Science.gov

Sample records for absorption filter method

  1. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model

  2. Improved determination of particulate absorption from combined filter pad and PSICAM measurements.

    PubMed

    Lefering, Ina; Röttgers, Rüdiger; Weeks, Rebecca; Connor, Derek; Utschig, Christian; Heymann, Kerstin; McKee, David

    2016-10-31

    Filter pad light absorption measurements are subject to two major sources of experimental uncertainty: the so-called pathlength amplification factor, β, and scattering offsets, o, for which previous null-correction approaches are limited by recent observations of non-zero absorption in the near infrared (NIR). A new filter pad absorption correction method is presented here which uses linear regression against point-source integrating cavity absorption meter (PSICAM) absorption data to simultaneously resolve both β and the scattering offset. The PSICAM has previously been shown to provide accurate absorption data, even in highly scattering waters. Comparisons of PSICAM and filter pad particulate absorption data reveal linear relationships that vary on a sample by sample basis. This regression approach provides significantly improved agreement with PSICAM data (3.2% RMS%E) than previously published filter pad absorption corrections. Results show that direct transmittance (T-method) filter pad absorption measurements perform effectively at the same level as more complex geometrical configurations based on integrating cavity measurements (IS-method and QFT-ICAM) because the linear regression correction compensates for the sensitivity to scattering errors in the T-method. This approach produces accurate filter pad particulate absorption data for wavelengths in the blue/UV and in the NIR where sensitivity issues with PSICAM measurements limit performance. The combination of the filter pad absorption and PSICAM is therefore recommended for generating full spectral, best quality particulate absorption data as it enables correction of multiple errors sources across both measurements.

  3. Spectral Absorption By Particulate Impurities in Snow Determined By Photometric Analysis Of Filters

    NASA Astrophysics Data System (ADS)

    Grenfell, T. C.; Doherty, S. J.; Clarke, A. D.

    2009-12-01

    Our work is motivated by the 1983-84 survey by Clarke and Noone (Atmos. Environ., 1985) of soot in Arctic snow. Our objective is to resurvey the original area they covered and to extend the observations around the entire Arctic Basin under the auspices of the IPY program. We use the filtering and integrating sandwich techniques developed by Clarke and Noone to process the snow samples. Among the advantages of this method are that (a) it provides a direct measure of light absorption and the result is closely related to the actual absorption of sunlight in the snow or ice, (b) processing and filtering of the snow samples can be carried out in remote locations and (c) it is not necessary to transport large quantities of snow back to our home laboratory. Here we describe the construction, calibration, and some applications of an integrating sphere spectrophotometer system designed to take advantage of recent advances in instrumentation to improve the accuracy of measurements of absorption by particulate impurities collected on nuclepore filters used in our survey. Filter loading in terms of effective black carbon (BC) amount is determined together with the ratio of non-BC to BC concentrations using a set of reference filters with known loadings of Monarch 71 BC prepared by A. D. Clarke. The new spectrophotometer system has (a) system stability of approximately 0.5%; (b) precision relative to ADC standards of 3-4% for filter loadings greater than about 0.5 microgm Carbon/cm2. (c) We can distinguish BC from non-BC from relative spectral shapes of the energy absorption curves with an accuracy that depends on our knowledge of the spectral absorption curves of the non-BC components; and (d) by-eye estimates are consistent with spectrophotometric results. The major outstanding uncertainty is the appropriate value to use for the mass absorption efficiency for BC.

  4. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; U-Yen, K.; Rostem, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Omega and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  5. Impedance Matched Absorptive Thermal Blocking Filters

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Chuss, D. T.; Rostem, K.; U-Yen, K.

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50O and its response has been validated from 0-to-50GHz. The observed return loss in the 0-to-20GHz design band is greater than 20 dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  6. Self absorption of alpha and beta particles in a fiberglass filter.

    PubMed

    Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D

    2000-10-01

    Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.

  7. Composite Reflective Absorptive IR-Blocking Filters Embedded in Metamaterial Antireflection Coated Silicon

    NASA Technical Reports Server (NTRS)

    Munson, C. D.; Choi, S. K.; Coughlin, K. P.; McMahon, J. J.; Miller, K. H.; Page, L. A.; Wollack, E. J.

    2017-01-01

    Infrared (IR)-blocking filters are crucial for controlling the radiative loading on cryogenic systems and for optimizing the sensitivity of bolometric detectors in the far-IR. We present a new IR filter approach based on a combination of patterned frequency-selective structures on silicon and a thin (2575 micron thick) absorptive composite based on powdered reststrahlen absorbing materials. For a 300 K blackbody, this combination reflects approximately 50% of the incoming light and blocks greater than.99.8% of the total power with negligible thermal gradients and excellent low-frequency transmission. This allows a reduction in the IR thermal loading to negligible levels in a single cold filter. These composite filters are fabricated on silicon substrates, which provide excellent thermal transport laterally through the filter and ensure that the entire area of the absorptive filter stays near the bath temperature. A metamaterial antireflection coating cut into these substrates reduces in-band reflections to below 1%, and the in-band absorption of the powder mix is below 1% for signal bands below 750 GHz. This type of filter can be directly incorporated into silicon refractive optical elements.

  8. Sulfur determination in coal using molecular absorption in graphite filter vaporizer.

    PubMed

    Jim, Gibson; Katskov, Dmitri; Tittarelli, Paolo

    2011-02-15

    The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Absorption/Transmission Measurements of PSAP Particle-Laden Filters from the Biomass Burning Observation Project (BBOP) Field Campaign

    PubMed Central

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.

    2017-01-01

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The

  10. Absorption/Transmission Measurements of PSAP Particle-Laden Filters from the Biomass Burning Observation Project (BBOP) Field Campaign.

    PubMed

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M; Chand, Duli; Sedlacek, Arthur; Hubbe, John M

    2017-01-01

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The

  11. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  12. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  13. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    SciTech Connect

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  14. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  15. Quantitative filter technique measurements of spectral light absorption by aquatic particles using a portable integrating cavity absorption meter (QFT-ICAM).

    PubMed

    Röttgers, Rüdiger; Doxaran, David; Dupouy, Cecile

    2016-01-25

    The accurate determination of light absorption coefficients of particles in water, especially in very oligotrophic oceanic areas, is still a challenging task. Concentrating aquatic particles on a glass fiber filter and using the Quantitative Filter Technique (QFT) is a common practice. Its routine application is limited by the necessary use of high performance spectrophotometers, distinct problems induced by the strong scattering of the filters and artifacts induced by freezing and storing samples. Measurements of the sample inside a large integrating sphere reduce scattering effects and direct field measurements avoid artifacts due to sample preservation. A small, portable, Integrating Cavity Absorption Meter setup (QFT-ICAM) is presented, that allows rapid measurements of a sample filter. The measurement technique takes into account artifacts due to chlorophyll-a fluorescence. The QFT-ICAM is shown to be highly comparable to similar measurements in laboratory spectrophotometers, in terms of accuracy, precision, and path length amplification effects. No spectral artifacts were observed when compared to measurement of samples in suspension, whereas freezing and storing of sample filters induced small losses of water-soluble pigments (probably phycoerythrins). Remaining problems in determining the particulate absorption coefficient with the QFT-ICAM are strong sample-to-sample variations of the path length amplification, as well as fluorescence by pigments that is emitted in a different spectral region than that of chlorophyll-a.

  16. Matched-filtering line search methods applied to Suzaku data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Naoto; Yamada, Shin'ya; Enoto, Teruaki; Axelsson, Magnus; Ohashi, Takaya

    2016-12-01

    A detailed search for emission and absorption lines and an assessment of their upper limits are performed for Suzaku data. The method utilizes a matched-filtering approach to maximize the signal-to-noise ratio for a given energy resolution, which could be applicable to many types of line search. We first applied it to well-known active galactic nuclei spectra that have been reported to have ultra-fast outflows, and find that our results are consistent with previous findings at the ˜3σ level. We proceeded to search for emission and absorption features in two bright magnetars 4U 0142+61 and 1RXS J1708-4009, applying the filtering method to Suzaku data. We found that neither source showed any significant indication of line features, even using long-term Suzaku observations or dividing their spectra into spin phases. The upper limits on the equivalent width of emission/absorption lines are constrained to be a few eV at ˜1 keV and a few hundreds of eV at ˜10 keV. This strengthens previous reports that persistently bright magnetars do not show proton cyclotron absorption features in soft X-rays and, even if they exist, they would be broadened or much weaker than below the detection limit of X-ray CCD.

  17. Optical Absorption Spectra of Nuclear Filters Modified by Deposition of Silver Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.

    2015-07-01

    Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.

  18. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    PubMed

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  19. Fast wavelength calibration method for spectrometers based on waveguide comb optical filter

    SciTech Connect

    Yu, Zhengang; Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240; Huang, Meizhen, E-mail: mzhuang@sjtu.edu.cn

    2015-04-15

    A novel fast wavelength calibration method for spectrometers based on a standard spectrometer and a double metal-cladding waveguide comb optical filter (WCOF) is proposed and demonstrated. By using the WCOF device, a wide-spectrum beam is comb-filtered, which is very suitable for spectrometer wavelength calibration. The influence of waveguide filter’s structural parameters and the beam incident angle on the comb absorption peaks’ wavelength and its bandwidth are also discussed. The verification experiments were carried out in the wavelength range of 200–1100 nm with satisfactory results. Comparing with the traditional wavelength calibration method based on discrete sparse atomic emission or absorption lines,more » the new method has some advantages: sufficient calibration data, high accuracy, short calibration time, fit for produce process, stability, etc.« less

  20. Absorption/transmission measurements of PSAP particle-laden filters from the Biomass Burning Observation Project (BBOP) field campaign

    SciTech Connect

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).

  1. Absorption/transmission measurements of PSAP particle-laden filters from the Biomass Burning Observation Project (BBOP) field campaign

    DOE PAGES

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; ...

    2016-12-02

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) nonreacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). Here, the particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques).

  2. Correction of pathlength amplification in the filter-pad technique for measurements of particulate absorption coefficient in the visible spectral region.

    PubMed

    Stramski, Dariusz; Reynolds, Rick A; Kaczmarek, Sławomir; Uitz, Julia; Zheng, Guangming

    2015-08-01

    Spectrophotometric measurement of particulate matter retained on filters is the most common and practical method for routine determination of the spectral light absorption coefficient of aquatic particles, ap(λ), at high spectral resolution over a broad spectral range. The use of differing geometrical measurement configurations and large variations in the reported correction for pathlength amplification induced by the particle/filter matrix have hindered adoption of an established measurement protocol. We describe results of dedicated laboratory experiments with a diversity of particulate sample types to examine variation in the pathlength amplification factor for three filter measurement geometries; the filter in the transmittance configuration (T), the filter in the transmittance-reflectance configuration (T-R), and the filter placed inside an integrating sphere (IS). Relationships between optical density measured on suspensions (ODs) and filters (ODf) within the visible portion of the spectrum were evaluated for the formulation of pathlength amplification correction, with power functions providing the best functional representation of the relationship for all three geometries. Whereas the largest uncertainties occur in the T method, the IS method provided the least sample-to-sample variability and the smallest uncertainties in the relationship between ODs and ODf. For six different samples measured with 1 nm resolution within the light wavelength range from 400 to 700 nm, a median error of 7.1% is observed for predicted values of ODs using the IS method. The relationships established for the three filter-pad methods are applicable to historical and ongoing measurements; for future work, the use of the IS method is recommended whenever feasible.

  3. Characterization of aerosol scattering and spectral absorption by unique methods: a polar/imaging nephelometer and spectral reflectance measurements of aerosol samples collected on filters

    NASA Astrophysics Data System (ADS)

    Dolgos, Gergely; Martins, J. Vanderlei; Remer, Lorraine A.; Correia, Alexandre L.; Tabacniks, Manfredo; Lima, Adriana R.

    2010-02-01

    Characterization of aerosol scattering and absorption properties is essential to accurate radiative transfer calculations in the atmosphere. Applications of this work include remote sensing of aerosols, corrections for aerosol distortions in satellite imagery of the surface, global climate models, and atmospheric beam propagation. Here we demonstrate successful instrument development at the Laboratory for Aerosols, Clouds and Optics at UMBC that better characterizes aerosol scattering phase matrix using an imaging polar nephelometer (LACO-I-Neph) and enables measurement of spectral aerosol absorption from 200 nm to 2500 nm. The LACO-I-Neph measures the scattering phase function from 1.5° to 178.5° scattering angle with sufficient sensitivity to match theoretical expectations of Rayleigh scattering of various gases. Previous measurements either lack a sufficiently wide range of measured scattering angles or their sensitivity is too low and therefore the required sample amount is prohibitively high for in situ measurements. The LACO-I-Neph also returns expected characterization of the linear polarization signal of Rayleigh scattering. Previous work demonstrated the ability of measuring spectral absorption of aerosol particles using a reflectance technique characterization of aerosol samples collected on Nuclepore filters. This first generation methodology yielded absorption measurements from 350 nm to 2500 nm. Here we demonstrate the possibility of extending this wavelength range into the deep UV, to 200 nm. This extended UV region holds much promise in identifying and characterizing aerosol types and species. The second generation, deep UV, procedure requires careful choice of filter substrates. Here the choice of substrates is explored and preliminary results are provided.

  4. Filter and method of fabricating

    DOEpatents

    Janney, Mark A.

    2006-02-14

    A method of making a filter includes the steps of: providing a substrate having a porous surface; applying to the porous surface a coating of dry powder comprising particles to form a filter preform; and heating the filter preform to bind the substrate and the particles together to form a filter.

  5. Prediction of intestinal absorption and blood-brain barrier penetration by computational methods.

    PubMed

    Clark, D E

    2001-09-01

    This review surveys the computational methods that have been developed with the aim of identifying drug candidates likely to fail later on the road to market. The specifications for such computational methods are outlined, including factors such as speed, interpretability, robustness and accuracy. Then, computational filters aimed at predicting "drug-likeness" in a general sense are discussed before methods for the prediction of more specific properties--intestinal absorption and blood-brain barrier penetration--are reviewed. Directions for future research are discussed and, in concluding, the impact of these methods on the drug discovery process, both now and in the future, is briefly considered.

  6. Nonlinear Attitude Filtering Methods

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Crassidis, John L.; Cheng, Yang

    2005-01-01

    This paper provides a survey of modern nonlinear filtering methods for attitude estimation. Early applications relied mostly on the extended Kalman filter for attitude estimation. Since these applications, several new approaches have been developed that have proven to be superior to the extended Kalman filter. Several of these approaches maintain the basic structure of the extended Kalman filter, but employ various modifications in order to provide better convergence or improve other performance characteristics. Examples of such approaches include: filter QUEST, extended QUEST, the super-iterated extended Kalman filter, the interlaced extended Kalman filter, and the second-order Kalman filter. Filters that propagate and update a discrete set of sigma points rather than using linearized equations for the mean and covariance are also reviewed. A two-step approach is discussed with a first-step state that linearizes the measurement model and an iterative second step to recover the desired attitude states. These approaches are all based on the Gaussian assumption that the probability density function is adequately specified by its mean and covariance. Other approaches that do not require this assumption are reviewed, including particle filters and a Bayesian filter based on a non-Gaussian, finite-parameter probability density function on SO(3). Finally, the predictive filter, nonlinear observers and adaptive approaches are shown. The strengths and weaknesses of the various approaches are discussed.

  7. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  8. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-07-08

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  9. Filter desulfation system and method

    DOEpatents

    Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.

    2010-08-10

    A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.

  10. Improvement in Suppression of Pulsed Nd:YAG Laser Light With Iodine Absorption Cells for Filtered Rayleigh Scattering Measurements

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Buggele, Alvin E

    1997-01-01

    Filtered Rayleigh scattering using iodine absorption cells is an effective technique for obtaining density, temperature, and velocity measurements in high speed confined flows. By tuning a single frequency laser to a strong iodine absorption line, stray scattered laser light can be greatly suppressed. For example, the minimum transmission predicted by an iodine absorption model calculation is less than 10(exp -5) at the 18788.44/cm line using a 200 mm absorption cell containing iodine vapor at 0.46 T. Measurements obtained by other researches using a CW Nd:YAG laser agree with the model calculations. However, measurements made by us and by others using Q-switched, injection-seeded, frequency doubled Nd:YAG lasers only show minimum transmission of about 3 x 10(exp -3). This greatly reduces the applicability of the filtered Rayleigh scattering technique using these lasers in experiments having large amounts of stray scattered laser light. The purposes of the present study are to characterize the spectrum of the excess light transmitted by the iodine cell and to make changes to the laser to reduce the transmitted laser light. Transmission data as a function of laser frequency for the iodine absorption line at 18788.44/cm are presented. A planar mirror Fabry-Perot interferometer was used to characterize the frequency spectrum of the light passed through the cell. Measurements taken with the laser tuned to the center of the iodine absorption line show the light transmitted through the iodine cell to have a component with a bandwidth of about 40 GHz. This is probably caused by other modes in the laser that exist in spite of the single frequency injection beam. A second broadband component was also observed, possibly caused by the laser flash lamps or by fluorescence. An intracavity etalon was installed in the laser oscillator cavity to suppress the 40 GHz component. Measurements taken with the etalon tuned to the injection frequency showed a reduction in the transmitted

  11. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  12. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  13. Method and apparatus for filtering gas with a moving granular filter bed

    DOEpatents

    Brown, Robert C.; Wistrom, Corey; Smeenk, Jerod L.

    2007-12-18

    A method and apparatus for filtering gas (58) with a moving granular filter bed (48) involves moving a mass of particulate filter material (48) downwardly through a filter compartment (35); tangentially introducing gas into the compartment (54) to move in a cyclonic path downwardly around the moving filter material (48); diverting the cyclonic path (58) to a vertical path (62) to cause the gas to directly interface with the particulate filter material (48); thence causing the gas to move upwardly through the filter material (48) through a screened partition (24, 32) into a static upper compartment (22) of a filter compartment for exodus (56) of the gas which has passed through the particulate filter material (48).

  14. Multi-wavelength Characterization of Brown and Black Carbon from Filter Samples

    NASA Astrophysics Data System (ADS)

    Johnson, M. M.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Gyawali, M. S.; Arnott, W. P.; Wang, X.; Chakrabarty, R. K.; Moosmüller, H.; Watson, J. G.; Chow, J. C.

    2014-12-01

    Particulate matter (PM) scatters and absorbs solar radiation and thereby affects visibility, the Earth's radiation balance, and properties and lifetimes of clouds. Understanding the radiative forcing (RF) of PM is essential to reducing the uncertainty in total anthropogenic and natural RF. Many instruments that measure light absorption coefficients (βabs [λ], Mm-1) of PM have used light at near-infrared (NIR; e.g., 880 nm) or red (e.g., 633 nm) wavelengths. Measuring βabs over a wider wavelength range, especially including the ultraviolet (UV) and visible, allows for contributions from black carbon (BC), brown carbon (BrC), and mineral dust (MD) to be differentiated. This will help to determine PM RF and its emission sources. In this study, source and ambient samples collected on Teflon-membrane and quartz-fiber filters are used to characterize and develop a multi-wavelength (250 - 1000 nm) filter-based measurement method of PM light absorption. A commercially available UV-visible spectrometer coupled with an integrating sphere is used for quantifying diffuse reflectance and transmittance of filter samples, from which βabs and absorption Ǻngström exponents (AAE) of the PM deposits are determined. The filter-based light absorption measurements of laboratory generated soot and biomass burning aerosol are compared to 3-wavelength photoacoustic absorption measurements to evaluate filter media and loading effects. Calibration factors are developed to account for differences between filter types (Teflon-membrane vs. quartz-fiber), and between filters and in situ photoacoustic absorption values. Application of multi-spectral absorption measurements to existing archived filters, including specific source samples (e.g. diesel and gasoline engines, biomass burning, dust), will also be discussed.

  15. Essentially nonoscillatory postprocessing filtering methods

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1992-01-01

    High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters.

  16. Absorption into fluorescence. A method to sense biologically relevant gas molecules

    NASA Astrophysics Data System (ADS)

    Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato

    2011-01-01

    In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.

  17. Analysis of Time Filters in Multistep Methods

    NASA Astrophysics Data System (ADS)

    Hurl, Nicholas

    Geophysical ow simulations have evolved sophisticated implicit-explicit time stepping methods (based on fast-slow wave splittings) followed by time filters to control any unstable models that result. Time filters are modular and parallel. Their effect on stability of the overall process has been tested in numerous simulations, but never analyzed. Stability is proven herein for the Crank-Nicolson Leapfrog (CNLF) method with the Robert-Asselin (RA) time filter and for the Crank-Nicolson Leapfrog method with the Robert-Asselin-Williams (RAW) time filter for systems by energy methods. We derive an equivalent multistep method for CNLF+RA and CNLF+RAW and stability regions are obtained. The time step restriction for energy stability of CNLF+RA is smaller than CNLF and CNLF+RAW time step restriction is even smaller. Numerical tests find that RA and RAW add numerical dissipation. This thesis also shows that all modes of the Crank-Nicolson Leap Frog (CNLF) method are asymptotically stable under the standard timestep condition.

  18. Diatomite filters--methods of automation

    SciTech Connect

    Maloney, G.F.

    1966-01-01

    Following an introduction of subject material, diatomite filters are discussed in the following categories: a filter system, the manual station, the decision to automate, equipment, the automated filter, and the fail-safe methods. Diagrams and pictures of the equipment and its operation are included. Many aspects of the uses of both the automatic and manually operated diatomite filtering systems are reviewed. The fully automated station may be ideally suited to the remotely located waterflood since it requires virtually no attention or perhaps only periodic inspection. On the other hand, floods large enough to employ full-time personnel, who can maintain a constantmore » vigil and peiodically scrutinize the filtering operation, probably require nothing more than a semiautomatic operation. The reduction of human error can save money, and the introduction of consistency into any unit operation is certain to be beneficial.« less

  19. SITE TECHNOLOGY CAPSULE: FILTER FLOW TECHNOLOGY, INC. - COLLOID POLISHING FILTER METHOD

    EPA Science Inventory

    The Filter Flow Technology, Inc. (FFT) Coloid Polishing Filter Method (CPFM) was demonstrated at the U.S Department of Energy's (DOE) Rock Flats Plant (RFP) as part of the U.S. Environmental Protection Agency's (EPA) Superfund and Innovative Technology Evaluation (SITE) program. ...

  20. Signal-to-noise enhancement techniques for quantum cascade absorption spectrometers employing optimal filtering and other approaches

    NASA Astrophysics Data System (ADS)

    Disselkamp, R. S.; Kelly, J. F.; Sams, R. L.; Anderson, G. A.

    Optical feedback to the laser source in tunable diode laser spectroscopy (TDLS) is known to create intensity modulation noise due to elatoning and optical feedback (i.e. multiplicative technical noise) that usually limits spectral signal-to-noise (S/N). The large technical noise often limits absorption spectroscopy to noise floors 100-fold greater than the Poisson shot noise limit due to fluctuations in the laser intensity. The high output powers generated from quantum cascade (QC) lasers, along with their high gain, makes these injection laser systems especially susceptible to technical noise. In this article we discuss a method of using optimal filtering to reduce technical noise. We have observed S/N enhancements ranging from 20% to a factor of 50. The degree to which optimal filtering enhances S/N depends on the similarity between the Fourier components of the technical noise and those of the signal, with lower S/N enhancements observed for more similar Fourier decompositions of the signal and technical noise. We also examine the linearity of optimal filtered spectra in both time and intensity. This was accomplished by creating a synthetic spectrum for the species being studied (CH4, N2O, CO2 and H2O in ambient air) utilizing line positions and linewidths with an assumed Voigt profile from a commercial database (HITRAN). Agreement better than 0.036% in wavenumber and 1.64% in intensity (up to a 260-fold intensity ratio employed) was observed. Our results suggest that rapid ex post facto digital optimal filtering can be used to enhance S/N for routine trace gas detection.

  1. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)

    1991-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.

  2. Method for filtering solvent and tar sand mixtures

    SciTech Connect

    Kelterborn, J. C.; Stone, R. A.

    1985-09-03

    A method for filtering spent tar sands from a bitumen and organic solvent solution comprises separating the solution into two streams wherein the bulk of the coarser spent tar sand is in a first stream and has an average particle size of about 10 to about 100 mesh and the bulk of the finer spent tar sand is in a second stream; producing a filter cake by filtering the coarser spent tar sand from the first stream; and filtering the finer spent tar sand from the second stream with the filter cake. The method is particularly useful for filtering solutionsmore » of bitumen extracted from bitumen containing diatomite, spent diatomite and organic solvent.« less

  3. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    SciTech Connect

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  4. Optical filter selection for high confidence discrimination of strongly overlapping infrared chemical spectra.

    PubMed

    Major, Kevin J; Poutous, Menelaos K; Ewing, Kenneth J; Dunnill, Kevin F; Sanghera, Jasbinder S; Aggarwal, Ishwar D

    2015-09-01

    Optical filter-based chemical sensing techniques provide a new avenue to develop low-cost infrared sensors. These methods utilize multiple infrared optical filters to selectively measure different response functions for various chemicals, dependent on each chemical's infrared absorption. Rather than identifying distinct spectral features, which can then be used to determine the identity of a target chemical, optical filter-based approaches rely on measuring differences in the ensemble response between a given filter set and specific chemicals of interest. Therefore, the results of such methods are highly dependent on the original optical filter choice, which will dictate the selectivity, sensitivity, and stability of any filter-based sensing method. Recently, a method has been developed that utilizes unique detection vector operations defined by optical multifilter responses, to discriminate between volatile chemical vapors. This method, comparative-discrimination spectral detection (CDSD), is a technique which employs broadband optical filters to selectively discriminate between chemicals with highly overlapping infrared absorption spectra. CDSD has been shown to correctly distinguish between similar chemicals in the carbon-hydrogen stretch region of the infrared absorption spectra from 2800-3100 cm(-1). A key challenge to this approach is how to determine which optical filter sets should be utilized to achieve the greatest discrimination between target chemicals. Previous studies used empirical approaches to select the optical filter set; however this is insufficient to determine the optimum selectivity between strongly overlapping chemical spectra. Here we present a numerical approach to systematically study the effects of filter positioning and bandwidth on a number of three-chemical systems. We describe how both the filter properties, as well as the chemicals in each set, affect the CDSD results and subsequent discrimination. These results demonstrate the

  5. Microwave active filters based on coupled negative resistance method

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Yang; Itoh, Tatsuo

    1990-12-01

    A novel coupled negative resistance method for building a microwave active bandpass filter is introduced. Based on this method, four microstrip line end-coupled filters were built. Two are fixed-frequency one-pole and two-pole filters, and two are tunable one-pole and two-pole filters. In order to broaden the bandwidth of the end-coupled filter, a modified end-coupled structure is proposed. Using the modified structure, an active filter with a bandwidth up to 7.5 percent was built. All of the filters show significant passband performance improvement. Specifically, the passband bandwidth was broadened by a factor of 5 to 20.

  6. Investigation on filter method for smoothing spiral phase plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  7. Method and apparatus for PM filter regeneration

    DOEpatents

    Opris, Cornelius N [Peoria, IL; Verkiel, Maarten [Metamora, IL

    2006-01-03

    A method and apparatus for initiating regeneration of a particulate matter (PM) filter in an exhaust system in an internal combustion engine. The method and apparatus includes determining a change in pressure of exhaust gases passing through the PM filter, and responsively varying an opening of an intake valve in fluid communication with a combustion chamber.

  8. A Quasi-Experimental Study Analyzing the Effectiveness of Portable High-Efficiency Particulate Absorption Filters in Preventing Infections in Hematology Patients during Construction

    PubMed Central

    Özen, Mehmet; Yılmaz, Gülden; Coşkun, Belgin; Topçuoğlu, Pervin; Öztürk, Bengi; Gündüz, Mehmet; Atilla, Erden; Arslan, Önder; Özcan, Muhit; Demirer, Taner; İlhan, Osman; Konuk, Nahide; Balık, İsmail; Gürman, Günhan; Akan, Hamdi

    2016-01-01

    Objective: The increased risk of infection for patients caused by construction and renovation near hematology inpatient clinics is a major concern. The use of high-efficiency particulate absorption (HEPA) filters can reduce the risk of infection. However, there is no standard protocol indicating the use of HEPA filters for patients with hematological malignancies, except for those who have undergone allogeneic hematopoietic stem cell transplantation. This quasi-experimental study was designed to measure the efficacy of HEPA filters in preventing infections during construction. Materials and Methods: Portable HEPA filters were placed in the rooms of patients undergoing treatment for hematological malignancies because of large-scale construction taking place near the hematology clinic. The rates of infection during the 6 months before and after the installation of the portable HEPA filters were compared. A total of 413 patients were treated during this 1-year period. Results: There were no significant differences in the antifungal prophylaxis and treatment regimens between the groups. The rates of infections, clinically documented infections, and invasive fungal infections decreased in all of the patients following the installation of the HEPA filters. When analyzed separately, the rates of invasive fungal infections were similar before and after the installation of HEPA filters in patients who had no neutropenia or long neutropenia duration. HEPA filters were significantly protective against infection when installed in the rooms of patients with acute lymphocytic leukemia, patients who were undergoing consolidation treatment, and patients who were neutropenic for 1-14 days. Conclusion: Despite the advent of construction and the summer season, during which environmental Aspergillus contamination is more prevalent, no patient or patient subgroup experienced an increase in fungal infections following the installation of HEPA filters. The protective effect of HEPA

  9. A Maximum Entropy Method for Particle Filtering

    NASA Astrophysics Data System (ADS)

    Eyink, Gregory L.; Kim, Sangil

    2006-06-01

    Standard ensemble or particle filtering schemes do not properly represent states of low priori probability when the number of available samples is too small, as is often the case in practical applications. We introduce here a set of parametric resampling methods to solve this problem. Motivated by a general H-theorem for relative entropy, we construct parametric models for the filter distributions as maximum-entropy/minimum-information models consistent with moments of the particle ensemble. When the prior distributions are modeled as mixtures of Gaussians, our method naturally generalizes the ensemble Kalman filter to systems with highly non-Gaussian statistics. We apply the new particle filters presented here to two simple test cases: a one-dimensional diffusion process in a double-well potential and the three-dimensional chaotic dynamical system of Lorenz.

  10. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997)

    NASA Astrophysics Data System (ADS)

    Moosmüller, H.; Arnott, W. P.; Rogers, C. F.; Chow, J. C.; Frazier, C. A.; Sherman, L. E.; Dietrich, D. L.

    1998-11-01

    A new photoacoustic instrument for the measurement of aerosol light absorption was collocated with conventional aerosol instrumentation during the 1996-1997 winter intensive monitoring period of the Northern Front Range Air Quality Study. Measurements of the light absorption efficiency for black carbon were 5 m2/g at 685 nm and 10 m2/g at 532 nm, and for elemental carbon, they were 3.6 m2/g at 685 nm. We show that these values together with previous photoacoustic measurements of aerosol light absorption shed some light on the wavelength dependence of absorption efficiency for carbonaceous aerosol in the visible and near-visible region. Integrating plate type filter measurements of aerosol light absorption result in far larger values than those measured with the photoacoustic instrument. We demonstrate that a recently published correction technique [Horvath, 1997] can yield improved agreement.

  11. Thermovoltaic semiconductor device including a plasma filter

    DOEpatents

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  12. Electronic filters, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor)

    1995-01-01

    An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.

  13. Method of treating contaminated HEPA filter media in pulp process

    DOEpatents

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  14. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2013-09-10

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  15. Method and apparatus for a self-cleaning filter

    DOEpatents

    Diebold, James P.; Lilley, Arthur; Browne, III, Kingsbury; Walt, Robb Ray; Duncan, Dustin; Walker, Michael; Steele, John; Fields, Michael

    2010-11-16

    A method and apparatus for removing fine particulate matter from a fluid stream without interrupting the overall process or flow. The flowing fluid inflates and expands the flexible filter, and particulate is deposited on the filter media while clean fluid is permitted to pass through the filter. This filter is cleaned when the fluid flow is stopped, the filter collapses, and a force is applied to distort the flexible filter media to dislodge the built-up filter cake. The dislodged filter cake falls to a location that allows undisrupted flow of the fluid after flow is restored. The shed particulate is removed to a bin for periodic collection. A plurality of filter cells can operate independently or in concert, in parallel, or in series to permit cleaning the filters without shutting off the overall fluid flow. The self-cleaning filter is low cost, has low power consumption, and exhibits low differential pressures.

  16. A Unified Fisher's Ratio Learning Method for Spatial Filter Optimization.

    PubMed

    Li, Xinyang; Guan, Cuntai; Zhang, Haihong; Ang, Kai Keng

    To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel framework for a spatial filter design. With Fisher's ratio in feature space directly used as the objective function, the spatial filter optimization is unified with feature extraction. Given its ratio form, the selection of the regularization parameter could be avoided. We evaluate the proposed method on a binary motor imagery data set of 16 subjects, who performed the calibration and test sessions on different days. The experimental results show that the proposed method yields improvement in classification performance for both single broadband and filter bank settings compared with conventional nonunified methods. We also provide a systematic attempt to compare different objective functions in modeling data nonstationarity with simulation studies.To detect the mental task of interest, spatial filtering has been widely used to enhance the spatial resolution of electroencephalography (EEG). However, the effectiveness of spatial filtering is undermined due to the significant nonstationarity of EEG. Based on regularization, most of the conventional stationary spatial filter design methods address the nonstationarity at the cost of the interclass discrimination. Moreover, spatial filter optimization is inconsistent with feature extraction when EEG covariance matrices could not be jointly diagonalized due to the regularization. In this paper, we propose a novel

  17. Q-Method Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.

    2012-01-01

    A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.

  18. Method of securing filter elements

    SciTech Connect

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit bodymore » housing.« less

  19. Electronic filters, signal conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1994-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed.

  20. A comparison of methods for DPLL loop filter design

    NASA Technical Reports Server (NTRS)

    Aguirre, S.; Hurd, W. J.; Kumar, R.; Statman, J.

    1986-01-01

    Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods.

  1. Motion estimation using point cluster method and Kalman filter.

    PubMed

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal

  2. Plasmon absorption modulator systems and methods

    DOEpatents

    Kekatpure, Rohan Deodatta; Davids, Paul

    2014-07-15

    Plasmon absorption modulator systems and methods are disclosed. A plasmon absorption modulator system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and a metal layer formed on a top surface of the stack of quantum well layers. A method for modulating plasmonic current includes enabling propagation of the plasmonic current along a metal layer, and applying a voltage across the stack of quantum well layers to cause absorption of a portion of energy of the plasmonic current by the stack of quantum well layers. A metamaterial switching system includes a semiconductor substrate, a plurality of quantum well layers stacked on a top surface of the semiconductor substrate, and at least one metamaterial structure formed on a top surface of the stack of quantum well layers.

  3. Simultaneous optimization method for absorption spectroscopy postprocessing.

    PubMed

    Simms, Jean M; An, Xinliang; Brittelle, Mack S; Ramesh, Varun; Ghandhi, Jaal B; Sanders, Scott T

    2015-05-10

    A simultaneous optimization method is proposed for absorption spectroscopy postprocessing. This method is particularly useful for thermometry measurements based on congested spectra, as commonly encountered in combustion applications of H2O absorption spectroscopy. A comparison test demonstrated that the simultaneous optimization method had greater accuracy, greater precision, and was more user-independent than the common step-wise postprocessing method previously used by the authors. The simultaneous optimization method was also used to process experimental data from an environmental chamber and a constant volume combustion chamber, producing results with errors on the order of only 1%.

  4. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  5. Simplified procedure for computing the absorption of sound by the atmosphere

    DOT National Transportation Integrated Search

    2007-10-31

    This paper describes a study that resulted in the development of a simplified : method for calculating attenuation by atmospheric-absorption for wide-band : sounds analyzed by one-third octave-band filters. The new method [referred to : herein as the...

  6. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  7. Lessons learned in preparing method 29 filters for compliance testing audits.

    PubMed

    Martz, R F; McCartney, J E; Bursey, J T; Riley, C E

    2000-01-01

    Companies conducting compliance testing are required to analyze audit samples at the time they collect and analyze the stack samples if audit samples are available. Eastern Research Group (ERG) provides technical support to the EPA's Emission Measurements Center's Stationary Source Audit Program (SSAP) for developing, preparing, and distributing performance evaluation samples and audit materials. These audit samples are requested via the regulatory Agency and include spiked audit materials for EPA Method 29-Metals Emissions from Stationary Sources, as well as other methods. To provide appropriate audit materials to federal, state, tribal, and local governments, as well as agencies performing environmental activities and conducting emission compliance tests, ERG has recently performed testing of blank filter materials and preparation of spiked filters for EPA Method 29. For sampling stationary sources using an EPA Method 29 sampling train, the use of filters without organic binders containing less than 1.3 microg/in.2 of each of the metals to be measured is required. Risk Assessment testing imposes even stricter requirements for clean filter background levels. Three vendor sources of quartz fiber filters were evaluated for background contamination to ensure that audit samples would be prepared using filters with the lowest metal background levels. A procedure was developed to test new filters, and a cleaning procedure was evaluated to see if a greater level of cleanliness could be achieved using an acid rinse with new filters. Background levels for filters supplied by different vendors and within lots of filters from the same vendor showed a wide variation, confirmed through contact with several analytical laboratories that frequently perform EPA Method 29 analyses. It has been necessary to repeat more than one compliance test because of suspect metals background contamination levels. An acid cleaning step produced improvement in contamination level, but the

  8. Robotic fish tracking method based on suboptimal interval Kalman filter

    NASA Astrophysics Data System (ADS)

    Tong, Xiaohong; Tang, Chao

    2017-11-01

    Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.

  9. Method of and apparatus for testing the integrity of filters

    DOEpatents

    Herman, Raymond L [Richland, WA

    1985-01-01

    A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.

  10. Methods of and apparatus for testing the integrity of filters

    DOEpatents

    Herman, R.L.

    1984-01-01

    A method of and apparatus for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstram upstream and downstream of such filter stage. Samples of the particel concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage.

  11. Optimal nonlinear filtering using the finite-volume method

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Morrison, Malcolm E. K.; Norton, Richard A.; Molteno, Timothy C. A.

    2018-01-01

    Optimal sequential inference, or filtering, for the state of a deterministic dynamical system requires simulation of the Frobenius-Perron operator, that can be formulated as the solution of a continuity equation. For low-dimensional, smooth systems, the finite-volume numerical method provides a solution that conserves probability and gives estimates that converge to the optimal continuous-time values, while a Courant-Friedrichs-Lewy-type condition assures that intermediate discretized solutions remain positive density functions. This method is demonstrated in an example of nonlinear filtering for the state of a simple pendulum, with comparison to results using the unscented Kalman filter, and for a case where rank-deficient observations lead to multimodal probability distributions.

  12. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens--In vitro study mimicking real-life consumer habits.

    PubMed

    Klimová, Z; Hojerová, J; Beránková, M

    2015-09-01

    Due to health concerns about safety, three UV-filters (Benzophenone-3, BP3, 10%; Ethylhexyl Methoxycinnamate, EHMC, 10%; Butyl Methoxydibenzoylmethane, BMDBM; 5%) were examined in vitro for absorption on full-thickness pig-ear skin, mimicking human in-use conditions. Kinetic profiles confirmed the rapid permeation of BP3; after the first hour of skin (frozen-stored) exposure to 2 mg/cm(2) (W/O sunscreen; recommended but unrealistic amount), about 0.5% of the applied dose passed into the receptor fluid. The absorption rate of filters was higher from W/O than from O/W emulsions. The fresh/frozen-stored skin permeability coefficient (0.83-0.54) for each UV filter was taken into account. Systemic Exposure Dosage of BP3, EHMC, BMDBM for humans as a consequence of (i) whole-body and (ii) face treatment with 0.5 mg/cm(2) of W/O sunscreen for 6-h skin exposure followed by washing and subsequent 18-h permeation (a realistic scenario) were estimated to be (i) 4744, 1032 and 1036 μg/kg-bw/day, and (ii) 153, 33 and 34 μg/kg-bw/day, respectively. From Margin of Safety for BP3, EHMC and BMDBM (i) 42, 485 and 192 as well as (ii) 1307; 15,151 and 5882, respectively, only the value of 42 (<100) for BP3 indicated a possible health risk. Escalation of a phobia towards all organic UV filters is undesirable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Method of recovering hazardous waste from phenolic resin filters

    SciTech Connect

    Meikrantz, D.H.; Bourne, G.L.; McFee, J.N.

    1990-12-31

    A method has been found for treating phenolic resin filter, whereby the filter is solubilized within the filter cartridge housing so the filter material can be removed from the cartridge housing in a remote manner. The invention consists of contacting the filter within the housing with an aqueous solution of about 8 to 12M nitric acid, at a temperature from about 110 to 190{degree}F, maintaining the contact for a period of time sufficient to solubilize the phenolic material within the housing, and removing the solubilized phenolic material from the housing, thereby removing the filter cartridge from the housing. Any hazardousmore » or other waste material can then be separated from the filter material by chemical or other means.« less

  14. Method of and apparatus for testing the integrity of filters

    DOEpatents

    Herman, R.L.

    1985-05-07

    A method of and apparatus are disclosed for testing the integrity of individual filters or filter stages of a multistage filtering system including a diffuser permanently mounted upstream and/or downstream of the filter stage to be tested for generating pressure differentials to create sufficient turbulence for uniformly dispersing trace agent particles within the airstream upstream and downstream of such filter stage. Samples of the particle concentration are taken upstream and downstream of the filter stage for comparison to determine the extent of particle leakage past the filter stage. 5 figs.

  15. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters

    PubMed Central

    Calfee, M. Worth; Rose, Laura J.; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2016-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37 mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p ≤ 0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p > 0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. PMID:24184312

  16. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  17. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  18. Development and validation of spectrophotometric, atomic absorption and kinetic methods for determination of moxifloxacin hydrochloride.

    PubMed

    Abdellaziz, Lobna M; Hosny, Mervat M

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe(3+) ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2' bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange-red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8-6, 0.8-4) for methods A and B, (16-96, 16-96 and 16-72) for procedures 1-3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical formulations

  19. Development and Validation of Spectrophotometric, Atomic Absorption and Kinetic Methods for Determination of Moxifloxacin Hydrochloride

    PubMed Central

    Abdellaziz, Lobna M.; Hosny, Mervat M.

    2011-01-01

    Three simple spectrophotometric and atomic absorption spectrometric methods are developed and validated for the determination of moxifloxacin HCl in pure form and in pharmaceutical formulations. Method (A) is a kinetic method based on the oxidation of moxifloxacin HCl by Fe3+ ion in the presence of 1,10 o-phenanthroline (o-phen). Method (B) describes spectrophotometric procedures for determination of moxifloxacin HCl based on its ability to reduce Fe (III) to Fe (II), which was rapidly converted to the corresponding stable coloured complex after reacting with 2,2′ bipyridyl (bipy). The formation of the tris-complex formed in both methods (A) and (B) were carefully studied and their absorbance were measured at 510 and 520 nm respectively. Method (C) is based on the formation of ion- pair associated between the drug and bismuth (III) tetraiodide in acidic medium to form orange—red ion-pair associates. This associate can be quantitatively determined by three different procedures. The formed precipitate is either filtered off, dissolved in acetone and quantified spectrophotometrically at 462 nm (Procedure 1), or decomposed by hydrochloric acid, and the bismuth content is determined by direct atomic absorption spectrometric (Procedure 2). Also the residual unreacted metal complex in the filtrate is determined through its metal content using indirect atomic absorption spectrometric technique (procedure 3). All the proposed methods were validated according to the International Conference on Harmonization (ICH) guidelines, the three proposed methods permit the determination of moxifloxacin HCl in the range of (0.8–6, 0.8–4) for methods A and B, (16–96, 16–96 and 16–72) for procedures 1–3 in method C. The limits of detection and quantitation were calculated, the precision of the methods were satisfactory; the values of relative standard deviations did not exceed 2%. The proposed methods were successfully applied to determine the drug in its pharmaceutical

  20. Comparative Study of Speckle Filtering Methods in PolSAR Radar Images

    NASA Astrophysics Data System (ADS)

    Boutarfa, S.; Bouchemakh, L.; Smara, Y.

    2015-04-01

    Images acquired by polarimetric SAR (PolSAR) radar systems are characterized by the presence of a noise called speckle. This noise has a multiplicative nature, corrupts both the amplitude and phase images, which complicates data interpretation, degrades segmentation performance and reduces the detectability of targets. Hence, the need to preprocess the images by adapted filtering methods before analysis.In this paper, we present a comparative study of implemented methods for reducing speckle in PolSAR images. These developed filters are: refined Lee filter based on the estimation of the minimum mean square error MMSE, improved Sigma filter with detection of strong scatterers based on the calculation of the coherency matrix to detect the different scatterers in order to preserve the polarization signature and maintain structures that are necessary for image interpretation, filtering by stationary wavelet transform SWT using multi-scale edge detection and the technique for improving the wavelet coefficients called SSC (sum of squared coefficients), and Turbo filter which is a combination between two complementary filters the refined Lee filter and the wavelet transform SWT. One filter can boost up the results of the other.The originality of our work is based on the application of these methods to several types of images: amplitude, intensity and complex, from a satellite or an airborne radar, and on the optimization of wavelet filtering by adding a parameter in the calculation of the threshold. This parameter will control the filtering effect and get a good compromise between smoothing homogeneous areas and preserving linear structures.The methods are applied to the fully polarimetric RADARSAT-2 images (HH, HV, VH, VV) acquired on Algiers, Algeria, in C-band and to the three polarimetric E-SAR images (HH, HV, VV) acquired on Oberpfaffenhofen area located in Munich, Germany, in P-band.To evaluate the performance of each filter, we used the following criteria

  1. Evaluation of sampling methods for Bacillus spore-contaminated HVAC filters.

    PubMed

    Calfee, M Worth; Rose, Laura J; Tufts, Jenia; Morse, Stephen; Clayton, Matt; Touati, Abderrahmane; Griffin-Gatchalian, Nicole; Slone, Christina; McSweeney, Neal

    2014-01-01

    The objective of this study was to compare an extraction-based sampling method to two vacuum-based sampling methods (vacuum sock and 37mm cassette filter) with regards to their ability to recover Bacillus atrophaeus spores (surrogate for Bacillus anthracis) from pleated heating, ventilation, and air conditioning (HVAC) filters that are typically found in commercial and residential buildings. Electrostatic and mechanical HVAC filters were tested, both without and after loading with dust to 50% of their total holding capacity. The results were analyzed by one-way ANOVA across material types, presence or absence of dust, and sampling device. The extraction method gave higher relative recoveries than the two vacuum methods evaluated (p≤0.001). On average, recoveries obtained by the vacuum methods were about 30% of those achieved by the extraction method. Relative recoveries between the two vacuum methods were not significantly different (p>0.05). Although extraction methods yielded higher recoveries than vacuum methods, either HVAC filter sampling approach may provide a rapid and inexpensive mechanism for understanding the extent of contamination following a wide-area biological release incident. Published by Elsevier B.V.

  2. Design of Passive Power Filter for Hybrid Series Active Power Filter using Estimation, Detection and Classification Method

    NASA Astrophysics Data System (ADS)

    Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.

    2016-06-01

    This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.

  3. New in situ Aerosol Spectral Optical Measurements over 300-700 nm, Extinction and Total Absorption, Paired with Absorption from Water- and Methanol-soluble Aerosol Extracts

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Stauffer, R. M.; Lamb, B.; Novak, M. G.; Mannino, A.; Hudgins, C.; Thornhill, K. L., II; Crosbie, E.; Winstead, E.; Anderson, B.; Martin, R.; Shook, M.; Ziemba, L. D.; Beyersdorf, A. J.; Corr, C.

    2017-12-01

    A new in situ spectral aerosol extinction instrument (custom built, SpEx) built to cover the 300-700 nm range at 1 nm spectral resolution and temporal resolution of 4 minutes was deployed on the top deck ( 10 m above the water surface) of the R/V Onnuri during the KORUS-OC research cruise around South Korea in spring 2016. This new instrument was one component of a suite of in situ aerosol optical measurements that included 3-visible-wavelength scattering (Airphoton IN101 Nephelometer, at 450, 532, & 632 nm) and absorption (Brechtel Tricolor Absorption Photometer Model 2901, at 467, 528, & 652 nm) with sub-minute temporal resolution; two sets of filters (Teflon and glass fiber, both collected over 3 hour daytime and 12 hour overnight intervals) to provide aerosol absorption spectra over the same wavelength range as SpEx. The glass fiber filters were placed in the center of an integrating sphere (Labsphere DRA-CA-30) attached to a dual beam spectrophotometer (Cary 100 Bio UV-Visible Spectrophotometer) to measure total aerosol absorption spectra via an established method used by the ocean color community to obtain absorption spectra from particles suspended in sea water. Adapting this methodology for atmospheric aerosol measurements provides a new avenue to obtain spectral total aerosol absorption, particularly useful for expanding in situ measurement capabilities into the UV range. The Teflon filters were cut in half with one half extracted in deionized water and the other half extracted in methanol. The solutions were filtered and injected into a liquid waveguide capillary cell (World Precision Instruments LWCC-3100, 100 cm pathlength) to measure the absorption spectra for each solution. In addition, the water extracts were measured via ion chromatography (Dionex ICS-3000 Ion Chromatography System) to obtain water-soluble inorganic ion concentrations, as well as via aerosol mass spectrometry (Aerodyne Research, Inc. HR-ToF High Resolution Aerosol Mass Spectrometer

  4. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy

    PubMed Central

    Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.

    2011-01-01

    An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance filters based on guided-mode resonance (GMR) in waveguide gratings, but filters designed and fabricated have not attained the spectral selectivity (≤ 32 cm−1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here optimal design of double-layer surface-relief silicon nitride-based GMR filters in the mid-IR for various narrow bandwidths below 32 cm−1. Both shift of the filter resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR filters. By incorporating considerations for background reflections, the optimally designed GMR filters can have bandwidth narrower than the designed filter by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR filters-based instrumentation for common measurements of condensed matter, including tissues and polymer samples. PMID:22109445

  5. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    PubMed

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  6. Method and apparatus for filtering visual documents

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E. (Inventor); Shelton, Robert O. (Inventor)

    1993-01-01

    A method and apparatus for producing an abstract or condensed version of a visual document is presented. The frames comprising the visual document are first sampled to reduce the number of frames required for processing. The frames are then subjected to a structural decomposition process that reduces all information in each frame to a set of values. These values are in turn normalized and further combined to produce only one information content value per frame. The information content values of these frames are then compared to a selected distribution cutoff point. This effectively selects those values at the tails of a normal distribution, thus filtering key frames from their surrounding frames. The value for each frame is then compared with the value from the previous frame, and the respective frame is finally stored only if the values are significantly different. The method filters or compresses a visual document with a reduction in digital storage on the ratio of up to 700 to 1 or more, depending on the content of the visual document being filtered.

  7. Development of a new free radical absorption capacity assay method for antioxidants: aroxyl radical absorption capacity (ARAC).

    PubMed

    Nagaoka, Shin-ichi; Nagai, Kanae; Fujii, Yuko; Ouchi, Aya; Mukai, Kazuo

    2013-10-23

    A new free radical absorption capacity assay method is proposed with use of an aroxyl radical (2,6-di-tert-butyl-4-(4'-methoxyphenyl)phenoxyl radical) and stopped-flow spectroscopy and is named the aroxyl radical absorption capacity (ARAC) assay method. The free radical absorption capacity (ARAC value) of each tocopherol was determined through measurement of the radical-scavenging rate constant in ethanol. The ARAC value could also be evaluated through measurement of the half-life of the aroxyl radical during the scavenging reaction. For the estimation of the free radical absorption capacity, the aroxyl radical was more suitable than the DPPH radical, galvinoxyl, and p-nitrophenyl nitronyl nitroxide. The ARAC value in tocopherols showed the same tendency as the free radical absorption capacities reported previously, and the tendency was independent of an oxygen radical participating in the scavenging reaction and of a medium surrounding the tocopherol and oxygen radical. The ARAC value can be directly connected to the free radical-scavenging rate constant, and the ARAC method has the advantage of treating a stable and isolable radical (aroxyl radical) in a user-friendly organic solvent (ethanol). The ARAC method was also successfully applied to a palm oil extract. Accordingly, the ARAC method would be useful in free radical absorption capacity assay of antioxidative reagents and foods.

  8. Optofluidic-Tunable Color Filters And Spectroscopy Based On Liquid-Crystal Microflows

    SciTech Connect

    Cuennet, J. G.; Vasdekis, Andreas E.; Psaltis, D.

    The integration of color filters with microfluidics has attracted substantial attention in recent years, for on-chip absorption, fluorescence, or Raman analysis. We describe such tunable filters based on the micro-flow of liquid crystals. The filter operation is based on the wavelength dependent liquid crystal birefringence that can be tuned by modifying the flow velocity field in the microchannel. The latter is possible both temporally and spatially by varying the inlet pressure and the channel geometry respectively. We explored the use of these optofluidic filters for on-chip absorption spectroscopy; by integrating the distance dependent color filter with a dye-filled micro-channel, themore » absorption spectrum of a dye could be measured. Liquid crystal microflows simplify substantially the optofluidic integration, actuation and tuning of color filters for lab-on-a-chip spectroscopic applications.« less

  9. Optimizing Fungal DNA Extraction Methods from Aerosol Filters

    NASA Astrophysics Data System (ADS)

    Jimenez, G.; Mescioglu, E.; Paytan, A.

    2016-12-01

    Fungi and fungal spores can be picked up from terrestrial ecosystems, transported long distances, and deposited into marine ecosystems. It is important to study dust-borne fungal communities, because they can stay viable and effect the ambient microbial populations, which are key players in biogeochemical cycles. One of the challenges of studying dust-borne fungal populations is that aerosol samples contain low biomass, making extracting good quality DNA very difficult. The aim of this project was to increase DNA yield by optimizing DNA extraction methods. We tested aerosol samples collected from Haifa, Israel (polycarbonate filter), Monterey Bay, CA (quartz filter) and Bermuda (quartz filter). Using the Qiagen DNeasy Plant Kit, we tested the effect of altering bead beating times and incubation times, adding three freeze and thaw steps, initially washing the filters with buffers for various lengths of time before using the kit, and adding a step with 30 minutes of sonication in 65C water. Adding three freeze/thaw steps, adding a sonication step, washing with a phosphate buffered saline overnight, and increasing incubation time to two hours, in that order, resulted in the highest increase in DNA for samples from Israel (polycarbonate). DNA yield of samples from Monterey (quart filter) increased about 5 times when washing with buffers overnight (phosphate buffered saline and potassium phophate buffer), adding a sonication step, and adding three freeze and thaw steps. Samples collected in Bermuda (quartz filter) had the highest increase in DNA yield from increasing incubation to 2 hours, increasing bead beating time to 6 minutes, and washing with buffers overnight (phosphate buffered saline and potassium phophate buffer). Our results show that DNA yield can be increased by altering various steps of the Qiagen DNeasy Plant Kit protocol, but different types of filters collected at different sites respond differently to alterations. These results can be used as

  10. Filtered cathodic arc deposition apparatus and method

    DOEpatents

    Krauss, Alan R.

    1999-01-01

    A filtered cathodic arc deposition method and apparatus for the production of highly dense, wear resistant coatings which are free from macro particles. The filtered cathodic arc deposition apparatus includes a cross shaped vacuum chamber which houses a cathode target having an evaporable surface comprised of the coating material, means for generating a stream of plasma, means for generating a transverse magnetic field, and a macro particle deflector. The transverse magnetic field bends the generated stream of plasma in the direction of a substrate. Macro particles are effectively filtered from the stream of plasma by traveling, unaffected by the transverse magnetic field, along the initial path of the plasma stream to a macro particle deflector. The macro particle deflector has a preformed surface which deflects macro particles away from the substrate.

  11. Electronic filters, repeated signal charge conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1993-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits associated with the filter stages for storing electrical representations of filter parameters. The filter stages include circuits for respectively adding the electrical representations of the filter parameters to the electrical signal to be filtered thereby producing a set of filter sum signals. At least one of the filter stages includes circuitry for producing a filter signal in substantially logarithmic form at its output by combining a filter sum signal for that filter stage with a signal from an output of another filter stage. The signal processing circuitry produces an intermediate output signal, and a multiplexer connected to the signal processing circuit multiplexes the intermediate output signal with the electrical signal to be filtered so that the logarithmic filter operates as both a logarithmic prefilter and a logarithmic postfilter. Other electronic filters, signal conversion apparatus, electroacoustic systems, hearing aids and methods are also disclosed.

  12. Influence of the absorption behavior of sunscreens in the short-wavelength UV range (UVB) and the long-wavelength UV range (UVA) on the relation of the UVB absorption to sun protection factor

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Juergen; Schanzer, Sabine; Antoniou, Christina; Sterry, Wolfram; Lademann, Juergen

    2010-09-01

    The absorption of filter substances in sunscreens, reducing the incident ultraviolet (UV) radiation, is the basis for the protecting ability of such formulations. The erythema-correlated sun protection factor (SPF), depending mainly on the intensity of the UVB radiation, is the common value to quantify the efficacy of the formulations avoiding sunburn. An ex vivo method combining tape stripping and optical spectroscopy is applied to measure the absorption of sunscreens in the entire UV spectral range. The obtained relations between the short-wavelength UV (UVB) absorption and the SPF confirm a clear influence of the long-wavelength UV (UVA) absorption on the SPF values. The data reflect the historical development of the relation of the concentration of UVB and UVA filters in sunscreens and points to the influence of additional ingredients, e.g., antioxidants and cell-protecting agents on the efficacy of the products.

  13. UV filters for lighting of plants

    NASA Astrophysics Data System (ADS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-03-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  14. UV filters for lighting of plants

    NASA Technical Reports Server (NTRS)

    Doehring, T.; Koefferlein, M.; Thiel, S.; Seidlitz, H. K.; Payer, H. D.

    1994-01-01

    The wavelength dependent interaction of biological systems with radiation is commonly described by appropriate action spectra. Particularly effective plant responses are obtained for ultraviolet (UV) radiation. Excess shortwave UV-B radiation will induce genetic defects and plant damage. Besides the ecological discussion of the deleterious effects of the excess UV radiation there is increasing interest in horticultural applications of this spectral region. Several metabolic pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as in economically oriented experiments the exact generation and knowledge of the spectral irradiance, particularly near the UV absorption edge, is essential. The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 'small ozone filters' have been realized so far. In artificial plant lighting conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or cellulosetriacetate) which can be easily handled have been used to absorb the UV-C and the excess shortwave UV-B radiation of the lamp emissions. Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The aging of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replace glass filters. In

  15. Tracking and people counting using Particle Filter Method

    NASA Astrophysics Data System (ADS)

    Sulistyaningrum, D. R.; Setiyono, B.; Rizky, M. S.

    2018-03-01

    In recent years, technology has developed quite rapidly, especially in the field of object tracking. Moreover, if the object under study is a person and the number of people a lot. The purpose of this research is to apply Particle Filter method for tracking and counting people in certain area. Tracking people will be rather difficult if there are some obstacles, one of which is occlusion. The stages of tracking and people counting scheme in this study include pre-processing, segmentation using Gaussian Mixture Model (GMM), tracking using particle filter, and counting based on centroid. The Particle Filter method uses the estimated motion included in the model used. The test results show that the tracking and people counting can be done well with an average accuracy of 89.33% and 77.33% respectively from six videos test data. In the process of tracking people, the results are good if there is partial occlusion and no occlusion

  16. Enrichment process of biogas using simultaneous Absorption - Adsorption methods

    NASA Astrophysics Data System (ADS)

    Kusrini, Eny; Lukita, Maya; Gozan, Misri; Susanto, Bambang Heru; Nasution, Dedy Alharis; Rahman, Arif; Gunawan, Cindy

    2017-03-01

    Removal of CO2 in biogas is an essential methods to the purification and upgrading of biogas. Natural Clinoptilolite zeolites were evaluated as sorbents for purification of biogas that produced from palm oil mill effluent (POME) by anerobic-digestion method. The absorption and adsorption experiments were conducted in a fixed-bed two column adsorption unit by simultaneous absorption-adsorption method. The Ca(OH)2 solution with concentration of 0.062 M was used as absorption method. Sorbent for removal of CO2 in biogas have been prepared by modifying of Clinoptilolite zeolites with an acid (HCl, 2M) and alkaline (NaOH, 2M), calcined at 450°C and then coated using chitosan (0.5 w/v%) in order to increase their adsorption capacity. The removal of CO2 in biogas was achieved about ˜83% using 2.5 g of sorbent zeolite (2M)/chitosan dosage for each column, breakthrough time of 30 min, and flow rate of 100 mL/min. Clinoptilolite zeolites with modifications of an acid-alkaline and chitosan (zeolite (2M)/chitosan) are promising sorbents due to the amine groups from chitosan and high surface-volume ratio are one of important factors in a simultaneous absorption-adsorption method.

  17. Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.

    PubMed

    Milani, Ali A; Panahi, Issa M; Briggs, Richard

    2007-01-01

    Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.

  18. Method for enhanced longevity of in situ microbial filter used for bioremediation

    DOEpatents

    Carman, M. Leslie; Taylor, Robert T.

    1999-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  19. Validation of HPLC method for the simultaneous and quantitative determination of 12 UV-filters in cosmetics.

    PubMed

    Nyeborg, M; Pissavini, M; Lemasson, Y; Doucet, O

    2010-02-01

    The aim of the study was the validation of a high-performance liquid chromatography (HPLC) method for the simultaneous and quantitative determination of twelve commonly used organic UV-filters (phenylbenzimidazole sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, diethylamino hydroxybenzoyl hexyl benzoate, octocrylene, ethylhexyl methoxycinnamate, ethylhexyl salicylate, butyl methoxydibenzoylmethane, diethylhexyl butamido triazone, ethylhexyl triazone, methylene bis-benzotriazolyl tetramethylbutylphenol and bis-ethylhexyloxyphenol methoxyphenyl triazine) contained in suncare products. The separation and quantitative determination was performed in <30 min, using a Symmetry Shield(R) C18 (5 microm) column from Waters and a mobile phase (gradient mode) consisting of ethanol and acidified water. UV measurements were carried out at multi-wavelengths, according to the absorption of the analytes.

  20. An Adaptive Kalman Filter using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  1. An Adaptive Kalman Filter Using a Simple Residual Tuning Method

    NASA Technical Reports Server (NTRS)

    Harman, Richard R.

    1999-01-01

    One difficulty in using Kalman filters in real world situations is the selection of the correct process noise, measurement noise, and initial state estimate and covariance. These parameters are commonly referred to as tuning parameters. Multiple methods have been developed to estimate these parameters. Most of those methods such as maximum likelihood, subspace, and observer Kalman Identification require extensive offline processing and are not suitable for real time processing. One technique, which is suitable for real time processing, is the residual tuning method. Any mismodeling of the filter tuning parameters will result in a non-white sequence for the filter measurement residuals. The residual tuning technique uses this information to estimate corrections to those tuning parameters. The actual implementation results in a set of sequential equations that run in parallel with the Kalman filter. A. H. Jazwinski developed a specialized version of this technique for estimation of process noise. Equations for the estimation of the measurement noise have also been developed. These algorithms are used to estimate the process noise and measurement noise for the Wide Field Infrared Explorer star tracker and gyro.

  2. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  3. Iodine absorption cells quality evaluation methods

    NASA Astrophysics Data System (ADS)

    Hrabina, Jan; Zucco, Massimo; Holá, Miroslava; Šarbort, Martin; Acef, Ouali; Du-Burck, Frédéric; Lazar, Josef; Číp, Ondřej

    2016-12-01

    The absorption cells represent an unique tool for the laser frequency stabilization. They serve as irreplaceable optical frequency references in realization of high-stable laser standards and laser sources for different brands of optical measurements, including the most precise frequency and dimensional measurement systems. One of the most often used absorption media covering visible and near IR spectral range is molecular iodine. It offers rich atlas of very strong and narrow spectral transitions which allow realization of laser systems with ultimate frequency stabilities in or below 10-14 order level. One of the most often disccussed disadvantage of the iodine cells is iodine's corrosivity and sensitivity to presence of foreign substances. The impurities react with absorption media and cause spectral shifts of absorption spectra, spectral broadening of the transitions and decrease achievable signal-to-noise ratio of the detected spectra. All of these unwanted effects directly influence frequency stability of the realized laser standard and due to this fact, the quality of iodine cells must be precisely controlled. We present a comparison of traditionally used method of laser induced fluorescence (LIF) with novel technique based on hyperfine transitions linewidths measurement. The results summarize advantages and drawbacks of these techniques and give a recommendation for their practical usage.

  4. Molecular filter-based diagnostics in high speed flows

    NASA Technical Reports Server (NTRS)

    Elliott, Gregory S.; Samimy, MO; Arnette, Stephen A.

    1993-01-01

    The use of iodine molecular filters in nonintrusive planar velocimetry methods is examined. Detailed absorption profiles are obtained to highlight the effects that determine the profile shape. It is shown that pressure broadening induced by the presence of a nonabsorbing vapor can be utilized to significantly change the slopes bounding the absorbing region while remaining in the optically-thick regime.

  5. Real-time localization of mobile device by filtering method for sensor fusion

    NASA Astrophysics Data System (ADS)

    Fuse, Takashi; Nagara, Keita

    2017-06-01

    Most of the applications with mobile devices require self-localization of the devices. GPS cannot be used in indoor environment, the positions of mobile devices are estimated autonomously by using IMU. Since the self-localization is based on IMU of low accuracy, and then the self-localization in indoor environment is still challenging. The selflocalization method using images have been developed, and the accuracy of the method is increasing. This paper develops the self-localization method without GPS in indoor environment by integrating sensors, such as IMU and cameras, on mobile devices simultaneously. The proposed method consists of observations, forecasting and filtering. The position and velocity of the mobile device are defined as a state vector. In the self-localization, observations correspond to observation data from IMU and camera (observation vector), forecasting to mobile device moving model (system model) and filtering to tracking method by inertial surveying and coplanarity condition and inverse depth model (observation model). Positions of a mobile device being tracked are estimated by system model (forecasting step), which are assumed as linearly moving model. Then estimated positions are optimized referring to the new observation data based on likelihood (filtering step). The optimization at filtering step corresponds to estimation of the maximum a posterior probability. Particle filter are utilized for the calculation through forecasting and filtering steps. The proposed method is applied to data acquired by mobile devices in indoor environment. Through the experiments, the high performance of the method is confirmed.

  6. A Quasi-Experimental Study Analyzing the Effectiveness of Portable High-Efficiency Particulate Absorption Filters in Preventing Infections in Hematology Patients during Construction.

    PubMed

    Özen, Mehmet; Yılmaz, Gülden; Coşkun, Belgin; Topçuoğlu, Pervin; Öztürk, Bengi; Gündüz, Mehmet; Atilla, Erden; Arslan, Önder; Özcan, Muhit; Demirer, Taner; İlhan, Osman; Konuk, Nahide; Balık, İsmail; Gürman, Günhan; Akan, Hamdi

    2016-03-05

    The increased risk of infection for patients caused by construction and renovation near hematology inpatient clinics is a major concern. The use of high-efficiency particulate absorption (HEPA) filters can reduce the risk of infection. However, there is no standard protocol indicating the use of HEPA filters for patients with hematological malignancies, except for those who have undergone allogeneic hematopoietic stem cell transplantation. This quasi-experimental study was designed to measure the efficacy of HEPA filters in preventing infections during construction. Portable HEPA filters were placed in the rooms of patients undergoing treatment for hematological malignancies because of large-scale construction taking place near the hematology clinic. The rates of infection during the 6 months before and after the installation of the portable HEPA filters were compared. A total of 413 patients were treated during this 1-year period. There were no significant differences in the antifungal prophylaxis and treatment regimens between the groups. The rates of infections, clinically documented infections, and invasive fungal infections decreased in all of the patients following the installation of the HEPA filters. When analyzed separately, the rates of invasive fungal infections were similar before and after the installation of HEPA filters in patients who had no neutropenia or long neutropenia duration. HEPA filters were significantly protective against infection when installed in the rooms of patients with acute lymphocytic leukemia, patients who were undergoing consolidation treatment, and patients who were neutropenic for 1-14 days. Despite the advent of construction and the summer season, during which environmental Aspergillus contamination is more prevalent, no patient or patient subgroup experienced an increase in fungal infections following the installation of HEPA filters. The protective effect of HEPA filters against infection was more pronounced in patients

  7. Simplified Method for Groundwater Treatment Using Dilution and Ceramic Filter

    NASA Astrophysics Data System (ADS)

    Musa, S.; Ariff, N. A.; Kadir, M. N. Abdul; Denan, F.

    2016-07-01

    Groundwater is one of the natural resources that is not susceptible to pollutants. However, increasing activities of municipal, industrial, agricultural or extreme land use activities have resulted in groundwater contamination as occured at the Research Centre for Soft Soil Malaysia (RECESS), Universiti Tun Hussein Onn Malaysia (UTHM). Thus, aims of this study is to treat groundwater by using rainwater and simple ceramic filter as a treatment agent. The treatment uses rain water dilution, ceramic filters and combined method of dilute and filtering as an alternate treatment which are simple and more practical compared to modern or chemical methods. The water went through dilution treatment processes able to get rid of 57% reduction compared to initial condition. Meanwhile, the water that passes through the filtering process successfully get rid of as much as 86% groundwater parameters where only chloride does not pass the standard. Favorable results for the combination methods of dilution and filtration methods that can succesfully eliminate 100% parameters that donot pass the standards of the Ministry of Health and the Interim National Drinking Water Quality Standard such as those found in groundwater in RECESS, UTHM especially sulfate and chloride. As a result, it allows the raw water that will use clean drinking water and safe. It also proves that the method used in this study is very effective in improving the quality of groundwater.

  8. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    PubMed

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum.

  9. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of

  10. A hybrid filtering method based on a novel empirical mode decomposition for friction signals

    NASA Astrophysics Data System (ADS)

    Li, Chengwei; Zhan, Liwei

    2015-12-01

    During a measurement, the measured signal usually contains noise. To remove the noise and preserve the important feature of the signal, we introduce a hybrid filtering method that uses a new intrinsic mode function (NIMF) and a modified Hausdorff distance. The NIMF is defined as the difference between the noisy signal and each intrinsic mode function (IMF), which is obtained by empirical mode decomposition (EMD), ensemble EMD, complementary ensemble EMD, or complete ensemble EMD with adaptive noise (CEEMDAN). The relevant mode selecting is based on the similarity between the first NIMF and the rest of the NIMFs. With this filtering method, the EMD and improved versions are used to filter the simulation and friction signals. The friction signal between an airplane tire and the runaway is recorded during a simulated airplane touchdown and features spikes of various amplitudes and noise. The filtering effectiveness of the four hybrid filtering methods are compared and discussed. The results show that the filtering method based on CEEMDAN outperforms other signal filtering methods.

  11. Method for enhanced longevity of in situ microbial filter used for bioremediation

    DOEpatents

    Carman, M.L.; Taylor, R.T.

    1999-03-30

    An improved method is disclosed for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method is presented for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system is also disclosed for in situ field water remediation. 31 figs.

  12. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    PubMed Central

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available Radio Frequency Identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments. PMID:22346641

  13. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    PubMed

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  14. Kalman and particle filtering methods for full vehicle and tyre identification

    NASA Astrophysics Data System (ADS)

    Bogdanski, Karol; Best, Matthew C.

    2018-05-01

    This paper considers identification of all significant vehicle handling dynamics of a test vehicle, including identification of a combined-slip tyre model, using only those sensors currently available on most vehicle controller area network buses. Using an appropriately simple but efficient model structure, all of the independent parameters are found from test vehicle data, with the resulting model accuracy demonstrated on independent validation data. The paper extends previous work on augmented Kalman Filter state estimators to concentrate wholly on parameter identification. It also serves as a review of three alternative filtering methods; identifying forms of the unscented Kalman filter, extended Kalman filter and particle filter are proposed and compared for effectiveness, complexity and computational efficiency. All three filters are suited to applications of system identification and the Kalman Filters can also operate in real-time in on-line model predictive controllers or estimators.

  15. Prospects of detection of the first sources with SKA using matched filters

    NASA Astrophysics Data System (ADS)

    Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.; Mellema, Garrelt; Choudhuri, Samir; Majumdar, Suman; Giri, Sambit K.

    2018-05-01

    The matched filtering technique is an efficient method to detect H ii bubbles and absorption regions in radio interferometric observations of the redshifted 21-cm signal from the epoch of reionization and the Cosmic Dawn. Here, we present an implementation of this technique to the upcoming observations such as the SKA1-low for a blind search of absorption regions at the Cosmic Dawn. The pipeline explores four dimensional parameter space on the simulated mock visibilities using a MCMC algorithm. The framework is able to efficiently determine the positions and sizes of the absorption/H ii regions in the field of view.

  16. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  17. The Astro-E/XRS Blocking Filter Calibration

    NASA Technical Reports Server (NTRS)

    Audley, Michael D.; Arnaud, Keith A.; Gendreau, Keith C.; Boyce, Kevin R.; Fleetwood, Charles M.; Kelley, Richard L.; Keski-Kuha, Ritva A.; Porter, F. Scott; Stahle, Caroline K.; Szymkowiak, Andrew E.

    1999-01-01

    We describe the transmission calibration of the Astro-E XRS blocking filters. The XRS instrument has five aluminized polyimide blocking filters. These filters are located at thermal stages ranging from 200 K to 60 mK. They are each about 1000 A thick. XRS will have high energy resolution which will enable it to see some of the extended fine structure around the oxygen and aluminum K edges of these filters. Thus, we are conducting a high spectral resolution calibration of the filters near these energies to resolve out extended flue structure and absorption lines.

  18. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture

  19. Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2004-01-01

    Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  20. Estimation of water absorption coefficient using the TDR method

    NASA Astrophysics Data System (ADS)

    Suchorab, Zbigniew; Majerek, Dariusz; Brzyski, Przemysław; Sobczuk, Henryk; Raczkowski, Andrzej

    2017-07-01

    Moisture accumulation and transport in the building barriers is an important feature that influences building performance, causing serious exploitation problems as increased energy use, mold and bacteria growth, decrease of indoor air parameters that may lead to sick building syndrome (SBS). One of the parameters that is used to describe moisture characteristic of the material is water absorption coefficient being the measure of capillary behavior of the material as a function of time and the surface area of the specimen. As usual it is determined using gravimetric methods according to EN 1925:1999 standard. In this article we demonstrate the possibility of determination of water absorption coefficient of autoclaved aerated concrete (AAC) using the Time Domain Reflectometry (TDR) method. TDR is an electric technique that had been adopted from soil science and can be successfully used for real-time monitoring of moisture transport in building materials and envelopes. Data achieved using TDR readouts show high correlation with standard method of moisture absorptivity coefficient determination.

  1. Filtering apparatus and method of use

    NASA Technical Reports Server (NTRS)

    Gavalas, Lillian Susan (Inventor)

    2011-01-01

    A filtering apparatus comprises a microporous membrane and an actuator. The membrane is positioned to traverse across the hollow interior of a conduit used for the transport of molecules in bulk. In one example, the pores of the membrane comprise a plurality of open-ended carbon nanotubes. The actuator comprises a transducing material such as a polyvinyledene fluoride film that is operatively positioned in contact with the membrane and is capable of propagating acoustic vibration onto the membrane at a particular frequency so as to hasten the movement of the molecules through the membrane. Similarly, a method of filtering water comprises the steps of: (a) sifting molecules of water through the membrane, the pores of the membrane comprising a plurality of carbon nanotubes; and (b) propagating acoustic vibration onto the microporous membrane at a libration frequency of ice so as to hasten movement of the water molecules within the carbon nanotubes.

  2. Likelihood Methods for Adaptive Filtering and Smoothing. Technical Report #455.

    ERIC Educational Resources Information Center

    Butler, Ronald W.

    The dynamic linear model or Kalman filtering model provides a useful methodology for predicting the past, present, and future states of a dynamic system, such as an object in motion or an economic or social indicator that is changing systematically with time. Recursive likelihood methods for adaptive Kalman filtering and smoothing are developed.…

  3. Omnidirectional polarization insensitive tunable absorption in graphene metamaterial of nanodisk structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Bao, Jie; Jiao, Zheng; Xu, Yuan

    2015-11-01

    Tunable absorption based on graphene metamaterial with nanodisk structure at near-infrared frequency was investigated using the finite difference time domain method. The absorption of the nanodisk structure which consisting of Au-MgF2-graphene-Au-polyimide (from bottom to top) can be tuned by the chemical potential of graphene at certain diameter of nanodisk. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. It is shown that the increased value of the chemical potential of graphene can lead to blue-shifted of the absorption peaks and the values decreased. Moreover, dual-band and triple-band absorption can be achieved for resonance frequencies at normal incidence. Compared with diameter of nanodisks, the multilayer structure shows multi-band absorber, and an omnidirectional absorption at 195.25 THz is insensitive to TE/TM polarization. This omnidirectional polarization insensitive absorption may be applied by optical communications such as optical absorber, near infrared stealth, and filter.

  4. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics

    PubMed Central

    Yang, Wan; Karspeck, Alicia; Shaman, Jeffrey

    2014-01-01

    A variety of filtering methods enable the recursive estimation of system state variables and inference of model parameters. These methods have found application in a range of disciplines and settings, including engineering design and forecasting, and, over the last two decades, have been applied to infectious disease epidemiology. For any system of interest, the ideal filter depends on the nonlinearity and complexity of the model to which it is applied, the quality and abundance of observations being entrained, and the ultimate application (e.g. forecast, parameter estimation, etc.). Here, we compare the performance of six state-of-the-art filter methods when used to model and forecast influenza activity. Three particle filters—a basic particle filter (PF) with resampling and regularization, maximum likelihood estimation via iterated filtering (MIF), and particle Markov chain Monte Carlo (pMCMC)—and three ensemble filters—the ensemble Kalman filter (EnKF), the ensemble adjustment Kalman filter (EAKF), and the rank histogram filter (RHF)—were used in conjunction with a humidity-forced susceptible-infectious-recovered-susceptible (SIRS) model and weekly estimates of influenza incidence. The modeling frameworks, first validated with synthetic influenza epidemic data, were then applied to fit and retrospectively forecast the historical incidence time series of seven influenza epidemics during 2003–2012, for 115 cities in the United States. Results suggest that when using the SIRS model the ensemble filters and the basic PF are more capable of faithfully recreating historical influenza incidence time series, while the MIF and pMCMC do not perform as well for multimodal outbreaks. For forecast of the week with the highest influenza activity, the accuracies of the six model-filter frameworks are comparable; the three particle filters perform slightly better predicting peaks 1–5 weeks in the future; the ensemble filters are more accurate predicting peaks in the

  5. High durability solar absorptive coating and methods for making same

    SciTech Connect

    Hall, Aaron C.; Adams, David P.

    The present invention relates to solar absorptive coatings including a ceramic material. In particular, the coatings of the invention are laser-treated to further enhance the solar absorptivity of the material. Methods of making and using such materials are also described.

  6. Developments in Methods for Measuring the Intestinal Absorption of Nanoparticle-Bound Drugs

    PubMed Central

    Liu, Wei; Pan, Hao; Zhang, Caiyun; Zhao, Liling; Zhao, Ruixia; Zhu, Yongtao; Pan, Weisan

    2016-01-01

    With the rapid development of nanotechnology, novel drug delivery systems comprising orally administered nanoparticles (NPs) have been paid increasing attention in recent years. The bioavailability of orally administered drugs has significant influence on drug efficacy and therapeutic dosage, and it is therefore imperative that the intestinal absorption of oral NPs be investigated. This review examines the various literature on the oral absorption of polymeric NPs, and provides an overview of the intestinal absorption models that have been developed for the study of oral nanoparticles. Three major categories of models including a total of eight measurement methods are described in detail (in vitro: dialysis bag, rat gut sac, Ussing chamber, cell culture model; in situ: intestinal perfusion, intestinal loops, intestinal vascular cannulation; in vivo: the blood/urine drug concentration method), and the advantages and disadvantages of each method are contrasted and elucidated. In general, in vitro and in situ methods are relatively convenient but lack accuracy, while the in vivo method is troublesome but can provide a true reflection of drug absorption in vivo. This review summarizes the development of intestinal absorption experiments in recent years and provides a reference for the systematic study of the intestinal absorption of nanoparticle-bound drugs. PMID:27455239

  7. Phase-sensitive spectral estimation by the hybrid filter diagonalization method.

    PubMed

    Celik, Hasan; Ridge, Clark D; Shaka, A J

    2012-01-01

    A more robust way to obtain a high-resolution multidimensional NMR spectrum from limited data sets is described. The Filter Diagonalization Method (FDM) is used to analyze phase-modulated data and cast the spectrum in terms of phase-sensitive Lorentzian "phase-twist" peaks. These spectra are then used to obtain absorption-mode phase-sensitive spectra. In contrast to earlier implementations of multidimensional FDM, the absolute phase of the data need not be known beforehand, and linear phase corrections in each frequency dimension are possible, if they are required. Regularization is employed to improve the conditioning of the linear algebra problems that must be solved to obtain the spectral estimate. While regularization smoothes away noise and small peaks, a hybrid method allows the true noise floor to be correctly represented in the final result. Line shape transformation to a Gaussian-like shape improves the clarity of the spectra, and is achieved by a conventional Lorentzian-to-Gaussian transformation in the time-domain, after inverse Fourier transformation of the FDM spectra. The results obtained highlight the danger of not using proper phase-sensitive line shapes in the spectral estimate. The advantages of the new method for the spectral estimate are the following: (i) the spectrum can be phased by conventional means after it is obtained; (ii) there is a true and accurate noise floor; and (iii) there is some indication of the quality of fit in each local region of the spectrum. The method is illustrated with 2D NMR data for the first time, but is applicable to n-dimensional data without any restriction on the number of time/frequency dimensions. Copyright © 2011. Published by Elsevier Inc.

  8. UV filters for lighting of plants

    SciTech Connect

    Doehring, T.; Koefferlein, M.; Thiel, S.

    1994-12-31

    Different filter glasses are available which provide absorption properties suitable for gradual changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and filter glasses an acceptable simulation of the UV-B part of natural global radiation can be achieved. The ageing of these and other filter materials under the extreme UV radiation in the lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts would be useful to develop real ozone filters which can replacemore » glass filters. In any case chamber experiments require a careful selection of the filter material used and must be accompanied by a continuous UV-B monitoring.« less

  9. Explicit filtering in large eddy simulation using a discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Brazell, Matthew J.

    The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is

  10. Multiwavelength absorbance of filter deposits for determination of environmental tobacco smoke and black carbon

    NASA Astrophysics Data System (ADS)

    Lawless, Phil A.; Rodes, Charles E.; Ensor, David S.

    A multiwavelength optical absorption technique has been developed for Teflon filters used for personal exposure sampling with sufficient sensitivity to allow apportionments of environmental tobacco smoke and soot (black) carbon to be made. Measurements on blank filters show that the filter material itself contributes relatively little to the total absorbance and filters from the same lot have similar characteristics; this makes retrospective analysis of filters quite feasible. Using an integrating sphere radiometer and multiple wavelengths to provide specificity, the determination of tobacco smoke and carbon with reasonable accuracy is possible on filters not characterized before exposure. This technique provides a low cost, non-destructive exposure assessment alternative to both standard thermo-gravimetric elemental carbon evaluations on quartz filters and cotinine analyses from urine or saliva samples. The method allows the same sample filter to be used for assessment of mass, carbon, and tobacco smoke without affecting the deposit.

  11. An improved design method based on polyphase components for digital FIR filters

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Kuldeep, B.; Singh, G. K.; Lee, Heung No

    2017-11-01

    This paper presents an efficient design of digital finite impulse response (FIR) filter, based on polyphase components and swarm optimisation techniques (SOTs). For this purpose, the design problem is formulated as mean square error between the actual response and ideal response in frequency domain using polyphase components of a prototype filter. To achieve more precise frequency response at some specified frequency, fractional derivative constraints (FDCs) have been applied, and optimal FDCs are computed using SOTs such as cuckoo search and modified cuckoo search algorithms. A comparative study of well-proved swarm optimisation, called particle swarm optimisation and artificial bee colony algorithm is made. The excellence of proposed method is evaluated using several important attributes of a filter. Comparative study evidences the excellence of proposed method for effective design of FIR filter.

  12. Guided filter-based fusion method for multiexposure images

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei

    2016-11-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.

  13. [Study of the Detecting System of CH4 and SO2 Based on Spectral Absorption Method and UV Fluorescence Method].

    PubMed

    Wang, Shu-tao; Wang, Zhi-fang; Liu, Ming-hua; Wei, Meng; Chen, Dong-ying; Wang, Xing-long

    2016-01-01

    According to the spectral absorption characteristics of polluting gases and fluorescence characteristics, a time-division multiplexing detection system is designed. Through this system we can detect Methane (CH4) and sulfur dioxide (SO2) by using spectral absorption method and the SO2 can be detected by using UV fluorescence method. The system consists of four parts: a combination of a light source which could be switched, the common optical path, the air chamber and the signal processing section. The spectral absorption characteristics and fluorescence characteristics are measured first. Then the experiment of detecting CH4 and SO2 through spectral absorption method and the experiment of detecting SO2 through UV fluorescence method are conducted, respectively. Through measuring characteristics of spectral absorption and fluorescence, we get excitation wavelengths of SO2 and CH4 measured by spectral absorption method at the absorption peak are 280 nm and 1.64 μm, respectively, and the optimal excitation wavelength of SO2 measured by UV fluorescence method is 220 nm. we acquire the linear relation between the concentration of CH4 and relative intensity and the linear relation between the concentration of SO2 and output voltage after conducting the experiment of spectral absorption method, and the linearity are 98.7%, 99.2% respectively. Through the experiment of UV fluorescence method we acquire that the relation between the concentration of SO2 and the voltage is linear, and the linearity is 99.5%. Research shows that the system is able to be applied to detect the polluted gas by absorption spectrum method and UV fluorescence method. Combing these two measurement methods decreases the costing and the volume, and this system can also be used to measure the other gases. Such system has a certain value of application.

  14. Standard Method for Analyzing Gases in Titanium and Titanium Alloys. Standard Method for the Chemical Analysis of Titanium Alloys.

    DTIC Science & Technology

    1982-10-28

    form a non- soluble complex. After filtering and burning the non-pure molybdenum trioxide is weighed. Ammonia water is used to dissolve the molybdenum...niobium and tantalum should use the methyl alcohol distillation - curcumin absorption luminosity 66 method for determination. II. The Methyl Alcohol...Distillation - Curcumin Absorption Luminosity Method 1. Summary of Method In a phosphorus sulfate medium, boron and methyl alcohol produce methyl borate

  15. High-Precision Attitude Estimation Method of Star Sensors and Gyro Based on Complementary Filter and Unscented Kalman Filter

    NASA Astrophysics Data System (ADS)

    Guo, C.; Tong, X.; Liu, S.; Liu, S.; Lu, X.; Chen, P.; Jin, Y.; Xie, H.

    2017-07-01

    Determining the attitude of satellite at the time of imaging then establishing the mathematical relationship between image points and ground points is essential in high-resolution remote sensing image mapping. Star tracker is insensitive to the high frequency attitude variation due to the measure noise and satellite jitter, but the low frequency attitude motion can be determined with high accuracy. Gyro, as a short-term reference to the satellite's attitude, is sensitive to high frequency attitude change, but due to the existence of gyro drift and integral error, the attitude determination error increases with time. Based on the opposite noise frequency characteristics of two kinds of attitude sensors, this paper proposes an on-orbit attitude estimation method of star sensors and gyro based on Complementary Filter (CF) and Unscented Kalman Filter (UKF). In this study, the principle and implementation of the proposed method are described. First, gyro attitude quaternions are acquired based on the attitude kinematics equation. An attitude information fusion method is then introduced, which applies high-pass filtering and low-pass filtering to the gyro and star tracker, respectively. Second, the attitude fusion data based on CF are introduced as the observed values of UKF system in the process of measurement updating. The accuracy and effectiveness of the method are validated based on the simulated sensors attitude data. The obtained results indicate that the proposed method can suppress the gyro drift and measure noise of attitude sensors, improving the accuracy of the attitude determination significantly, comparing with the simulated on-orbit attitude and the attitude estimation results of the UKF defined by the same simulation parameters.

  16. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  17. Filter-based measurement of light absorption by brown carbon in PM2.5 in a megacity in South China.

    PubMed

    Li, Sheng; Zhu, Ming; Yang, Weiqiang; Tang, Mingjin; Huang, Xueliang; Yu, Yuegang; Fang, Hua; Yu, Xu; Yu, Qingqing; Fu, Xiaoxin; Song, Wei; Zhang, Yanli; Bi, Xinhui; Wang, Xinming

    2018-08-15

    Carbonaceous aerosols represent an important nexus between air pollution and climate change. Here we collected filter-based PM 2.5 samples during summer and autumn in 2015 at one urban and two rural sites in Guangzhou, a megacity in southern China, and got the light absorption by black carbon (BC) and brown carbon (BrC) resolved with a DRI Model 2015 multi-wavelength thermal/optical carbon analyzer apart from determining the organic carbon (OC) and elemental carbon (EC) contents. On average BrC contributed 12-15% of the measured absorption at 405nm (LA 405 ) during summer and 15-19% during autumn with significant increase in the LA 405 by BrC at the rural sites. Carbonaceous aerosols, identified as total carbon (TC), yielded average mass absorption efficiency at 405nm (MAE 405 ) that were approximately 45% higher in autumn than in summer, an 83% increase was noted in the average MAE 405 for OC, compared with an increase of only 14% in the average MAE 405 for EC. The LA 405 by BrC showed a good correlation (p<0.001) with the ratios of secondary OC to PM 2.5 in summer. However, this correlation was poor (p>0.1) in autumn, implying greater secondary formation of BrC in summer. The correlations between levoglucosan (a marker of biomass burning) and the LA 405 by BrC were significant during autumn but insignificant during summer, suggesting that the observed increase in the LA 405 by BrC during autumn in rural areas was largely related to biomass burning. The measurements of light absorption at 550nm presented in this study indicated that the use of the IMPROVE algorithm with an MAE value of 10m 2 /g for EC to approximate light absorption may be appropriate in areas not strongly affected by fossil fuel combustion; however, this practice would underestimate the absorption of light by PM 2.5 in areas heavily affected by vehicle exhausts and coal burning. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Optical Path Switching Based Differential Absorption Radiometry for Substance Detection

    NASA Technical Reports Server (NTRS)

    Sachse, Glen W. (Inventor)

    2000-01-01

    A system and method are provided for detecting one or more substances. An optical path switch divides sample path radiation into a time series of alternating first polarized components and second polarized components. The first polarized components are transmitted along a first optical path and the second polarized components along a second optical path. A first gasless optical filter train filters the first polarized components to isolate at least a first wavelength band thereby generating first filtered radiation. A second gasless optical filter train filters the second polarized components to isolate at least a second wavelength band thereby generating second filtered radiation. The first wavelength band and second wavelength band are unique. Further, spectral absorption of a substance of interest is different at the first wavelength band as compared to the second wavelength band. A beam combiner combines the first and second filtered radiation to form a combined beam of radiation. A detector is disposed to monitor magnitude of at least a portion of the combined beam alternately at the first wavelength band and the second wavelength band as an indication of the concentration of the substance in the sample path.

  19. [Significance of bacteria detection with filter paper method on diagnosis of diabetic foot wound infection].

    PubMed

    Zou, X H; Zhu, Y P; Ren, G Q; Li, G C; Zhang, J; Zou, L J; Feng, Z B; Li, B H

    2017-02-20

    Objective: To evaluate the significance of bacteria detection with filter paper method on diagnosis of diabetic foot wound infection. Methods: Eighteen patients with diabetic foot ulcer conforming to the study criteria were hospitalized in Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology from July 2014 to July 2015. Diabetic foot ulcer wounds were classified according to the University of Texas diabetic foot classification (hereinafter referred to as Texas grade) system, and general condition of patients with wounds in different Texas grade was compared. Exudate and tissue of wounds were obtained, and filter paper method and biopsy method were adopted to detect the bacteria of wounds of patients respectively. Filter paper method was regarded as the evaluation method, and biopsy method was regarded as the control method. The relevance, difference, and consistency of the detection results of two methods were tested. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of filter paper method in bacteria detection were calculated. Receiver operating characteristic (ROC) curve was drawn based on the specificity and sensitivity of filter paper method in bacteria detection of 18 patients to predict the detection effect of the method. Data were processed with one-way analysis of variance and Fisher's exact test. In patients tested positive for bacteria by biopsy method, the correlation between bacteria number detected by biopsy method and that by filter paper method was analyzed with Pearson correlation analysis. Results: (1) There were no statistically significant differences among patients with wounds in Texas grade 1, 2, and 3 in age, duration of diabetes, duration of wound, wound area, ankle brachial index, glycosylated hemoglobin, fasting blood sugar, blood platelet count, erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, serum creatinine, and

  20. Invisible ink mark detection in the visible spectrum using absorption difference.

    PubMed

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Divergence Free High Order Filter Methods for Multiscale Non-ideal MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2003-01-01

    Low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field (Delta . B) numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  2. Tunnel Point Cloud Filtering Method Based on Elliptic Cylindrical Model

    NASA Astrophysics Data System (ADS)

    Zhua, Ningning; Jiaa, Yonghong; Luo, Lun

    2016-06-01

    The large number of bolts and screws that attached to the subway shield ring plates, along with the great amount of accessories of metal stents and electrical equipments mounted on the tunnel walls, make the laser point cloud data include lots of non-tunnel section points (hereinafter referred to as non-points), therefore affecting the accuracy for modeling and deformation monitoring. This paper proposed a filtering method for the point cloud based on the elliptic cylindrical model. The original laser point cloud data was firstly projected onto a horizontal plane, and a searching algorithm was given to extract the edging points of both sides, which were used further to fit the tunnel central axis. Along the axis the point cloud was segmented regionally, and then fitted as smooth elliptic cylindrical surface by means of iteration. This processing enabled the automatic filtering of those inner wall non-points. Experiments of two groups showed coincident results, that the elliptic cylindrical model based method could effectively filter out the non-points, and meet the accuracy requirements for subway deformation monitoring. The method provides a new mode for the periodic monitoring of tunnel sections all-around deformation in subways routine operation and maintenance.

  3. Three-dimensionally patterned energy absorptive material and method of fabrication

    SciTech Connect

    Duoss, Eric; Frank, James M.; Kuntz, Joshua

    A three-dimensionally patterned energy absorptive material and fabrication method having multiple layers of patterned filaments extrusion-formed from a curable pre-cursor material and stacked and cured in a three-dimensionally patterned architecture so that the energy absorptive material produced thereby has an engineered bulk property associated with the three-dimensionally patterned architecture.

  4. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    NASA Technical Reports Server (NTRS)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  5. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    SciTech Connect

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  6. Fast analytical spectral filtering methods for magnetic resonance perfusion quantification.

    PubMed

    Reddy, Kasireddy V; Mitra, Abhishek; Yalavarthy, Phaneendra K

    2016-08-01

    The deconvolution in the perfusion weighted imaging (PWI) plays an important role in quantifying the MR perfusion parameters. The PWI application to stroke and brain tumor studies has become a standard clinical practice. The standard approach for this deconvolution is oscillatory-limited singular value decomposition (oSVD) and frequency domain deconvolution (FDD). The FDD is widely recognized as the fastest approach currently available for deconvolution of MR perfusion data. In this work, two fast deconvolution methods (namely analytical fourier filtering and analytical showalter spectral filtering) are proposed. Through systematic evaluation, the proposed methods are shown to be computationally efficient and quantitatively accurate compared to FDD and oSVD.

  7. Filter-based chemical sensors for hazardous materials

    NASA Astrophysics Data System (ADS)

    Major, Kevin J.; Ewing, Kenneth J.; Poutous, Menelaos K.; Sanghera, Jasbinder S.; Aggarwal, Ishwar D.

    2014-05-01

    The development of new techniques for the detection of homemade explosive devices is an area of intense research for the defense community. Such sensors must exhibit high selectivity to detect explosives and/or explosives related materials in a complex environment. Spectroscopic techniques such as FTIR are capable of discriminating between the volatile components of explosives; however, there is a need for less expensive systems for wide-range use in the field. To tackle this challenge we are investigating the use of multiple, overlapping, broad-band infrared (IR) filters to enable discrimination of volatile chemicals associated with an explosive device from potential background interferants with similar chemical signatures. We present an optical approach for the detection of fuel oil (the volatile component in ammonium nitrate-fuel oil explosives) that relies on IR absorption spectroscopy in a laboratory environment. Our proposed system utilizes a three filter set to separate the IR signals from fuel oil and various background interferants in the sample headspace. Filter responses for the chemical spectra are calculated using a Gaussian filter set. We demonstrate that using a specifically chosen filter set enables discrimination of pure fuel oil, hexanes, and acetone, as well as various mixtures of these components. We examine the effects of varying carrier gasses and humidity on the collected spectra and corresponding filter response. We study the filter response on these mixtures over time as well as present a variety of methods for observing the filter response functions to determine the response of this approach to detecting fuel oil in various environments.

  8. Improving the precision of the keyword-matching pornographic text filtering method using a hybrid model.

    PubMed

    Su, Gui-yang; Li, Jian-hua; Ma, Ying-hua; Li, Sheng-hong

    2004-09-01

    With the flooding of pornographic information on the Internet, how to keep people away from that offensive information is becoming one of the most important research areas in network information security. Some applications which can block or filter such information are used. Approaches in those systems can be roughly classified into two kinds: metadata based and content based. With the development of distributed technologies, content based filtering technologies will play a more and more important role in filtering systems. Keyword matching is a content based method used widely in harmful text filtering. Experiments to evaluate the recall and precision of the method showed that the precision of the method is not satisfactory, though the recall of the method is rather high. According to the results, a new pornographic text filtering model based on reconfirming is put forward. Experiments showed that the model is practical, has less loss of recall than the single keyword matching method, and has higher precision.

  9. Particle Filtering Methods for Incorporating Intelligence Updates

    DTIC Science & Technology

    2017-03-01

    methodology for incorporating intelligence updates into a stochastic model for target tracking. Due to the non -parametric assumptions of the PF...samples are taken with replacement from the remaining non -zero weighted particles at each iteration. With this methodology , a zero-weighted particle is...incorporation of information updates. A common method for incorporating information updates is Kalman filtering. However, given the probable nonlinear and non

  10. Surgical suite environmental control system. [using halothane absorbing filter

    NASA Technical Reports Server (NTRS)

    Higginbotham, E. J.; Jacobs, M. L.

    1974-01-01

    Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.

  11. [Absorption spectrum of Quasi-continuous laser modulation demodulation method].

    PubMed

    Shao, Xin; Liu, Fu-Gui; Du, Zhen-Hui; Wang, Wei

    2014-05-01

    A software phase-locked amplifier demodulation method is proposed in order to demodulate the second harmonic (2f) signal of quasi-continuous laser wavelength modulation spectroscopy (WMS) properly, based on the analysis of its signal characteristics. By judging the effectiveness of the measurement data, filter, phase-sensitive detection, digital filtering and other processing, the method can achieve the sensitive detection of quasi-continuous signal The method was verified by using carbon dioxide detection experiments. The WMS-2f signal obtained by the software phase-locked amplifier and the high-performance phase-locked amplifier (SR844) were compared simultaneously. The results show that the Allan variance of WMS-2f signal demodulated by the software phase-locked amplifier is one order of magnitude smaller than that demodulated by SR844, corresponding two order of magnitude lower of detection limit. And it is able to solve the unlocked problem caused by the small duty cycle of quasi-continuous modulation signal, with a small signal waveform distortion.

  12. Dynamic data filtering system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-04-29

    A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.

  13. Study report on a double isotope method of calcium absorption

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Some of the pros and cons of three methods to study gastrointestinal calcium absorption are briefly discussed. The methods are: (1) a balance study; (2) a single isotope method; and (3) a double isotope method. A procedure for the double isotope method is also included.

  14. Median Filtering Methods for Non-volcanic Tremor Detection

    NASA Astrophysics Data System (ADS)

    Damiao, L. G.; Nadeau, R. M.; Dreger, D. S.; Luna, B.; Zhang, H.

    2016-12-01

    Various properties of median filtering over time and space are used to address challenges posed by the Non-volcanic tremor detection problem. As part of a "Big-Data" effort to characterize the spatial and temporal distribution of ambient tremor throughout the Northern San Andreas Fault system, continuous seismic data from multiple seismic networks with contrasting operational characteristics and distributed over a variety of regions are being used. Automated median filtering methods that are flexible enough to work consistently with these data are required. Tremor is characterized by a low-amplitude, long-duration signal-train whose shape is coherent at multiple stations distributed over a large area. There are no consistent phase arrivals or mechanisms in a given tremor's signal and even the durations and shapes among different tremors vary considerably. A myriad of masquerading noise, anthropogenic and natural-event signals must also be discriminated in order to obtain accurate tremor detections. We present here results of the median methods applied to data from four regions of the San Andreas Fault system in northern California (Geysers Geothermal Field, Napa, Bitterwater and Parkfield) to illustrate the ability of the methods to detect tremor under diverse conditions.

  15. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    ENY/08-M22 Abstract Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser -based flow characterization technique that consists of a narrow...linewidth laser , a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have...different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is

  16. Generalized spin filtering and an improved derivative-sign binary image method for the extraction of fringe skeletons

    NASA Astrophysics Data System (ADS)

    Yu, Qifeng; Liu, Xiaolin; Sun, Xiangyi

    1998-07-01

    Generalized spin filters, including several directional filters such as the directional median filter and the directional binary filter, are proposed for removal of the noise of fringe patterns and the extraction of fringe skeletons with the help of fringe-orientation maps (FOM s). The generalized spin filters can filter off noise on fringe patterns and binary fringe patterns efficiently, without distortion of fringe features. A quadrantal angle filter is developed to filter off the FOM. With these new filters, the derivative-sign binary image (DSBI) method for extraction of fringe skeletons is improved considerably. The improved DSBI method can extract high-density skeletons as well as common density skeletons.

  17. A method of predicting the energy-absorption capability of composite subfloor beams

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    A simple method of predicting the energy-absorption capability of composite subfloor beam structure was developed. The method is based upon the weighted sum of the energy-absorption capability of constituent elements of a subfloor beam. An empirical data base of energy absorption results from circular and square cross section tube specimens were used in the prediction capability. The procedure is applicable to a wide range of subfloor beam structure. The procedure was demonstrated on three subfloor beam concepts. Agreement between test and prediction was within seven percent for all three cases.

  18. The optimal digital filters of sine and cosine transforms for geophysical transient electromagnetic method

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-wei; Zhu, Zi-qiang; Lu, Guang-yin; Han, Bo

    2018-03-01

    The sine and cosine transforms implemented with digital filters have been used in the Transient electromagnetic methods for a few decades. Kong (2007) proposed a method of obtaining filter coefficients, which are computed in the sample domain by Hankel transform pair. However, the curve shape of Hankel transform pair changes with a parameter, which usually is set to be 1 or 3 in the process of obtaining the digital filter coefficients of sine and cosine transforms. First, this study investigates the influence of the parameter on the digital filter algorithm of sine and cosine transforms based on the digital filter algorithm of Hankel transform and the relationship between the sine, cosine function and the ±1/2 order Bessel function of the first kind. The results show that the selection of the parameter highly influences the precision of digital filter algorithm. Second, upon the optimal selection of the parameter, it is found that an optimal sampling interval s also exists to achieve the best precision of digital filter algorithm. Finally, this study proposes four groups of sine and cosine transform digital filter coefficients with different length, which may help to develop the digital filter algorithm of sine and cosine transforms, and promote its application.

  19. Fast multiview three-dimensional reconstruction method using cost volume filtering

    NASA Astrophysics Data System (ADS)

    Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.

    2014-03-01

    As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.

  20. Autonomous Correction of Sensor Data Applied to Building Technologies Using Filtering Methods

    SciTech Connect

    Castello, Charles C; New, Joshua Ryan; Smith, Matt K

    2013-01-01

    Sensor data validity is extremely important in a number of applications, particularly building technologies where collected data are used to determine performance. An example of this is Oak Ridge National Laboratory s ZEBRAlliance research project, which consists of four single-family homes located in Oak Ridge, TN. The homes are outfitted with a total of 1,218 sensors to determine the performance of a variety of different technologies integrated within each home. Issues arise with such a large amount of sensors, such as missing or corrupt data. This paper aims to eliminate these problems using: (1) Kalman filtering and (2) linear predictionmore » filtering techniques. Five types of data are the focus of this paper: (1) temperature; (2) humidity; (3) energy consumption; (4) pressure; and (5) airflow. Simulations show the Kalman filtering method performed best in predicting temperature, humidity, pressure, and airflow data, while the linear prediction filtering method performed best with energy consumption data.« less

  1. Modified signal-to-noise: a new simple and practical gene filtering approach based on the concept of projective adaptive resonance theory (PART) filtering method.

    PubMed

    Takahashi, Hiro; Honda, Hiroyuki

    2006-07-01

    Considering the recent advances in and the benefits of DNA microarray technologies, many gene filtering approaches have been employed for the diagnosis and prognosis of diseases. In our previous study, we developed a new filtering method, namely, the projective adaptive resonance theory (PART) filtering method. This method was effective in subclass discrimination. In the PART algorithm, the genes with a low variance in gene expression in either class, not both classes, were selected as important genes for modeling. Based on this concept, we developed novel simple filtering methods such as modified signal-to-noise (S2N') in the present study. The discrimination model constructed using these methods showed higher accuracy with higher reproducibility as compared with many conventional filtering methods, including the t-test, S2N, NSC and SAM. The reproducibility of prediction was evaluated based on the correlation between the sets of U-test p-values on randomly divided datasets. With respect to leukemia, lymphoma and breast cancer, the correlation was high; a difference of >0.13 was obtained by the constructed model by using <50 genes selected by S2N'. Improvement was higher in the smaller genes and such higher correlation was observed when t-test, NSC and SAM were used. These results suggest that these modified methods, such as S2N', have high potential to function as new methods for marker gene selection in cancer diagnosis using DNA microarray data. Software is available upon request.

  2. Detector absorptivity measuring method and apparatus

    NASA Technical Reports Server (NTRS)

    Sheets, R. E. (Inventor)

    1976-01-01

    A method and apparatus for measuring the absorptivity of a radiation detector by making the detector an integral part of a cavity radiometer are described. By substituting the detector for the surface of the cavity upon which the radiation first impinges a comparison is made between the quantity of radiation incident upon the detector and the quantity reflected from the detector. The difference between the two is a measurement of the amount of radiation absorbed by the detector.

  3. Magnetic filtration process, magnetic filtering material, and methods of forming magnetic filtering material

    DOEpatents

    Taboada-Serrano, Patricia; Tsouris, Constantino; Contescu, Cristian I; McFarlane, Joanna

    2013-10-08

    The present invention provides magnetically responsive activated carbon, and a method of forming magnetically responsive activated carbon. The method of forming magnetically responsive activated carbon typically includes providing activated carbon in a solution containing ions of ferrite forming elements, wherein at least one of the ferrite forming elements has an oxidation state of +3 and at least a second of the ferrite forming elements has an oxidation state of +2, and increasing pH of the solution to precipitate particles of ferrite that bond to the activated carbon, wherein the activated carbon having the ferrite particles bonded thereto have a positive magnetic susceptibility. The present invention also provides a method of filtering waste water using magnetic activated carbon.

  4. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  5. On-site Determination of Trace Arsenic by Reflection-Absorption Colorimetry of Molybdenum Blue Collected on a Membrane Filter.

    PubMed

    Hasegawa, Yuya; Suzuki, Yasutada; Kawakubo, Susumu

    2017-01-01

    An on-site determination method for trace arsenic has been developed by collecting it as molybdenum blue (MB) in the presence of tetradecyldimethylbenzylammonium chloride on a mixed cellulose ester membrane filter and by measuring reflection absorbance (RA) of MB on the filter using a laboratory-made palm-top size reflection-absorbance colorimeter with a red light-emitting diode. The value of RA was proportional to the amount of arsenic up to 0.5 μg with a detection limit of 0.01 μg. The proposed method was successfully applied to soil extract and hot-spring water samples.

  6. 4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres

    NASA Astrophysics Data System (ADS)

    Soltani, Mohamadreza; Keshavarzi, Rasul

    2017-10-01

    The current research represents a nanoscale and compact 4-channels plasmonic demultiplexer. It includes eight coherent perfect absorption (CPA) - type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-spheres waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the nano spheres location, an efficient binary optimization method based on the Particle Swarm Optimization algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the 'off' state.

  7. A Coarse Alignment Method Based on Digital Filters and Reconstructed Observation Vectors

    PubMed Central

    Xu, Xiang; Xu, Xiaosu; Zhang, Tao; Li, Yao; Wang, Zhicheng

    2017-01-01

    In this paper, a coarse alignment method based on apparent gravitational motion is proposed. Due to the interference of the complex situations, the true observation vectors, which are calculated by the apparent gravity, are contaminated. The sources of the interference are analyzed in detail, and then a low-pass digital filter is designed in this paper for eliminating the high-frequency noise of the measurement observation vectors. To extract the effective observation vectors from the inertial sensors’ outputs, a parameter recognition and vector reconstruction method are designed, where an adaptive Kalman filter is employed to estimate the unknown parameters. Furthermore, a robust filter, which is based on Huber’s M-estimation theory, is developed for addressing the outliers of the measurement observation vectors due to the maneuver of the vehicle. A comprehensive experiment, which contains a simulation test and physical test, is designed to verify the performance of the proposed method, and the results show that the proposed method is equivalent to the popular apparent velocity method in swaying mode, but it is superior to the current methods while in moving mode when the strapdown inertial navigation system (SINS) is under entirely self-contained conditions. PMID:28353682

  8. Far infrared filters for the Galileo-Jupiter and other missions

    NASA Technical Reports Server (NTRS)

    Seeley, J. S.; Hunneman, R.; Whatley, A.

    1981-01-01

    Progress in the development of FIR multilayer interference filters for the net flux radiometer and photopolarizing radiometer to be carried on board the Galileo mission to Jupiter is reported. The multilayer interference technique has been extended to the region above 40 microns by the use of PbTe/II-VI materials in hard-coated combination, with the thickest layers composed of CdSe QWOT at 74 microns and PbTe QWOT. Improvements have also been obtained in filters below 20 microns on the basis of the Chebyshev stack design. A composite filter cutting on steeply at 40 microns has been designed which employs a thin crystal quartz substrate, shorter wavelength absorption in ZnS and As2S3 thin films, and supplementary multilayer interference. Finally, absorptive filters have been developed based on II-VI compounds in multilayer combination with KRS-5 (or 6) on a KRS-5 (or 6) substrate

  9. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    NASA Astrophysics Data System (ADS)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  10. LROC assessment of non-linear filtering methods in Ga-67 SPECT imaging

    NASA Astrophysics Data System (ADS)

    De Clercq, Stijn; Staelens, Steven; De Beenhouwer, Jan; D'Asseler, Yves; Lemahieu, Ignace

    2006-03-01

    In emission tomography, iterative reconstruction is usually followed by a linear smoothing filter to make such images more appropriate for visual inspection and diagnosis by a physician. This will result in a global blurring of the images, smoothing across edges and possibly discarding valuable image information for detection tasks. The purpose of this study is to investigate which possible advantages a non-linear, edge-preserving postfilter could have on lesion detection in Ga-67 SPECT imaging. Image quality can be defined based on the task that has to be performed on the image. This study used LROC observer studies based on a dataset created by CPU-intensive Gate Monte Carlo simulations of a voxelized digital phantom. The filters considered in this study were a linear Gaussian filter, a bilateral filter, the Perona-Malik anisotropic diffusion filter and the Catte filtering scheme. The 3D MCAT software phantom was used to simulate the distribution of Ga-67 citrate in the abdomen. Tumor-present cases had a 1-cm diameter tumor randomly placed near the edges of the anatomical boundaries of the kidneys, bone, liver and spleen. Our data set was generated out of a single noisy background simulation using the bootstrap method, to significantly reduce the simulation time and to allow for a larger observer data set. Lesions were simulated separately and added to the background afterwards. These were then reconstructed with an iterative approach, using a sufficiently large number of MLEM iterations to establish convergence. The output of a numerical observer was used in a simplex optimization method to estimate an optimal set of parameters for each postfilter. No significant improvement was found for using edge-preserving filtering techniques over standard linear Gaussian filtering.

  11. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, A.C.

    1983-09-06

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.

  12. Method and apparatus for measuring flow velocity using matched filters

    DOEpatents

    Raptis, Apostolos C.

    1983-01-01

    An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.

  13. Ranking filter methods for concentrating pathogens in lake water

    USDA-ARS?s Scientific Manuscript database

    Accurately comparing filtration methods for concentrating waterborne pathogens is difficult because of two important water matrix effects on recovery measurements, the effect on PCR quantification and the effect on filter performance. Regarding the first effect, we show how to create a control water...

  14. The effect of Beta-cyclodextrin on percutaneous absorption of commonly used Eusolex® sunscreens.

    PubMed

    Shokri, J; Hasanzadeh, D; Ghanbarzadeh, S; Dizadji-Ilkhchi, M; Adibkia, K

    2013-11-01

    There is a serious concern about the topical and systemic absorption of organic ultraviolet filters in sunscreen formulations and subsequent phototoxic and photo allergic reactions. Ideally, a sunscreen should localize in the surface of stratum corneum and create a barrier against UV radiation, but not penetrate into the underlying viable tissues and systemic circulation. The objective of the present study was to determine the effects of β-cyclodextrin (β-CDX) complexation on the transdermal penetration of 3 commonly used sun blocking agents, Eusolex ® 4360 (avobenzone), Eusolex ® 9020 (Oxybenzone) and Eusolex ® 232 (Ensulizole). The complexation of the sunscreen agents with β-CDX was performed by 3 methods and confirmed by differential scanning calorimetry (DSC). Sunscreens, and their physical mixtures and complexes with β-CDX were introduced into a model cream base (o/w emulsion). To find out the influence of β-CDX, sunscreen creams were applied to the rat skin in vitro in standard Franz diffusion cells and the amount of sunscreen permeated after 6 h was assessed by HPLC. The skin penetration flux of the UV filters was significantly reduced (4–15 fold) by complexation with β-CDX. Complexation also could prolong absorption lag time of sun blocking agents to more than 150 min. Considering the ability of β-CDX complexation in the reduction of flux and enhancement ratio as well as prolongation of absorption lag time, this technique could be very helpful for reducing systemic absorption of the UV filters and subsequent toxicity and allergic reaction.

  15. Comparison of different filter methods for data assimilation in the unsaturated zone

    NASA Astrophysics Data System (ADS)

    Lange, Natascha; Berkhahn, Simon; Erdal, Daniel; Neuweiler, Insa

    2016-04-01

    The unsaturated zone is an important compartment, which plays a role for the division of terrestrial water fluxes into surface runoff, groundwater recharge and evapotranspiration. For data assimilation in coupled systems it is therefore important to have a good representation of the unsaturated zone in the model. Flow processes in the unsaturated zone have all the typical features of flow in porous media: Processes can have long memory and as observations are scarce, hydraulic model parameters cannot be determined easily. However, they are important for the quality of model predictions. On top of that, the established flow models are highly non-linear. For these reasons, the use of the popular Ensemble Kalman filter as a data assimilation method to estimate state and parameters in unsaturated zone models could be questioned. With respect to the long process memory in the subsurface, it has been suggested that iterative filters and smoothers may be more suitable for parameter estimation in unsaturated media. We test the performance of different iterative filters and smoothers for data assimilation with a focus on parameter updates in the unsaturated zone. In particular we compare the Iterative Ensemble Kalman Filter and Smoother as introduced by Bocquet and Sakov (2013) as well as the Confirming Ensemble Kalman Filter and the modified Restart Ensemble Kalman Filter proposed by Song et al. (2014) to the original Ensemble Kalman Filter (Evensen, 2009). This is done with simple test cases generated numerically. We consider also test examples with layering structure, as a layering structure is often found in natural soils. We assume that observations are water content, obtained from TDR probes or other observation methods sampling relatively small volumes. Particularly in larger data assimilation frameworks, a reasonable balance between computational effort and quality of results has to be found. Therefore, we compare computational costs of the different methods as well

  16. Parameterization of light absorption by components of seawater in optically complex coastal waters of the Crimea Peninsula (Black Sea).

    PubMed

    Dmitriev, Egor V; Khomenko, Georges; Chami, Malik; Sokolov, Anton A; Churilova, Tatyana Y; Korotaev, Gennady K

    2009-03-01

    The absorption of sunlight by oceanic constituents significantly contributes to the spectral distribution of the water-leaving radiance. Here it is shown that current parameterizations of absorption coefficients do not apply to the optically complex waters of the Crimea Peninsula. Based on in situ measurements, parameterizations of phytoplankton, nonalgal, and total particulate absorption coefficients are proposed. Their performance is evaluated using a log-log regression combined with a low-pass filter and the nonlinear least-square method. Statistical significance of the estimated parameters is verified using the bootstrap method. The parameterizations are relevant for chlorophyll a concentrations ranging from 0.45 up to 2 mg/m(3).

  17. Robustifying blind image deblurring methods by simple filters

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Zeng, Xiangrong; Huangpeng, Qizi; Fan, Jun; Zhou, Jinglun; Feng, Jing

    2016-07-01

    The state-of-the-art blind image deblurring (BID) methods are sensitive to noise, and most of them can deal with only small levels of Gaussian noise. In this paper, we use simple filters to present a robust BID framework which is able to robustify exiting BID methods to high-level Gaussian noise or/and Non-Gaussian noise. Experiments on images in presence of Gaussian noise, impulse noise (salt-and-pepper noise and random-valued noise) and mixed Gaussian-impulse noise, and a real-world blurry and noisy image show that the proposed method can faster estimate sharper kernels and better images, than that obtained by other methods.

  18. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems.

    PubMed

    Lyu, Weiwei; Cheng, Xianghong

    2017-11-28

    Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method.

  19. A Novel Adaptive H∞ Filtering Method with Delay Compensation for the Transfer Alignment of Strapdown Inertial Navigation Systems

    PubMed Central

    Lyu, Weiwei

    2017-01-01

    Transfer alignment is always a key technology in a strapdown inertial navigation system (SINS) because of its rapidity and accuracy. In this paper a transfer alignment model is established, which contains the SINS error model and the measurement model. The time delay in the process of transfer alignment is analyzed, and an H∞ filtering method with delay compensation is presented. Then the H∞ filtering theory and the robust mechanism of H∞ filter are deduced and analyzed in detail. In order to improve the transfer alignment accuracy in SINS with time delay, an adaptive H∞ filtering method with delay compensation is proposed. Since the robustness factor plays an important role in the filtering process and has effect on the filtering accuracy, the adaptive H∞ filter with delay compensation can adjust the value of robustness factor adaptively according to the dynamic external environment. The vehicle transfer alignment experiment indicates that by using the adaptive H∞ filtering method with delay compensation, the transfer alignment accuracy and the pure inertial navigation accuracy can be dramatically improved, which demonstrates the superiority of the proposed filtering method. PMID:29182592

  20. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, D.A.; Bacchi, D.P.; Connors, T.F.; Collins, E.L. III

    1998-02-10

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by a novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken. 2 figs.

  1. Method of producing monolithic ceramic cross-flow filter

    DOEpatents

    Larsen, David A.; Bacchi, David P.; Connors, Timothy F.; Collins, III, Edwin L.

    1998-01-01

    Ceramic filter of various configuration have been used to filter particulates from hot gases exhausted from coal-fired systems. Prior ceramic cross-flow filters have been favored over other types, but those previously horn have been assemblies of parts somehow fastened together and consequently subject often to distortion or delamination on exposure hot gas in normal use. The present new monolithic, seamless, cross-flow ceramic filters, being of one-piece construction, are not prone to such failure. Further, these new products are made by novel casting process which involves the key steps of demolding the ceramic filter green body so that none of the fragile inner walls of the filter is cracked or broken.

  2. Methods for analysis of selected metals in water by atomic absorption

    USGS Publications Warehouse

    Fishman, Marvin J.; Downs, Sanford C.

    1966-01-01

    This manual describes atomic-absorption-spectroscopy methods for determining calcium, copper, lithium, magnesium, manganese, potassium, sodium, strontium and zinc in atmospheric precipitation, fresh waters, and brines. The procedures are intended to be used by water quality laboratories of the Water Resources Division of the U.S. Geological Survey. Detailed procedures, calculations, and methods for the preparation of reagents are given for each element along with data on accuracy, precision, and sensitivity. Other topics discussed briefly are the principle of atomic absorption, instrumentation used, and special analytical techniques.

  3. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.

    PubMed

    Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun

    2018-01-01

    Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.

  4. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  5. Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising

    PubMed Central

    Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108

  6. Improving the performance of the prony method using a wavelet domain filter for MRI denoising.

    PubMed

    Jaramillo, Rodney; Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method.

  7. Method of analyzing multiple sample simultaneously by detecting absorption and systems for use in such a method

    DOEpatents

    Yeung, Edward S.; Gong, Xiaoyi

    2004-09-07

    The present invention provides a method of analyzing multiple samples simultaneously by absorption detection. The method comprises: (i) providing a planar array of multiple containers, each of which contains a sample comprising at least one absorbing species, (ii) irradiating the planar array of multiple containers with a light source and (iii) detecting absorption of light with a detetion means that is in line with the light source at a distance of at leaat about 10 times a cross-sectional distance of a container in the planar array of multiple containers. The absorption of light by a sample indicates the presence of an absorbing species in it. The method can further comprise: (iv) measuring the amount of absorption of light detected in (iii) indicating the amount of the absorbing species in the sample. Also provided by the present invention is a system for use in the abov metho.The system comprises; (i) a light source comrnpising or consisting essentially of at leaat one wavelength of light, the absorption of which is to be detected, (ii) a planar array of multiple containers, and (iii) a detection means that is in line with the light source and is positioned in line with and parallel to the planar array of multiple contiainers at a distance of at least about 10 times a cross-sectional distance of a container.

  8. A membrane filtering method for the purification of giant unilamellar vesicles.

    PubMed

    Tamba, Yukihiro; Terashima, Hiroaki; Yamazaki, Masahito

    2011-07-01

    The use of giant unilamellar vesicles (GUVs) for investigating the properties of biomembranes is advantageous compared to the use of small-sized vesicles such as large unilamellar vesicles (LUVs). Experimental methods using GUVs, such as the single GUV method, would benefit if there was a methodology for obtaining a large population of similar-sized GUVs composed of oil-free membranes. We here describe a new membrane filtering method for purifying GUVs prepared by the natural swelling method and demonstrate that, following purification of GUVs composed of dioleoylphosphatidylglycerol (DOPG)/dioleoylphosphatidylcholine (DOPC) membranes suspended in a buffer, similar-sized GUVs with diameters of 10-30 μm are obtained. Moreover, this method enabled GUVs to be separated from water-soluble fluorescent probes and LUVs. These results suggest that the membrane filtering method can be applied to GUVs prepared by other methods to purify larger-sized GUVs from smaller GUVs, LUVs, and various water-soluble substances such as proteins and fluorescent probes. This method can also be used for concentration of dilute GUV suspensions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Electret filter collects more exhaled albumin than glass condenser: A method comparison based on human study.

    PubMed

    Jia, Ziru; Liu, Hongying; Li, Wang; Xie, Dandan; Cheng, Ke; Pi, Xitian

    2018-02-01

    In recent years, noninvasive diagnosis based on biomarkers in exhaled breath has been extensively studied. The procedure of biomarker collection is a key step. However, the traditional condenser method has low efficacy in collecting nonvolatile compounds especially the protein biomarkers in breath. To solve this deficiency, here we propose an electret filter method.Exhaled breath of 6 volunteers was collected with a glass condenser and an electret filter. The amount of albumin was analyzed. Furthermore, the difference of exhaled albumin between smokers and nonsmokers was evaluated.The electret filter method collected more albumin than the glass condenser method at the same breath volume level (P < .01). Smokers exhaling more albumin than nonsmokers were also observed (P < .01).The electret filter is capable of collecting proteins more effectively than the condenser method. In addition, smokers tend to exhale more albumin than nonsmokers.

  10. System and method for 100% moisture and basis weight measurement of moving paper

    DOEpatents

    Hernandez, Jose E.; Koo, Jackson C.

    2002-01-01

    A system for characterizing a set of properties for a moving substance are disclosed. The system includes: a first near-infrared linear array; a second near-infrared linear array; a first filter transparent to a first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the first array; a second filter blocking the first absorption wavelength emitted by the moving substance and juxtaposed between the substance and the second array; and a computational device for characterizing data from the arrays into information on a property of the substance. The method includes the steps of: filtering out a first absorption wavelength emitted by a substance; monitoring the first absorption wavelength with a first near-infrared linear array; blocking the first wavelength from reaching a second near-infrared linear array; and characterizing data from the arrays into information on a property of the substance.

  11. [Study of high temperature water vapor concentration measurement method based on absorption spectroscopy].

    PubMed

    Chen, Jiu-ying; Liu, Jian-guo; He, Jun-feng; He, Ya-bai; Zhang, Guang-le; Xu, Zhen-yu; Gang, Qiang; Wang, Liao; Yao, Lu; Yuan, Song; Ruan, Jun; Dai, Yun-hai; Kan, Rui-feng

    2014-12-01

    Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 μm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

  12. Dual linear structured support vector machine tracking method via scale correlation filter

    NASA Astrophysics Data System (ADS)

    Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen

    2018-01-01

    Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.

  13. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An accelerated non-Gaussianity based multichannel predictive deconvolution method with the limited supporting region of filters

    NASA Astrophysics Data System (ADS)

    Li, Zhong-xiao; Li, Zhen-chun

    2016-09-01

    The multichannel predictive deconvolution can be conducted in overlapping temporal and spatial data windows to solve the 2D predictive filter for multiple removal. Generally, the 2D predictive filter can better remove multiples at the cost of more computation time compared with the 1D predictive filter. In this paper we first use the cross-correlation strategy to determine the limited supporting region of filters where the coefficients play a major role for multiple removal in the filter coefficient space. To solve the 2D predictive filter the traditional multichannel predictive deconvolution uses the least squares (LS) algorithm, which requires primaries and multiples are orthogonal. To relax the orthogonality assumption the iterative reweighted least squares (IRLS) algorithm and the fast iterative shrinkage thresholding (FIST) algorithm have been used to solve the 2D predictive filter in the multichannel predictive deconvolution with the non-Gaussian maximization (L1 norm minimization) constraint of primaries. The FIST algorithm has been demonstrated as a faster alternative to the IRLS algorithm. In this paper we introduce the FIST algorithm to solve the filter coefficients in the limited supporting region of filters. Compared with the FIST based multichannel predictive deconvolution without the limited supporting region of filters the proposed method can reduce the computation burden effectively while achieving a similar accuracy. Additionally, the proposed method can better balance multiple removal and primary preservation than the traditional LS based multichannel predictive deconvolution and FIST based single channel predictive deconvolution. Synthetic and field data sets demonstrate the effectiveness of the proposed method.

  15. Fuzzy Filtering Method for Color Videos Corrupted by Additive Noise

    PubMed Central

    Ponomaryov, Volodymyr I.; Montenegro-Monroy, Hector; Nino-de-Rivera, Luis

    2014-01-01

    A novel method for the denoising of color videos corrupted by additive noise is presented in this paper. The proposed technique consists of three principal filtering steps: spatial, spatiotemporal, and spatial postprocessing. In contrast to other state-of-the-art algorithms, during the first spatial step, the eight gradient values in different directions for pixels located in the vicinity of a central pixel as well as the R, G, and B channel correlation between the analogous pixels in different color bands are taken into account. These gradient values give the information about the level of contamination then the designed fuzzy rules are used to preserve the image features (textures, edges, sharpness, chromatic properties, etc.). In the second step, two neighboring video frames are processed together. Possible local motions between neighboring frames are estimated using block matching procedure in eight directions to perform interframe filtering. In the final step, the edges and smoothed regions in a current frame are distinguished for final postprocessing filtering. Numerous simulation results confirm that this novel 3D fuzzy method performs better than other state-of-the-art techniques in terms of objective criteria (PSNR, MAE, NCD, and SSIM) as well as subjective perception via the human vision system in the different color videos. PMID:24688428

  16. Designer Infrared Filters using Stacked Metal Lattices

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Rebbert, M.; Sternberg, O.

    2003-01-01

    We have designed and fabricated infrared filters for use at wavelengths greater than or equal to 15 microns. Unlike conventional dielectric filters used at the short wavelengths, ours are made from stacked metal grids, spaced at a very small fraction of the performance wavelengths. The individual lattice layers are gold, the spacers are polyimide, and they are assembled using integrated circuit processing techniques; they resemble some metallic photonic band-gap structures. We simulate the filter performance accurately, including the coupling of the propagating, near-field electromagnetic modes, using computer aided design codes. We find no anomalous absorption. The geometrical parameters of the grids are easily altered in practice, allowing for the production of tuned filters with predictable useful transmission characteristics. Although developed for astronomical instrumentation, the filters arc broadly applicable in systems across infrared and terahertz bands.

  17. Force-controlled absorption in a fully-nonlinear numerical wave tank

    NASA Astrophysics Data System (ADS)

    Spinneken, Johannes; Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  18. Filter methods to preserve local contrast and to avoid artifacts in gamut mapping

    NASA Astrophysics Data System (ADS)

    Meili, Marcel; Küpper, Dennis; Barańczuk, Zofia; Caluori, Ursina; Simon, Klaus

    2010-01-01

    Contrary to high dynamic range imaging, the preservation of details and the avoidance of artifacts is not explicitly considered in popular color management systems. An effective way to overcome these difficulties is image filtering. In this paper we investigate several image filter concepts for detail preservation as part of a practical gamut mapping strategy. In particular we define four concepts including various image filters and check their performance with a psycho-visual test. Additionally, we compare our performance evaluation to two image quality measures with emphasis on local contrast. Surprisingly, the most simple filter concept performs highly efficient and achieves an image quality which is comparable to the more established but slower methods.

  19. Applications of Kalman filtering to real-time trace gas concentration measurements

    NASA Technical Reports Server (NTRS)

    Leleux, D. P.; Claps, R.; Chen, W.; Tittel, F. K.; Harman, T. L.

    2002-01-01

    A Kalman filtering technique is applied to the simultaneous detection of NH3 and CO2 with a diode-laser-based sensor operating at 1.53 micrometers. This technique is developed for improving the sensitivity and precision of trace gas concentration levels based on direct overtone laser absorption spectroscopy in the presence of various sensor noise sources. Filter performance is demonstrated to be adaptive to real-time noise and data statistics. Additionally, filter operation is successfully performed with dynamic ranges differing by three orders of magnitude. Details of Kalman filter theory applied to the acquired spectroscopic data are discussed. The effectiveness of this technique is evaluated by performing NH3 and CO2 concentration measurements and utilizing it to monitor varying ammonia and carbon dioxide levels in a bioreactor for water reprocessing, located at the NASA-Johnson Space Center. Results indicate a sensitivity enhancement of six times, in terms of improved minimum detectable absorption by the gas sensor.

  20. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence

    PubMed Central

    Kelly, David; Majda, Andrew J.; Tong, Xin T.

    2015-01-01

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature. PMID:26261335

  1. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    PubMed

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  2. The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.

    PubMed

    Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo

    2018-05-17

    The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.

  3. Research on the method of information system risk state estimation based on clustering particle filter

    NASA Astrophysics Data System (ADS)

    Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua

    2017-05-01

    With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.

  4. Filter for on-line air monitor unaffected by radon progeny and method of using same

    DOEpatents

    Phillips, Terrance D.; Edwards, Howard D.

    1999-01-01

    An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

  5. Method and apparatus for selective filtering of ions

    DOEpatents

    Page, Jason S [Kennewick, WA; Tang, Keqi [Richland, WA; Smith, Richard D [Richland, WA

    2009-04-07

    An adjustable, low mass-to-charge (m/z) filter is disclosed employing electrospray ionization to block ions associated with unwanted low m/z species from entering the mass spectrometer and contributing their space charge to down-stream ion accumulation steps. The low-mass filter is made by using an adjustable potential energy barrier from the conductance limiting terminal electrode of an electrodynamic ion funnel, which prohibits species with higher ion mobilities from being transmitted. The filter provides a linear voltage adjustment of low-mass filtering from m/z values from about 50 to about 500. Mass filtering above m/z 500 can also be performed; however, higher m/z species are attenuated. The mass filter was evaluated with a liquid chromatography-mass spectrometry analysis of an albumin tryptic digest and resulted in the ability to block low-mass, "background" ions which account for 40-70% of the total ion current from the ESI source during peak elution.

  6. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  7. Design, construction and operation of a new filter approach for treatment of surface waters in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Frankel, R. J.

    1981-05-01

    A simple, inexpensive, and efficient method of water treatment for rural communities in Southeast Asia was developed using local materials as filter media. The filter utilizes coconut fiber and burnt rice husks in a two-stage filtering process designed as a gravityfed system without the need for backwashing, and eliminates in most cases the need of any chemicals. The first-stage filter with coconut fiber acts essentially as a substitute for the coagulation and sedimentation phases of conventional water-treatment plants. The second-stage filter, using burnt rice husks, is similar to slow sand filtration with the additional benefits of taste, color and odor removals through the absorption properties of the activated carbon in the medium. This paper reports on the design, construction costs, and operating results of several village size units in Thailand and in the Philippines.

  8. Laser absorption spectroscopy - Method for monitoring complex trace gas mixtures

    NASA Technical Reports Server (NTRS)

    Green, B. D.; Steinfeld, J. I.

    1976-01-01

    A frequency stabilized CO2 laser was used for accurate determinations of the absorption coefficients of various gases in the wavelength region from 9 to 11 microns. The gases investigated were representative of the types of contaminants expected to build up in recycled atmospheres. These absorption coefficients were then used in determining the presence and amount of the gases in prepared mixtures. The effect of interferences on the minimum detectable concentration of the gases was measured. The accuracies of various methods of solution were also evaluated.

  9. Rugate filter for light-trapping in solar cells.

    PubMed

    Fahr, Stephan; Ulbrich, Carolin; Kirchartz, Thomas; Rau, Uwe; Rockstuhl, Carsten; Lederer, Falk

    2008-06-23

    We suggest a design for a coating that could be applied on top of any solar cell having at least one diffusing surface. This coating acts as an angle and wavelength selective filter, which increases the average path length and absorptance at long wavelengths without altering the solar cell performance at short wavelengths. The filter design is based on a continuous variation of the refractive index in order to minimize undesired reflection losses. Numerical procedures are used to optimize the filter for a 10 microm thick monocrystalline silicon solar cell, which lifts the efficiency above the Auger limit for unconcentrated illumination. The feasibility to fabricate such filters is also discussed, considering a finite available refractive index range.

  10. Comparative rice seed toxicity tests using filter paper, growth pouch-tm, and seed tray methods

    USGS Publications Warehouse

    Wang, W.

    1993-01-01

    Paper substrate, especially circular filter paper placed inside a Petri dish, has long been used for the plant seed toxicity test (PSTT). Although this method is simple and inexpensive, recent evidence indicates that it gives results that are significantly different from those obtained using a method that does not involve paper, especially when testing metal cations. The study compared PSTT using three methods: filter paper, Growth Pouch-TM, and seed tray. The Growth Pouch-TM is a commercially available device. The seed tray is a newly designed plastic receptacle placed inside a Petri dish. The results of the Growth Pouch-TM method showed no toxic effects on rice for Ag up to 40 mg L-1 and Cd up to 20 mg L-1. Using the seed tray method, IC50 (50% inhibitory effect concentration) values were 0.55 and 1.4 mg L-1 for Ag and Cd, respectively. Although results of filter paper and seed tray methods were nearly identical for NaF, Cr(VI), and phenol, the toxicities of cations Ag and Cd were reduced by using the filter paper method; IC50 values were 22 and 18 mg L-1, respectively. The results clearly indicate that paper substrate is not advisable for PSTT.

  11. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  12. High Order Filter Methods for the Non-ideal Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain non-ideal MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  13. Divergence Free High Order Filter Methods for the Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yea, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  14. Electrically heated particulate filter preparation methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  15. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  16. Finger-Vein Image Enhancement Using a Fuzzy-Based Fusion Method with Gabor and Retinex Filtering

    PubMed Central

    Shin, Kwang Yong; Park, Young Ho; Nguyen, Dat Tien; Park, Kang Ryoung

    2014-01-01

    Because of the advantages of finger-vein recognition systems such as live detection and usage as bio-cryptography systems, they can be used to authenticate individual people. However, images of finger-vein patterns are typically unclear because of light scattering by the skin, optical blurring, and motion blurring, which can degrade the performance of finger-vein recognition systems. In response to these issues, a new enhancement method for finger-vein images is proposed. Our method is novel compared with previous approaches in four respects. First, the local and global features of the vein lines of an input image are amplified using Gabor filters in four directions and Retinex filtering, respectively. Second, the means and standard deviations in the local windows of the images produced after Gabor and Retinex filtering are used as inputs for the fuzzy rule and fuzzy membership function, respectively. Third, the optimal weights required to combine the two Gabor and Retinex filtered images are determined using a defuzzification method. Fourth, the use of a fuzzy-based method means that image enhancement does not require additional training data to determine the optimal weights. Experimental results using two finger-vein databases showed that the proposed method enhanced the accuracy of finger-vein recognition compared with previous methods. PMID:24549251

  17. Method and apparatus for enhancing laser absorption sensitivity

    NASA Technical Reports Server (NTRS)

    Webster, Christopher R. (Inventor)

    1987-01-01

    A simple optomechanical method and apparatus is described for substantially reducing the amplitude of unwanted multiple interference fringes which often limit the sensitivities of tunable laser absorption spectrometers. An exterior cavity is defined by partially transmissible surfaces such as a laser exit plate, a detector input, etc. That cavity is spoiled by placing an oscillating plate in the laser beam. For tunable diode laser spectroscopy in the mid-infrared region, a Brewster-plate spoiler allows the harmonic detection of absorptances of less than 10 to the -5 in a single laser scan. Improved operation is achieved without subtraction techniques, without complex laser frequency modulation, and without distortion of the molecular lineshape signal. The technique is applicable to tunable lasers operating from UV to IR wavelengths and in spectrometers which employ either short or long pathlengths, including the use of retroreflectors or multipass cells.

  18. FILTER TREATMENT

    DOEpatents

    Sutton, J.B.; Torrey, J.V.P.

    1958-08-26

    A process is described for reconditioning fused alumina filters which have become clogged by the accretion of bismuth phosphate in the filter pores, The method consists in contacting such filters with faming sulfuric acid, and maintaining such contact for a substantial period of time.

  19. The attitude inversion method of geostationary satellites based on unscented particle filter

    NASA Astrophysics Data System (ADS)

    Du, Xiaoping; Wang, Yang; Hu, Heng; Gou, Ruixin; Liu, Hao

    2018-04-01

    The attitude information of geostationary satellites is difficult to be obtained since they are presented in non-resolved images on the ground observation equipment in space object surveillance. In this paper, an attitude inversion method for geostationary satellite based on Unscented Particle Filter (UPF) and ground photometric data is presented. The inversion algorithm based on UPF is proposed aiming at the strong non-linear feature in the photometric data inversion for satellite attitude, which combines the advantage of Unscented Kalman Filter (UKF) and Particle Filter (PF). This update method improves the particle selection based on the idea of UKF to redesign the importance density function. Moreover, it uses the RMS-UKF to partially correct the prediction covariance matrix, which improves the applicability of the attitude inversion method in view of UKF and the particle degradation and dilution of the attitude inversion method based on PF. This paper describes the main principles and steps of algorithm in detail, correctness, accuracy, stability and applicability of the method are verified by simulation experiment and scaling experiment in the end. The results show that the proposed method can effectively solve the problem of particle degradation and depletion in the attitude inversion method on account of PF, and the problem that UKF is not suitable for the strong non-linear attitude inversion. However, the inversion accuracy is obviously superior to UKF and PF, in addition, in the case of the inversion with large attitude error that can inverse the attitude with small particles and high precision.

  20. Filter replacement lifetime prediction

    DOEpatents

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  1. Emergency sacrificial sealing method in filters, equipment, or systems

    DOEpatents

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  2. Emergency sacrificial sealing method in filters, equipment, or systems

    SciTech Connect

    Brown, Erik P.

    A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment componentmore » to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.« less

  3. Deriving brown carbon from multiwavelength absorption measurements: Method and application to AERONET and Aethalometer observations

    DOE PAGES

    Wang, X.; Heald, C. L.; Sedlacek, A.; ...

    2016-10-13

    The radiative impact of organic aerosols (OA) is a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. This radiative impact includes not only light scattering but also light absorption from a subclass of OA referred to as brown carbon (BrC). However the absorption properties of BrC are poorly understood leading to large uncertainties in modelling studies. To obtain observational constraints from measurements, a simple Absorption Ångström Exponent (AAE) method is often used to separate the contribution of BrC absorption from that of black carbon (BC). However, this attribution method is based on assumptions regardingmore » the spectral dependence of BC that are often violated in the ambient atmosphere. Here we develop a new method that decreases the uncertainties associated with estimating BrC absorption. By applying this method to multi-wavelength absorption aerosol optical depth (AAOD) measurements at AERONET sites worldwide and surface aerosol absorption measurements at multiple ambient sites, we estimate that BrC globally contributes 6-40% of the absorption at 440nm. We find that the mass absorption coefficient of OA (OA-MAC) is positively correlated with BC/OA mass ratio. Based on the variability of BC properties and BC/OA emission ratio, we estimate a range of 0.05-1.2 m 2/g for OA-MAC at 440nm. Using the combination of AERONET and OMI UV absorption observations we estimate that the AAE 388/440nm for BrC is generally ~4 world-wide, with a smaller value in Europe (< 2). Our analyses of two surface sites (Cape Cod, to the southeast of Boston, and the GoAmazon2014/5 T3 site, to the west of Manaus, Brazil) reveal no significant relationship between BrC absorptivity and photochemical aging in typical urban influenced conditions. However, the absorption of BrC measured during the biomass burning season near Manaus is found to decrease with photochemical aging with a lifetime of ~1 day. This lifetime is comparable to

  4. Fabrication of optical filters using multilayered porous silicon

    NASA Astrophysics Data System (ADS)

    Gaber, Noha; Khalil, Diaa; Shaarawi, Amr

    2011-02-01

    In this work we describe a method for fabricating optical filters using multilayered porous silicon 1D photonic structure. An electrochemical cell is constructed to control the porosity of variable layers in p-type Si wafers. Porous silicon multilayered structures are formed of λ/4 (or multiples) thin films that construct optical interference filters. By changing the anodizing current density of the cell during fabrication, different porosities can be obtained as the optical refractive index is a direct function of the layer porosity. To determine the morphology, the wavelength dependent refractive index n and absorption coefficient α, first, porous silicon free standing mono-layers have been fabricated at different conditions and characterized in the near infrared region (from 1000 to 2500nm). Large difference in refractive index (between 1.6 and 2.6) is obtained. Subsequently, multilayer structures have been fabricated and tested. Their spectral response has been measured and it shows good agreement with numerical simulations. A technique based on inserting etching breaks is adopted to ensure the depth homogeneity. The effect of differing etching/break times on the reproducibility of the filters is studied.

  5. Dynamics of defects in Ce³⁺ doped silica affecting its performance as protective filter in ultraviolet high-power lasers.

    PubMed

    Demos, Stavros G; Ehrmann, Paul R; Qiu, S Roger; Schaffers, Kathleen I; Suratwala, Tayyab I

    2014-11-17

    We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented. Experiments simulating the operation of the material as a UV protection filter for high power laser systems were performed in order to determine limitations and practical operational conditions.

  6. Secure optical generalized filter bank multi-carrier system based on cubic constellation masked method.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun

    2015-06-15

    A secure optical generalized filter bank multi-carrier (GFBMC) system with carrier-less amplitude-phase (CAP) modulation is proposed in this Letter. The security is realized through cubic constellation-masked method. Large key space and more flexibility masking can be obtained by cubic constellation masking aligning with the filter bank. An experiment of 18 Gb/s encrypted GFBMC/CAP system with 25-km single-mode fiber transmission is performed to demonstrate the feasibility of the proposed method.

  7. Multiple attenuation to reflection seismic data using Radon filter and Wave Equation Multiple Rejection (WEMR) method

    SciTech Connect

    Erlangga, Mokhammad Puput

    Separation between signal and noise, incoherent or coherent, is important in seismic data processing. Although we have processed the seismic data, the coherent noise is still mixing with the primary signal. Multiple reflections are a kind of coherent noise. In this research, we processed seismic data to attenuate multiple reflections in the both synthetic and real seismic data of Mentawai. There are several methods to attenuate multiple reflection, one of them is Radon filter method that discriminates between primary reflection and multiple reflection in the τ-p domain based on move out difference between primary reflection and multiple reflection. However, inmore » case where the move out difference is too small, the Radon filter method is not enough to attenuate the multiple reflections. The Radon filter also produces the artifacts on the gathers data. Except the Radon filter method, we also use the Wave Equation Multiple Elimination (WEMR) method to attenuate the long period multiple reflection. The WEMR method can attenuate the long period multiple reflection based on wave equation inversion. Refer to the inversion of wave equation and the magnitude of the seismic wave amplitude that observed on the free surface, we get the water bottom reflectivity which is used to eliminate the multiple reflections. The WEMR method does not depend on the move out difference to attenuate the long period multiple reflection. Therefore, the WEMR method can be applied to the seismic data which has small move out difference as the Mentawai seismic data. The small move out difference on the Mentawai seismic data is caused by the restrictiveness of far offset, which is only 705 meter. We compared the real free multiple stacking data after processing with Radon filter and WEMR process. The conclusion is the WEMR method can more attenuate the long period multiple reflection than the Radon filter method on the real (Mentawai) seismic data.« less

  8. A benchmarking method to measure dietary absorption efficiency of chemicals by fish.

    PubMed

    Xiao, Ruiyang; Adolfsson-Erici, Margaretha; Åkerman, Gun; McLachlan, Michael S; MacLeod, Matthew

    2013-12-01

    Understanding the dietary absorption efficiency of chemicals in the gastrointestinal tract of fish is important from both a scientific and a regulatory point of view. However, reported fish absorption efficiencies for well-studied chemicals are highly variable. In the present study, the authors developed and exploited an internal chemical benchmarking method that has the potential to reduce uncertainty and variability and, thus, to improve the precision of measurements of fish absorption efficiency. The authors applied the benchmarking method to measure the gross absorption efficiency for 15 chemicals with a wide range of physicochemical properties and structures. They selected 2,2',5,6'-tetrachlorobiphenyl (PCB53) and decabromodiphenyl ethane as absorbable and nonabsorbable benchmarks, respectively. Quantities of chemicals determined in fish were benchmarked to the fraction of PCB53 recovered in fish, and quantities of chemicals determined in feces were benchmarked to the fraction of decabromodiphenyl ethane recovered in feces. The performance of the benchmarking procedure was evaluated based on the recovery of the test chemicals and precision of absorption efficiency from repeated tests. Benchmarking did not improve the precision of the measurements; after benchmarking, however, the median recovery for 15 chemicals was 106%, and variability of recoveries was reduced compared with before benchmarking, suggesting that benchmarking could account for incomplete extraction of chemical in fish and incomplete collection of feces from different tests. © 2013 SETAC.

  9. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    PubMed

    Chen, Lingsheng; Zhai, Linhui; Li, Yanchang; Li, Ning; Zhang, Chengpu; Ping, Lingyan; Chang, Lei; Wu, Junzhu; Li, Xiangping; Shi, Deshun; Xu, Ping

    2015-01-01

    The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  10. FPGA Implementation of the Coupled Filtering Method and the Affine Warping Method.

    PubMed

    Zhang, Chen; Liang, Tianzhu; Mok, Philip K T; Yu, Weichuan

    2017-07-01

    In ultrasound image analysis, the speckle tracking methods are widely applied to study the elasticity of body tissue. However, "feature-motion decorrelation" still remains as a challenge for the speckle tracking methods. Recently, a coupled filtering method and an affine warping method were proposed to accurately estimate strain values, when the tissue deformation is large. The major drawback of these methods is the high computational complexity. Even the graphics processing unit (GPU)-based program requires a long time to finish the analysis. In this paper, we propose field-programmable gate array (FPGA)-based implementations of both methods for further acceleration. The capability of FPGAs on handling different image processing components in these methods is discussed. A fast and memory-saving image warping approach is proposed. The algorithms are reformulated to build a highly efficient pipeline on FPGA. The final implementations on a Xilinx Virtex-7 FPGA are at least 13 times faster than the GPU implementation on the NVIDIA graphic card (GeForce GTX 580).

  11. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  12. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction

    PubMed Central

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae

    2018-01-01

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals—that require complicated optical equipment for the analysis—into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure

  13. An Optical Biosensing Strategy Based on Selective Light Absorption and Wavelength Filtering from Chromogenic Reaction.

    PubMed

    Chun, Hyeong Jin; Han, Yong Duk; Park, Yoo Min; Kim, Ka Ram; Lee, Seok Jae; Yoon, Hyun C

    2018-03-06

    To overcome the time and space constraints in disease diagnosis via the biosensing approach, we developed a new signal-transducing strategy that can be applied to colorimetric optical biosensors. Our study is focused on implementation of a signal transduction technology that can directly translate the color intensity signals-that require complicated optical equipment for the analysis-into signals that can be easily counted with the naked eye. Based on the selective light absorption and wavelength-filtering principles, our new optical signaling transducer was built from a common computer monitor and a smartphone. In this signal transducer, the liquid crystal display (LCD) panel of the computer monitor served as a light source and a signal guide generator. In addition, the smartphone was used as an optical receiver and signal display. As a biorecognition layer, a transparent and soft material-based biosensing channel was employed generating blue output via a target-specific bienzymatic chromogenic reaction. Using graphics editor software, we displayed the optical signal guide patterns containing multiple polygons (a triangle, circle, pentagon, heptagon, and 3/4 circle, each associated with a specified color ratio) on the LCD monitor panel. During observation of signal guide patterns displayed on the LCD monitor panel using a smartphone camera via the target analyte-loaded biosensing channel as a color-filtering layer, the number of observed polygons changed according to the concentration of the target analyte via the spectral correlation between absorbance changes in a solution of the biosensing channel and color emission properties of each type of polygon. By simple counting of the changes in the number of polygons registered by the smartphone camera, we could efficiently measure the concentration of a target analyte in a sample without complicated and expensive optical instruments. In a demonstration test on glucose as a model analyte, we could easily measure the

  14. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  15. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    PubMed Central

    Cheng, Fei; Gao, Jie; Luk, Ting S.; Yang, Xiaodong

    2015-01-01

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfect light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage. PMID:26047486

  16. Structural color printing based on plasmonic metasurfaces of perfect light absorption

    DOE PAGES

    Cheng, Fei; Gao, Jie; Luk, Ting S.; ...

    2015-06-05

    Subwavelength structural color filtering and printing technologies employing plasmonic nanostructures have recently been recognized as an important and beneficial complement to the traditional colorant-based pigmentation. However, the color saturation, brightness and incident angle tolerance of structural color printing need to be improved to meet the application requirement. Here we demonstrate a structural color printing method based on plasmonic metasurfaces of perfect light absorption to improve color performances such as saturation and brightness. Thin-layer perfect absorbers with periodic hole arrays are designed at visible frequencies and the absorption peaks are tuned by simply adjusting the hole size and periodicity. Near perfectmore » light absorption with high quality factors are obtained to realize high-resolution, angle-insensitive plasmonic color printing with high color saturation and brightness. Moreover, the fabricated metasurfaces can be protected with a protective coating for ambient use without degrading performances. The demonstrated structural color printing platform offers great potential for applications ranging from security marking to information storage.« less

  17. Acousto-optic filtering of lidar signals

    NASA Technical Reports Server (NTRS)

    Kolarov, G.; Deleva, A.; Mitsev, TS.

    1992-01-01

    The predominant part of the noise in lidar receivers is created by the background radiation; therefore, one of the most important elements of the receiving optics is a spectrally selecting filter placed in front of the photodetector. Interference filters are usually used to transmit a given wavelength. Specific properties of the interference filters, such as simple design, reliability, small size, and large aperture, combined with high transmission coefficient and narrow spectral band, make them the preferred spectral device in many cases. However, problems arise in applications such as the Differential Absorption Lidar (DIAL) technique, where fast tuning within a wide spectral region is necessary. Tunable acousto-optical filters (TAOF), used recently in astrophysical observations to suppress the background radiation, can be employed with success in lidar sounding. They are attractive due to the possibility for fast spectral scanning with a narrow transmission band. The TAOF's advantages are fully evident in DIAL lidars where one must simultaneously receive signals at two laser frequencies.

  18. 2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW IN ROOM 111, ATOMIC ABSORPTION BERYLLIUM ANALYSIS LABORATORY. AIR FILTERS AND SWIPES ARE DISSOLVED WITH ACIDS AND THE REMAINING RESIDUES ARE SUSPENDED IN NITRIC ACID SOLUTION. THE SOLUTION IS PROCESSED THROUGH THE ATOMIC ABSORPTION SPECTROPHOTOMETER TO DETECT THE PRESENCE AND LEVELS OF BERYLLIUM. - Rocky Flats Plant, Health Physics Laboratory, On Central Avenue between Third & Fourth Streets, Golden, Jefferson County, CO

  19. Method for optimizing output in ultrashort-pulse multipass laser amplifiers with selective use of a spectral filter

    DOEpatents

    Backus, Sterling J [Erie, CO; Kapteyn, Henry C [Boulder, CO

    2007-07-10

    A method for optimizing multipass laser amplifier output utilizes a spectral filter in early passes but not in later passes. The pulses shift position slightly for each pass through the amplifier, and the filter is placed such that early passes intersect the filter while later passes bypass it. The filter position may be adjust offline in order to adjust the number of passes in each category. The filter may be optimized for use in a cryogenic amplifier.

  20. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  1. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  2. Method and system of filtering and recommending documents

    DOEpatents

    Patton, Robert M.; Potok, Thomas E.

    2016-02-09

    Disclosed is a method and system for discovering documents using a computer and providing a small set of the most relevant documents to the attention of a human observer. Using the method, the computer obtains a seed document from the user and generates a seed document vector using term frequency-inverse corpus frequency weighting. A keyword index for a plurality of source documents can be compared with the weighted terms of the seed document vector. The comparison is then filtered to reduce the number of documents, which define an initial subset of the source documents. Initial subset vectors are generated and compared to the seed document vector to obtain a similarity value for each comparison. Based on the similarity value, the method then recommends one or more of the source documents.

  3. Tunable electromagnetically induced absorption based on graphene

    NASA Astrophysics Data System (ADS)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  4. Methods to Fabricate and Improve Stand-alone and Integrated Filters

    NASA Technical Reports Server (NTRS)

    Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    Embodiments of the invention provide for fabricating a filter, for electromagnetic radiation, in at least three ways, including (1) fabricating integrated thin film filters directly on a detector; (2) fabricating a free standing thin film filter that may be used with a detector; and (3) treating an existing filter to improve the filter's properties.

  5. Electronic filters, signal conversion apparatus, hearing aids and methods

    NASA Technical Reports Server (NTRS)

    Morley, Jr., Robert E. (Inventor); Engebretson, A. Maynard (Inventor); Engel, George L. (Inventor); Sullivan, Thomas J. (Inventor)

    1992-01-01

    An electronic filter for filtering an electrical signal. Signal processing circuitry therein includes a logarithmic filter having a series of filter stages with inputs and outputs in cascade and respective circuits as GOVERNMENT SUPPORT This invention was made with U.S. Government support under Veterans Administration Contract VA KV 674P857 and National Aeronautics and Space Administration (NASA) Research Grant No. NAG10-0040. The U.S. Government has certain rights in this invention.

  6. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  7. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, Paul A.

    1998-01-01

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated in barrier material, preferably in the form of a flexible sheet, one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention.

  8. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    DOEpatents

    Pinson, P.A.

    1998-02-24

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs.

  9. Method of making a continuous ceramic fiber composite hot gas filter

    DOEpatents

    Hill, Charles A.; Wagner, Richard A.; Komoroski, Ronald G.; Gunter, Greg A.; Barringer, Eric A.; Goettler, Richard W.

    1999-01-01

    A ceramic fiber composite structure particularly suitable for use as a hot gas cleanup ceramic fiber composite filter and method of making same from ceramic composite material has a structure which provides for increased strength and toughness in high temperature environments. The ceramic fiber composite structure or filter is made by a process in which a continuous ceramic fiber is intimately surrounded by discontinuous chopped ceramic fibers during manufacture to produce a ceramic fiber composite preform which is then bonded using various ceramic binders. The ceramic fiber composite preform is then fired to create a bond phase at the fiber contact points. Parameters such as fiber tension, spacing, and the relative proportions of the continuous ceramic fiber and chopped ceramic fibers can be varied as the continuous ceramic fiber and chopped ceramic fiber are simultaneously formed on the porous vacuum mandrel to obtain a desired distribution of the continuous ceramic fiber and the chopped ceramic fiber in the ceramic fiber composite structure or filter.

  10. Comparison of three different sample preparation procedures for the determination of traffic-related elements in airborne particulate matter collected on glass fiber filters.

    PubMed

    Castilho, Ivan N B; Welz, Bernhard; Vale, Maria Goreti R; de Andrade, Jailson B; Smichowski, Patricia; Shaltout, Abdallah A; Colares, Lígia; Carasek, Eduardo

    2012-01-15

    Three different procedures for sample preparation have been compared for the determination of Cu, Mo and Sb in airborne particulate matter (APM) collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). Direct solid sample analysis of the ground filters was compared with microwave-assisted acid leaching with aqua regia and ultrasound-assisted extraction also using aqua regia. The main absorption line at 324.754 nm or the secondary line at 216.509 nm was used for the determination of Cu, depending on the analyte content in the samples. The primary absorption line at 313.259 nm was used for Mo and the secondary line at 212.739 nm for Sb determination. The limits of detection (LOD, 3σ) found for the direct solid sampling method, based on ten atomizations of an unused filter were 15 μg g(-1) for all three analytes, corresponding to 40 ng m(-3) for a typical air volume of 1,440 m(3) collected over a period of 24h. The LOD for the other two methods were less than a factor of two inferior, but the total time required for an analysis was significantly longer. The repeatability of the measurements was between 3 and 9% (n=5), and the results obtained with the three methods did not show any significant difference. The ratio between the three analytes on the filters from areas of intense traffic was found to be around Cu:Mo:Sb≈4:1:1.4, which suggests that the source of all three elements is brake linings, i.e., related to automobile traffic. When the ratio deviated significantly from the above values, the source of contamination was assumed to be of different origin. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Electrically heated particulate filter propagation support methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  12. Comparison of water absorption methods: testing the water absorption of recently quarried and weathered porous limestone on site and under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Rozgonyi-Boissinot, Nikoletta; Agárdi, Tamás; Karolina Cebula, Ágnes; Török, Ákos

    2017-04-01

    The water absorption of weathering sensitive stones is a critical parameter that influences durability. The current paper compares different methods of water absorption tests by using on site and laboratory tests. The aims of the tests were to assess the water absorption of un-weathered quarry stones and various weathering forms occurring on porous limestone monuments. For the tests a Miocene porous limestone was used that occurs in Central and Western Hungary and especially near and in Budapest. Besides the Hungarian occurrences the same or very similar porous limestones are found in Austria, Slovakia and in the Czech Republic. Several quarries were operating in these countries. Due to the high workability the stone have been intensively used as construction material from the Roman period onward. The most prominent monuments made of this stone were built in Vienna and in Budapest during the 18th -19th century and in the early 20th century. The high porosity and the micro-fabric of the stone make it prone to frost- and salt weathering. Three different limestone types were tested representing coarse-, medium- and fine grained lithologies. The test methods included Rilem tube (Karsten tube) tests and capillary water absorption tests. The latter methodology has been described in detail in EN 1925:2000. The test results of on-site tests of weathered porous limestone clearly show that the water absorption of dissolved limestone surfaces and crumbling or micro-cracked limestone is similar. The water absorption curves have similar inclinations marking high amount of absorbed water. To the contrary, the white weathering crusts covered stone blocks and black crusts have significantly lower water absorptions and many of these crusts are considered as very tight almost impermeable surfaces. Capillary water absorption tests in the laboratory allowed the determination of maximum water absorption of quarried porous limestone. Specimens were placed in 3 mm of water column and the

  13. Error Reduction Methods for Integrated-path Differential-absorption Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R.; Numata, Kenji; Wu, Stewart T.

    2012-01-01

    We report new modeling and error reduction methods for differential-absorption optical-depth (DAOD) measurements of atmospheric constituents using direct-detection integrated-path differential-absorption lidars. Errors from laser frequency noise are quantified in terms of the line center fluctuation and spectral line shape of the laser pulses, revealing relationships verified experimentally. A significant DAOD bias is removed by introducing a correction factor. Errors from surface height and reflectance variations can be reduced to tolerable levels by incorporating altimetry knowledge and "log after averaging", or by pointing the laser and receiver to a fixed surface spot during each wavelength cycle to shorten the time of "averaging before log".

  14. Filter quality of electret masks in filtering 14.6–594 nm aerosol particles: Effects of five decontamination methods

    PubMed Central

    Lin, Tzu-Hsien; Chen, Chih-Chieh; Kuo, Chung-Wen

    2017-01-01

    This study investigates the effects of five decontamination methods on the filter quality (qf) of three commercially available electret masks—N95, Gauze and Spunlace nonwoven masks. Newly developed evaluation methods, the overall filter quality (qf,o) and the qf ratio were applied to evaluate the effectiveness of decontamination methods for respirators. A scanning mobility particle sizer is utilized to measure the concentration of polydispersed particles with diameter 14.6–594 nm. The penetration of particles and pressure drop (Δp) through the mask are used to determine qf and qf,o. Experimental results reveal that the most penetrating particle size (MPS) for the pre-decontaminated N95, Gauze and Spunlace masks were 118 nm, 461 nm and 279 nm, respectively, and the respective penetration rates were 2.6%, 23.2% and 70.0%. The Δp through the pretreated N95 masks was 9.2 mm H2O at the breathing flow rate of heavy-duty workers, exceeding the Δp values obtained through Gauze and Spunlace masks. Decontamination increased the sizes of the most penetrating particles, changing the qf values of all of the masks: qf fell as particle size increased because the penetration increased. Bleach increased the Δp of N95, but destroyed the Gauze mask. However, the use of an autoclave reduces the Δp values of both the N95 and the Gauze mask. Neither the rice cooker nor ethanol altered the Δp of the Gauze mask. Chemical decontamination methods reduced the qf,o values for the three electret masks. The value of qf,o for PM0.1 exceeded that for PM0.1–0.6, because particles smaller than 100 nm had lower penetration, resulting in a better qf for a given pressure drop. The values of qf,o, particularly for PM0.1, reveal that for the tested treatments and masks, physical decontamination methods are less destructive to the filter than chemical methods. Nevertheless, when purchasing new or reusing FFRs, penetration should be regarded as the priority. PMID:29023492

  15. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    SciTech Connect

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction ofmore » this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and

  16. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  17. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    NASA Technical Reports Server (NTRS)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  18. Stock price estimation using ensemble Kalman Filter square root method

    NASA Astrophysics Data System (ADS)

    Karya, D. F.; Katias, P.; Herlambang, T.

    2018-04-01

    Shares are securities as the possession or equity evidence of an individual or corporation over an enterprise, especially public companies whose activity is stock trading. Investment in stocks trading is most likely to be the option of investors as stocks trading offers attractive profits. In determining a choice of safe investment in the stocks, the investors require a way of assessing the stock prices to buy so as to help optimize their profits. An effective method of analysis which will reduce the risk the investors may bear is by predicting or estimating the stock price. Estimation is carried out as a problem sometimes can be solved by using previous information or data related or relevant to the problem. The contribution of this paper is that the estimates of stock prices in high, low, and close categorycan be utilized as investors’ consideration for decision making in investment. In this paper, stock price estimation was made by using the Ensemble Kalman Filter Square Root method (EnKF-SR) and Ensemble Kalman Filter method (EnKF). The simulation results showed that the resulted estimation by applying EnKF method was more accurate than that by the EnKF-SR, with an estimation error of about 0.2 % by EnKF and an estimation error of 2.6 % by EnKF-SR.

  19. An algebraic method for constructing stable and consistent autoregressive filters

    SciTech Connect

    Harlim, John, E-mail: jharlim@psu.edu; Department of Meteorology, the Pennsylvania State University, University Park, PA 16802; Hong, Hoon, E-mail: hong@ncsu.edu

    2015-02-15

    In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides amore » discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern.« less

  20. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    PubMed

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  1. Comparison of filtering methods for extracellular gastric slow wave recordings.

    PubMed

    Paskaranandavadivel, Niranchan; O'Grady, Gregory; Du, Peng; Cheng, Leo K

    2013-01-01

    Extracellular recordings are used to define gastric slow wave propagation. Signal filtering is a key step in the analysis and interpretation of extracellular slow wave data; however, there is controversy and uncertainty regarding the appropriate filtering settings. This study investigated the effect of various standard filters on the morphology and measurement of extracellular gastric slow waves. Experimental extracellular gastric slow waves were recorded from the serosal surface of the stomach from pigs and humans. Four digital filters: finite impulse response filter (0.05-1 Hz); Savitzky-Golay filter (0-1.98 Hz); Bessel filter (2-100 Hz); and Butterworth filter (5-100 Hz); were applied on extracellular gastric slow wave signals to compare the changes temporally (morphology of the signal) and spectrally (signals in the frequency domain). The extracellular slow wave activity is represented in the frequency domain by a dominant frequency and its associated harmonics in diminishing power. Optimal filters apply cutoff frequencies consistent with the dominant slow wave frequency (3-5 cpm) and main harmonics (up to ≈ 2 Hz). Applying filters with cutoff frequencies above or below the dominant and harmonic frequencies was found to distort or eliminate slow wave signal content. Investigators must be cognizant of these optimal filtering practices when detecting, analyzing, and interpreting extracellular slow wave recordings. The use of frequency domain analysis is important for identifying the dominant and harmonics of the signal of interest. Capturing the dominant frequency and major harmonics of slow wave is crucial for accurate representation of slow wave activity in the time domain. Standardized filter settings should be determined. © 2012 Blackwell Publishing Ltd.

  2. PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites.

    PubMed

    Gerwin, Philip M; Ricart Arbona, Rodolfo J; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S

    2017-11-01

    We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite-infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method.

  3. PCR Testing of IVC Filter Tops as a Method for Detecting Murine Pinworms and Fur Mites

    PubMed Central

    Gerwin, Philip M; Arbona, Rodolfo J Ricart; Riedel, Elyn R; Henderson, Kenneth S; Lipman, Neil S

    2017-01-01

    We evaluated PCR testing of filter tops from cages maintained on an IVC system through which exhaust air is filtered at the cage level as a method for detecting parasite- infected and -infested cages. Cages containing 4 naïve Swiss Webster mice received 360 mL of uncontaminated aspen chip or α-cellulose bedding (n = 18 cages each) and 60 mL of the same type of bedding weekly from each of the following 4 groups of cages housing mice infected or infested with Syphacia obvelata (SO), Aspiculuris tetraptera (AT), Myocoptes musculinus (MC), or Myobia musculi (MB) and Radfordia affinis (RA; 240 mL bedding total). Detection rates were compared at 30, 60, and 90 d after initiating bedding exposure, by using PCR analysis of filter tops (media extract and swabs) and testing of mouse samples (fur swab [direct] PCR testing, fecal flotation, anal tape test, direct examination of intestinal contents, and skin scrape). PCR testing of filter media extract detected 100% of all parasites at 30 d (both bedding types) except for AT (α-cellulose bedding, 67% detection rate); identified more cages with fur mites (MB and MC) than direct PCR when cellulose bedding was used; and was better at detecting parasites than all nonmolecular methods evaluated. PCR analysis of filter media extract was superior to swab and direct PCR for all parasites cumulatively for each bedding type. Direct PCR more effectively detected MC and all parasites combined for aspen chip compared with cellulose bedding. PCR analysis of filter media extract for IVC systems in which exhaust air is filtered at the cage level was shown to be a highly effective environmental testing method. PMID:29256370

  4. Estimation of effective brain connectivity with dual Kalman filter and EEG source localization methods.

    PubMed

    Rajabioun, Mehdi; Nasrabadi, Ali Motie; Shamsollahi, Mohammad Bagher

    2017-09-01

    Effective connectivity is one of the most important considerations in brain functional mapping via EEG. It demonstrates the effects of a particular active brain region on others. In this paper, a new method is proposed which is based on dual Kalman filter. In this method, firstly by using a brain active localization method (standardized low resolution brain electromagnetic tomography) and applying it to EEG signal, active regions are extracted, and appropriate time model (multivariate autoregressive model) is fitted to extracted brain active sources for evaluating the activity and time dependence between sources. Then, dual Kalman filter is used to estimate model parameters or effective connectivity between active regions. The advantage of this method is the estimation of different brain parts activity simultaneously with the calculation of effective connectivity between active regions. By combining dual Kalman filter with brain source localization methods, in addition to the connectivity estimation between parts, source activity is updated during the time. The proposed method performance has been evaluated firstly by applying it to simulated EEG signals with interacting connectivity simulation between active parts. Noisy simulated signals with different signal to noise ratios are used for evaluating method sensitivity to noise and comparing proposed method performance with other methods. Then the method is applied to real signals and the estimation error during a sweeping window is calculated. By comparing proposed method results in different simulation (simulated and real signals), proposed method gives acceptable results with least mean square error in noisy or real conditions.

  5. eTACTS: A Method for Dynamically Filtering Clinical Trial Search Results

    PubMed Central

    Miotto, Riccardo; Jiang, Silis; Weng, Chunhua

    2013-01-01

    Objective Information overload is a significant problem facing online clinical trial searchers. We present eTACTS, a novel interactive retrieval framework using common eligibility tags to dynamically filter clinical trial search results. Materials and Methods eTACTS mines frequent eligibility tags from free-text clinical trial eligibility criteria and uses these tags for trial indexing. After an initial search, eTACTS presents to the user a tag cloud representing the current results. When the user selects a tag, eTACTS retains only those trials containing that tag in their eligibility criteria and generates a new cloud based on tag frequency and co-occurrences in the remaining trials. The user can then select a new tag or unselect a previous tag. The process iterates until a manageable number of trials is returned. We evaluated eTACTS in terms of filtering efficiency, diversity of the search results, and user eligibility to the filtered trials using both qualitative and quantitative methods. Results eTACTS (1) rapidly reduced search results from over a thousand trials to ten; (2) highlighted trials that are generally not top-ranked by conventional search engines; and (3) retrieved a greater number of suitable trials than existing search engines. Discussion eTACTS enables intuitive clinical trial searches by indexing eligibility criteria with effective tags. User evaluation was limited to one case study and a small group of evaluators due to the long duration of the experiment. Although a larger-scale evaluation could be conducted, this feasibility study demonstrated significant advantages of eTACTS over existing clinical trial search engines. Conclusion A dynamic eligibility tag cloud can potentially enhance state-of-the-art clinical trial search engines by allowing intuitive and efficient filtering of the search result space. PMID:23916863

  6. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  7. A tunable hole-burning filter for lidar applications

    NASA Astrophysics Data System (ADS)

    Billmers, R. I.; Davis, J.; Squicciarini, M.

    The fundamental physical principles for the development of a 'hole-burning' optical filter based on saturable absorption in dye-doped glasses are outlined. A model was developed to calculate the required pump intensity, throughput, and linewidth for this type of filter. Rhodamine 6G, operating at 532 nm, was found to require a 'warm-up' time of 110 pulses and a pump intensity of 100 kW/sq cm per pulse. The linewidth was calculated to be approximately 15 GHz at 77 K with a throughput of at least 25 percent and five orders of magnitude noise suppression. A 'hole-burning' filter offers significant advantages over current filter technology, including tunability over a 10-nm bandwidth, perfect wavelength and bandwidth matching to the transmitting laser in a pulsed lidar system, transform limited response times, and moderately high throughputs (at least 25 percent).

  8. A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Akita, T.; Takaki, R.; Shima, E.

    2012-04-01

    An adaptive estimation method of spacecraft thermal mathematical model is presented. The method is based on the ensemble Kalman filter, which can effectively handle the nonlinearities contained in the thermal model. The state space equations of the thermal mathematical model is derived, where both temperature and uncertain thermal characteristic parameters are considered as the state variables. In the method, the thermal characteristic parameters are automatically estimated as the outputs of the filtered state variables, whereas, in the usual thermal model correlation, they are manually identified by experienced engineers using trial-and-error approach. A numerical experiment of a simple small satellite is provided to verify the effectiveness of the presented method.

  9. Sub-wavelength efficient polarization filter (SWEP filter)

    DOEpatents

    Simpson, Marcus L.; Simpson, John T.

    2003-12-09

    A polarization sensitive filter includes a first sub-wavelength resonant grating structure (SWS) for receiving incident light, and a second SWS. The SWS are disposed relative to one another such that incident light which is transmitted by the first SWS passes through the second SWS. The filter has a polarization sensitive resonance, the polarization sensitive resonance substantially reflecting a first polarization component of incident light while substantially transmitting a second polarization component of the incident light, the polarization components being orthogonal to one another. A method for forming polarization filters includes the steps of forming first and second SWS, the first and second SWS disposed relative to one another such that a portion of incident light applied to the first SWS passes through the second SWS. A method for separating polarizations of light, includes the steps of providing a filter formed from a first and second SWS, shining incident light having orthogonal polarization components on the first SWS, and substantially reflecting one of the orthogonal polarization components while substantially transmitting the other orthogonal polarization component. A high Q narrowband filter includes a first and second SWS, the first and second SWS are spaced apart a distance being at least one half an optical wavelength.

  10. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    PubMed

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  11. A 10-Gbit/s EML link using detuned narrowband optical filtering.

    PubMed

    Ebrahimi, P; Jones, R; Wang, Y; Yan, L; Mader, T; Paniccia, M; Willner, A E; Paraschis, L

    2007-08-20

    In this paper, the effects of asymmetric narrowband optical filtering are investigated in a 10-Gbit/s optical communication link using integrated electro-absorption modulated lasers (EML). We investigate the effect of EML chirp on link performance as well as the optimal filter bandwidth and wavelength detuning. We show that both the phase response and the spectral narrowing of the filter will enable a longer distance transmission by interacting with the EML transient chirp and compensating for the fiber chromatic dispersion. Experimentally, an 8.75-GHz filter is shown to improve the link distance by 40 km from 65 to 105 km, when transmitting over standard single mode fiber.

  12. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: application to pharmacokinetic studies.

    PubMed

    Issa, M M; Nejem, R M; El-Abadla, N S; Al-Kholy, M; Saleh, Akila A

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 mug/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 mug/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 mug/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  13. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.

    2009-08-01

    Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.

  14. RECTIFIED ABSORPTION METHOD FOR THE SEPARATION OF HYDROGEN ISOTOPES

    DOEpatents

    Hunt, C.D.; Hanson, D.N.

    1961-10-17

    A method is described for separating and recovering heavy hydrogen isotopes from gaseous mixtures by multiple stage cyclic absorption and rectification from an approximate solvent. In particular, it is useful for recovering such isoteoes from ammonia feedstock streams containing nitrogen solvent. Modifications of the process ranging from isobaric to isothermal are provided. Certain impurities are tolerated, giving advantages over conventional fractional distillation processes. (AEC)

  15. METHODS FOR IMPROVEMENT OF TRICKLING FILTER PLANT PERFORMANCE. PART II. CHEMICAL ADDITION

    EPA Science Inventory

    An experimental program to explore potential methods for removing phosphorus and generally enhancing trickling filter plant performance was conducted at the Mason Farm Wastewater Treatment Plant, Chapel Hill, North Carolina. Preliminary investigations included jar testing with se...

  16. Femtosecond Chirp-Free Transient Absorption Method And Apparatus

    DOEpatents

    McBranch, Duncan W.; Klimov, Victor I.

    2001-02-20

    A method and apparatus for femtosecond transient absorption comprising phase-sensitive detection, spectral scanning and simultaneous controlling of a translation stage to obtain TA spectra information having at least a sensitivity two orders of magnitude higher than that for single-shot methods, with direct, simultaneous compensation for chirp as the data is acquired. The present invention includes a amplified delay translation stage which generates a splittable frequency-doubled laser signal at a predetermined frequency f, a controllable means for synchronously modulating one of the laser signals at a repetition rate of f/2, applying the laser signals to a material to be sample, and acquiring data from the excited sample while simultaneously controlling the controllable means for synchronously modulating.

  17. Filtering methods for broadcast authentication against PKC-based denial of service in WSN: a survey

    NASA Astrophysics Data System (ADS)

    Afianti, Farah; Wirawan, Iwan; Suryani, Titiek

    2017-11-01

    Broadcast authentication is used to determine legitimate packet from authorized user. The received packet can be forwarded or used for the further purpose. The use of digital signature is one of the compromising methods but it is followed by high complexity especially in the verification process. That phenomenon is used by the adversary to force the user to verify a lot of false packet data. Kind of Denial of Service (DoS) which attacks the main signature can be mitigated by using pre-authentication methods as the first layer to filter false packet data. The objective of the filter is not replacing the main signature but as an addition to actual verification in the sensor node. This paper contributes in comparing the cost of computation, storage, and communication among several filters. The result shows Pre- Authenticator and Dos Attack-Resistant scheme have the lower overhead than the others. Thus followed by needing powerful sender. Moreover, the key chain is promising methods because of efficiency and effectiveness.

  18. Determination of UV-visible-NIR absorption coefficient of graphite bulk using direct and indirect methods

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.

    2017-10-01

    Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.

  19. Investigating the ability of shunt hybrid power filter based on SRF method under non-ideal supply voltage

    NASA Astrophysics Data System (ADS)

    Omran, Mohamed A.; Mohd, Izzeldin I.; Almelian, Mohamad M.; Ullah Sheikh, Usman; Bofares, Mustafa E. A. A.

    2018-04-01

    This study presents the capacity of a self-tuning filter based on the synchronous reference frame method with a fuzzy logic controller for the improvement of the efficiency of harmonic suppression of a shunt hybrid active power filter in an unbalanced distorted and un-distorted voltage supply conditions. The simulation results indicated that the filter with a fuzzy logic controller had a good filtering performance in steady and transient states, irrespective of whether the voltage supply is distorted or unbalanced.

  20. A coupling method for a cardiovascular simulation model which includes the Kalman filter.

    PubMed

    Hasegawa, Yuki; Shimayoshi, Takao; Amano, Akira; Matsuda, Tetsuya

    2012-01-01

    Multi-scale models of the cardiovascular system provide new insight that was unavailable with in vivo and in vitro experiments. For the cardiovascular system, multi-scale simulations provide a valuable perspective in analyzing the interaction of three phenomenons occurring at different spatial scales: circulatory hemodynamics, ventricular structural dynamics, and myocardial excitation-contraction. In order to simulate these interactions, multiscale cardiovascular simulation systems couple models that simulate different phenomena. However, coupling methods require a significant amount of calculation, since a system of non-linear equations must be solved for each timestep. Therefore, we proposed a coupling method which decreases the amount of calculation by using the Kalman filter. In our method, the Kalman filter calculates approximations for the solution to the system of non-linear equations at each timestep. The approximations are then used as initial values for solving the system of non-linear equations. The proposed method decreases the number of iterations required by 94.0% compared to the conventional strong coupling method. When compared with a smoothing spline predictor, the proposed method required 49.4% fewer iterations.

  1. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    DOEpatents

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  2. Method to improve accuracy of positioning object by eLoran system with applying standard Kalman filter

    NASA Astrophysics Data System (ADS)

    Grunin, A. P.; Kalinov, G. A.; Bolokhovtsev, A. V.; Sai, S. V.

    2018-05-01

    This article reports on a novel method to improve the accuracy of positioning an object by a low frequency hyperbolic radio navigation system like an eLoran. This method is based on the application of the standard Kalman filter. Investigations of an affection of the filter parameters and the type of the movement on accuracy of the vehicle position estimation are carried out. Evaluation of the method accuracy was investigated by separating data from the semi-empirical movement model to different types of movements.

  3. Adaptive Unscented Kalman Filter Phase Unwrapping Method and Its Application on Gaofen-3 Interferometric SAR Data.

    PubMed

    Gao, Yandong; Zhang, Shubi; Li, Tao; Chen, Qianfu; Li, Shijin; Meng, Pengfei

    2018-06-02

    Phase unwrapping (PU) is a key step in the reconstruction of digital elevation models (DEMs) and the monitoring of surface deformation from interferometric synthetic aperture radar (SAR, InSAR) data. In this paper, an improved PU method that combines an amended matrix pencil model, an adaptive unscented kalman filter (AUKF), an efficient quality-guided strategy based on heapsort, and a circular median filter is proposed. PU theory and the existing UKFPU method are covered. Then, the improved method is presented with emphasis on the AUKF and the circular median filter. AUKF has been well used in other fields, but it is for the first time applied to interferometric images PU, to the best of our knowledge. First, the amended matrix pencil model is used to estimate the phase gradient. Then, an AUKF model is used to unwrap the interferometric phase based on an efficient quality-guided strategy based on heapsort. Finally, the key results are obtained by filtering the results using a circular median. The proposed method is compared with the minimum cost network flow (MCF), statistical cost network flow (SNAPHU), regularized phase tracking technique (RPTPU), and UKFPU methods using two sets of simulated data and two sets of experimental GF-3 SAR data. The improved method is shown to yield the greatest accuracy in the interferometric phase maps compared to the methods considered in this paper. Furthermore, the improved method is shown to be the most robust to noise and is thus most suitable for PU of GF-3 SAR data in high-noise and low-coherence regions.

  4. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    SciTech Connect

    Abbas, Nikhar; Tom, Nathan M

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  5. Selection vector filter framework

    NASA Astrophysics Data System (ADS)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  6. Novel Atomic Absorption Spectrometric and Rapid Spectrophotometric Methods for the Quantitation of Paracetamol in Saliva: Application to Pharmacokinetic Studies

    PubMed Central

    Issa, M. M.; Nejem, R. M.; El-Abadla, N. S.; Al-Kholy, M.; Saleh, Akila. A.

    2008-01-01

    A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III) (method I); oxidation of p-aminophenol after the hydrolysis of paracetamol (method II). Iron (II) then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III) in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II) at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 μg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 μg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 μg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%. PMID:20046743

  7. Evaluation of a Cubature Kalman Filtering-Based Phase Unwrapping Method for Differential Interferograms with High Noise in Coal Mining Areas

    PubMed Central

    Liu, Wanli; Bian, Zhengfu; Liu, Zhenguo; Zhang, Qiuzhao

    2015-01-01

    Differential interferometric synthetic aperture radar has been shown to be effective for monitoring subsidence in coal mining areas. Phase unwrapping can have a dramatic influence on the monitoring result. In this paper, a filtering-based phase unwrapping algorithm in combination with path-following is introduced to unwrap differential interferograms with high noise in mining areas. It can perform simultaneous noise filtering and phase unwrapping so that the pre-filtering steps can be omitted, thus usually retaining more details and improving the detectable deformation. For the method, the nonlinear measurement model of phase unwrapping is processed using a simplified Cubature Kalman filtering, which is an effective and efficient tool used in many nonlinear fields. Three case studies are designed to evaluate the performance of the method. In Case 1, two tests are designed to evaluate the performance of the method under different factors including the number of multi-looks and path-guiding indexes. The result demonstrates that the unwrapped results are sensitive to the number of multi-looks and that the Fisher Distance is the most suitable path-guiding index for our study. Two case studies are then designed to evaluate the feasibility of the proposed phase unwrapping method based on Cubature Kalman filtering. The results indicate that, compared with the popular Minimum Cost Flow method, the Cubature Kalman filtering-based phase unwrapping can achieve promising results without pre-filtering and is an appropriate method for coal mining areas with high noise. PMID:26153776

  8. A novel test method to determine the filter material service life of decentralized systems treating runoff from traffic areas.

    PubMed

    Huber, Maximilian; Welker, Antje; Dierschke, Martina; Drewes, Jörg E; Helmreich, Brigitte

    2016-09-01

    In recent years, there has been a significant increase in the development and application of technical decentralized filter systems for the treatment of runoff from traffic areas. However, there are still many uncertainties regarding the service life and the performance of filter materials that are employed in decentralized treatment systems. These filter media are designed to prevent the transport of pollutants into the environment. A novel pilot-scale test method was developed to determine - within a few days - the service lives and long-term removal efficiencies for dissolved heavy metals in stormwater treatment systems. The proposed method consists of several steps including preloading the filter media in a pilot-scale model with copper and zinc by a load of n-1 years of the estimated service life (n). Subsequently, three representative rain events are simulated to evaluate the long-term performance by dissolved copper and zinc during the last year of application. The presented results, which verified the applicability of this method, were obtained for three filter channel systems and six filter shaft systems. The performance of the evaluated systems varied largely for both tested heavy metals and during all three simulated rain events. A validation of the pilot-scale assessment method with field measurements was also performed for two systems. Findings of this study suggest that this novel method does provide a standardized and accurate estimation of service intervals of decentralized treatment systems employing various filter materials. The method also provides regulatory authorities, designers, and operators with an objective basis for performance assessment and supports stormwater managers to make decisions for the installation of such decentralized treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Optical filters for wavelength selection in fluorescence instrumentation.

    PubMed

    Erdogan, Turan

    2011-04-01

    Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.

  10. Collecting Protein Biomarkers in Breath Using Electret Filters: A Preliminary Method on New Technical Model and Human Study.

    PubMed

    Li, Wang; Pi, Xitian; Qiao, Panpan; Liu, Hongying

    2016-01-01

    Biomarkers in exhaled breath are useful for respiratory disease diagnosis in human volunteers. Conventional methods that collect non-volatile biomarkers, however, necessitate an extensive dilution and sanitation processes that lowers collection efficiencies and convenience of use. Electret filter emerged in recent decade to collect virus biomarkers in exhaled breath given its simplicity and effectiveness. To investigate the capability of electret filters to collect protein biomarkers, a model that consists of an atomizer that produces protein aerosol and an electret filter that collects albumin and carcinoembryonic antigen-a typical biomarker in lung cancer development- from the atomizer is developed. A device using electret filter as the collecting medium is designed to collect human albumin from exhaled breath of 6 volunteers. Comparison of the collecting ability between the electret filter method and other 2 reported methods is finally performed based on the amounts of albumin collected from human exhaled breath. In conclusion, a decreasing collection efficiency ranging from 17.6% to 2.3% for atomized albumin aerosol and 42% to 12.5% for atomized carcinoembryonic antigen particles is found; moreover, an optimum volume of sampling human exhaled breath ranging from 100 L to 200 L is also observed; finally, the self-designed collecting device shows a significantly better performance in collecting albumin from human exhaled breath than the exhaled breath condensate method (p<0.05) but is not significantly more effective than reported 3-stage impactor method (p>0.05). In summary, electret filters are potential in collecting non-volatile biomarkers in human exhaled breath not only because it was simpler, cheaper and easier to use than traditional methods but also for its better collecting performance.

  11. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  12. Method of concurrently filtering particles and collecting gases

    DOEpatents

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  13. Determination of urinary manganese by the direct chelation-extraction method and flameless atomic absorption spectrophotometry.

    PubMed Central

    Watanabe, T; Tokunaga, R; Iwahana, T; Tati, M; Ikeda, M

    1978-01-01

    The direct chelation-extraction method, originally developed by Hessel (1968) for blood lead analysis, has been successfully applied to urinalysis for manganese. The analyses of 35 urine samples containing up to 100 microgram/1 of manganese from manganese-exposed workers showed that the data obtained by this method agree well with those by wet digestion-flame atomic absorption spectrophotometry and also by flameless atomic absorption spectrophotometry. PMID:629893

  14. Method of recovering hazardous waste from phenolic resin filters

    DOEpatents

    Meikrantz, David H.; Bourne, Gary L.; McFee, John N.; Burdge, Bradley G.; McConnell, Jr., John W.

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  15. Method for measuring changes in light absorption of highly scattering media

    DOEpatents

    Bigio, Irving J.; Johnson, Tamara M.; Mourant, Judith R.

    2002-01-01

    The noninvasive measurement of variations in absorption that are due to changes in concentrations of biochemically relevant compounds in tissue is important in many clinical settings. One problem with such measurements is that the pathlength traveled by the collected light through the tissue depends on the scattering properties of the tissue. It is demonstrated, using both Monte Carlo simulations and experimental measurements, that for an appropriate separation between light-delivery and light-collection fibers, the pathlength of the collected photons is insensitive to scattering parameters for the range of parameters typically found in tissue. This is important for developing rapid, noninvasive, inexpensive, and accurate methods for measuring absorption changes in tissue.

  16. Wet refractivity tomography with an improved Kalman-Filter method

    NASA Astrophysics Data System (ADS)

    Cao, Yunchang; Chen, Yongqi; Li, Pingwha

    2006-10-01

    An improved retrieval method, which uses the solution with a Gaussian constraint as the initial state variables for the Kalman Filtering (KF) method, was developed to retrieve the wet refractivity profiles from slant wet delays (SWD) extracted by the double-differenced (DD) GPS method. The accuracy of the GPS-derived SWDs is also tested in this study against the measurements of a water vapor radiometer (WVR) and a weather model. It is concluded that the GPS-derived SWDs have similar accuracy to those measured with WVR and are much higher in quality than those derived from the weather model used. The developed method is used to retrieve the 3D wet refractivity distribution in the Hong Kong region. The retrieved profiles agree well with the radiosonde observations, with a difference of about 4 mm km-1 in the low levels. The accurate profiles obtained with this method are applicable in a number of meteorological applications.

  17. Properties of multilayer filters

    NASA Technical Reports Server (NTRS)

    Baumeister, P. W.

    1973-01-01

    New methods were investigated of using optical interference coatings to produce bandpass filters for the spectral region 110 nm to 200 nm. The types of filter are: triple cavity metal dielectric filters; all dielectric reflection filters; and all dielectric Fabry Perot type filters. The latter two types use thorium fluoride and either cryolite films or magnesium fluoride films in the stacks. The optical properties of the thorium fluoride were also measured.

  18. [Everted intestinal sac method for quick finding absorption ingredients of Wuzhuyu decoction].

    PubMed

    Gong, Muxin; Wang, Yaxun; Song, Yafang; Wang, Zhimin; Zhang, Qiwei; Wang, Weihao; Zhu, Jingjing

    2010-06-01

    To establish a method for quick finding the absorption ingredients of Wuzhuyu decoction in order to select the index to control its quality. The absorption of three concentration of Wuzhuyu decotion was investigated with the in vitro-everted intestinal sac model. The intestinal bag fluid of jejunum and ileum were collected in different time and the eight ingredients, which were evodiamine (Ev), rutaecarpine (Ru), limonin (Li), ginsenoside-Rb1, -Rg1, -Re (Rb1, Rg1, Re), isorhamnetin-3-O-beta-D-glucosyl(6''-->1'")-alpha-L-rhamnoside (Irs)and 6-gingerol (6-Gi), were detected by HPLC as the represent constituents in samples. Eight ingredients except Ru in samples could be detected, but Ev could not be detected in high concentration samples. The ratios between absorption ingredients were different from in Wuzhuyu decotion. The in vitro-everted intestinal sac canc absorb the ingredients of Wuzhuyu decotion selectivity. Compare with the ileum, the jejunum can provide the more absorption information and faster, the best test time is 60-90 min.

  19. A computational method for detecting copy number variations using scale-space filtering

    PubMed Central

    2013-01-01

    Background As next-generation sequencing technology made rapid and cost-effective sequencing available, the importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified. Furthermore, most genome projects need to accurately analyze sequences with fairly low-coverage read data. It is urgently needed to develop a method to detect the exact types and locations of CNVs from low coverage read data. Results Here, we propose a new CNV detection method, CNV_SS, which uses scale-space filtering. The scale-space filtering is evaluated by applying to the read coverage data the Gaussian convolution for various scales according to a given scaling parameter. Next, by differentiating twice and finding zero-crossing points, inflection points of scale-space filtered read coverage data are calculated per scale. Then, the types and the exact locations of CNVs are obtained by analyzing the finger print map, the contours of zero-crossing points for various scales. Conclusions The performance of CNV_SS showed that FNR and FPR stay in the range of 1.27% to 2.43% and 1.14% to 2.44%, respectively, even at a relatively low coverage (0.5x ≤C ≤2x). CNV_SS gave also much more effective results than the conventional methods in the evaluation of FNR, at 3.82% at least and 76.97% at most even when the coverage level of read data is low. CNV_SS source code is freely available from http://dblab.hallym.ac.kr/CNV SS/. PMID:23418726

  20. A method for assessing carbohydrate energy absorption and its application to premature infants.

    PubMed

    Kien, C L; Sumners, J E; Stetina, J S; Heimler, R; Grausz, J P

    1982-11-01

    A method was developed for assessing indirectly the fecal excretion of carbohydrate-derived energy. Then, eight healthy premature infants (28 to 32 wk gestation, postnatal age 12 to 30 days) were randomly assigned to receive one of two formulas that differed only in the carbohydrate source: 100% lactose or 50% lactose: 50% glucose polymer (lactose + glucose polymer). Excreta collections were analyzed for total nitrogen, urea nitrogen, ammonia, fat, and total energy. Carbohydrate energy absorption was calculated. The formulas were well tolerated and stool frequency, energy intake, weight gain, and nitrogen balance were not different in the two formula groups. Also, there were no significant intergroup (lactose versus lactose + glucose polymer) differences in the coefficients (%) (x +/- SD) of fat absorption (90 +/- 6 versus 93 +/- 5) or carbohydrate energy absorption (96 +/- 1 versus 95 +/- 3). Thus, net carbohydrate-energy absorption appeared normal in these premature infants who showed no clinical formula intolerance.

  1. Reducing uncertainties associated with filter-based optical measurements of light absorbing carbon particles with chemical information

    NASA Astrophysics Data System (ADS)

    Engström, J. E.; Leck, C.

    2011-08-01

    The presented filter-based optical method for determination of soot (light absorbing carbon or Black Carbon, BC) can be implemented in the field under primitive conditions and at low cost. This enables researchers with small economical means to perform monitoring at remote locations, especially in the Asia where it is much needed. One concern when applying filter-based optical measurements of BC is that they suffer from systematic errors due to the light scattering of non-absorbing particles co-deposited on the filter, such as inorganic salts and mineral dust. In addition to an optical correction of the non-absorbing material this study provides a protocol for correction of light scattering based on the chemical quantification of the material, which is a novelty. A newly designed photometer was implemented to measure light transmission on particle accumulating filters, which includes an additional sensor recording backscattered light. The choice of polycarbonate membrane filters avoided high chemical blank values and reduced errors associated with length of the light path through the filter. Two protocols for corrections were applied to aerosol samples collected at the Maldives Climate Observatory Hanimaadhoo during episodes with either continentally influenced air from the Indian/Arabian subcontinents (winter season) or pristine air from the Southern Indian Ocean (summer monsoon). The two ways of correction (optical and chemical) lowered the particle light absorption of BC by 63 to 61 %, respectively, for data from the Arabian Sea sourced group, resulting in median BC absorption coefficients of 4.2 and 3.5 Mm-1. Corresponding values for the South Indian Ocean data were 69 and 97 % (0.38 and 0.02 Mm-1). A comparison with other studies in the area indicated an overestimation of their BC levels, by up to two orders of magnitude. This raises the necessity for chemical correction protocols on optical filter-based determinations of BC, before even the sign on the

  2. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  3. An optical method for characterizing carbon content in ceramic pot filters.

    PubMed

    Goodwin, J Y; Elmore, A C; Salvinelli, C; Reidmeyer, Mary R

    2017-08-01

    Ceramic pot filter (CPF) technology is a relatively common means of household water treatment in developing areas, and performance characteristics of CPFs have been characterized using production CPFs, experimental CPFs fabricated in research laboratories, and ceramic disks intended to be CPF surrogates. There is evidence that CPF manufacturers do not always fire their products according to best practices and the result is incomplete combustion of the pore forming material and the creation of a carbon core in the final CPFs. Researchers seldom acknowledge the existence of potential existence of carbon cores, and at least one CPF producer has postulated that the carbon may be beneficial in terms of final water quality because of the presence of activated carbon in consumer filters marketed in the Western world. An initial step in characterizing the presence and impact of carbon cores is the characterization of those cores. An optical method which may be more viable to producers relative to off-site laboratory analysis of carbon content has been developed and verified. The use of the optical method is demonstrated via preliminary disinfection and flowrate studies, and the results of these studies indicate that the method may be of use in studying production kiln operation.

  4. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    SciTech Connect

    Abbas, Nikhar; Tom, Nathan

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  5. UV absorption and photoisomerization of p-methoxycinnamate grafted silicone.

    PubMed

    Pattanaargson, Supason; Hongchinnagorn, Nantawan; Hirunsupachot, Piyawan; Sritana-anant, Yongsak

    2004-01-01

    p-Methoxycinnamate moieties, UV-B-absorptive chromophores of the widely used UV-B filter, 2-ethylhexyl p-methoxycinnamate (OMC), were grafted onto the 7 mol% amino functionalized silicone polymer through amide linkages. Comparing with OMC, the resulting poly [3-(p-methoxycinnamido)(propyl)(methyl)-dimethyl] siloxane copolymer (CAS) showed less E to Z isomerization when exposed to UV-B light. The absorption profiles of the product showed the maximum absorption wavelength to be similar to that of OMC but with less sensitivity to the type of solvent. Poly (methylhydrosiloxane) grafted with 10 mol% p-methoxycinnamoyl moieties was prepared through hydrosilylations of 2-propenyl-p-methoxycinnamate, in which the resulting copolymer showed similar results to those of CAS.

  6. Mapping Surface Water DOC in the Northern Gulf of Mexico Using CDOM Absorption Coefficients and Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Kelly, B.; Chelsky, A.; Bulygina, E.; Roberts, B. J.

    2017-12-01

    Remote sensing techniques have become valuable tools to researchers, providing the capability to measure and visualize important parameters without the need for time or resource intensive sampling trips. Relationships between dissolved organic carbon (DOC), colored dissolved organic matter (CDOM) and spectral data have been used to remotely sense DOC concentrations in riverine systems, however, this approach has not been applied to the northern Gulf of Mexico (GoM) and needs to be tested to determine how accurate these relationships are in riverine-dominated shelf systems. In April, July, and October 2017 we sampled surface water from 80+ sites over an area of 100,000 km2 along the Louisiana-Texas shelf in the northern GoM. DOC concentrations were measured on filtered water samples using a Shimadzu TOC-VCSH analyzer using standard techniques. Additionally, DOC concentrations were estimated from CDOM absorption coefficients of filtered water samples on a UV-Vis spectrophotometer using a modification of the methods of Fichot and Benner (2011). These values were regressed against Landsat visible band spectral data for those same locations to establish a relationship between the spectral data, CDOM absorption coefficients. This allowed us to spatially map CDOM absorption coefficients in the Gulf of Mexico using the Landsat spectral data in GIS. We then used a multiple linear regressions model to derive DOC concentrations from the CDOM absorption coefficients and applied those to our map. This study provides an evaluation of the viability of scaling up CDOM absorption coefficient and remote-sensing derived estimates of DOC concentrations to the scale of the LA-TX shelf ecosystem.

  7. A combinatorial filtering method for magnetotelluric time-series based on Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Cai, Jianhua

    2014-11-01

    Magnetotelluric (MT) time-series are often contaminated with noise from natural or man-made processes. A substantial improvement is possible when the time-series are presented as clean as possible for further processing. A combinatorial method is described for filtering of MT time-series based on the Hilbert-Huang transform that requires a minimum of human intervention and leaves good data sections unchanged. Good data sections are preserved because after empirical mode decomposition the data are analysed through hierarchies, morphological filtering, adaptive threshold and multi-point smoothing, allowing separation of noise from signals. The combinatorial method can be carried out without any assumption about the data distribution. Simulated data and the real measured MT time-series from three different regions, with noise caused by baseline drift, high frequency noise and power-line contribution, are processed to demonstrate the application of the proposed method. Results highlight the ability of the combinatorial method to pick out useful signals, and the noise is suppressed greatly so that their deleterious influence is eliminated for the MT transfer function estimation.

  8. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    DOE PAGES

    Angland, P.; Haberberger, D.; Ivancic, S. T.; ...

    2017-10-30

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  9. Angular filter refractometry analysis using simulated annealing [An improved method for characterizing plasma density profiles using angular filter refractometry

    SciTech Connect

    Angland, P.; Haberberger, D.; Ivancic, S. T.

    Here, a new method of analysis for angular filter refractometry images was developed to characterize laser-produced, long-scale-length plasmas using an annealing algorithm to iterative converge upon a solution. Angular filter refractometry (AFR) is a novel technique used to characterize the density pro files of laser-produced, long-scale-length plasmas. A synthetic AFR image is constructed by a user-defined density profile described by eight parameters, and the algorithm systematically alters the parameters until the comparison is optimized. The optimization and statistical uncertainty calculation is based on a minimization of themore » $$\\chi$$2 test statistic. The algorithm was successfully applied to experimental data of plasma expanding from a flat, laser-irradiated target, resulting in average uncertainty in the density profile of 5-10% in the region of interest.« less

  10. Method for Salmonella concentration from water at pH 3.5, using micro-fiber glass filters.

    PubMed Central

    Block, J C; Rolland, D

    1979-01-01

    A method is described for the concentration of Salmonella from water. As is done with enterovirus, Salmonella bacteria were concentrated from water in two steps: by pH 3.5 adsorption on and pH 9.5 elution from 8-micron porosity micro-fiber glass filter tubes. This method worked in less than 30 min, and Salmonella typhimurium was inactivated only slightly in spite of rapid pH variations (pH 3.5 to 9.5). It was demonstrated that the retention by the filters stems from two phenomena: a low retention in the micro-fiber glass labyrinth for small filtered volumes, and a high retention by adsorption at pH 3.5 for any filtered volume (experiments done with 15- and 80-liter samples). Addition in tap water of trivalent ions like Al3+ did not increase Salmonella adsorption. In most of the trials, Salmonella recovery varied from 42 to 93%. Preliminary field investigations indicate that enterovirus and Salmonella may both be concentrated from the same water sample by this procedure. PMID:39501

  11. Multilevel filtering elliptic preconditioners

    NASA Technical Reports Server (NTRS)

    Kuo, C. C. Jay; Chan, Tony F.; Tong, Charles

    1989-01-01

    A class of preconditioners is presented for elliptic problems built on ideas borrowed from the digital filtering theory and implemented on a multilevel grid structure. They are designed to be both rapidly convergent and highly parallelizable. The digital filtering viewpoint allows the use of filter design techniques for constructing elliptic preconditioners and also provides an alternative framework for understanding several other recently proposed multilevel preconditioners. Numerical results are presented to assess the convergence behavior of the new methods and to compare them with other preconditioners of multilevel type, including the usual multigrid method as preconditioner, the hierarchical basis method and a recent method proposed by Bramble-Pasciak-Xu.

  12. Gas stream clean-up filter and method for forming same

    DOEpatents

    Mei, Joseph S.; DeVault, James; Halow, John S.

    1993-01-01

    A gas cleaning filter is formed in-situ within a vessel containing a fluidizable bed of granular material of a relatively large size fraction. A filter membrane provided by a porous metal or ceramic body or such a body supported a perforated screen on one side thereof is coated in-situ with a layer of the granular material from the fluidized bed by serially passing a bed-fluidizing gas stream through the bed of granular material and the membrane. The layer of granular material provides the filtering medium for the combined membrane-granular layer filter. The filter is not blinded by the granular material and provides for the removal of virtually all of the particulates from a process gas stream. The granular material can be at least partially provided by a material capable of chemically reacting with and removing sulfur compounds from the process gas stream. Low level radioactive waste containing organic material may be incinerated in a fluidized bed in communication with the described filter for removing particulates from the gaseous combustion products.

  13. Filter forensics: microbiota recovery from residential HVAC filters.

    PubMed

    Maestre, Juan P; Jennings, Wiley; Wylie, Dennis; Horner, Sharon D; Siegel, Jeffrey; Kinney, Kerry A

    2018-01-30

    Establishing reliable methods for assessing the microbiome within the built environment is critical for understanding the impact of biological exposures on human health. High-throughput DNA sequencing of dust samples provides valuable insights into the microbiome present in human-occupied spaces. However, the effect that different sampling methods have on the microbial community recovered from dust samples is not well understood across sample types. Heating, ventilation, and air conditioning (HVAC) filters hold promise as long-term, spatially integrated, high volume samplers to characterize the airborne microbiome in homes and other climate-controlled spaces. In this study, the effect that dust recovery method (i.e., cut and elution, swabbing, or vacuuming) has on the microbial community structure, membership, and repeatability inferred by Illumina sequencing was evaluated. The results indicate that vacuum samples captured higher quantities of total, bacterial, and fungal DNA than swab or cut samples. Repeated swab and vacuum samples collected from the same filter were less variable than cut samples with respect to both quantitative DNA recovery and bacterial community structure. Vacuum samples captured substantially greater bacterial diversity than the other methods, whereas fungal diversity was similar across all three methods. Vacuum and swab samples of HVAC filter dust were repeatable and generally superior to cut samples. Nevertheless, the contribution of environmental and human sources to the bacterial and fungal communities recovered via each sampling method was generally consistent across the methods investigated. Dust recovery methodologies have been shown to affect the recovery, repeatability, structure, and membership of microbial communities recovered from dust samples in the built environment. The results of this study are directly applicable to indoor microbiota studies utilizing the filter forensics approach. More broadly, this study provides a

  14. Prediction of sound absorption in rigid porous media with the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    da Silva, Andrey Ricardo; Mareze, Paulo; Brandão, Eric

    2016-02-01

    In this work, sound absorption phenomena associated with the viscous shear stress within rigid porous media is investigated with a simple isothermal lattice Boltzmann BGK model. Simulations are conducted for different macroscopic material properties such as sample thickness and porosity and the results are compared with the exact analytical solution for materials with slit-like structure in terms of acoustic impedance and sound absorption coefficient. The numerical results agree very well with the exact solution, particularly for the sound absorption coefficient. The small deviations found in the low frequency limit for the real part of the acoustic impedance are attributed to the ratio between the thicknesses of the slit and the viscous boundary layer. The results suggest that the lattice Boltzmann method can be a very compelling numerical tool for simulating viscous sound absorption phenomena in the time domain, particularly due to its computational simplicity when compared to traditional continuum based techniques.

  15. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.

    PubMed

    Liu, Zhengqi; Liu, Guiqiang; Liu, Xiaoshan; Huang, Shan; Wang, Yan; Pan, Pingping; Liu, Mulin

    2015-06-12

    Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of nanotechnologies including thermophotovoltaics, photothermal therapy, hot-electron collection and biosensing. However, it is rather challenging to realize ultra-narrow absorbers using plasmonic materials due to large optical losses in metals that inevitably decrease the quality of optical resonators. Here, we theoretically report methods to achieve an ultra-narrow light absorption meta-surface by using photonic modes of the optical cavities, which strongly couple with the plasmon resonances of the metallic nanostructures. Multispectral light absorption with absorption amplitude exceeding 99% and a bandwidth approaching 10 nm is achieved at the optical frequencies. Moreover, by introducing a thick dielectric coupling cavity, the number of absorption bands can be strongly increased and the bandwidth can even be narrowed to less than 5 nm due to the resonant spectrum splitting enabled by strong coupling between the plasmon resonances and the optical cavity modes. Designing such optical cavity-coupled meta-surface structures is a promising route for achieving ultra-narrow multiband absorbers, which can be used in absorption filters, narrow-band multispectral thermal emitters and thermophotovoltaics.

  16. Comparison of Mercury Measurement Methods Using Two Active Filter Measurement Methods and a Tekran Speciation Unit

    NASA Astrophysics Data System (ADS)

    Pierce, A.; Gustin, M. S.; Huang, J.; Heidecorn, K.

    2014-12-01

    Three active mercury (Hg) measurement methods were operated side by side at an urban site (University of Nevada, Reno College of Agriculture Greenhouse facility, elev. 1370 m) in Reno, and at a high elevation site (Peavine Peak, elev. 2515 m) adjacent to Reno from December 2013 to October 2014. A model 602 BetaPlus Teledyne Advanced Pollution Instrumentation (TAPI, San Diego, CA USA) particulate measurement system was used to collect particulate matter on a 47 mm diameter cation exchange membrane (CEM, PN# MSTGS3R Mustang S, Pall Corp. Port Washington, NY) at a rate of 16.7 lpm for 24 hours to four days. Particulate concentrations were calculated using beta attenuation across the filters (non-destructive to filter material); the CEM filters were then analyzed for total Hg on a Tekran Total Hg Analysis system (model 2600, Tekran Instruments Corp. Knoxville, TN, USA). Concurrently, samples were collected on an active Hg membrane system. The active Hg membrane system consisted of 3 CEM filters sampling at a rate of 1 lpm for one to two weeks. CEM filters were then analyzed on the Tekran 2600. A Tekran speciation unit (model 1130, 1135, 2537) was also in operation and ambient air samples were analyzed for gaseous elemental Hg (GEM), gaseous oxidized Hg (GOM), and particulate bound Hg (PBM). Both the 602 BetaPlus system and the active Hg membrane system should collect RM on the CEM filters. The active Hg membrane system most likely captures mainly GOM based on previous tests with the Teflon inlet setup that indicated there was high static electricity effective in removing particulate matter. Flow rate and length of measurement (24 hours vs. four days) affected the Hg concentrations on the 602 BetaPlus system. Based on these measurements we hypothesize that, due to the high flow rate, and therefore short retention time, the 602 BetaPlus only captured PBM. It is also possible that there was loss of Hg to inlet walls due to the longer inlet on the 602 BetaPlus system

  17. Fine-filter method for Raman lidar based on wavelength division multiplexing and fiber Bragg grating.

    PubMed

    Wang, Jun; Zheng, Jiao; Lu, Hong; Yan, Qing; Wang, Li; Liu, Jingjing; Hua, Dengxin

    2017-11-01

    Atmospheric temperature is one of the important parameters for the description of the atmospheric state. Most of the detection approaches to atmospheric temperature monitoring are based on rotational Raman scattering for better understanding atmospheric dynamics, thermodynamics, atmospheric transmission, and radiation. In this paper, we present a fine-filter method based on wavelength division multiplexing, incorporating a fiber Bragg grating in the visible spectrum for the rotational Raman scattering spectrum. To achieve high-precision remote sensing, the strong background noise is filtered out by using the secondary cascaded light paths. Detection intensity and the signal-to-noise ratio are improved by increasing the utilization rate of return signal form atmosphere. Passive temperature compensation is employed to reduce the temperature sensitivity of fiber Bragg grating. In addition, the proposed method provides a feasible solution for the filter system with the merits of miniaturization, high anti-interference, and high stability in the space-based platform.

  18. A quantitative method for estimating dermal benzene absorption from benzene-containing hydrocarbon liquids.

    PubMed

    Petty, Stephen E; Nicas, Mark; Boiarski, Anthony A

    2011-01-01

    This study examines a method for estimating the dermal absorption of benzene contained in hydrocarbon liquids that contact the skin. This method applies to crude oil, gasoline, organic solvents, penetrants, and oils. The flux of benzene through occluded skin as a function of the percent vol/vol benzene in the liquid is derived by fitting a curve to experimental data; the function is supralinear at benzene concentrations < or = 5% vol/vol. When a liquid other than pure benzene is on nonoccluded skin, benzene may preferentially evaporate from the liquid, which thereby decreases the benzene flux. We present a time-averaging method here for estimating the reduced dermal flux during evaporation. Example calculations are presented for benzene at 2% vol/vol in gasoline, and for benzene at 0.1% vol/vol in a less volatile liquid. We also discuss other factors affecting dermal absorption.

  19. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Suzuki, A.; Ohtani, E.; Katayama, Y.

    2006-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the top anvil sizes of 6 mm and 4 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 5 GPa, from 300 to 2000 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  20. Density Measurement for MORB Melts by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Urakawa, S.; Ohtani, E.; Suzuki, A.; Katayama, Y.

    2005-12-01

    Density of silicate melts at high pressure is one of the most important properties to understand magma migration in the planetary interior and the differentiation of the terrestrial planets. The density measurements of silicate melts have been carried out by several methods (shock compression experiments and sink-float method in static experiments, etc.). However, since these methods have difficulties in acquisition of data at a desired pressure and temperature, the density of the silicate melt have been measured under only a few conditions. Recently a new density measurement was developed by the X-ray absorption method. Advantage of this method is to measure density of liquids at a desired pressure and temperature. In the present study we measured the density of MORB melt by X-ray absorption method. Experiments were carried out at the BL22XU beamline at SPring-8. A DIA-type cubic anvil apparatus was used for generation of high pressure and temperature. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromateized X-ray beam was 23 keV. The intensities of incident and transmitted X-ray were measured by ion chambers. The density of the melt was calculated on the basis of Beer-Lambert law. The starting material was a glass with the MORB composition. Experiments were made from 1 atm to 4 GPa, from 300 to 2200 K. We compared the density of MORB melt with the compression curve of the melt in previous works. The density measured by this study is lower than that expected from the compression curve determined at higher pressures by the sink-float method. Structural change of the MORB melt with increasing pressure might be attributed to this discrepancy.

  1. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    PubMed Central

    Imashuku, Yasuhiko; Kitagawa, Hirotoshi; Mizuno, Takayoshi; Fukushima, Yutaka

    2017-01-01

    We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available. PMID:28217070

  2. Equivalent modulus method for finite element simulation of the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate

    NASA Astrophysics Data System (ADS)

    Jin, Zhongkun; Yin, Yao; Liu, Bilong

    2016-03-01

    The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.

  3. Method for making a photodetector with enhanced light absorption

    DOEpatents

    Kane, James

    1987-05-05

    A photodetector including a light transmissive electrically conducting layer having a textured surface with a semiconductor body thereon. This layer traps incident light thereby enhancing the absorption of light by the semiconductor body. A photodetector comprising a textured light transmissive electrically conducting layer of SnO.sub.2 and a body of hydrogenated amorphous silicon has a conversion efficiency about fifty percent greater than that of comparative cells. The invention also includes a method of fabricating the photodetector of the invention.

  4. UV holographic filters

    NASA Astrophysics Data System (ADS)

    Kalyashova, Zoya N.

    2017-11-01

    A new approach to UV holographic filter's manufacturing, when the filters are the volume reflection holograms, working in UV region in the second Bragg diffraction order, is offered. The method is experimentally realized for wavelength of 266 nm.

  5. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    NASA Astrophysics Data System (ADS)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  6. Oil droplets of bird eyes: microlenses acting as spectral filters

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.

    2014-01-01

    An important component of the cone photoreceptors of bird eyes is the oil droplets located in front of the visual-pigment-containing outer segments. The droplets vary in colour and are transparent, clear, pale or rather intensely yellow or red owing to various concentrations of carotenoid pigments. Quantitative modelling of the filter characteristics using known carotenoid pigment spectra indicates that the pigments’ absorption spectra are modified by the high concentrations that are present in the yellow and red droplets. The high carotenoid concentrations not only cause strong spectral filtering but also a distinctly increased refractive index at longer wavelengths. The oil droplets therefore act as powerful spherical microlenses, effectively channelling the spectrally filtered light into the photoreceptor's outer segment, possibly thereby compensating for the light loss caused by the spectral filtering. The spectral filtering causes narrow-band photoreceptor spectral sensitivities, which are well suited for spectral discrimination, especially in birds that have feathers coloured by carotenoid pigments. PMID:24395968

  7. Switching non-local vector median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  8. High order filtering methods for approximating hyperbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1991-01-01

    The essentially nonoscillatory (ENO) schemes, while potentially useful in the computation of discontinuous solutions of hyperbolic conservation-law systems, are computationally costly relative to simple central-difference methods. A filtering technique is presented which employs central differencing of arbitrarily high-order accuracy except where a local test detects the presence of spurious oscillations and calls upon the full ENO apparatus to remove them. A factor-of-three speedup is thus obtained over the full-ENO method for a wide range of problems, with high-order accuracy in regions of smooth flow.

  9. A simple method to incorporate water vapor absorption in the 15 microns remote temperature sounding

    NASA Technical Reports Server (NTRS)

    Dallu, G.; Prabhakara, C.; Conhath, B. J.

    1975-01-01

    The water vapor absorption in the 15 micron CO2 band, which can affect the remotely sensed temperatures near the surface, are estimated with the help of an empirical method. This method is based on the differential absorption properties of the water vapor in the 11-13 micron window region and does not require a detailed knowledge of the water vapor profile. With this approach Nimbus 4 IRIS radiance measurements are inverted to obtain temperature profiles. These calculated profiles agree with radiosonde data within about 2 C.

  10. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-03-03

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  11. Extracting tissue deformation using Gabor filter banks

    NASA Astrophysics Data System (ADS)

    Montillo, Albert; Metaxas, Dimitris; Axel, Leon

    2004-04-01

    This paper presents a new approach for accurate extraction of tissue deformation imaged with tagged MR. Our method, based on banks of Gabor filters, adjusts (1) the aspect and (2) orientation of the filter"s envelope and adjusts (3) the radial frequency and (4) angle of the filter"s sinusoidal grating to extract information about the deformation of tissue. The method accurately extracts tag line spacing, orientation, displacement and effective contrast. Existing, non-adaptive methods often fail to recover useful displacement information in the proximity of tissue boundaries while our method works in the proximity of the boundaries. We also present an interpolation method to recover all tag information at a finer resolution than the filter bank parameters. Results are shown on simulated images of translating and contracting tissue.

  12. An object tracking method based on guided filter for night fusion image

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoyan; Wang, Yuedong; Han, Lei

    2016-01-01

    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.

  13. Implicit LES using adaptive filtering

    NASA Astrophysics Data System (ADS)

    Sun, Guangrui; Domaradzki, Julian A.

    2018-04-01

    In implicit large eddy simulations (ILES) numerical dissipation prevents buildup of small scale energy in a manner similar to the explicit subgrid scale (SGS) models. If spectral methods are used the numerical dissipation is negligible but it can be introduced by applying a low-pass filter in the physical space, resulting in an effective ILES. In the present work we provide a comprehensive analysis of the numerical dissipation produced by different filtering operations in a turbulent channel flow simulated using a non-dissipative, pseudo-spectral Navier-Stokes solver. The amount of numerical dissipation imparted by filtering can be easily adjusted by changing how often a filter is applied. We show that when the additional numerical dissipation is close to the subgrid-scale (SGS) dissipation of an explicit LES the overall accuracy of ILES is also comparable, indicating that periodic filtering can replace explicit SGS models. A new method is proposed, which does not require any prior knowledge of a flow, to determine the filtering period adaptively. Once an optimal filtering period is found, the accuracy of ILES is significantly improved at low implementation complexity and computational cost. The method is general, performing well for different Reynolds numbers, grid resolutions, and filter shapes.

  14. Apparatus and Methods for Photoacoustic Measurement of Light Absorption of Particulate and Gaseous Species

    NASA Technical Reports Server (NTRS)

    Brown, William (Inventor); Yu, Zhenhong (Inventor); Kebabian, Paul L. (Inventor); Assif, James (Inventor)

    2017-01-01

    In one embodiment, a photoacoustic effect measurement instrument for measuring a species (e.g., a species of PM) in a gas employs a pair of differential acoustic cells including a sample cell that receives sample gas including the species, and a reference cell that receives a filtered version of the sample gas from which the species has been substantially removed. An excitation light source provides an amplitude modulated beam to each of the acoustic cells. An array of multiple microphones is mounted to each of the differential acoustic cells, and measures an acoustic wave generated in the respective acoustic cell by absorption of light by sample gas therein to produce a respective signal. The microphones are isolated from sample gas internal to the acoustic cell by a film. A preamplifier determines a differential signal and a controller calculates concentration of the species based on the differential signal.

  15. [Determination of the content of sulfur of coal by the infrared absorption method with high acccuracy].

    PubMed

    Wang, Hai-Feng; Lu, Hai; Li, Jia; Sun, Guo-Hua; Wang, Jun; Dai, Xin-Hua

    2014-02-01

    The present paper reported the differential scanning calorimetry-thermogravimetry curves and the infrared (IR) absorption spectrometry under the temperature program analyzed by the combined simultaneous thermal analysis-IR spectrometer. The gas products of coal were identified by the IR spectrometry. This paper emphasized on the combustion at high temperature-IR absorption method, a convenient and accurate method, which measures the content of sulfur in coal indirectly through the determination of the content of sulfur dioxide in the mixed gas products by IR absorption. It was demonstrated, when the instrument was calibrated by varied pure compounds containing sulfur and certified reference materials (CRMs) for coal, that there was a large deviation in the measured sulfur contents. It indicates that the difference in chemical speciations of sulfur between CRMs and the analyte results in a systematic error. The time-IR absorption curve was utilized to analyze the composition of sulfur at low temperatures and high temperatures and then the sulfur content of coal sample was determined by using a CRM for coal with a close composition of sulfur. Therefore, the systematic error due to the difference in chemical speciations of sulfur between the CRM and analyte was eliminated. On the other hand, in this combustion at high temperature-IR absorption method, the mass of CRM and analyte were adjusted to assure the sulfur mass equal and then the CRM and the analyte were measured alternately. This single-point calibration method reduced the effect of the drift of the IR detector and improved the repeatability of results, compared with the conventional multi-point calibration method using the calibration curves of signal intensity vs sulfur mass. The sulfur content results and their standard deviations of an anthracite coal and a bituminous coal with a low sulfur content determined by this modified method were 0.345% (0.004%) and 0.372% (0.008%), respectively. The uncertainty (U

  16. Analytical method for promoting process capability of shock absorption steel.

    PubMed

    Sung, Wen-Pei; Shih, Ming-Hsiang; Chen, Kuen-Suan

    2003-01-01

    Mechanical properties and low cycle fatigue are two factors that must be considered in developing new type steel for shock absorption. Process capability and process control are significant factors in achieving the purpose of research and development programs. Often-used evaluation methods failed to measure process yield and process centering; so this paper uses Taguchi loss function as basis to establish an evaluation method and the steps for assessing the quality of mechanical properties and process control of an iron and steel manufacturer. The establishment of this method can serve the research and development and manufacturing industry and lay a foundation in enhancing its process control ability to select better manufacturing processes that are more reliable than decision making by using the other commonly used methods.

  17. The Choice of the Filtering Method in Microarrays Affects the Inference Regarding Dosage Compensation of the Active X-Chromosome

    PubMed Central

    Zeller, Tanja; Wild, Philipp S.; Truong, Vinh; Trégouët, David-Alexandre; Munzel, Thomas; Ziegler, Andreas; Cambien, François; Blankenberg, Stefan; Tiret, Laurence

    2011-01-01

    Background The hypothesis of dosage compensation of genes of the X chromosome, supported by previous microarray studies, was recently challenged by RNA-sequencing data. It was suggested that microarray studies were biased toward an over-estimation of X-linked expression levels as a consequence of the filtering of genes below the detection threshold of microarrays. Methodology/Principal Findings To investigate this hypothesis, we used microarray expression data from circulating monocytes in 1,467 individuals. In total, 25,349 and 1,156 probes were unambiguously assigned to autosomes and the X chromosome, respectively. Globally, there was a clear shift of X-linked expressions toward lower levels than autosomes. We compared the ratio of expression levels of X-linked to autosomal transcripts (X∶AA) using two different filtering methods: 1. gene expressions were filtered out using a detection threshold irrespective of gene chromosomal location (the standard method in microarrays); 2. equal proportions of genes were filtered out separately on the X and on autosomes. For a wide range of filtering proportions, the X∶AA ratio estimated with the first method was not significantly different from 1, the value expected if dosage compensation was achieved, whereas it was significantly lower than 1 with the second method, leading to the rejection of the hypothesis of dosage compensation. We further showed in simulated data that the choice of the most appropriate method was dependent on biological assumptions regarding the proportion of actively expressed genes on the X chromosome comparative to the autosomes and the extent of dosage compensation. Conclusion/Significance This study shows that the method used for filtering out lowly expressed genes in microarrays may have a major impact according to the hypothesis investigated. The hypothesis of dosage compensation of X-linked genes cannot be firmly accepted or rejected using microarray-based data. PMID:21912656

  18. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    PubMed Central

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  19. Dense grid of narrow bandpass filters for the JST/T250 telescope: summary of results

    NASA Astrophysics Data System (ADS)

    Brauneck, Ulf; Sprengard, Ruediger; Bourquin, Sebastien; Marín-Franch, Antonio

    2018-01-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon has setup two telescopes, the JST/T250 and the JAST/T80. The JAST/T80 telescope integrates T80Cam, a large format, single CCD camera while the JST/T250 will mount the JPCam instrument, a 1.2Gpix camera equipped with a 14-CCD mosaic using the new large format e2v 9.2k×9.2k 10-μm pixel detectors. Both T80Cam and JPCam integrate a large number of filters in dimensions of 106.8×106.8 mm2 and 101.7×95.5 mm2, respectively. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters, which were recently completed. The filter set consists of bandpass filters in the range between 348.5 and 910 nm and a longpass filter at 915 nm. Most of the filters have full-width at half-maximum (FWHM) of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. In spite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass has a defined overlap with its neighbors. A high image quality required a low transmitted wavefront error (<λ/4 locally and <λ/2 on the whole aperture), which was achieved even by combining two or three substrates. We report on the spectral and interferometric results measured on the whole set of filters.

  20. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution

    NASA Astrophysics Data System (ADS)

    Floberg, J. M.; Holden, J. E.

    2013-02-01

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.

  1. Quantification of trace metals in water using complexation and filter concentration.

    PubMed

    Dolgin, Bella; Bulatov, Valery; Japarov, Julia; Elish, Eyal; Edri, Elad; Schechter, Israel

    2010-06-15

    Various metals undergo complexation with organic reagents, resulting in colored products. In practice, their molar absorptivities allow for quantification in the ppm range. However, a proper pre-concentration of the colored complex on paper filter lowers the quantification limit to the low ppb range. In this study, several pre-concentration techniques have been examined and compared: filtering the already complexed mixture, complexation on filter, and dipping of dye-covered filter in solution. The best quantification has been based on the ratio of filter reflectance at a certain wavelength to that at zero metal concentration. The studied complex formations (Ni ions with TAN and Cd ions with PAN) involve production of nanoparticle suspensions, which are associated with complicated kinetics. The kinetics of the complexation of Ni ions with TAN has been investigated and optimum timing could be found. Kinetic optimization in regard to some interferences has also been suggested.

  2. Adaptive Filtering Using Recurrent Neural Networks

    NASA Technical Reports Server (NTRS)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  3. Practical Active Capacitor Filter

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr. (Inventor)

    2005-01-01

    A method and apparatus is described that filters an electrical signal. The filtering uses a capacitor multiplier circuit where the capacitor multiplier circuit uses at least one amplifier circuit and at least one capacitor. A filtered electrical signal results from a direct connection from an output of the at least one amplifier circuit.

  4. Adaptive error covariances estimation methods for ensemble Kalman filters

    SciTech Connect

    Zhen, Yicun, E-mail: zhen@math.psu.edu; Harlim, John, E-mail: jharlim@psu.edu

    2015-08-01

    This paper presents a computationally fast algorithm for estimating, both, the system and observation noise covariances of nonlinear dynamics, that can be used in an ensemble Kalman filtering framework. The new method is a modification of Belanger's recursive method, to avoid an expensive computational cost in inverting error covariance matrices of product of innovation processes of different lags when the number of observations becomes large. When we use only product of innovation processes up to one-lag, the computational cost is indeed comparable to a recently proposed method by Berry–Sauer's. However, our method is more flexible since it allows for usingmore » information from product of innovation processes of more than one-lag. Extensive numerical comparisons between the proposed method and both the original Belanger's and Berry–Sauer's schemes are shown in various examples, ranging from low-dimensional linear and nonlinear systems of SDEs and 40-dimensional stochastically forced Lorenz-96 model. Our numerical results suggest that the proposed scheme is as accurate as the original Belanger's scheme on low-dimensional problems and has a wider range of more accurate estimates compared to Berry–Sauer's method on L-96 example.« less

  5. Systematic Biological Filter Design with a Desired I/O Filtering Response Based on Promoter-RBS Libraries.

    PubMed

    Hsu, Chih-Yuan; Pan, Zhen-Ming; Hu, Rei-Hsing; Chang, Chih-Chun; Cheng, Hsiao-Chun; Lin, Che; Chen, Bor-Sen

    2015-01-01

    In this study, robust biological filters with an external control to match a desired input/output (I/O) filtering response are engineered based on the well-characterized promoter-RBS libraries and a cascade gene circuit topology. In the field of synthetic biology, the biological filter system serves as a powerful detector or sensor to sense different molecular signals and produces a specific output response only if the concentration of the input molecular signal is higher or lower than a specified threshold. The proposed systematic design method of robust biological filters is summarized into three steps. Firstly, several well-characterized promoter-RBS libraries are established for biological filter design by identifying and collecting the quantitative and qualitative characteristics of their promoter-RBS components via nonlinear parameter estimation method. Then, the topology of synthetic biological filter is decomposed into three cascade gene regulatory modules, and an appropriate promoter-RBS library is selected for each module to achieve the desired I/O specification of a biological filter. Finally, based on the proposed systematic method, a robust externally tunable biological filter is engineered by searching the promoter-RBS component libraries and a control inducer concentration library to achieve the optimal reference match for the specified I/O filtering response.

  6. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    SciTech Connect

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to themore » excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.« less

  7. Reducing false-positive incidental findings with ensemble genotyping and logistic regression based variant filtering methods.

    PubMed

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won

    2014-08-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.

  8. Reducing false positive incidental findings with ensemble genotyping and logistic regression-based variant filtering methods

    PubMed Central

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choi, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B.; Gupta, Neha; Kohane, Isaac S.; Green, Robert C.; Kong, Sek Won

    2014-01-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous SNVs; 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and ensemble genotyping would be essential to minimize false positive DNM candidates. PMID:24829188

  9. The development rainfall forecasting using kalman filter

    NASA Astrophysics Data System (ADS)

    Zulfi, Mohammad; Hasan, Moh.; Dwidja Purnomo, Kosala

    2018-04-01

    Rainfall forecasting is very interesting for agricultural planing. Rainfall information is useful to make decisions about the plan planting certain commodities. In this studies, the rainfall forecasting by ARIMA and Kalman Filter method. Kalman Filter method is used to declare a time series model of which is shown in the form of linear state space to determine the future forecast. This method used a recursive solution to minimize error. The rainfall data in this research clustered by K-means clustering. Implementation of Kalman Filter method is for modelling and forecasting rainfall in each cluster. We used ARIMA (p,d,q) to construct a state space for KalmanFilter model. So, we have four group of the data and one model in each group. In conclusions, Kalman Filter method is better than ARIMA model for rainfall forecasting in each group. It can be showed from error of Kalman Filter method that smaller than error of ARIMA model.

  10. Local spatiotemporal time-frequency peak filtering method for seismic random noise reduction

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Dang, Bo; Li, Yue; Lin, Hongbo

    2014-12-01

    To achieve a higher level of seismic random noise suppression, the Radon transform has been adopted to implement spatiotemporal time-frequency peak filtering (TFPF) in our previous studies. Those studies involved performing TFPF in full-aperture Radon domain, including linear Radon and parabolic Radon. Although the superiority of this method to the conventional TFPF has been tested through processing on synthetic seismic models and field seismic data, there are still some limitations in the method. Both full-aperture linear Radon and parabolic Radon are applicable and effective for some relatively simple situations (e.g., curve reflection events with regular geometry) but inapplicable for complicated situations such as reflection events with irregular shapes, or interlaced events with quite different slope or curvature parameters. Therefore, a localized approach to the application of the Radon transform must be applied. It would serve the filter method better by adapting the transform to the local character of the data variations. In this article, we propose an idea that adopts the local Radon transform referred to as piecewise full-aperture Radon to realize spatiotemporal TFPF, called local spatiotemporal TFPF. Through experiments on synthetic seismic models and field seismic data, this study demonstrates the advantage of our method in seismic random noise reduction and reflection event recovery for relatively complicated situations of seismic data.

  11. Apparatus and method for removing particulate deposits from high temperature filters

    DOEpatents

    Nakaishi, Curtis V.; Holcombe, Norman T.; Micheli, Paul L.

    1992-01-01

    A combustion of a fuel-air mixture is used to provide a high-temperature and high-pressure pulse of gaseous combustion products for the back-flush cleaning of ceramic filter elements contained in a barrier filter system and utilized to separate particulates from particulate-laden process gases at high temperature and high pressure. The volume of gaseous combustion products provided by the combustion of the fuel-air mixture is preferably divided into a plurality of streams each passing through a sonic orifice and conveyed to the open end of each filter element as a high pressure pulse which passes through the filter elements and dislodges dust cake supported on a surface of the filter element.

  12. Filtering Airborne LIDAR Data by AN Improved Morphological Method Based on Multi-Gradient Analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2013-05-01

    The technology of airborne Light Detection And Ranging (LIDAR) is capable of acquiring dense and accurate 3D geospatial data. Although many related efforts have been made by a lot of researchers in the last few years, LIDAR data filtering is still a challenging task, especially for area with high relief or hybrid geographic features. In order to address the bare-ground extraction from LIDAR point clouds of complex landscapes, a novel morphological filtering algorithm is proposed based on multi-gradient analysis in terms of the characteristic of LIDAR data distribution in this paper. Firstly, point clouds are organized by an index mesh. Then, the multigradient of each point is calculated using the morphological method. And, objects are removed gradually by choosing some points to carry on an improved opening operation constrained by multi-gradient iteratively. 15 sample data provided by ISPRS Working Group III/3 are employed to test the filtering algorithm proposed. These sample data include those environments that may lead to filtering difficulty. Experimental results show that filtering algorithm proposed by this paper is of high adaptability to various scenes including urban and rural areas. Omission error, commission error and total error can be simultaneously controlled in a relatively small interval. This algorithm can efficiently remove object points while preserves ground points to a great degree.

  13. High order filtering methods for approximating hyberbolic systems of conservation laws

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1990-01-01

    In the computation of discontinuous solutions of hyperbolic systems of conservation laws, the recently developed essentially non-oscillatory (ENO) schemes appear to be very useful. However, they are computationally costly compared to simple central difference methods. A filtering method which is developed uses simple central differencing of arbitrarily high order accuracy, except when a novel local test indicates the development of spurious oscillations. At these points, the full ENO apparatus is used, maintaining the high order of accuracy, but removing spurious oscillations. Numerical results indicate the success of the method. High order of accuracy was obtained in regions of smooth flow without spurious oscillations for a wide range of problems and a significant speed up of generally a factor of almost three over the full ENO method.

  14. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  15. Deviation-based spam-filtering method via stochastic approach

    NASA Astrophysics Data System (ADS)

    Lee, Daekyung; Lee, Mi Jin; Kim, Beom Jun

    2018-03-01

    In the presence of a huge number of possible purchase choices, ranks or ratings of items by others often play very important roles for a buyer to make a final purchase decision. Perfectly objective rating is an impossible task to achieve, and we often use an average rating built on how previous buyers estimated the quality of the product. The problem of using a simple average rating is that it can easily be polluted by careless users whose evaluation of products cannot be trusted, and by malicious spammers who try to bias the rating result on purpose. In this letter we suggest how trustworthiness of individual users can be systematically and quantitatively reflected to build a more reliable rating system. We compute the suitably defined reliability of each user based on the user's rating pattern for all products she evaluated. We call our proposed method as the deviation-based ranking, since the statistical significance of each user's rating pattern with respect to the average rating pattern is the key ingredient. We find that our deviation-based ranking method outperforms existing methods in filtering out careless random evaluators as well as malicious spammers.

  16. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    SciTech Connect

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  17. Measuring partial fluorescence yield using filtered detectors.

    PubMed

    Boyko, T D; Green, R J; Moewes, A; Regier, T Z

    2014-07-01

    Typically, X-ray absorption near-edge structure measurements aim to probe the linear attenuation coefficient. These measurements are often carried out using partial fluorescence yield techniques that rely on detectors having photon energy discrimination improving the sensitivity and the signal-to-background ratio of the measured spectra. However, measuring the partial fluorescence yield in the soft X-ray regime with reasonable efficiency requires solid-state detectors, which have limitations due to the inherent dead-time while measuring. Alternatively, many of the available detectors that are not energy dispersive do not suffer from photon count rate limitations. A filter placed in front of one of these detectors will make the energy-dependent efficiency non-linear, thereby changing the responsivity of the detector. It is shown that using an array of filtered X-ray detectors is a viable method for measuring soft X-ray partial fluorescence yield spectra without dead-time. The feasibility of this technique is further demonstrated using α-Fe2O3 as an example and it is shown that this detector technology could vastly improve the photon collection efficiency at synchrotrons and that these detectors will allow experiments to be completed with a much lower photon flux reducing X-ray-induced damage.

  18. [Research on the method of interference correction for nondispersive infrared multi-component gas analysis].

    PubMed

    Sun, You-Wen; Liu, Wen-Qing; Wang, Shi-Mei; Huang, Shu-Hua; Yu, Xiao-Man

    2011-10-01

    A method of interference correction for nondispersive infrared multi-component gas analysis was described. According to the successive integral gas absorption models and methods, the influence of temperature and air pressure on the integral line strengths and linetype was considered, and based on Lorentz detuning linetypes, the absorption cross sections and response coefficients of H2O, CO2, CO, and NO on each filter channel were obtained. The four dimension linear regression equations for interference correction were established by response coefficients, the absorption cross interference was corrected by solving the multi-dimensional linear regression equations, and after interference correction, the pure absorbance signal on each filter channel was only controlled by the corresponding target gas concentration. When the sample cell was filled with gas mixture with a certain concentration proportion of CO, NO and CO2, the pure absorbance after interference correction was used for concentration inversion, the inversion concentration error for CO2 is 2.0%, the inversion concentration error for CO is 1.6%, and the inversion concentration error for NO is 1.7%. Both the theory and experiment prove that the interference correction method proposed for NDIR multi-component gas analysis is feasible.

  19. MODELING REFLECTANCE AND TRANSMITTANCE OF QUARTZ-FIBER FILTER SAMPLES CONTAINING ELEMENTAL CARBON PARTICLES: IMPLICATIONS FOR THERMAL/OPTICAL ANALYSIS. (R831086)

    EPA Science Inventory

    A radiative transfer scheme that considers absorption, scattering, and distribution of light-absorbing elemental carbon (EC) particles collected on a quartz-fiber filter was developed to explain simultaneous filter reflectance and transmittance observations prior to and during...

  20. An R-peak detection method that uses an SVD filter and a search back system.

    PubMed

    Jung, Woo-Hyuk; Lee, Sang-Goog

    2012-12-01

    In this paper, we present a method for detecting the R-peak of an ECG signal by using an singular value decomposition (SVD) filter and a search back system. The ECG signal was detected in two phases: the pre-processing phase and the decision phase. The pre-processing phase consisted of the stages for the SVD filter, Butterworth High Pass Filter (HPF), moving average (MA), and squaring, whereas the decision phase consisted of a single stage that detected the R-peak. In the pre-processing phase, the SVD filter removed noise while the Butterworth HPF eliminated baseline wander. The MA removed the remaining noise of the signal that had gone through the SVD filter to make the signal smooth, and squaring played a role in strengthening the signal. In the decision phase, the threshold was used to set the interval before detecting the R-peak. When the latest R-R interval (RRI), suggested by Hamilton et al., was greater than 150% of the previous RRI, the method of detecting the R-peak in such an interval was modified to be 150% or greater than the smallest interval of the two most latest RRIs. When the modified search back system was used, the error rate of the peak detection decreased to 0.29%, compared to 1.34% when the modified search back system was not used. Consequently, the sensitivity was 99.47%, the positive predictivity was 99.47%, and the detection error was 1.05%. Furthermore, the quality of the signal in data with a substantial amount of noise was improved, and thus, the R-peak was detected effectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-10-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  2. Methods and apparatuses using filter banks for multi-carrier spread-spectrum signals

    DOEpatents

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2014-05-20

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to the synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.

  3. Optical filter including a sub-wavelength periodic structure and method of making

    DOEpatents

    Kaushik, Sumanth; Stallard, Brian R.

    1998-01-01

    An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing.

  4. Optical filter including a sub-wavelength periodic structure and method of making

    DOEpatents

    Kaushik, S.; Stallard, B.R.

    1998-03-10

    An optical filter includes a dielectric layer formed within a resonant optical cavity, with the dielectric layer having formed therein a sub-wavelength periodic structure to define, at least in part, a wavelength for transmission of light through the resonant optical cavity. The sub-wavelength periodic structure can be formed either by removing material from the dielectric layer (e.g. by etching through an electron-beam defined mask), or by altering the composition of the layer (e.g. by ion implantation). Different portions of the dielectric layer can be patterned to form one or more optical interference filter elements having different light transmission wavelengths so that the optical filter can filter incident light according to wavelength and/or polarization. For some embodiments, the optical filter can include a detector element in optical alignment with each optical interference filter element to quantify or measure the filtered light for analysis thereof. The optical filter has applications to spectrometry, colorimetry, and chemical sensing. 17 figs.

  5. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    SciTech Connect

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A

    2017-01-31

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  6. Methods and apparatuses using filter banks for multi-carrier spread spectrum signals

    SciTech Connect

    Moradi, Hussein; Farhang, Behrouz; Kutsche, Carl A.

    2016-06-14

    A transmitter includes a synthesis filter bank to spread a data symbol to a plurality of frequencies by encoding the data symbol on each frequency, apply a common pulse-shaping filter, and apply gains to the frequencies such that a power level of each frequency is less than a noise level of other communication signals within the spectrum. Each frequency is modulated onto a different evenly spaced subcarrier. A demodulator in a receiver converts a radio frequency input to a spread-spectrum signal in a baseband. A matched filter filters the spread-spectrum signal with a common filter having characteristics matched to themore » synthesis filter bank in the transmitter by filtering each frequency to generate a sequence of narrow pulses. A carrier recovery unit generates control signals responsive to the sequence of narrow pulses suitable for generating a phase-locked loop between the demodulator, the matched filter, and the carrier recovery unit.« less

  7. eTACTS: a method for dynamically filtering clinical trial search results.

    PubMed

    Miotto, Riccardo; Jiang, Silis; Weng, Chunhua

    2013-12-01

    Information overload is a significant problem facing online clinical trial searchers. We present eTACTS, a novel interactive retrieval framework using common eligibility tags to dynamically filter clinical trial search results. eTACTS mines frequent eligibility tags from free-text clinical trial eligibility criteria and uses these tags for trial indexing. After an initial search, eTACTS presents to the user a tag cloud representing the current results. When the user selects a tag, eTACTS retains only those trials containing that tag in their eligibility criteria and generates a new cloud based on tag frequency and co-occurrences in the remaining trials. The user can then select a new tag or unselect a previous tag. The process iterates until a manageable number of trials is returned. We evaluated eTACTS in terms of filtering efficiency, diversity of the search results, and user eligibility to the filtered trials using both qualitative and quantitative methods. eTACTS (1) rapidly reduced search results from over a thousand trials to ten; (2) highlighted trials that are generally not top-ranked by conventional search engines; and (3) retrieved a greater number of suitable trials than existing search engines. eTACTS enables intuitive clinical trial searches by indexing eligibility criteria with effective tags. User evaluation was limited to one case study and a small group of evaluators due to the long duration of the experiment. Although a larger-scale evaluation could be conducted, this feasibility study demonstrated significant advantages of eTACTS over existing clinical trial search engines. A dynamic eligibility tag cloud can potentially enhance state-of-the-art clinical trial search engines by allowing intuitive and efficient filtering of the search result space. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Experimental study on emission of VOCs from tanker using hollow fiber membrane absorption method with different absorbents

    NASA Astrophysics Data System (ADS)

    Zhou, J. Y.; Wang, B. F.; Nie, L. H.; Lu, J. X.; Hao, Y. J.; Xu, R. R.

    2018-01-01

    China’s oil dependence is getting higher and higher, 90% of oil import is transported by sea. Tankers will produce a lot of VOCs during loading and unloading, so the prevention of such pollution has become increasingly urgent. The hollow fiber membrane absorption method combined the characteristics of the absorption method for the treatment of high concentration and large flow of VOCs and the advantage of low energy consumption of membrane method. At present, the research on the recovery of oil and gas is relatively few. In this paper, the effect of membrane absorption on the recovery of oil and gas was investigated. The different absorbent affected the oil vapor recovery, the experimental results showed that the performance of absorbent of AbsFOV-97 was better than that of heat conductive oil.

  9. Examination of cryogenic filters for multistage RF filtering in ultralow temperature experiments

    NASA Astrophysics Data System (ADS)

    Zavyalov, V. V.; Chernyaev, S. A.; Shein, K. V.; Shukaleva, A. G.; Arutyunov, K. Yu

    2018-03-01

    Cryo-filters are essential while studying electronic properties of nanoscale structures at very low temperatures. In this report we present the simple measuring methodology and experimental impedance characteristics of customized lumped filters cooled down to 4.2K in the 10 Hz-500 MHz frequency range. In particular, we tested the home-made permalloy-core RL filters, the MurataTMChip Ferrite Bead filter, and the ToshibaTMAmobeadsTMcores. We use the high-frequency generalization of four-terminal sensing method to account for the wiring retardation effects, which are important when working with ultralow temperature systems.

  10. Adaptive marginal median filter for colour images.

    PubMed

    Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor

    2011-01-01

    This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  11. A global method for identifying dependences between helio-geophysical and biological series by filtering the precedents (outliers)

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.; Breus, T. K.; Gurfinkel, Yu. I.; Matveeva, T. A.

    2014-12-01

    A new approach to finding the dependence between heliophysical and meteorological factors and physiological parameters is considered that is based on the preliminary filtering of precedents (outliers). The sought-after dependence is masked by extraneous influences which cannot be taken into account. Therefore, the typically calculated correlation between the external-influence ( x) and physiology ( y) parameters is extremely low and does not allow their interdependence to be conclusively proved. A robust method for removing the precedents (outliers) from the database is proposed that is based on the intelligent sorting of the polynomial curves of possible dependences y( x), followed by filtering out the precedents which are far away from y( x) and optimizing the coefficient of nonlinear correlation between the regular, i.e., remaining, precedents. This optimization problem is shown to be a search for a maximum in the absence of the concept of gradient and requires the use of a genetic algorithm based on the Gray code. The relationships between the various medical and biological parameters and characteristics of the space and terrestrial weather are obtained and verified using the cross-validation method. It is proven that, by filtering out no more than 20% of precedents, it is possible to obtain a nonlinear correlation coefficient of no less than 0.5. A juxtaposition of the proposed method for filtering precedents (outliers) and the least-square method (LSM) for determining the optimal polynomial using multiple independent tests (Monte Carlo method) of models, which are as close as possible to real dependences, has shown that the LSM determination loses much in comparison to the proposed method.

  12. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C

    2012-01-01

    National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number

  13. Implicit Kalman filtering

    NASA Technical Reports Server (NTRS)

    Skliar, M.; Ramirez, W. F.

    1997-01-01

    For an implicitly defined discrete system, a new algorithm for Kalman filtering is developed and an efficient numerical implementation scheme is proposed. Unlike the traditional explicit approach, the implicit filter can be readily applied to ill-conditioned systems and allows for generalization to descriptor systems. The implementation of the implicit filter depends on the solution of the congruence matrix equation (A1)(Px)(AT1) = Py. We develop a general iterative method for the solution of this equation, and prove necessary and sufficient conditions for convergence. It is shown that when the system matrices of an implicit system are sparse, the implicit Kalman filter requires significantly less computer time and storage to implement as compared to the traditional explicit Kalman filter. Simulation results are presented to illustrate and substantiate the theoretical developments.

  14. Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Chen, Jiajia; Zhou, Zigang; Yi, Zao; Ye, Xin

    2018-04-01

    In this paper, we propose a wavelength-tunable absorber consisting of electric split-ring resonators (eSRRs)-shaped graphene arrays deposited on a SiO2/Si substrate in the far-infrared and terahertz regions. The simulation results exhibit that two resonance modes are supported by the structure. In terms of the resonance at longer wavelength, the light absorption declines while the period a or length L increases. However, absorption contrarily improves with enlargement of incident angle under the transverse magnetic (TM) polarization. And in terms of resonance at shorter wavelengths, absorption enhances with increasing length L and incident angle θ. Generally, the light absorption enhances with Fermi level E F of graphene, accompanied by blue shift. The aforementioned results unquestionably provide a distinctive source of inspiration for how to design and manufacture devices related to absorption such as filters, spatial light modulator and sensors.

  15. [Absorption and metabolism of Chuanxiong Rhizoma decoction with multi-component sequential metabolism method].

    PubMed

    Liu, Yang; Luo, Zhi-Qiang; Lv, Bei-Ran; Zhao, Hai-Yu; Dong, Ling

    2016-04-01

    The multiple components in Chinese herbal medicines (CHMS) will experience complex absorption and metabolism before entering the blood system. Previous studies often lay emphasis on the components in blood. However, the dynamic and sequential absorption and metabolism process following multi-component oral administration has not been studied. In this study, the in situ closed-loop method combined with LC-MS techniques were employed to study the sequential process of Chuanxiong Rhizoma decoction (RCD). A total of 14 major components were identified in RCD. Among them, ferulic acid, senkyunolide J, senkyunolide I, senkyunolide F, senkyunolide G, and butylidenephthalide were detected in all of the samples, indicating that the six components could be absorbed into blood in prototype. Butylphthalide, E-ligustilide, Z-ligustilide, cnidilide, senkyunolide A and senkyunolide Q were not detected in all the samples, suggesting that the six components may not be absorbed or metabolized before entering the hepatic portal vein. Senkyunolide H could be metabolized by the liver, while senkyunolide M could be metabolized by both liver and intestinal flora. This study clearly demonstrated the changes in the absorption and metabolism process following multi-component oral administration of RCD, so as to convert the static multi-component absorption process into a comprehensive dynamic and continuous absorption and metabolism process. Copyright© by the Chinese Pharmaceutical Association.

  16. A fast image retrieval method based on SVM and imbalanced samples in filtering multimedia message spam

    NASA Astrophysics Data System (ADS)

    Chen, Zhang; Peng, Zhenming; Peng, Lingbing; Liao, Dongyi; He, Xin

    2011-11-01

    With the swift and violent development of the Multimedia Messaging Service (MMS), it becomes an urgent task to filter the Multimedia Message (MM) spam effectively in real-time. For the fact that most MMs contain images or videos, a method based on retrieving images is given in this paper for filtering MM spam. The detection method used in this paper is a combination of skin-color detection, texture detection, and face detection, and the classifier for this imbalanced problem is a very fast multi-classification combining Support vector machine (SVM) with unilateral binary decision tree. The experiments on 3 test sets show that the proposed method is effective, with the interception rate up to 60% and the average detection time for each image less than 1 second.

  17. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the

  18. Absorption-emission optrode and methods of use thereof

    DOEpatents

    Hirschfeld, T.B.

    1990-05-29

    A method and apparatus are described for monitoring the physical and chemical properties of a sample fluid by measuring an optical signal generated by a fluorescent substance and modulated by an absorber substance. The emission band of the fluorescent substance overlaps the absorption band of the absorber substance, and the degree of overlap is dependent on the physical and chemical properties of the sample fluid. The fluorescent substance and absorber substance are immobilized on a substrate so that an effective number of molecules thereof are sufficiently close for resonant energy transfer to occur, thereby providing highly efficient modulation of the fluorescent emissions of the fluorescent substance by the absorber substance. 4 figs.

  19. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  20. An Innovations-Based Noise Cancelling Technique on Inverse Kepstrum Whitening Filter and Adaptive FIR Filter in Beamforming Structure

    PubMed Central

    Jeong, Jinsoo

    2011-01-01

    This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure. PMID:22163987

  1. BMP FILTERS: UPFLOW VS. DOWNFLOW

    EPA Science Inventory

    Filtration methods have been found to be effective in reducing pollutant levels in stormwater. The main drawback of these methods is that the filters get clogged frequently and require periodical maintenance. In stormwater treatment, because of the cost of pumping, the filters ar...

  2. Advances in analytical methods and occurrence of organic UV-filters in the environment--A review.

    PubMed

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2015-09-01

    UV-filters are a group of compounds designed mainly to protect skin against UVA and UVB radiation, but they are also included in plastics, furniture, etc., to protect products from light damage. Their massive use in sunscreens for skin protection has been increasing due to the awareness of the chronic and acute effects of UV radiation. Some organic UV-filters have raised significant concerns in the past few years for their continuous usage, persistent input and potential threat to ecological environment and human health. UV-filters end up in wastewater and because wastewater treatment plants are not efficient in removing them, lipophilic compounds tend to sorb onto sludge and hydrophilics end up in river water, contaminating the existing biota. To better understand the risk associated with UV-filters in the environment a thorough review regarding their physicochemical properties, toxicity and environmental degradation, analytical methods and their occurrence was conducted. Higher UV-filter concentrations were found in rivers, reaching 0.3mg/L for the most studied family, the benzophenone derivatives. Concentrations in the ng to μg/L range were also detected for the p-aminobenzoic acid, cinnamate, crylene and benzoyl methane derivatives in lake and sea water. Although at lower levels (few ng/L), UV-filters were also found in tap and groundwater. Swimming pool water is also a sink for UV-filters and its chlorine by-products, at the μg/L range, highlighting the benzophenone and benzimidazole derivatives. Soils and sediments are not frequently studied, but concentrations in the μg/L range have already been found especially for the benzophenone and crylene derivatives. Aquatic biota is frequently studied and UV-filters are found in the ng/g-dw range with higher values for fish and mussels. It has been concluded that more information regarding UV-filter degradation studies both in water and sediments is necessary and environmental occurrences should be monitored more

  3. Motion artifact detection and correction in functional near-infrared spectroscopy: a new hybrid method based on spline interpolation method and Savitzky-Golay filtering.

    PubMed

    Jahani, Sahar; Setarehdan, Seyed K; Boas, David A; Yücel, Meryem A

    2018-01-01

    Motion artifact contamination in near-infrared spectroscopy (NIRS) data has become an important challenge in realizing the full potential of NIRS for real-life applications. Various motion correction algorithms have been used to alleviate the effect of motion artifacts on the estimation of the hemodynamic response function. While smoothing methods, such as wavelet filtering, are excellent in removing motion-induced sharp spikes, the baseline shifts in the signal remain after this type of filtering. Methods, such as spline interpolation, on the other hand, can properly correct baseline shifts; however, they leave residual high-frequency spikes. We propose a hybrid method that takes advantage of different correction algorithms. This method first identifies the baseline shifts and corrects them using a spline interpolation method or targeted principal component analysis. The remaining spikes, on the other hand, are corrected by smoothing methods: Savitzky-Golay (SG) filtering or robust locally weighted regression and smoothing. We have compared our new approach with the existing correction algorithms in terms of hemodynamic response function estimation using the following metrics: mean-squared error, peak-to-peak error ([Formula: see text]), Pearson's correlation ([Formula: see text]), and the area under the receiver operator characteristic curve. We found that spline-SG hybrid method provides reasonable improvements in all these metrics with a relatively short computational time. The dataset and the code used in this study are made available online for the use of all interested researchers.

  4. Switching non-local median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2015-06-01

    This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.

  5. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    ERIC Educational Resources Information Center

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  6. A New Method to Cancel RFI---The Adaptive Filter

    NASA Astrophysics Data System (ADS)

    Bradley, R.; Barnbaum, C.

    1996-12-01

    An increasing amount of precious radio frequency spectrum in the VHF, UHF, and microwave bands is being utilized each year to support new commercial and military ventures, and all have the potential to interfere with radio astronomy observations. Some radio spectral lines of astronomical interest occur outside the protected radio astronomy bands and are unobservable due to heavy interference. Conventional approaches to deal with RFI include legislation, notch filters, RF shielding, and post-processing techniques. Although these techniques are somewhat successful, each suffers from insufficient interference cancellation. One concept of interference excision that has not been used before in radio astronomy is adaptive interference cancellation. The concept of adaptive interference canceling was first introduced in the mid-1970s as a way to reduce unwanted noise in low frequency (audio) systems. Examples of such systems include the canceling of maternal ECG in fetal electrocardiography and the reduction of engine noise in the passenger compartment of automobiles. Only recently have high-speed digital filter chips made adaptive filtering possible in a bandwidth as large a few megahertz, finally opening the door to astronomical uses. The system consists of two receivers: the main beam of the radio telescope receives the desired signal corrupted by RFI coming in the sidelobes, and the reference antenna receives only the RFI. The reference antenna is processed using a digital adaptive filter and then subtracted from the signal in the main beam, thus producing the system output. The weights of the digital filter are adjusted by way of an algorithm that minimizes, in a least-squares sense, the power output of the system. Through an adaptive-iterative process, the interference canceler will lock onto the RFI and the filter will adjust itself to minimize the effect of the RFI at the system output. We are building a prototype 100 MHz receiver and will measure the cancellation

  7. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  8. Functionalizing a Tapered Microcavity as a Gas Cell for On-Chip Mid-Infrared Absorption Spectroscopy

    PubMed Central

    Mandon, Julien; Harren, Frans J. M.; Wolffenbuttel, Reinoud F.

    2017-01-01

    Increasing demand for field instruments designed to measure gas composition has strongly promoted the development of robust, miniaturized and low-cost handheld absorption spectrometers in the mid-infrared. Efforts thus far have focused on miniaturizing individual components. However, the optical absorption path that the light beam travels through the sample defines the length of the gas cell and has so far limited miniaturization. Here, we present a functionally integrated linear variable optical filter and gas cell, where the sample to be measured is fed through the resonator cavity of the filter. By using multiple reflections from the mirrors on each side of the cavity, the optical absorption path is elongated from the physical μm-level to the effective mm-level. The device is batch-fabricated at the wafer level in a CMOS-compatible approach. The optical performance is analyzed using the Fizeau interferometer model and demonstrated with actual gas measurements. PMID:28878167

  9. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  10. Cryogenic filter method produces super-pure helium and helium isotopes

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.

    1964-01-01

    Helium is purified when cooled in a low pressure environment until it becomes superfluid. The liquid helium is then filtered through iron oxide particles. Heating, cooling and filtering processes continue until the purified liquid helium is heated to a gas.

  11. The research of radar target tracking observed information linear filter method

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  12. The Application of the FDTD Method to Millimeter-Wave Filter Circuits Including the Design and Analysis of a Compact Coplanar

    NASA Technical Reports Server (NTRS)

    Oswald, J. E.; Siegel, P. H.

    1994-01-01

    The finite difference time domain (FDTD) method is applied to the analysis of microwave, millimeter-wave and submillimeter-wave filter circuits. In each case, the validity of this method is confirmed by comparison with measured data. In addition, the FDTD calculations are used to design a new ultra-thin coplanar-strip filter for feeding a THz planar-antenna mixer.

  13. FDTD method for laser absorption in metals for large scale problems.

    PubMed

    Deng, Chun; Ki, Hyungson

    2013-10-21

    The FDTD method has been successfully used for many electromagnetic problems, but its application to laser material processing has been limited because even a several-millimeter domain requires a prohibitively large number of grids. In this article, we present a novel FDTD method for simulating large-scale laser beam absorption problems, especially for metals, by enlarging laser wavelength while maintaining the material's reflection characteristics. For validation purposes, the proposed method has been tested with in-house FDTD codes to simulate p-, s-, and circularly polarized 1.06 μm irradiation on Fe and Sn targets, and the simulation results are in good agreement with theoretical predictions.

  14. Quantitative phase-filtered wavelength-modulated differential photoacoustic radar tumor hypoxia imaging toward early cancer detection.

    PubMed

    Dovlo, Edem; Lashkari, Bahman; Soo Sean Choi, Sung; Mandelis, Andreas; Shi, Wei; Liu, Fei-Fei

    2017-09-01

    Overcoming the limitations of conventional linear spectroscopy used in multispectral photoacoustic imaging, wherein a linear relationship is assumed between the absorbed optical energy and the absorption spectra of the chromophore at a specific location, is crucial for obtaining accurate spatially-resolved quantitative functional information by exploiting known chromophore-specific spectral characteristics. This study introduces a non-invasive phase-filtered differential photoacoustic technique, wavelength-modulated differential photoacoustic radar (WM-DPAR) imaging that addresses this issue by eliminating the effect of the unknown wavelength-dependent fluence. It employs two laser wavelengths modulated out-of-phase to significantly suppress background absorption while amplifying the difference between the two photoacoustic signals. This facilitates pre-malignant tumor identification and hypoxia monitoring, as minute changes in total hemoglobin concentration and hemoglobin oxygenation are detectable. The system can be tuned for specific applications such as cancer screening and SO 2 quantification by regulating the amplitude ratio and phase shift of the signal. The WM-DPAR imaging of a head and neck carcinoma tumor grown in the thigh of a nude rat demonstrates the functional PA imaging of small animals in vivo. The PA appearance of the tumor in relation to tumor vascularity is investigated by immunohistochemistry. Phase-filtered WM-DPAR imaging is also illustrated, maximizing quantitative SO 2 imaging fidelity of tissues. Oxygenation levels within a tumor grown in the thigh of a nude rat using the two-wavelength phase-filtered differential PAR method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase.

    PubMed

    Zhu, Xiaoqi; Chen, Feiya; Peng, Huanfa; Chen, Zhangyuan

    2017-04-17

    We propose and demonstrate a novel optical frequency comb (OFC) based microwave photonic filter which is able to realize arbitrary filtering shape with linear phase response. The shape of filter response is software programmable using finite impulse response (FIR) filter design method. By shaping the OFC spectrum using a programmable waveshaper, we can realize designed amplitude of FIR taps. Positive and negative sign of FIR taps are achieved by balanced photo-detection. The double sideband (DSB) modulation and symmetric distribution of filter taps are used to maintain the linear phase condition. In the experiment, we realize a fully programmable filter in the range from DC to 13.88 GHz. Four basic types of filters (lowpass, highpass, bandpass and bandstop) with different bandwidths, cut-off frequencies and central frequencies are generated. Also a triple-passband filter is realized in our experiment. To the best of our knowledge, it is the first demonstration of a programmable multiple passband MPF with linear phase response. The experiment shows good agreement with the theoretical result.

  16. Discrimination of Nosiheptide Sources with Plasmonic Filters.

    PubMed

    Wang, Delong; Ni, Haibin; Wang, Zhongqiang; Liu, Bing; Chen, Hongyuan; Gu, Zhongze; Zhao, Xiangwei

    2017-04-19

    Bacteria identification plays a vital role in the field of clinical diagnosis, food industry, and environmental monitoring, which is in great demand of point of care detection methods. In this paper, in order to discriminate the source of nosiheptide product, a plasmonic filter was fabricated to filtrate, capture and identify Streptomycete spores with Surface enhanced Raman Scattering (SERS). Since the plasmonic filter was derived from self-assembled photonic crystal coated with silver, the plasmonic "hot spots" on the filter surface was distributed evenly in a fare good density and the SERS enhancement factor was 7.49 × 10 7 . With this filter, a stain- and PCR-free detection was realized with only 5 μL sample solution and 5 min in a manner of "filtration and measure". Comparison to traditional Gram stain method and silver-plated nylon filter membrane, the plasmonic filter showed good sensitivity and efficiency in the discrimination of nosiheptide prepared with chemical and biological methods. It is anticipated that this simple SERS detection method with plasmonic filter has promising potentials in food safety, environmental, or clinical applications.

  17. Designed microstructure based on color filter and metallic nanoslit for multiband spectral compatible control

    NASA Astrophysics Data System (ADS)

    Zhan, Zhigang; Han, Yuge

    2018-01-01

    Controlling the spectral characteristics by regulating the geometry of microstructure has become an effective method to meet the requirements of various applications. To mediate the spectral characteristics, metallic subwavelength slits with different structures and color filters consisting of diverse materials were discussed, and then a designed microstructure composed of color filter and metallic slits, which were surrounded by grooves, was put forward for a compatible effect of controlling the spectral characteristics. Afterward, the spectral characteristics of the proposed structure were simulated by finite-difference time-domain method in the wavelength range of 300 to 10,000 nm. Additionally, the effects of geometric parameters on the spectral characteristics were studied. The results show that the presented microstructure can reflect a monochromatic color at the wavelength of 600 nm and its reflectance is ˜40%. The average absorptance near the wavelength of 1060 nm is more than 95%, and the average reflectance in the infrared band exceeds 80%. In conclusion, the compatible spectrum control in three bands (i.e., visible, near-infrared, and mid-infrared) was realized.

  18. Investigation on the kurtosis filter and the derivation of convolutional sparse filter for impulsive signature enhancement

    NASA Astrophysics Data System (ADS)

    Jia, Xiaodong; Zhao, Ming; Di, Yuan; Jin, Chao; Lee, Jay

    2017-01-01

    Minimum Entropy Deconvolution (MED) filter, which is a non-parametric approach for impulsive signature detection, has been widely studied recently. Although the merits of the MED filter are manifold, this method tends to over highlight the dominant peaks and its performance becomes less stable when strong noise exists. In order to better understand the behavior of the MED filter, this study first investigated the mathematical fundamentals of the MED filter and then explained the reason why the MED filter tends to over highlight the dominant peaks. In order to pursue finer solutions for weak impulsive signature enhancement, the Convolutional Sparse Filter (CSF) is originally proposed in this work and the derivation of the CSF is presented in details. The superiority of the proposed CSF over the MED filter is validated by both simulated data and experimental data. The results demonstrate that CSF is an effective method for impulsive signature enhancement that could be applied in rotating machines for incipient fault detection.

  19. Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution.

    PubMed

    Bok, Michael J; Porter, Megan L; Cronin, Thomas W

    2015-07-01

    Stomatopod crustaceans employ unique ultraviolet (UV) optical filters in order to tune the spectral sensitivities of their UV-sensitive photoreceptors. In the stomatopod species Neogonodactylus oerstedii, we previously found four filter types, produced by five distinct mycosporine-like amino acid pigments in the crystalline cones of their specialized midband ommatidial facets. This UV-spectral tuning array produces receptors with at least six distinct spectral sensitivities, despite expressing only two visual pigments. Here, we present a broad survey of these UV filters across the stomatopod order, examining their spectral absorption properties in 21 species from seven families in four superfamilies. We found that UV filters are present in three of the four superfamilies, and evolutionary character reconstruction implies that at least one class of UV filter was present in the ancestor of all modern stomatopods. Additionally, postlarval stomatopods were observed to produce the UV filters simultaneously alongside development of the adult eye. The absorbance properties of the filters are consistent within a species; however, between species we found a great deal of diversity, both in the number of filters and in their spectral absorbance characteristics. This diversity correlates with the habitat depth ranges of these species, suggesting that species living in shallow, UV-rich environments may tune their UV spectral sensitivities more aggressively. We also found additional, previously unrecognized UV filter types in the crystalline cones of the peripheral eye regions of some species, indicating the possibility for even greater stomatopod visual complexity than previously thought. © 2015. Published by The Company of Biologists Ltd.

  20. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure.

    PubMed

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-05-11

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures.

  1. On-Line Multi-Damage Scanning Spatial-Wavenumber Filter Based Imaging Method for Aircraft Composite Structure

    PubMed Central

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Bao, Qiao

    2017-01-01

    Structural health monitoring (SHM) of aircraft composite structure is helpful to increase reliability and reduce maintenance costs. Due to the great effectiveness in distinguishing particular guided wave modes and identifying the propagation direction, the spatial-wavenumber filter technique has emerged as an interesting SHM topic. In this paper, a new scanning spatial-wavenumber filter (SSWF) based imaging method for multiple damages is proposed to conduct on-line monitoring of aircraft composite structures. Firstly, an on-line multi-damage SSWF is established, including the fundamental principle of SSWF for multiple damages based on a linear piezoelectric (PZT) sensor array, and a corresponding wavenumber-time imaging mechanism by using the multi-damage scattering signal. Secondly, through combining the on-line multi-damage SSWF and a PZT 2D cross-shaped array, an image-mapping method is proposed to conduct wavenumber synthesis and convert the two wavenumber-time images obtained by the PZT 2D cross-shaped array to an angle-distance image, from which the multiple damages can be directly recognized and located. In the experimental validation, both simulated multi-damage and real multi-damage introduced by repeated impacts are performed on a composite plate structure. The maximum localization error is less than 2 cm, which shows good performance of the multi-damage imaging method. Compared with the existing spatial-wavenumber filter based damage evaluation methods, the proposed method requires no more than the multi-damage scattering signal and can be performed without depending on any wavenumber modeling or measuring. Besides, this method locates multiple damages by imaging instead of the geometric method, which helps to improve the signal-to-noise ratio. Thus, it can be easily applied to on-line multi-damage monitoring of aircraft composite structures. PMID:28772879

  2. A dense grid of narrow bandpass steep edge filters for the JST/T250 telescope: summary of results

    NASA Astrophysics Data System (ADS)

    Brauneck, U.; Sprengard, R.; Bourquin, S.; Marín-Franch, A.

    2017-09-01

    On the Javalambre mountain in Spain, the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA) has setup a new wide field telescope, the JST/T250: a 2.55 m telescope with a plate scale of 22.67"/mm and a 3° diameter field of view. To conduct a photometric sky survey, a large format mosaic camera made of 14 individual CCDs is used in combination with filter trays containing 14 filters each of theses 101.7 x 96.5 mm in size. For this instrument, SCHOTT manufactured 56 specially designed steep edged bandpass interference filters which were recently completed. The filter set consists of bandpass filters in the range between 348,5 nm and 910 nm and a longpass filter at 915 nm. Most of the filters have FWHM of 14.5 nm and a blocking between 250 and 1050 nm with optical density of OD5. Absorptive color glass substrates in combination with interference filters were used to minimize residual reflection in order to avoid ghost images. Inspite of containing absorptive elements, the filters show the maximum possible transmission. This was achieved by using magnetron sputtering for the filter coating process. The most important requirement for the continuous photometric survey is the tight tolerancing of the central wavelengths and FWHM of the filters. This insures each bandpass having a defined overlap with its neighbors. In addition, the blocking of the filters is better than OD5 in the range 250-1050 nm. A high image quality required a low transmitted wavefront error (filters. λλ

  3. Water Filters

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Seeking to find a more effective method of filtering potable water that was highly contaminated, Mike Pedersen, founder of Western Water International, learned that NASA had conducted extensive research in methods of purifying water on board manned spacecraft. The key is Aquaspace Compound, a proprietary WWI formula that scientifically blends various types of glandular activated charcoal with other active and inert ingredients. Aquaspace systems remove some substances; chlorine, by atomic adsorption, other types of organic chemicals by mechanical filtration and still others by catalytic reaction. Aquaspace filters are finding wide acceptance in industrial, commercial, residential and recreational applications in the U.S. and abroad.

  4. Monitoring Telluric Water Absorption with CAMAL

    NASA Astrophysics Data System (ADS)

    Baker, Ashley; Blake, Cullen; Sliski, David

    2017-01-01

    Ground-based observations are severely limited by telluric water vapor absorption features, which are highly variable in time and significantly complicate both spectroscopy and photometry in the near-infrared (NIR). To achieve the stability required to study Earth-sized exoplanets, monitoring the precipitable water vapor (PWV) becomes necessary to mitigate the impact of telluric lines on radial velocity measurements and transit light curves. To address this issue, we present the Camera for the Automatic Monitoring of Atmospheric Lines (CAMAL), a stand-alone, inexpensive 6-inch aperture telescope dedicated to measuring PWV at the Whipple Observatory. CAMAL utilizes three NIR narrowband filters to trace the amount of atmospheric water vapor affecting simultaneous observations with the MINiature Exoplanet Radial Velocity Array (MINERVA) and MINERVA-Red telescopes. We present the current design of CAMAL, discuss our calibration methods, and show PWV measurements taken with CAMAL compared to those of a nearby GPS water vapor monitor.

  5. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    PubMed

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the

  6. A Comparative Study of Different Deblurring Methods Using Filters

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Kavitha, S.

    2011-12-01

    This paper attempts to undertake the study of Restored Gaussian Blurred Images by using four types of techniques of deblurring image viz., Wiener filter, Regularized filter, Lucy Richardson deconvolution algorithm and Blind deconvolution algorithm with an information of the Point Spread Function (PSF) corrupted blurred image. The same is applied to the scanned image of seven months baby in the womb and they are compared with one another, so as to choose the best technique for restored or deblurring image. This paper also attempts to undertake the study of restored blurred image using Regualr Filter(RF) with no information about the Point Spread Function (PSF) by using the same four techniques after executing the guess of the PSF. The number of iterations and the weight threshold of it to choose the best guesses for restored or deblurring image of these techniques are determined.

  7. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  8. Computational Design of Tunable UV-Vis-IR Filters Based on Silver Nanoparticle Arrays

    NASA Astrophysics Data System (ADS)

    Waters, Michael; Shi, Guangsha; Kioupakis, Emmanouil

    We propose design strategies to develop selective optical filters in the UV-Vis-IR spectrum using the surface plasmon response of silver nanoparticle arrays. Our finite-difference time-domain simulations allow us to rapidly evaluate many nanostructures comprising simple geometries while varying their shape, height, width, and spacing. Our results allow us to identify trends in the filtering spectra as well as the relative amount of absorption and reflection. Optical filtering with nanoparticles is applicable to any transparent substrate and can be easily adapted to existing manufacturing processes while keeping the total cost of materials low. This work was supported by Guardian Industries Corp.

  9. Performance index: A method for quantitative evaluation of filters used in clinical SPECT

    SciTech Connect

    Contino, J.; Touya, J.J.; Corbus, H.F.

    1984-01-01

    The purpose of this study was to design a method for optimal filter selection during the reconstruction of clinical SPECT images. Hamming, Bartlett, Parzen and Butterworth filters were evaluated at different cutoff frequencies when applied to reconstruction of the Jaszczak phantom and liver SPECTs. The phantom filled with 6 mCi of Tc-99m was imaged following 4 different protocols which varied in matrix sizes (128 x 128 or 64 x 64) and in number of steps (128 or 64). Total imaging time in the 4 protocols was 24 minutes. A total of 160 reconstructions were analyzed. Liver SPECTs from 2 patientsmore » with small metastatic lesions from colon Ca were similarly studied. An ECT Performance Index (ECT PI) was defined as the product of the contrast efficiency function (ECT C) and uniformity (ECT U). ECT C as a function of the radius was measured following Rollo's approach. ECT U was measured as the ratio between min. and max. counts per pixel in a known uniform region. ECT PI was computed on a slice through the void spheres region of the phantom. In liver SPECTs the ECT U was measured over the spleen. The most favorable ECT PI (0.35, radius 7.9 mm) was obtained with images in 128 x 128 matrices, 128 steps, processed with a Butterworth cutoff frequency of 0.19, filter order 4. When images were acquired in 64 x 64 matrices using 64 steps the ECT PI was lower and influenced to a lesser degree by both choice of filter and cutoff frequency. Results in the two liver SPECT examinations were parallel to those found in the phantom studies confirming the clinical usefulness of the ECT PI in the evaluation of filters for reconstruction of SPECT images.« less

  10. Multi-wavelength differential absorption measurements of chemical species

    NASA Astrophysics Data System (ADS)

    Brown, David M.

    algorithms to select filters for use with a MWIR (midwave infrared) imager for detection of plumes of methane, propane, gasoline vapor, and diesel vapor. These simulations were prepared for system designs operating on a down-looking airborne platform. A data analysis algorithm for use with a hydrocarbon imaging system extracts regions of interest from the field-of-view for further analysis. An error analysis is presented for a scanning DAS (Differential Absorption Spectroscopy) lidar system operating from an airborne platform that uses signals scattered from topographical targets. The analysis is built into a simulation program for testing real-time data processing approaches, and to gauge the effects on measurements of path column concentration due to ground reflectivity variations. An example simulation provides a description of the data expected for methane. Several accomplishments of this research include: (1) A new lidar technique for detection and measurement of concentrations of atmospheric species is demonstrated that uses a low-power supercontinuum source. (2) A new multi-wavelength algorithm, which demonstrates excellent performance, is applied to processing spectroscopic data collected by a longpath supercontinuum laser absorption instrument. (3) A simulation program for topographical scattering of a scanning DAS system is developed, and it is validated with aircraft data from the ITT Industries ANGEL (Airborne Natural Gas Emission Lidar) 3-lambda lidar system. (4) An error analysis procedure for DAS is developed, and is applied to measurements and simulations for an airborne platform. (5) A method for filter selection is developed and tested for use with an infrared imager that optimizes the detection for various hydrocarbons that absorb in the midwave infrared. (6) The development of a Fourier analysis algorithm is described that allows a user to rapidly separate hydrocarbon plumes from the background features in the field of view of an imaging system.

  11. Method of fabricating a scalable nanoporous membrane filter

    SciTech Connect

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less

  12. Cancer diagnosis marker extraction for soft tissue sarcomas based on gene expression profiling data by using projective adaptive resonance theory (PART) filtering method

    PubMed Central

    Takahashi, Hiro; Nemoto, Takeshi; Yoshida, Teruhiko; Honda, Hiroyuki; Hasegawa, Tadashi

    2006-01-01

    Background Recent advances in genome technologies have provided an excellent opportunity to determine the complete biological characteristics of neoplastic tissues, resulting in improved diagnosis and selection of treatment. To accomplish this objective, it is important to establish a sophisticated algorithm that can deal with large quantities of data such as gene expression profiles obtained by DNA microarray analysis. Results Previously, we developed the projective adaptive resonance theory (PART) filtering method as a gene filtering method. This is one of the clustering methods that can select specific genes for each subtype. In this study, we applied the PART filtering method to analyze microarray data that were obtained from soft tissue sarcoma (STS) patients for the extraction of subtype-specific genes. The performance of the filtering method was evaluated by comparison with other widely used methods, such as signal-to-noise, significance analysis of microarrays, and nearest shrunken centroids. In addition, various combinations of filtering and modeling methods were used to extract essential subtype-specific genes. The combination of the PART filtering method and boosting – the PART-BFCS method – showed the highest accuracy. Seven genes among the 15 genes that are frequently selected by this method – MIF, CYFIP2, HSPCB, TIMP3, LDHA, ABR, and RGS3 – are known prognostic marker genes for other tumors. These genes are candidate marker genes for the diagnosis of STS. Correlation analysis was performed to extract marker genes that were not selected by PART-BFCS. Sixteen genes among those extracted are also known prognostic marker genes for other tumors, and they could be candidate marker genes for the diagnosis of STS. Conclusion The procedure that consisted of two steps, such as the PART-BFCS and the correlation analysis, was proposed. The results suggest that novel diagnostic and therapeutic targets for STS can be extracted by a procedure that includes

  13. Dual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study

    PubMed Central

    Peyrodie, Laurent; Szurhaj, William; Bolo, Nicolas; Pinti, Antonio; Gallois, Philippe

    2014-01-01

    Muscle artifacts constitute one of the major problems in electroencephalogram (EEG) examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP) to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP) method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA) method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings. PMID:25298967

  14. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.

    PubMed

    Wear, Keith A

    2010-10-01

    The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.

  15. Method validation using weighted linear regression models for quantification of UV filters in water samples.

    PubMed

    da Silva, Claudia Pereira; Emídio, Elissandro Soares; de Marchi, Mary Rosa Rodrigues

    2015-01-01

    This paper describes the validation of a method consisting of solid-phase extraction followed by gas chromatography-tandem mass spectrometry for the analysis of the ultraviolet (UV) filters benzophenone-3, ethylhexyl salicylate, ethylhexyl methoxycinnamate and octocrylene. The method validation criteria included evaluation of selectivity, analytical curve, trueness, precision, limits of detection and limits of quantification. The non-weighted linear regression model has traditionally been used for calibration, but it is not necessarily the optimal model in all cases. Because the assumption of homoscedasticity was not met for the analytical data in this work, a weighted least squares linear regression was used for the calibration method. The evaluated analytical parameters were satisfactory for the analytes and showed recoveries at four fortification levels between 62% and 107%, with relative standard deviations less than 14%. The detection limits ranged from 7.6 to 24.1 ng L(-1). The proposed method was used to determine the amount of UV filters in water samples from water treatment plants in Araraquara and Jau in São Paulo, Brazil. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Water washable stainless steel HEPA filter

    DOEpatents

    Phillips, Terrance D.

    2001-01-01

    The invention is a high efficiency particulate (HEPA) filter apparatus and system, and method for assaying particulates. The HEPA filter provides for capture of 99.99% or greater of particulates from a gas stream, with collection of particulates on the surface of the filter media. The invention provides a filter system that can be cleaned and regenerated in situ.

  17. Advanced Sine Wave Modulation of Continuous Wave Laser System for Atmospheric CO2 Differential Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.

    2014-01-01

    NASA Langley Research Center in collaboration with ITT Exelis have been experimenting with Continuous Wave (CW) laser absorption spectrometer (LAS) as a means of performing atmospheric CO2 column measurements from space to support the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission.Because range resolving Intensity Modulated (IM) CW lidar techniques presented here rely on matched filter correlations, autocorrelation properties without side lobes or other artifacts are highly desirable since the autocorrelation function is critical for the measurements of lidar return powers, laser path lengths, and CO2 column amounts. In this paper modulation techniques are investigated that improve autocorrelation properties. The modulation techniques investigated in this paper include sine waves modulated by maximum length (ML) sequences in various hardware configurations. A CW lidar system using sine waves modulated by ML pseudo random noise codes is described, which uses a time shifting approach to separate channels and make multiple, simultaneous online/offline differential absorption measurements. Unlike the pure ML sequence, this technique is useful in hardware that is band pass filtered as the IM sine wave carrier shifts the main power band. Both amplitude and Phase Shift Keying (PSK) modulated IM carriers are investigated that exibit perfect autocorrelation properties down to one cycle per code bit. In addition, a method is presented to bandwidth limit the ML sequence based on a Gaussian filter implemented in terms of Jacobi theta functions that does not seriously degrade the resolution or introduce side lobes as a means of reducing aliasing and IM carrier bandwidth.

  18. Advanced Filter Technology For Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Castillon, Erick

    2015-01-01

    The Scrubber System focuses on using HEPA filters and carbon filtration to purify the exhaust of a Nuclear Thermal Propulsion engine of its aerosols and radioactive particles; however, new technology may lend itself to alternate filtration options, which may lead to reduction in cost while at the same time have the same filtering, if not greater, filtering capabilities, as its predecessors. Extensive research on various types of filtration methods was conducted with only four showing real promise: ionization, cyclonic separation, classic filtration, and host molecules. With the four methods defined, more research was needed to find the devices suitable for each method. Each filtration option was matched with a device: cyclonic separators for the method of the same name, electrostatic separators for ionization, HEGA filters, and carcerands for the host molecule method. Through many hours of research, the best alternative for aerosol filtration was determined to be the electrostatic precipitator because of its high durability against flow rate and its ability to cleanse up to 99.99% of contaminants as small as 0.001 micron. Carcerands, which are the only alternative to filtering radioactive particles, were found to be non-existent commercially because of their status as a "work in progress" at research institutions. Nevertheless, the conclusions after the research were that HEPA filters is recommended as the best option for filtering aerosols and carbon filtration is best for filtering radioactive particles.

  19. Dense grid sibling frames with linear phase filters

    NASA Astrophysics Data System (ADS)

    Abdelnour, Farras

    2013-09-01

    We introduce new 5-band dyadic sibling frames with dense time-frequency grid. Given a lowpass filter satisfying certain conditions, the remaining filters are obtained using spectral factorization. The analysis and synthesis filterbanks share the same lowpass and bandpass filters but have different and oversampled highpass filters. This leads to wavelets approximating shift-invariance. The filters are FIR, have linear phase, and the resulting wavelets have vanishing moments. The filters are designed using spectral factorization method. The proposed method leads to smooth limit functions with higher approximation order, and computationally stable filterbanks.

  20. a New Broadband Cavity Enhanced Frequency Comb Spectroscopy Technique Using GHz Vernier Filtering.

    NASA Astrophysics Data System (ADS)

    Morville, Jérôme; Rutkowski, Lucile; Dobrev, Georgi; Crozet, Patrick

    2015-06-01

    We present a new approach to Cavity Enhanced - Direct Frequency Comb Spectroscopy where the full emission bandwidth of a Titanium:Sapphire laser is exploited at GHz resolution. The technique is based on a low-resolution Vernier filtering obtained with an appreciable -actively stabilized- mismatch between the cavity Free Spectral Range and the laser repetition rate, using a diffraction grating and a split-photodiode. This particular approach provides an immunity to frequency-amplitude noise conversion, reaching an absorption baseline noise in the 10-9 cm-1 range with a cavity finesse of only 3000. Spectra covering 1800 cm-1 (˜ 55 THz) are acquired in recording times of about 1 second, providing an absorption figure of merit of a few 10-11 cm-1/√{Hz}. Initially tested with ambient air, we report progress in using the Vernier frequency comb method with a discharge source of small radicals. Rutkowski et al, Opt. Lett., 39(23)2014

  1. An efficient interior-point algorithm with new non-monotone line search filter method for nonlinear constrained programming

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Liu, Xinggao; Zhang, Zeyin

    2017-02-01

    An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.

  2. Sintered composite filter

    DOEpatents

    Bergman, W.

    1986-05-02

    A particulate filter medium formed of a sintered composite of 0.5 micron diameter quartz fibers and 2 micron diameter stainless steel fibers is described. Preferred composition is about 40 vol.% quartz and about 60 vol.% stainless steel fibers. The media is sintered at about 1100/sup 0/C to bond the stainless steel fibers into a cage network which holds the quartz fibers. High filter efficiency and low flow resistance are provided by the smaller quartz fibers. High strength is provided by the stainless steel fibers. The resulting media has a high efficiency and low pressure drop similar to the standard HEPA media, with tensile strength at least four times greater, and a maximum operating temperature of about 550/sup 0/C. The invention also includes methods to form the composite media and a HEPA filter utilizing the composite media. The filter media can be used to filter particles in both liquids and gases.

  3. Influence of hydrophobic surface treatment toward performance of air filter

    NASA Astrophysics Data System (ADS)

    Shahfiq Zulkifli, Nazrul; Zaini Yunos, Muhamad; Ahmad, Azlinnorazia; Harun, Zawati; Akhair, Siti Hajar Mohd; Adibah Raja Ahmad, Raja; Hafeez Azhar, Faiz; Rashid, Abdul Qaiyyum Abd; Ismail, Al Emran

    2017-08-01

    This study investigated the performance of hydrophobic surface treatment by using silica aerogel powder via spray coating techniques. Hydrophobic properties were determined by measuring the level of the contact angle. Meanwhile, performance was evaluated in term of the hydrogen gas flow and humidity rejection. The results are shown by contact angle that the microstructure filter, especially in the upper layer and sub-layer has been changed. The results also show an increase of hydrophobicity due to the increased quantity of silica aerogel powder. Results also showed that the absorption and rejection filter performance filter has increased after the addition of silica aerogel powder. The results showed that with the addition of 5 grams of powder of silica aerogel have the highest result of wetting angle 134.11°. The highest humidity rejection found with 5 grams of powder of silica aerogel.

  4. Tunable electro-optic filter stack

    DOEpatents

    Fontecchio, Adam K.; Shriyan, Sameet K.; Bellingham, Alyssa

    2017-09-05

    A holographic polymer dispersed liquid crystal (HPDLC) tunable filter exhibits switching times of no more than 20 microseconds. The HPDLC tunable filter can be utilized in a variety of applications. An HPDLC tunable filter stack can be utilized in a hyperspectral imaging system capable of spectrally multiplexing hyperspectral imaging data acquired while the hyperspectral imaging system is airborne. HPDLC tunable filter stacks can be utilized in high speed switchable optical shielding systems, for example as a coating for a visor or an aircraft canopy. These HPDLC tunable filter stacks can be fabricated using a spin coating apparatus and associated fabrication methods.

  5. Design And Construction of an Impedance Tube for Measuring Sound Absorptivity and Transmissibility of Materials Using Transfer Function Method

    NASA Astrophysics Data System (ADS)

    Gowda, Haarish Kapaninaikappa

    Noise is defined as unwanted sound, when perceived in excess can cause many harmful effects such as annoyance, interference with speech, and hearing loss, hence there is a need to control noise in practical situations. Noise can be controlled actively and/or passively, here we discuss the passive noise control techniques. Passive noise control involves using energy dissipating or reflecting materials such as absorbers or barriers respectively. Damping and isolating materials are also used in eliminating structure-borne noise. These materials exhibit properties such as reflection, absorption and transmission loss when incidence is by a sound source. Thus, there is a need to characterize the acoustical properties of these materials for practical use. The theoretical background of the random incident sound absorption with reverberation room and normal incident sound absorption using impedance tube are well documented. The Transfer Matrix method for measuring transmission loss and absorption coefficient using impedance tube is very attractive since it is rather inexpensive and fast. In this research, a low-cost Impedance Tube is constructed using transfer function method to measure both absorption and transmissibility of materials. Equipment and measurement instruments available in the laboratory were used in the construction of the tube, adhering to cost-effectiveness. Care has been taken for precise construction of tube to ensure better measurement results. Further various samples varying from hard non-porous to soft porous materials were tested for absorption and sound transmission loss. Absorption values were also compared with reverberation room method with the available samples further ensuring the reliability of the newly constructed tube for future measurements.

  6. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma.

    PubMed

    Marshall, F J; Radha, P B

    2014-11-01

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  7. A new method for fabrication of diamond-dust blocking filters

    NASA Technical Reports Server (NTRS)

    Collard, H. R.; Hogan, R. C.

    1986-01-01

    Thermal embedding of diamond dust onto a polyethylene-coated Al plate has been used to make a blocking filter for FIR applications. The Al plate is sandwiched between two Mylar 'blankets' and the air between the layers is removed by means of a small vacuum pump. After the polyethylene is heated and softened, the diamond dust is applied to the polyethylene coating using a brush. The optimum diamond dust grain sizes corresponding to polyethylene layer thicknesses of 9-12 microns are given in a table, and the application of the blocking filter to spectrometric measurements in the FIR is described. An exploded view diagram of the layered structure of the blocking filter is provided.

  8. Recursive least squares method of regression coefficients estimation as a special case of Kalman filter

    NASA Astrophysics Data System (ADS)

    Borodachev, S. M.

    2016-06-01

    The simple derivation of recursive least squares (RLS) method equations is given as special case of Kalman filter estimation of a constant system state under changing observation conditions. A numerical example illustrates application of RLS to multicollinearity problem.

  9. Recursive Implementations of the Consider Filter

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato; DSouza, Chris

    2012-01-01

    One method to account for parameters errors in the Kalman filter is to consider their effect in the so-called Schmidt-Kalman filter. This work addresses issues that arise when implementing a consider Kalman filter as a real-time, recursive algorithm. A favorite implementation of the Kalman filter as an onboard navigation subsystem is the UDU formulation. A new way to implement a UDU consider filter is proposed. The non-optimality of the recursive consider filter is also analyzed, and a modified algorithm is proposed to overcome this limitation.

  10. Electric filter with movable belt electrode

    DOEpatents

    Bergman, W.

    1983-09-20

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched there between. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants. 4 figs.

  11. Electric filter with movable belt electrode

    DOEpatents

    Bergman, Werner

    1983-01-01

    A method and apparatus for removing airborne contaminants entrained in a gas or airstream includes an electric filter characterized by a movable endless belt electrode, a grounded electrode, and a filter medium sandwiched therebetween. Inclusion of the movable, endless belt electrode provides the driving force for advancing the filter medium through the filter, and reduces frictional drag on the filter medium, thereby permitting a wide choice of filter medium materials. Additionally, the belt electrode includes a plurality of pleats in order to provide maximum surface area on which to collect airborne contaminants.

  12. Optoelectronic simulation of GaAs solar cells with angularly selective filters

    SciTech Connect

    Kraus, Tobias, E-mail: tobias.kraus@ise.fraunhofer.de; Höhn, Oliver; Hauser, Hubert

    We discuss the influence of angularly selective filters on thin film gallium arsenide solar cells. For this reason, the detailed balance model was refined to fit our needs with respect to Auger recombination, reflection, transmission, and realistic absorption. For calculating real systems, an approach was made to include optical effects of angularly selective filters into electron-hole dynamic equations implemented in PC1D, a one dimensional solar cell calculation tool. With this approach, we find a relative V{sub oc} increase of 5% for an idealized 100 nm GaAs cell, including Auger recombination.

  13. METHOD FOR THE ANALYSIS OF ASBESTOS IN WATER USING MCE FILTERS

    EPA Science Inventory

    The current Federal Drinking Water Standard makes possible the use of methyl cellulose ester filters rather than the previously proposed Nuclepore™ filter. Updating of the previous counting rules brings them closer to AHERA specifications.

  14. Demonstration of a mid-infrared NO molecular Faraday optical filter.

    PubMed

    Wu, Kuijun; Feng, Yutao; Li, Juan; Yu, Guangbao; Liu, Linmei; Xiong, Yuanhui; Li, Faquan

    2017-12-11

    A molecular Faraday optical filter (MFOF) working in the mid-infrared region is realized for the first time. NO molecule was used as the working material of the MFOF for potential applications in atmospheric remote sensing and combustion diagnosis. We develop a complete theory to describe the performance of MFOF by taking both Zeeman absorption and Faraday rotation into account. We also record the Faraday rotation transmission (FRT) signal using a quantum cascade laser over the range of 1,820 cm -1 to 1,922 cm -1 and calibrate it by using a 101.6 mm long solid germanium etalon with a free spectral range of 0.012 cm -1 . Good agreement between the simulation results and experimental data is achieved. The NO-MFOF's transmission characteristics as a function of magnetic field and pressure are studied in detail. Both Comb-like FRT spectrum and single branch transmission spectrum are obtained by changing the magnetic field. The diversity of FRT spectrum expands the range of potential applications in infrared optical remote sensing. This filtering method can also be extended to the lines of other paramagnetic molecules.

  15. EAPhy: A Flexible Tool for High-throughput Quality Filtering of Exon-alignments and Data Processing for Phylogenetic Methods.

    PubMed

    Blom, Mozes P K

    2015-08-05

    Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.

  16. The synergy between complex channel-specific FIR filter and spatial filter for single-trial EEG classification.

    PubMed

    Yu, Ke; Wang, Yue; Shen, Kaiquan; Li, Xiaoping

    2013-01-01

    The common spatial pattern analysis (CSP), a frequently utilized feature extraction method in brain-computer-interface applications, is believed to be time-invariant and sensitive to noises, mainly due to an inherent shortcoming of purely relying on spatial filtering. Therefore, temporal/spectral filtering which can be very effective to counteract the unfavorable influence of noises is usually used as a supplement. This work integrates the CSP spatial filters with complex channel-specific finite impulse response (FIR) filters in a natural and intuitive manner. Each hybrid spatial-FIR filter is of high-order, data-driven and is unique to its corresponding channel. They are derived by introducing multiple time delays and regularization into conventional CSP. The general framework of the method follows that of CSP but performs better, as proven in single-trial classification tasks like event-related potential detection and motor imagery.

  17. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments.

  18. Development of an irradiation method with lateral modulation of SOBP width using a cone-type filter for carbon ion beams.

    PubMed

    Ishizaki, Azusa; Ishii, Keizo; Kanematsu, Nobuyuki; Kanai, Tatsuaki; Yonai, Shunsuke; Kase, Yuki; Takei, Yuka; Komori, Masataka

    2009-06-01

    Passive irradiation methods deliver an extra dose to normal tissues upstream of the target tumor, while in dynamic irradiation methods, interplay effects between dynamic beam delivery and target motion induced by breathing or respiration distort the dose distributions. To solve the problems of those two irradiation methods, the authors have developed a new method that laterally modulates the spread-out Bragg peak (SOBP) width. By reducing scanning in the depth direction, they expect to reduce the interplay effects. They have examined this new irradiation method experimentally. In this system, they used a cone-type filter that consisted of 400 cones in a grid of 20 cones by 20 cones. There were five kinds of cones with different SOBP widths arranged on the frame two dimensionally to realize lateral SOBP modulation. To reduce the number of steps of cones, they used a wheel-type filter to make minipeaks. The scanning intensity was modulated for each SOBP width with a pair of scanning magnets. In this experiment, a stepwise dose distribution and spherical dose distribution of 60 mm in diameter were formed. The nonflatness of the stepwise dose distribution was 5.7% and that of the spherical dose distribution was 3.8%. A 2 mm misalignment of the cone-type filter resulted in a nonflatness of more than 5%. Lateral SOBP modulation with a cone-type filter and a scanned carbon ion beam successfully formed conformal dose distribution with nonflatness of 3.8% for the spherical case. The cone-type filter had to be set to within 1 mm accuracy to maintain nonflatness within 5%. This method will be useful to treat targets moving during breathing and targets in proximity to important organs.

  19. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  20. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    PubMed

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-11

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  1. Self-Referenced Method for Estimating Refractive Index and Absolute Absorption of Loose Semiconductor Powders

    DOE PAGES

    Huang, Huafeng; Colabello, Diane M.; Sklute, Elizabeth C.; ...

    2017-04-23

    The absolute absorption coefficient, α(E), is a critical design parameter for devices using semiconductors for light harvesting associated with renewable energy production, both for classic technologies such as photovoltaics and for emerging technologies such as direct solar fuel production. While α(E) is well-known for many classic simple semiconductors used in photovoltaic applications, the absolute values of α(E) are typically unknown for the complex semiconductors being explored for solar fuel production due to the absence of single crystals or crystalline epitaxial films that are needed for conventional methods of determining α(E). In this work, a simple self-referenced method for estimating bothmore » the refractive indices, n(E), and absolute absorption coefficients, α(E), for loose powder samples using diffuse reflectance data is demonstrated. In this method, the sample refractive index can be deduced by refining n to maximize the agreement between the relative absorption spectrum calculated from bidirectional reflectance data (calculated through a Hapke transform which depends on n) and integrating sphere diffuse reflectance data (calculated through a Kubleka–Munk transform which does not depend on n). This new method can be quickly used to screen the suitability of emerging semiconductor systems for light-harvesting applications. The effectiveness of this approach is tested using the simple classic semiconductors Ge and Fe 2O 3 as well as the complex semiconductors La 2MoO 5 and La 4Mo 2O 11. The method is shown to work well for powders with a narrow size distribution (exemplified by Fe 2O 3) and to be ineffective for semiconductors with a broad size distribution (exemplified by Ge). As such, it provides a means for rapidly estimating the absolute optical properties of complex solids which are only available as loose powders.« less

  2. A computer program to obtain time-correlated gust loads for nonlinear aircraft using the matched-filter-based method

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Pototzky, Anthony S.; Perry, Boyd, III

    1994-01-01

    NASA Langley Research Center has, for several years, conducted research in the area of time-correlated gust loads for linear and nonlinear aircraft. The results of this work led NASA to recommend that the Matched-Filter-Based One-Dimensional Search Method be used for gust load analyses of nonlinear aircraft. This manual describes this method, describes a FORTRAN code which performs this method, and presents example calculations for a sample nonlinear aircraft model. The name of the code is MFD1DS (Matched-Filter-Based One-Dimensional Search). The program source code, the example aircraft equations of motion, a sample input file, and a sample program output are all listed in the appendices.

  3. Shielded multi-stage EMI noise filter

    DOEpatents

    Kisner, Roger Allen; Fugate, David Lee

    2016-11-08

    Electromagnetic interference (EMI) noise filter embodiments and methods for filtering are provided herein. EMI noise filters include multiple signal exclusion enclosures. The multiple signal exclusion enclosures contain filter circuit stages. The signal exclusion enclosures can attenuate noise generated external to the enclosures and/or isolate noise currents generated by the corresponding filter circuits within the enclosures. In certain embodiments, an output of one filter circuit stage is connected to an input of the next filter circuit stage. The multiple signal exclusion enclosures can be chambers formed using conductive partitions to divide an outer signal exclusion enclosure. EMI noise filters can also include mechanisms to maintain the components of the filter circuit stages at a consistent temperature. For example, a metal base plate can distribute heat among filter components, and an insulating material can be positioned inside signal exclusion enclosures.

  4. Microwave resonant and zero-field absorption study of doped magnetite prepared by a co-precipitation method.

    PubMed

    Aphesteguy, Juan Carlos; Jacobo, Silvia E; Lezama, Luis; Kurlyandskaya, Galina V; Schegoleva, Nina N

    2014-06-19

    Fe3O4 and ZnxFe3-xO4 pure and doped magnetite magnetic nanoparticles (NPs) were prepared in aqueous solution (Series A) or in a water-ethyl alcohol mixture (Series B) by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz) expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.

  5. In Situ Density Measurement of Basaltic Melts at High Pressure by X-ray Absorption Method

    NASA Astrophysics Data System (ADS)

    Ando, R.; Ohtani, E.; Suzuki, A.; Urakawa, S.; Katayama, Y.

    2004-12-01

    Density of silicate melt at high pressure is one of the most important properties to understand magma migration in the planetary interior. However, because of experimental difficulties, the density of magma at high pressure is poorly known. Katayama et al. (1996) recently developed a new in situ density measurement method for metallic melts, based on the density dependency of X-ray absorption in the sample. In this study, we tried to measure the density of basaltic melt by this absorption method. When X-ray is transmitted to the sample, the intensity of the transmitted X-ray beam (I) is expressed as follows; I=I0exp(-μ ρ t), where I0 is the intensity of incident X-ray beam, μ is the mass absorption coefficient, ρ is the density of the sample, and t is the thickness of the sample. If t and μ are known, we can determine the density of the sample by measuring I and I0. This is the principle of the absorption method for density measurement. In this study, in order to determine t, we used a single crystalline diamond cylinder as a sample capsule, diamond is less compressive and less deformable so that even at high pressure t (thickness of the sample at the point x) is expressed as follows; t = 2*(R02-x2)1/2, R0 is the inner radius of cylinder at the ambient condition, and x is distance from a center of the capsule. And diamond also shows less absorption so that this make it possible to measure the density of silicate melt with smaller absorption coefficient than metallic melts. In order to know the μ of the sample, we measured both densities (ρ ) and absorptions (I/I0) for some glasses and crystals with same composition of the sample at the ambient condition, and calculated as fallows; μ =ln(I/I0)/ρ . Experiments were made at the beamline (BL22XU) of SPring-8. For generation of high pressure and high temperature, we used DIA-type cubic anvil apparatus (SMAP180) there. We used tungsten carbide anvils with the edge-length of 6 mm. The energy of monochromatic X

  6. In situ microbial filter used for bioremediation

    DOEpatents

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  7. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  8. Evaluation of methods for measuring particulate matter emissions from gas turbines.

    PubMed

    Petzold, Andreas; Marsh, Richard; Johnson, Mark; Miller, Michael; Sevcenco, Yura; Delhaye, David; Ibrahim, Amir; Williams, Paul; Bauer, Heidi; Crayford, Andrew; Bachalo, William D; Raper, David

    2011-04-15

    The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach. Number concentrations were determined using different condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error. Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for number concentration measurements with a maximum interinstrument standard deviation of 7.5%.

  9. Nanoparticle optical notch filters

    NASA Astrophysics Data System (ADS)

    Kasinadhuni, Pradeep Kumar

    Developing novel light blocking products involves the design of a nanoparticle optical notch filter, working on the principle of localized surface plasmon resonance (LSPR). These light blocking products can be used in many applications. One such application is to naturally reduce migraine headaches and light sensitivity. Melanopsin ganglion cells present in the retina of the human eye, connect to the suprachiasmatic nucleus (SCN-the body's clock) in the brain, where they participate in the entrainment of the circadian rhythms. As the Melanopsin ganglion cells are involved in triggering the migraine headaches in photophobic patients, it is necessary to block the part of visible spectrum that activates these cells. It is observed from the action potential spectrum of the ganglion cells that they absorb light ranging from 450-500nm (blue-green part) of the visible spectrum with a λmax (peak sensitivity) of around 480nm (blue line). Currently prescribed for migraine patients is the FL-41 coating, which blocks a broad range of wavelengths, including wavelengths associated with melanopsin absorption. The nanoparticle optical notch filter is designed to block light only at 480nm, hence offering an effective prescription for the treatment of migraine headaches.

  10. Glucose absorption in acute peritoneal dialysis.

    PubMed

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  11. The invariant of the stiffness filter function with the weight filter function of the power function form

    NASA Astrophysics Data System (ADS)

    Shang, Zhen; Sui, Yun-Kang

    2012-12-01

    Based on the independent, continuous and mapping (ICM) method and homogenization method, a research model is constructed to propose and deduce a theorem and corollary from the invariant between the weight filter function and the corresponding stiffness filter function of the form of power function. The efficiency in searching for optimum solution will be raised via the choice of rational filter functions, so the above mentioned results are very important to the further study of structural topology optimization.

  12. Novel ratio difference at coabsorptive point spectrophotometric method for determination of components with wide variation in their absorptivities.

    PubMed

    Saad, Ahmed S; Abo-Talib, Nisreen F; El-Ghobashy, Mohamed R

    2016-01-05

    Different methods have been introduced to enhance selectivity of UV-spectrophotometry thus enabling accurate determination of co-formulated components, however mixtures whose components exhibit wide variation in absorptivities has been an obstacle against application of UV-spectrophotometry. The developed ratio difference at coabsorptive point method (RDC) represents a simple effective solution for the mentioned problem, where the additive property of light absorbance enabled the consideration of the two components as multiples of the lower absorptivity component at certain wavelength (coabsorptive point), at which their total concentration multiples could be determined, whereas the other component was selectively determined by applying the ratio difference method in a single step. Mixture of perindopril arginine (PA) and amlodipine besylate (AM) figures that problem, where the low absorptivity of PA relative to AM hinders selective spectrophotometric determination of PA. The developed method successfully determined both components in the overlapped region of their spectra with accuracy 99.39±1.60 and 100.51±1.21, for PA and AM, respectively. The method was validated as per the USP guidelines and showed no significant difference upon statistical comparison with reported chromatographic method. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  14. Enhancement of IVR images by combining an ICA shrinkage filter with a multi-scale filter

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Wei; Matsuo, Kiyotaka; Han, Xianhua; Shimizu, Atsumoto; Shibata, Koichi; Mishina, Yukio; Mukuta, Yoshihiro

    2007-11-01

    Interventional Radiology (IVR) is an important technique to visualize and diagnosis the vascular disease. In real medical application, a weak x-ray radiation source is used for imaging in order to reduce the radiation dose, resulting in a low contrast noisy image. It is important to develop a method to smooth out the noise while enhance the vascular structure. In this paper, we propose to combine an ICA Shrinkage filter with a multiscale filter for enhancement of IVR images. The ICA shrinkage filter is used for noise reduction and the multiscale filter is used for enhancement of vascular structure. Experimental results show that the quality of the image can be dramatically improved without any blurring in edge by the proposed method. Simultaneous noise reduction and vessel enhancement have been achieved.

  15. Thin film polarizer and color filter based on photo-polymerizable nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Mohammadimasoudi, Mohammad; Neyts, Kristiaan; Beeckman, Jeroen

    2015-03-01

    We present a method to fabricate a thin film color filter based on a mixture of photo-polymerizable liquid crystal and chiral dopant. A chiral nematic liquid crystal layer reflects light for a certain wavelength interval Δλ (= Δn.P) with the period and Δn the birefringence of the liquid crystal. The reflection band is determined by the chiral dopant concentration. The bandwidth is limited to 80nm and the reflectance is at most 50% for unpolarized incident light. The thin color filter is interesting for innovative applications like polarizer-free reflective displays, polarization-independent devices, stealth technologies, or smart switchable reflective windows to control solar light and heat. The reflected light has strong color saturation without absorption because of the sharp band edges. A thin film polarizer is developed by using a mixture of photo-polymerizable liquid crystal and color-neutral dye. The fabricated thin film absorbs light that is polarized parallel to the c axis of the LC. The obtained polarization ratio is 80% for a film of only 12 μm. The thin film polarizer and the color filter feature excellent film characteristics without domains and can be detached from the substrate which is useful for e.g. flexible substrates.

  16. Modal parameter identification using the log decrement method and band-pass filters

    NASA Astrophysics Data System (ADS)

    Liao, Yabin; Wells, Valana

    2011-10-01

    This paper presents a time-domain technique for identifying modal parameters of test specimens based on the log-decrement method. For lightly damped multidegree-of-freedom or continuous systems, the conventional method is usually restricted to identification of fundamental-mode parameters only. Implementation of band-pass filters makes it possible for the proposed technique to extract modal information of higher modes. The method has been applied to a polymethyl methacrylate (PMMA) beam for complex modulus identification in the frequency range 10-1100 Hz. Results compare well with those obtained using the Least Squares method, and with those previously published in literature. Then the accuracy of the proposed method has been further verified by experiments performed on a QuietSteel specimen with very low damping. The method is simple and fast. It can be used for a quick estimation of the modal parameters, or as a complementary approach for validation purposes.

  17. Contamination of the GOES-K filter wheel cooler

    NASA Astrophysics Data System (ADS)

    Sanders, Jack T., Jr.; Rosecrans, Glenn P.

    1998-10-01

    The Geostationary Operational Environmental Satellite (GOES) Sounder instrument uses radiant coolers to reduce the operating temperature of the detectors and filter wheel. GOES resides in an equatorial orbit 36,000 kilometers above the earth, and is stationary with respect to it. During the year, all sides of the spacecraft are exposed to the sun; the filter wheel emitter and detector radiators must be shielded form it to adequately cooled these components for nominal operations.Mirror Optical Solar Reflectors are used too reject sunlight before it can strike the radiators. Molecular outgassing from the Sounder instrument cavity, the filter wheel module, and the Sounder vacuum cooler housing have been demonstrated through mass transport modeling to contaminate the filter wheel sunshield panels during the in- orbit Radiant Cooler bakeout. Excessive molecular and particulate contamination can increase solar energy scatter, increase thermal emittance, and increase solar absorptance; all of which can increase the temperature of the components they serve, thus degrading nominal operations. After the GOES-K spacecraft thermal vacuum test, a haze was observed on and around the entrance aperture, and on the inside faces the filter wheel cooler sunshield. This paper documents the inspections, testing, and analysis used to: a) locate the likely sources for the contaminants, b) predict molecular contaminant accumulation on the filter wheel sunshields during the in-orbit bakeout, c) estimate the thermal effects from molecular build-up, and d) assess proposed hardware modifications and show the selection rationale used to maintain functionality for the GOES-K Sounder instrument.

  18. Development of a HPLC method for determination of four UV filters in sunscreen and its application to skin penetration studies.

    PubMed

    Souza, Carla; Maia Campos, Patrícia M B G

    2017-12-01

    This study describes the development, validation and application of a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the in vitro skin penetration profile of four UV filters on porcine skin. Experiments were carried out on a gel-cream formulation containing the following UV filters: diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) and ethylhexyl triazone (EHT). The HPLC method demonstrated suitable selectivity, linearity (10.0-50.0 μg/mL), precision, accuracy and recovery from porcine skin and sunscreen formulation. The in vitro skin penetration profile was evaluated using Franz vertical diffusion cells for 24 h after application on porcine ear skin. None of the UV filters penetrated the porcine skin. Most of them stayed on the skin surface (>90%) and only BEMT, EHT and DHHB reached the dermis plus epidermis layer. These results are in agreement with previous results in the literature. Therefore, the analytical method was useful to evaluate the in vitro skin penetration of the UV filters and may help the development of safer and effective sunscreen products. Copyright © 2017 John Wiley & Sons, Ltd.

  19. A new method for inferring carbon monoxide concentrations from gas filter radiometer data

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.; Reichle, H. G., Jr.; Casas, J. C.; Gormsen, B. B.

    1981-01-01

    A method for inferring carbon monoxide concentrations from gas filter radiometer data is presented. The technique can closely approximate the results of more costly line-by-line radiative transfer calculations over a wide range of altitudes, ground temperatures, and carbon monoxide concentrations. The technique can also be used over a larger range of conditions than those used for the regression analysis. Because the influence of the carbon monoxide mixing ratio requires only addition, multiplication and a minimum of logic, the method can be implemented on very small computers or microprocessors.

  20. Determination of glucose in a biological matrix by multivariate analysis of multiple band-pass-filtered Fourier transform near-infrared interferograms.

    PubMed

    Mattu, M J; Small, G W; Arnold, M A

    1997-11-15

    A multivariate calibration method is described in which Fourier transform near-infrared interferogram data are used to determine clinically relevant levels of glucose in an aqueous matrix of bovine serum albumin (BSA) and triacetin. BSA and triacetin are used to model the protein and triglycerides in blood, respectively, and are present in levels spanning the normal human physiological range. A full factorial experimental design is constructed for the data collection, with glucose at 10 levels, BSA at 4 levels, and triacetin at 4 levels. Gaussian-shaped band-pass digital filters are applied to the interferogram data to extract frequencies associated with an absorption band of interest. Separate filters of various widths are positioned on the glucose band at 4400 cm-1, the BSA band at 4606 cm-1, and the triacetin band at 4446 cm-1. Each filter is applied to the raw interferogram, producing one, two, or three filtered interferograms, depending on the number of filters used. Segments of these filtered interferograms are used together in a partial least-squares regression analysis to build glucose calibration models. The optimal calibration model is realized by use of separate segments of interferograms filtered with three filters centered on the glucose, BSA, and triacetin bands. Over the physiological range of 1-20 mM glucose, this 17-term model exhibits values of R2, standard error of calibration, and standard error of prediction of 98.85%, 0.631 mM, and 0.677 mM, respectively. These results are comparable to those obtained in a conventional analysis of spectral data. The interferogram-based method operates without the use of a separate background measurement and employs only a short section of the interferogram.

  1. Performance characterization of a pressure-tuned wide-angle Michelson interferometric spectral filter for high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Seaman, Shane T.; Cook, Anthony L.; Scola, Salvatore J.; Hostetler, Chris A.; Miller, Ian; Welch, Wayne

    2015-09-01

    High Spectral Resolution Lidar (HSRL) is typically realized using an absorption filter to separate molecular returns from particulate returns. NASA Langley Research Center (LaRC) has designed and built a Pressure-Tuned Wide-Angle Michelson Interferometer (PTWAMI) as an alternate means to separate the two types of atmospheric returns. While absorption filters only work at certain wavelengths and suffer from low photon efficiency due to light absorption, an interferometric spectral filter can be designed for any wavelength and transmits nearly all incident photons. The interferometers developed at LaRC employ an air spacer in one arm, and a solid glass spacer in the other. Field widening is achieved by specific design and selection of the lengths and refractive indices of these two arms. The principal challenge in using such an interferometer as a spectral filter for HSRL aboard aircraft is that variations in glass temperature and air pressure cause changes in the interferometer's optical path difference. Therefore, a tuning mechanism is needed to actively accommodate for these changes. The pressure-tuning mechanism employed here relies on changing the pressure in an enclosed, air-filled arm of the interferometer to change the arm's optical path length. However, tuning using pressure will not adjust for tilt, mirror warpage, or thermally induced wavefront error, so the structural, thermal, and optical behavior of the device must be well understood and optimized in the design and manufacturing process. The PTWAMI has been characterized for particulate transmission ratio, wavefront error, and tilt, and shows acceptable performance for use in an HSRL instrument.

  2. A generalized adaptive mathematical morphological filter for LIDAR data

    NASA Astrophysics Data System (ADS)

    Cui, Zheng

    Airborne Light Detection and Ranging (LIDAR) technology has become the primary method to derive high-resolution Digital Terrain Models (DTMs), which are essential for studying Earth's surface processes, such as flooding and landslides. The critical step in generating a DTM is to separate ground and non-ground measurements in a voluminous point LIDAR dataset, using a filter, because the DTM is created by interpolating ground points. As one of widely used filtering methods, the progressive morphological (PM) filter has the advantages of classifying the LIDAR data at the point level, a linear computational complexity, and preserving the geometric shapes of terrain features. The filter works well in an urban setting with a gentle slope and a mixture of vegetation and buildings. However, the PM filter often removes ground measurements incorrectly at the topographic high area, along with large sizes of non-ground objects, because it uses a constant threshold slope, resulting in "cut-off" errors. A novel cluster analysis method was developed in this study and incorporated into the PM filter to prevent the removal of the ground measurements at topographic highs. Furthermore, to obtain the optimal filtering results for an area with undulating terrain, a trend analysis method was developed to adaptively estimate the slope-related thresholds of the PM filter based on changes of topographic slopes and the characteristics of non-terrain objects. The comparison of the PM and generalized adaptive PM (GAPM) filters for selected study areas indicates that the GAPM filter preserves the most "cut-off" points removed incorrectly by the PM filter. The application of the GAPM filter to seven ISPRS benchmark datasets shows that the GAPM filter reduces the filtering error by 20% on average, compared with the method used by the popular commercial software TerraScan. The combination of the cluster method, adaptive trend analysis, and the PM filter allows users without much experience in

  3. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo

    2018-07-01

    In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.

  4. Filters | CTIO

    Science.gov Websites

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments MOSAIC Filters Hydra Filters IR Filters ANDICAM Filters Y4KCam filters CTIO Various Filters Filters for 5.75X5.75-inch Filters MOSAIC Filters Hydra Filters IR Filters ANDICAM Filters Y4KCam filters CTIO Various

  5. Characterization of Mid-Infrared Single Mode Fibers as Modal Filters

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Lay, O.; Martin, S.; Sanghera, J. S.; Busse, L. E.; Kim, W. H.; Pureza, P. C.; Nguyen, V. Q.; Aggarwal, I. D.

    2007-01-01

    We present a technique for measuring the modal filtering ability of single mode fibers. The ideal modal filter rejects all input field components that have no overlap with the fundamental mode of the filter and does not attenuate the fundamental mode. We define the quality of a nonideal modal filter Q(sub f) as the ratio of transmittance for the fundamental mode to the transmittance for an input field that has no overlap with the fundamental mode. We demonstrate the technique on a 20 cm long mid-infrared fiber that was produced by the U.S. Naval Research Laboratory. The filter quality Q(sub f) for this fiber at 10.5 micron wavelength is 1000 +/- 300. The absorption and scattering losses in the fundamental mode are approximately 8 dB/m. The total transmittance for the fundamental mode, including Fresnel reflections, is 0.428 +/- 0.002. The application of interest is the search for extrasolar Earthlike planets using nulling interferometry. It requires high rejection ratios to suppress the light of a bright star, so that the faint planet becomes visible. The use of modal filters increases the rejection ratio (or, equivalently, relaxes requirements on the wavefront quality) by reducing the sensitivity to small wavefront errors. We show theoretically that, exclusive of coupling losses, the use of a modal filter leads to the improvement of the rejection ratio in a two-beam interferometer by a factor of Q(sub f).

  6. Multilevel Mixture Kalman Filter

    NASA Astrophysics Data System (ADS)

    Guo, Dong; Wang, Xiaodong; Chen, Rong

    2004-12-01

    The mixture Kalman filter is a general sequential Monte Carlo technique for conditional linear dynamic systems. It generates samples of some indicator variables recursively based on sequential importance sampling (SIS) and integrates out the linear and Gaussian state variables conditioned on these indicators. Due to the marginalization process, the complexity of the mixture Kalman filter is quite high if the dimension of the indicator sampling space is high. In this paper, we address this difficulty by developing a new Monte Carlo sampling scheme, namely, the multilevel mixture Kalman filter. The basic idea is to make use of the multilevel or hierarchical structure of the space from which the indicator variables take values. That is, we draw samples in a multilevel fashion, beginning with sampling from the highest-level sampling space and then draw samples from the associate subspace of the newly drawn samples in a lower-level sampling space, until reaching the desired sampling space. Such a multilevel sampling scheme can be used in conjunction with the delayed estimation method, such as the delayed-sample method, resulting in delayed multilevel mixture Kalman filter. Examples in wireless communication, specifically the coherent and noncoherent 16-QAM over flat-fading channels, are provided to demonstrate the performance of the proposed multilevel mixture Kalman filter.

  7. [Testing method research for key performance indicator of imaging acousto-optic tunable filter (AOTF)].

    PubMed

    Hu, Shan-Zhou; Chen, Fen-Fei; Zeng, Li-Bo; Wu, Qiong-Shui

    2013-01-01

    Imaging AOTF is an important optical filter component for new spectral imaging instruments developed in recent years. The principle of imaging AOTF component was demonstrated, and a set of testing methods for some key performances were studied, such as diffraction efficiency, wavelength shift with temperature, homogeneity in space for diffraction efficiency, imaging shift, etc.

  8. Mass absorption efficiency of elemental carbon over Van Vihar National Park, Bhopal, India: Temporal variability and implications to estimates of black carbon radiative forcing

    NASA Astrophysics Data System (ADS)

    Samiksha, S.; Raman, R. S.; Singh, A.

    2016-12-01

    It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2.However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant manufacturer specified MAE is used for this purposes. Recent literature has unequivocally established that MAE shows large spatio-temporal heterogeneities. This is so because MAE depends on emission sources, chemical composition, and mixing state of aerosols. In this study, ambient PM2.5 samples were collected over an ecologically sensitive zone (Van Vihar National Park) in Bhopal, Central India for two years (01 January, 2012 to 31 December, 2013). Samples were collected on Teflon, Nylon, and Tissue quartz filter substrates. Punches of quartz fibre filter were analysed for organic and elemental carbon (OC/EC) by a thermal-optical-transmittance/reflectance (TOT-TOR) analyser operating with a 632 nm laser diode. Teflon filters were also used to interdependently measure PM2.5 attenuation (at 370 nm and 800 nm) by transmissometry. Site-specific mass absorption efficiency (MAE) for elemental carbon over the study site will be derived using a combination of measurements from the TOT/TOR analyser and transmissometer. An assessment of site-specific MAE values, its temporal variability and implications to black carbon radiative forcing will be discussed. It is now well recognized that black carbon (a component of aerosols that is similar but not identical to elemental carbon) is an important contributor to global warming, second only to CO2. However, the most popular methods for estimation of black carbon rely on accurate estimates of its mass absorption efficiency (MAE) to convert optical attenuation measurements to black carbon concentrations. Often a constant

  9. A new method for E-government procurement using collaborative filtering and Bayesian approach.

    PubMed

    Zhang, Shuai; Xi, Chengyu; Wang, Yan; Zhang, Wenyu; Chen, Yanhong

    2013-01-01

    Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP) to search for the optimal procurement scheme (OPS). Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M recommendations such that the involved computation load can be alleviated. A trapezoidal fuzzy number similarity algorithm is applied to support the item-based collaborative filtering and Bayesian approach, since some of the services' attributes can be hardly expressed as certain and static values but only be easily represented as fuzzy values. A prototype system is built and validated with an illustrative example from eGP to confirm the feasibility of our approach.

  10. A New Method for E-Government Procurement Using Collaborative Filtering and Bayesian Approach

    PubMed Central

    Wang, Yan

    2013-01-01

    Nowadays, as the Internet services increase faster than ever before, government systems are reinvented as E-government services. Therefore, government procurement sectors have to face challenges brought by the explosion of service information. This paper presents a novel method for E-government procurement (eGP) to search for the optimal procurement scheme (OPS). Item-based collaborative filtering and Bayesian approach are used to evaluate and select the candidate services to get the top-M recommendations such that the involved computation load can be alleviated. A trapezoidal fuzzy number similarity algorithm is applied to support the item-based collaborative filtering and Bayesian approach, since some of the services' attributes can be hardly expressed as certain and static values but only be easily represented as fuzzy values. A prototype system is built and validated with an illustrative example from eGP to confirm the feasibility of our approach. PMID:24385869

  11. Exploration of faint absorption bands in the reflectance spectra of the asteroids by method of optimal smoothing: Vestoids

    NASA Astrophysics Data System (ADS)

    Shestopalov, D. I.; McFadden, L. A.; Golubeva, L. F.

    2007-04-01

    An optimization method of smoothing noisy spectra was developed to investigate faint absorption bands in the visual spectral region of reflectance spectra of asteroids and the compositional information derived from their analysis. The smoothing algorithm is called "optimal" because the algorithm determines the best running box size to separate weak absorption bands from the noise. The method is tested for its sensitivity to identifying false features in the smoothed spectrum, and its correctness of forecasting real absorption bands was tested with artificial spectra simulating asteroid reflectance spectra. After validating the method we optimally smoothed 22 vestoid spectra from SMASS1 [Xu, Sh., Binzel, R.P., Burbine, T.H., Bus, S.J., 1995. Icarus 115, 1-35]. We show that the resulting bands are not telluric features. Interpretation of the absorption bands in the asteroid spectra was based on the spectral properties of both terrestrial and meteorite pyroxenes. The bands located near 480, 505, 530, and 550 nm we assigned to spin-forbidden crystal field bands of ferrous iron, whereas the bands near 570, 600, and 650 nm are attributed to the crystal field bands of trivalent chromium and/or ferric iron in low-calcium pyroxenes on the asteroids' surface. While not measured by microprobe analysis, Fe 3+ site occupancy can be measured with Mössbauer spectroscopy, and is seen in trace amounts in pyroxenes. We believe that trace amounts of Fe 3+ on vestoid surfaces may be due to oxidation from impacts by icy bodies. If that is the case, they should be ubiquitous in the asteroid belt wherever pyroxene absorptions are found. Pyroxene composition of four asteroids of our set is determined from the band position of absorptions at 505 and 1000 nm, implying that there can be orthopyroxenes in all range of ferruginosity on the vestoid surfaces. For the present we cannot unambiguously interpret of the faint absorption bands that are seen in the spectra of 4005 Dyagilev, 4038

  12. Convex blind image deconvolution with inverse filtering

    NASA Astrophysics Data System (ADS)

    Lv, Xiao-Guang; Li, Fang; Zeng, Tieyong

    2018-03-01

    Blind image deconvolution is the process of estimating both the original image and the blur kernel from the degraded image with only partial or no information about degradation and the imaging system. It is a bilinear ill-posed inverse problem corresponding to the direct problem of convolution. Regularization methods are used to handle the ill-posedness of blind deconvolution and get meaningful solutions. In this paper, we investigate a convex regularized inverse filtering method for blind deconvolution of images. We assume that the support region of the blur object is known, as has been done in a few existing works. By studying the inverse filters of signal and image restoration problems, we observe the oscillation structure of the inverse filters. Inspired by the oscillation structure of the inverse filters, we propose to use the star norm to regularize the inverse filter. Meanwhile, we use the total variation to regularize the resulting image obtained by convolving the inverse filter with the degraded image. The proposed minimization model is shown to be convex. We employ the first-order primal-dual method for the solution of the proposed minimization model. Numerical examples for blind image restoration are given to show that the proposed method outperforms some existing methods in terms of peak signal-to-noise ratio (PSNR), structural similarity (SSIM), visual quality and time consumption.

  13. Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  14. Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sandham, N. D.; Djomehri, M. J.

    1998-01-01

    An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.

  15. Characteristics of BeiDou Navigation Satellite System Multipath and Its Mitigation Method Based on Kalman Filter and Rauch-Tung-Striebel Smoother.

    PubMed

    Zhang, Qiuzhao; Yang, Wei; Zhang, Shubi; Liu, Xin

    2018-01-12

    Global Navigation Satellite System (GNSS) carrier phase measurement for short baseline meets the requirements of deformation monitoring of large structures. However, the carrier phase multipath effect is the main error source with double difference (DD) processing. There are lots of methods to deal with the multipath errors of Global Position System (GPS) carrier phase data. The BeiDou navigation satellite System (BDS) multipath mitigation is still a research hotspot because the unique constellation design of BDS makes it different to mitigate multipath effects compared to GPS. Multipath error periodically repeats for its strong correlation to geometry of satellites, reflective surface and antenna which is also repetitive. We analyzed the characteristics of orbital periods of BDS satellites which are consistent with multipath repeat periods of corresponding satellites. The results show that the orbital periods and multipath periods for BDS geostationary earth orbit (GEO) and inclined geosynchronous orbit (IGSO) satellites are about one day but the periods of MEO satellites are about seven days. The Kalman filter (KF) and Rauch-Tung-Striebel Smoother (RTSS) was introduced to extract the multipath models from single difference (SD) residuals with traditional sidereal filter (SF). Wavelet filter and Empirical mode decomposition (EMD) were also used to mitigate multipath effects. The experimental results show that the three filters methods all have obvious effect on improvement of baseline accuracy and the performance of KT-RTSS method is slightly better than that of wavelet filter and EMD filter. The baseline vector accuracy on east, north and up (E, N, U) components with KF-RTSS method were improved by 62.8%, 63.6%, 62.5% on day of year 280 and 57.3%, 53.4%, 55.9% on day of year 281, respectively.

  16. Removal of residual particulate matter from filter media

    DOEpatents

    Almlie, Jay C; Miller, Stanley J

    2014-11-11

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  17. Removal of residual particulate matter from filter media

    SciTech Connect

    Almlie, Jay C.; Miller, Stanley J.

    A method for removing residual filter cakes that remain adhered to a filter after typical particulate removal methodologies have been employed, such as pulse-jet filter element cleaning, for all cleanable filters used for air pollution control, dust control, or powder control.

  18. Comparison contemporary methods of regeneration sodium-cationic filters

    NASA Astrophysics Data System (ADS)

    Burakov, I. A.; Burakov, A. Y.; Nikitina, I. S.; Verkhovsky, A. E.; Ilyushin, A. S.; Aladushkin, S. V.

    2017-11-01

    Regeneration plays a crucial role in the field of efficient application sodium-cationic filters for softening the water. Traditionally used as regenerant saline NaCl. However, due to the modern development of the energy industry and its close relationship with other industrial and academic sectors the opportunity to use in the regeneration of other solutions. The report estimated data and application possibilities as regenerant solution sodium-cationic filters brine wells a high mineral content, as both primary application and after balneotherapeutic use reverse osmosis and concentrates especially recycled regenerant water repeated. Comparison of the effectiveness of these solutions with the traditional use of NaCl. Developed and tested system for the processing of highly mineralized brines wells after balneological use. Recommendations for use as regeneration solutions for the sodium-cationic unit considered solutions and defined rules of brine for regeneration costs.

  19. Investigation of Molecule-Surface Interactions With Overtone Absorption Spectroscopy and Computational Methods

    DTIC Science & Technology

    2010-11-01

    method at a fraction of the computational cost . The overtone frequency serves as the bridge between the molecule-surface interaction model and...the computational cost of utilizing higher levels of theory such as MP2. The second task is the calculation of absorption frequencies as a function...the methyl C-H bonds, and n\\ and inn are the carbon and hydrogen atomic masses, respectively. The calculation of the fundamental and overtone

  20. A vessel segmentation method for multi-modality angiographic images based on multi-scale filtering and statistical models.

    PubMed

    Lu, Pei; Xia, Jun; Li, Zhicheng; Xiong, Jing; Yang, Jian; Zhou, Shoujun; Wang, Lei; Chen, Mingyang; Wang, Cheng

    2016-11-08

    Accurate segmentation of blood vessels plays an important role in the computer-aided diagnosis and interventional treatment of vascular diseases. The statistical method is an important component of effective vessel segmentation; however, several limitations discourage the segmentation effect, i.e., dependence of the image modality, uneven contrast media, bias field, and overlapping intensity distribution of the object and background. In addition, the mixture models of the statistical methods are constructed relaying on the characteristics of the image histograms. Thus, it is a challenging issue for the traditional methods to be available in vessel segmentation from multi-modality angiographic images. To overcome these limitations, a flexible segmentation method with a fixed mixture model has been proposed for various angiography modalities. Our method mainly consists of three parts. Firstly, multi-scale filtering algorithm was used on the original images to enhance vessels and suppress noises. As a result, the filtered data achieved a new statistical characteristic. Secondly, a mixture model formed by three probabilistic distributions (two Exponential distributions and one Gaussian distribution) was built to fit the histogram curve of the filtered data, where the expectation maximization (EM) algorithm was used for parameters estimation. Finally, three-dimensional (3D) Markov random field (MRF) were employed to improve the accuracy of pixel-wise classification and posterior probability estimation. To quantitatively evaluate the performance of the proposed method, two phantoms simulating blood vessels with different tubular structures and noises have been devised. Meanwhile, four clinical angiographic data sets from different human organs have been used to qualitatively validate the method. To further test the performance, comparison tests between the proposed method and the traditional ones have been conducted on two different brain magnetic resonance angiography

  1. Infrared target tracking via weighted correlation filter

    NASA Astrophysics Data System (ADS)

    He, Yu-Jie; Li, Min; Zhang, JinLi; Yao, Jun-Ping

    2015-11-01

    Design of an effective target tracker is an important and challenging task for many applications due to multiple factors which can cause disturbance in infrared video sequences. In this paper, an infrared target tracking method under tracking by detection framework based on a weighted correlation filter is presented. This method consists of two parts: detection and filtering. For the detection stage, we propose a sequential detection method for the infrared target based on low-rank representation. For the filtering stage, a new multi-feature weighted function which fuses different target features is proposed, which takes the importance of the different regions into consideration. The weighted function is then incorporated into a correlation filter to compute a confidence map more accurately, in order to indicate the best target location based on the detection results obtained from the first stage. Extensive experimental results on different video sequences demonstrate that the proposed method performs favorably for detection and tracking compared with baseline methods in terms of efficiency and accuracy.

  2. Chip-scale fluorescence microscope based on a silo-filter complementary metal-oxide semiconductor image sensor.

    PubMed

    Ah Lee, Seung; Ou, Xiaoze; Lee, J Eugene; Yang, Changhuei

    2013-06-01

    We demonstrate a silo-filter (SF) complementary metal-oxide semiconductor (CMOS) image sensor for a chip-scale fluorescence microscope. The extruded pixel design with metal walls between neighboring pixels guides fluorescence emission through the thick absorptive filter to the photodiode of a pixel. Our prototype device achieves 13 μm resolution over a wide field of view (4.8 mm × 4.4 mm). We demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.

  3. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; DePoy, David Moore [Clifton Park, NY; Baldasaro, Paul Francis [Clifton Park, NY

    2007-01-23

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  4. Tandem filters using frequency selective surfaces for enhanced conversion efficiency in a thermophotovoltaic energy conversion system

    DOEpatents

    Dziendziel, Randolph J [Middle Grove, NY; Baldasaro, Paul F [Clifton Park, NY; DePoy, David M [Clifton Park, NY

    2010-09-07

    This invention relates to the field of thermophotovoltaic (TPV) direct energy conversion. In particular, TPV systems use filters to minimize parasitic absorption of below bandgap energy. This invention constitutes a novel combination of front surface filters to increase TPV conversion efficiency by reflecting useless below bandgap energy while transmitting a very high percentage of the useful above bandgap energy. In particular, a frequency selective surface is used in combination with an interference filter. The frequency selective surface provides high transmission of above bandgap energy and high reflection of long wavelength below bandgap energy. The interference filter maintains high transmission of above bandgap energy and provides high reflection of short wavelength below bandgap energy and a sharp transition from high transmission to high reflection.

  5. Passive Ranging Using a Dispersive Spectrometer and Optical Filters

    DTIC Science & Technology

    2012-12-20

    transform spectrometers. These in- struments are very sensitive to vibration, however, making them difficult to use on an air or space-borne platform. This... techniques will scale to longer ranges. An instrument using filters is predicted to be more accurate at long ranges, but only if the grating...done by Leonpacher at AFIT. This research focused on the CO2 absorption feature at 4.3 µm. His technique compared the relative intensity between two

  6. High temperature superconducting YBCO microwave filters

    NASA Astrophysics Data System (ADS)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  7. Determination of papaverine and cocaine by use of a precipitation system coupled on-line to an atomic absorption spectrometer.

    PubMed

    Eisman, M; Gallego, M; Varcárcel, M

    1994-02-01

    A continuous-precipitation flame-atomization atomic absorption spectrometric method for the determination of papaverine and cocaine hydrochlorides is proposed. The method is based on the precipitation of reineckates by injection of Reinecke's salt into a carrier containing the alkaloids and their subsequent retention on a stainless steel filter. In this way, papaverine and cocaine hydrochlorides can be determine over the ranges 5-85 and 50-850 micrograms ml-1 with a relative standard deviation of 1.3 and 3.2%, respectively, and a sampling frequency of 150 h-1. The proposed method is more sensitive and selective for papaverine than it is for cocaine and can be applied to the determination of papaverine HCl in pharmaceutical preparations.

  8. An Improved Harmonic Current Detection Method Based on Parallel Active Power Filter

    NASA Astrophysics Data System (ADS)

    Zeng, Zhiwu; Xie, Yunxiang; Wang, Yingpin; Guan, Yuanpeng; Li, Lanfang; Zhang, Xiaoyu

    2017-05-01

    Harmonic detection technology plays an important role in the applications of active power filter. The accuracy and real-time performance of harmonic detection are the precondition to ensure the compensation performance of Active Power Filter (APF). This paper proposed an improved instantaneous reactive power harmonic current detection algorithm. The algorithm uses an improved ip -iq algorithm which is combined with the moving average value filter. The proposed ip -iq algorithm can remove the αβ and dq coordinate transformation, decreasing the cost of calculation, simplifying the extraction process of fundamental components of load currents, and improving the detection speed. The traditional low-pass filter is replaced by the moving average filter, detecting the harmonic currents more precisely and quickly. Compared with the traditional algorithm, the THD (Total Harmonic Distortion) of the grid currents is reduced from 4.41% to 3.89% for the simulations and from 8.50% to 4.37% for the experiments after the improvement. The results show the proposed algorithm is more accurate and efficient.

  9. Magnetic filter apparatus and method for generating cold plasma in semicoductor processing

    DOEpatents

    Vella, Michael C.

    1996-01-01

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.

  10. Magnetic filter apparatus and method for generating cold plasma in semiconductor processing

    DOEpatents

    Vella, M.C.

    1996-08-13

    Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.

  11. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Osseiran, Sam; Roider, Elisabeth M.; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E.; Evans, Conor L.

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.

  12. Non-Euclidean phasor analysis for quantification of oxidative stress in ex vivo human skin exposed to sun filters using fluorescence lifetime imaging microscopy.

    PubMed

    Osseiran, Sam; Roider, Elisabeth M; Wang, Hequn; Suita, Yusuke; Murphy, Michael; Fisher, David E; Evans, Conor L

    2017-12-01

    Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method.

    PubMed

    Chen, Ching-Hwa; Tsaia, Perng-Jy; Lai, Chane-Yu; Peng, Ya-Lian; Soo, Jhy-Charm; Chen, Cheng-Yao; Shih, Tung-Sheng

    2010-04-15

    In this study, field samplings were conducted in three workplaces of a foundry plant, including the molding, demolding, and bead blasting, respectively. Three respirable aerosol samplers (including a 25-mm aluminum cyclone, nylon cyclone, and IOSH cyclone) were used side-by-side to collect samples from each selected workplace. For each collected sample, the uniformity of the deposition of respirable dusts on the filter was measured and its free silica content was determined by both the DOF XRD method and NIOSH 7500 XRD method (i.e., the reference method). A same trend in measured uniformities can be found in all selected workplaces: 25-mm aluminum cyclone>nylon cyclone>IOSH cyclone. Even for samples collected by the sampler with the highest uniformity (i.e., 25-mm aluminum cyclone), the use of the DOF XRD method would lead to the measured free silica concentrations 1.15-2.89 times in magnitude higher than that of the reference method. A new filter holder should be developed with the minimum uniformity comparable to that of NIOSH 7500 XRD method (=0.78) in the future. The use of conversion factors for correcting quartz concentrations obtained from the DOF XRD method based on the measured uniformities could be suitable for the foundry industry at this stage. 2009 Elsevier B.V. All rights reserved.

  14. Resistive heater geometry and regeneration method for a diesel particulate filter

    DOEpatents

    Phelps, Amanda [Malibu, CA; Kirby, Kevin W [Calabasas Hills, CA; Gregoir, Daniel J [Thousand Oaks, CA

    2011-10-25

    One embodiment of the invention includes a diesel particulate filter comprising a first face and a second face; a bottom electrode layer formed over the first face of the diesel particulate filter; a middle resistive layer formed over a portion of the bottom electrode layer; and a top electrode layer formed over a portion of the middle resistive layer.

  15. Evaluation of the filtration performance of NIOSH-approved N95 filtering facepiece respirators by photometric and number-based test methods.

    PubMed

    Rengasamy, Samy; Miller, Adam; Eimer, Benjamin C

    2011-01-01

    N95 particulate filtering facepiece respirators are certified by measuring penetration levels photometrically with a presumed severe case test method using charge neutralized NaCl aerosols at 85 L/min. However, penetration values obtained by photometric methods have not been compared with count-based methods using contemporary respirators composed of electrostatic filter media and challenged with both generated and ambient aerosols. To better understand the effects of key test parameters (e.g., particle charge, detection method), initial penetration levels for five N95 model filtering facepiece respirators were measured using NaCl aerosols with the aerosol challenge and test equipment employed in the NIOSH respirator certification method (photometric) and compared with an ultrafine condensation particle counter method (count based) for the same NaCl aerosols as well as for ambient room air particles. Penetrations using the NIOSH test method were several-fold less than the penetrations obtained by the ultrafine condensation particle counter for NaCl aerosols as well as for room particles indicating that penetration measurement based on particle counting offers a more difficult challenge than the photometric method, which lacks sensitivity for particles < 100 nm. All five N95 models showed the most penetrating particle size around 50 nm for room air particles with or without charge neutralization, and at 200 nm for singly charged NaCl monodisperse particles. Room air with fewer charged particles and an overwhelming number of neutral particles contributed to the most penetrating particle size in the 50 nm range, indicating that the charge state for the majority of test particles determines the MPPS. Data suggest that the NIOSH respirator certification protocol employing the photometric method may not be a more challenging aerosol test method. Filter penetrations can vary among workplaces with different particle size distributions, which suggests the need for the

  16. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.

    PubMed

    Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming

    2018-04-06

    To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.

  17. Correction Methods for Organic Carbon Artifacts when Using Quartz-Fiber Filters in Large Particulate Matter Monitoring Networks: The Regression Method and Other Options

    EPA Science Inventory

    Sampling and handling artifacts can bias filter-based measurements of particulate organic carbon (OC). Several measurement-based methods for OC artifact reduction and/or estimation are currently used in research-grade field studies. OC frequently is not artifact-corrected in larg...

  18. Guided filter and principal component analysis hybrid method for hyperspectral pansharpening

    NASA Astrophysics Data System (ADS)

    Qu, Jiahui; Li, Yunsong; Dong, Wenqian

    2018-01-01

    Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.

  19. Mode-routed fiber-optic add-drop filter

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  20. X-ray absorption spectroscopy characterization of embedded and extracted nano-oxides<