison B; Pemmaraju, C D; Camp, Clément; Arnold, John; Minasian, Stefan G; Prendergast, David; Shuh, David K; Tyliszczak, Tolek

    2015-08-19

    Polarized aluminum K-edge X-ray absorption near edge structure (XANES) spectroscopy and first-principles calculations were used to probe electronic structure in a series of (BDI)Al, (BDI)AlX2, and (BDI)AlR2 coordination compounds (X = F, Cl, I; R = H, Me; BDI = 2,6-diisopropylphenyl-β-diketiminate). Spectral interpretations were guided by examination of the calculated transition energies and polarization-dependent oscillator strengths, which agreed well with the XANES spectroscopy measurements. Pre-edge features were assigned to transitions associated with the Al 3p orbitals involved in metal-ligand bonding. Qualitative trends in Al 1s core energy and valence orbital occupation were established through a systematic comparison of excited states derived from Al 3p orbitals with similar symmetries in a molecular orbital framework. These trends suggested that the higher transition energies observed for (BDI)AlX2 systems with more electronegative X(1-) ligands could be ascribed to a decrease in electron density around the aluminum atom, which causes an increase in the attractive potential of the Al nucleus and concomitant increase in the binding energy of the Al 1s core orbitals. For (BDI)Al and (BDI)AlH2 the experimental Al K-edge XANES spectra and spectra calculated using the eXcited electron and Core-Hole (XCH) approach had nearly identical energies for transitions to final state orbitals of similar composition and symmetry. These results implied that the charge distributions about the aluminum atoms in (BDI)Al and (BDI)AlH2 are similar relative to the (BDI)AlX2 and (BDI)AlMe2 compounds, despite having different formal oxidation states of +1 and +3, respectively. However, (BDI)Al was unique in that it exhibited a low-energy feature that was attributed to transitions into a low-lying p-orbital of b1 symmetry that is localized on Al and orthogonal to the (BDI)Al plane. The presence of this low-energy unoccupied molecular orbital on electron-rich (BDI)Al distinguishes

  8. Revealing the Bonding Environment of Zn in ALD Zn(O,S) Buffer Layers through X-ray Absorption Spectroscopy

    PubMed Central

    2017-01-01

    Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2–3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance. PMID:29083141

  9. Simulation of Acoustic Scattering from a Trailing Edge

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Brentner, Kenneth S.; Lockard, David P.; Lilley, Geoffrey M.

    1999-01-01

    Three model problems were examined to assess the difficulties involved in using a hybrid scheme coupling flow computation with the the Ffowcs Williams and Hawkings equation to predict noise generated by vortices passing over a sharp edge. The results indicate that the Ffowcs Williams and Hawkings equation correctly propagates the acoustic signals when provided with accurate flow information on the integration surface. The most difficult of the model problems investigated inviscid flow over a two-dimensional thin NACA airfoil with a blunt-body vortex generator positioned at 98 percent chord. Vortices rolled up downstream of the blunt body. The shed vortices possessed similarities to large coherent eddies in boundary layers. They interacted and occasionally paired as they convected past the sharp trailing edge of the airfoil. The calculations showed acoustic waves emanating from the airfoil trailing edge. Acoustic directivity and Mach number scaling are shown.

  10. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements

    NASA Astrophysics Data System (ADS)

    Juhin, Amélie; Sainctavit, Philippe; Ollefs, Katharina; Sikora, Marcin; Filipponi, Adriano; Glatzel, Pieter; Wilhelm, Fabrice; Rogalev, Andrei

    2016-12-01

    X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of  ˜4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.

  11. Inverted edge effects on carbon stocks in human-dominated landscapes

    NASA Astrophysics Data System (ADS)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  12. The Facilitator's Edge: Group Sessions for Edge-ucators.

    ERIC Educational Resources Information Center

    Handcock, Helen

    The Facilitator's Edge is a workshop series based on the life/work messages of The Edge magazine. The workshops are deigned to help educators, youth workers, and their career practitioners facilitate conscious career building. This manual consists of five group sessions, each focusing on a different career-building theme. "Megatrends and…

  13. Design modification of airfoil by integrating sinusoidal leading edge and dimpled surface

    NASA Astrophysics Data System (ADS)

    Masud, M. H.; Naim-Ul-Hasan, Arefin, Amit Md. Estiaque; Joardder, Mohammad U. H.

    2017-06-01

    Airfoil is widely used for aircraft wings and blades of helicopters, turbines, propellers, fans and compressors. Many researches have been conducted on focusing the leading edge, surface and trailing edge of airfoil in order to maximize airfoil lift and to reduce drag. Literature shows that using protuberances along the leading edge of NACA 2412, it is possible to attain better performance from the baseline. Besides, the inward dimpled surface of NACA 0018 produces lesser drag at a positive angle of attacks. However, there is no literature that integrates sinusoidal leading edge and dimpled to attain the benefits of the both. In this study, simulation has been done for design improvement of airfoil by integrating sinusoidal leading edge and dimpled surface. Simulations have been run using finite element method environment. Significant improvement has been observed from the simulation results.

  14. Habitat edges have weak effects on duck nest survival at local spatial scales

    USGS Publications Warehouse

    Raquel, Amelia J; Ringelman, Kevin M.; Ackerman, Joshua T.; Eadie, John M.

    2015-01-01

    Edge effects on nesting success have been documented in breeding birds in a variety of contexts, but there is still uncertainty in how edge type and spatial scale determine the magnitude and detectability of edge effects. Habitat edges are often viewed as predator corridors that surround or penetrate core habitat and increase the risk of predation for nearby nests. We studied the effects of three different types of potential predator corridors (main perimeter roads, field boundaries, and ATV trails within fields) on waterfowl nest survival in California. We measured the distance from duck nests to the nearest edge of each type, and used distance as a covariate in a logistic exposure analysis of nest survival. We found only weak evidence for edge effects due to predation. The best supported model of nest survival included all three distance categories, and while all coefficient estimates were positive (indicating that survival increased with distance from edge), 85% coefficient confidence intervals approached or bounded zero indicating an overall weak effect of habitat edges on nest success. We suggest that given the configuration of edges at our site, there may be few areas far enough from hard edges to be considered ‘core’ habitat, making edge effects on nest survival particularly difficult to detect.

  15. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  16. Edge-based image restoration.

    PubMed

    Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan

    2005-10-01

    In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases.

  17. Role of defects in BiFeO₃ multiferroic films and their local electronic structure by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravalia, Ashish; Vagadia, Megha; Solanki, P. S.

    2014-10-21

    Present study reports the role of defects in the electrical transport in BiFeO₃ (BFO) multiferroic films and its local electronic structure investigated by near-edge X-ray absorption fine structure. Defects created by high energy 200 MeV Ag⁺¹⁵ ion irradiation with a fluence of ∼5 × 10¹¹ ions/cm² results in the increase in structural strain and reduction in the mobility of charge carriers and enhancement in resistive (I-V) and polarization (P-E) switching behaviour. At higher fluence of ∼5 × 10¹² ions/cm², there is a release in the structural strain due to local annealing effect, resulting in an increase in the mobility of charge carriers, which are releasedmore » from oxygen vacancies and hence suppression in resistive and polarization switching. Near-edge X-ray absorption fine structure studies at Fe L₃,₂- and O K-edges show a significant change in the spectral features suggesting the modifications in the local electronic structure responsible for changes in the intrinsic magnetic moment and electrical transport properties of BFO.« less

  18. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief.

    PubMed

    Egan, John; Sharman, Rebecca J; Scott-Brown, Kenneth C; Lovell, Paul George

    2016-12-06

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief.

  19. Edge enhancement improves disruptive camouflage by emphasising false edges and creating pictorial relief

    PubMed Central

    Egan, John; Sharman, Rebecca J.; Scott-Brown, Kenneth C.; Lovell, Paul George

    2016-01-01

    Disruptive colouration is a visual camouflage composed of false edges and boundaries. Many disruptively camouflaged animals feature enhanced edges; light patches are surrounded by a lighter outline and/or a dark patches are surrounded by a darker outline. This camouflage is particularly common in amphibians, reptiles and lepidopterans. We explored the role that this pattern has in creating effective camouflage. In a visual search task utilising an ultra-large display area mimicking search tasks that might be found in nature, edge enhanced disruptive camouflage increases crypsis, even on substrates that do not provide an obvious visual match. Specifically, edge enhanced camouflage is effective on backgrounds both with and without shadows; i.e. this is not solely due to background matching of the dark edge enhancement element with the shadows. Furthermore, when the dark component of the edge enhancement is omitted the camouflage still provided better crypsis than control patterns without edge enhancement. This kind of edge enhancement improved camouflage on all background types. Lastly, we show that edge enhancement can create a perception of multiple surfaces. We conclude that edge enhancement increases the effectiveness of disruptive camouflage through mechanisms that may include the improved disruption of the object outline by implying pictorial relief. PMID:27922058

  20. Lower Hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.

    2015-11-01

    For the first time, the power deposition of Lower Hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t <τE) response of the scrape-off-layer (SOL) plasma to LHRF power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be key for the LHRF edge power deposition physics. These observations support the existence a loss mechanism near the edge for LHRF at high density (ne > 1 . 0 .1020 [m-3]). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivates the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE award DE-FC02-99ER54512.

  1. Experimental investigation of edge hardening and edge cracking sensitivity of burr-free parts

    NASA Astrophysics Data System (ADS)

    Senn, Sergei; Liewald, Mathias

    2018-05-01

    This experimental study is focused on characterisation of edge hardening of sheet metal and remaining formability of differently prepared cutted edges. Edge cracking sensitivity of counter cutted, shear cutted, recutted and water-jet cutted components are compared and evaluated. Subsequently, edge hardening and hole expansion ratio were correlated for material HC420 LA with sheet thickness of t = 2 mm. As other studies show, the cutting edge surface quality influences the hole expansion ratio: a high clear cut surface increases formability of cutting edges, whereas micro cracks and rough surfaces result into a large fracture surface, which impact remaining formability noticeably. Thus, cutting edges with lower edge hardening behaviour in conjunction with a higher clear cut surface exhibit higher hole expansion ratios. Counter cutting and the recutting do show a similar effect on edge hardening. Using the hole expansion test, it was possible to prove that counter cutted components show a significantly lower edge cracking sensitivity in comparison to conventionally shear cutted components. The hole expansion ratio of counter cutted specimens looks balanced and is comparable to the hole expansion ratio measured from specimens with recutted or water jet cutted edges. The significant difference of the investigated cutting processes is characterized by size of clear cutting area. This area of recutted edges emerges larger than the area of counter cutted specimens, which evidently leads to an increased hole expansion ratio of recutted specimens compared to conventionally shear cutted ones. However, it is important to note that the hole expansion ratio of counter cutted and recutted specimens appear fairly balanced, but counter cutted samples indeed can be produced burr-free. Using counter cutting technology, it is possible to produce burr free surfaces with high edge formability.

  2. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors.

    PubMed

    He, Tao; Wu, Yanfei; D'Avino, Gabriele; Schmidt, Elliot; Stolte, Matthias; Cornil, Jérôme; Beljonne, David; Ruden, P Paul; Würthner, Frank; Frisbie, C Daniel

    2018-05-30

    Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure-charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure-property relationships in organic semiconductors.

  3. X-Ray Absorption Microspectroscopy with Electrostatic Force Microscopy and its Application to Chemical States Mapping

    NASA Astrophysics Data System (ADS)

    Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.

    2007-02-01

    A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.

  4. Width-Tuned Magnetic Order Oscillation on Zigzag Edges of Honeycomb Nanoribbons

    DOE PAGES

    Chen, Wen-Chao; Zhou, Yuan; Yu, Shun-Li; ...

    2017-06-24

    Quantum confinement and interference often generate exotic properties in nanostructures. One recent highlight is the experimental indication of a magnetic phase transition in zigzag-edged graphene nanoribbons at the critical ribbon width of about 7 nm [Magda, G. Z. et al. Nature 2014, 514, 608]. Here in this work, we show theoretically that with further increase in the ribbon width, the magnetic correlation of the two edges can exhibit an intriguing oscillatory behavior between antiferromagnetic and ferromagnetic, driven by acquiring the positive coherence between the two edges to lower the free energy. The oscillation effect is readily tunable in applied magneticmore » fields. In conclusion, these novel properties suggest new experimental manifestation of the edge magnetic orders in graphene nanoribbons and enhance the hopes of graphene-like spintronic nanodevices functioning at room temperature.« less

  5. The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: A micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study

    NASA Astrophysics Data System (ADS)

    Isaure, Marie-Pierre; Leyh, Benjamin; Salomé, Murielle; Krauss, Gerd-Joachim; Schaumlöffel, Dirk; Dobritzsch, Dirk

    2017-11-01

    Aquatic fungi can be used to evaluate the functioning of natural ecosystems. Heliscus lugdunensis is an early colonizer of allochthone leafs. Since this aquatic hyphomycete is able to develop in metal contaminated habitats and tolerates cadmium, it appears to be a good candidate to investigate adaptation to metal pollution. This study aimed at examining the sequestration of Cd in the hyphae of H. lugdunensis, and particularly the role of the tip cells. For that, H. lugdunensis growth was evaluated under various Cd concentrations, and a combination of synchrotron micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy was carried out to determine the compartments of Cd accumulation and the Cd chemical species, respectively. Results showed that the hyphal tip cells were depleted in Cd, and that the metal was stored in older cells. Cd was mainly associated with sulfur ligands and to a lesser extent bound to phosphates and carboxyl/hydroxyl groups from cell wall and/or organic acids. Finally, the aquatic fungus was able to maintain the tip cell as a functional system, thus allowing the colonization of contaminated environments.

  6. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3-micrometers Region: Role of Periphery

    NASA Technical Reports Server (NTRS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2017-01-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3-micrometers absorption band. To this purpose we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 per cm range. The experimental spectra are compared with standard harmonic calculations, and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3-micrometers region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive dataset of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly-condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3-micrometers band, and on features such as the two-component emission character of this band and the 3-micrometers emission plateau.

  7. Effects of sulfation level on the desulfation behavior of pre-sulfated Pt BaO/Al2O3 lean NOx trap catalysts: a combined H2 Temperature-Programmed Reaction, in-situ sulfur K-edge X-ray Absorption Near-Edge Spectroscopy, X-ray Photoelectron Spectroscopy, and Time-Resolved X-ray Diffraction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Do Heui; Szanyi, Janos; Kwak, Ja Hun

    2009-04-03

    Desulfation by hydrogen of pre-sulfated Pt(2wt%) BaO(20wt%)/Al2O3 with various sulfur loading (S/Ba = 0.12, 0.31 and 0.62) were investigated by combining H2 temperature programmed reaction (TPRX), x-ray photoelectron spectroscopy (XPS), in-situ sulfur K-edge x-ray absorption near-edge spectroscopy (XANES), and synchrotron time-resolved x-ray diffraction (TR-XRD) techniques. We find that the amount of H2S desorbed during the desulfation in the H2 TPRX experiments is not proportional to the amount of initial sulfur loading. The results of both in-situ sulfur K-edge XANES and TR-XRD show that at low sulfur loadings, sulfates were transformed to a BaS phase and remained in the catalyst, rathermore » than being removed as H2S. On the other hand, when the deposited sulfur level exceeded a certain threshold (at least S/Ba = 0.31) sulfates were reduced to form H2S, and the relative amount of the residual sulfide species in the catalyst was much less than at low sulfur loading. Unlike samples with high sulfur loading (e.g., S/Ba = 0.62), H2O did not promote the desulfation for the sample with S/Ba of 0.12, implying that the formed BaS species originating from the reduction of sulfates at low sulfur loading are more stable to hydrolysis. The results of this combined spectroscopy investigation provide clear evidence to show that sulfates at low sulfur loadings are less likely to be removed as H2S and have a greater tendency to be transformed to BaS on the material, leading to the conclusion that desulfation behavior of Pt BaO/Al2O3 lean NOx trap catalysts is markedly dependent on the sulfation levels.« less

  8. Iodate in calcite and vaterite: Insights from synchrotron X-ray absorption spectroscopy and first-principles calculations

    NASA Astrophysics Data System (ADS)

    Podder, J.; Lin, J.; Sun, W.; Botis, S. M.; Tse, J.; Chen, N.; Hu, Y.; Li, D.; Seaman, J.; Pan, Y.

    2017-02-01

    Calcium carbonates such as calcite are the dominant hosts of inorganic iodine in nature and are potentially important for the retention and removal of radioactive iodine isotopes (129I and 131I) in contaminated water. However, little is known about the structural environment of iodine in carbonates. In this study, iodate (IO3-) doped calcite and vaterite have been synthesized using the gel-diffusion method at three NaIO3 concentrations (0.002; 0.004; 0.008 M) and a pH value of 9.0, under ambient temperature and pressure. Inductively coupled plasma mass spectrometry (ICP-MS) analyses show that iodine is preferentially incorporated into calcite over vaterite. Synchrotron iodine K-edge X-ray absorption near-edge structure (XANES) spectra confirm that IO3- is the dominant iodine species in synthetic calcite and vaterite. Analyses of iodine K-edge extended X-ray absorption fine structure (EXAFS) data, complemented by periodic first-principles calculations at the density functional theory (DFT) levels, demonstrate that the I5+ ion of the IO3- group in calcite and vaterite is bonded by three and two additional O atoms (i.e., coordination numbers = 6 and 5), respectively, and is incorporated via the charged coupled substitution I5+ + Na+ ↔ C4+ + Ca2+, with the Na+ cation at a nearest Ca2+ site being the most energetically favorable configuration.

  9. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES

  10. Intersubband absorption of p-type wurtzite GaN/AlN quantum well for fiber-optics telecommunication

    NASA Astrophysics Data System (ADS)

    Park, Seoung-Hwan; Ahn, Doyeol; Park, Chan-Yong

    2017-11-01

    The intersubband transition of wurtzite (WZ) p-type GaN/AlN quantum well (QW) structures grown on GaN substrate was investigated theoretically using the multiband effective-mass theory. The peak value of the TE-polarization absorption spectrum is found to be similar to that of the TM-polarization absorption spectrum. The absorption coefficients for TE- and TM-polarizations are mainly attributed to the absorption from the ground state (m1 = 1) because holes are mainly confined in ground states near the band-edge in an investigated range of the carrier density. We observe that a transition wavelength of 1.55 μm can be obtained for the QW structure with a relatively thin (˜16 Å) well width. Thus, we expect that a p-type WZ AlN/GaN heterostructure is applicable for a photodetector application for fiber-optic communications with normal incidence of wave.

  11. Edge enhancement of color images using a digital micromirror device.

    PubMed

    Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A

    2012-06-01

    A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.

  12. The occultation of 28 Sgr by Saturn - Saturn pole position and astrometry

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Porco, C. C.; Hunten, D. M.; Rieke, G. H.; Rieke, M. J.; Mccarthy, D. W.; Haemmerle, V.; Clark, R.; Turtle, E. P.; Haller, J.

    1993-01-01

    Saturn's ring plane-defined pole position is presently derived from the geometry of Saturn's July 3, 1989 occultation of 28 Sgr, as indicated by the timings of 12 circular edges in the Saturn C-ring as well as the edges of the Encke gap and the outer edge of the Keeler gap. The edge timings are used to solve for the position angle and opening angle of the apparent ring ellipses; the internal consistency of the data set and the redundancy of stations indicates an absolute error of the order of 5 km. The pole position thus obtained is consistent with the pole and ring radius scale derived from Voyager occultation observations.

  13. Spin and orbital states in single-layered La2-xCaxCoO4 studied by doping- and temperature-dependent near-edge x-ray absorption fine structure

    NASA Astrophysics Data System (ADS)

    Merz, M.; Fuchs, D.; Assmann, A.; Uebe, S.; v. Löhneysen, H.; Nagel, P.; Schuppler, S.

    2011-07-01

    The doping-dependent valence, orbital, and spin-state configurations of single-layered La2-xCaxCoO4 (x=0, 0.5, 1, and 1.5) were investigated with temperature-dependent near-edge x-ray absorption fine structure at the Co L2,3 and O K edges. The spectra show that in La2CoO4, the superexchange between neighboring Co2+ HS states is responsible for the strong antiferromagnetism. With increasing hole doping, the superexchange interactions between Co2+ HS ions are rapidly reduced by interlaced nonmagnetic Co3+ LS. For La1.5Ca0.5CoO4, the low Néel temperature of the samples together with the 50% Co2+ HS and 50% Co3+ LS configuration suggests a checkerboard arrangement of these ions. The spin blockade resulting from this arrangement naturally explains the high resistivity of La1.5Ca0.5CoO4. Upon further doping, Co2+ HS ions are replaced by Co3+ HS, and for LaCaCoO4 a mixture of Co3+ LS and Co3+ HS occurs. Superexchange via configuration fluctuation processes between these two species seems to induce long-range ferromagnetism, while the superexchange between adjacent Co3+ HS neighbors may lead to a competing antiferromagnetic exchange. For a doping content beyond x=1, Co4+ HS is introduced to the system at the expense of Co3+ LS, and a t2g double exchange between Co3+ HS and Co4+ HS is established, which further enhances ferromagnetic interactions and reduces resistivity. No indications for a Co3+ IS state are found throughout the La2-xCaxCoO4 doping series.

  14. Polarization Dependent X-ray Absorption Spectroscopy of the TiO2 Polymorphs Anatase (001) and Rutile (001)

    NASA Astrophysics Data System (ADS)

    Ederer, D. L.; Ruzycki, N.; Schuler, T.; Zhang, G. P.; Callcott, T. A.; Nachimuthu, P.; Perera, R. C. C.

    2002-03-01

    Polarization Dependent X-ray Absorption Spectroscopy of the TiO2 Polymorphs Anatase (001) and Rutile (001) N. Ruzycki^a, T. Schuler^a, D.L. Ederer^a, T. A. Callcott^, G. P. Zhang^b, P. Nachimuthu^c,d, and R.C.C. Perera^c a-Tulane University, Department of Physics, New Orleans, LA, 70118 b- Univesity of Tennessee, Department of Physics and Astronomy, Knoxville, TN, 37996 c- Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA, d- Department of Chemistry, University of Nevada Las Vegas, Las Vegas NV, 89154 TiO2 is a useful industrial catalyst and has applications in gas sensing and photoelectric devices. All structures consist of octrahedrally-coordinated Ti atoms and three-fold coordinated O atoms. Anatase and rutile differ mainly in the amount of distortion in the octahedra. Because Soft X-ray Absorption Spectroscoy (SXAS) is sensitive to the ligand field, these small differences are reflected the spectra. In the experiment the electronic polarization vector was varied angulary along the equatorial and the longitudnal axes of the sixfold coordinated titanium atoms. This study showed a strong polarization dependence at the oxygen K-edge for rutile (001) and the anatase (001) in the t_2g and eg region for the equatorial bonds. The Titanium L-edge showed a smaller polarization dependence. There was no polarization dependence in the longitudinal direction for anatase (001) or rutile (001) in either the oxygen K-edge or the Ti-L edge. These data are compared with calculations of polarization-dependent matrix elements of the transitions.

  15. Synchronization using pulsed edge tracking in optical PPM communication system

    NASA Technical Reports Server (NTRS)

    Gagliardi, R.

    1972-01-01

    A pulse position modulated (PPM) optical communication system using narrow pulses of light for data transmission requires accurate time synchronization between transmitter and receiver. The presence of signal energy in the form of optical pulses suggests the use of a pulse edge tracking method of maintaining the necessary timing. The edge tracking operation in a binary PPM system is examined, taking into account the quantum nature of the optical transmissions. Consideration is given first to pure synchronization using a periodic pulsed intensity, then extended to the case where position modulation is present and auxiliary bit decisioning is needed to aid the tracking operation. Performance analysis is made in terms of timing error and its associated statistics. Timing error variances are shown as a function of system signal to noise ratio.

  16. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Light Source; Schwartz, Craig P.; Uejio, Janel S.

    Near edge x-ray absorption fine structure (NEXAFS) spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffectedmore » by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.« less

  17. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.

    Near edge x-ray absorption fine structure spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected bymore » both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.« less

  18. Psychological absorption. Affect investment in marijuana intoxication.

    PubMed

    Fabian, W D; Fishkin, S M

    1991-01-01

    Absorption (a trait capacity for total attentional involvement) was reported to increase during episodes of marijuana intoxication. Several subsets of the absorption scale items specifically characterized marijuana intoxication, and groups of users and nonusers showed differential affective involvement with these experiences. Additionally, within the drug-using group, a positive correlation between frequency of marijuana use and affective ratings of these experiences was found. The findings support the hypothesis that a specific type of alteration in consciousness that enhances capacity for total attentional involvement (absorption) characterizes marijuana intoxication, and that this enhancement may act as a reinforcer, possibly influencing future use.

  19. Enhancing the thermoelectric performance of gamma-graphyne nanoribbons by introducing edge disorder.

    PubMed

    Cui, Xiao; Ouyang, Tao; Li, Jin; He, Chaoyu; Tang, Chao; Zhong, Jianxin

    2018-03-07

    Structure disorder especially edge disorder is unavoidable during the fabrication of nanomaterials. In this paper, using the non-equilibrium Green's function method, we investigate the influence of edge disorder on the thermoelectric performance of gamma(γ)-graphyne nanoribbons (GYNRs). Our results show that the high Seebeck coefficient in pristine γ-GYNR could still be preserved although edge disorder is introduced into the structure. Meanwhile, in these edge-disordered nanoribbons the suppression of thermal conductance including electronic and phononic contributions outweighs the reduction of electronic conductance. These two positive effects combine together, and finally boost the thermoelectric conversion efficiency of γ-GYNRs. The thermoelectric figure of merit ZT in the edge-disordered γ-GYNRs (the length and width are about 55.68 and 1.41 nm) could approach 2.5 at room temperature, and can even reach as high as 4.0 at 700 K, which is comparable to the efficiency of conventional energy conversion methods. The findings in this paper indicate that the edge-disordered γ-GYNRs are a promising candidate for efficient thermoelectric energy conversion and thermal management of nanodevices.

  20. Specific absorption and backscatter coefficient signatures in southeastern Atlantic coastal waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    1998-12-01

    Measurements of natural water samples in the field and laboratory of hyperspectral signatures of total absorption and reflectance were obtained using long pathlength absorption systems (50 cm pathlength). Water was sampled in Indian River Lagoon, Banana River and Port Canaveral, Florida. Stations were also occupied in near coastal waters out to the edge of the Gulf Stream in the vicinity of Kennedy Space Center, Florida and estuarine waters along Port Royal Sound and along the Beaufort River tidal area in South Carolina. The measurements were utilized to calculate natural water specific absorption, total backscatter and specific backscatter optical signatures. The resulting optical cross section signatures suggest different models are needed for the different water types and that the common linear model may only appropriate for coastal and oceanic water types. Mean particle size estimates based on the optical cross section, suggest as expected, that particle size of oceanic particles are smaller than more turbid water types. The data discussed and presented are necessary for remote sensing applications of sensors as well as for development and inversion of remote sensing algorithms.

  1. Magic Clusters of MoS2 by Edge S2 Interdimer Spacing Modulation.

    PubMed

    Ryou, Junga; Kim, Yong-Sung

    2018-05-17

    Edge atomic and electronic structures of S-saturated Mo-edge triangular MoS 2 nanoclusters are investigated using density functional theory calculations. The edge electrons described by the S 2 -p x p x π* (S 2 -Π x ) and Mo-d xy orbitals are found to interplay to pin the S 2 -Π x Fermi wavenumber at k F = 2/5 as the nanocluster size increases, and correspondingly, the ×5 Peierls edge S 2 interdimer spacing modulation is induced. For the particular sizes of N = 5 n - 2 and 5 n, where N is the number of Mo atoms at one edge representing the nanocluster size and n is a positive integer, the effective ×5 interdimer spacing modulation stabilizes the nanoclusters, which are identified here to be the magic S-saturated Mo-edge triangular MoS 2 nanoclusters. With the S 2 -Π x Peierls gap, the MoS 2 nanoclusters become far-edge S 2 -Π x semiconducting and subedge Mo-d xy metallic as N → ∞.

  2. Alkali absorption and citrate excretion in calcium nephrolithiasis

    NASA Technical Reports Server (NTRS)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p < 0.001). In 11 patients with distal renal tubular acidosis (RTA), urinary citrate excretion was subnormal relative to net GI alkali absorption, with data from most patients residing outside the 95% confidence ellipse described for normal subjects. However, the normal relationship between urinary citrate and net absorbed alkali was maintained in 11 patients with chronic diarrheal syndrome (CDS) and in 124 stone-forming patients devoid of RTA or CDS, half of whom had "idiopathic" hypocitraturia. The 18 stone-forming patients without RTA or CDS received potassium citrate (30-60 mEq/day). Both urinary citrate and net GI alkali absorption increased, yielding a significantly positive correlation (r = 0.62, p < 0.0001), with the slope indistinguishable from that of normal subjects. Thus, urinary citrate was normally dependent on the net GI absorption of alkali. This dependence was less marked in RTA, confirming the renal origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  3. [The value of horizontal discrepancy on the subgingival position of the tooth crown].

    PubMed

    Redzepagić, S

    1997-01-01

    Marginal adaptation of the crown edge has been considered as primary and significant factor of prevention of secondary caries and periodontal disease on carryig tooth. There has been a clear dependence between hunting the periodontal tissue and the quality of edge closing of the crown. If we position subgingivaly the crown which clinically shows a good adoptiveness marginally and at the same time we position marginal crease in the ginguival sucus that should rush the accumulation of the plaque. The bacteries in the plaque would cause the inflammation of ginguive. The end of the crown edge in gingival sucus would cause chronic inflammation at ginguival tissue. The existence of transit zone that includes the crown edge, prepared tooth and dental cement became important if the crown edge has been positioned subgingivaly. If the crown edge ends in the ginguival sucus, the tooth meat is constantly being irritated that results with different degrees of inflammations. In many cases it causes ginguival dislocation. The possibility of clinical control of marginal positioning of subgingivaly positioned crown edge on demarcation line does not exist in terminal phase of cementing. The crown cement can be substratum of bacterial receptiveness and the plaque accumulation in the ginguival sucus. The procedure of cementing is an important cause of incomplete edge closing of the crown on the demarcation line. The form of demarcation line determine the form and the width of crown. They are favorising and degrading the level of marginal adaptations. The existing of horizontal discrepancy at the relation of based tooth--the crown edge is unavoidable. The question is if the amount of this discrepancy fits the assumed biological optimum.

  4. Corridors promote fire via connectivity and edge effects.

    PubMed

    Brudvig, Lars A; Wagner, Stephanie A; Damschen, Ellen I

    2012-04-01

    Landscape corridors, strips of habitat that connect otherwise isolated habitat patches, are commonly employed during management of fragmented landscapes. To date, most reported effects of corridors have been positive; however, there are long-standing concerns that corridors may have unintended consequences. Here, we address concerns over whether corridors promote propagation of disturbances such as fire. We collected data during prescribed fires in the world's largest and best replicated corridor experiment (Savannah River Site, South Carolina, USA), six -50-ha landscapes of open (shrubby/herbaceous) habitat within a pine plantation matrix, to test several mechanisms for how corridors might influence fire. Corridors altered patterns of fire temperature through a direct connectivity effect and an indirect edge effect. The connectivity effect was independent of fuel levels and was consistent with a hypothesized wind-driven "bellows effect." Edges, a consequence of corridor implementation, elevated leaf litter (fuel) input from matrix pine trees, which in turn increased fire temperatures. We found no evidence for corridors or edges impacting patterns of fire spread: plots across all landscape positions burned with similar probability. Impacts of edges and connectivity on fire temperature led to changes in vegetation: hotter-burning plots supported higher bunch grass cover during the field season after burning, suggesting implications for woody/herbaceous species coexistence. To our knowledge, this represents the first experimental evidence that corridors can modify landscape-scale patterns of fire intensity. Corridor impacts on fire should be carefully considered during landscape management, both in the context of how corridors connect or break distributions of fuels and the desired role of fire as a disturbance, which may range from a management tool to an agent to be suppressed. In our focal ecosystem, longleaf pine woodland, corridors might provide a previously

  5. Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms.

    PubMed

    Nonaka, T; Dohmae, K; Araki, T; Hayashi, Y; Hirose, Y; Uruga, T; Yamazaki, H; Mochizuki, T; Tanida, H; Goto, S

    2012-08-01

    We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

  6. Specimen charging in X-ray absorption spectroscopy: correction of total electron yield data from stabilized zirconia in the energy range 250-915 eV.

    PubMed

    Vlachos, Dimitrios; Craven, Alan J; McComb, David W

    2005-03-01

    The effects of specimen charging on X-ray absorption spectroscopy using total electron yield have been investigated using powder samples of zirconia stabilized by a range of oxides. The stabilized zirconia powder was mixed with graphite to minimize the charging but significant modifications of the intensities of features in the X-ray absorption near-edge fine structure (XANES) still occurred. The time dependence of the charging was measured experimentally using a time scan, and an algorithm was developed to use this measured time dependence to correct the effects of the charging. The algorithm assumes that the system approaches the equilibrium state by an exponential decay. The corrected XANES show improved agreement with the electron energy-loss near-edge fine structure obtained from the same samples.

  7. Superpixel edges for boundary detection

    DOEpatents

    Moya, Mary M.; Koch, Mark W.

    2016-07-12

    Various embodiments presented herein relate to identifying one or more edges in a synthetic aperture radar (SAR) image comprising a plurality of superpixels. Superpixels sharing an edge (or boundary) can be identified and one or more properties of the shared superpixels can be compared to determine whether the superpixels form the same or two different features. Where the superpixels form the same feature the edge is identified as an internal edge. Where the superpixels form two different features, the edge is identified as an external edge. Based upon classification of the superpixels, the external edge can be further determined to form part of a roof, wall, etc. The superpixels can be formed from a speckle-reduced SAR image product formed from a registered stack of SAR images, which is further segmented into a plurality of superpixels. The edge identification process is applied to the SAR image comprising the superpixels and edges.

  8. Forests on the edge: Microenvironmental drivers of carbon cycle response to edge effects

    NASA Astrophysics Data System (ADS)

    Reinmann, A.; Hutyra, L.; Smith, I. A.; Thompson, J.

    2017-12-01

    Twenty percent of the world's forest is within 100 m of a forest edge, but much of our understanding of forest carbon (C) cycling comes from large, intact ecosystems, which creates an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest is the most heavily fragmented forest biome in the world and its growth and carbon storage responses to forest edge effects appear to be the opposite of those in the tropical and boreal regions. We used field measurements to quantify the drivers of temperate forest C cycling response to edge effects, characterizing vegetative growth, respiration, and forest structure. We find large gradients in air and soil temperature from the forest interior to edge (up to 4 and 10° C, respectively) and the magnitude of this gradient is inversely correlated to the size of the forest edge growth enhancement. Further, leaf area index increases with proximity to the forest edge. While we also find increases in soil respiration between the forest interior and edge, this flux is small relative to aboveground growth enhancement near the edge. These findings represent an important advancement in our understanding of forest C cycle response to edge effects and will greatly improve our capacity to constrain biogenic C fluxes in fragmented and heterogeneous landscapes.

  9. Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons

    NASA Astrophysics Data System (ADS)

    Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang

    2017-12-01

    Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.

  10. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge,more » Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.« less

  11. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE PAGES

    Wu, M.; Xin, Houlin L.; Wang, J. O.; ...

    2018-04-24

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  12. Investigation of the multiplet features of SrTiO 3 in X-ray absorption spectra based on configuration interaction calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.; Xin, Houlin L.; Wang, J. O.

    Synchrotron-based L 2,3-edge absorption spectra show strong sensitivities to the local electronic structure and chemical environment. However, detailed physical information cannot be extracted easily without computational aids. Here in this study using the experimental Ti L 2,3-edges absorption spectrum of SrTiO 3as a fingerprint and considering full multiplet effects, calculations yield different energy parameters characterizing local ground state properties. The peak splitting and intensity ratios of the L 3 and L 2 set of peaks are carefully analyzed quantitatively, giving rise to a small hybridization energy around 1.2 eV, and the different hybridization energy values reported in the literature aremore » further addressed. Finally, absorption spectra with different linearly polarized photons under various tetragonal crystal fields are investigated, revealing a non-linear orbital–lattice interaction, and a theoretical guidance for material engineering of SrTiO 3-based thin films and heterostructures is offered. Finally, detailed analysis of spectrum shifts with different tetragonal crystal fields suggests that the e g crystal field splitting is a necessary parameter for a thorough analysis of the spectra, even though it is not relevant for the ground state properties.« less

  13. X-ray absorption studies of chlorine valence and local environments in borosilicate waste glasses

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.; Stolte, W. C.; Demchenko, I. N.

    2011-01-01

    Chlorine (Cl) is a constituent of certain types of nuclear wastes and its presence can affect the physical and chemical properties of silicate melts and glasses developed for the immobilization of such wastes. Cl K-edge X-ray absorption spectra (XAS) were collected and analyzed to characterize the unknown Cl environments in borosilicate waste glass formulations, ranging in Cl-content from 0.23 to 0.94 wt.%. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data for the glasses show trends dependent on calcium (Ca) content. Near-edge data for the Ca-rich glasses are most similar to the Cl XANES of CaCl 2, where Cl - is coordinated to three Ca atoms, while the XANES for the Ca-poor glasses are more similar to the mineral davyne, where Cl is most commonly coordinated to two Ca in one site, as well as Cl and oxygen nearest-neighbors in other sites. With increasing Ca content in the glass, Cl XANES for the glasses approach that for CaCl 2, indicating more Ca nearest-neighbors around Cl. Reliable structural information obtained from the EXAFS data for the glasses is limited, however, to Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na distances; Cl sbnd Ca contributions could not be fit to the glass data, due to the narrow k-space range available for analysis. Structural models that best fit the glass EXAFS data include Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na correlations, where Cl sbnd O and Cl sbnd Na distances decrease by approximately 0.16 Å as glass Ca content increases. XAS for the glasses indicates Cl - is found in multiple sites where most Cl-sites have Ca neighbors, with oxygen, and possibly, Na second-nearest neighbors. EXAFS analyses suggest that Cl sbnd Cl environments may also exist in the glasses in minor amounts. These results are generally consistent with earlier findings for silicate glasses, where Cl - was associated with Ca 2+ and Na + in network modifier sites.

  14. Edge Bioinformatics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo, Chien-Chi

    2015-08-03

    Edge Bioinformatics is a developmental bioinformatics and data management platform which seeks to supply laboratories with bioinformatics pipelines for analyzing data associated with common samples case goals. Edge Bioinformatics enables sequencing as a solution and forward-deployed situations where human-resources, space, bandwidth, and time are limited. The Edge bioinformatics pipeline was designed based on following USE CASES and specific to illumina sequencing reads. 1. Assay performance adjudication (PCR): Analysis of an existing PCR assay in a genomic context, and automated design of a new assay to resolve conflicting results; 2. Clinical presentation with extreme symptoms: Characterization of a known pathogen ormore » co-infection with a. Novel emerging disease outbreak or b. Environmental surveillance« less

  15. Life on the edge: carnivore body size variation is all over the place

    PubMed Central

    Meiri, Shai; Dayan, Tamar; Simberloff, Daniel; Grenyer, Richard

    2009-01-01

    Evolutionary biologists have long been fascinated by both the ways in which species respond to ecological conditions at the edges of their geographic ranges and the way that species' body sizes evolve across their ranges. Surprisingly, though, the relationship between these two phenomena is rarely studied. Here, we examine whether carnivore body size changes from the interior of their geographic range towards the range edges. We find that within species, body size often varies strongly with distance from the range edge. However, there is no general tendency across species for size to be either larger or smaller towards the edge. There is some evidence that the smallest guild members increase in size towards their range edges, but results for the largest guild members are equivocal. Whether individuals vary in relation to the distance from the range edges often depends on the way edge and interior are defined. Neither geographic range size nor absolute body size influences the tendency of size to vary with distance from the range edge. Therefore, we suggest that the frequent significant association between body size and the position of individuals along the edge-core continuum reflects the prevalence of geographic size variation and that the distance to range edge per se does not influence size evolution in a consistent way. PMID:19324818

  16. High accuracy position method based on computer vision and error analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shihao; Shi, Zhongke

    2003-09-01

    The study of high accuracy position system is becoming the hotspot in the field of autocontrol. And positioning is one of the most researched tasks in vision system. So we decide to solve the object locating by using the image processing method. This paper describes a new method of high accuracy positioning method through vision system. In the proposed method, an edge-detection filter is designed for a certain running condition. Here, the filter contains two mainly parts: one is image-processing module, this module is to implement edge detection, it contains of multi-level threshold self-adapting segmentation, edge-detection and edge filter; the other one is object-locating module, it is to point out the location of each object in high accurate, and it is made up of medium-filtering and curve-fitting. This paper gives some analysis error for the method to prove the feasibility of vision in position detecting. Finally, to verify the availability of the method, an example of positioning worktable, which is using the proposed method, is given at the end of the paper. Results show that the method can accurately detect the position of measured object and identify object attitude.

  17. Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS2.

    PubMed

    Lazar, Petr; Otyepka, Michal

    2017-04-06

    Molybdenum disulfide, in particular its edges, has attracted considerable attention as possible substitute for platinum catalysts in the hydrogen evolution reaction (HER). The complex nature of the reaction complicates its detailed experimental investigations, which are mostly indirect and sample dependent. Therefore, density functional theory calculations were employed to study how the properties of the MoS 2 Mo-edge influence the thermodynamics of hydrogen adsorption onto the edge. The effect of the computational model (one-dimensional nanostripe), border symmetry imposed by its length, sulfur saturation of the edge, and dimensionality of the material are discussed. Hydrogen adsorption was found to depend critically on the coverage of extra sulfur at the Mo edge. The bare Mo-edge and fully sulfur-covered Mo-edge are catalytically inactive. The most favorable hydrogen binding towards HER was found for the Mo-edge covered by sulfur monomers. This edge provides hydrogen adsorption free energies positioned around -0.25 eV at up to 50 % hydrogen coverage, close to the experimental values of overpotential needed for the HER reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High-resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons in the 3 μm Region: Role of Periphery

    NASA Astrophysics Data System (ADS)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-11-01

    In this work we report on high-resolution IR absorption studies that provide a detailed view on how the peripheral structure of irregular polycyclic aromatic hydrocarbons (PAHs) affects the shape and position of their 3 μm absorption band. For this purpose, we present mass-selected, high-resolution absorption spectra of cold and isolated phenanthrene, pyrene, benz[a]antracene, chrysene, triphenylene, and perylene molecules in the 2950-3150 cm-1 range. The experimental spectra are compared with standard harmonic calculations and anharmonic calculations using a modified version of the SPECTRO program that incorporates a Fermi resonance treatment utilizing intensity redistribution. We show that the 3 μm region is dominated by the effects of anharmonicity, resulting in many more bands than would have been expected in a purely harmonic approximation. Importantly, we find that anharmonic spectra as calculated by SPECTRO are in good agreement with the experimental spectra. Together with previously reported high-resolution spectra of linear acenes, the present spectra provide us with an extensive data set of spectra of PAHs with a varying number of aromatic rings, with geometries that range from open to highly condensed structures, and featuring CH groups in all possible edge configurations. We discuss the astrophysical implications of the comparison of these spectra on the interpretation of the appearance of the aromatic infrared 3 μm band, and on features such as the two-component emission character of this band and the 3 μm emission plateau.

  19. Local Structure Determination of Carbon/Nickel Ferrite Composite Nanofibers Probed by X-ray Absorption Spectroscopy.

    PubMed

    Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi

    2015-11-01

    Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).

  20. Losing your edge: climate change and the conservation value of range-edge populations.

    PubMed

    Rehm, Evan M; Olivas, Paulo; Stroud, James; Feeley, Kenneth J

    2015-10-01

    Populations occurring at species' range edges can be locally adapted to unique environmental conditions. From a species' perspective, range-edge environments generally have higher severity and frequency of extreme climatic events relative to the range core. Under future climates, extreme climatic events are predicted to become increasingly important in defining species' distributions. Therefore, range-edge genotypes that are better adapted to extreme climates relative to core populations may be essential to species' persistence during periods of rapid climate change. We use relatively simple conceptual models to highlight the importance of locally adapted range-edge populations (leading and trailing edges) for determining the ability of species to persist under future climates. Using trees as an example, we show how locally adapted populations at species' range edges may expand under future climate change and become more common relative to range-core populations. We also highlight how large-scale habitat destruction occurring in some geographic areas where many species range edge converge, such as biome boundaries and ecotones (e.g., the arc of deforestation along the rainforest-cerrado ecotone in the southern Amazonia), can have major implications for global biodiversity. As climate changes, range-edge populations will play key roles in helping species to maintain or expand their geographic distributions. The loss of these locally adapted range-edge populations through anthropogenic disturbance is therefore hypothesized to reduce the ability of species to persist in the face of rapid future climate change.

  1. Effect of X-ray irradiation on the optical absorption of СdSe1-xTex nanocrystals embedded in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2012-07-01

    The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.

  2. Elastic properties and optical absorption studies of mixed alkali borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed

    2018-05-01

    First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.

  3. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption

    PubMed Central

    Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael

    2013-01-01

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116

  4. Mathematical model of zinc absorption: effects of dietary calcium, protein and iron on zinc absorption.

    PubMed

    Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael

    2013-02-28

    A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.

  5. Influence of point defects on the near edge structure of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    McDougall, Nicholas L.; Partridge, Jim G.; Nicholls, Rebecca J.; Russo, Salvy P.; McCulloch, Dougal G.

    2017-10-01

    Hexagonal boron nitride (hBN) is a wide-band-gap semiconductor with applications including gate insulation layers in graphene transistors, far-ultraviolet light emitting devices and as hydrogen storage media. Due to its complex microstructure, defects in hBN are challenging to identify. Here, we combine x-ray absorption near edge structure (XANES) spectroscopy with ab initio theoretical modeling to identify energetically favorable defects. Following annealing of hBN samples in vacuum and oxygen, the B and N K edges exhibited angular-dependent peak modifications consistent with in-plane defects. Theoretical calculations showed that the energetically favorable defects all produce signature features in XANES. Comparing these calculations with experiments, the principle defects were attributed to substitutional oxygen at the nitrogen site, substitutional carbon at the boron site, and hydrogen passivated boron vacancies. Hydrogen passivation of defects was found to significantly affect the formation energies, electronic states, and XANES. In the B K edge, multiple peaks above the major 1 s to π* peak occur as a result of these defects and the hydrogen passivated boron vacancy produces the frequently observed doublet in the 1 s to σ* transition. While the N K edge is less sensitive to defects, features attributable to substitutional C at the B site were observed. This defect was also calculated to have mid-gap states in its band structure that may be responsible for the 4.1-eV ultraviolet emission frequently observed from this material.

  6. Chlorine levels and species in fine and size resolved atmospheric particles by X-ray absorption near-edge structure spectroscopy analysis in Beijing, China.

    PubMed

    Ouyang, Jie; Yang, Guo-Sheng; Ma, Ling-Ling; Luo, Min; Zheng, Lei; Huo, Qing; Zhao, Yi-Dong; Hu, Tian-Dou; Cai, Zhen-Feng; Xu, Dian-Dou

    2018-04-01

    An understanding of the species of chlorine is crucial in the metropolis-Beijing, which is suffering serious haze pollution with high frequency. Particulate Matters (PMs) with five different sizes were collected in Beijing from July 2009 to March 2016, and characterized non-destructively by X-ray absorption near edge structure spectroscopy. PM <0.2 , PM 0.2-0.5 and PM >2.5 contributed for the major PMs mass in spring and summer, PM 0.5-1.0 and PM 1.0-2.5 contributed for the major PMs mass in autumn and winter. The concentrations of the three chlorine species were in the order of inorganic chlorine (Cl inorg ) > aliphatic chlorine (Cl ali ) > aromatic chlorine (Cl aro ), indicating that Cl inorg constituted the primary chlorine fraction and less toxic Cl ali constituted the primary total organic chlorine (Cl ali  + Cl aro , abbreviated as Cl org ) in the PMs in Beijing. In addition, these three chlorine species exhibited identical seasonal variation in PM 2.5 : winter > autumn > spring > summer. Wet precipitation is an important factor to result in the lower mass concentrations of these three chlorine species in summer. The temporal variations of both size resolved PM mass concentrations and chlorine species concentrations suggested that the air pollution prevention and control in Beijing has just won initial success. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Surface stress mediated image force and torque on an edge dislocation

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh

    2018-07-01

    The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.

  8. Strain-optic voltage monitor wherein strain causes a change in the optical absorption of a crystalline material

    DOEpatents

    Weiss, Jonathan D.

    1997-01-01

    A voltage monitor which uses the shift in absorption edge of crystalline material to measure strain resulting from electric field-induced deformation of piezoelectric or electrostrictive material, providing a simple and accurate means for measuring voltage applied either by direct contact with the crystalline material or by subjecting the material to an electric field.

  9. Elucidating ultrafast electron dynamics at surfaces using extreme ultraviolet (XUV) reflection-absorption spectroscopy.

    PubMed

    Biswas, Somnath; Husek, Jakub; Baker, L Robert

    2018-04-24

    Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.

  10. Effect of Fe-substitution on the structure and magnetism of single crystals Mn2-xFexBO4

    NASA Astrophysics Data System (ADS)

    Platunov, M. S.; Kazak, N. V.; Knyazev, Yu. V.; Bezmaternykh, L. N.; Moshkina, E. M.; Trigub, A. L.; Veligzhanin, A. A.; Zubavichus, Y. V.; Solovyov, L. A.; Velikanov, D. A.; Ovchinnikov, S. G.

    2017-10-01

    Single crystalline Mn2-xFexBO4 with x = 0.3, 0.5, 0.7 grown by the flux method have been studied by means of X-ray diffraction and X-ray absorption spectroscopy at both Mn and Fe K edges. The compounds were found to crystallize in an orthorhombic warwickite structure (sp. gr. Pnam). The lattice parameters change linearly with x thus obeying the Vegard's law. The Fe3+ substitution for Mn3+ has been deduced from the X-ray absorption near-edge structure (XANES) spectra. Two energy positions of the absorption edges have been observed in Mn K-edge XANES spectra indicating the presence of manganese in two different oxidation states. Extended X-ray absorption fine structure (EXAFS) analysis has shown the reduction of local structural distortions upon Fe substitution. The magnetization data have revealed a spin-glass transition at TSG = 11, 14 and 18 K for x = 0.3, 0.5 and 0.7, respectively.

  11. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of <2 μm. Although the addition of NKN decreased the specimen's tetragonality, the electrical properties were enhanced by the formation of defect dipoles and conduction electrons, which resulted from an acceptor and donor substitution behavior. Through O K-edge near edge x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  12. Development of edge effects around experimental ecosystem hotspots is affected by edge density and matrix type

    USDA-ARS?s Scientific Manuscript database

    Ecological edge effects are sensitive to landscape context. In particular, edge effects can be altered by matrix type and by the presence of other nearby edges. We experimentally altered patch configurations in an African savanna to determine how edge density and matrix type influence edge effect de...

  13. The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica.

    PubMed

    Bolt, Laura M; Schreier, Amy L; Voss, Kristofor A; Sheehan, Elizabeth A; Barrickman, Nancy L; Pryor, Nathaniel P; Barton, Matthew C

    2018-05-01

    When a forest is fragmented, this increases the amount of forest edge relative to the interior. Edge effects can lead to loss of animal and plant species and decreased plant biomass near forest edges. We examined the influence of an anthropogenic forest edge comprising cattle pasture, coconut plantations, and human settlement on the mantled howler (Alouatta palliata), white-faced capuchin (Cebus capucinus), Central American spider monkey (Ateles geoffroyi), and plant populations at La Suerte Biological Research Station (LSBRS), Costa Rica. We predicted that there would be lower monkey encounter rate, mean tree species richness, and diameter at breast height (DBH) in forest edge versus interior, and that monkeys would show species-specific responses to edge based on diet, body size, and canopy height preferences. Specifically, we predicted that howler monkeys would show positive or neutral edge effects due to their flexible folivorous diet, large body size, and preference for high canopy, capuchins would show positive edge effects due to their diverse diet, small body size, and preference for low to middle canopy, and spider monkeys would show negative edge effects due their reliance on ripe fruit, large body size, and preference for high upper canopy. We conducted population and vegetation surveys along edge and interior transects at LSBRS. Contrary to predictions, total monkey encounter rate did not vary between the forest edge and forest interior. Furthermore, all three species showed neutral edge effects with no significant differences in encounter rate between forest edge and interior. Interior transects had significantly higher mean tree species richness than edge transects, and interior trees had greater DBH than edge trees, although this difference was not significant. These results suggest that forest edges negatively impact plant populations at La Suerte but that the monkeys are able to withstand these differences in vegetation.

  14. On the generation of side-edge flap noise. [part span trailing edge flaps

    NASA Technical Reports Server (NTRS)

    Howe, M. S.

    1981-01-01

    A theory is proposed for estimating the noise generated at the side edges of part span trailing edge flaps in terms of pressure fluctuations measured just in-board of the side edge of the upper surface of the flap. Asymptotic formulae are developed in the opposite extremes of Lorentz contracted acoustic wavelength large/small compared with the chord of the flap. Interpolation between these limiting results enables the field shape and its dependence on subsonic forward flight speed to be predicted over the whole frequency range. It is shown that the mean width of the side edge gap between the flap and the undeflected portion of the airfoil has a significant influence on the intensity of the radiated sound. It is estimated that the noise generated at a single side edge of a full scale part span flap can exceed that produced along the whole of the trailing edge of the flap by 3 dB or more.

  15. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  16. Atomic-scale distortion of optically activated Sm dopants identified with site-selective X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji

    2013-10-01

    The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.

  17. Strain-optic voltage monitor wherein strain causes a change in the optical absorption of a crystalline material

    DOEpatents

    Weiss, J.D.

    1997-01-14

    A voltage monitor which uses the shift in absorption edge of crystalline material to measure strain resulting from electric field-induced deformation of piezoelectric or electrostrictive material, providing a simple and accurate means for measuring voltage applied either by direct contact with the crystalline material or by subjecting the material to an electric field. 6 figs.

  18. Photoabsorption of the molecular IH cation at the iodine 3 d absorption edge

    NASA Astrophysics Data System (ADS)

    Klumpp, Stephan; Guda, Alexander A.; Schubert, Kaja; Mertens, Karolin; Hellhund, Jonas; Müller, Alfred; Schippers, Stefan; Bari, Sadia; Martins, Michael

    2018-03-01

    Yields of atomic iodine Iq + (q ≥2 ) fragments resulting from photoexcitation and photoionization of the target ions IH+ and I+ have been measured in the photon-energy range 610-680 eV, which comprises the thresholds for iodine 3 d ionization. The measured ion-yield spectra show two strong and broad resonance features due to the excitation of the 3 d3 /2 ,5 /2 electrons into ɛ f states rather similar for both parent ions. In the 3 d pre-edge range, excitations into (n p π ) -like orbitals and into an additional σ* orbital are found for IH+, which have been identified by comparison of the atomic I+ and molecular IH+ data and with the help of (time-dependent) density functional theory (DFT) and atomic Hartree-Fock calculations. The (5 p π ) orbital is almost atomlike, whereas all other resonances of the IH+ primary ion show a more pronounced molecular character, which is deduced from the chemical shifts of the resonances and the theoretical analysis.

  19. Interband absorption edge in the topological insulators Bi2(Te1-xSex) 3

    NASA Astrophysics Data System (ADS)

    Dubroka, A.; Caha, O.; Hronček, M.; Friš, P.; Orlita, M.; Holý, V.; Steiner, H.; Bauer, G.; Springholz, G.; Humlíček, J.

    2017-12-01

    We have investigated the optical properties of thin films of topological insulators Bi2Te3 , Bi2Se3 , and their alloys Bi2(Te1-xSex) 3 on BaF2 substrates by a combination of infrared ellipsometry and reflectivity in the energy range from 0.06 to 6.5 eV. For the onset of interband absorption in Bi2Se3 , after the correction for the Burstein-Moss effect, we find the value of the direct band gap of 215 ±10 meV at 10 K. Our data support the picture that Bi2Se3 has a direct band gap located at the Γ point in the Brillouin zone and that the valence band reaches up to the Dirac point and has the shape of a downward-oriented paraboloid, i.e., without a camel-back structure. In Bi2Te3 , the onset of strong direct interband absorption at 10 K is at a similar energy of about 200 meV, with a weaker additional feature at about 170 meV. Our data support the recent G W band-structure calculations suggesting that the direct interband transition does not occur at the Γ point but near the Z -F line of the Brillouin zone. In the Bi2(Te1-xSex) 3 alloy, the energy of the onset of direct interband transitions exhibits a maximum near x =0.3 (i.e., the composition of Bi2Te2Se ), suggesting that the crossover of the direct interband transitions between the two points in the Brillouin zone occurs close to this composition.

  20. Infective endocarditis following transcatheter edge-to-edge mitral valve repair: A systematic review.

    PubMed

    Asmarats, Lluis; Rodriguez-Gabella, Tania; Chamandi, Chekrallah; Bernier, Mathieu; Beaudoin, Jonathan; O'Connor, Kim; Dumont, Eric; Dagenais, François; Paradis, Jean-Michel; Rodés-Cabau, Josep

    2018-05-10

    To assess the clinical characteristics, management, and outcomes of patients diagnosed with infective endocarditis (IE) after edge-to-edge mitral valve repair with the MitraClip device. Transcatheter edge-to-edge mitral valve repair has emerged as an alternative to surgery in high-risk patients. However, few data exist on IE following transcatheter mitral procedures. Four electronic databases (PubMed, Google Scholar, Embase, and Cochrane Library) were searched for original published studies on IE after edge-to-edge transcatheter mitral valve repair from 2003 to 2017. A total of 10 publications describing 12 patients with definitive IE (median age 76 years, 55% men) were found. The mean logistic EuroSCORE/EuroSCORE II were 41% and 45%, respectively. The IE episode occurred early (within 12 months post-procedure) in nine patients (75%; within the first month in five patients). Staphylococcus aureus was the most frequent (60%) causal microorganism, and severe mitral regurgitation was present in all cases but one. Surgical mitral valve replacement (SMVR) was performed in most (67%) patients, and the mortality associated with the IE episode was high (42%). IE following transcatheter edge-to-edge mitral valve repair is a rare but life-threatening complication, usually necessitating SMVR despite the high-risk profile of the patients. These results highlight the importance of adequate preventive measures and a prompt diagnosis and treatment of this serious complication. © 2018 Wiley Periodicals, Inc.